
Voice API
Library Reference

June 2005

05-2361-002

Voice API Library Reference – June 2005

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This Voice API Library Reference as well as the software described in it is furnished under license and may only be used or copied in accordance with
the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear
in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without express written consent of Intel Corporation.

Copyright © 2004-2005, Intel Corporation

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel Centrino logo,
Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, skoool, Sound Mark, The Computer Inside., The
Journey Inside, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

* Other names and brands may be claimed as the property of others.

Publication Date: June 2005

Document Number: 05-2361-002

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page at:
http://www.intel.com/buy/networking/telecom.htm

http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/networking/telecom.htm

Voice API Library Reference – June 2005 3

Contents

Revision History . 10

About This Publication . 13
Purpose . 13
Applicability . 13
Intended Audience. 13
How to Use This Publication . 14
Related Information . 14

1 Function Summary by Category . 17

1.1 Device Management Functions . 17
1.2 Configuration Functions. 18
1.3 I/O Functions . 19
1.4 I/O Convenience Functions . 20
1.5 Streaming to Board Functions . 21
1.6 Analog Display Services Interface (ADSI) Functions. 22
1.7 Audio Input Functions . 22
1.8 Transaction Record Functions. 22
1.9 Cached Prompt Management Functions . 23
1.10 Call Status Transition (CST) Event Functions . 23
1.11 TDM Routing Functions . 23
1.12 Global Tone Detection (GTD) Functions . 25
1.13 Global Tone Generation (GTG) Functions. 25
1.14 R2/MF Convenience Functions . 26
1.15 Speed and Volume Functions . 26
1.16 Call Progress Analysis Functions . 27
1.17 Caller ID Functions . 28
1.18 File Manipulation Functions . 28
1.19 Echo Cancellation Resource Functions. 29
1.20 Structure Clearance Functions . 29
1.21 Syntellect License Automated Attendant Functions . 29
1.22 Extended Attribute Functions. 30
1.23 Voice Function Support by Platform . 31

2 Function Information . 37

2.1 Function Syntax Conventions . 37
ag_getctinfo() – get information about an analog device. 38
ag_getxmitslot() – get TDM bus time slot number of analog transmit channel 40
ag_listen() – connect analog receive channel to TDM bus time slot . 43
ag_unlisten() – disconnect analog receive channel from TDM bus. 46
ai_close() – close an audio input device . 48
ai_getxmitslot() – get TDM bus time slot number of audio input transmit channel 50
ai_open() – open an audio input device . 52
ATDX_ANSRSIZ() – return the duration of the answer . 54
ATDX_BDNAMEP() – return a pointer to the board device name. 56

4 Voice API Library Reference – June 2005

Contents

ATDX_BDTYPE() – return the board type for the device . 58
ATDX_BUFDIGS() – return the number of uncollected digits . 60
ATDX_CHNAMES() – retrieve all channel names for a board . 62
ATDX_CHNUM() – return the channel number . 64
ATDX_CONNTYPE() – return the connection type for a completed call 66
ATDX_CPERROR() – return the call progress analysis error . 69
ATDX_CPTERM() – return the last result of call progress analysis termination 72
ATDX_CRTNID() – return the last call progress analysis termination . 75
ATDX_DEVTYPE() – return the device type . 81
ATDX_DTNFAIL() – return character for dial tone . 83
ATDX_FRQDUR() – return the duration of the first SIT sequence. 86
ATDX_FRQDUR2() – return the duration of the second SIT sequence . 88
ATDX_FRQDUR3() – return the duration of the third SIT sequence . 90
ATDX_FRQHZ() – return the frequency of the first SIT sequence . 92
ATDX_FRQHZ2() – return the frequency of the second SIT sequence . 94
ATDX_FRQHZ3() – return the frequency of the third SIT sequence . 96
ATDX_FRQOUT() – return percentage of time SIT tone was out of bounds 98
ATDX_FWVER() – return the voice firmware version number . 100
ATDX_HOOKST() – return the current hook-switch state . 103
ATDX_LINEST() – return the current activity on the channel. 105
ATDX_LONGLOW() – return duration of longer silence detected . 107
ATDX_PHYADDR() – return the physical board address. 109
ATDX_SHORTLOW() – return duration of shorter silence detected . 111
ATDX_SIZEHI() – return duration of initial non-silence . 113
ATDX_STATE() – return the current state of the channel . 115
ATDX_TERMMSK() – return the reason for the last I/O function termination 117
ATDX_TONEID() – return user-defined tone ID that terminated I/O function. 121
ATDX_TRCOUNT() – return the byte count for the last I/O transfer . 124
dx_addspddig() – set a DTMF digit to adjust speed . 126
dx_addtone() – add a user-defined tone . 130
dx_addvoldig() – set a DTMF digit to adjust volume . 135
dx_adjsv() – adjust speed or volume immediately . 139
dx_blddt() – define a user-defined dual-frequency tone . 142
dx_blddtcad() – define a user-defined dual frequency cadenced tone. 145
dx_bldst() – define a user-defined single-frequency tone. 148
dx_bldstcad() – define a user-defined single-frequency cadenced tone 151
dx_bldtngen() – define a tone for generation . 154
dx_cacheprompt() – download a cached prompt from multiple sources 157
dx_chgdur() – change the duration definition for a tone. 160
dx_chgfreq() – change the frequency definition for a tone . 164
dx_chgrepcnt() – change the repetition definition for a tone . 168
dx_close() – close a channel or board device handle . 171
dx_CloseStreamBuffer() – delete a circular stream buffer . 174
dx_clrcap() – clear all fields in a DX_CAP structure. 176
dx_clrdigbuf() – clear all digits in the firmware digit buffer . 178
dx_clrsvcond() – clear all speed or volume adjustment conditions . 180

Voice API Library Reference – June 2005 5

Contents

dx_clrtpt() – clear all fields in a DV_TPT structure . 182
dx_createtone() – create a new tone definition for a specific call progress tone. 184
dx_deletetone() – delete a specific call progress tone . 188
dx_deltones() – delete all user-defined tones . 191
dx_dial() – dial an ASCIIZ string . 193
dx_dialtpt() – dial an outbound call using a TPT . 200
dx_distone() – disable detection of a user-defined tone . 203
dx_enbtone() – enable detection of a user-defined tone . 206
dx_fileclose() – close a file . 209
dx_fileerrno() – return the system error value . 211
dx_fileopen() – open a file . 214
dx_fileread() – read data from a file. 216
dx_fileseek() – move a file pointer. 219
dx_filewrite() – write data from a buffer into a file . 222
dx_getcachesize() – get size of on-board memory for cached prompts 225
dx_getctinfo() – get information about a voice device . 227
dx_getcursv() – return the specified current speed and volume settings 229
dx_getdig() – collect digits from a channel digit buffer . 232
dx_getdigEx() – collect more than 31 digits from a channel digit buffer 238
dx_getevt() – monitor channel events synchronously . 241
dx_getfeaturelist() – retrieve feature support information for the device 244
dx_getparm() – get the current parameter settings . 249
dx_GetRscStatus() – return assignment status of a shared resource. 252
dx_GetStreamInfo() – retrieve information about the circular stream buffer 254
dx_getsvmt() – return the current speed or volume modification table 256
dx_getxmitslot() – get TDM bus time slot number of voice transmit channel 259
dx_getxmitslotecr() – get echo cancellation resource transmit time slot number 262
dx_gtcallid() – return the calling line Directory Number. 265
dx_gtextcallid() – retrieve a caller ID message . 270
dx_gtsernum() – retrieve the board serial number . 279
dx_initcallp() – initialize and activate call progress analysis . 281
dx_listen() – connect a voice listen channel to TDM bus time slot . 284
dx_listenecr() – enable echo cancellation resource mode . 287
dx_listenecrex() – modify characteristics of the echo canceller . 290
dx_mreciottdata() – record voice data from two TDM bus time slots . 293
dx_open() – open a voice device and return a unique device handle . 301
dx_OpenStreamBuffer() – create and initialize a circular stream buffer 304
dx_pause() – pause on-going play . 306
dx_play() – play recorded voice data. 308
dx_playf() – synchronously play voice data. 318
dx_playiottdata() – play back recorded voice data from multiple sources 321
dx_playtone() – play tone defined by TN_GEN structure . 327
dx_playtoneEx() – play the cadenced tone defined by TN_GENCAD. 331
dx_playvox() – play voice data stored in a single VOX file . 336
dx_playwav() – play voice data stored in a single WAVE file . 339
dx_PutStreamData() – place data into a circular stream buffer. 342

6 Voice API Library Reference – June 2005

Contents

dx_querytone() – get tone information for a specific call progress tone 344
dx_rec() – record voice data from a single channel . 347
dx_recf() – record voice data to a single file. 355
dx_reciottdata() – record voice data to multiple destinations . 359
dx_recm() – record voice data from two channels . 364
dx_recmf() – record voice data from a single channel . 370
dx_recvox() – record voice data to a single VOX file . 373
dx_recwav() – record voice data to a single WAVE file . 376
dx_ResetStreamBuffer() – reset internal data for a circular stream buffer 379
dx_resume() – resume paused play . 381
dx_RxIottData() – receive data on a specified channel . 383
dx_sendevt() – allow inter-process event communication . 387
dx_setchxfercnt() – set the bulk queue buffer size . 389
dx_setdevuio() – install and retrieve user-defined I/O functions. 392
dx_setdigbuf() – set the digit buffering mode . 395
dx_setdigtyp() – control the types of digits detected by the voice channel. 397
dx_setevtmsk() – enable detection of call status transition (CST) events 400
dx_setgtdamp() – set up the tone detection amplitudes. 407
dx_sethook() – provide control of the hook switch status. 410
dx_setparm() – set physical parameters of a channel or board device 415
dx_SetRecordNotifyBeepTone() – specify the template of the cadenced tone 425
dx_setsvcond() – set conditions that adjust speed or volume of play . 427
dx_setsvmt() – change default values of the speed or volume modification table 431
dx_settone() – adds a GTG tone template . 435
dx_settonelen() – change the duration of the built-in beep tone . 439
dx_setuio() – install user-defined I/O functions . 442
dx_SetWaterMark() – set water mark for the circular stream buffer. 445
dx_stopch() – force termination of currently active I/O functions . 447
dx_TSFStatus() – return the status of tone set file loading . 451
dx_TxIottData() – transmit data on a specified channel . 453
dx_TxRxIottData() – start a transmit-initiated reception of data . 456
dx_unlisten() – disconnect voice receive channel from TDM bus . 462
dx_unlistenecr() – disable echo cancellation resource (ECR) mode . 465
dx_wink() – generate an outbound wink. 468
dx_wtcallid() – wait for rings and report caller ID . 472
dx_wtring() – wait for a specified number of rings . 475
li_attendant() – perform the actions of an automated attendant. 478
li_islicensed_syntellect() – verify Syntellect patent license on board . 482
nr_scroute() – make a full or half-duplex connection . 483
nr_scunroute() – break a full or half-duplex connection . 485
r2_creatfsig() – create R2/MF forward signal tone . 487
r2_playbsig() – play R2/MF backward signal tone . 490

3 Events. 495

3.1 Overview of Events. 495
3.2 Termination Events. 495
3.3 Unsolicited Events . 497

Voice API Library Reference – June 2005 7

Contents

3.4 Call Status Transition (CST) Events . 498

4 Data Structures . 501

ADSI_XFERSTRUC – ADSI 2-way FSK data transfer buffer . 502
CT_DEVINFO – channel/time slot device information . 503
DV_DIGIT – user digit buffer . 507
DV_DIGITEX – extended digit buffer . 509
DV_TPT – termination parameter table . 510
DX_ATTENDANT – Syntellect License Automated Attendant . 519
DX_CAP – call progress analysis parameters . 521
DX_CST – call status transition (CST) information . 529
DX_EBLK – call status transition event block. 531
DX_ECRCT – echo cancellation resource (ECR) characteristics . 533
DX_IOTT – input/output transfer table . 534
DX_STREAMSTAT – status of stream buffer. 537
DX_SVCB – speed and volume adjustment condition block . 539
DX_SVMT – speed and volume modification tables . 543
DX_UIO – user-defined input/output . 545
DX_XPB – input/output transfer parameter block. 546
FEATURE_TABLE – feature information . 551
SC_TSINFO – TDM bus time slot information . 557
TN_GEN – tone generation template . 558
TN_GENCAD – cadenced tone generation template . 559
TONE_DATA – tone information . 561

5 Error Codes . 563

6 Supplementary Reference Information . 567

6.1 DTMF and MF Tone Specifications . 567
6.2 DTMF and MF Detection Errors. 568

Glossary . 571

Index . 579

8 Voice API Library Reference – June 2005

Contents

Figures

1 Format of General Caller ID Information . 271

Voice API Library Reference – June 2005 9

Contents

Tables

1 Voice Function Support by Platform . 32
2 Valid Dial String Characters (DM3) . 195
3 Valid Dial String Characters (Springware) . 195
4 System Error Values . 211
5 Caller ID Common Message Types. 271
6 Caller ID CLASS Message Types (Multiple Data Message) . 272
7 Caller ID ACLIP Message Types (Multiple Data Message) . 272
8 Caller ID CLIP Message Types . 273
9 Caller ID JCLIP Message Types (Multiple Data Message) . 273
10 Caller ID-Related Error Codes Returned for Different Message Types. 275
11 Play Mode Selections . 310
12 Record Mode Selections . 349
13 Voice Board Parameters (DM3). 416
14 Voice Board Parameters (Springware) . 416
15 Voice Channel Parameters (DM3). 418
16 Voice Channel Parameters (Springware) . 420
17 DV_TPT Field Settings Summary . 515
18 G.711 Voice Coder Support Fields (DM3) . 547
19 G.721 Voice Coder Support Fields (DM3) . 548
20 Linear PCM Voice Coder Support Fields (DM3) . 548
21 OKI ADPCM Voice Coder Support Fields (DM3). 548
22 G.726 Voice Coder Support Fields (DM3) . 548
23 GSM Voice Coder Support Fields (DM3). 549
24 TrueSpeech Voice Coder Support Fields (DM3) . 549
25 IMA ADPCM Voice Coder Support Fields (DM3) . 549
26 G.726 Voice Coder Support Fields (Springware) . 549
27 GSM Voice Coder Support Fields (Springware) . 550
28 DTMF Tone Specifications . 567
29 MF Tone Specifications (CCITT R1 Tone Plan) . 568
30 Detecting MF Digits . 569
31 Detecting DTMF Digits. 569

Voice API Library Reference — June 2005 10

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-2361-002 June 2005 Function Summary by Category chapter : Updated table in Voice Function Support by
Platform section to show that dx_RxIottData(), dx_TxIottData(), and
dx_TxRxIottData() functions are supported on Springware boards in Linux.

ATDX_CRTNID() function: Updated to show support for DM3 boards; added eight
new SIT sequences that can be returned; added example code for DM3 boards.

dx_clrdigbuf() function: in Cautions section, added second bullet about digits not
always being cleared. [PTR 33806]

dx_createtone() function: Added note about SIT sequences not supported for toneid
in the parameter description table. Also added this information in the Cautions
section. Updated example code to show asynchronous mode.

dx_deletetone() function: Added note about SIT sequences not supported for toneid
in the parameter description table. Also added this information in the Cautions
section.

dx_play() function: Added caution about playing files that contain DTMFs in Cautions
section [PTR 34219].

dx_playf() function: Added caution about playing files that contain DTMFs in
Cautions section [PTR 34219].

dx_playiottdata() function: Added caution about playing files that contain DTMFs in
Cautions section [PTR 34219].

dx_querytone() function: Added note about SIT sequences not supported for toneid
in the parameter description table. Also added this information in the Cautions
section.

dx_rec() function: Added caution in Cautions section about starting a record before
receiving data.

dx_reciottdata() function: Added new modes, RM_VADNOTIFY and RM_ISCR, for
recording with the voice activity detector. Removed PM_TONE. Added caution
in Cautions section about starting a record before receiving data.

dx_recvox() function: Changed PM_TONE to RM_TONE in the mode parameter.
Added caution in Cautions section about starting a record before receiving data.

dx_recwav() function: Changed PM_TONE to RM_TONE in the mode parameter.
Added caution in Cautions section about starting a record before receiving data.

dx_RxIottData() function: Updated to show support for Springware boards in Linux.

dx_setparm() function: Corrected the following parameters and placed corrected
parameters in Table Voice Board Parameters (Springware): DXBD_MFDELAY
(not DXCH_MFDELAY), DXBD_MFLKPTONE (not DXCH_MFLKPTONE),
DXBD_MFMINON (not DXCH_MFMINON), DXBD_MFTONE (not
DXCH_MFTONE).

dx_setparm() function: Corrected Bytes value for DXCH_MINRWINK (2 not 1),
DXCH_NUMRXBUFFERS (2 not 4), DXCH_NUMTXBUFFERS (2 not 4) in
Table Voice Channel Parameters (Springware). Updated Bytes and R/W values
for DXCH_FSKCHSEIZURE, DXCH_FSKINTERBLKTIMEOUT,
DXCH_FSKMARKLENGTH, DXCH_FSKSTANDARD in Table Voice Channel
Parameters (DM3).

Voice API Library Reference — June 2005 11

Revision History

05-2361-002
(cont.)

June 2005 dx_TxIottData() function: Updated to show support for Springware boards in Linux.

dx_TxRxIottData() function: Updated to show support for Springware boards in
Linux.

DX_CAP data structure: Corrected default value for ca_maxintering: changed 8 secs
to 10 secs [PTR 34285]. Revised applicability of ca_ansrdgl: changed CPA to
Basic CPA Only [PTR 35086].

FEATURE_TABLE data structure: In the ft_misc field, updated FT_CALLERID bit
description (now also used to indicate FSK support on DM3 boards).

TONE_DATA data structure: Updated TONE_SEG.structver and
TONE_DATA.structver field definitions.

05-2361-001 November 2004 Initial version of document. Much of the information contained in this document was
previously published in the Voice API for Windows Operating Systems Library
Reference (document number 05-1832-002) and the Voice API for Linux Operating
Systems Library Reference (document number 05-1830-001).

This document now supports both Linux and Windows operating systems. When
information is specific to an operating system, it is noted.

Document No. Publication Date Description of Revisions

12 Voice API Library Reference — June 2005

Revision History

Voice API Library Reference — June 2005 13

About This Publication

The following topics provide information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication provides a reference to all voice functions, parameters and data structures in the
voice API, also called the R4 voice API, supported on Linux* and Windows* operating systems. It
is a companion document to the Voice API Programming Guide, the Standard Runtime Library API
Programming Guide, and the Standard Runtime Library API Library Reference.

Applicability

This document version (05-2361-002) is published for Intel® Dialogic® System Release 6.1 for
Linux.

This document may also be applicable to later Intel Dialogic system releases, including service
updates, on Linux or Windows. Check the Release Guide for your software release to determine
whether this document is supported.

This document is applicable to Intel Dialogic system releases only. It is not applicable to Intel
NetStructure® Host Media Processing (HMP) software releases. A separate set of voice API
documentation specific to HMP is provided. Check the Release Guide for your software release to
determine what documents are provided with the release.

Intended Audience

This information is intended for software developers who will access the voice software. These
may include any of the following:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

14 Voice API Library Reference — June 2005

About This Publication

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

How to Use This Publication

This document assumes that you are familiar with and have prior experience with Linux or
Windows operating systems and the C programming language.

The information in this guide is organized as follows:

• Chapter 1, “Function Summary by Category” introduces the various categories of voice
functions and provides a brief description of each function.

• Chapter 2, “Function Information” provides an alphabetical reference to all voice functions.

• Chapter 3, “Events” provides an alphabetical reference to events that may be returned by the
voice software.

• Chapter 4, “Data Structures” provides an alphabetical reference to all voice data structures.

• Chapter 5, “Error Codes” presents a listing of error codes that may be returned by the voice
software.

• Chapter 6, “Supplementary Reference Information” provides additional reference information
on topics such as DTMF Tone Specifications, and MF Tone Specifications.

A glossary and index are provided for your reference.

Related Information

See the following for more information:

• For information about voice library features and guidelines for building applications using
voice software, see the Voice API Programming Guide.

• For details on the Standard Runtime Library, supported programming models, and
programming guidelines for building all applications, see the Standard Runtime Library API
Programming Guide. The Standard Runtime Library is a device-independent library that
consists of event management functions and standard attribute functions.

• For details on all functions and data structures in the Standard Runtime Library library, see the
Standard Runtime Library API Library Reference.

• For information on the system release, system requirements, software and hardware features,
supported hardware, and release documentation, see the Release Guide for the system release
you are using.

• For details on compatibility issues, restrictions and limitations, known problems, and late-
breaking updates or corrections to the release documentation, see the Release Update.

Be sure to check the Release Update for the system release you are using for any updates or
corrections to this publication. Release Updates are available on the Telecom Support
Resources website at http://resource.intel.com/telecom/support/releases/index.html.

http://resource.intel.com/telecom/support/releases/index.html

Voice API Library Reference — June 2005 15

About This Publication

• For guidelines on building applications using Global Call software (a common signaling
interface for network-enabled applications, regardless of the signaling protocol needed to
connect to the local telephone network), see the Global Call API Programming Guide.

• For details on all functions and data structures in the Global Call library, see the Global Call
API Library Reference.

• For details on configuration files (including FCD/PCD files) and instructions for configuring
products, see the Configuration Guide for your product or product family.

16 Voice API Library Reference — June 2005

About This Publication

Voice API Library Reference — June 2005 17

11.Function Summary by Category

This chapter describes the categories into which the voice library functions can be logically
grouped. This chapter also includes a table listing function support on various platforms (DM3,
Springware) as well as synchronous/asynchronous support.

• Device Management Functions . 17

• Configuration Functions . 18

• I/O Functions . 19

• I/O Convenience Functions . 20

• Streaming to Board Functions . 21

• Analog Display Services Interface (ADSI) Functions. 22

• Audio Input Functions . 22

• Transaction Record Functions . 22

• Cached Prompt Management Functions . 23

• Call Status Transition (CST) Event Functions . 23

• TDM Routing Functions . 23

• Global Tone Detection (GTD) Functions . 25

• Global Tone Generation (GTG) Functions . 25

• R2/MF Convenience Functions . 26

• Speed and Volume Functions. 26

• Call Progress Analysis Functions . 27

• Caller ID Functions . 28

• File Manipulation Functions . 28

• Echo Cancellation Resource Functions . 29

• Structure Clearance Functions. 29

• Syntellect License Automated Attendant Functions . 29

• Extended Attribute Functions . 30

• Voice Function Support by Platform . 31

1.1 Device Management Functions

Device management functions open and close devices, which include boards and channels.

18 Voice API Library Reference — June 2005

Function Summary by Category

Before you can call any other library function on a device, that device must be opened using a
device management function. The dx_open() function returns a unique voice device handle. This
handle is the only way the device can be identified once it has been opened. The dx_close()
function closes a device via its handle.

A set of device management functions exists for each Intel Dialogic library, such as fax (fx_
functions), modular station interface (ms_ functions), and conferencing (dcb_ functions). See the
appropriate API Library Reference for more information on these functions.

Device management functions do not cause a device to be busy. In addition, these functions will
work on a device whether the device is busy or idle.

For more information about opening and using voice devices, see the Voice API Programming
Guide. Also see this guide for more information about naming conventions for board and channel
devices.

Use Standard Runtime Library device mapper functions to return information about the structure of
the system, such as a list of all physical boards, a list of all virtual boards on a physical board, and
a list of all subdevices on a virtual board. This device information is used as input to device
management functions. For more information on device mapper functions, see the Standard
Runtime Library API Library Reference.

The device management functions are:

dx_close()
closes a board or channel device handle

dx_open()
opens a board or channel device handle

1.2 Configuration Functions

Configuration functions allow you to alter, examine, and control the physical configuration of an
open device. In general, configuration functions operate on an idle device. Configuration functions
cause a device to be busy and return the device to an idle state when the configuration is complete.
See the Voice API Programming Guide for information about busy and idle states.

The configuration functions are:

dx_clrdigbuf()
clears all digits in the firmware digit buffer

dx_getfeaturelist()
returns information about the features supported on the device

dx_getparm()
gets the current parameter settings for an open device

dx_GetRscStatus()
returns the assignment status of a shared resource for the specified channel

Voice API Library Reference — June 2005 19

Function Summary by Category

dx_gtsernum()
returns the board serial number

dx_setchxfercnt()
sets the bulk queue buffer size for the channel

dx_setdigbuf()
sets the digit buffering mode

dx_setdigtyp()
controls the types of digits detected by the device

dx_sethook()
sets the hook switch state

dx_setparm()
sets physical parameters for the device

dx_SetRecordNotifyBeepTone() (Windows only)
specifies the template of the cadenced tone for record notification beep tone

dx_settonelen() (Windows only)
changes the duration of the built-in beep tone (pre-record beep)

dx_TSFStatus() (Windows only)
returns the status of tone set file loading

dx_wtring()
waits for a specified number of rings

Note: The dx_sethook() and dx_setdigbuf() functions can also be classified as an I/O function and all
I/O characteristics apply.

1.3 I/O Functions

An I/O function transfers data to and from an open, idle channel. All I/O functions cause a channel
to be busy while data transfer is taking place and return the channel to an idle state when data
transfer is complete.

I/O functions can be run synchronously or asynchronously, with some exceptions (for example,
dx_setuio() can be run synchronously only). When running synchronously, they return after
completing successfully or after an error. When running asynchronously, they return immediately
to indicate successful initiation (or an error), and continue processing until a termination condition
is satisfied. See the Standard Runtime Library API Programming Guide for more information on
asynchronous and synchronous operation.

A set of termination conditions can be specified for I/O functions, except for dx_stopch() and
dx_wink(). These conditions dictate what events will cause an I/O function to terminate. The
termination conditions are specified just before the I/O function call is made. Obtain termination
reasons for I/O functions by calling the extended attribute function ATDX_TERMMSK(). See the
Voice API Programming Guide for information about I/O terminations.

Note: To send and receive FSK data from an Analog Display Services Interface (ADSI) device, see
Section 1.6, “Analog Display Services Interface (ADSI) Functions”, on page 22.

20 Voice API Library Reference — June 2005

Function Summary by Category

The I/O functions are:

dx_dial()
dials an ASCIIZ string of digits

dx_dialtpt() (Linux only)
dials an outbound call with the ability to terminate call progress analysis

dx_getdig()
collects digits from a channel digit buffer

dx_getdigEx() (Linux only)
initiates the collection of digits from a channel digit buffer

dx_pause()
pauses on-going play

dx_play()
plays voice data from any combination of data files, memory, or custom devices

dx_playiottdata()
plays voice data from any combination of data files, memory, or custom devices, and lets the
user specify format information

dx_rec()
records voice data to any combination of data files, memory, or custom devices

dx_reciottdata()
records voice data to any combination of data files, memory, or custom devices, and lets the
user specify format information

dx_resume()
resumes paused play

dx_setdevuio()
installs and retrieves user-defined I/O functions in your application

dx_setuio()
installs user-defined I/O functions in your application

dx_stopch()
forces termination of currently active I/O functions

dx_wink()
generates an outbound wink

Notes: 1. The dx_playtone() function, which is grouped with global tone generation functions, can also
be classified as an I/O function and all I/O characteristics apply.

2. The dx_playvox() and dx_recvox() functions, which are grouped with I/O convenience
functions, can also be classified as I/O functions and all I/O characteristics apply.

1.4 I/O Convenience Functions

Convenience functions enable you to easily implement certain basic functionality of the library
functions. I/O convenience functions simplify synchronous play and record.

Voice API Library Reference — June 2005 21

Function Summary by Category

The dx_playf() function performs a playback from a single file by specifying the filename. The
same operation can be done by using dx_play() and supplying a DX_IOTT structure with only one
entry for that file. Using dx_playf() is more convenient for a single file playback because you do
not have to set up a DX_IOTT structure for the one file and the application does not need to open
the file. dx_recf() provides the same single-file convenience for the dx_rec() function.

The dx_playvox() function also plays voice data stored in a single VOX file. This function
internally calls dx_playiottdata(). Similarly, dx_recvox() records VOX files using
dx_reciottdata().

The I/O convenience functions are:

dx_playf()
plays voice data from a single VOX file without the need to specify DX_IOTT

dx_playvox()
plays voice data from a single VOX file using dx_playiottdata()

dx_playwav()
plays voice data stored in a single WAVE file

dx_recf()
records voice data from a channel to a single VOX file without the need to specify DX_IOTT

dx_recvox()
records voice data from a channel to a single VOX file using dx_reciottdata()

dx_recwav()
 records voice data to a single WAVE file

1.5 Streaming to Board Functions

The streaming to board feature enables real time data streaming to the board. Streaming to board
functions allow you to create, maintain, and delete a circular stream buffer within the library. These
functions also provide notification when high and low water marks are reached. See the Voice API
Programming Guide for more information about the streaming to board feature.

The streaming to board functions include:

dx_CloseStreamBuffer()
deletes a circular stream buffer

dx_GetStreamInfo()
retrieves information about the circular stream buffer

dx_OpenStreamBuffer()
creates and initializes a circular stream buffer

dx_PutStreamData()
places data into the circular stream buffer

dx_ResetStreamBuffer()
resets internal data for a circular stream buffer

22 Voice API Library Reference — June 2005

Function Summary by Category

dx_SetWaterMark()
sets high and low water marks for the circular stream buffer

1.6 Analog Display Services Interface (ADSI) Functions

The send and receive frequency shift keying (FSK) data interface is used for Analog Display
Services Interface (ADSI) and fixed-line short message service (SMS). Frequency shift keying is a
frequency modulation technique to send digital data over voiced band telephone lines.

The functions listed here support both one-way and two-way frequency shift keying (FSK). See the
Voice API Programming Guide for more information about ADSI, two-way FSK, and SMS.

dx_RxIottData()
receives data on a specified channel

dx_TxIottData()
transmits data on a specified channel

dx_TxRxIottData()
starts a transmit-initiated reception of data

1.7 Audio Input Functions

The Audio Input (AI) functions are used to provide music or other information on-hold.

ai_open()
opens an audio input device

ai_close()
closes an audio input device

ai_getxmitslot()
gets the TDM bus time slot number of the audio input transmit channel

1.8 Transaction Record Functions

Transaction record enables the recording of a two-party conversation by allowing data from two
time division multiplexing (TDM) bus time slots from a single channel to be recorded.

dx_mreciottdata()
records voice data from two TDM bus time slots to a data file, memory or custom device

dx_recm() (Linux only)
records voice data from two channels to a data file, memory, or custom device

dx_recmf() (Linux only)
records voice data from two channels to a single file

Voice API Library Reference — June 2005 23

Function Summary by Category

1.9 Cached Prompt Management Functions

The cached prompt management feature enables you to store prompts in on-board memory and
play them from this location rather than from the host disk drive. See the Voice API Programming
Guide for more information about cached prompt management.

dx_cacheprompt()
downloads voice data (prompts) from multiple sources to the on-board memory

dx_getcachesize()
returns the size of the on-board memory used to store cached prompts

1.10 Call Status Transition (CST) Event Functions

Call status transition (CST) event functions set and monitor CST events that can occur on a device.
CST events indicate changes in the status of the call, such as rings or a tone detected, or the line
going on-hook or off-hook. See the call status transition structure (DX_CST) description for a full
list of CST events.

The dx_getevt() function retrieves CST events in a synchronous environment. To retrieve CST
events in an asynchronous environment, use the Standard Runtime Library event management
functions.

dx_setevtmsk() enables detection of CST event(s). User-defined tones are CST events, but
detection for these events is enabled using dx_addtone() or dx_enbtone(), which are global tone
detection functions.

The call status transition event functions are:

dx_getevt()
gets a CST event in a synchronous environment

dx_sendevt()
allows inter-process event communication and sends a specified CST event to a specified
device

dx_setevtmsk()
enables detection of CST events

1.11 TDM Routing Functions

TDM routing functions are used in time division multiplexing (TDM) bus configurations, which
include the CT Bus and SCbus. A TDM bus is resource sharing bus that allows information to be
transmitted and received among resources over multiple time slots.

TDM routing functions enable the application to make or break a connection between voice,
telephone network interface, and other resource channels connected via TDM bus time slots. Each
device connected to the bus has a transmit component that can transmit on a time slot and a receive
component that can listen to a time slot.

24 Voice API Library Reference — June 2005

Function Summary by Category

The transmit component of each channel of a device is assigned to a time slot at system
initialization and download. To listen to other devices on the bus, the receive component of the
device channel is connected to any one time slot. Any number of device channels can listen to a
time slot.

Note: When you see references to the SCbus or SCbus routing, this information also applies to the CT
Bus. That is, the physical interboard connection can be either SCbus or CT Bus. The SCbus
protocol is used and the SCbus routing API applies to all the boards regardless of whether they use
an SCbus or CT Bus physical interboard connection.

A set of TDM routing functions exist for each Intel Dialogic library, such as fax (fx_ functions),
modular station interface (ms_ functions), and conferencing (dcb_ functions). See the appropriate
API Library Reference for more information on these functions.

TDM routing convenience functions, nr_scroute() and nr_scunroute(), are provided to make or
break a half or full-duplex connection between any two channels transmitting on the bus. These
functions are not a part of any library but are provided in a separate C source file called sctools.c.
The functions are defined in sctools.h.

The TDM routing functions are:

ag_getctinfo()
returns information about an analog device connected to the TDM bus

ag_getxmitslot()
returns the number of the TDM bus time slot connected to the transmit component of an
analog channel

ag_listen()
connects the listen (receive) component of an analog channel to the TDM bus time slot

ag_unlisten()
disconnects the listen (receive) component of an analog channel from the TDM bus time slot

dx_getctinfo()
returns information about voice device connected to TDM bus

dx_getxmitslot()
returns the number of the TDM bus time slot connected to the transmit component of a voice
channel

dx_listen()
connects the listen (receive) component of a voice channel to a TDM bus time slot

dx_unlisten()
disconnects the listen (receive) component of a voice channel from TDM bus time slot

nr_scroute()
makes a half or full-duplex connection between two channels transmitting on the TDM bus

nr_scunroute()
breaks a half or full-duplex connection between two TDM bus devices

Voice API Library Reference — June 2005 25

Function Summary by Category

1.12 Global Tone Detection (GTD) Functions

The global tone detection (GTD) functions define and enable detection of single and dual
frequency tones that fall outside the range of those automatically provided with the voice driver.
They include tones outside the standard DTMF range of 0-9, a-d, *, and #.

The GTD dx_blddt(), dx_blddtcad(), dx_bldst(), and dx_bldstcad() functions define tones
which can then be added to the channel using dx_addtone(). This enables detection of the tone on
that channel. See the Voice API Programming Guide for a full description of global tone detection.

The global tone detection functions are:

dx_addtone()
adds a user-defined tone

dx_blddt()
builds a user-defined dual frequency tone description

dx_blddtcad()
builds a user-defined dual frequency tone cadence description

dx_bldst()
builds a user-defined single frequency tone description

dx_bldstcad()
builds a user-defined single frequency tone cadence description

dx_deltones()
deletes all user-defined tones

dx_distone()
disables detection of a user-defined tone and tone on/off events

dx_enbtone()
enables detection of a user-defined tone and tone on/off events previously disabled

dx_setgtdamp()
sets amplitudes used by global tone detection (GTD)

1.13 Global Tone Generation (GTG) Functions

Global tone generation (GTG) functions define and play single and dual tones that fall outside the
range of those automatically provided with the voice driver.

The dx_bldtngen() function defines a tone template structure, TN_GEN. The dx_playtone()
function can then be used to generate the tone.

The dx_settone() function adds a GTG tone template, defined by the TN_GEN data structure, to
the firmware. This definition can be used by the application for tone-initiated record. The
customization of record pre-beep lets the user select the frequencies, amplitudes, and duration of
the beep being played prior to record.

26 Voice API Library Reference — June 2005

Function Summary by Category

See the Voice API Programming Guide for a full description of global tone generation.

The global tone generation functions are:

dx_bldtngen()
builds a user-defined tone template structure, TN_GEN

dx_playtone()
plays a user-defined tone as defined in TN_GEN structure

dx_playtoneEx()
 plays the cadenced tone defined by TN_GENCAD structure

dx_settone() (Linux only)
adds a user-defined tone template to the firmware (and customizes pre-record beep)

Note: The dx_playtone() and dx_playtoneEx() functions can also be classified as an I/O function and
all I/O characteristics apply.

1.14 R2/MF Convenience Functions

R2/MF convenience functions enable detection of R2/MF forward signals on a channel, and play
R2/MF backward signals in response. For more information about voice support for R2/MF, see the
Voice API Programming Guide.

Note: R2/MF signaling is typically accomplished through the Global Call API. For more information, see
the Global Call documentation set. The R2/MF functions listed here are provided for backward
compatibility only and should not be used for R2/MF signaling.

r2_creatfsig()
creates R2/MF forward signal tone

r2_playbsig()
plays R2/MF backward signal tone

1.15 Speed and Volume Functions

Speed and volume functions adjust the speed and volume of the play. A speed modification table
and volume modification table are associated with each channel, and can be used for increasing or
decreasing the speed or volume. These tables have default values which can be changed using the
dx_setsvmt() function.

The dx_addspddig() and dx_addvoldig() functions are convenience functions that specify a digit
and an adjustment to occur on that digit, without having to set any data structures. These functions
use the default settings of the speed and volume modification tables.

See the Voice API Programming Guide for more information about the speed and volume feature.

Voice API Library Reference — June 2005 27

Function Summary by Category

The speed and volume functions are:

dx_adjsv()
adjusts speed or volume immediately

dx_addspddig()
sets a dual tone multi-frequency (DTMF) digit for speed adjustment

dx_addvoldig()
adds a dual tone multi-frequency (DTMF) digit for volume adjustment

dx_clrsvcond()
clears speed or volume conditions

dx_getcursv()
returns current speed and volume settings

dx_getsvmt()
returns current speed or volume modification table

dx_setsvcond()
sets conditions (such as digit) for speed or volume adjustment; also sets conditions for play
(pause and resume)

dx_setsvmt()
changes default values of speed or volume modification table

1.16 Call Progress Analysis Functions

Call progress analysis functions are used to enable the call progress analysis feature and change the
default definition of call progress analysis tones. See the Voice API Programming Guide for more
information about call progress analysis.

Notes: 1. Two forms of call progress analysis exist: basic and PerfectCall (formerly called “enhanced call
analysis”). PerfectCall call progress analysis uses an improved method of signal identification
and can detect fax machines and answering machines. Basic call progress analysis provides
backward compatibility for older applications written before PerfectCall call progress analysis
became available.

2. Throughout this document, call progress analysis refers to PerfectCall call progress analysis
unless otherwise noted.

The call progress analysis functions are:

dx_chgdur()
changes the default call progress analysis signal duration

dx_chgfreq()
changes the default call progress analysis signal frequency

dx_chgrepcnt()
changes the default call progress analysis signal repetition count

dx_initcallp()
initializes call progress analysis on a channel

28 Voice API Library Reference — June 2005

Function Summary by Category

dx_createtone()
creates a new tone definition for a specific call progress tone

dx_deletetone()
deletes a specific call progress tone

dx_querytone()
returns tone information for a specific call progress tone

1.17 Caller ID Functions

Caller ID functions are used to handle caller ID requests. Caller ID is enabled by setting a channel-
based parameter in dx_setparm(). See the Voice API Programming Guide for more information
about caller ID.

dx_gtcallid()
returns the calling line directory number (DN)

dx_gtextcallid()
returns the requested caller ID message by specifying the message type ID

dx_wtcallid()
waits for rings and reports caller ID, if available

1.18 File Manipulation Functions

Supported on Windows only. These file manipulation functions map to C run-time functions, and
can only be used if the file is opened with the dx_fileopen() function. The arguments for these
Intel Dialogic functions are identical to the equivalent Microsoft* Visual C++ run-time functions.

dx_fileclose() (Windows only)
closes the file associated with the handle

dx_fileerrno() (Windows only)
obtains the system error value

dx_fileopen() (Windows only)
opens the file specified by filep

dx_fileread() (Windows only)
reads data from the file associated with the handle

dx_fileseek() (Windows only)
moves a file pointer associated with the handle

dx_filewrite() (Windows only)
writes data from a buffer into a file associated with the handle

Voice API Library Reference — June 2005 29

Function Summary by Category

1.19 Echo Cancellation Resource Functions

The echo cancellation resource (ECR) feature is a voice channel mode that reduces the echo
component in an external TDM bus time slot signal. The echo cancellation resource functions
enable use of the ECR feature.

Note: The ECR functions have been replaced by the continuous speech processing (CSP) API functions.
CSP provides enhanced echo cancellation. For more information, see the Continuous Speech
Processing API Programming Guide and Continuous Speech Processing API Library Reference.

dx_getxmitslotecr()
provides the TDM bus transmit time-slot number of the specified voice channel device when in
ECR mode

dx_listenecr()
enables echo cancellation on a specified voice channel and connects the voice channel to the
echo-referenced signal on the specified TDM bus time slot (ECR mode)

dx_listenecrex()
performs identically to dx_listenecr() and also provides the ability to modify the
characteristics of the echo canceller

dx_unlistenecr()
disables echo cancellation on a specified voice channel and disconnects the voice channel from
the echo-referenced signal (SVP mode)

1.20 Structure Clearance Functions

These functions do not affect a device. The dx_clrcap() and dx_clrtpt() functions provide a
convenient method for clearing the DX_CAP and DV_TPT data structures. These structures are
discussed in Chapter 4, “Data Structures”.

dx_clrcap()
clears all fields in a DX_CAP structure

dx_clrtpt()
clears all fields in a DV_TPT structure

1.21 Syntellect License Automated Attendant Functions

Supported on Windows only. These functions are used with Intel Dialogic products that are
licensed for specific telephony patents held by Syntellect Technology Corporation. For more
information, see the Voice API Programming Guide.

li_attendant() (Windows only)
performs the actions of an automated attendant

li_islicensed_syntellect() (Windows only)
verifies Syntellect patent license on board

30 Voice API Library Reference — June 2005

Function Summary by Category

1.22 Extended Attribute Functions

Voice library extended attribute functions return information specific to the voice device specified
in the function call.

ATDX_ANSRSIZ()
returns the duration of the answer detected during call progress analysis

ATDX_BDNAMEP()
returns a pointer to the board device name string

ATDX_BDTYPE()
returns the board type for the device

ATDX_BUFDIGS()
returns the number of digits in the firmware since the last dx_getdig() or dx_getdigEx() for a
given channel

ATDX_CHNAMES()
returns a pointer to an array of channel name strings

ATDX_CHNUM()
returns the channel number on board associated with the channel device handle

ATDX_CONNTYPE()
returns the connection type for a completed call

ATDX_CPERROR()
returns call progress analysis error

ATDX_CPTERM()
returns last call progress analysis termination

ATDX_CRTNID()
returns the identifier of the tone that caused the most recent call progress analysis termination

ATDX_DEVTYPE()
returns device type (board or channel)

ATDX_DTNFAIL()
returns the dial tone character that indicates which dial tone call progress analysis failed to
detect

ATDX_FRQDUR()
returns the duration of the first special information tone (SIT) frequency

ATDX_FRQDUR2()
returns the duration of the second special information tone (SIT) frequency

ATDX_FRQDUR3()
returns the duration of the third special information tone (SIT) frequency

ATDX_FRQHZ()
returns the frequency of the first detected SIT

ATDX_FRQHZ2()
returns the frequency of the second detected SIT

Voice API Library Reference — June 2005 31

Function Summary by Category

ATDX_FRQHZ3()
returns the frequency of the third detected SIT

ATDX_FRQOUT()
returns the percentage of frequency out of bounds detected during call progress analysis

ATDX_FWVER()
returns the firmware version

ATDX_HOOKST()
returns the current hook state of the channel

ATDX_LINEST()
returns the current line status of the channel

ATDX_LONGLOW()
returns the duration of longer silence detected during call progress analysis

ATDX_PHYADDR()
returns the physical address of board

ATDX_SHORTLOW()
returns the duration of shorter silence detected during call progress analysis

ATDX_SIZEHI()
returns the duration of non-silence detected during call progress analysis

ATDX_STATE()
returns the current state of the device

ATDX_TERMMSK()
returns the reason for last I/O function termination in a bitmap

ATDX_TONEID()
returns the tone ID (used in global tone detection)

ATDX_TRCOUNT()
returns the last record or play transfer count

1.23 Voice Function Support by Platform

Table 1 provides an alphabetical listing of voice API functions. The table indicates which platforms
(DM3 or Springware) are supported for each of the functions.

The term “DM3 boards” refers to products based on the Intel DM3 mediastream architecture.
Typically DM3 board names have the prefix “DM,” such as Intel NetStructure® DM/V2400A-PCI.
The term “Springware boards” refers to boards based on earlier-generation architecture. Typically
Springware board names have the prefix “D,” such as Intel® Dialogic® D/240JCT-T1.

Although a function may be supported on both DM3 and Springware boards, there may be some
restrictions on its use. For example, some parameters or parameter values may not be supported.
For details, see the function reference descriptions in Chapter 2, “Function Information”.

32 Voice API Library Reference — June 2005

Function Summary by Category

Table 1. Voice Function Support by Platform

Function DM3 Springware

ag_getctinfo() NS S

ag_getxmitslot() NS S

ag_listen() NS S

ag_unlisten() NS S

ai_close() S NS

ai_getxmitslot() S NS

ai_open() S NS

ATDX_ANSRSIZ() NS S

ATDX_BDNAMEP() S S

ATDX_BDTYPE() S S

ATDX_BUFDIGS() S S

ATDX_CHNAMES() S S

ATDX_CHNUM() S S

ATDX_CONNTYPE() S S

ATDX_CPERROR() S S

ATDX_CPTERM() S S

ATDX_CRTNID() NS S

ATDX_DEVTYPE() S S

ATDX_DTNFAIL() NS S

ATDX_FRQDUR() NS S

ATDX_FRQDUR2() NS S

ATDX_FRQDUR3() NS S

ATDX_FRQHZ() NS S

ATDX_FRQHZ2() NS S

ATDX_FRQHZ3() NS S

ATDX_FRQOUT() NS S

ATDX_FWVER() NS S

ATDX_HOOKST() NS S

ATDX_LINEST() NS S

ATDX_LONGLOW() NS S

ATDX_PHYADDR() NS S

NS = Not supported
S = Supported
* = Variances between platforms; refer to the function reference for more information.
† = Asynchronous and synchronous mode supported (all other functions support synchronous mode only)
‡ = On DM3, call progress analysis is available directly through dx_dial().

Voice API Library Reference — June 2005 33

Function Summary by Category

ATDX_SHORTLOW() NS S

ATDX_SIZEHI() NS S

ATDX_STATE() S S

ATDX_TERMMSK() S S

ATDX_TONEID() S S

ATDX_TRCOUNT() S S

dx_addspddig() S * S

dx_addtone() S * S

dx_addvoldig() S * S

dx_adjsv() S S

dx_blddt() S S

dx_blddtcad() S S

dx_bldst() S S

dx_bldstcad() S S

dx_bldtngen() S S

dx_cacheprompt() † S NS

dx_chgdur() NS S

dx_chgfreq() NS S

dx_chgrepcnt() NS S

dx_close() S S

dx_CloseStreamBuffer() S NS

dx_clrcap() S S

dx_clrdigbuf() S S

dx_clrsvcond() S S

dx_clrtpt() S S

dx_createtone() † S NS

dx_deletetone() † S NS

dx_deltones() S S

dx_dial() † S S

dx_dialtpt() † (Linux only) NS S

dx_distone() S S

dx_enbtone() S S

Table 1. Voice Function Support by Platform (Continued)

Function DM3 Springware

NS = Not supported
S = Supported
* = Variances between platforms; refer to the function reference for more information.
† = Asynchronous and synchronous mode supported (all other functions support synchronous mode only)
‡ = On DM3, call progress analysis is available directly through dx_dial().

34 Voice API Library Reference — June 2005

Function Summary by Category

dx_fileclose() (Windows only) S S

dx_fileerrno() (Windows only) S S

dx_fileopen() (Windows only) S S

dx_fileread() (Windows only) S S

dx_fileseek() (Windows only) S S

dx_filewrite() (Windows only) S S

dx_getcachesize() S NS

dx_getctinfo() S S

dx_getcursv() S S

dx_getdig() † S S

dx_getdigEx() † (Linux only) NS S

dx_getevt() S S

dx_getfeaturelist() S S

dx_getparm() S S

dx_GetRscStatus() NS S

dx_GetStreamInfo() S NS

dx_getsvmt() S S

dx_getxmitslot() S * S

dx_getxmitslotecr() NS S

dx_gtcallid() NS S

dx_gtextcallid() NS S

dx_gtsernum() S S

dx_initcallp() ‡ NS S

dx_listen() S * S

dx_listenecr() NS S

dx_listenecrex() NS S

dx_mreciottdata() S NS on Linux
S on Windows

dx_open() S S

dx_OpenStreamBuffer() S NS

dx_pause() S NS

dx_play() † S S

Table 1. Voice Function Support by Platform (Continued)

Function DM3 Springware

NS = Not supported
S = Supported
* = Variances between platforms; refer to the function reference for more information.
† = Asynchronous and synchronous mode supported (all other functions support synchronous mode only)
‡ = On DM3, call progress analysis is available directly through dx_dial().

Voice API Library Reference — June 2005 35

Function Summary by Category

dx_playf() S S

dx_playiottdata() † S S

dx_playtone() † S S

dx_playtoneEx() † S S

dx_playvox() S S

dx_playwav() S S

dx_PutStreamData() S NS

dx_querytone() † S NS

dx_rec() † S * S

dx_recf() S S

dx_reciottdata() † S* S

dx_recm() † (Linux only) NS S

dx_recmf() † (Linux only) NS S

dx_recvox() S S

dx_recwav() S S

dx_ResetStreamBuffer() S NS

dx_resume() S NS

dx_RxIottData() † S S

dx_sendevt() NS S

dx_setchxfercnt() S * S

dx_setdevuio() S S

dx_setdigbuf() NS S

dx_setdigtyp() S * S

dx_setevtmsk() S * S

dx_setgtdamp() S S

dx_sethook() † NS S

dx_setparm() S * S

dx_SetRecordNotifyBeepTone() (Windows only) S NS

dx_setsvcond() S * S

dx_setsvmt() S S

dx_settone() (Linux only) NS S

dx_settonelen() (Windows only) NS S

Table 1. Voice Function Support by Platform (Continued)

Function DM3 Springware

NS = Not supported
S = Supported
* = Variances between platforms; refer to the function reference for more information.
† = Asynchronous and synchronous mode supported (all other functions support synchronous mode only)
‡ = On DM3, call progress analysis is available directly through dx_dial().

36 Voice API Library Reference — June 2005

Function Summary by Category

dx_setuio() S S

dx_SetWaterMark() S NS

dx_stopch() † S S

dx_TSFStatus() (Windows only) NS S

dx_TxIottData() † S S

dx_TxRxIottData() † S S

dx_unlisten() S * S

dx_unlistenecr() NS S

dx_wink() † NS S

dx_wtcallid() NS S

dx_wtring() NS S

li_attendant() (Windows only) NS S

li_islicensed_syntellect() (Windows only) NS S

nr_scroute() S * S

nr_scunroute() S * S

r2_creatfsig() NS S

r2_playbsig() † NS S

Table 1. Voice Function Support by Platform (Continued)

Function DM3 Springware

NS = Not supported
S = Supported
* = Variances between platforms; refer to the function reference for more information.
† = Asynchronous and synchronous mode supported (all other functions support synchronous mode only)
‡ = On DM3, call progress analysis is available directly through dx_dial().

Voice API Library Reference — June 2005 37

22.Function Information

This chapter provides an alphabetical reference to the functions in the voice library. A general
description of the function syntax convention is provided before the detailed function information.

Note: The “Platform” line in the function header table of each function indicates the platforms
supported. “DM3” refers to products based on DM3 mediastream architecture. “Springware” refers
to products based on earlier-generation architecture. If a function is supported on one operating
system only, this is also noted.

2.1 Function Syntax Conventions

The voice functions use the following syntax:

data_type voice_function(device_handle, parameter1, ... parameterN)

where:

data type
refers to the data type, such as integer, long or void

voice_function
represents the function name. Typically, voice functions begin with “dx” although there are
exceptions. Extended attribute functions begin with “ATDX.”

device_handle
represents the device handle, which is a numerical reference to a device, obtained when a
device is opened. The device handle is used for all operations on that device.

parameter1
represents the first parameter

parameterN
represents the last parameter

38 Voice API Library Reference — June 2005

ag_getctinfo() — get information about an analog device

ag_getctinfo()

get information about an analog device

Description

The ag_getctinfo() function returns information about an analog channel on an analog device.
This information is contained in a CT_DEVINFO structure.

Cautions

This function will fail if an invalid channel handle is specified.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler library index number

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.)

Name: int ag_getctinfo(chdev, ct_devinfop)

Inputs: int chdev • valid analog channel device handle

CT_DEVINFO *ct_devinfop • pointer to device information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Routing

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid analog channel handle obtained when the channel was
opened using dx_open()

ct_devinfop specifies a pointer to the data structure CT_DEVINFO

Voice API Library Reference — June 2005 39

get information about an analog device — ag_getctinfo()

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* Channel device handle */
 CT_DEVINFO ct_devinfo; /* Device information structure */

 /* Open board 1 channel 1 devices */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* process error */
 }

 /* Get Device Information */
 if (ag_getctinfo(chdev, &ct_devinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }

 printf("%s Product Id = 0x%x, Family = %d, Mode = %d, Network = %d, Bus mode = %d,
 Encoding = %d", ATDV_NAMEP(chdev), ct_devinfo.ct_prodid,
 ct_devinfo.ct_devfamily, ct_devinfo.ct_devmode, ct_devinfo.ct_nettype,
 ct_devinfo.ct_busmode, ct_devinfo.ct_busencoding);
}

See Also

• dt_getctinfo() in the Digital Network Interface Software Reference

• dx_getctinfo()

40 Voice API Library Reference — June 2005

ag_getxmitslot() — get TDM bus time slot number of analog transmit channel

ag_getxmitslot()

get TDM bus time slot number of analog transmit channel

Description

The ag_getxmitslot() function provides the TDM bus time slot number of the analog transmit
channel. This information is contained in an SC_TSINFO structure that also includes the number
of the time slot connected to the analog transmit channel. For more information on this structure,
see SC_TSINFO, on page 557.

Note: Routing convenience function nr_scroute() includes ag_getxmitslot() functionality.

An analog channel can transmit on only one TDM bus time slot.

Cautions

This function fails if an invalid channel device handle is specified.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

Name: int ag_getxmitslot(chdev, sc_tsinfop)

Inputs: int chdev • valid analog channel device handle

SC_TSINFO *sc_tsinfop • pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Routing

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid analog channel handle obtained when the channel was
opened using dx_open()

sc_tsinfop specifies a pointer to the data structure SC_TSINFO

Voice API Library Reference — June 2005 41

get TDM bus time slot number of analog transmit channel — ag_getxmitslot()

EDX_SH_BADINDX
Invalid Switch Handler library index number

EDX_SH_BADLCTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.) number

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus time slot

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* Channel device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

 /* Open board 1 channel 1 devices */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* process error */
 }

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get TDM bus time slot connected to transmit of analog channel 1 on board ...1 */
 if (ag_getxmitslot(chdev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }

 printf("%s is transmitting on TDM bus time slot %d", ATDV_NAMEP(chdev), ...scts);
}

42 Voice API Library Reference — June 2005

ag_getxmitslot() — get TDM bus time slot number of analog transmit channel

See Also

• ag_listen()

• dt_listen() in the Digital Network Interface Software Reference

• dx_listen()

• fx_listen() in the Fax Software Reference

• ms_listen() in the Modular Station Interface API Library Reference

Voice API Library Reference — June 2005 43

connect analog receive channel to TDM bus time slot — ag_listen()

ag_listen()

connect analog receive channel to TDM bus time slot

Description

The ag_listen() function connects an analog receive channel to a TDM bus time slot. This function
uses the information stored in the SC_TSINFO data structure to connect the analog receive (listen)
channel to a TDM bus time slot. This function sets up a half-duplex connection. For a full-duplex
connection, the receive (listen) channel of the other device must be connected to the analog
transmit channel.

Due to analog signal processing on voice boards with on-board analog devices, a voice device and
its corresponding analog device (analog device 1 to voice device 1, etc.) comprise a single channel.
At system initialization, default TDM bus routing is to connect these devices in full-duplex
communications.

Note: Routing convenience function nr_scroute() includes ag_listen() functionality.

Although multiple analog channels may listen (be connected) to the same TDM bus time slot, the
analog receive (listen) channel can connect to only one TDM bus time slot.

Cautions

This function will fail when an invalid channel handle or invalid TDM bus time slot number is
specified.

Name: int ag_listen (chdev, sc_tsinfop)

Inputs: int chdev • valid analog channel device handle

SC_TSINFO *sc_tsinfop • pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Routing

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid analog channel device handle obtained when the
channel was opened using dx_open()

sc_tsinfop specifies a pointer to the SC_TSINFO structure. For more information on
this structure, see SC_TSINFO, on page 557.

44 Voice API Library Reference — June 2005

ag_listen() — connect analog receive channel to TDM bus time slot

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel local time slot type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLTSCNCT
Channel is already connected to TDM bus time slot

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
System error

Example

#include <srllib.h>
#include <dxxxlib.h

main()
{
 int chdev; /* Channel device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

/* Open board 1 channel 1 devices */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* process error */
 }

Voice API Library Reference — June 2005 45

connect analog receive channel to TDM bus time slot — ag_listen()

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get TDM bus time slot connected to transmit of voice channel 1 on board 1 */
 if (dx_getxmitslot(chdev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }

 /* Connect the receive of analog channel 1 on board 1 to TDM bus
 time slot of voice channel 1 */
 if (ag_listen(chdev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }
}

See Also

• dx_getxmitslot()

• dt_getxmitslot() in the Digital Network Interface Software Reference

• fx_getxmitslot() in the Fax Software Reference

• ag_unlisten()

46 Voice API Library Reference — June 2005

ag_unlisten() — disconnect analog receive channel from TDM bus

ag_unlisten()

disconnect analog receive channel from TDM bus

Description

The ag_unlisten() function disconnects an analog receive channel from the TDM bus. This
function disconnects the analog receive (listen) channel from the TDM bus time slot it was
listening to.

Calling ag_listen() to connect to a different TDM bus time slot will automatically break an
existing connection. Thus, when changing connections, you need not call the ag_unlisten()
function first.

Note: Routing convenience function nr_scunroute() includes ag_unlisten() functionality.

Cautions

This function will fail when an invalid channel handle is specified.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADINDX
Invalid Switch Handler index number

Name: int ag_unlisten(chdev)

Inputs: int chdev • analog channel device handle

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Routing

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 47

disconnect analog receive channel from TDM bus — ag_unlisten()

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel local time slot type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus time slot

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
System error

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* Voice Channel handle */

 /* Open board 1 channel 1 device */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* process error */
 }

 /* Disconnect receive of board 1, channel 1 from TDM bus time slot */
 if (ag_unlisten(chdev) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }
}

See Also

• ag_listen()

48 Voice API Library Reference — June 2005

ai_close() — close an audio input device

ai_close()

close an audio input device

Description

The ai_close() function closes an audio input device that was previously opened using ai_open().
This function releases the handle and breaks any link between the calling process and the device.

Cautions

This function fails when an invalid channel device handle is specified.

Errors

If this function returns -1 to indicate failure, a system error has occurred.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

int main()
{
 int aidev; /* Audio input device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

 /* Open audio input device aiB1 */
 if ((aidev = ai_open("aiB1")) < 0) {
 /* process error */
 }

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

Name: int ai_close(devh)

Inputs: int devh • valid audio input device handle

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Audio Input

Mode: synchronous

Platform: DM3

Parameter Description

devh specifies the valid device handle obtained when an audio input device is
opened using ai_open()

Voice API Library Reference — June 2005 49

close an audio input device — ai_close()

 /* Get TDM bus time slot connected to transmit of audio input device */
 if (ai_getxmitslot(aidev, &sc_tsinfo) < 0) {
 /* process error */
 }
 else {
 printf("%s is transmitting on TDM time slot %d", ATDV_NAMEP(aidev), scts);
 }

 /* Close audio input device */
 if (ai_close(aidev) < 0) {
 /* process error */
 }

 return 0;
}

See Also

• ai_getxmitslot()

• ai_open()

50 Voice API Library Reference — June 2005

ai_getxmitslot() — get TDM bus time slot number of audio input transmit channel

ai_getxmitslot()

get TDM bus time slot number of audio input transmit channel

Description

The ai_getxmitslot() function returns the TDM bus time slot number of the audio input transmit
channel. The TDM bus time slot information is contained in an SC_TSINFO structure.

Cautions

This function fails when an invalid channel device handle is specified.

Errors

If the function returns -1, use the SRL Standard Attribute function ATDV_LASTERR() to obtain
the error code or use ATDV_ERRMSGP() to obtain a descriptive error message. For a list of
error codes returned by ATDV_LASTERR(), see the Error Codes chapter.

Name: int ai_getxmitslot(devh, sc_tsinfop)

Inputs: int devh • valid audio input device handle

SC_TSINFO *sc_tsinfop • pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Audio Input

Mode: synchronous

Platform: DM3

Parameter Description

devh specifies the valid device handle obtained when the audio input device is
opened using ai_open()

sc_tsinfop specifies a pointer to the TDM bus time slot information structure,
SC_TSINFO.

The sc_numts field of the SC_TSINFO structure must be initialized with the
number of TDM bus time slots requested (1). The sc_tsarrayp field of the
SC_TSINFO structure must be initialized with a valid pointer to a long
variable. Upon successful return from the function, the long variable will
contain the number of the time slot on which the audio input device transmits.
For more information on this structure, see SC_TSINFO, on page 557.

Voice API Library Reference — June 2005 51

get TDM bus time slot number of audio input transmit channel — ai_getxmitslot()

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

int main()
{
 int aidev; /* Audio input device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

 /* Open audio input device aiB1 */
 if ((aidev = ai_open("aiB1")) < 0) {
 /* process error */
 }

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get TDM bus time slot connected to transmit of audio input device */
 if (ai_getxmitslot(aidev, &sc_tsinfo) < 0) {
 /* process error */
 }
 else {
 printf("%s is transmitting on TDM time slot %d", ATDV_NAMEP(aidev), scts);
 }

 /* Close audio input device */
 if (ai_close(aidev) < 0) {
 /* process error */
 }
 return 0;
}

See Also

• ai_open()

• ai_close()

52 Voice API Library Reference — June 2005

ai_open() — open an audio input device

ai_open()

open an audio input device

Description

The ai_open() function opens an audio input device and returns a unique device handle to identify
the device. Until the device is closed, all subsequent references to the opened device must be made
using the handle.

Cautions

This function will fail and return -1 if:

• The device name is invalid.

• A hardware error on the board or channel is discovered.

Errors

If this function returns -1 to indicate failure, a system error has occurred.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

int main()
{
 int aidev; /* Audio input device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

Name: int ai_open(namep)

Inputs: const char *namep • pointer to an ASCIIZ string that contains the name of a valid audio input
device

Returns: audio input device handle if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Audio Input

Mode: synchronous

Platform: DM3

Parameter Description

namep points to an ASCIIZ string that contains the name of the valid audio input
device, in the form aiBn, where n is the audio input device number

Voice API Library Reference — June 2005 53

open an audio input device — ai_open()

 /* Open audio input device aiB1 */
 if ((aidev = ai_open("aiB1")) < 0) {
 /* process error */
 }
 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get TDM bus time slot connected to transmit of audio input device */
 if (ai_getxmitslot(aidev, &sc_tsinfo) < 0) {
 /* process error */
 }
 else {
 printf("%s is transmitting on TDM time slot %d", ATDV_NAMEP(aidev), scts);
 }

 /* Close audio input device */
 if (ai_close(aidev) < 0) {
 /* process error */
 }

 return 0;
}

See Also

• ai_close()

• ai_getxmitslot()

• SRL device mapper functions in the Standard Runtime Library API Library Reference

54 Voice API Library Reference — June 2005

ATDX_ANSRSIZ() — return the duration of the answer

ATDX_ANSRSIZ()

return the duration of the answer

Description

The ATDX_ANSRSIZ() function returns the duration of the answer that occurs when dx_dial()
or dx_dialtpt() with basic call progress analysis enabled is called on a channel. An answer is
considered the period of non-silence that begins after cadence is broken and a connection is made.
This measurement is taken before a connect event is returned. The duration of the answer can be
used to determine if the call was answered by a person or an answering machine. This feature is
based on the assumption that an answering machine typically answers a call with a longer greeting
than a live person does.

See the Voice API Programming Guide for information about call progress analysis. Also see this
guide for information about how cadence detection parameters affect a connect and are used to
distinguish between a live voice and a voice recorded on an answering machine.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

/* Call Progress Analysis with user-specified parameters */

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

Name: long ATDX_ANSRSIZ(chdev)

Inputs: int chdev • valid channel device handle

Returns: answer duration in 10 msec units if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 55

return the duration of the answer — ATDX_ANSRSIZ()

main()
{
 int cares, chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call progress analysis. Perform the
 * outbound dial with call progress analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }

 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }
}

See Also

• dx_dial()

• dx_dialtpt()

• DX_CAP data structure

56 Voice API Library Reference — June 2005

ATDX_BDNAMEP() — return a pointer to the board device name

ATDX_BDNAMEP()

return a pointer to the board device name

Description

The ATDX_BDNAMEP() function returns a pointer to the board device name on which the
channel accessed by chdev resides.

As illustrated in the example, this may be used to open the board device that corresponds to a
particular channel device prior to setting board parameters.

Cautions

None.

Errors

This function will fail and return a pointer to “Unknown device” if an invalid channel device handle
is specified in chdev.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev, bddev;
 char *bdnamep;
 .

Name: char * ATDX_BDNAMEP(chdev)

Inputs: int chdev • valid channel device handle

Returns: pointer to board device name string if successful
pointer to ASCIIZ string “Unknown device” if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 57

return a pointer to the board device name — ATDX_BDNAMEP()

 .
 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Process error */
 }

 /* Display board name */
 bdnamep = ATDX_BDNAMEP(chdev);
 printf("The board device is: %s\n", bdnamep);

 /* Open the board device */
 if ((bddev = dx_open(bdnamep, NULL)) == -1) {
 /* Process error */
 }
 .
 .
}

See Also

None.

58 Voice API Library Reference — June 2005

ATDX_BDTYPE() — return the board type for the device

ATDX_BDTYPE()

return the board type for the device

Description

The ATDX_BDTYPE() function returns the board type for the device specified in dev.

A typical use would be to determine whether or not the device can support particular features, such
as call progress analysis.

Possible return values are the following:

DI_D41BD
D/41 Board Device. This value represents the “dxxxBn type” devices (virtual boards).

DI_D41CH
D/41 Channel Device. This value represents the “dxxxBnCm” type devices (channel device).

The values DI_D41BD and DI_D41CH will be returned for any D/41 board, and any board which
emulates the voice resources of multiple D/41 boards.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid board or channel device handle is
specified in dev.

Name: long ATDX_BDTYPE(dev)

Inputs: int dev • valid board or channel device handle

Returns: board or channel device type if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

dev specifies the valid device handle obtained when a board or channel was opened
using dx_open()

Voice API Library Reference — June 2005 59

return the board type for the device — ATDX_BDTYPE()

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define ON 1

main()
{
 int bddev;
 long bdtype;
 int call_analysis=0;

 /* Open the board device */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* Process error */
 }

 if((bdtype = ATDX_BDTYPE(bddev)) == AT_FAILURE) {
 /* Process error */
 }

 if(bdtype == DI_D41BD) {
 printf("Device is a D/41 Board\n");
 call_analysis = ON;
 }
 .
 .
}

See Also

None.

60 Voice API Library Reference — June 2005

ATDX_BUFDIGS() — return the number of uncollected digits

ATDX_BUFDIGS()

return the number of uncollected digits

Description

The ATDX_BUFDIGS() function returns the number of uncollected digits in the firmware buffer
for channel chdev. This is the number of digits that have arrived since the last call to dx_getdig()
or the last time the buffer was cleared using dx_clrdigbuf(). The digit buffer contains a number of
digits and a null terminator. The maximum size of the digit buffer varies with the board type and
technology.

Note: This function is supported on DM3 boards but must be manually enabled. You must enable the
function before the application is loaded in memory.

On Linux, to enable this function, add SupportForSignalCounting = 1 in
/usr/dialogic/cfg/cheetah.cfg. To subsequently disable this function, remove this line from the .cfg
file.

On Windows, to enable this function, set parameter SupportForSignalCounting to 1 in Key
HKEY_LOCAL_MACHINE\SOFTWARE\Dialogic\Cheetah\CC. To subsequently disable this
function, set this parameter to 0.

Cautions

Digits that adjust speed and volume (see dx_setsvcond()) will not be passed to the digit buffer.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Name: long ATDX_BUFDIGS(chdev)

Inputs: int chdev • valid channel device handle

Returns: number of uncollected digits in the firmware buffer if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 61

return the number of uncollected digits — ATDX_BUFDIGS()

Example

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 long bufdigs;
 DX_IOTT iott;
 DV_TPT tpt[2];

 /* Open the device using dx_open(). Get channel device descriptor in
 * chdev. */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play till end of file */

 /* On Linux only, use open function */
 if((iott.io_fhandle = open("prompt.vox", O_RDONLY)) == -1) {
 /* process error */
 }

 /* On Windows only, use dx_fileopen function */
 if((iott.io_fhandle = dx_fileopen("prompt.vox", O_RDONLY)) == -1) {
 /* process error */
 }

 /* set up DV_TPT */
 dx_clrtpt(tpt,2);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 4; /* terminate on 4 digits */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */
 tpt[1].tp_type = IO_EOT;
 tpt[1].tp_termno = DX_DIGMASK; /* Digit termination */
 tpt[1].tp_length = DM_5; /* terminate on the digit "5" */
 tpt[1].tp_flags = TF_DIGMASK; /* Use the default flags */

 /* Play a voice file. Terminate on receiving 4 digits, the digit "5" or
 * at end of file.*/
 if (dx_play(chdev,&iott,tpt,EV_SYNC) == -1) {
 /* process error */
 }
 /* Check # of digits collected and continue processing. */
 if((bufdigs=ATDX_BUFDIGS(chdev))==AT_FAILURE) {
 /* process error */
 }
 .
 .
 .
}

See Also

• dx_getdig()

• dx_clrdigbuf()

62 Voice API Library Reference — June 2005

ATDX_CHNAMES() — retrieve all channel names for a board

ATDX_CHNAMES()

retrieve all channel names for a board

Description

The ATDX_CHNAMES() function returns a pointer to an array of channel names associated with
the specified board device handle, bddev.

A possible use for this attribute is to display the names of the channel devices associated with a
particular board device.

Cautions

None.

Errors

This function will fail and return the address of a pointer to “Unknown device” if an invalid board
device handle is specified in bddev.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int bddev, cnt;
 char **chnames;
 long subdevs;
 .
 .
 /* Open the board device */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {

Name: char ** ATDX_CHNAMES(bddev)

Inputs: int bddev • valid board device handle

Returns: pointer to array of channel names if successful
pointer to array of pointers that point to “Unknown device” if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

bddev specifies the valid board device handle obtained when the board was opened
using dx_open()

Voice API Library Reference — June 2005 63

retrieve all channel names for a board — ATDX_CHNAMES()

 /* Process error */
 }
 .
 .
 /* Display channels on board */
 chnames = ATDX_CHNAMES(bddev);
 subdevs = ATDV_SUBDEVS(bddev); /* number of sub-devices on board */
 printf("Channels on this board are:\n");
 for(cnt=0; cnt<subdevs; cnt++) {
 printf("%s\n",*(chnames + cnt));
 }
 /* Call dx_open() to open each of the
 * channels and store the device descriptors
 */
 .
 .
}

See Also

None.

64 Voice API Library Reference — June 2005

ATDX_CHNUM() — return the channel number

ATDX_CHNUM()

return the channel number

Description

The ATDX_CHNUM() function returns the channel number associated with the channel device
chdev. Channel numbering starts at 1.

For example, use the channel as an index into an array of channel-specific information.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 long chno;
 .
 .
 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Process error */
 }
 /* Get Channel number */

Name: long ATDX_CHNUM(chdev)

Inputs: int chdev • valid channel device handle

Returns: channel number if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 65

return the channel number — ATDX_CHNUM()

 if((chno = ATDX_CHNUM(chdev)) == AT_FAILURE) {
 /* Process error */
 }
 /* Use chno for application-specific purposes */
 .
 .
}

See Also

None.

66 Voice API Library Reference — June 2005

ATDX_CONNTYPE() — return the connection type for a completed call

ATDX_CONNTYPE()

return the connection type for a completed call

Description

The ATDX_CONNTYPE() function returns the connection type for a completed call on the
channel device chdev. Use this function when a CR_CNCT (called line connected) is returned by
ATDX_CPTERM() after termination of dx_dial() with call progress analysis enabled.

See the Voice API Programming Guide for more information about call progress analysis.

Possible return values are the following:

CON_CAD
Connection due to cadence break

CON_LPC (not supported on DM3 boards)
Connection due to loop current

CON_PAMD
Connection due to positive answering machine detection

CON_PVD
Connection due to positive voice detection

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Name: long ATDX_CONNTYPE(chdev)

Inputs: int chdev • valid channel device handle

Returns: connection type if success
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 67

return the connection type for a completed call — ATDX_CONNTYPE()

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int dxxxdev;
 int cares;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

/*
 * Delete any previous tones
 */
 if (dx_deltones(dxxxdev) < 0) {
 /* handle error */
 }

 /*
 * Now enable call progress analysis with above changed settings.
 */
 if (dx_initcallp(dxxxdev)) {
 /* handle error */
 }

 /*
 * Take the phone off-hook
 */
 if (dx_sethook(dxxxdev, DX_OFFHOOK, EV_SYNC) == -1) {
 printf("Unable to set the phone off-hook\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Perform an outbound dial with call progress analysis, using
 * the default call progress analysis parameters.
 */
 if ((cares=dx_dial(dxxxdev, ",84",(DX_CAP *)NULL, DX_CALLP)) == -1) {
 printf("Outbound dial failed - reason = %d\n",
 ATDX_CPERROR(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 printf("call progress analysis returned %d\n", cares);
 if (cares == CR_CNCT) {
 switch (ATDX_CONNTYPE(dxxxdev)) {
 case CON_CAD:
 printf("Cadence Break\n");
 break;
 case CON_LPC:
 printf("Loop Current Drop\n");
 break;

68 Voice API Library Reference — June 2005

ATDX_CONNTYPE() — return the connection type for a completed call

 case CON_PVD:
 printf("Positive Voice Detection\n");
 break;

 case CON_PAMD:
 printf("Positive Answering Machine Detection\n");
 break;

 default:
 printf("Unknown connection type\n");
 break;
 }
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }
 /* Terminate the Program */
 exit(0);
}

See Also

• dx_dial()

• ATDX_CPTERM()

• DX_CAP data structure

Voice API Library Reference — June 2005 69

return the call progress analysis error — ATDX_CPERROR()

ATDX_CPERROR()

return the call progress analysis error

Description

The ATDX_CPERROR() function returns the call progress analysis error that caused dx_dial()
to terminate when checking for operator intercept Special Information Tone (SIT) sequences. See
the Voice API Programming Guide for more information about call progress analysis.

Cautions

None.

Errors

When dx_dial() terminates due to a call progress analysis error, CR_ERROR is returned by
ATDX_CPTERM().

If CR_ERROR is returned, use ATDX_CPERROR() to determine the call progress analysis error.
One of the following values will be returned:

CR_LGTUERR
lower frequency greater than upper frequency

CR_MEMERR
out of memory trying to create temporary Special Information Tone (SIT) tone templates
(exceeds maximum number of templates)

CR_MXFRQERR
invalid ca_maxtimefrq field in DX_CAP. If the ca_mxtimefrq parameter for each SIT is
nonzero, it must have a value greater than or equal to the ca_timefrq parameter for the same
SIT.

Name: long ATDX_CPERROR(chdev)

Inputs: int chdev • valid channel device handle

Returns: call progress analysis error if success
AT_FAILURE if function fails

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

70 Voice API Library Reference — June 2005

ATDX_CPERROR() — return the call progress analysis error

CR_OVRLPERR
overlap in selected SIT tones

CR_TMOUTOFF
timeout waiting for SIT tone to terminate (exceeds a ca_mxtimefrq parameter)

CR_TMOUTON
timeout waiting for SIT tone to commence

CR_UNEXPTN
unexpected SIT tone (the sequence of detected tones did not correspond to the SIT sequence)

CR_UPFRQERR
invalid upper frequency selection. This value must be nonzero for detection of any SIT.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int dxxxdev;
 int cares;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Take the phone off-hook
 */
 if (dx_sethook(dxxxdev, DX_OFFHOOK, EV_SYNC) == -1) {
 printf("Unable to set the phone off-hook\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Perform an outbound dial with call progress analysis, using
 * the default call progress analysis parameters.
 */
 if((cares = dx_dial(dxxxdev,",84",(DX_CAP *) NULL, DX_CALLP)) == -1) {
 printf("Outbound dial failed - reason = %d\n",
 ATDX_CPERROR(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

Voice API Library Reference — June 2005 71

return the call progress analysis error — ATDX_CPERROR()

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_dial()

• ATDX_CPTERM()

• DX_CAP data structure

72 Voice API Library Reference — June 2005

ATDX_CPTERM() — return the last result of call progress analysis termination

ATDX_CPTERM()

return the last result of call progress analysis termination

Description

The ATDX_CPTERM() function returns the last result of call progress analysis termination on
the channel chdev. Call this function to determine the call status after dialing out with call progress
analysis enabled.

See the Voice API Programming Guide for more information about call progress analysis.

Possible return values are the following:

CR_BUSY
Called line was busy.

CR_CEPT
Called line received Operator Intercept (SIT). Extended attribute functions provide
information on detected frequencies and duration.

CR_CNCT
Called line was connected.

CR_FAXTONE
Called line was answered by fax machine or modem.

CR_NOANS
Called line did not answer.

CR_NODIALTONE
Timeout occurred while waiting for dial tone. This return value is not supported on DM3
boards.

CR_NORB
No ringback on called line.

Name: long ATDX_CPTERM(chdev)

Inputs: int chdev • valid channel device handle

Returns: last call progress analysis termination if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 73

return the last result of call progress analysis termination — ATDX_CPTERM()

CR_STOPD
Call progress analysis stopped due to dx_stopch().

CR_ERROR
Call progress analysis error occurred. Use ATDX_CPERROR() to return the type of error.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

/* Call progress analysis with user-specified parameters */
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor
 * in chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 } else {

 /* Clear DX_CAP structure */
 dx_clrcap(&capp);

 /* Set the DX_CAP structure as needed for call progress analysis.
 * Allow 3 rings before no answer.
 */
 capp.ca_nbrdna = 3;

 /* Perform the outbound dial with call progress analysis enabled. */
 if (dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC) == -1) {
 /* perform error routine */
 }
 }
 .
 .

 /* Examine last call progress termination on the device */
 switch (ATDX_CPTERM(chdev)) {
 case CR_CNCT: /* Call Connected, get some additional info */
 .
 .
 break;
 case CR_CEPT: /* Operator Intercept detected */

74 Voice API Library Reference — June 2005

ATDX_CPTERM() — return the last result of call progress analysis termination

 .
 .
 break;
 .
 .
 case AT_FAILURE: /* Error */
 }
}

See Also

• dx_dial()

• DX_CAP data structure

Voice API Library Reference — June 2005 75

return the last call progress analysis termination — ATDX_CRTNID()

ATDX_CRTNID()

return the last call progress analysis termination

Description

The ATDX_CRTNID() function returns the last call progress analysis termination of the tone that
caused the most recent call progress analysis termination of the channel device. See the Voice API
Programming Guide for a description of call progress analysis.

On DM3 boards, possible return values are the following:

TID_BUSY1
First signal busy

TID_BUSY2
Second signal busy

TID_DIAL_INTL
International dial tone

TID_DIAL_LCL
Local dial tone

TID_DISCONNECT
Disconnect tone (post-connect)

TID_FAX1
First fax or modem tone

TID_FAX2
Second fax or modem tone

TID_RNGBK1
Ringback (detected as single tone)

Name: long ATDX_CRTNID(chdev)

Inputs: int chdev • valid channel device handle

Returns: identifier of the tone that caused the most recent call progress analysis termination, if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

76 Voice API Library Reference — June 2005

ATDX_CRTNID() — return the last call progress analysis termination

TID_RNGBK2
Ringback (detected as dual tone)

TID_SIT_ANY
Catch all (returned for a Special Information Tone sequence or SIT sequence that falls outside
the range of known default SIT sequences)

TID_SIT_INEFFECTIVE_OTHER or
TID_SIT_IO

Ineffective other SIT sequence

TID_SIT_NO_CIRCUIT or
TID_SIT_NC

No circuit found SIT sequence

TID_SIT_NO_CIRCUIT_INTERLATA or
TID_SIT_NC_INTERLATA

InterLATA no circuit found SIT sequence

TID_SIT_OPERATOR_INTERCEPT or
TID_SIT_IC

Operator intercept SIT sequence

TID_SIT_REORDER_TONE or
TID_SIT_RO

Reorder (system busy) SIT sequence

TID_SIT_REORDER_TONE_INTERLATA or
TID_SIT_RO_INTERLATA

InterLATA reorder (system busy) SIT sequence

TID_SIT_VACANT_CIRCUIT or
TID_SIT_VC

Vacant circuit SIT sequence

On Springware boards, possible return values are the following:

TID_BUSY1
First signal busy

TID_BUSY2
Second signal busy

TID_DIAL_INTL
International dial tone

TID_DIAL_LCL
Local dial tone

TID_DIAL_XTRA
Special (“Extra”) dial tone

TID_DISCONNECT
Disconnect tone (post-connect)

TID_FAX1
First fax or modem tone

Voice API Library Reference — June 2005 77

return the last call progress analysis termination — ATDX_CRTNID()

TID_FAX2
Second fax or modem tone

TID_RNGBK1
Ringback (detected as single tone)

TID_RNGBK2
Ringback (detected as dual tone)

Cautions

None.

Errors

This function fails and returns AT_FAILURE if an invalid device handle is specified.

Example 1

This example applies to DM3 boards.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;
 long tone_id;
 chnam = "dxxxB1C1";
 dialstrg = "L1234";
 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 printf("Dialing %s\n", dialstrg);
 car = dx_dial(ddd,dialstrg,(DX_CAP *)&cap_s,DX_CALLP|EV_SYNC);
 if (car == -1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 switch(ATDX_DTNFAIL(ddd)) {
 case 'L':
 printf(" Unable to get Local dial tone\n");
 break;
 case 'I':
 printf(" Unable to get International dial tone\n");
 break;
 case 'X':
 printf(" Unable to get special eXtra dial tone\n");
 break;
 }

78 Voice API Library Reference — June 2005

ATDX_CRTNID() — return the last call progress analysis termination

 break;

 case CR_BUSY:
 printf(" %s engaged - %s detected\n", dialstrg,
 (ATDX_CRTNID(ddd) == TID_BUSY1 ? "Busy 1" : "Busy 2"));
 break;
 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;
 case CR_CEPT:
 printf(" Special tone received at %s\n", dialstrg);
 tone_id = ATDX_CRTNID(ddd); //ddd is handle that is returned by dx_open()

 switch (tone_id) {

 case TID_SIT_NC:
 printf("No circuit found special information tone received\n");
 break;
 case TID_SIT_IC:
 printf("Operator intercept special information tone received\n");
 break;
 case TID_SIT_VC:
 printf("Vacant circuit special information tone received\n");
 break;
 case TID_SIT_RO:
 printf("Reorder special information tone received\n");
 break;
 case TID_SIT_NC_INTERLATA:
 printf("InterLATA no circuit found special information tone received\n");
 break;
 case TID_SIT_RO_INTERLATA:
 printf("InterLATA reorder special information tone received\n");
 break;
 case TID_SIT_IO:
 printf("Ineffective other special information tone received\n");
 break;
 case TID_SIT_ANY:
 printf("Catch all special information tone received\n");
 break;
 }
 break;
 default:
 break;
 }

 /*
 * Set channel on hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

Example 2

This example applies to Springware boards.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

Voice API Library Reference — June 2005 79

return the last call progress analysis termination — ATDX_CRTNID()

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;
 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

 /*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

 /*
 * Now enable call progress analysis with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 printf("Dialing %s\n", dialstrg);
 car = dx_dial(ddd,dialstrg,(DX_CAP *)&cap_s,DX_CALLP|EV_SYNC);
 if (car == -1) {
 /* handle error */
 }

 switch(car) {

 case CR_NODIALTONE:
 switch(ATDX_DTNFAIL(ddd)) {
 case 'L':
 printf(" Unable to get Local dial tone\n");
 break;
 case 'I':
 printf(" Unable to get International dial tone\n");
 break;
 case 'X':
 printf(" Unable to get special eXtra dial tone\n");
 break;
 }
 break;

 case CR_BUSY:
 printf(" %s engaged - %s detected\n", dialstrg,
 (ATDX_CRTNID(ddd) == TID_BUSY1 ? "Busy 1" : "Busy 2"));
 break;

80 Voice API Library Reference — June 2005

ATDX_CRTNID() — return the last call progress analysis termination

 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;

 default:
 break;
 }

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

See Also

None.

Voice API Library Reference — June 2005 81

return the device type — ATDX_DEVTYPE()

ATDX_DEVTYPE()

return the device type

Description

The ATDX_DEVTYPE() function returns the device type of the board or channel dev.

Possible return values are the following:

DT_DXBD
Board device (indicates virtual board)

DT_DXCH
Channel device

DT_PHYBD
Physical board device

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid board or channel device handle is
specified in dev.

Name: long ATDX_DEVTYPE(dev)

Inputs: int dev • valid board or channel device handle

Returns: device type if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

dev specifies the valid device handle obtained when a board or channel was opened
using dx_open()

82 Voice API Library Reference — June 2005

ATDX_DEVTYPE() — return the device type

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int bddev;
 long devtype;

 /* Open the board device */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* Process error */
 }

 if((devtype = ATDX_DEVTYPE(bddev)) == AT_FAILURE) {
 /* Process error */
 }

 if(devtype == DT_DXBD) {
 printf("Device is a Board\n");
 }

 /* Continue processing */
 .
 .
}

See Also

None.

Voice API Library Reference — June 2005 83

return character for dial tone — ATDX_DTNFAIL()

ATDX_DTNFAIL()

return character for dial tone

Description

The ATDX_DTNFAIL() function returns the dial tone character that indicates which dial tone
call progress analysis failed to detect.

Possible return values are the following:

L
Local dial tone

I
International dial tone

X
Special (“extra”) dial tone

Cautions

None.

Errors

This function fails and returns AT_FAILURE if an invalid device handle is specified.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

Name: long ATDX_DTNFAIL(chdev)

Inputs: int chdev • valid channel device handle

Returns: code for the dial tone that failed to appear
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

84 Voice API Library Reference — June 2005

ATDX_DTNFAIL() — return character for dial tone

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;

 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

 /*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

 /*
 * Now enable call progress analysis with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */

 printf("Dialing %s\n", dialstrg);
 car = dx_dial(ddd,dialstrg,(DX_CAP *)&cap_s,DX_CALLP|EV_SYNC);
 if (car == -1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 switch(ATDX_DTNFAIL(ddd)) {
 case 'L':
 printf(" Unable to get Local dial tone\n");
 break;
 case 'I':
 printf(" Unable to get International dial tone\n");
 break;
 case 'X':
 printf(" Unable to get special eXtra dial tone\n");
 break;
 }
 break;

 case CR_BUSY:
 printf(" %s engaged - %s detected\n", dialstrg,
 ATDX_CRTNID(ddd) == TID_BUSY1 ? "Busy 1" : "Busy 2"));
 break;

Voice API Library Reference — June 2005 85

return character for dial tone — ATDX_DTNFAIL()

 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;

 default:
 break;
 }

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

See Also

None.

86 Voice API Library Reference — June 2005

ATDX_FRQDUR() — return the duration of the first SIT sequence

ATDX_FRQDUR()

return the duration of the first SIT sequence

Description

The ATDX_FRQDUR() function returns the duration of the first Special Information Tone (SIT)
sequence in 10 msec units after dx_dial() or dx_dialtpt() terminated due to an Operator Intercept.

Termination due to Operator Intercept is indicated by ATDX_CPTERM() returning CR_CEPT.
For information on SIT frequency detection, see the Voice API Programming Guide.

Cautions

None.

Errors

This function fails and returns AT_FAILURE if an invalid channel device handle is specified.

Example

This example illustrates ATDX_FRQDUR(), ATDX_FRQDUR2(), and ATDX_FRQDUR3().

/* Call progress analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .
 .

Name: long ATDX_FRQDUR(chdev)

Inputs: int chdev • valid channel device handle

Returns: first frequency duration in 10 msec units if success
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 87

return the duration of the first SIT sequence — ATDX_FRQDUR()

 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call progress analysis. Perform the
 * outbound dial with call progress analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }

 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFirst frequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\nSecond frequency detected - %ld Hz", ATDX_FRQHZ2(chdev));
 printf("\nThird frequency detected - %ld Hz", ATDX_FRQHZ3(chdev));
 printf("\nDuration of first frequency - %ld ms", ATDX_FRQDUR(chdev));
 printf("\nDuration of second frequency - %ld ms", ATDX_FRQDUR2(chdev));
 printf("\nDuration of third frequency - %ld ms", ATDX_FRQDUR3(chdev));
 break;
 case CR_BUSY:
 break;
 .
 .
 }
}

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_CPTERM()

• DX_CAP data structure

• call progress analysis topic in the Voice API Programming Guide

• ATDX_FRQDUR2()

• ATDX_FRQDUR3()

• ATDX_FRQHZ()

• ATDX_FRQHZ2()

• ATDX_FRQHZ3()

88 Voice API Library Reference — June 2005

ATDX_FRQDUR2() — return the duration of the second SIT sequence

ATDX_FRQDUR2()

return the duration of the second SIT sequence

Description

The ATDX_FRQDUR2() function returns the duration of the second Special Information Tone
(SIT) sequence in 10 msec units after dx_dial() or dx_dialtpt() terminated due to an Operator
Intercept.

Termination due to Operator Intercept is indicated by ATDX_CPTERM() returning CR_CEPT.
For information on SIT frequency detection, see the Voice API Programming Guide.

Cautions

None.

Errors

This function fails and returns AT_FAILURE if an invalid channel device handle is specified.

Example

See the example for ATDX_FRQDUR().

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_CPTERM()

• DX_CAP data structure

Name: long ATDX_FRQDUR2(chdev)

Inputs: int chdev • valid channel device handle

Returns: second frequency duration in 10 msec units if success
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 89

return the duration of the second SIT sequence — ATDX_FRQDUR2()

• call progress analysis topic in the Voice API Programming Guide

• ATDX_FRQDUR()

• ATDX_FRQDUR3()

• ATDX_FRQHZ()

• ATDX_FRQHZ2()

• ATDX_FRQHZ3()

90 Voice API Library Reference — June 2005

ATDX_FRQDUR3() — return the duration of the third SIT sequence

ATDX_FRQDUR3()

return the duration of the third SIT sequence

Description

The ATDX_FRQDUR3() function returns the duration of the third Special Information Tone
(SIT) sequence in 10 msec units after dx_dial() or dx_dialtpt() terminated due to an Operator
Intercept.

Termination due to Operator Intercept is indicated by ATDX_CPTERM() returning CR_CEPT.
For information on SIT frequency detection, see the Voice API Programming Guide.

Cautions

None.

Errors

This function fails and returns AT_FAILURE if an invalid channel device handle is specified.

Example

See the example for ATDX_FRQDUR().

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_CPTERM()

• DX_CAP data structure

Name: long ATDX_FRQDUR3(chdev)

Inputs: int chdev • valid channel device handle

Returns: third frequency duration in 10 msec units if success
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 91

return the duration of the third SIT sequence — ATDX_FRQDUR3()

• call progress analysis topic in Voice API Programming Guide

• ATDX_FRQDUR()

• ATDX_FRQDUR2()

• ATDX_FRQHZ()

• ATDX_FRQHZ2()

• ATDX_FRQHZ3()

92 Voice API Library Reference — June 2005

ATDX_FRQHZ() — return the frequency of the first SIT sequence

ATDX_FRQHZ()

return the frequency of the first SIT sequence

Description

The ATDX_FRQHZ() function returns the frequency in Hz of the first Special Information Tone
(SIT) sequence after dx_dial() or dx_dialtpt() has terminated due to an Operator Intercept.

Termination due to Operator Intercept is indicated by ATDX_CPTERM() returning CR_CEPT.
For information on SIT frequency detection, see the Voice API Programming Guide.

Cautions

None.

Errors

This function fails and returns AT_FAILURE if an invalid channel device handle is specified.

Example

This example illustrates the use of ATDX_FRQHZ(), ATDX_FRQHZ2(), and
ATDX_FRQHZ3().

/* Call progress analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .

Name: long ATDX_FRQHZ(chdev)

Inputs: int chdev • valid channel device handle

Returns: first tone frequency in Hz if success
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 93

return the frequency of the first SIT sequence — ATDX_FRQHZ()

 .
 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call progress analysis. Perform the
 * outbound dial with call progress analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }

 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFirst frequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\nSecond frequency detected - %ld Hz", ATDX_FRQHZ2(chdev));
 printf("\nThird frequency detected - %ld Hz", ATDX_FRQHZ3(chdev));
 printf("\nDuration of first frequency - %ld ms", ATDX_FRQDUR(chdev));
 printf("\nDuration of second frequency - %ld ms", ATDX_FRQDUR2(chdev));
 printf("\nDuration of third frequency - %ld ms", ATDX_FRQDUR3(chdev));
 break;
 case CR_BUSY:
 break;
 .
 .
 }
}

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_CPTERM()

• DX_CAP data structure

• call progress analysis topic in the Voice API Programming Guide

• ATDX_FRQHZ2()

• ATDX_FRQHZ3()

• ATDX_FRQDUR()

• ATDX_FRQDUR2()

• ATDX_FRQDUR3()

94 Voice API Library Reference — June 2005

ATDX_FRQHZ2() — return the frequency of the second SIT sequence

ATDX_FRQHZ2()

return the frequency of the second SIT sequence

Description

The ATDX_FRQHZ2() function returns the frequency in Hz of the second Special Information
Tone (SIT) sequence after dx_dial() or dx_dialtpt() has terminated due to an Operator Intercept.

Termination due to Operator Intercept is indicated by ATDX_CPTERM() returning CR_CEPT.
For information on SIT frequency detection, see the Voice API Programming Guide.

Cautions

None.

Errors

This function fails and returns AT_FAILURE if an invalid channel device handle is specified.

Example

See the example for ATDX_FRQHZ().

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_CPTERM()

• DX_CAP data structure

• call progress analysis topic in the Voice API Programming Guide

Name: long ATDX_FRQHZ2(chdev)

Inputs: int chdev • valid channel device handle

Returns: second tone frequency in Hz if success
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 95

return the frequency of the second SIT sequence — ATDX_FRQHZ2()

• ATDX_FRQHZ()
• ATDX_FRQHZ3()

• ATDX_FRQDUR()

• ATDX_FRQDUR2()

• ATDX_FRQDUR3()

96 Voice API Library Reference — June 2005

ATDX_FRQHZ3() — return the frequency of the third SIT sequence

ATDX_FRQHZ3()

return the frequency of the third SIT sequence

Description

The ATDX_FRQHZ3() function returns the frequency in Hz of the third Special Information
Tone (SIT) sequence after dx_dial() or dx_dialtpt() has terminated due to an Operator Intercept.

 Termination due to Operator Intercept is indicated by ATDX_CPTERM() returning CR_CEPT.
For information on SIT frequency detection, see the Voice API Programming Guide.

Cautions

None.

Errors

This function fails and returns AT_FAILURE if an invalid channel device handle is specified.

Example

See the example for ATDX_FRQHZ().

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_CPTERM()

• DX_CAP structure

• call progress analysis topic in the Voice API Programming Guide

Name: long ATDX_FRQHZ3(chdev)

Inputs: int chdev • valid channel device handle

Returns: third tone frequency in Hz if success
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 97

return the frequency of the third SIT sequence — ATDX_FRQHZ3()

• ATDX_FRQHZ()
• ATDX_FRQHZ2()

• ATDX_FRQDUR()

• ATDX_FRQDUR2()

• ATDX_FRQDUR3()

98 Voice API Library Reference — June 2005

ATDX_FRQOUT() — return percentage of time SIT tone was out of bounds

ATDX_FRQOUT()

return percentage of time SIT tone was out of bounds

Description

The ATDX_FRQOUT() function returns percentage of time SIT tone was out of bounds as
specified by the range in the DX_CAP structure.

Upon detection of a frequency within the range specified in the DX_CAP structure ca_upperfrq
and lower ca_lowerfrq, use this function to optimize the ca_rejctfrq parameter (which sets the
percentage of time that the frequency can be out of bounds).

For information on SIT frequency detection, see the Voice API Programming Guide.

Cautions

This function is only for use with non-DSP boards. If you call it on a DSP board, it will return zero.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

/* Call progress analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

Name: long ATDX_FRQOUT(chdev)

Inputs: int chdev • valid channel device handle

Returns: percentage frequency out-of bounds
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 99

return percentage of time SIT tone was out of bounds — ATDX_FRQOUT()

main()
{
 int cares, chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call progress analysis. Perform the
 * outbound dial with call progress analysis enabled.
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }
 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 break;
 .
 .
 }
}

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_CPTERM()

• DX_CAP data structure

• call progress analysis topic in the Voice API Programming Guide

100 Voice API Library Reference — June 2005

ATDX_FWVER() — return the voice firmware version number

ATDX_FWVER()

return the voice firmware version number

Description

The ATDX_FWVER() function returns the voice firmware version number or emulated D/4x
firmware version number.

This function returns a 32-bit value in the following format.

TTTT|MMMM|mmmmmmmm|AAAAAAAA|aaaaaaaa

where each letter represents one bit of data with the following meanings:

Name: long ATDX_FWVER(bddev)

Inputs: int bddev • valid board device handle

Returns: D/4x Firmware version if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

bddev specifies the valid board device handle obtained when the board was opened
using dx_open()

Letter Description

T Type of Release. Decimal values have the following meanings (example: 0010
for Alpha release):
• 0 – Production
• 1 – Beta
• 2 – Alpha
• 3 – Experimental
• 4 – Special

M Major version number for a production release in BCD format. Example: 0011
for version “3”

m Minor version number for a production release in BCD format. Example:
00000001 for “.10”

A Major version number for a non-production release in BCD format. Example:
00000100 for version “4”

a Minor version number for a non-production release in BCD format. Example:
00000010 for version “.02”

Voice API Library Reference — June 2005 101

return the voice firmware version number — ATDX_FWVER()

Example: 0000 0010 0001 0101 0000 0000 0000 0000 (Production v2.15)

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid device handle is specified in bddev.

Example

The following is an example on Linux.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int bddev;
 long fwver;
 .
 .

 /* Open the board device */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* Process error */
 }
 .
 .

 /* Display Firmware version number */
 if ((fwver = ATDX_FWVER(bddev))==AT_FAILURE) {
 /* Process error */
 }
 printf("Firmware version %ld\n",fwver);
 .
 .
}

The following is an example on Windows.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

void GetFwlVersion(char *, long);

main()
{

int bddev;
char *bdname, FWVersion[50];
long fwver;

102 Voice API Library Reference — June 2005

ATDX_FWVER() — return the voice firmware version number

 bdname = "dxxxB1";
 /*
 * Open board device
 */
 if ((bddev = dx_open(bdname, NULL)) == -1)
 {
 /* Handle error */
 }

 if ((fwver = ATDX_FWVER(bddev)) == AT_FAILURE)
 {
 /* Handle error */
 }

 /*
 * Parse fw version
 */
 GetFwlVersion(FWVersion, fwver);

 printf("%s\n", FWVersion");

} /* end main */

See Also

None.

Voice API Library Reference — June 2005 103

return the current hook-switch state — ATDX_HOOKST()

ATDX_HOOKST()

return the current hook-switch state

Description

The ATDX_HOOKST() function returns the current hook-switch state of the channel chdev.

Note: This function is not supported on digital interfaces.

Possible return values are the following:

DX_OFFHOOK
Channel is off-hook

DX_ONHOOK
Channel is on-hook

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

#include <srllib.h>
#include <dxxxlib.h>

Name: long ATDX_HOOKST(chdev)

Inputs: int chdev • valid channel device handle

Returns: current hook state of channel if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

104 Voice API Library Reference — June 2005

ATDX_HOOKST() — return the current hook-switch state

main()
{
 int chdev;
 long hookst;
 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }
 .
 .
 /* Examine Hook state of the channel. Perform application specific action */
 if((hookst = ATDX_HOOKST(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 if(hookst == DX_OFFHOOK) {
 /* Channel is Off-hook */
 }
 .
 .
}

See Also

• dx_sethook()

• DX_CST structure

• dx_setevtmsk() for enabling hook state (call status transition events)

• sr_getevt() for synchronous call status transition event detection

• DX_EBLK for asynchronous call status transition event detection

• sr_getevtdatap() in the Standard Runtime Library API Library Reference

Voice API Library Reference — June 2005 105

return the current activity on the channel — ATDX_LINEST()

ATDX_LINEST()

return the current activity on the channel

Description

The ATDX_LINEST() function returns the current activity on the channel specified in chdev. The
information is returned in a bitmap.

Possible return values are the following:

RLS_DTMF
DTMF signal present

RLS_HOOK
Channel is on-hook

RLS_LCSENSE
Loop current not present

RLS_RING
Ring not present

RLS_RINGBK
Audible ringback detected

RLS_SILENCE
Silence on the line

Cautions

None.

Name: long ATDX_LINEST(chdev)

Inputs: int chdev • valid channel device handle

Returns: current line status of channel if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

106 Voice API Library Reference — June 2005

ATDX_LINEST() — return the current activity on the channel

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 long linest;

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }

 /* Examine line status bitmap of the channel. Perform application-specific
 * action
 */
 if((linest = ATDX_LINEST(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 if(linest & RLS_LCSENSE) {
 /* No loop current */
 }
 .
 .
}

See Also

None.

Voice API Library Reference — June 2005 107

return duration of longer silence detected — ATDX_LONGLOW()

ATDX_LONGLOW()

return duration of longer silence detected

Description

The ATDX_LONGLOW() function returns duration of longer silence in 10 msec units for the
initial signal that occurred during call progress analysis on the channel chdev. This function can be
used in conjunction with ATDX_SIZEHI() and ATDX_SHORTLOW() to determine the
elements of an established cadence.

See the Voice API Programming Guide for more information on call progress analysis and cadence
detection.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

/* Call progress analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .

Name: long ATDX_LONGLOW(chdev)

Inputs: int chdev • valid channel device handle

Returns: duration of longer silence if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

108 Voice API Library Reference — June 2005

ATDX_LONGLOW() — return duration of longer silence detected

 .
 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call progress analysis. Perform the
 * outbound dial with call progress analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }
 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }
}

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_CPTERM()

• ATDX_SIZEHI()

• ATDX_SHORTLOW()

• DX_CAP data structure

• call progress analysis in the Voice API Programming Guide

• cadence detection in the Voice API Programming Guide

Voice API Library Reference — June 2005 109

return the physical board address — ATDX_PHYADDR()

ATDX_PHYADDR()

return the physical board address

Description

The ATDX_PHYADDR() function returns the physical board address for the board device bddev.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid board device handle is specified in
bddev.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int bddev;
 long phyaddr;
 /* Open the board device */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* Process error */
 }

 if((phyaddr = ATDX_PHYADDR(bddev)) == AT_FAILURE) {
 /* Process error */
 }

Name: long ATDX_PHYADDR(bddev)

Inputs: int bddev • valid board device handle

Returns: physical address of board if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

bddev specifies the valid board device handle obtained when the board was opened
using dx_open()

110 Voice API Library Reference — June 2005

ATDX_PHYADDR() — return the physical board address

 printf("Board is at address %X\n",phyaddr);
 .
 .
}

See Also

None.

Voice API Library Reference — June 2005 111

return duration of shorter silence detected — ATDX_SHORTLOW()

ATDX_SHORTLOW()

return duration of shorter silence detected

Description

The ATDX_SHORTLOW() function returns duration of shorter silence in 10 msec units for the
initial signal that occurred during call progress analysis on the channel chdev. This function can be
used in conjunction with ATDX_SIZEHI() and ATDX_LONGLOW() to determine the elements
of an established cadence.

See the Voice API Programming Guide for more information on call progress analysis and cadence
detection.

Compare the results of this function with the field ca_lo2rmin in the DX_CAP data structure to
determine whether the cadence is a double or single ring:

• If the result of ATDX_SHORTLOW() is less than the ca_lo2rmin field, this indicates a
double ring cadence.

• If the result of ATDX_SHORTLOW() is greater than the ca_lo2rmin field, this indicates a
single ring.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Name: long ATDX_SHORTLOW(chdev)

Inputs: int chdev • valid channel device handle

Returns: duration of shorter silence if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

112 Voice API Library Reference — June 2005

ATDX_SHORTLOW() — return duration of shorter silence detected

Example

/* Call progress analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor
 * in chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call progress analysis. Perform the
 * outbound dial with call progress analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }
 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }
}

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_LONGLOW()

• ATDX_SIZEHI()

• ATDX_CPTERM()

• DX_CAP data structure

• call progress analysis in the Voice API Programming Guide

• cadence detection in the Voice API Programming Guide

Voice API Library Reference — June 2005 113

return duration of initial non-silence — ATDX_SIZEHI()

ATDX_SIZEHI()

return duration of initial non-silence

Description

The ATDX_SIZEHI() function returns duration of initial non-silence in 10 msec units that
occurred during call progress analysis on the channel chdev. This function can be used in
conjunction with ATDX_SHORTLOW() and ATDX_LONGLOW() to determine the elements
of an established cadence.

See the Voice API Programming Guide for more information on call progress analysis and cadence
detection.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

/* Call progress analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .

Name: long ATDX_SIZEHI(chdev)

Inputs: int chdev • valid channel device handle

Returns: non-silence duration in 10 msec units if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

114 Voice API Library Reference — June 2005

ATDX_SIZEHI() — return duration of initial non-silence

 .
 /* open the channel using dx_open(). Obtain channel device descriptor
 * in chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call progress analysis. Perform the
 * outbound dial with call progress analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }
 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of non-silence - %ld ms",ATDX_SIZEHI(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }
}

See Also

• dx_dial()

• dx_dialtpt()

• ATDX_LONGLOW()

• ATDX_SHORTLOW()

• ATDX_CPTERM()

• DX_CAP data structure

• call progress analysis in the Voice API Programming Guide

• cadence detection in the Voice API Programming Guide

Voice API Library Reference — June 2005 115

return the current state of the channel — ATDX_STATE()

ATDX_STATE()

return the current state of the channel

Description

The ATDX_STATE() function returns the current state of the channel chdev.

Possible return values are the following:

CS_DIAL
Dial state

CS_CALL
Call state

CS_GTDIG
Get Digit state

CS_HOOK
Hook state

CS_IDLE
Idle state

CS_PLAY
Play state

CS_RECD
Record state

CS_STOPD
Stopped state

CS_TONE
Playing tone state

Name: long ATDX_STATE(chdev)

Inputs: int chdev • valid channel device handle

Returns: current state of channel if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

116 Voice API Library Reference — June 2005

ATDX_STATE() — return the current state of the channel

CS_WINK
Wink state

When a VFX combined resource board is being used to send and receive faxes, the following states
may be returned:

CS_SENDFAX
Channel is in a fax transmission state.

CS_RECVFAX
Channel is in a fax reception state.

Note: A device is idle if there is no I/O function active on it.

Cautions

This function extracts the current state from the driver and requires the same processing resources
as many other functions. For this reason, applications should not base their state machines on this
function.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 long chstate;

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }
 .
 .
 /* Examine state of the channel. Perform application specific action based
 * on state of the channel
 */
 if((chstate = ATDX_STATE(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 printf("current state of channel %s = %ld\n", ATDX_NAMEP(chdev), chstate);
 .
 .
}

See Also

None.

Voice API Library Reference — June 2005 117

return the reason for the last I/O function termination — ATDX_TERMMSK()

ATDX_TERMMSK()

return the reason for the last I/O function termination

Description

The ATDX_TERMMSK() function returns a bitmap containing the reason for the last I/O
function termination on the channel chdev. The bitmap is set when an I/O function terminates.

On DM3 boards, possible return values are the following:

TM_DIGIT
Specific digit received

TM_EOD
End of data reached (on playback, receive)

TM_ERROR
I/O device error

TM_IDDTIME
Inter-digit delay

TM_MAXDATA
Maximum FSK data reached; returned when the last I/O function terminates on
DX_MAXDATA

TM_MAXDTMF
Maximum DTMF count

TM_MAXSIL
Maximum period of silence

TM_MAXTIME
Maximum function time exceeded

Name: long ATDX_TERMMSK(chdev)

Inputs: int chdev • valid channel device handle

Returns: channel’s last termination bitmap if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

118 Voice API Library Reference — June 2005

ATDX_TERMMSK() — return the reason for the last I/O function termination

TM_NORMTERM
Normal termination (for dx_dial(), dx_sethook())

TM_TONE
Tone-on/off event

TM_USRSTOP
Function stopped by user

On Springware boards, possible return values are the following :

TM_DIGIT
Specific digit received

TM_EOD
End of data reached (on playback, receive)

TM_ERROR
I/O device error

TM_IDDTIME
Inter-digit delay

TM_LCOFF
Loop current off.

TM_MAXDTMF
Maximum DTMF count

TM_MAXNOSIL
Maximum period of non-silence

TM_MAXSIL
Maximum period of silence

TM_MAXTIME
Maximum function time exceeded

TM_NORMTERM
Normal termination (for dx_dial(), dx_sethook())

TM_PATTERN
Pattern matched silence off

TM_TONE
Tone-on/off event

TM_USRSTOP
Function stopped by user

Cautions

• If several termination conditions are met at the same time, several bits will be set in the
termination bitmap.

• On DM3 boards, when both DX_MAXDTMF and DX_DIGMASK termination conditions are
specified in the DV_TPT structure, and both conditions are satisfied, the
ATDX_TERMMSK() function will return the TM_MAXDTMF termination event only.

Voice API Library Reference — June 2005 119

return the reason for the last I/O function termination — ATDX_TERMMSK()

For example, with a DX_MAXDTMF condition of 2 digits maximum and a DX_DIGMASK
condition of digit “1”, if the digit string “21” is received, both conditions are satisfied but only
TM_MAXDTMF will be reported by ATDX_TERMMSK().

This behavior differs from Springware products, where both TM_MAXDTMF and
TM_DIGIT will be returned when both DX_MAXDTMF and DX_DIGMASK termination
conditions are specified in the DV_TPT structure and both are satisfied by the user input.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 long term;
 DX_IOTT iott;
 DV_TPT tpt[4];

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }

 /* Record a voice file. Terminate on receiving a digit, silence, loop
 * current drop, max time, or reaching a byte count of 50000 bytes.
 */
 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = 50000;

 if((iott.io_fhandle = dx_fileopen("file.vox", O_RDWR)) == -1) {
 /* process error */
 }

 /* set up DV_TPTs for the required terminating conditions */
 dx_clrtpt(tpt,4);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 1; * terminate on the first digit */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */
 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_MAXTIME; /* Maximum time */
 tpt[1].tp_length = 100; /* terminate after 10 secs */
 tpt[1].tp_flags = TF_MAXTIME; /* Use the default flags */
 tpt[2].tp_type = IO_CONT;
 tpt[2].tp_termno = DX_MAXSIL; /* Maximum Silence */
 tpt[2].tp_length = 30; /* terminate on 3 sec silence */

120 Voice API Library Reference — June 2005

ATDX_TERMMSK() — return the reason for the last I/O function termination

 tpt[2].tp_flags = TF_MAXSIL; /* Use the default flags */
 tpt[3].tp_type = IO_EOT; /* last entry in the table */
 tpt[3].tp_termno = DX_LCOFF; /* terminate on loop current drop */
 tpt[3].tp_length = 10; /* terminate on 1 sec silence */
 tpt[3].tp_flags = TF_LCOFF; /* Use the default flags */

 /* Now record to the file */
 if (dx_rec(chdev,&iott,tpt,EV_SYNC) == -1) {
 /* process error */
 }

 /* Examine bitmap to determine if digits caused termination */
 if((term = ATDX_TERMMSK(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 if(term & TM_MAXDTMF) {
 printf("Terminated on digits\n");
 .
 .
 }
}

See Also

• DV_TPT data structure to set termination conditions

• Event Management functions to retrieve termination events asynchronously (in the Standard
Runtime Library API Programming Guide and Standard Runtime Library API Library
Reference)

• ATEC_TERMMSK() in the Continuous Speech Processing API Library Reference

Voice API Library Reference — June 2005 121

return user-defined tone ID that terminated I/O function — ATDX_TONEID()

ATDX_TONEID()

return user-defined tone ID that terminated I/O function

Description

The ATDX_TONEID() function returns the user-defined tone ID that terminated an I/O function.
This termination is indicated by ATDX_TERMMSK() returning TM_TONE.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_1 101

main()
{
 TN_GEN tngen;
 DV_TPT tpt[5];
 int chdev;

Name: long ATDX_TONEID(chdev)

Inputs: int chdev • valid channel device handle

Returns: user-defined tone ID if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

122 Voice API Library Reference — June 2005

ATDX_TONEID() — return user-defined tone ID that terminated I/O function

 /*
 * Open the D/xxx Channel Device and Enable a Handler
 */
 if ((chdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING)== -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Add the Tone to the Channel
 */
 if (dx_addtone(chdev, NULL, 0) == -1) {
 printf("Unable to Add the Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(chdev), ATDV_ERRMSGP(chdev));
 dx_close(chdev);
 exit(1);
 }

 /*
 * Build a Tone Generation Template.
 * This template has Frequency1 = 1140,
 * Frequency2 = 1020, amplitute at -10dB for
 * both frequencies and duration of 100 * 10 msecs.
 */
 dx_bldtngen(&tngen, 1140, 1020, -10, -10, 100);

 /*
 * Set up the Terminating Conditions
 */
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_TONE;
 tpt[0].tp_length = TID_1;
 tpt[0].tp_flags = TF_TONE;
 tpt[0].tp_data = DX_TONEON;
 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_TONE;
 tpt[1].tp_length = TID_1;
 tpt[1].tp_flags = TF_TONE;
 tpt[1].tp_data = DX_TONEOFF;
 tpt[2].tp_type = IO_EOT;
 tpt[2].tp_termno = DX_MAXTIME;
 tpt[2].tp_length = 6000;
 tpt[2].tp_flags = TF_MAXTIME;

 if (dx_playtone(chdev, &tngen, tpt, EV_SYNC) == -1){
 printf("Unable to Play the Tone\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(chdev), ATDV_ERRMSGP(chdev));
 dx_close(chdev);
 exit(1);
 }

 if (ATDX_TERMMSK(chdev) & TM_TONE) {
 printf("Terminated by Tone Id = %d\n", ATDX_TONEID(chdev));
 }

Voice API Library Reference — June 2005 123

return user-defined tone ID that terminated I/O function — ATDX_TONEID()

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened D/xxx Channel Device
 */
 if (dx_close(chdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

None.

124 Voice API Library Reference — June 2005

ATDX_TRCOUNT() — return the byte count for the last I/O transfer

ATDX_TRCOUNT()

return the byte count for the last I/O transfer

Description

The ATDX_TRCOUNT() function returns the number of bytes transferred during the last play or
record on the channel chdev.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 long trcount;
 DX_IOTT iott;
 DV_TPT tpt[2];

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }

Name: long ATDX_TRCOUNT(chdev)

Inputs: int chdev • valid channel device handle

Returns: last play/record transfer count if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 125

return the byte count for the last I/O transfer — ATDX_TRCOUNT()

 /* Record a voice file. Terminate on receiving a digit, max time,
 * or reaching a byte count of 50000 bytes.
 */
 .
 .
 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0L;
 iott.io_length = 50000L;
 if((iott.io_fhandle = dx_fileopen("file.vox", O_RDWR)) == -1) {
 /* process error */
 }

 /* set up DV_TPTs for the required terminating conditions */
 dx_clrtpt(tpt,2);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 1; /* terminate on the first digit */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */
 tpt[1].tp_type = IO_EOT;
 tpt[1].tp_termno = DX_MAXTIME; /* Maximum time */
 tpt[1].tp_length = 100; /* terminate after 10 secs */
 tpt[1].tp_flags = TF_MAXTIME; /* Use the default flags */

 /* Now record to the file */
 if (dx_rec(chdev,&iott,tpt,EV_SYNC) == -1) {
 /* process error */
 }

 /* Examine transfer count */
 if((trcount = ATDX_TRCOUNT(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 printf("%ld bytes recorded\n", trcount);
 .
 .
}

See Also

None.

126 Voice API Library Reference — June 2005

dx_addspddig() — set a DTMF digit to adjust speed

dx_addspddig()

set a DTMF digit to adjust speed

Description

The dx_addspddig() function is a convenience function that sets a DTMF digit to adjust speed by
a specified amount, immediately and for all subsequent plays on the specified channel (until
changed or cancelled).

This function assumes that the speed modification table has not been modified using the
dx_setsvmt() function.

For more information about speed and volume control as well as speed and volume modification
tables, see the Voice API Programming Guide. For information about speed and volume data
structures, see the DX_SVMT and the DX_SVCB data structures.

Name: int dx_addspddig(chdev, digit, adjval)

Inputs: int chdev • valid channel device handle

char digit • DTMF digit

short adjval • speed adjustment value

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

Voice API Library Reference — June 2005 127

set a DTMF digit to adjust speed — dx_addspddig()

To start play speed at the origin, set digit to NULL and set adjval to SV_NORMAL.

Cautions

• Speed control is not supported for all voice coders. For more information on supported coders,
see the speed control topic in the Voice API Programming Guide.

• On DM3 boards, digits that are used for play adjustment may also be used as a terminating
condition. If a digit is defined as both, then both actions are applied upon detection of that
digit.

• On Springware boards, digits that are used for play adjustment will not be used as a
terminating condition. If a digit is defined as both, then the play adjustment will take priority.

• Calls to this function are cumulative. To reset or remove any condition, you should clear all
adjustment conditions with dx_clrsvcond(), and reset if required. For example, if DTMF digit
“1” has already been set to increase play speed by one step, a second call that attempts to
redefine digit “1” to the origin will have no effect on speed or volume, but will be added to the
array of conditions; the digit will retain its original setting.

• The digit that causes the play adjustment will not be passed to the digit buffer, so it cannot be
retrieved using dx_getdig() or ATDX_BUFDIGS().

digit specifies a DTMF digit (0-9, *,#) that will modify speed by the amount
specified in adjval

adjval specifies a speed adjustment value to take effect whenever the digit specified
in digit occurs:

On DM3 boards, the following are valid values:
• SV_ADD10PCT – increase play speed by 10%
• SV_NORMAL – set play speed to origin (regular speed) when the play

begins. digit must be set to NULL.
• SV_SUB10PCT – decrease play speed by 10%

On Springware boards, the following are valid values:
• SV_ADD10PCT – increase play speed by 10%
• SV_ADD20PCT – increase play speed by 20%
• SV_ADD30PCT – increase play speed by 30%
• SV_ADD40PCT – increase play speed by 40%
• SV_ADD50PCT – increase play speed by 50%
• SV_NORMAL – set play speed to origin (regular speed) when the play

begins. digit must be set to NULL.
• SV_SUB10PCT – decrease play speed by 10%
• SV_SUB20PCT – decrease play speed by 20%
• SV_SUB30PCT – decrease play speed by 30%
• SV_SUB40PCT – decrease play speed by 40%

Parameter Description

128 Voice API Library Reference — June 2005

dx_addspddig() — set a DTMF digit to adjust speed

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SVADJBLK
Invalid number of play adjustment blocks

EDX_SYSTEM
Error from operating system

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

/*
 * Global Variables
 */

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Add a Speed Adjustment Condition - increase the
 * playback speed by 30% whenever DTMF key 1 is pressed.
 */
 if (dx_addspddig(dxxxdev, '1', SV_ADD30PCT) == -1) {
 printf("Unable to Add a Speed Adjustment Condition\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

Voice API Library Reference — June 2005 129

set a DTMF digit to adjust speed — dx_addspddig()

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_addvoldig()

• dx_adjsv()

• dx_clrsvcond()

• dx_getcursv()

• dx_getsvmt()

• dx_setsvcond()

• dx_setsvmt()

• speed and volume modification tables in the Voice API Programming Guide

• DX_SVMT data structure

• DX_SVCB data structure

130 Voice API Library Reference — June 2005

dx_addtone() — add a user-defined tone

dx_addtone()

add a user-defined tone

Description

The dx_addtone() function adds a user-defined tone that was defined by the most recent
dx_blddt() (or other global tone detection build-tone) function call, to the specified channel.
Adding a user-defined tone to a channel downloads it to the board and enables detection of tone-on
and tone-off events for that tone by default.

Use dx_distone() to disable detection of the tone, without removing the tone from the channel.
Detection can be enabled again using dx_enbtone(). For example, if you only want to be notified
of tone-on events, you should call dx_distone() to disable detection of tone-off events.

For more information on user-defined tones and global tone detection (GTD), see the Voice API
Programming Guide.

Name: int dx_addtone(chdev, digit, digtype)

Inputs: int chdev • valid channel device handle

unsigned char digit • optional digit associated with the bound tone

unsigned char digtype • digit type

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

digit specifies an optional digit to associate with the tone. When the tone is
detected, the digit will be placed in the DV_DIGIT digit buffer. These digits
can be retrieved using dx_getdig() (they can be used in the same way as
DTMF digits, for example).

If you do not specify a digit, the tone will be indicated by a DE_TONEON
event or DE_TONEOFF event.

Voice API Library Reference — June 2005 131

add a user-defined tone — dx_addtone()

Cautions

• Ensure that dx_blddt() (or another appropriate “build tone” function) has been called to
define a tone prior to adding it to the channel using dx_addtone(), otherwise an error will
occur.

• Do not use dx_addtone() to change a tone that has previously been added.

• There are limitations to the number of tones or tone templates that can be added to a channel,
depending on the type of board and other factors. See the global tone detection topic in the
Voice API Programming Guide for details.

• When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_ASCII
Invalid ASCII value in tone template description

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_CADENCE
Invalid cadence component value

EDX_DIGTYPE
Invalid dg_type value in tone template description

digtype specifies the type of digit the channel will detect

On DM3 boards, the valid value is:

• DG_USER1

On Springware boards, valid values are:

• DG_USER1

• DG_USER2

• DG_USER3

• DG_USER4

• DG_USER5

Up to twenty digits can be associated with each of these digit types.

Note: These types can be specified in addition to the digit types already
defined for the voice library (DTMF, MF) which are specified using
dx_setdigtyp().

Parameter Description

132 Voice API Library Reference — June 2005

dx_addtone() — add a user-defined tone

EDX_FREQDET
Invalid tone frequency

EDX_INVSUBCMD
Invalid sub-command

EDX_MAXTMPLT
Maximum number of user-defined tones for the board

EDX_SYSTEM
Error from operating system

EDX_TONEID
Invalid tone template ID

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_1 101
#define TID_2 102
#define TID_3 103
#define TID_4 104

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

Voice API Library Reference — June 2005 133

add a user-defined tone — dx_addtone()

 /*
 * Describe a Dual Tone Frequency Tone of 950-1050 Hz
 * and 475-525 Hz. On between 190-210 msecs and off
 * 990-1010 msecs and a cadence of 3.
 */
 if (dx_blddtcad(TID_2, 1000, 50, 500, 25, 20, 1, 100, 1, 3) == -1) {
 printf("Unable to build a Dual Tone Cadence Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, 'A', DG_USER1) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_2);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Describe a Simple Single Tone Frequency Tone of
 * 950-1050 Hz using trailing edge detection.
 */
 if (dx_bldst(TID_3, 1000, 50, TN_TRAILING) == -1) {
 printf("Unable to build a Single Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, 'D', DG_USER2) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_3);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Describe a Single Tone Frequency Tone of 950-1050 Hz.
 * On between 190-210 msecs and off 990-1010 msecs and
 * a cadence of 3.
 */
 if (dx_bldstcad(TID_4, 1000, 50, 20, 1, 100, 1, 3) == -1) {
 printf("Unable to build a Single Tone Cadence Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_4);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

134 Voice API Library Reference — June 2005

dx_addtone() — add a user-defined tone

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_blddt(), dx_bldst(), dx_blddtcad(), dx_bldstcad()

• dx_distone()

• dx_enbtone()

• global tone detection in the Voice API Programming Guide

• dx_getevt()

• DX_CST data structure

• sr_getevtdatap() in the Standard Runtime Library API Library Reference

• dx_getdig()

• dx_setdigtyp()

• DV_DIGIT data structure

Voice API Library Reference — June 2005 135

set a DTMF digit to adjust volume — dx_addvoldig()

dx_addvoldig()

set a DTMF digit to adjust volume

Description

The dx_addvoldig() function is a convenience function that sets a DTMF digit to adjust volume
by a specified amount, immediately and for all subsequent plays on the specified channel (until
changed or cancelled).

This function assumes that the volume modification table has not been modified using the
dx_setsvmt() function.

For more information about speed and volume control, see the Voice API Programming Guide. For
information about speed and volume data structures, see the DX_SVMT and the DX_SVCB data
structures.

Name: int dx_addvoldig(chdev, digit, adjval)

Inputs: int chdev • valid channel device handle

char digit • DTMF digit

short adjval • volume adjustment value

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

digit specifies a DTMF digit (0-9, *, #) that will modify volume by the amount
specified in adjval

136 Voice API Library Reference — June 2005

dx_addvoldig() — set a DTMF digit to adjust volume

To start play volume at the origin, set digit to NULL and set adjval to SV_NORMAL.

Cautions

• Calls to this function are cumulative. To reset or remove any condition, you should clear all
adjustment conditions and reset if required. For example, if DTMF digit “1” has already been
set to increase play volume by one step, a second call that attempts to redefine digit “1” to the
origin will have no effect on the volume, but will be added to the array of conditions; the digit
will retain its original setting.

• The digit that causes the play adjustment will not be passed to the digit buffer, so it cannot be
retrieved using dx_getdig() and will not be included in the result of ATDX_BUFDIGS()
which retrieves the number of digits in the buffer.

• On DM3 boards, digits that are used for play adjustment may also be used as a terminating
condition. If a digit is defined as both, then both actions are applied upon detection of that
digit.

• On Springware boards, digits that are used for play adjustment will not be used as a
terminating condition. If a digit is defined as both, then the play adjustment will take priority.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

adjval specifies a volume adjustment value to take effect whenever the digit specified
in digit occurs

On DM3 boards, the following are valid values:
• SV_ADD2DB – increase play volume by 2 dB
• SV_SUB2DB – decrease play volume by 2 dB
• SV_NORMAL – set play volume to origin when the play begins (digit must

be set to NULL)

On Springware boards, the following are valid values:
• SV_ADD2DB – increase play volume by 2 dB
• SV_ADD4DB – increase play volume by 4 dB
• SV_ADD6DB – increase play volume by 6 dB
• SV_ADD8DB – increase play volume by 8 dB
• SV_SUB2DB – decrease play volume by 2 dB
• SV_SUB4DB – decrease play volume by 4 dB
• SV_SUB6DB – decrease play volume by 6 dB
• SV_SUB8DB – decrease play volume by 8 dB
• SV_NORMAL – set play volume to origin when the play begins (digit must

be set to NULL)

Parameter Description

Voice API Library Reference — June 2005 137

set a DTMF digit to adjust volume — dx_addvoldig()

EDX_SVADJBLKS
Invalid number of play adjustment blocks

EDX_SYSTEM
Error from operating system

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

/*
 * Global Variables
 */
main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Add a Speed Adjustment Condition - decrease the
 * playback volume by 2dB whenever DTMF key 2 is pressed. */
 if (dx_addvoldig(dxxxdev, '2', SV_SUB2DB) == -1) {
 printf("Unable to Add a Volume Adjustment");
 printf(" Condition\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_addspddig()

• dx_adjsv()

• dx_clrsvcond()

138 Voice API Library Reference — June 2005

dx_addvoldig() — set a DTMF digit to adjust volume

• dx_getcursv()

• dx_getsvmt()

• dx_setsvcond()

• dx_setsvmt()

Voice API Library Reference — June 2005 139

adjust speed or volume immediately — dx_adjsv()

dx_adjsv()

adjust speed or volume immediately

Description

The dx_adjsv() function adjusts speed or volume immediately, and for all subsequent plays on a
specified channel (until changed or cancelled). The speed or the volume can be set to a specific
value, adjusted incrementally, or can be set to toggle. See the action parameter description for
information.

The dx_adjsv() function uses the speed and volume modification tables to make adjustments to
play speed or play volume. These tables have 21 entries that represent different levels of speed or
volume. There are up to ten levels above and below the regular speed or volume. These tables can
be set with explicit values using dx_setsvmt() or default values can be used. See the Voice API
Programming Guide for detailed information about these tables.

Notes: 1. This function is similar to dx_setsvcond(). Use dx_adjsv() to explicitly adjust the play
immediately, and use dx_setsvcond() to adjust the play in response to specified conditions. See
the description of dx_setsvcond() for more information.

2. Whenever a play is started, its speed and volume are based on the most recent modification.

Name: int dx_adjsv(chdev, tabletype, action, adjsize)

Inputs: int chdev • valid channel device handle

unsigned short tabletype • type of table to set (speed or volume)

unsigned short action • how to adjust (absolute position, relative change, or toggle)

unsigned short adjsize • adjustment size

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tabletype specifies whether to modify the playback using a value from the speed or the
volume modification table
• SV_SPEEDTBL – use the speed modification table
• SV_VOLUMETBL – use the volume modification table

140 Voice API Library Reference — June 2005

dx_adjsv() — adjust speed or volume immediately

Cautions

None.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

action specifies the type of adjustment to make. Set to one of the following:
• SV_ABSPOS – set speed or volume to a specified position in the

appropriate table. (The position is set using the adjsize parameter.)
• SV_RELCURPOS – adjust speed or volume by the number of steps

specified using the adjsize parameter
• SV_TOGGLE – toggle between values specified using the adjsize

parameter

adjsize specifies the size of the adjustment. The adjsize parameter has a different
value depending on how the adjustment type is set using the action parameter.

• If action is SV_ABSPOS, adjsize specifies the position between -10 to +10
in the Speed or Volume Modification Table that contains the required speed
or volume adjustment. The origin (regular speed or volume) has a value of 0
in the table.

• If action is SV_RELCURPOS, adjsize specifies the number of positive or
negative steps in the Speed or Volume Modification Table by which to adjust
the speed or volume. For example, specify -2 to lower the speed or volume
by 2 steps in the Speed or Volume Modification Table.

• If action is SV_TOGGLE, adjsize specifies the values between which speed
or volume will toggle.
SV_CURLASTMOD sets the current speed/volume to the last modified
speed volume level.
SV_CURORIGIN resets the current speed/volume level to the origin (that is,
regular speed/volume).
SV_RESETORIG resets the current speed/volume to the origin and the last
modified speed/volume to the origin.
SV_TOGORIGIN sets the speed/volume to toggle between the origin and
the last modified level of speed/volume.

Parameter Description

Voice API Library Reference — June 2005 141

adjust speed or volume immediately — dx_adjsv()

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Modify the Volume of the playback so that it is 4dB
 * higher than normal.
 */
 if (dx_adjsv(dxxxdev, SV_VOLUMETBL, SV_ABSPOS, SV_ADD4DB) == -1) {
 printf("Unable to Increase Volume by 4dB\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_setsvcond()

• dx_clrsvcond()

• dx_getcursv()

• dx_getsvmt()

• speed and volume modification tables in the Voice API Programming Guide

• DX_SVMT data structure

142 Voice API Library Reference — June 2005

dx_blddt() — define a user-defined dual-frequency tone

dx_blddt()

define a user-defined dual-frequency tone

Description

The dx_blddt() function defines a user-defined dual-frequency tone. Subsequent calls to
dx_addtone() will enable detection of this tone, until another tone is defined.

Issuing dx_blddt() defines a new tone. You must use dx_addtone() to add the tone to the channel
and enable its detection.

For more information about global tone detection, see the Voice API Programming Guide.

Name: int dx_blddt(tid, freq1, fq1dev, freq2, fq2dev, mode)

Inputs: unsigned int tid • tone ID to assign

unsigned int freq1 • frequency 1 in Hz

unsigned int fq1dev • frequency 1 deviation in Hz

unsigned int freq2 • frequency 2 in Hz

unsigned int fq2dev • frequency 2 deviation in Hz

unsigned int mode • leading or trailing edge

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

Platform: DM3, Springware

Parameter Description

tid specifies a unique identifier for the tone. See Cautions for more information
about the tone ID.

freq1 specifies the first frequency (in Hz) for the tone

frq1dev specifies the allowable deviation (in Hz) for the first frequency

freq2 specifies the second frequency (in Hz) for the tone

frq2dev specifies the allowable deviation (in Hz) for the second frequency

mode specifies whether tone detection notification will occur on the leading or
trailing edge of the tone. Set to one of the following:

• TN_LEADING

• TN_TRAILING

Voice API Library Reference — June 2005 143

define a user-defined dual-frequency tone — dx_blddt()

Cautions

• Only one tone per process can be defined at any time. Ensure that dx_blddt() is called for
each dx_addtone(). The tone is not created until dx_addtone() is called, and a second
consecutive call to dx_blddt() will replace the previous tone definition for the channel. If you
call dx_addtone() without calling dx_blddt() an error will occur.

• On Windows, do not use tone IDs 261, 262 and 263; they are reserved for library use.

• If you are using R2/MF tone detection, reserve the use of tone IDs 101 to 115 for the R2/MF
tones. See r2_creatfsig() for further information.

• When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_1 101

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

144 Voice API Library Reference — June 2005

dx_blddt() — define a user-defined dual-frequency tone

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• global tone detection topic in Voice API Programming Guide

• dx_bldst()

• dx_blddtcad()

• dx_bldstcad()

• dx_addtone()

• dx_distone()

• dx_enbtone()

• r2_creatfsig()

• r2_playbsig()

Voice API Library Reference — June 2005 145

define a user-defined dual frequency cadenced tone — dx_blddtcad()

dx_blddtcad()

define a user-defined dual frequency cadenced tone

Description

The dx_blddtcad() function defines a user-defined dual frequency cadenced tone. Subsequent
calls to dx_addtone() will use this tone, until another tone is defined. A dual frequency cadence
tone has dual frequency signals with specific on/off characteristics.

Issuing dx_blddtcad() defines a new tone. You must use dx_addtone() to add the tone to the
channel and enable its detection.

For more information about global tone detection, see the Voice API Programming Guide.

Name: int dx_blddtcad(tid, freq1, fq1dev, freq2, fq2dev, ontime, ontdev, offtime, offtdev, repcnt)

Inputs: unsigned int tid • tone ID to assign

unsigned int freq1 • frequency 1 in Hz

unsigned int fq1dev • frequency 1 deviation in Hz

unsigned int freq2 • frequency 2 in Hz

unsigned int fq2dev • frequency 2 deviation in Hz

unsigned int ontime • tone-on time in 10 msec

unsigned int ontdev • tone-on time deviation in 10 msec

unsigned int offtime • tone-off time in 10 msec

unsigned int offtdev • tone-off time deviation in 10 msec

unsigned int repcnt • number of repetitions if cadence

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

Platform: DM3, Springware

Parameter Description

tid specifies a unique identifier for the tone. See Cautions for more information on
the tone ID.

freq1 specifies the first frequency (in Hz) for the tone

frq1dev specifies the allowable deviation (in Hz) for the first frequency

freq2 specifies the second frequency (in Hz) for the tone

frq2dev specifies the allowable deviation (in Hz) for the second frequency

146 Voice API Library Reference — June 2005

dx_blddtcad() — define a user-defined dual frequency cadenced tone

Cautions

• Only one user-defined tone per process can be defined at any time. dx_blddtcad() will
replace the previous user-defined tone definition.

• On Windows, do not use tone IDs 261, 262 and 263; they are reserved for library use.

• If you are using R2/MF tone detection, reserve the use of tone IDs 101 to 115 for the R2/MF
tones. See r2_creatfsig() for further information.

• When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_2 102

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Dual Tone Frequency Tone of 950-1050 Hz
 * and 475-525 Hz. On between 190-210 msecs and off
 * 990-1010 msecs and a cadence of 3.
 */

ontime specifies the length of time for which the cadence is on (in 10 msec units)

ontdev specifies the allowable deviation for on time (in 10 msec units)

offtime specifies the length of time for which the cadence is off (in 10 msec units)

offtdev specifies the allowable deviation for off time (in 10 msec units)

repcnt specifies the number of repetitions for the cadence (that is, the number of times
that an on/off signal is repeated)

Parameter Description

Voice API Library Reference — June 2005 147

define a user-defined dual frequency cadenced tone — dx_blddtcad()

 if (dx_blddtcad(TID_2, 1000, 50, 500, 25, 20, 1,
 100, 1, 3) == -1) {
 printf("Unable to build a Dual Tone Cadence");
 printf(" Template\n");
 }

 /*
 * Continue Processing
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• global tone detection topic in Voice API Programming Guide

• dx_bldst()

• dx_blddt()

• dx_bldstcad()

• dx_addtone()

• dx_distone()

• dx_enbtone()

• r2_creatfsig()

• r2_playbsig()

148 Voice API Library Reference — June 2005

dx_bldst() — define a user-defined single-frequency tone

dx_bldst()

define a user-defined single-frequency tone

Description

The dx_bldst() function defines a user-defined single-frequency tone. Subsequent calls to
dx_addtone() will use this tone, until another tone is defined.

Issuing a dx_bldst() defines a new tone. You must use dx_addtone() to add the tone to the
channel and enable its detection.

For more information about global tone detection, see the Voice API Programming Guide.

Cautions

• Only one tone per application may be defined at any time. dx_bldst() will replace the
previous user-defined tone definition.

• On Windows, do not use tone IDs 261, 262 and 263; they are reserved for library use.

Name: int dx_bldst(tid, freq, fqdev, mode)

Inputs: unsigned int tid • tone ID to assign

unsigned int freq • frequency in Hz

unsigned int fqdev • frequency deviation in Hz

unsigned int mode • leading or trailing edge

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

Platform: DM3, Springware

Parameter Description

tid specifies a unique identifier for the tone. See Cautions for more information
about the tone ID.

freq specifies the frequency (in Hz) for the tone

frqdev specifies the allowable deviation (in Hz) for the frequency

mode specifies whether detection is on the leading or trailing edge of the tone. Set to
one of the following:

• TN_LEADING

• TN_TRAILING

Voice API Library Reference — June 2005 149

define a user-defined single-frequency tone — dx_bldst()

• If you are using R2/MF tone detection, reserve the use of tone IDs 101 to 115 for the R2/MF
tones. See r2_creatfsig() for further information.

• When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_3 103

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Single Tone Frequency Tone of
 * 950-1050 Hz using trailing edge detection.
 */
 if (dx_bldst(TID_3, 1000, 50, TN_TRAILING) == -1) {
 printf("Unable to build a Single Tone Template\n");
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

150 Voice API Library Reference — June 2005

dx_bldst() — define a user-defined single-frequency tone

See Also

• global tone detection topic in Voice API Programming Guide

• dx_blddtcad()

• dx_blddt()

• dx_bldstcad()

• dx_addtone()

• dx_distone()

• dx_enbtone()

• r2_creatfsig()

• r2_playbsig()

Voice API Library Reference — June 2005 151

define a user-defined single-frequency cadenced tone — dx_bldstcad()

dx_bldstcad()

define a user-defined single-frequency cadenced tone

Description

The dx_bldstcad() function defines a user-defined, single-frequency, cadenced tone. Subsequent
calls to dx_addtone() will use this tone, until another tone is defined. A single-frequency cadence
tone has single-frequency signals with specific on/off characteristics.

Issuing a dx_bldstcad() defines a new tone. You must use dx_addtone() to add the tone to the
channel and enable its detection.

For more information about global tone detection, see the Voice API Programming Guide.

Name: int dx_bldstcad(tid, freq, fqdev, ontime, ontdev, offtime, offtdev, repcnt)

Inputs: unsigned int tid • tone ID to assign

unsigned int freq • frequency in Hz

unsigned int fqdev • frequency deviation in Hz

unsigned int ontime • tone on time in 10 msec

unsigned int ontdev • on time deviation in 10 msec

unsigned int offtime • tone off time in 10 msec

unsigned int offtdev • off time deviation in 10 msec

unsigned int repcnt • repetitions if cadence

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

Platform: DM3, Springware

Parameter Description

tid specifies a unique identifier for the tone. See Cautions for more information
about the tone ID.

freq specifies the frequency (in Hz) for the tone

frqdev specifies the allowable deviation (in Hz) for the frequency

ontime specifies the length of time for which the cadence is on (in 10 msec units)

ontdev specifies the allowable deviation for on time (in 10 msec units)

offtime specifies the length of time for which the cadence is off (in 10 msec units)

152 Voice API Library Reference — June 2005

dx_bldstcad() — define a user-defined single-frequency cadenced tone

Cautions

• Only one tone per application may be defined at any time. dx_bldstcad() will replace the
previous user-defined tone definition.

• On Springware boards, using dx_bldstcad() to define two different user-defined tones with
the same frequency and different cadence times may result in the board erroneously reporting
CON_CAD instead of CR_NOANS.

• On Windows, do not use tone IDs 261, 262 and 263; they are reserved for library use.

• If you are using R2/MF tone detection, reserve the use of tone IDs 101 to 115 for the R2/MF
tones. See the r2_creatfsig() function for further information.

• When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_4 104

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Single Tone Frequency Tone of 950-1050 Hz.
 * On between 190-210 msecs and off 990-1010 msecs and
 * a cadence of 3.
 */
 if (dx_bldstcad(TID_4, 1000, 50, 20, 1, 100, 1, 3) == -1) {
 printf("Unable to build a Single Tone Cadence");
 printf(" Template\n");
 }

offtdev specifies the allowable deviation for off time (in 10 msec units)

repcnt specifies the number of repetitions for the cadence (i.e., the number of times
that an on/off signal is repeated)

Parameter Description

Voice API Library Reference — June 2005 153

define a user-defined single-frequency cadenced tone — dx_bldstcad()

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• global tone detection topic in Voice API Programming Guide

• dx_blddtcad()

• dx_blddt()

• dx_bldst()

• dx_addtone()

• dx_distone()

• dx_enbtone()

• r2_creatfsig()

• r2_playbsig()

154 Voice API Library Reference — June 2005

dx_bldtngen() — define a tone for generation

dx_bldtngen()

define a tone for generation

Description

The dx_bldtngen() function is a convenience function that defines a tone for generation by setting
up the tone generation template (TN_GEN) and assigning specified values to the appropriate fields.
The tone generation template is placed in the user’s return buffer and can then be used by the
dx_playtone() function to generate the tone.

For more information about Global Tone Generation, see the Voice API Programming Guide.

Name: void dx_bldtngen(tngenp, freq1, freq2, ampl1, ampl2, duration)

Inputs: TN_GEN *tngenp • pointer to tone generation structure

unsigned short freq1 • frequency of tone 1 in Hz

unsigned short freq2 • frequency of tone 2 in Hz

short ampl1 • amplitude of tone 1 in dB

short ampl2 • amplitude of tone 2 in dB

short duration • duration of tone in 10 msec units

Returns: none

Includes: srllib.h
dxxxlib.h

Category: Global Tone Generation

Mode: synchronous

Platform: DM3, Springware

Parameter Description

tngenp points to the TN_GEN data structure where the tone generation template is
output

freq1 specifies the frequency of tone 1 in Hz. Valid range is 200 to 3000 Hz.

freq2 specifies the frequency of tone 2 in Hz. Valid range is 200 to 3000 Hz. To
define a single tone, set freq1 to the desired frequency and set freq2 to 0.

ampl1 specifies the amplitude of tone 1 in dB. Valid range is 0 to -40 dB. Calling this
function with ampl1 set to R2_DEFAMPL will set the amplitude to -10 dB.

ampl2 specifies the amplitude of tone 2 in dB. Valid range is 0 to -40 dB. Calling this
function with ampl2 set to R2_DEFAMPL will set the amplitude to -10 dB.

duration specifies the duration of the tone in 10 msec units. A value of -1 specifies
infinite duration (the tone will only terminate upon an external terminating
condition).

Voice API Library Reference — June 2005 155

define a tone for generation — dx_bldtngen()

Generating a tone with a high frequency component (approximately 700 Hz or higher) will cause
the amplitude of the tone to increase. The increase will be approximately 1 dB at 1000 Hz. Also,
the amplitude of the tone will increase by 2 dB if an analog (loop start) device is used.

Cautions

None.

Errors

None.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 TN_GEN tngen;
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Build a Tone Generation Template.
 * This template has Frequency1 = 1140,
 * Frequency2 = 1020, amplitute at -10dB for
 * both frequencies and duration of 100 * 10 msecs.
 */
 dx_bldtngen(&tngen, 1140, 1020, -10, -10, 100);

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• TN_GEN structure

• dx_playtone()

156 Voice API Library Reference — June 2005

dx_bldtngen() — define a tone for generation

• global tone generation topic in Voice API Programming Guide

• r2_creatfsig()

• r2_playbsig()

Voice API Library Reference — June 2005 157

download a cached prompt from multiple sources — dx_cacheprompt()

dx_cacheprompt()

download a cached prompt from multiple sources

Description

The dx_cacheprompt() function downloads voice data from multiple sources to the on-board
memory. On successful completion the function returns a handle to the single cached prompt. This
cached prompt handle can then be used in subsequent calls to a play function such as
dx_playiottdata().

For more information about cached prompt management and extended example code, see the Voice
API Programming Guide.

Cautions

• Before using dx_cacheprompt(), call dx_getcachesize() to determine the amount of on-
board memory available for storing cached prompts.

• Closing the physical board device handle using dx_close() does not flush the prompts from
the on-board cache.

Name: int dx_cacheprompt(brdhdl, iottp, prompthdl, mode)

Inputs: int brdhdl • valid physical board device handle

DX_IOTT *iottp • pointer to I/O Transfer Table

int prompthdl • pointer to return the cached prompt handle

unsigned short mode • cached prompt mode

Returns: > 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Cached Prompt Management

Mode: asynchronous or synchronous

Platform: DM3

Parameter Description

brdhdl specifies a valid physical board device handle (of the format brdBn) obtained
by a call to dx_open()

iottp points to the I/O Transfer Table structure, DX_IOTT, which specifies the
location of voice data and the order in which data is downloaded. See
DX_IOTT, on page 534, for information about this data structure.

prompthdl points to an integer that represents the cached prompt handle

mode specifies the mode in which the function will run. Valid values are:
• EV_ASYNC – asynchronous mode
• EV_SYNC – synchronous mode

158 Voice API Library Reference — June 2005

dx_cacheprompt() — download a cached prompt from multiple sources

• If the function is called in asynchronous mode (mode = EV_ASYNC), then the cached prompt
handle returned should be used only after the TDX_CACHEPROMPT event is received.

• When iottp parameter points to an array of DX_IOTT data structures (voice data being
specified from multiple sources), the cached prompt handle that is returned refers to the
beginning of the combined set of voice data that is downloaded. It is not possible to select an
individual data item for playing from the cached prompt.

• WAVE files cannot be played from on-board cache memory.

• When dx_cacheprompt() is issued on a physical board device in asynchronous mode, and the
function is immediately followed by another similar call prior to completion of the previous
call on the same device, the subsequent call will fail with device busy.

Errors

In asynchronous mode, the function returns immediately and a TDX_CACHEPROMPT event is
queued upon completion. Check the extended attribute function ATDX_TERMMSK() for the
termination reason. If a failure occurs, then a TDX_ERROR event will be queued. Use the
Standard Runtime Library (SRL) Standard Attribute function ATDV_LASTERR() to determine
the reason for error.

In synchronous mode, if this function returns -1 to indicate failure, call ATDV_LASTERR() to
obtain the error code, or use ATDV_ERRMSGP() to obtain a descriptive error message. For a list
of error codes returned by ATDV_LASTERR(), see the Error Codes chapter.

Example

#include <stdio.h>
#include "srllib.h"
#include "dxxxlib.h"

main()
{
 int brdhdl; /* physical board device handle */
 int promptHandle; /* Handle of the prompt to be downloaded */
 int fd1; /* First file descriptor for file to be downloaded */
 int fd2; /* Second file descriptor for file to be downloaded */
 DX_IOTT iott[2]; /* I/O transfer table to download cached prompt */
 .
 .
 .
 /* Open board */
 if ((brdhdl = dx_open("brdB1",0)) == -1) {
 printf("Cannot open board\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Open first VOX file to play on Linux */
 if ((fd1 = open("HELLO.VOX",O_RDONLY)) == -1) {
 printf("File open error\n");
 exit(2);
 }

 /* Open second VOX file to play on Linux */
 if ((fd2 = open("GREETING.VOX",O_RDONLY)) == -1) {
 printf("File open error\n");
 exit(2);
 }

Voice API Library Reference — June 2005 159

download a cached prompt from multiple sources — dx_cacheprompt()

 /* Open first VOX file to cache on Windows */
 if ((fd1 = dx_fileopen("HELLO.VOX",O_RDONLY|O_BINARY)) == -1) {
 printf("File open error\n");
 exit(2);
 }

 /* Open second VOX file to cache on Windows */
 if ((fd2 = dx_fileopen("GREETING.VOX",O_RDONLY|O_BINARY)) == -1) {
 printf("File open error\n");
 exit(2);
 }

 /* Set up DX_IOTT */
 /*This block specifies the first data file */
 iott[0].io_fhandle = fd1;
 iott[0].io_offset = 0;
 iott[0].io_length = -1;
 iott[0].io_type = IO_DEV | IO_CONT;

 /*This block specifies the second data file */
 iott[1].io_fhandle = fd2;
 iott[1].io_offset = 0;
 iott[1].io_length = -1;
 iott[1].io_type = IO_DEV | IO_EOT

 /* Download the prompts to the on-board memory */
 int promptHandle;
 int result = dx_cacheprompt(brdhdl, iott, &promptHandle, EV_SYNC);

}

See Also

• dx_getcachesize()

• dx_open()

• dx_playiottdata()

• dx_setuio()

160 Voice API Library Reference — June 2005

dx_chgdur() — change the duration definition for a tone

dx_chgdur()

change the duration definition for a tone

Description

The dx_chgdur() function changes the standard duration definition for a call progress analysis
tone, identified by tonetype. The voice driver comes with default definitions for each of the call
progress analysis tones. The dx_chgdur() function alters the standard definition of the duration
component.

Changing a tone definition has no immediate effect on the behavior of an application. The
dx_initcallp() function takes the tone definitions and uses them to initialize a channel. Once a
channel is initialized, subsequent changes to the tone definitions have no effect on that channel. For
these changes to take effect, you must first call dx_deltones() followed by dx_initcallp().

For more information on default tone templates as well as the call progress analysis feature, see the
Voice API Programming Guide.

Name: int dx_chgdur(tonetype, ontime, ondev, offtime, offdev)

Inputs: int tonetype • tone to modify

int ontime • on duration

int ondev • ontime deviation

int offtime • off duration

int offdev • offtime deviation

Returns: 0 on success
-1 if tone does not have cadence values
-2 if unknown tone type

Includes: srllib.h
dxxxlib.h

Category: Call Progress Analysis

Mode: synchronous

Platform: Springware

Voice API Library Reference — June 2005 161

change the duration definition for a tone — dx_chgdur()

Cautions

This function changes only the definition of a tone. The new definition does not apply to a channel
until dx_deltones() is called on that channel followed by dx_initcallp().

Errors

For a list of error codes, see the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;
 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

Parameter Description

tonetype specifies the identifier of the tone whose definition is to be modified. It may be
one of the following:
• TID_BUSY1 – Busy signal
• TID_BUSY2 – Alternate busy signal
• TID_DIAL_INTL – International dial tone
• TID_DIAL_LCL – Local dial tone
• TID_DIAL_XTRA – Special (extra) dial tone
• TID_DISCONNECT – Disconnect tone (post-connect) (Windows only)
• TID_FAX1 – Fax or modem tone
• TID_FAX2 – Alternate fax or modem tone
• TID_RNGBK1 – Ringback (detected as single tone)
• TID_RINGBK2 – Ringback (detected as dual tone)

ontime specifies the length of time that the tone is on (10 msec units)

ondev specifies the maximum permissible deviation from ontime (10 msec units)

offtime specifies the length of time that the tone is off (10 msec units)

offdev specifies the maximum permissible deviation from offtime (10 msec units)

162 Voice API Library Reference — June 2005

dx_chgdur() — change the duration definition for a tone

 /*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default busy cadence
 */
 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }

 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */

 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;
 case CR_BUSY:
 printf(" %s engaged\n", dialstrg);
 break;
 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;
 default:
 break;
 }

Voice API Library Reference — June 2005 163

change the duration definition for a tone — dx_chgdur()

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }
 dx_close(ddd);
}

See Also

• dx_chgfreq()

• dx_chgrepcnt()

• dx_deltones()

• dx_initcallp()

164 Voice API Library Reference — June 2005

dx_chgfreq() — change the frequency definition for a tone

dx_chgfreq()

change the frequency definition for a tone

Description

The dx_chgfreq() function changes the standard frequency definition for a call progress analysis
tone, identified by tonetype. The voice driver comes with default definitions for each of the call
progress analysis tones. The dx_chgfreq() function alters the standard definition of the frequency
component.

Call progress analysis supports both single-frequency and dual-frequency tones. For dual-
frequency tones, the frequency and tolerance of each component may be specified independently.
For single-frequency tones, specifications for the second frequency are set to zero.

Changing a tone definition has no immediate effect on the behavior of an application. The
dx_initcallp() function takes the tone definitions and uses them to initialize a channel. Once a
channel is initialized, subsequent changes to the tone definitions have no effect on that channel. For
these changes to take effect, you must first call dx_deltones() followed by dx_initcallp().

For more information on default tone templates as well as the call progress analysis feature, see the
Voice API Programming Guide.

Name: int dx_chgfreq(tonetype, freq1, freq1dev, freq2, freq2dev)

Inputs: int tonetype • tone to modify

int freq1 • frequency of first tone

int freq1dev • frequency deviation for first tone

int freq2 • frequency of second tone

int freq2dev • frequency deviation of second tone

Returns: 0 on success
-1 on failure due to bad parameter(s) for tone type
-2 on failure due to unknown tone type

Includes: srllib.h
dxxxlib.h

Category: Call Progress Analysis

Mode: synchronous

Platform: Springware

Voice API Library Reference — June 2005 165

change the frequency definition for a tone — dx_chgfreq()

Cautions

This function changes only the definition of a tone. The new definition does not apply to a channel
until dx_deltones() is called on that channel followed by dx_initcallp().

Errors

For a list of error codes, see the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;
 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

Parameter Description

tonetype specifies the identifier of the tone whose definition is to be modified. It may be
one of the following:
• TID_BUSY1 – Busy signal
• TID_BUSY2 – Alternate busy signal
• TID_DIAL_INTL – International dial tone
• TID_DIAL_LCL – Local dial tone
• TID_DIAL_XTRA – Special (extra) dial tone
• TID_DISCONNECT – Disconnect tone (post-connect) (Windows only)
• TID_FAX1 – Fax or modem tone
• TID_FAX2 – Alternate fax or modem tone
• TID_RNGBK1 – Ringback (detected as single tone)
• TID_RINGBK2 – Ringback (detected as dual tone)

freq1 specifies the frequency of the first tone (in Hz)

freq1dev specifies the maximum permissible deviation (in Hz) from freq1

freq2 specifies the frequency of the second tone, if any (in Hz). If there is only one
frequency, freq2 is set to 0.

freq2dev specifies the maximum permissible deviation (in Hz) from freq2

166 Voice API Library Reference — June 2005

dx_chgfreq() — change the frequency definition for a tone

 /*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default busy cadence
 */
 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }
 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;
 case CR_BUSY:
 printf(" %s engaged\n", dialstrg);
 break;
 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;
 default:
 break;
 }

Voice API Library Reference — June 2005 167

change the frequency definition for a tone — dx_chgfreq()

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

See Also

• dx_chgdur()

• dx_chgrepcnt()

• dx_deltones()

• dx_initcallp()

168 Voice API Library Reference — June 2005

dx_chgrepcnt() — change the repetition definition for a tone

dx_chgrepcnt()

change the repetition definition for a tone

Description

The dx_chgrepcnt() function changes the standard repetition definition for a call progress
analysis tone, identified by tonetype. The repetition count component refers to the number of times
that the signal must repeat before being recognized as valid. The voice driver comes with default
definitions for each of the call progress analysis tones. The dx_chgrepcnt() function alters the
standard definition of the repetition count component.

Changing a tone definition has no immediate effect on the behavior of an application. The
dx_initcallp() function takes the tone definitions and uses them to initialize a channel. Once a
channel is initialized, subsequent changes to the tone definitions have no effect on that channel. For
these changes to take effect, you must first call dx_deltones() followed by dx_initcallp().

Name: int dx_chgrepcnt(tonetype, repcnt)

Inputs: int tonetype • tone to modify

int repcnt • repetition count

Returns: 0 if success
-1 if tone does not have a repetition value
2 if unknown tone type

Includes: srllib.h
dxxxlib.h

Category: Call Progress Analysis

Mode: synchronous

Platform: Springware

Parameter Description

tonetype specifies the identifier of the tone whose definition is to be modified. It may be
one of the following:
• TID_BUSY1 – Busy signal
• TID_BUSY2 – Alternate busy signal
• TID_DIAL_INTL – International dial tone
• TID_DIAL_LCL – Local dial tone
• TID_DIAL_XTRA – Special (extra) dial tone
• TID_DISCONNECT – Disconnect tone (post-connect) (Windows only)
• TID_FAX1 – Fax or modem tone
• TID_FAX2 – Alternate fax or modem tone
• TID_RNGBK1 – Ringback (detected as single tone)
• TID_RINGBK2 – Ringback (detected as dual tone)

repcnt the number of times that the signal must repeat

Voice API Library Reference — June 2005 169

change the repetition definition for a tone — dx_chgrepcnt()

Cautions

This function changes only the definition of a tone. The new definition does not apply to a channel
until dx_deltones() is called on that channel followed by dx_initcallp().

Errors

For a list of error codes, see the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;
 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

 /*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default busy cadence
 */
 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }

 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

170 Voice API Library Reference — June 2005

dx_chgrepcnt() — change the repetition definition for a tone

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;
 case CR_BUSY:
 printf(" %s engaged\n", dialstrg);
 break;
 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;
 default:
 break;
 }

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

See Also

• dx_chgdur()

• dx_chgfreq()

• dx_deltones()

• dx_initcallp()

Voice API Library Reference — June 2005 171

close a channel or board device handle — dx_close()

dx_close()

close a channel or board device handle

Description

The dx_close() function closes a channel device handle or board device handle that was previously
opened using dx_open(). On DM3 boards, dx_close() is also used to close a physical board
device that was previously opened using dx_open(); closing the physical board device deletes or
flushes any cached prompts from on-board cache memory.

This function does not affect any action occurring on a device. It does not affect the hook state or
any of the parameters that have been set for the device. It releases the handle and breaks the link
between the calling process and the device, regardless of whether the device is busy or idle.

Note: The dx_close() function disables the generation of all events.

Cautions

• Once a device is closed, a process can no longer act on that device using that device handle.

• Other handles for that device that exist in the same process or other processes will still be
valid.

• The only process affected by dx_close() is the process that called the function.

• Do not use the operating system close() command to close a voice device; unpredictable
results will occur.

• The dx_close() function discards any outstanding events on that handle.

• On DM3 boards, if you close a device via dx_close() after modifying speed and volume table
values using dx_setsvmt(), the dx_getcursv() function may return incorrect speed and
volume settings for the device. This is because the next dx_open() resets the speed and
volume tables to their default values.

Name: int dx_close(dev)

Inputs: int dev • valid channel or board device handle

Returns: 0 if successful
-1 if error

Includes: srllib.h
dxxxlib.h

Category: Device Management

Mode: synchronous

Platform: DM3, Springware

Parameter Description

dev specifies the valid device handle obtained when a board or channel was opened
using dx_open()

172 Voice API Library Reference — June 2005

dx_close() — close a channel or board device handle

Errors

In Windows, if this function returns -1 to indicate failure, a system error has occurred; use
dx_fileerrno() to obtain the system error value. Refer to the dx_fileerrno() function for a list of
the possible system error values.

In Linux, if this function returns -1 to indicate failure, check errno for one of the following
reasons:

EBADF
Invalid file descriptor

EINTR
A signal was caught

EINVAL
Invalid argument

Example 1

This example illustrates how to close a channel device handle.

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* channel descriptor */
 .
 .
 .

 /* Open Channel */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 .
 .
 .

 /* Close channel */
 if (dx_close(chdev) == -1) {
 /* process error */
 }
}

Example 2

This example illustrates how to close a physical board device handle when using cached prompts.

#include "srllib.h"
#include "dxxxlib.h"

main()
{
 int brdhdl; /* board handle */
 .
 .
 .
 /* Open board */
 if ((brdhdl = dx_open("brdB1",0)) == -1) {

Voice API Library Reference — June 2005 173

close a channel or board device handle — dx_close()

 printf("Cannot open board\n");
 /* Perform system error processing */
 exit(1);
 }
 .
 .
 .
 dx_close(brdhdl);
}

See Also

• dx_open()

174 Voice API Library Reference — June 2005

dx_CloseStreamBuffer() — delete a circular stream buffer

dx_CloseStreamBuffer()

delete a circular stream buffer

Description

The dx_CloseStreamBuffer() function deletes the circular stream buffer identified by the stream
buffer handle. If the stream buffer is currently in use (playing), this function returns -1 as an error.

Cautions

You cannot delete a circular stream buffer while it is in use by a play operation. If you try to delete
the buffer in this situation, the dx_CloseStreamBuffer() function will return -1 as an error.

Errors

This function returns -1 on error. The error can occur if you passed the wrong buffer handle to the
function call or if the buffer is in use by an active play.

To see if the buffer is in use by an active play, call dx_GetStreamInfo() and check the item
“currentState” in the DX_STREAMSTAT structure. A value of ASSIGNED_STREAM_BUFFER
for this item means that the buffer is currently in use in a play. A value of
UNASSIGNED_STREAM_BUFFER means that the buffer is not being used currently in any play.

Unlike other voice API library functions, the streaming to board functions do not use SRL device
handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used to retrieve
error codes and error descriptions.

Name: int dx_CloseStreamBuffer(hBuffer)

Inputs: int hBuffer • stream buffer handle

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: streaming to board

Mode: synchronous

Platform: DM3

Parameter Description

hBuffer specifies the stream buffer handle obtained from
dx_OpenStreamBuffer()

Voice API Library Reference — June 2005 175

delete a circular stream buffer — dx_CloseStreamBuffer()

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int nBuffSize = 32768, vDev = 0;
 int hBuffer = -1;
 char pData[1024];
 DX_IOTT iott;
 DV_TPT ptpt;

 if ((hBuffer = dx_OpenStreamBuffer(nBuffSize)) < 0)
 {
 printf("Error opening stream buffer \n");
 exit(1);
 }
 if ((vDev = dx_open("dxxxB1C1", 0)) < 0)
 {
 printf("Error opening voice device\n");
 exit(2);
 }

 iott.io_type = IO_STREAM|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play until STREAM_EOD */
 iott.io_fhandle = hBuffer;

 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 if (dx_play(vDev, &iott, &tpt, EV_ASYNC) < 0)
 {
 printf("Error in dx_play() %d\n", ATDV_LASTERR(vDev));
 }
 /* Repeat the following until all data is streamed */

 if (dx_PutStreamData(hBuffer, pData, 1024, STREAM_CONT) < 0)
 {
 printf("Error in dx_PutStreamData \n");
 exit(3);
 }
 /* Wait for TDX_PLAY event and other events as appropriate */

 if (dx_CloseStreamBuffer(hBuffer) < 0)
 {
 printf("Error closing stream buffer \n");
 }
}

See Also

• dx_OpenStreamBuffer()

• dx_GetStreamInfo()

176 Voice API Library Reference — June 2005

dx_clrcap() — clear all fields in a DX_CAP structure

dx_clrcap()

clear all fields in a DX_CAP structure

Description

The dx_clrcap() function clears all fields in a DX_CAP structure by setting them to zero.
dx_clrcap() is a VOID function that returns no value. It is provided as a convenient way of
clearing a DX_CAP structure.

Cautions

Clear the DX_CAP structure using dx_clrcap() before the structure is used as an argument in a
dx_dial() function call. This will prevent parameters from being set unintentionally.

Errors

None.

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 DX_CAP cap;
 int chdev;

 /* open the channel using dx_open */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 .
 .
 /* set call progress analysis parameters before doing call progress analysis */
 dx_clrcap(&cap);
 cap.ca_nbrdna = 5; /* 5 rings before no answer */

Name: void dx_clrcap(capp)

Inputs: DX_CAP *capp • pointer to call progress analysis parameter data structure

Returns: none

Includes: srllib.h
dxxxlib.h

Category: Structure Clearance

Mode: synchronous

Platform: DM3, Springware

Parameter Description

capp pointer to call progress analysis parameter data structure, DX_CAP. For more
information on this structure, see DX_CAP, on page 521.

Voice API Library Reference — June 2005 177

clear all fields in a DX_CAP structure — dx_clrcap()

 .
 .
 /* continue with call progress analysis */
 .
 .
}

See Also

• dx_dial()

• DX_CAP data structure

• call progress analysis topic in the Voice API Programming Guide

178 Voice API Library Reference — June 2005

dx_clrdigbuf() — clear all digits in the firmware digit buffer

dx_clrdigbuf()

clear all digits in the firmware digit buffer

Description

The dx_clrdigbuf() function clears all digits in the firmware digit buffer of the channel specified
by chdev.

Cautions

• The function will fail and return -1 if the channel device handle is invalid or the channel is
busy.

• On DM3 boards, digits will not always be cleared by the time this function returns, because
processing may continue on the board even after the function returns. For this reason, careful
consideration should be given when using this function before or during a section where digit
detection or digit termination is required; the digit may be cleared only after the function has
returned and possibly during the next function call.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Name: int dx_clrdigbuf(chdev)

Inputs: int chdev • valid channel device handle

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 179

clear all digits in the firmware digit buffer — dx_clrdigbuf()

Example

See the Example code in the function descriptions for dx_getdig(), dx_play(), and dx_rec() for
more examples of how to use dx_clrdigbuf().

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* channel descriptor */
 .
 .
 .
 /* Open Channel */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* Clear digit buffer */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error*/
 }
 .
 .
}

See Also

None.

180 Voice API Library Reference — June 2005

dx_clrsvcond() — clear all speed or volume adjustment conditions

dx_clrsvcond()

clear all speed or volume adjustment conditions

Description

The dx_clrsvcond() function clears all speed or volume adjustment conditions that have been
previously set using dx_setsvcond() or the convenience functions dx_addspddig() and
dx_addvoldig().

Before resetting an adjustment condition, you must first clear all current conditions by using this
function, and then reset conditions using dx_setsvcond(), dx_addspddig(), or dx_addvoldig().

Cautions

None.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

Name: int dx_clrsvcond(chdev)

Inputs: int chdev • valid channel device handle

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 181

clear all speed or volume adjustment conditions — dx_clrsvcond()

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Clear all Speed and Volume Conditions
 */
 if (dx_clrsvcond(dxxxdev) == -1) {
 printf("Unable to Clear the Speed/Volume");
 printf(" Conditions\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_setsvcond()

• dx_addspddig()

• dx_addvoldig()

• speed and volume modification tables in Voice API Programming Guide

• DX_SVCB data structure

182 Voice API Library Reference — June 2005

dx_clrtpt() — clear all fields in a DV_TPT structure

dx_clrtpt()

clear all fields in a DV_TPT structure

Description

The dx_clrtpt() function clears all fields except tp_type and tp_nextp in the specified number of
DV_TPT structures. This function is provided as a convenient way of clearing a DV_TPT
structure, before reinitializing it for a new set of termination conditions.

Notes: 1. The DV_TPT is defined in srllib.h rather than dxxxlib.h since it can be used by other non-voice
devices.

2. Before calling dx_clrtpt(), you must set the tp_type field of DV_TPT as follows:

IO_CONT if the next DV_TPT is contiguous

IO_LINK if the next DV_TPT is linked

IO_EOT for the last DV_TPT

Cautions

If tp_type in the DV_TPT structure is set to IO_LINK, you must set tp_nextp to point to the next
DV_TPT in the chain. The last DV_TPT in the chain must have its tp_type field set to IO_EOT. By
setting the tp_type and tp_nextp fields appropriately, dx_clrtpt() can be used to clear a
combination of contiguous and linked DV_TPT structures.

To reinitialize DV_TPT structures with a new set of conditions, call dx_clrtpt() only after the
links have been set up properly, as illustrated in the Example.

Name: int dx_clrtpt(tptp, size)

Inputs: DV_TPT *tptp • pointer to Termination Parameter Table structure

int size • number of entries to clear

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Structure Clearance

Mode: synchronous

Platform: DM3, Springware

Parameter Description

tptp points to the first DV_TPT structure to be cleared

size indicates the number of DV_TPT structures to clear. If size is set to 0, the
function will return a 0 to indicate success. For more information on this
structure, see DV_TPT, on page 510.

Voice API Library Reference — June 2005 183

clear all fields in a DV_TPT structure — dx_clrtpt()

Errors

The function will fail and return -1 if IO_EOT is encountered in the tp_type field before the
number of DV_TPT structures specified in size have been cleared.

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 DV_TPT tpt1[2];
 DV_TPT tpt2[2];

 /* Set up the links in the DV_TPTs */
 tpt1[0].tp_type = IO_CONT;
 tpt1[1].tp_type = IO_LINK;
 tpt1[1].tp_nextp = &tpt2[0];
 tpt2[0].tp_type = IO_CONT;
 tpt2[1].tp_type = IO_EOT;
 /* set up the other DV_TPT fields as required for termination */
 .
 .
 /* play a voice file, get digits, etc. */
 .
 .

 /* clear out the DV_TPT structures if required */
 dx_clrtpt(&tpt1[0],4);
 /* now set up the DV_TPT structures for the next play */
 .
 .
}

See Also

• DV_TPT data structure

184 Voice API Library Reference — June 2005

dx_createtone() — create a new tone definition for a specific call progress tone

dx_createtone()

create a new tone definition for a specific call progress tone

Description

The dx_createtone() function creates a new tone definition for a specific call progress tone. On
successful completion of the function, the TONE_DATA structure is used to create a tone definition
for the specified call progress tone.

Before creating a new tone definition with dx_createtone(), first use dx_querytone() to get tone
information for the tone ID, then use dx_deletetone() to delete that same tone ID. Only tones
listed in the toneid parameter description are supported for this function. For more information on
modifying call progress analysis tone definitions, see the Voice API Programming Guide.

When running in asynchronous mode, this function returns 0 to indicate that it initiated
successfully and generates the TDX_CREATETONE event to indicate completion or the
TDX_CREATETONE_FAIL event to indicate failure. The TONE_DATA structure should remain
in scope until the application receives these events.

By default, this function runs in synchronous mode and returns 0 to indicate completion.

Name: int dx_createtone(brdhdl, toneid, *tonedata, mode)

Inputs: int brdhdl • a valid physical board device handle

int toneid • tone ID of the call progress tone

TONE_DATA *tonedata • pointer to the TONE_DATA structure

unsigned short mode • mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Progress Analysis

Mode: Asynchronous or synchronous

Platform: DM3

Parameter Description

brdhdl specifies a valid physical board device handle (not a virtual board device)
of the format brdBn obtained by a call to dx_open().

To get the physical board name, use the SRLGetPhysicalBoardName()
function. This function and other device mapper functions return
information about the structure of the system. For more information, see
the Standard Runtime Library API Library Reference.

Voice API Library Reference — June 2005 185

create a new tone definition for a specific call progress tone — dx_createtone()

Cautions

• Only the default call progress tones listed in the toneid parameter description are supported for
this function. The following tone IDs are not supported by this function: TID_SIT_ANY,
TID_SIT_NO_CIRCUIT_INTERLATA, TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

• If you call dx_createtone() prior to calling dx_deletetone(), then dx_createtone() will fail
with an error EDX_TNQUERYDELETE.

• To modify a default tone definition, use the three functions dx_querytone(),
dx_deletetone(), and dx_createtone() in this order, for one tone at a time.

• When dx_createtone() is issued on a physical board device in asynchronous mode, and the
function is immediately followed by another similar call prior to completion of the previous
call on the same device, the subsequent call will fail with device busy.

toneid specifies the tone ID of the call progress tone whose definition needs to be
modified. Valid values are:

• TID_BUSY1

• TID_BUSY2

• TID_DIAL_INTL

• TID_DIAL_LCL

• TID_DISCONNECT

• TID_FAX1

• TID_FAX2

• TID_RNGBK1

• TID_RNGBK2

• TID_SIT_NC

• TID_SIT_IC

• TID_SIT_VC

• TID_SIT_RO

Note: The following tone IDs are not supported by this function:
TID_SIT_ANY, TID_SIT_NO_CIRCUIT_INTERLATA,
TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

tonedata specifies a pointer to the TONE_DATA data structure which contains the
tone information to be created for the call progress tone identified by
toneid

mode specifies the mode in which the function will run. Valid values are:
• EV_ASYNC – asynchronous mode
• EV_SYNC – synchronous mode (default)

Parameter Description

186 Voice API Library Reference — June 2005

dx_createtone() — create a new tone definition for a specific call progress tone

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
invalid parameter

EDX_SYSTEM
error from operating system

EDX_TNPARM
invalid tone template parameter

EDX_TNQUERYDELETE
tone not queried or deleted prior to create

Example

#include "srllib.h"
#include "dxxxlib.h"

main()
{
 int brdhdl; /* board handle */
 .
 .
 .

 /* Open board */
 if ((brdhdl = dx_open("brdB1",0)) == -1) {
 printf("Cannot open board\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Get the Tone Information for the TID_BUSY1 tone*/
 int result;
 TONE_DATA tonedata;
 if ((result = dx_querytone(brdhdl, TID_BUSY1, &tonedata, EV_ASYNC)) == -1) {
 printf("Cannot obtain tone information for TID_BUSY1 \n");
 /* Perform system error processing */
 exit(1);
 }
 while (1) {
 if (sr_waitevt(2000) < 0)
 break;
 long evttype = sr_getevttype(0);
 if (evttype == TDX_QUERYTONE)
 printf("TDX_QUERYTONE Event received \n");
 elseif (evttype == TDX_QUERYTONE_FAIL)
 printf("TDX_QUERYTONE_FAIL event received \n");
 else
 printf(" Unknown event received 0x%x \n", evttype);
 break;
 }

 /* Delete the current TID_BUSY1 call progress tone before creating a new definition*/
 if ((result = dx_deletetone(brdhdl, TID_BUSY1, EV_ASYNC)) == -1) {
 printf("Cannot delete the TID_BUSY1 tone\n");

Voice API Library Reference — June 2005 187

create a new tone definition for a specific call progress tone — dx_createtone()

 /* Perform system error processing */
 exit(1);
 }
 while (1) {
 if (sr_waitevt(2000) < 0)
 break;
 long evttype = sr_getevttype(0);
 if (evttype == TDX_DELETETONE)
 printf("TDX_DELETETONE Event received \n");
 elseif (evttype == TDX_DELETETONE_FAIL)
 printf("TDX_DELETETONE_FAIL event received \n");
 else
 printf(" Unknown event received 0x%x \n", evttype);
 break;
 }

 /* Change call progress default Busy tone */

 tonedata.toneseg[0].structver = 0;
 tonedata.toneseg[0].numofseg = 1; /* Single segment tone */
 tonedata.toneseg[0].tn_rep_cnt = 4;

 toneinfo.toneseg[0].structver = 0;
 toneinfo.toneseg[0].tn_dflag = 1; /* Dual tone */
 toneinfo.toneseg[0].tn1_min = 0; /* Min. Frequency for Tone 1 (in Hz) */
 toneinfo.toneseg[0].tn1_max = 450; /* Max. Frequency for Tone 1 (in Hz) */
 toneinfo.toneseg[0].tn2_min = 0; /* Min. Frequency for Tone 2 (in Hz) */
 toneinfo.toneseg[0].tn2_max = 150; /* Max. Frequency for Tone 2 (in Hz) */
 toneinfo.toneseg[0].tn_twinmin = 0;
 toneinfo.toneseg[0].tn_twinmax = 0;

 toneinfo.toneseg[0].tnon_min = 400; /* Debounce Min. ON Time */
 toneinfo.toneseg[0].tnon_max = 550; /* Debounce Max. ON Time */
 toneinfo.toneseg[0].tnoff_min = 400; /* Debounce Min. OFF Time */
 toneinfo.toneseg[0].tnoff_max = 550; /* Debounce Max. OFF Time */

 if ((result = dx_createtone(brdhdl, TID_BUSY1, &tonedata, EV_ASYNC)) == -1) {
 printf("create tone for TID_BUSY1 failed\n");
 /* Perform system error processing */
 exit(1);
 }
 while (1) {
 if (sr_waitevt(2000) < 0)
 break;
 long evttype = sr_getevttype(0);
 if (evttype == TDX_CREATETONE)
 printf("TDX_CREATETONE Event received \n");
 elseif (evttype == TDX_CREATETONE_FAIL)
 printf("TDX_CREATETONE_FAIL event received \n");
 else
 printf(" Unknown event received 0x%x \n", evttype);
 break;
 }
}

See Also

• dx_deletetone()

• dx_querytone()

188 Voice API Library Reference — June 2005

dx_deletetone() — delete a specific call progress tone

dx_deletetone()

delete a specific call progress tone

Description

The dx_deletetone() function deletes the specified call progress tone.

Before creating a new tone definition with dx_createtone(), first use dx_querytone() to get tone
information for the tone ID, then use dx_deletetone() to delete that same tone ID. Only tones
listed in the toneid parameter description are supported for this function. For more information on
modifying call progress analysis tone definitions, see the Voice API Programming Guide.

When running in asynchronous mode, the function returns 0 to indicate that it initiated successfully
and generates the TDX_DELETETONE event to indicate completion or the
TDX_DELETETONE_FAIL event to indicate failure.

By default, this function runs in synchronous mode and returns 0 to indicate completion.

Name: int dx_deletetone(brdhdl, toneid, mode)

Inputs: int brdhdl • a valid physical board device handle

int toneid • tone ID of the call progress tone

unsigned short mode • mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Progress Analysis

Mode: asynchronous or synchronous

Platform: DM3

Parameter Description

brdhdl specifies a valid physical board device handle (not a virtual board device)
of the format brdBn obtained by a call to dx_open().

To get the physical board name, use the SRLGetPhysicalBoardName()
function. This function and other device mapper functions return
information about the structure of the system. For more information, see
the Standard Runtime Library API Library Reference.

Voice API Library Reference — June 2005 189

delete a specific call progress tone — dx_deletetone()

Cautions

• Only the default call progress tones as listed in the toneid parameter description are supported
for this function. The following tone IDs are not supported by this function: TID_SIT_ANY,
TID_SIT_NO_CIRCUIT_INTERLATA, TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

• When dx_deletetone() is issued on a physical board device in asynchronous mode, and the
function is immediately followed by another similar call prior to completion of the previous
call on the same device, the subsequent call will fail with device busy.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
invalid parameter

EDX_SYSTEM
error from operating system

toneid specifies the tone ID of the call progress tone. Valid values are:

• TID_BUSY1

• TID_BUSY2

• TID_DIAL_INTL

• TID_DIAL_LCL

• TID_DISCONNECT

• TID_FAX1

• TID_FAX2

• TID_RNGBK1

• TID_RNGBK2

• TID_SIT_NC

• TID_SIT_IC

• TID_SIT_VC

• TID_SIT_RO

Note: The following tone IDs are not supported by this function:
TID_SIT_ANY, TID_SIT_NO_CIRCUIT_INTERLATA,
TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

mode specifies the mode in which the function will run. Valid values are:
• EV_ASYNC – asynchronous mode
• EV_SYNC – synchronous mode (default)

Parameter Description

190 Voice API Library Reference — June 2005

dx_deletetone() — delete a specific call progress tone

EDX_TONEID
bad tone template ID

Example

#include "srllib.h"
#include "dxxxlib.h"

main()
{
 int brdhdl; /* board handle */
 .
 .
 .
 /* Open board */
 if ((brdhdl = dx_open("brdB1",0)) == -1)
 {
 printf("Cannot open board\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Delete the current TID_BUSY1 call progress tone*/
 int result;
 if ((result = dx_deletetone(brdhdl, TID_BUSY1, &tonedata, EV_SYNC)) == -1)
 {
 printf("Cannot delete the TID_BUSY1 tone \n");
 /* Perform system error processing */
 exit(1);
 }
}

See Also

• dx_createtone()

• dx_querytone()

Voice API Library Reference — June 2005 191

delete all user-defined tones — dx_deltones()

dx_deltones()

delete all user-defined tones

Description

The dx_deltones() function deletes all user-defined tones previously added to a channel with
dx_addtone(). If no user-defined tones were previously enabled for this channel, this function has
no effect.

Note: Calling this function deletes ALL user-defined tones set by dx_blddt(), dx_bldst(),
dx_bldstcad(), or dx_blddtcad().

Cautions

When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

Name: int dx_deltones(chdev)

Inputs: int chdev • valid channel device handle

Returns: 0 if successful
-1 if error

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

192 Voice API Library Reference — June 2005

dx_deltones() — delete all user-defined tones

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Delete all Tone Templates
 */
 if (dx_deltones(dxxxdev) == -1) {
 printf("Unable to Delete all the Tone Templates\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

Adding and Enabling User-defined Tones:

• dx_addtone()

• dx_enbtone()

Building Tones:

• dx_blddt()

• dx_bldst()

• dx_bldstcad()

• dx_blddtcad()

Voice API Library Reference — June 2005 193

dial an ASCIIZ string — dx_dial()

dx_dial()

dial an ASCIIZ string

Description

The dx_dial() function dials an ASCIIZ string on an open, idle channel and optionally enables call
progress analysis to provide information about the call. For detailed information on call progress
analysis, see the Voice API Programming Guide. For DM3 boards, see also the Global Call API
Programming Guide for information on call progress analysis.

To determine the state of the channel during a dial and/or call progress analysis, use
ATDX_STATE().

Notes: 1. dx_dial() doesn’t affect the hook state.

2. dx_dial() doesn’t wait for dial tone before dialing.

Name: int dx_dial(chdev, dialstrp, capp, mode)

Inputs: int chdev • valid channel device handle

char *dialstrp • pointer to the ASCIIZ dial string

DX_CAP *capp • pointer to call progress analysis parameter structure

unsigned short mode • asynchronous/synchronous setting and call progress analysis flag

Returns: 0 to indicate successful initiation (asynchronous)
≥0 to indicate call progress analysis result if successful (synchronous)
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

dialstrp points to the ASCII dial string. dialstrp must contain a null-terminated
string of ASCII characters. For a list of valid dialing and control
characters, see Table 2 and Table 3.

194 Voice API Library Reference — June 2005

dx_dial() — dial an ASCIIZ string

Asynchronous Operation

For asynchronous operation, set the mode field to EV_ASYNC, using a bitwise OR. The function
returns 0 to indicate it has initiated successfully, and generates one of the following termination
events to indicate completion:

TDX_CALLP
termination of dialing (with call progress analysis)

TDX_DIAL
termination of dialing (without call progress analysis)

Use SRL Event Management functions to handle the termination event.

If asynchronous dx_dial() terminates with a TDX_DIAL event, use ATDX_TERMMSK() to
determine the reason for termination. If dx_dial() terminates with a TDX_CALLP event, use
ATDX_CPTERM() to determine the reason for termination.

Synchronous Operation

By default, this function runs synchronously, and returns a 0 to indicate that it has completed
successfully.

When synchronous dialing terminates, the function returns the call progress result (if call progress
analysis is enabled) or 0 to indicate success (if call progress analysis isn’t enabled).

capp points to the call progress analysis parameter structure, DX_CAP.

To use the default call progress analysis parameters, specify NULL in
capp and DX_CALLP in mode.

mode specifies whether the ASCIIZ string will be dialed with or without call
progress analysis enabled, and whether the function will run
asynchronously or synchronously. This parameter is a bit mask that can be
set to a combination of the following values:
• DX_CALLP – enables call progress analysis
• DX_CNGTONE – generates fax CNG tone after dialing to indicate to

the remote side that a fax call is coming. Some fax machines expect a
CNG tone before receiving a fax call. Use with DX_CALLP.

• EV_ASYNC – runs dx_dial() asynchronously
• EV_SYNC – runs dx_dial() synchronously (default)

On Springware boards, to enable call progress analysis (PerfectCall), you
must call dx_initcallp() prior to calling dx_dial(). Otherwise, dx_dial()
uses basic call progress analysis.

If dx_dial() with call progress analysis is performed on a channel that is
onhook, the function will only dial digits. Call progress analysis will not
occur.

On DM3 boards, call progress analysis (PerfectCall) is enabled directly
through dx_dial(). The dx_initcallp() function is not supported.

Parameter Description

Voice API Library Reference — June 2005 195

dial an ASCIIZ string — dx_dial()

Valid Dial String Characters

On DM3 boards, the following is a list of valid dialing and control characters.

When using dx_dial() on DM3 boards, be aware of the following considerations:

• Dial string characters are case-sensitive.

• The default dialing mode is “T” (DTMF tone dialing).

• When you change the dialing mode by specifying the M or T control characters, the dialing
mode remains in effect for that dx_dial() invocation only. The dialing mode is reset to the
default of T (DTMF) for the next invocation, unless you specify otherwise.

• The dx_dial() function does not support dial tone detection.

• Dialing parameter default values can be set or retrieved using dx_getparm() and
dx_setparm(); see board and channel parameter defines in these function descriptions.

• Invalid characters that are part of a dial string are ignored and an error will not be generated.
For instance, a dial string of “(123) 456-7890” is equivalent to “1234567890”.

On Springware boards, the following is a list of valid dialing and control characters.

Table 2. Valid Dial String Characters (DM3)

Characters Description
Valid in Dial Mode

DTMF MF

On Keypad

0 1 2 3 4 5 6 7 8 9 digits Yes Yes

* asterisk or star Yes Yes (KP)

pound, hash, number, or octothorpe Yes Yes (ST)

Not on Keypad

a Yes Yes
(ST1) (Windows)
(PST) (Linux)

b Yes Yes (ST2)

c Yes Yes (ST3)

d Yes

Special Control

, pause for 2.5 seconds (comma) Yes Yes

T Dial Mode: Tone (DTMF) (default) Yes Yes

M Dial Mode: MF Yes Yes

Table 3. Valid Dial String Characters (Springware)

Characters Description
Valid in Dial Mode

DTMF MF Pulse

On Keypad

0 1 2 3 4 5 6 7 8 9 digits Yes Yes Yes

196 Voice API Library Reference — June 2005

dx_dial() — dial an ASCIIZ string

When using dx_dial() on Springware boards, be aware of the following considerations:

• Dial string characters are case-sensitive.

• The default dialing mode is “T” (DTMF tone dialing).

• When you change the dialing mode by specifying the P, M, or T control characters, it becomes
the new default and that dialing mode remains in effect for all dialing until a new dialing mode
is specified or the system is restarted. For this reason, we recommend that you always put
“T”in the dialing string for DTMF tone dialing after using the P (pulse) or M (MF) dial modes.
The dx_close() and dx_open() do not reset the default dialing mode to DTMF tone dialing.

• Intel® TDM bus boards do not support pulse digit dialing using dx_dial().

• The L, I, and X control characters function only when dialing with PerfectCall call progress
analysis.

• MF dialing is only available on systems with MF capability.

• The pause character “,” and the flash character “&” are not available in MF dialing mode. To
send these characters with a string of MF digits, switch to DTMF or pulse mode before
sending “,” or “&”, and then switch back to MF mode by sending an “M”. For example:
 M*1234T,M5678a

• Dialing parameter default values can be set or retrieved using dx_getparm() and
dx_setparm(); see the board and channel parameter defines in these function descriptions.

* asterisk or star Yes Yes (KP)

pound, hash, number, or octothorpe Yes Yes (ST)

Not on Keypad

a Yes Yes
(ST1)
(Windows
(PST)
(Linux)

b Yes Yes (ST2)

c Yes Yes (ST3)

d Yes

Special Control

, pause (comma) Yes Yes

& flash (ampersand) Yes Yes

T Dial Mode: Tone (DTMF) (default) Yes Yes Yes

P Dial Mode: Pulse Yes Yes Yes

M Dial Mode: MF Yes Yes Yes

L call progress analysis: local dial tone Yes Yes Yes

I call progress analysis: international dial tone Yes Yes Yes

X call progress analysis: special dial tone Yes Yes Yes

Table 3. Valid Dial String Characters (Springware) (Continued)

Characters Description
Valid in Dial Mode

DTMF MF Pulse

Voice API Library Reference — June 2005 197

dial an ASCIIZ string — dx_dial()

• Invalid characters that are part of a dial string are ignored and an error will not be generated.
For instance, a dial string of “(123) 456-7890” is equivalent to “1234567890”.

Cautions

• If you attempt to dial a channel in MF mode and do not have MF capabilities on that channel,
DTMF tone dialing is used.

• Issuing a dx_stopch() on a channel that is dialing with call progress analysis disabled has no
effect on the dial, and will return 0. The digits specified in the dialstrp parameter will still be
dialed.

• Issuing a dx_stopch() on a channel that is dialing with call progress analysis enabled will
cause the dialing to complete, but call progress analysis will not be executed. The digits
specified in the dialstrp parameter will be dialed. Any call progress analysis information
collected prior to the stop will be returned by extended attribute functions.

• Issue this function when the channel is idle.

• Clear the DX_CAP structure using dx_clrcap() before the structure is used as an argument in
a dx_dial() function call. This will prevent parameters from being set unintentionally.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BUSY
Channel is busy

EDX_SYSTEM
Error from operating system

Example

This example demonstrates how to use dx_dial() and call progress analysis (synchronous mode)
on Springware boards. On DM3 boards, dx_dial() supports call progress analysis directly; you do
not use dx_initcallp() to initialize call progress analysis.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;
 chnam = "dxxxB1C1";
 dialstrg = "L1234";

198 Voice API Library Reference — June 2005

dx_dial() — dial an ASCIIZ string

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

 /*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

 /*
 * Change call progress analysis default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change call progress analysis default busy cadence
 */
 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }
 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

 /*
 * Now enable call progress analysis with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;
 case CR_BUSY:
 printf(" %s engaged\n", dialstrg);
 break;
 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;
 default:
 break;
 }

Voice API Library Reference — June 2005 199

dial an ASCIIZ string — dx_dial()

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

See Also

• dx_dialtpt()

• dx_stopch()

• event management functions in the Standard Runtime Library API Library Reference

• ATDX_CPTERM() (to retrieve termination reason and events for dx_dial() with call
progress analysis)

• ATDX_TERMMSK() (to retrieve termination reason for dx_dial() without call progress
analysis)

• DX_CAP data structure

• call progress analysis topic in the Voice API Programming Guide

• ATDX_ANSRSIZ()

• ATDX_CONNTYPE()

• ATDX_CPERROR()

• ATDX_FRQDUR()

• ATDX_FRQDUR2()

• ATDX_FRQDUR3()

• ATDX_FRQHZ()

• ATDX_FRQHZ2()

• ATDX_FRQHZ3()

• ATDX_FRQOUT()

• ATDX_LONGLOW()

• ATDX_SHORTLOW()

• ATDX_SIZEHI()

200 Voice API Library Reference — June 2005

dx_dialtpt() — dial an outbound call using a TPT

dx_dialtpt()

dial an outbound call using a TPT

Description

Supported on Linux only. The dx_dialtpt() function allows an application to dial an outbound call
using a DV_TPT (Termination Parameter Table). This function works the same way as dx_dial()
but with the enhancement that the tptp parameter allows termination conditions for call progress
analysis to be provided. Once dialing is completed and call progress analysis is in progress, call
progress analysis can be terminated if one of the conditions in DV_TPT is satisfied.

After dx_dialtpt() terminates, if the return value from ATDX_CPTERM() is CR_STOPPED, use
the ATDX_TERMMSK() function to determine the reason for the termination.

Name: int dx_dialtpt(chdev, dialstrp, tptp, capp, mode)

Inputs: int chdev • valid channel device handle

char *dialstrp • pointer to the ASCIIZ dial string

DV_TPT *tptp • pointer to the Termination Parameter Table structure

DX_CAP *capp • pointer to Call Progress Analysis Parameter structure

unsigned short mode • asynchronous/synchronous setting and Call Progress Analysis flag

Returns: 0 to indicate successful initiation (Asynchronous)
≥0 to indicate Call Progress Analysis result if successful (Synchronous)
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: Springware Linux

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

dialstrp points to the ASCII dial string. dialstrp must contain a null-terminated
string of ASCII characters. For a list of valid dialing and control
characters, see Table 2, “Valid Dial String Characters (DM3)”, on
page 195 and Table 3, “Valid Dial String Characters (Springware)”, on
page 195.

tpt points to the Termination Parameter Table structure, DV_TPT, that
specifies the termination conditions for the device handle.

Voice API Library Reference — June 2005 201

dial an outbound call using a TPT — dx_dialtpt()

Cautions

• This function will fail if an invalid channel device handle is specified.

• Dialing cannot be terminated using the DV_TPT structure; only call progress analysis can be
terminated.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

This example demonstrates basic call progress analysis with default DX_CAP parameters
(synchronous mode).

#include "srllib.h"
#include "dxxxlib.h"

int chdev; /* Channel device handle */
DV_TPT tpt; /* Termination Parameter Table Structure */
long term; /* Reason for termination */

/* Open board 1 channel 1 device */
if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 printf("Cannot open channel dxxxB1C1. errno = %d", errno);
 exit(1);
}

capp points to the call progress analysis parameter structure, DX_CAP.

To use the default call progress analysis parameters, specify NULL in
capp and DX_CALLP in mode.

mode specifies whether the ASCIIZ string will be dialed with or without call
progress analysis enabled, and whether the function will run
asynchronously or synchronously. This parameter is a bit mask that can be
set to a combination of the following values:
• DX_CALLP – enable Call Progress Analysis.
• EV_ASYNC – run dx_dialtpt() asynchronously.
• EV_SYNC – run dx_dialtpt() synchronously. (default)

To run dx_dialtpt() without call progress analysis, specify only
EV_ASYNC or EV_SYNC.

On Springware boards, to use call progress analysis (PerfectCall), you
must call dx_initcallp() prior to calling dx_dialtpt(). Otherwise,
dx_dialtpt() uses basic call progress analysis.

If dx_dialtpt() with call progress analysis is performed on a channel that
is on-hook, the function will only dial digits. Call progress analysis will
not occur.

Parameter Description

202 Voice API Library Reference — June 2005

dx_dialtpt() — dial an outbound call using a TPT

/* Set up DV_TPT */
dx_clrtpt(&tpt, 1);
tpt.tp_type = IO_EOT;
tpt.tp_termno = DX_MAXTIME;
tpt.tp_length = 100;
tpt.tp_flags = TF_MAXTIME;

/* Take the phone off-hook */
if (dx_sethook(chdev, DX_OFFHOOK, EV_SYNC) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
}

/* Perform outbound dial with TPT and default Call Progress Analysis Parameters */
if (dx_dialtpt(chdev, "5551212", &tpt, (DX_CAP *)NULL, DX_CALLP|EV_SYNC) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
}

if (ATDX_CPTERM(chdev) == CR_STOPPED) {
 if ((term = ATDX_TERMMSK(chdev)) != AT_FAILURE) {
 if (term == TM_MAXTIME) {
 printf("Call Progress Analysis terminated after max time.\n");
 } else {
 printf("Unknown termination reason %x\n", term);
 }
 } else {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }
}

See Also

• dx_dial()

Voice API Library Reference — June 2005 203

disable detection of a user-defined tone — dx_distone()

dx_distone()

disable detection of a user-defined tone

Description

The dx_distone() function disables detection of a user-defined tone on a channel, as well as the
tone-on and tone-off events for that tone. Detection capability for user-defined tones is enabled on
a channel by default when dx_addtone() is called.

Cautions

When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Name: int dx_distone(chdev, toneid, evt_mask)

Inputs: int chdev • valid channel device handle

int toneid • tone template identification

int evt_mask • event mask

Returns: 0 if success
-1 if error

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

toneid specifies the user-defined tone identifier for which detection is being disabled

To disable detection of all user-defined tones on the channel, set toneid to
TONEALL.

evt_mask specifies whether to disable detection of the user-defined tone going on or
going off. Set to one or both of the following using a bitwise-OR (|) operator.
• DM_TONEON – disable TONE ON detection
• DM_TONEOFF – disable TONE OFF detection

evt_mask affects the enabled/disabled status of the tone template and remains
in effect until dx_distone() or dx_enbtone() is called again to reset it.

204 Voice API Library Reference — June 2005

dx_distone() — disable detection of a user-defined tone

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

EDX_TNMSGSTATUS
Invalid message status setting

EDX_TONEID
Bad tone ID

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_1 101

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

Voice API Library Reference — June 2005 205

disable detection of a user-defined tone — dx_distone()

 /*
 * Disable Detection of ToneId TID_1
 */
 if (dx_distone(dxxxdev, TID_1, DM_TONEON | DM_TONEOFF) == -1) {
 printf("Unable to Disable Detection of Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_addtone()

• dx_blddt(), dx_bldst(), dx_blddtcad(), dx_bldstcad()

• dx_enbtone()

• global tone detection topic in the Voice API Programming Guide

• dx_getevt()

• DX_CST data structure

• sr_getevtdatap() in the Standard Runtime Library API Library Reference

206 Voice API Library Reference — June 2005

dx_enbtone() — enable detection of a user-defined tone

dx_enbtone()

enable detection of a user-defined tone

Description

The dx_enbtone() function enables detection of a user-defined tone on a channel, including the
tone-on and tone-off events for that tone. Detection capability for tones is enabled on a channel by
default when dx_addtone() is called.

See the dx_addtone() function description for information about retrieving call status transition
(CST) tone-on and tone-off events.

Use dx_enbtone() to enable a tone that was previously disabled using dx_distone().

Name: int dx_enbtone(chdev, toneid, evt_mask)

Inputs: int chdev • valid channel device handle

int toneid • tone template identification

int evt_mask • event mask

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

toneid specifies the user-defined tone identifier for which detection is being enabled

To enable detection of all user-defined tones on the channel, set toneid to
TONEALL.

evt_mask specifies whether to enable detection of the user-defined tone going on or
going off. Set to one or both of the following using a bitwise-OR (|) operator.
• DM_TONEON – disable TONE ON detection
• DM_TONEOFF – disable TONE OFF detection

evt_mask affects the enabled/disabled status of the tone template and will
remain in effect until dx_enbtone() or dx_distone() is called again to reset it.

Voice API Library Reference — June 2005 207

enable detection of a user-defined tone — dx_enbtone()

Cautions

When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

EDX_TONEID
Bad tone ID

EDX_TNMSGSTATUS
Invalid message status setting

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_1 101

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_1);

208 Voice API Library Reference — June 2005

dx_enbtone() — enable detection of a user-defined tone

 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Enable Detection of ToneId TID_1
 */
 if (dx_enbtone(dxxxdev, TID_1, DM_TONEON | DM_TONEOFF) == -1) {
 printf("Unable to Enable Detection of Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_addtone()

• dx_blddt(), dx_bldst(), dx_blddtcad(), dx_bldstcad()

• dx_distone()

• global tone detection in Voice API Programming Guide

• dx_getevt()

• DX_CST data structure

• sr_getevtdatap() in Standard Runtime Library API Library Reference

Voice API Library Reference — June 2005 209

close a file — dx_fileclose()

dx_fileclose()

close a file

Description

Supported on Windows only. The dx_fileclose() function closes a file associated with the device
handle returned by the dx_fileopen() function. See the _close function in the Microsoft Visual
C++ Run-Time Library Reference for more information.

Use dx_fileclose() instead of _close to ensure the compatibility of applications with the libraries
across various versions of Visual C++.

Cautions

None.

Errors

If this function returns -1 to indicate failure, a system error has occurred.

Example

/*
 * Play a voice file. Terminate on receiving 4 digits or at end of file
 */

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev;
 DX_IOTT iott;
 DV_TPT tpt;
 DV_DIGIT dig;
 .
 .

Name: int dx_fileclose(handle)

Inputs: int handle • handle returned from dx_fileopen()

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: File Manipulation

Mode: synchronous

Platform: DM3 Windows, Springware Windows

210 Voice API Library Reference — June 2005

dx_fileclose() — close a file

 /* Open the device using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play till end of file */
 if((iott.io_handle = dx_fileopen("prompt.vox",
 O_RDONLY|O_BINARY)) == -1) {
 /* process error */
 }

 /* set up DV_TPT */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 4; /* terminate on four digits */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */

 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }

 /* Now play the file */
 if (dx_play(chdev,&iott,&tpt,EV_SYNC) == -1) {
 /* process error */
 }

 /* get digit using dx_getdig() and continue processing. */
 .
 .
 if (dx_fileclose(iott.io_handle) == -1) {
 /* process error */
 }
}

See Also

• dx_fileopen()

• dx_fileseek()

• dx_fileread()

• dx_filewrite()

Voice API Library Reference — June 2005 211

return the system error value — dx_fileerrno()

dx_fileerrno()

return the system error value

Description

Supported on Windows only. The dx_fileerrno() function returns the global system error value
from the operating system.

Call dx_fileerrno() to obtain the correct system error value, which provides the reason for the
error. For example, if dx_fileopen() fails, the error supplied by the operating system can only be
obtained by calling dx_fileerrno().

Note: Unpredictable results can occur if you use the global variable errno directly to obtain the system
error value. Earlier versions of Visual C++ use different Visual C++ runtime library names. The
application and Intel® Dialogic® libraries may then be using separate C++ runtime libraries with
separate errno values for each.

See the Microsoft Visual C++ Run-Time Library Reference or MSDN documentation for more
information on system error values and their meanings. All error values, which are defined as
manifest constants in errno.h, are UNIX-compatible. The values valid for 32-bit Windows
applications are a subset of these UNIX values.

Table 4 lists the system error values that may be returned by dx_fileerrno().

Name: int dx_fileerrno(void)

Inputs: none

Returns: system error value

Includes: srllib.h
dxxxlib.h

Category: File Manipulation

Mode: synchronous

Platform: DM3 Windows, Springware Windows

Table 4. System Error Values

Value Description

E2BIG Argument list too long.

EACCES Permission denied; indicates a locking or sharing violation. The file’s permission setting or
sharing mode does not allow the specified access. This error signifies that an attempt was
made to access a file (or, in some cases, a directory) in a way that is incompatible with the
file’s attributes. For example, the error can occur when an attempt is made to read from a
file that is not open, to open an existing read-only file for writing, or to open a directory
instead of a file. The error can also occur in an attempt to rename a file or directory or to
remove an existing directory.

212 Voice API Library Reference — June 2005

dx_fileerrno() — return the system error value

Cautions

None.

Errors

None.

Example

rc=dx_fileopen(FileName, O_RDONLY);
if (rc == -1) {
 printf('Error opening %s, system error: %d\n", FileName, dx_fileerrno());
}

EAGAIN No more processes. An attempt to create a new process failed because there are no more
process slots, or there is not enough memory, or the maximum nesting level has been
reached.

EBADF Bad file number; invalid file descriptor (file is not opened for writing). Possible causes: 1)
The specified file handle is not a valid file-handle value or does not refer to an open file. 2)
An attempt was made to write to a file or device opened for read-only access or a locked
file.

EDOM Math argument.

EEXIST Files exist. An attempt has been made to create a file that already exists. For example, the
_O_CREAT and _O_EXCL flags are specified in an _open call, but the named file already
exists.

EINTR A signal was caught.

EINVAL Invalid argument. An invalid value was given for one of the arguments to a function. For
example, the value given for the origin or the position specified by offset when positioning a
file pointer (by means of a call to fseek) is before the beginning of the file. Other possibilities
are as follows: The dev/evt/handler triplet was not registered or has already been
registered. Invalid timeout value. Invalid flags or pmode argument.

EIO Error during a Windows open.

EMFILE Too many open files. No more file handles are available, so no more files can be opened.

ENOENT No such file or directory; invalid device name; file or path not found. The specified file or
directory does not exist or cannot be found. This message can occur whenever a specified
file does not exist or a component of a path does not specify an existing directory.

ENOMEM Not enough memory. Not enough memory is available for the attempted operation. The
library has run out of space when allocating memory for internal data structures.

ENOSPC Not enough space left on the device for the operation. No more space for writing is available
on the device (for example, when the disk is full).

ERANGE Result too large. An argument to a math function is too large, resulting in partial or total loss
of significance in the result. This error can also occur in other functions when an argument
is larger than expected.

ESR_TMOUT Timed out waiting for event.

EXDEV Cross-device link. An attempt was made to move a file to a different device (using the
rename function).

Table 4. System Error Values

Value Description

Voice API Library Reference — June 2005 213

return the system error value — dx_fileerrno()

See Also

None.

214 Voice API Library Reference — June 2005

dx_fileopen() — open a file

dx_fileopen()

open a file

Description

Supported on Windows only. The dx_fileopen() function opens a file specified by filep, and
prepares the file for reading and writing, as specified by flags. See the _open function in the
Microsoft Visual C++ Run-Time Library Reference for more information.

Use dx_fileopen() instead of _open to ensure the compatibility of applications with the libraries
across various versions of Visual C++.

Cautions

When using dx_reciottdata() to record WAVE files, you cannot use the O_APPEND mode with
dx_fileopen(), because for each record, a WAVE file header will be created.

Errors

If this function returns -1 to indicate failure, a system error has occurred.

Example

/* Play a voice file. Terminate on receiving 4 digits or at end of file*/
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

Name: int dx_fileopen(filep, flags, pmode)

Inputs: const char *filep • filename

int flags • type of operations allowed

int pmode • permission mode

Returns: file handle if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: File Manipulation

Mode: synchronous

Platform: DM3 Windows, Springware Windows

Voice API Library Reference — June 2005 215

open a file — dx_fileopen()

main()
{
 int chdev;
 DX_IOTT iott;
 DV_TPT tpt;
 DV_DIGIT dig;
 .
 .

 /* Open the device using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play till end of file */
 if((iott.io_handle = dx_fileopen("prompt.vox", O_RDONLY|O_BINARY)) == -1) {
 /* process error */
 }

 /* set up DV_TPT */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 4; /* terminate on four digits */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */

 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }

 /* Now play the file */
 if (dx_play(chdev,&iott,&tpt,EV_SYNC) == -1) {
 /* process error */
 }

 /* get digit using dx_getdig() and continue processing. */
 .
 .
 if (dx_fileclose(iott.io_handle) == -1) {
 /* process error */
 }
}

See Also

• dx_fileclose()

• dx_fileseek()

• dx_fileread()

• dx_filewrite()

216 Voice API Library Reference — June 2005

dx_fileread() — read data from a file

dx_fileread()

read data from a file

Description

Supported on Windows only. The dx_fileread() function reads data from a file associated with the
file handle. The function will read the number of bytes from the file associated with the handle into
the buffer. The number of bytes read may be less than the value of count if there are fewer than
count bytes left in the file or if the file was opened in text mode. See the _read function in the
Microsoft Visual C++ Run-Time Library Reference for more information.

Use dx_fileread() instead of _read to ensure the compatibility of applications with the libraries
across various versions of Visual C++.

Cautions

None.

Errors

If this function returns -1 to indicate failure, a system error has occurred.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()

{

int cd; /* channel device descriptor */
DX_UIO myio; /* user definable I/O structure */

Name: int dx_fileread(handle, buffer, count)

Inputs: int handle • handle returned from dx_fileopen()

void *buffer • storage location for data

unsigned int count • maximum number of bytes

Returns: number of bytes if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: File Manipulation

Mode: synchronous

Platform: DM3 Windows, Springware Windows

Voice API Library Reference — June 2005 217

read data from a file — dx_fileread()

/*
 * User defined I/O functions
 */
int my_read(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;

{
 printf("My read\n");
 return(dx_fileread(fd,ptr,cnt));
}

/*
 * my write function
 */
int my_write(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
printf("My write \n");
 return(dx_filewrite(fd,ptr,cnt));
}

/*
 * my seek function
 */
long my_seek(fd,offset,whence)
int fd;
long offset;
int whence;
{
 printf("My seek\n");
 return(dx_fileseek(fd,offset,whence));
}
void main(argc,argv)
int argc;
char *argv[];
{
 .
 . /* Other initialization */
 .
 DX_UIO uioblk;

/* Initialize the UIO structure */
uioblk.u_read=my_read;
uioblk.u_write=my_write;
uioblk.u_seek=my_seek;

/* Install my I/O routines */
dx_setuio(uioblk);
vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR|O_BINARY);

/*This block uses standard I/O functions */
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 0;
iott->io_length = 20000;

/*This block uses my I/O functions */
iottp++;
iottp->io_type = IO_DEV|IO_UIO|IO_CONT
iottp->io_fhandle = vodat_fd;
iott->io_offset = 20001;
iott->io_length = 20000;

218 Voice API Library Reference — June 2005

dx_fileread() — read data from a file

/*This block uses standard I/O functions */
iottp++
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 20002;
iott->io_length = 20000;

/*This block uses my I/O functions */
iott->io_type = IO_DEV|IO_UIO|IO_EOT
iott->io_fhandle = vodat_fd;
iott->io_offset = 10003;
iott->io_length = 20000;
devhandle = dx_open("dxxxB1C1", 0);
dx_sethook(devhandle, DX-ONHOOK,EV_SYNC)
dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
dx_clrdigbuf;
 if(dx_rec(devhandle,iott,(DX_TPT*)NULL,RM_TONE|EV_SYNC) == -1) {
 perror("");
 exit(1);
 }
dx_clrdigbuf(devhandle);
 if(dx_play(devhandle,iott,(DX_TPT*)EV_SYNC) == -1 {
 perror("");
 exit(1);
 }
dx_close(devhandle);

}

See Also

• dx_fileopen()

• dx_fileclose()

• dx_fileseek()

• dx_filewrite()

Voice API Library Reference — June 2005 219

move a file pointer — dx_fileseek()

dx_fileseek()

move a file pointer

Description

Supported on Windows only. The dx_fileseek() function moves a file pointer associated with the
file handle to a new location that is offset bytes from origin. The function returns the offset, in
bytes, of the new position from the beginning of the file. See the _lseek function in the Microsoft
Visual C++ Run-Time Library Reference for more information.

Use dx_fileseek() instead of _lseek to ensure the compatibility of applications with the libraries
across various versions of Visual C++.

Cautions

Do not use dx_fileseek() against files that utilize encoding formats with headers (such as GSM).
The dx_fileseek() function is not designed to make adjustments for the various header sizes that
some encoding formats use.

Errors

If this function returns -1 to indicate failure, a system error has occurred.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{

int cd; /* channel device descriptor */
DX_UIO myio; /* user definable I/O structure */

Name: long dx_fileseek(handle, offset, origin)

Inputs: int handle • handle returned from dx_fileopen()

long offset • number of bytes from the origin

int origin • initial position

Returns: number of bytes read if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: File Manipulation

Mode: synchronous

Platform: DM3 Windows, Springware Windows

220 Voice API Library Reference — June 2005

dx_fileseek() — move a file pointer

/*
 * User defined I/O functions
 */
int my_read(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
 printf("My read\n");
 return(dx_fileread(fd,ptr,cnt));
}

/*
 * my write function
 */
int my_write(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
printf("My write \n");
 return(dx_filewrite(fd,ptr,cnt));
}

/*
 * my seek function
 */
long my_seek(fd,offset,whence)
int fd;
long offset;
int whence;
{
 printf("My seek\n");
 return(dx_fileseek(fd,offset,whence));
}
void main(argc,argv)
int argc;
char *argv[];
{
 .
 . /* Other initialization */
 .
 DX_UIO uioblk;

/* Initialize the UIO structure */
uioblk.u_read=my_read;
uioblk.u_write=my_write;
uioblk.u_seek=my_seek;

/* Install my I/O routines */
dx_setuio(uioblk);
vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR|O_BINARY);

/*This block uses standard I/O functions */
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 0;
iott->io_length = 20000;

/*This block uses my I/O functions */
iottp++;
iottp->io_type = IO_DEV|IO_UIO|IO_CONT
iottp->io_fhandle = vodat_fd;
iott->io_offset = 20001;
iott->io_length = 20000;

Voice API Library Reference — June 2005 221

move a file pointer — dx_fileseek()

/*This block uses standard I/O functions */
iottp++
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 20002;
iott->io_length = 20000;

/*This block uses my I/O functions */
iott->io_type = IO_DEV|IO_UIO|IO_EOT
iott->io_fhandle = vodat_fd;
iott->io_offset = 10003;
iott->io_length = 20000;
devhandle = dx_open("dxxxB1C1", NULL);
dx_sethook(devhandle, DX-ONHOOK,EV_SYNC)
dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
dx_clrdigbuf;
 if(dx_rec(devhandle,iott,(DX_TPT*)NULL,RM_TONE|EV_SYNC) == -1) {
 perror("");
 exit(1);
 }
dx_clrdigbuf(devhandle);
 if(dx_play(devhandle,iott,(DX_TPT*)EV_SYNC) == -1 {
 perror("");
 exit(1);
 }
dx_close(devhandle);

}

See Also

• dx_fileopen()

• dx_fileclose()

• dx_fileread()

• dx_filewrite()

222 Voice API Library Reference — June 2005

dx_filewrite() — write data from a buffer into a file

dx_filewrite()

write data from a buffer into a file

Description

Supported on Windows only. The dx_filewrite() function writes data from a buffer into a file
associated with file handle. The write operation begins at the current position of the file pointer (if
any) associated with the given file. If the file was opened for appending, the operation begins at the
current end of the file. After the write operation, the file pointer is increased by the number of bytes
actually written. See the _write function in the Microsoft Visual C++ Run-Time Library Reference
for more information.

Use dx_filewrite() instead of _write to ensure the compatibility of applications with the libraries
across various versions of Visual C++.

Cautions

None.

Errors

If this function returns -1 to indicate failure, a system error has occurred.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
int cd; /* channel device descriptor */
DX_UIO myio; /* user definable I/O structure */

Name: int dx_filewrite(handle, buffer, count)

Inputs: int handle • handle returned from dx_fileopen()

void *buffer • data to be written

unsigned int count • number of bytes

Returns: number of bytes if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: File Manipulation

Mode: synchronous

Platform: DM3 Windows, Springware Windows

Voice API Library Reference — June 2005 223

write data from a buffer into a file — dx_filewrite()

/*
 * User defined I/O functions
 */
int my_read(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
 printf("My read\n");
 return(dx_fileread(fd,ptr,cnt));
}

/*
 * my write function
 */
int my_write(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
printf("My write \n");
 return(dx_filewrite(fd,ptr,cnt));
}

/*
 * my seek function
 */
long my_seek(fd,offset,whence)
int fd;
long offset;
int whence;
{
 printf("My seek\n");
 return(dx_fileseek(fd,offset,whence));
}
void main(argc,argv)
int argc;
char *argv[];
{
 .
 . /* Other initialization */
 .
 DX_UIO uioblk;

/* Initialize the UIO structure */
uioblk.u_read=my_read;
uioblk.u_write=my_write;
uioblk.u_seek=my_seek;
/* Install my I/O routines */
dx_setuio(uioblk);
vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR|O_BINARY);

/*This block uses standard I/O functions */
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 0;
iott->io_length = 20000;

/*This block uses my I/O functions */
iottp++;
iottp->io_type = IO_DEV|IO_UIO|IO_CONT
iottp->io_fhandle = vodat_fd;
iott->io_offset = 20001;
iott->io_length = 20000;

224 Voice API Library Reference — June 2005

dx_filewrite() — write data from a buffer into a file

/*This block uses standard I/O functions */
iottp++
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 20002;
iott->io_length = 20000;

/*This block uses my I/O functions */
iott->io_type = IO_DEV|IO_UIO|IO_EOT
iott->io_fhandle = vodat_fd;
iott->io_offset = 10003;
iott->io_length = 20000;
devhandle = dx_open("dxxxB1C1", NULL);
dx_sethook(devhandle, DX-ONHOOK,EV_SYNC)
dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
dx_clrdigbuf;
 if(dx_rec(devhandle,iott,(DX_TPT*)NULL,RM_TONE|EV_SYNC) == -1) {
 perror("");
 exit(1);
 }
dx_clrdigbuf(devhandle);
 if(dx_play(devhandle,iott,(DX_TPT*)EV_SYNC) == -1 {
 perror("");
 exit(1);
 }
dx_close(devhandle);

}

See Also

• dx_fileopen()

• dx_fileclose()

• dx_fileseek()

• dx_fileread()

Voice API Library Reference — June 2005 225

get size of on-board memory for cached prompts — dx_getcachesize()

dx_getcachesize()

get size of on-board memory for cached prompts

Description

The dx_getcachesize() function returns the size of the on-board memory used to store cached
prompts for a board specified by the board handle.

If the flag specified is DX_CACHETOTAL, the function returns the total size of the memory
available for the board. If the flag specified is DX_CACHEREMAINING, the function returns the
remaining size of the cache that can be used to store additional prompts.

For more information about Cached Prompt Management and extended example code, see the
Voice API Programming Guide.

Cautions

None.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to

Name: int dx_getcachesize(brdhdl, cachesize, flag)

Inputs: int brdhdl • valid physical board device handle

int *cachesize • pointer to current cache size

unsigned short flag • flag for type of cache size

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Cached Prompt Management

Mode: synchronous

Platform: DM3

Parameter Description

brdhdl specifies a valid physical board device handle (of the format brdBn) obtained
by a call to dx_open()

cachesize points to an integer that represents the current cache size in bytes

flag flag that indicates the type of cache size. Valid values are:
• DX_CACHETOTAL – total size of memory available on the board
• DX_CACHEREMAINING – remaining size of cache that can be used to

store additional prompts

226 Voice API Library Reference — June 2005

dx_getcachesize() — get size of on-board memory for cached prompts

obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

#include <stdio.h>
#include "srllib.h"
#include "dxxxlib.h"

main()
{
 int brdhdl; /* board handle */
 int cachetotal; /* Total size of the on-board memory for storing cache prompts */
 int cacheremaining; /* Remaining size of on-board memory */
 .
 .
 .
 /* Open board */
 if ((brdhdl = dx_open("brdB1",0)) == -1) {
 printf("Cannot open board\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Find the total available size of the on-board memory */
 if (dx_getcachesize(brdhdl, &cachetotal, DX_CACHETOTAL) == -1) {
 printf("Error while getting cache size \n");
 /* Perform system error processing */
 exit(1);
 }
 .
 .
 .
 /* Download prompts to the on-board memory */
 .
 .
 .
 /* Check available size remaining for additional downloads */
 if (dx_getcachesize(brdhdl, &cacheremaining, DX_CACHEREMAINING) == -1) {
 printf("Error while getting cache size \n");
 /* Perform system error processing */
 exit(1);
 }

}

See Also

• dx_cacheprompt()

• dx_open()

• dx_playiottdata()

Voice API Library Reference — June 2005 227

get information about a voice device — dx_getctinfo()

dx_getctinfo()

get information about a voice device

Description

The dx_getctinfo() function returns information about a voice channel of a voice device. The
information includes the device family, device mode, type of network interface, bus architecture,
and PCM encoding. The information is returned in the CT_DEVINFO structure.

Cautions

This function will fail if an invalid voice channel handle is specified.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

Name: int dx_getctinfo(chdev, ct_devinfop)

Inputs: int chdev • valid channel device handle

CT_DEVINFO *ct_devinfop • pointer to device information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: TDM Routing

Mode: synchronous

Platform: DM3, Springware, IPT Series

Parameter Description

chdev specifies the valid voice channel handle obtained when the channel was
opened using dx_open()

ct_devinfop specifies a pointer to the CT_DEVINFO structure that will contain the
voice channel device information

228 Voice API Library Reference — June 2005

dx_getctinfo() — get information about a voice device

EDX_SH_BADTYPE
Invalid local time slot channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* Channel device handle */
 CT_DEVINFO ct_devinfo; /* Device information structure */

 /* Open board 1 channel 1 devices */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* process error */
 }

 /* Get Device Information */
 if (dx_getctinfo(chdev, &ct_devinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }

 printf("%s Product Id = 0x%x, Family = %d, Mode = %d, Network = %d, Bus
 ...mode = %d, Encoding = %d", ATDV_NAMEP(chdev), ct_devinfo.ct_prodid,
 ...ct_devinfo.ct_devfamily, ct_devinfo.ct_devmode, ct_devinfo.ct_nettype,
 ...ct_devinfo.ct_busmode, ct_devinfo.ct_busencoding);
}

See Also

• ag_getctinfo()

• dt_getctinfo() in the Digital Network Interface Software Reference

• gc_GetCTInfo() in the Global Call API Library Reference

Voice API Library Reference — June 2005 229

return the specified current speed and volume settings — dx_getcursv()

dx_getcursv()

return the specified current speed and volume settings

Description

The dx_getcursv() function returns the specified current speed and volume settings on a channel.
For example, use dx_getcursv() to determine the speed and volume level set interactively by a
listener using DTMF digits during a play. DTMF digits are set as play adjustment conditions using
the dx_setsvcond() function, or by one of the convenience functions, dx_addspddig() or
dx_addvoldig().

Cautions

On DM3 boards, if you close a device via dx_close() after modifying speed and volume table
values using dx_setsvmt(), the dx_getcursv() function may return incorrect speed and volume
settings for the device. This is because the next dx_open() resets the speed and volume tables to
their default values.

Name: int dx_getcursv(chdev, curvolp, curspeedp)

Inputs: int chdev • valid channel device handle

int * curvolp • pointer to current absolute volume setting

int * curspeedp • pointer to current absolute speed setting

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

curvolp points to an integer that represents the current absolute volume setting for the
channel. This value will be between -30 dB and +10 dB.

curspeedp points to an integer that represents the current absolute speed setting for the
channel. This value will be between -50% and +50%.

230 Voice API Library Reference — June 2005

dx_getcursv() — return the specified current speed and volume settings

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system; use dx_fileerrno() to obtain error value

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

/*
 * Global Variables
 */

main()
{
 int dxxxdev;
 int curspeed, curvolume;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Get the Current Volume and Speed Settings
 */
 if (dx_getcursv(dxxxdev, &curvolume, &curspeed) == -1) {
 printf("Unable to Get the Current Speed and");
 printf(" Volume Settings\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 } else {
 printf("Volume = %d Speed = %d\n", curvolume, curspeed);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

Voice API Library Reference — June 2005 231

return the specified current speed and volume settings — dx_getcursv()

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_adjsv()

• dx_addspddig()

• dx_addvoldig()

• dx_setsvmt()

• dx_getsvmt()

• dx_setsvcond()

• dx_clrsvcond()

• speed and volume modification tables in the Voice API Programming Guide

• DX_SVMT data structure

232 Voice API Library Reference — June 2005

dx_getdig() — collect digits from a channel digit buffer

dx_getdig()

collect digits from a channel digit buffer

Description

The dx_getdig() function initiates the collection of digits from an open channel’s digit buffer.
Upon termination of the function, the collected digits are written in ASCIIZ format into the local
buffer, which is arranged as a DV_DIGIT structure.

The type of digits collected depends on the digit detection mode set by the dx_setdigtyp()
function (for standard voice board digits) or by the dx_addtone() function (for user-defined
digits).

Note: The channel must be idle, or the function will return an EDX_BUSY error.

Name: int dx_getdig(chdev, tptp, digitp, mode)

Inputs: int chdev • valid channel device handle

DV_TPT *tptp • pointer to Termination Parameter Table structure

DV_DIGIT *digitp • pointer to User Digit Buffer structure

unsigned short mode • asynchronous/synchronous setting

Returns: 0 to indicate successful initiation (asynchronous)
number of digits (+1 for terminating null character) if successful (synchronous)
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tptp points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for this function. For a list of possible termination
conditions, see DV_TPT, on page 510.

digitp points to the User Digit Buffer structure, DV_DIGIT, where collected digits
and their types are stored in arrays. For a list of digit types, see DV_DIGIT, on
page 507.

For more information about creating user-defined digits, see dx_addtone().

mode specifies whether to run dx_getdig() asynchronously or synchronously.
Specify one of the following:
• EV_ASYNC – run asynchronously
• EV_SYNC – run synchronously (default)

Voice API Library Reference — June 2005 233

collect digits from a channel digit buffer — dx_getdig()

The channel’s digit buffer contains 31 or more digits, collected on a First-In First-Out (FIFO) basis.
Since the digits remain in the channel’s digit buffer until they are overwritten or cleared using
dx_clrdigbuf(), the digits in the channel’s buffer may have been received prior to this function
call. The DG_MAXDIGS define in dxxxlib.h specifies the maximum number of digits that can be
returned by a single call to dx_getdig().

Notes: 1. The maximum size of the digit buffer varies with the board type and technology. For example,
the D/120JCT-LS stores up to 127 digits in the digit buffer; the DI/0408-LS-A series boards store
up to 64 digits in the digit buffer. Multiple calls to dx_getdig() may be required to retrieve all
digits in the digit buffer. ATDX_BUFDIGS() can be used to see if any digits are left in the digit
buffer after a call to dx_getdig().

2. By default, after the maximum number of digits is received, all subsequent digits will be
discarded. You can use dx_setdigbuf() with mode parameter set to DX_DIGCYCLIC, which
will cause all incoming digits to overwrite the oldest digit in the buffer.

3. Instead of getting digits from the DV_DIGIT structure using dx_getdig(), an alternative method
is to enable the DE_DIGITS call status transition event using dx_setevtmsk() and get them from
the DX_EBLK event queue data (ev_data) using dx_getevt() or from the DX_CST call status
transition data (cst_data) using sr_getevtdatap().

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. In asynchronous
mode, this function returns 0 to indicate success, and generates a TDX_GETDIG termination event
to indicate completion. Use the Standard Runtime Library (SRL) Event Management functions to
handle the termination event. For more information, see the Standard Runtime Library API Library
Reference.

When operating asynchronously, ensure that the digit buffer stays in scope for the duration of the
function.

After dx_getdig() terminates, use the ATDX_TERMMSK() function to determine the reason for
termination.

Synchronous Operation

By default, this function runs synchronously. Termination of synchronous digit collection is
indicated by a return value greater than 0 that represents the number of digits received (+1 for null
character). Use ATDX_TERMMSK() to determine the reason for termination.

If the function is operating synchronously and there are no digits in the buffer, the return value from
this function will be 1, which indicates the null character terminator.

Cautions

• On DM3 boards, Global DPD is not supported (DG_DPD_ASCII is not available).

• Some MF digits use approximately the same frequencies as DTMF digits (see Section 6.1,
“DTMF and MF Tone Specifications”, on page 567). Because there is a frequency overlap, if
you have the incorrect kind of detection enabled, MF digits may be mistaken for DTMF digits,
and vice versa. To ensure that digits are correctly detected, only one kind of detection should
be enabled at any time. To set MF digit detection, use the dx_setdigtyp() function.

234 Voice API Library Reference — June 2005

dx_getdig() — collect digits from a channel digit buffer

• A digit that is set to adjust play speed or play volume (using dx_setsvcond()) will not be
passed to dx_getdig(), and will not be used as a terminating condition. If a digit is defined
both to adjust play and to terminate play, then the play adjustment will take priority.

• The dx_getdig() does not support terminating on a user-defined tone (GTD). Specifying
DX_TONE in the DV_TPT tp_termno field has no effect on dx_getdig() termination and will
be ignored.

• In a TDM bus configuration, when a caller on one voice board is routed in a conversation on an
analog line with a caller on another voice board (analog inbound/outbound configuration) and
either caller sends a DTMF digit, both voice channels will detect the DTMF digit if the
corresponding voice channels are listening. This occurs because the network functionality of
the voice board cannot be separated from the voice functionality in an analog connection
between two callers. In this situation, you are not able to determine which caller sent the
DTMF digit.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADTPT
Invalid DV_TPT entry

EDX_BUSY
Channel busy

EDX_SYSTEM
Error from operating system

Example 1

This example illustrates how to use dx_getdig() in synchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 DV_TPT tpt[3];
 DV_DIGIT digp;
 int chdev, numdigs, cnt;

 /* open the channel with dx_open(). Obtain channel device descriptor
 * in chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* initiate the call */
 .
 .

Voice API Library Reference — June 2005 235

collect digits from a channel digit buffer — dx_getdig()

 /* Set up the DV_TPT and get the digits */
 dx_clrtpt(tpt,3);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum number of digits */
 tpt[0].tp_length = 4; /* terminate on 4 digits */
 tpt[0].tp_flags = TF_MAXDTMF; /* terminate if already in buf. */

 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_LCOFF; /* LC off termination */
 tpt[1].tp_length = 3; /* Use 30 msec (10 msec resolution timer) */
 tpt[1].tp_flags = TF_LCOFF|TF_10MS; /* level triggered, clear history,
 * 10 msec resolution */
 tpt[2].tp_type = IO_EOT;
 tpt[2].tp_termno = DX_MAXTIME; /* Function Time */
 tpt[2].tp_length = 100; /* 10 seconds (100 msec resolution timer) */
 tpt[2].tp_flags = TF_MAXTIME; /* Edge-triggered */

 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }
 if ((numdigs = dx_getdig(chdev,tpt, &digp, EV_SYNC)) == -1) {
 /* process error */
 }

 for (cnt=0; cnt < numdigs; cnt++) {
 printf("\nDigit received = %c, digit type = %d",
 digp.dg_value[cnt], digp.dg_type[cnt]);
 }

 /* go to next state */
 .
 .
}

Example 2

This example illustrates how to use dx_getdig() in asynchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXCHAN 24

int digit_handler();
DV_TPT stpt[3];
DV_DIGIT digp[256];

main()
{
 int i, chdev[MAXCHAN];
 char *chnamep;
 int srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 for (i=0; i<MAXCHAN; i++) {

 /* Set chnamep to the channel name - e.g., dxxxB1C1 */
 /* open the channel with dx_open(). Obtain channel device
 * descriptor in chdev[i]

236 Voice API Library Reference — June 2005

dx_getdig() — collect digits from a channel digit buffer

 */
 if ((chdev[i] = dx_open(chnamep,NULL)) == -1) {
 /* process error */
 }
 /* Using sr_enbhdlr(), set up handler function to handle dx_getdig()
 * completion events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_GETDIG, digit_handler) == -1) {
 /* process error */
 }
 /* initiate the call */
 .
 .

 /* Set up the DV_TPT and get the digits */
 dx_clrtpt(tpt,3);

 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum number of digits */
 tpt[0].tp_length = 4; /* terminate on 4 digits */
 tpt[0].tp_flags = TF_MAXDTMF; /* terminate if already in buf*/

 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_LCOFF; /* LC off termination */
 tpt[1].tp_length = 3; /* Use 30 msec (10 msec resolution timer) */
 tpt[1].tp_flags = TF_LCOFF|TF_10MS; /* level triggered, clear
 * history, 10 msec resolution */

 tpt[2].tp_type = IO_EOT;
 tpt[2].tp_termno = DX_MAXTIME; /* Function Time */
 tpt[2].tp_length = 100; /* 10 seconds (100 msec resolution timer) */
 tpt[2].tp_flags = TF_MAXTIME; /* Edge triggered */

 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev[i]) == -1) {
 /* process error */
 }
 if (dx_getdig(chdev[i], tpt, &digp[chdev[i]], EV_ASYNC) == -1) {
 /* process error */
 }
 }

 /* Use sr_waitevt() to wait for the completion of dx_getdig().
 * On receiving the completion event, TDX_GETDIG, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
}

int digit_handler()
{
 int chfd;
 int cnt, numdigs;
 chfd = sr_getevtdev();
 numdigs = strlen(digp[chfd].dg_value);
 for(cnt=0; cnt < numdigs; cnt++) {
 printf("\nDigit received = %c, digit type = %d",
 digp[chfd].dg_value[cnt], digp[chfd].dg_type[cnt]);
 }

 /* Kick off next function in the state machine model. */
 .
 .
 return 0;
}

Voice API Library Reference — June 2005 237

collect digits from a channel digit buffer — dx_getdig()

See Also

• ATDX_BUFDIGS()

• dx_addtone()

• dx_setdigtyp()

• DV_DIGIT data structure

• dx_sethook()

238 Voice API Library Reference — June 2005

dx_getdigEx() — collect more than 31 digits from a channel digit buffer

dx_getdigEx()

collect more than 31 digits from a channel digit buffer

Description

Supported on Linux only. The dx_getdigEx() function collects more than 31 digits and null
terminator from an open channel’s digit buffer. Use this function instead of dx_getdig() to retrieve
up to 127 digits and the null terminator. Upon termination of the function, the collected digits are
written in ASCIIZ format to the extended digit buffer, which is arranged as a DV_DIGITEX
structure.

Note: The DX_MAXTIME termination condition (specified in the DV_TPT structure) is limited to 127.

Cautions

See dx_getdig().

Name: int dx_getdigEx(chdev, tptp, digitp, mode)

Inputs: int chdev • valid channel device handle

DV_TPT *tptp • pointer to Termination Parameter Table structure

DV_DIGITEX *digitp • pointer to Extended Digit Buffer structure

unsigned short mode • asynchronous/synchronous setting

Returns: 0 to indicate successful initiation (asynchronous)
number of digits (+1 for NULL) if successful (synchronous)
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: Springware Linux

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tptp points to the Termination Parameter Table Structure, DV_TPT, which specifies
termination conditions for this function. For more information on termination
conditions, see DV_TPT, on page 510.

digitp points to the External Digit Buffer Structure, DV_DIGITEX, where collected
digits and their types are stored in arrays. For defines of the digit types, see the
DV_DIGIT structure.:

mode specifies whether to run this function in asynchronous mode (EV_ASYNC) or
synchronous mode (EV_SYNC).

Voice API Library Reference — June 2005 239

collect more than 31 digits from a channel digit buffer — dx_getdigEx()

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{

 DV_TPT tpt[2];
 DV_DIGITEX digEx;
 int chdev, numdigs, cnt;
 char digval[128];
 char digtype[128];

 /* Open virtual board 1, channel 4 */
 if ((chdev = dx_open("dxxxB1C4",NULL)) == -1) {
 printf("Error opening dxxxB1C4\n");
 exit(1);
 }

 /* Set offhook */
 if (dx_sethook(chdev, DX_OFFHOOK,EV_SYNC) == -1) {
 printf("Error setting channel offhook: %s\n", ATDV_ERRMSGP(chdev));
 dx_close(chdev);
 exit(1);
 }

/* Set up the tpt structure */
 dx_clrtpt(tpt, 2);

 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF;
 tpt[0].tp_length = 63; /* Can specify up to 128 */
 tpt[0].tp_flags = TF_MAXDTMF;

 tpt[1].tp_type = IO_EOT;
 tpt[1].tp_termno = DX_MAXTIME;
 tpt[1].tp_length = 600;
 tpt[1].tp_flags = TF_MAXTIME;

 /* Clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 printf("Error clearing digit buffer: %s\n", ATDV_ERRMSGP(chdev));
 dx_close(chdev);
 exit(1);
 }

 /* Set digit detection type */
 if (dx_setdigtyp(chdev,DM_DTMF) == -1) {
 printf("Error setting digit type: %s\n", ATDV_ERRMSGP(chdev));
 dx_close(chdev);
 exit(1);
 }

240 Voice API Library Reference — June 2005

dx_getdigEx() — collect more than 31 digits from a channel digit buffer

 digEx.numdigits = sizeof(digval);
 digEx.dg_valuep = digval;
 digEx.dg_typep = digtype;

 if ((numdigs = dx_getdigEx(chdev, tpt, &digEx, EV_SYNC)) == -1) {
 printf("Error getting digits: %s\n",ATDV_ERRMSGP(chdev));
 dx_close(chdev);
 exit(1);
 }

 printf("Number of digits received is (excluding NULL): %d\n",
 (numdigs-1));

 for (cnt=0; cnt <numdigs-1; cnt++) {
 printf("Digit received = %c, digit type = %d\n",
 digval[cnt],digtype[cnt]);
 }

 dx_close(chdev);

}

See Also

• dx_getevt()

Voice API Library Reference — June 2005 241

monitor channel events synchronously — dx_getevt()

dx_getevt()

monitor channel events synchronously

Description

The dx_getevt() function monitors channel events synchronously for possible call status transition
events in conjunction with dx_setevtmsk(). The dx_getevt() function blocks and returns control
to the program after one of the events set by dx_setevtmsk() occurs on the channel specified in the
chdev parameter. The DX_EBLK structure contains the event that ended the blocking.

Notes: 1. When the time specified in timeout expires, dx_getevt() will terminate and return an error. Use
the Standard Attribute function ATDV_LASTERR() to determine the cause of the error, which
in this case is EDX_TIMEOUT.

2. On Linux, an application can stop the dx_getevt() function from within a process or from
another process.

From within a process, a signal handler may issue a dx_stopch() with the handle for the device
waiting in dx_getevt(). The mode parameter to dx_stopch() should be OR’ed with the
EV_STOPGETEVT flag to stop dx_getevt(). In this case dx_getevt() will successfully return

Name: int dx_getevt(chdev, eblkp, timeout)

Inputs: int chdev • valid channel device handle

DX_EBLK *eblkp • pointer to Event Block structure

int timeout • timeout value in seconds

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Status Transition Event

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

eblkp points to the Event Block structure DX_EBLK, which contains the event that
ended the blocking

timeout specifies the maximum amount of time in seconds to wait for an event to
occur. timeout can have one of the following values:
• number of seconds – maximum length of time dx_getevt() will wait for an

event. When the time specified has elapsed, the function will terminate
and return an error.

• -1 – dx_getevt() will block until an event occurs; it will not time out.
• 0 – The function will return -1 immediately if no event is present.

242 Voice API Library Reference — June 2005

dx_getevt() — monitor channel events synchronously

with the event DE_STOPGETEVT. The EV_STOPGETEVT flag influences dx_getevt() only.
It does not affect the existing functionality of dx_stopch(). Specifically, if a different function
besides dx_getevt() is in progress when dx_stopch() is called with the EV_STOPGETEVT
mode, that function will be stopped as usual. EV_STOPGETEVT will be ignored if dx_getevt()
is not in progress.

From another process, the dx_getevt() function may be stopped using the Inter-Process Event
Communication mechanism. A process can receive an event from another process on the handle
for the device waiting in dx_getevt(). The event-sending process needs to open the same device
and call the new function dx_sendevt() with its device handle. The dx_getevt() function in this
case will return with the event specified in dx_sendevt().

Cautions

It is recommended that you enable only one process per channel. The event that dx_getevt() is
waiting for may change if another process sets a different event for that channel. See
dx_setevtmsk() for more information.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

EDX_TIMEOUT
Timeout time limit is reached

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* channel descriptor */
 int timeout; /* timeout for function */
 DX_EBLK eblk; /* Event Block Structure */
 .
 .
 .

 /* Open Channel */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* Set RINGS or WINK as events to wait on */
 if (dx_setevtmsk(chdev,DM_RINGS|DM_WINK) == -1) {
 /* process error */
 }

Voice API Library Reference — June 2005 243

monitor channel events synchronously — dx_getevt()

 /* Set timeout to 5 seconds */
 timeout = 5;
 if (dx_getevt(chdev,&eblk,timeout) == -1){
 /* process error */
 if (ATDV_LASTERR(chdev) == EDX_TIMEOUT) { /* check if timed out */
 printf("Timed out waiting for event.\n");
 }
 else {
 /* further error processing */
 .
 .
 }
 }

 switch (eblk.ev_event) {
 case DE_RINGS:
 printf("Ring event occurred.\n");
 break;
 case DE_WINK:
 printf("Wink event occurred.\n");
 break;
 }
 .
 .
}

See Also

• dx_setevtmsk()

• DX_EBLK data structure

244 Voice API Library Reference — June 2005

dx_getfeaturelist() — retrieve feature support information for the device

dx_getfeaturelist()

retrieve feature support information for the device

Description

The dx_getfeaturelist() function returns information about the features supported on the device.
This information is contained in the FEATURE_TABLE data structure.

Cautions

• This function fails if an invalid device handle is specified.

• On DM3 analog boards, use dx_getctinfo() to return information about the type of front end
or network interface on the board. The network interface information is contained in the
ct_nettype field of CT_DEVINFO.

Name: int dx_getfeaturelist(dev, feature_tablep)

Inputs: int dev • valid board or channel device handle

FEATURE_TABLE *feature_tablep • pointer to features information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: DM3, Springware

Parameter Description

dev specifies the valid device handle obtained when a board (in the format
dxxxBn) or channel (dxxxBnCm) was opened using dx_open().

Note: Specifying a board device handle is not supported on Springware
boards.

Note: On high-density DM3 boards, retrieving information for a channel
device can be time-consuming as each channel is opened one by one. You
can retrieve information for the board device instead. All channel devices
belonging to the specific board device have the same features as the parent
board.

feature_tablep specifies a pointer to the FEATURE_TABLE data structure which contains the
bitmasks of various features supported such as data format for play/record, fax
features, and more. For more information on this structure, see
FEATURE_TABLE, on page 551.

Voice API Library Reference — June 2005 245

retrieve feature support information for the device — dx_getfeaturelist()

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADTYPE
Invalid local time slot channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

Example

#include <stdio.h>
#include "srllib.h"
#include “dxxxlib.h”

void main(int argc, char ** argv)
{
 char chname[32] = "dxxxB1C1";
 int dev;
 FEATURE_TABLE feature_table;

 if ((dev = dx_open(chname, 0)) == -1) {
 printf("Error opening \"%s\"\n", chname);
 exit(1);
 }

 if (dx_getfeaturelist(dev, &feature_table) == -1) {
 printf("%s: Error %d getting featurelist\n", chname, ATDV_LASTERR(dev));
 exit(2);
 }

246 Voice API Library Reference — June 2005

dx_getfeaturelist() — retrieve feature support information for the device

 printf("\n%s: Play Features:-\n", chname);
 if (feature_table.ft_play & FT_ADPCM) {
 printf("ADPCM ");
 }

 if (feature_table.ft_play & FT_PCM) {
 printf("PCM ");
 }

 if (feature_table.ft_play & FT_ALAW) {
 printf("ALAW ");
 }

 if (feature_table.ft_play & FT_ULAW) {
 printf("ULAW ");
 }

 if (feature_table.ft_play & FT_LINEAR) {
 printf("LINEAR ");
 }

 if (feature_table.ft_play & FT_ADSI) {
 printf("ADSI ");
 }

 if (feature_table.ft_play & FT_DRT6KHZ) {
 printf("DRT6KHZ ");
 }

 if (feature_table.ft_play & FT_DRT8KHZ) {
 printf("DRT8KHZ ");
 }

 if (feature_table.ft_play & FT_DRT11KHZ) {
 printf("DRT11KHZ");
 }

 printf("\n\n%s: Record Features:-\n", chname);
 if (feature_table.ft_record & FT_ADPCM) {
 printf("ADPCM ");
 }

 if (feature_table.ft_record & FT_PCM) {
 printf("PCM ");
 }

 if (feature_table.ft_record & FT_ALAW) {
 printf("ALAW ");
 }

 if (feature_table.ft_record & FT_ULAW) {
 printf("ULAW ");
 }

 if (feature_table.ft_record & FT_LINEAR) {
 printf("LINEAR ");
 }

 if (feature_table.ft_record & FT_ADSI) {
 printf("ADSI ");
 }

 if (feature_table.ft_record & FT_DRT6KHZ) {
 printf("DRT6KHZ ");
 }

Voice API Library Reference — June 2005 247

retrieve feature support information for the device — dx_getfeaturelist()

 if (feature_table.ft_record & FT_DRT8KHZ) {
 printf("DRT8KHZ ");
 }

 if (feature_table.ft_record & FT_DRT11KHZ) {
 printf("DRT11KHZ");
 }

 printf("\n\n%s: Tone Features:-\n", chname);
 if (feature_table.ft_tone & FT_GTDENABLED) {
 printf("GTDENABLED ");
 }

 if (feature_table.ft_tone & FT_GTGENABLED) {
 printf("GTGENABLED ");
 }

 if (feature_table.ft_tone & FT_CADENCE_TONE) {
 printf("CADENCE_TONE");
 }

 printf("\n\n%s: E2P Board Configuration Features:-\n", chname);

 if (feature_table.ft_e2p_brd_cfg & FT_DPD) {
 printf("DPD ");
 }

 if (feature_table.ft_e2p_brd_cfg & FT_SYNTELLECT) {
 printf("SYNTELLECT");
 }

 printf("\n\n%s: FAX Features:-\n", chname);
 if (feature_table.ft_fax & FT_FAX) {
 printf("FAX ");
 }

 if (feature_table.ft_fax & FT_VFX40) {
 printf("VFX40 ");
 }

 if (feature_table.ft_fax & FT_VFX40E) {
 printf("VFX40E ");
 }

 if (feature_table.ft_fax & FT_VFX40E_PLUS) {
 printf("VFX40E_PLUS");
 }

 if((feature_table.ft_fax & FT_FAX_EXT_TBL)
 && !(feature_table.ft_send & FT_SENDFAX_TXFILE_ASCII))
 printf("SOFTFAX !\n");
 }

 printf("\n\n%s: FrontEnd Features:-\n", chname);

 if (feature_table.ft_front_end & FT_ANALOG) {
 printf("ANALOG ");
 }

 if (feature_table.ft_front_end & FT_EARTH_RECALL) {
 printf("EARTH_RECALL");
 }

 printf("\n\n%s: Miscellaneous Features:-\n", chname);

248 Voice API Library Reference — June 2005

dx_getfeaturelist() — retrieve feature support information for the device

 if (feature_table.ft_misc & FT_CALLERID) {
 printf("CALLERID");
 }

 printf("\n");

 dx_close(dev);
}

See Also

• dx_getctinfo()

Voice API Library Reference — June 2005 249

get the current parameter settings — dx_getparm()

dx_getparm()

get the current parameter settings

Description

The dx_getparm() function returns the current parameter settings for an open device. This
function returns the value of one parameter at a time.

A different set of parameters is available for board and channel devices. Board parameters affect all
channels on the board. Channel parameters affect the specified channel only.

The channel must be idle (that is, no I/O function running) when calling dx_getparm().

Name: int dx_getparm(dev, parm, valuep)

Inputs: int dev • valid channel or board device handle

unsigned long parm • parameter type to get value of

void *valuep • pointer to variable for returning parameter value

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: DM3, Springware

Parameter Description

dev specifies the valid device handle obtained when a board or channel was
opened using dx_open()

250 Voice API Library Reference — June 2005

dx_getparm() — get the current parameter settings

Cautions

Clear the variable in which the parameter value is returned prior to calling dx_getparm(), as
illustrated in the Example section. The variable whose address is passed to should be of a size
sufficient to hold the value of the parameter.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BUSY
Channel is busy (when channel device handle is specified) or first channel is busy (when board
device handle is specified)

EDX_SYSTEM
Error from operating system

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

parm Specifies the define for the parameter type whose value is to be returned in the
variable pointed to by valuep.

The voice device parameters allow you to query and control device-level
information and settings related to the voice functionality. These parameters
are described in the dx_setparm() function description.

For DM3 boards, board parameter defines are described in Table 13, “Voice
Board Parameters (DM3)”, on page 416 and channel parameter defines are
described in Table 15, “Voice Channel Parameters (DM3)”, on page 418.

For Springware boards, board parameter defines are described in Table 14,
“Voice Board Parameters (Springware)”, on page 416 and channel parameter
defines are described in Table 16, “Voice Channel Parameters (Springware)”,
on page 420.

valuep Points to the variable where the value of the parameter specified in parm
should be returned.

Note: You must use a void* cast on the returned parameter value, as
demonstrated in the Example section code for this function.

Note: valuep should point to a variable large enough to hold the value of the
parameter. The size of a parameter is encoded in the define for the
parameter. The defines for parameter sizes are PM_SHORT, PM_BYTE,
PM_INT, PM_LONG, PM_FLSTR (fixed length string), and PM_VLSTR
(variable length string). Most parameters are of type short.

Parameter Description

Voice API Library Reference — June 2005 251

get the current parameter settings — dx_getparm()

main()
{
 int bddev;
 unsigned short parmval;

 /* open the board using dx_open(). Obtain board device descriptor in
 * bddev
 */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* process error */
 }

 parmval = 0; /* CLEAR parmval */

 /* get the number of channels on the board. DXBD_CHNUM is of type
 * unsigned short as specified by the PM_SHORT define in the definition
 * for DXBD_CHNUM in dxxxlib.h. The size of the variable parmval is
 * sufficient to hold the value of DXBD_CHNUM.
 */
 if (dx_getparm(bddev, DXBD_CHNUM, (void *)&parmval) == -1) {
 /* process error */
 }

 printf("\nNumber of channels on board = %d",parmval);
 .
 .
}

See Also

• dx_setparm()

252 Voice API Library Reference — June 2005

dx_GetRscStatus() — return assignment status of a shared resource

dx_GetRscStatus()

return assignment status of a shared resource

Description

The dx_GetRscStatus() function returns the assignment status of the shared resource for the
specified channel.

Cautions

None.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

Name: int dx_GetRscStatus(chdev, rsctype, status)

Inputs: int chdev • valid channel device handle

int rsctype • type of resource

int *status • pointer to assignment status

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

rsctype specifies the type of shared resource:
• RSC_FAX – shared fax resource (DSP-based Group 3 Fax, also known as

Softfax)

status points to the data that represents the assignment status of the resource:
• RSC_ASSIGNED – a shared resource of the specified rsctype is assigned

to the channel
• RSC_NOTASSIGNED – a shared resource of the specified rsctype is not

assigned to the channel

Voice API Library Reference — June 2005 253

return assignment status of a shared resource — dx_GetRscStatus()

EDX_SYSTEM
Error from operating system

Example

/* Check whether a shared Fax resource is assigned to the voice channel */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

main()
{
 int chdev ; /* Fax channel device handle */
 int status;

 /*Open the Voice channel resource (device) using dx_open(). */
 :
 :

 /*Open the FAX channel resource(device) */
 if((chdev = fx_open("dxxxB1C1", NULL)) == -1) {
 /*Error opening device */
 /* Perform system error processing */
 exit(1);
 }

 /*Get current Resource Status*/
 if(dx_GetRscStatus(chdev, RSC_FAX, &status) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(chdev), ATDV_LASTERR(chdev));
 if(ATDV_LASTERR(chdev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 else {
 printf("The resource status ::%d\n", status);
 }
}

See Also

• DSP Fax topic in the Fax Software Reference

254 Voice API Library Reference — June 2005

dx_GetStreamInfo() — retrieve information about the circular stream buffer

dx_GetStreamInfo()

retrieve information about the circular stream buffer

Description

The dx_GetStreamInfo() function populates the stream status structure with the current status
information about the circular stream buffer handle passed into it. The data returned is a snapshot
of the status at the time dx_GetStreamInfo() is called.

Cautions

None.

Errors

Unlike other voice API library functions, the streaming to board functions do not use SRL device
handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used to retrieve
error codes and error descriptions.

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int nBuffSize = 32768;
 int hBuffer = -1;
 DX_STREAMSTAT streamStat;

Name: int dx_GetStreamInfo(hBuffer, &StreamStatStruct)

Inputs: int hBuffer • stream buffer handle

DX_STREAMSTAT
StreamStatStruct

• pointer to stream status structure

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: streaming to board

Mode: synchronous

Platform: DM3

Parameter Description

hBuffer specifies the circular stream buffer handle

StreamStatStruct specifies a pointer to the DX_STREAMSTAT data structure. For more
information on this structure, see DX_STREAMSTAT, on page 537.

Voice API Library Reference — June 2005 255

retrieve information about the circular stream buffer — dx_GetStreamInfo()

 if ((hBuffer = dx_OpenStreamBuffer(nBuffSize)) < 0)
 {
 printf("Error opening stream buffer \n");
 }
 if (dx_GetStreamInfo(hBuffer, &streamStat) < 0)
 {
 printf("Error getting stream buffer info \n");
 }
 else
 {
 printf("version=%d,
 bytesIn=%d,
 bytesOut=%d,
 headPointer=%d,
 tailPointer=%d,
 currentState=%d,
 numberOfBufferUnderruns=%d,
 numberOfBufferOverruns=%d,
 BufferSize=%d,
 spaceAvailable=%d,
 highWaterMark=%d,
 lowWaterMark=%d \n";
 streamStat.version,streamStat.bytesIn,streamStat.bytesOut,streamStat.headPointer,
 streamStat.tailPointer,streamStat.currentState,streamStat.numberOfBufferUnderruns,
 streamStat.numberOfBufferOverruns,streamStat.BufferSize,streamStat.spaceAvailable,
 streamStat.highWaterMark,streamStat.lowWaterMark);
 }
 if (dx_CloseStreamBuffer(hBuffer) < 0)
 {
 printf("Error closing stream buffer \n");
 }
}

See Also

• dx_OpenStreamBuffer()

256 Voice API Library Reference — June 2005

dx_getsvmt() — return the current speed or volume modification table

dx_getsvmt()

return the current speed or volume modification table

Description

The dx_getsvmt() function returns the current speed or volume modification table to the
DX_SVMT structure.

Cautions

None.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

Name: int dx_getsvmt(chdev, tabletype, svmtp)

Inputs: int chdev • valid channel device handle

unsigned short tabletype • type of table to retrieve (speed or volume)

DX_SVMT * svmtp • pointer to speed or volume modification table structure to retrieve

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tabletype specifies whether to retrieve the speed or the volume modification table:
• SV_SPEEDTBL – retrieve the speed modification table values
• SV_VOLUMETBL – retrieve the volume modification table values

svmtp points to the DX_SVMT structure that contains the speed and volume
modification table entries

Voice API Library Reference — June 2005 257

return the current speed or volume modification table — dx_getsvmt()

EDX_SPDVOL
Must specify either SV_SPEEDTBL or SV_VOLUMETBL

EDX_SYSTEM
Error from operating system

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

/*
 * Global Variables
 */

main()
{
 DX_SVMT svmt;
 int dxxxdev, index;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Get the Current Volume Modification Table
 */
 memset(&svmt, 0, sizeof(DX_SVMT));
 if (dx_getsvmt(dxxxdev, SV_VOLUMETBL, &svmt) == -1){
 printf("Unable to Get the Current Volume");
 printf(" Modification Table\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 } else {
 printf("Volume Modification Table is:\n");
 for (index = 0; index < 10; index++) {
 printf("decrease[%d] = %d\n", index, svmt.decrease[index]);
 }

 printf("origin = %d\n", svmt.origin);
 for (index = 0; index < 10; index++) {
 printf("increase[%d] = %d\n", index, svmt.increase[index]);
 }
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

258 Voice API Library Reference — June 2005

dx_getsvmt() — return the current speed or volume modification table

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_addspddig()

• dx_addvoldig()

• dx_adjsv()

• dx_clrsvcond()

• dx_getcursv()

• dx_setsvcond()

• dx_setsvmt()

• speed and volume modification tables in Voice API Programming Guide

• DX_SVMT data structure

Voice API Library Reference — June 2005 259

get TDM bus time slot number of voice transmit channel — dx_getxmitslot()

dx_getxmitslot()

get TDM bus time slot number of voice transmit channel

Description

The dx_getxmitslot() function returns the time division multiplexing (TDM) bus time slot number
of the voice transmit channel. The TDM bus time slot information is contained in an SC_TSINFO
structure that includes the number of the TDM bus time slot connected to the voice transmit
channel. For more information on this structure, see SC_TSINFO, on page 557.

Note: TDM bus convenience function nr_scroute() includes dx_getxmitslot() functionality.

A voice channel on a TDM bus-based board can transmit on only one TDM bus time slot.

Cautions

• This function fails when an invalid channel device handle is specified.

• On DM3 boards, this function is supported in a flexible routing configuration but not a fixed
routing configuration. This document assumes that a flexible routing configuration is the
configuration of choice. For more information on API restrictions in a fixed routing
configuration, see the Voice API Programming Guide.

Name: int dx_getxmitslot(chdev, sc_tsinfop)

Inputs: int chdev • valid channel device handle

SC_TSINFO *sc_tsinfop • pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: TDM routing

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the voice channel device handle obtained when the channel was
opened using dx_open()

sc_tsinfop specifies a pointer to the data structure SC_TSINFO

260 Voice API Library Reference — June 2005

dx_getxmitslot() — get TDM bus time slot number of voice transmit channel

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

Example

#include <windows.h>
#include <srllib.h>

main()
{
 int chdev; /* Channel device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

 /* Open board 1 channel 1 devices */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* process error */
 }

Voice API Library Reference — June 2005 261

get TDM bus time slot number of voice transmit channel — dx_getxmitslot()

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get TDM bus time slot connected to transmit of voice channel 1 on board ...1 */
 if (dx_getxmitslot(chdev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }
 printf("%s transmitting on TDM bus time slot %d", ATDV_NAMEP(chdev),scts);
 return(0);
}

See Also

• dx_listen()

262 Voice API Library Reference — June 2005

dx_getxmitslotecr() — get echo cancellation resource transmit time slot number

dx_getxmitslotecr()

get echo cancellation resource transmit time slot number

Description

The dx_getxmitslotecr() function returns the transmit time slot number assigned to the echo
cancellation resource (ECR) of the specified voice channel device. The time slot information is
contained in an SC_TSINFO structure. For more information on this structure, see SC_TSINFO,
on page 557.

Note: The ECR functions have been replaced by the continuous speech processing (CSP) API functions.
CSP provides enhanced echo cancellation. For more information, see the Continuous Speech
Processing API Programming Guide and Continuous Speech Processing API Library Reference.

Cautions

This function fails when:

• An invalid channel device handle is specified.

• The ECR feature is not enabled on the board specified.

• The ECR feature is not supported on the board specified.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

Name: int dx_getxmitslotecr(chdev, sc_tsinfop)

Inputs: int chdev • valid channel device handle

SC_TSINFO *sc_tsinfop • pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Echo Cancellation Resource

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the voice channel device handle obtained when the channel was
opened using dx_open()

sc_tsinfop specifies a pointer to the data structure SC_TSINFO

Voice API Library Reference — June 2005 263

get echo cancellation resource transmit time slot number — dx_getxmitslotecr()

EDX_SH_BADCMD
Function is not supported in current bus configuration

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking function is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is not initialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* Channel device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

 /* Open board 1 channel 1 devices */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* Perform system error processing */
 exit(1);
 }

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

264 Voice API Library Reference — June 2005

dx_getxmitslotecr() — get echo cancellation resource transmit time slot number

 /* Get TDM bus time slot on which the echo-cancelled signal will be transmitted */
 if (dx_getxmitslotecr(chdev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }

 printf("%s transmits the echo cancelled signal on %d", ATDV_NAMEP(chdev),scts);
 return(0);
}

See Also

• dx_listenecr()

• dx_listenecrex()

• dx_unlistenecr()

• dx_getxmitslot()

Voice API Library Reference — June 2005 265

return the calling line Directory Number — dx_gtcallid()

dx_gtcallid()

return the calling line Directory Number

Description

The dx_gtcallid() function returns the calling line Directory Number (DN) sent by the Central
Office (CO). On successful completion, a NULL-terminated string containing the caller’s phone
number (DN) is placed in the buffer. Non-numeric characters (punctuation, space, dash) may be
included in the number string; however, the string may not be suitable for dialing without
modification.

Caller ID information is available for the call from the moment the ring event is generated and until
the call is either disconnected (for answered calls) or until rings are no longer received from the CO
(for unanswered calls). If the call is answered before caller ID information has been received from
the CO, caller ID information will not be available.

If the call is not answered and the ring event is received before the caller ID information has been
received from the CO, caller ID information will not be available until the beginning of the second
ring (CLASS, ACLIP) or the beginning of the first ring (CLIP, JCLIP).

To determine if caller ID information has been received from the CO before issuing a
dx_gtcallid() or dx_gtextcallid() caller ID function, check the event data in the event block.
When the ring event is received, the event data field in the event block is bitmapped and indicates
that caller ID information is available when bit 0 (LSB) is set to a 1.

Name: int dx_gtcallid (chdev, bufferp)

Inputs: int chdev • valid channel device handle

unsigned char *bufferp • pointer to buffer where calling line Directory Number is returned

Returns: 0 success
-1 error return code

Includes: srllib.h
dxxxlib.h

Category: Caller ID

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when a channel was opened
using dx_open()

bufferp pointer to buffer where calling line Directory Number (DN) is returned

Note: Make sure to allocate a buffer size large enough to accommodate the
DN returned by this function.

266 Voice API Library Reference — June 2005

dx_gtcallid() — return the calling line Directory Number

Based on the caller ID options provided by the CO and for applications that require only the calling
line Directory Number (DN), issue the dx_gtcallid() function to get the calling line DN.

Based on the caller ID options provided by the CO and for applications that require additional
caller ID information, issue the dx_gtextcallid() function for each type of caller ID message
required.

Cautions

• If caller ID is enabled, on-hook digit detection (DTMF, MF, and global tone detection) will not
function.

• This function does not differentiate between a checksum error and no caller ID.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BUSY
Channel is busy

EDX_CLIDBLK
Caller ID is blocked or private or withheld (other information may be available using
dx_gtextcallid())

EDX_CLIDINFO
Caller ID information is not sent or caller ID information is invalid

EDX_CLIDOOA
Caller ID is out of area (other information may be available using dx_gtextcallid())

EDX_SYSTEM
Error from operating system

Example

The following example is for Linux only.

/*$ dx_gtcallid() example (Linux only example) $*/

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

int main()
{
 unsigned char buffer[21]; /* char buffer */
 DX_EBLK eblk; /* event block struct */
 int timeout; /* timeout for function */
 int chdev; /* channel descriptor */
 unsigned short parmval; /* parameter value */

Voice API Library Reference — June 2005 267

return the calling line Directory Number — dx_gtcallid()

 /* open channel */
 if ((chdev = dx_open("dxxxB1C1", NULL) == -1) {
 /* process error */
 }

 /* Enable Caller ID */
 parmval = DX_CALLIDENABLE;
 if (dx_setparm(chdev, DXCH_CALLID, (void *)&parmval) == -1) {
 /* process error */
 }

 /* set RINGS as events to wait on */
 if (dx_setevtmsk(chdev, DM_RINGS) == -1) {
 /* process error */
 }

 timeout = 5; /* 5 seconds */

 if (dx_getevt(chdev, &eblk, timeout) == -1) {
 /* process error */
 }

 /* Upon receiving ring event, check event data (bit 0) to see if caller ID
 * is available
 */
 if (eblk.ev_event == DE_RINGS) {
 if ((eblk->ev_data & 0x0001) == 0)
 exit(0);
 if (dx_gtcallid(chdev, buffer) == -1) {
 /* process error */
 }
 printf("The calling line directory number is %5\n", buffer);
 }

 /* get caller ID */
 if (dx_gtcallid(chdev,buffer) == -1) {
 printf("Error getting caller ID: 0x%x\n",
 ATDV_LASTERR(chdev));
 /* process error */
 }
 printf("Caller ID = %s\n", buffer);
}

The following example is for Windows only.

/*$ dx_gtcallid() example (Windows only example) $*/

#include <windows.h>
#include <sys/types.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

/* Intel(r) Dialogic(r) Includes */
#include "srllib.h"
#include "dxxxlib.h"

268 Voice API Library Reference — June 2005

dx_gtcallid() — return the calling line Directory Number

int main()
{
 int numRings = 2; /* In the US */
 int ringTimeout = 20; /* 20 seconds */
 int chdev; /* Channel descriptor */
 unsigned short parmval;
 unsigned char buffer[81];

 /* Open channel */
 if ((chdev=dx_open("dxxxB1C1", NULL)) == -1) {
 /* process error */
 exit(0);
 }

 /* Enable the caller ID functionality */
 parmval = DX_CALLIDENABLE;
 if (dx_setparm(chdev, DXCH_CALLID, (void *) &parmval) == -1) {
 /* process error */
 exit(0);
 }

 /**
 * Set the number of rings required for a RING event to permit
 * receipt of the caller ID information. In the US, caller ID
 * information is transmitted between the first and second rings
 **/
 parmval = numRings; /* 2 in the US */
 if (dx_setparm(chdev, DXCH_RINGCNT, &parmval) == -1) {
 /* process error */
 exit(0);
 }

 /* Put the channel onhook */
 if (dx_sethook(chdev, DX_ONHOOK, EV_SYNC) == -1) {
 /* process error */
 exit (0);
 }

 /* Wait for 2 rings and go offhook (timeout after 20 seconds) */
 if (dx_wtring(chdev, numRings, DX_OFFHOOK, ringTimeout) == -1) {
 /* process error */
 }

 /* Get just the caller ID */
 if (dx_gtcallid(chdev, buffer) == -1) {
 /* Can check the specific error code */
 if (ATDV_LASTERR(chdev) == EDX_CLIDBLK) {
 printf("Caller ID information blocked \n");
 }
 else if (ATDV_LASTERR(chdev) == EDX_CLIDOOA) {
 printf("Caller out of area \n");
 }
 else {
 /* Or print the pre-formatted error message */
 printf("Error: %s \n", ATDV_ERRMSGP(chdev));
 }
 }
 else {
 printf("Caller ID = %s\n", buffer);
 }

 /***
 * If the message is an MDM (Multiple Data Message), then
 * additional information is available.
 * First get the frame and check the frame type. If Class MDM,
 * get and print additional information from submessages.
 ***/

Voice API Library Reference — June 2005 269

return the calling line Directory Number — dx_gtcallid()

 if (dx_gtextcallid(chdev,CLIDINFO_FRAMETYPE, buffer) != -1) {
 if(buffer[0] == CLASSFRAME_MDM) {
 /* Get and print the date and time */
 if (dx_gtextcallid(chdev, MCLASS_DATETIME, buffer) == -1) {
 /* process error */
 printf("Error: %s\n", ATDV_ERRMSGP(chdev));
 }
 else {
 printf("Date/Time = %s\n", buffer);
 }

 /* Get and print the caller name */
 if (dx_gtextcallid(chdev, MCLASS_NAME, buffer) == -1) {
 /* process error */
 printf("Error: %s\n", ATDV_ERRMSGP(chdev));
 }
 else {
 printf("Caller Name = %s\n", buffer);
 }

 /* Get and print the Dialed Number */
 if (dx_gtextcallid(chdev, MCLASS_DDN, buffer) == -1) {
 /* process error */
 printf("Error: %s\n", ATDV_ERRMSGP(chdev));
 }
 else {
 printf("Dialed Number = %s\n", buffer);
 }
 }
 else {
 printf("Submessages not available - not an MDM message\n");
 }
 }
 dx_close(chdev);
 return(0);
}

See Also

• dx_gtextcallid()

• dx_wtcallid()

• dx_setparm()

• dx_setevtmsk()

• dx_getevt()

• DX_EBLK data structure

270 Voice API Library Reference — June 2005

dx_gtextcallid() — retrieve a caller ID message

dx_gtextcallid()

retrieve a caller ID message

Description

The dx_gtextcallid() function returns the requested caller ID message by specifying the Message
Type ID. The application can issue this function as many times as required to get the desired caller
ID messages (such as date and time, calling line subscriber name, reason why caller ID is not
available).

The format and content of the caller ID messages are based on published telecommunication
standards. The actual formatting and content of the data returned depend on the implementation
and level of service provided by the originating and destination Central Offices.

Note: For CLASS and ACLIP, do not use Multiple Data Message Type IDs with caller ID information in
Single Data Message format.

Name: int dx_gtextcallid (chdev, infotype, bufferp)

Inputs: int chdev • valid channel device handle

int infotype • message type ID

unsigned char *bufferp • pointer to buffer where the requested caller ID message is returned

Returns: 0 success
-1 error return code

Includes: srllib.h
dxxxlib.h

Category: Caller ID

Mode: synchronous

Platform: Springware

Parameter Description

chdev the valid channel device handle obtained when a channel was opened using
dx_open()

infotype the Message Type ID for the specific caller ID information to receive. Message
Type IDs for CLASS, ACLIP, JCLIP and CLIP are listed on the following
pages. See Table 5, “Caller ID Common Message Types”, on page 271,
Table 6, “Caller ID CLASS Message Types (Multiple Data Message)”, on
page 272, Table 7, “Caller ID ACLIP Message Types (Multiple Data
Message)”, on page 272, Table 8, “Caller ID CLIP Message Types”, on
page 273, and Table 9, “Caller ID JCLIP Message Types (Multiple Data
Message)”, on page 273.

bufferp pointer to buffer where the requested caller ID message is to be stored. All
returns are NULL terminated.

Voice API Library Reference — June 2005 271

retrieve a caller ID message — dx_gtextcallid()

Common Message Types

The following standard Message Types are available for:

• CLASS (Single Data Message)

• CLASS (Multiple Data Message)

• ACLIP (Single Data Message)

• ACLIP (Multiple Data Message)

• CLIP

• JCLIP

All returns are NULL terminated.

Figure 1. Format of General Caller ID Information

Table 5. Caller ID Common Message Types

Value Definition/Returns

CLIDINFO_CMPLT All caller ID information as sent from the CO (maximum of 258 bytes; includes
header and length byte at the beginning). Can produce EDX_CLIDINFO error.

CLIDINFO_GENERAL Date and time (20 bytes - formatted with / and : characters; padded with
spaces).
Caller phone number or reason for absence (20 bytes; padded with spaces).
Caller name or reason for absence (variable length ≥0; not padded). Can
produce EDX_CLIDINFO error. See Figure 1.

CLIDINFO_CALLID Caller ID (phone number). Can produce EDX_CLIDINFO, EDX_CLIDOOA,
and EDX_CLIDBLK errors.

CLIDINFO_FRAMETYPE Indicates caller ID frame. Does not apply to CLIP. Can produce
EDX_CLIDINFO error. Values (depending upon service type):

• CLASSFRAME_SDM

• CLASSFRAME_MDM

• ACLIPFRAME_SDM

• ACLIPFRAME_MDM

• JCLIPFRAME_MDM

Date and Time (20 bytes) Name (variable length≥0)Phone Number (20 bytes)

01234567890123456789012345678901234567890123456789012345678
1 2 3 4 5

04/04b10:11bbbbbbbbb

04/04b10:11bbbbbbbbb

04/04b10:11bbbbbbbbb

04/04b10:11bbbbbbbbb

04/04b10:11bbbbbbbbb

2019933000bbbbbbbbbb

2019933000bbbbbbbbbb

Pbbbbbbbbbbbbbbbbbbb

Pbbbbbbbbbbbbbbbbbbb

Obbbbbbbbbbbbbbbbbbb

Legend:
b=Blank
fl=Null
O=Out of Area
P=Private

fl

fl

Pfl

Pfl

JOHNbDOEfl

272 Voice API Library Reference — June 2005

dx_gtextcallid() — retrieve a caller ID message

Message Types for CLASS (Multiple Data Message)

See Table 5 for the standard Message Types that can also be used. Table 6 lists Message Types that
can produce an EDX_CLIDINFO error. All returns are NULL terminated.

Message Types for ACLIP (Multiple Data Message)

See Table 5, “Caller ID Common Message Types”, on page 271 for the standard Message Types
that can also be used. Table 7 lists Message Types that can produce an EDX_CLIDINFO error. All
returns are NULL terminated.

Message Types for CLIP

See Table 5, “Caller ID Common Message Types”, on page 271 for the standard Message Types
that can also be used. Table 8 lists Message Types that can produce an EDX_CLIDINFO error. All
returns are NULL terminated.

Table 6. Caller ID CLASS Message Types (Multiple Data Message)

Value Definition/Returns

MCLASS_DATETIME Date and Time (as sent by CO without format characters / and :)

MCLASS_DN Calling line directory number (digits only)

MCLASS_DDN Dialed number (digits only)

MCLASS_ABSENCE1 Reason for absence of caller ID (only available if caller name is absent):
O = out of area, P = private

MCLASS_REDIRECT Call forward: 0 = universal; 1 = busy; 2 = unanswered

MCLASS_QUALIFIER L = long distance call

MCLASS_NAME Calling line subscriber name

MCLASS_ABSENCE2 Reason for absence of name (only available if caller name is absent): O = out
of area, P = private

Table 7. Caller ID ACLIP Message Types (Multiple Data Message)

Value Definition/Returns

MACLIP_DATETIME Date and Time (as sent by CO without format characters / and :)

MACLIP_DN Calling line directory number (digits only)

MACLIP_DDN Dialed number (digits only)

MACLIP_ABSENCE1 Reason for absence of caller ID (only available if caller name is absent):
O = out of area, P = private

MACLIP_REDIRECT Call forward: 0 = universal; 1 = busy; 2 = unanswered

MACLIP_QUALIFIER L = long distance call

MACLIP_NAME Calling line subscriber name

MACLIP_ABSENCE2 Reason for absence of name (only available if caller name is absent): O = out
of area, P = private

Voice API Library Reference — June 2005 273

retrieve a caller ID message — dx_gtextcallid()

Message Types for JCLIP (Multiple Data Message)

See Table 5, “Caller ID Common Message Types”, on page 271 for the standard Message Types
that can also be used. Table 9 lists Message Types that can produce an EDX_CLIDINFO error. All
returns are NULL terminated.

By passing the proper Message Type ID, the dx_gtextcallid() function can be used to retrieve the
desired message(s). For example:

• CLIDINFO_CMPLT can be used to get the complete caller ID frame including header, length,
sub-message(s) as sent by the CO

• CLIDINFO_GENERAL can be used to get messages including date and time (formatted),
caller’s Directory Number (DN), and name

• CLIDINFO_CALLID can be used to get caller’s Directory Number (DN)

• CLIDINFO_FRAMETYPE can be used to determine the type of caller ID frame (for example:
CLASS SDM or CLASS MDM, ACLIP SDM or ACLIP MDM, JCLIP MDM)

• MCLASS_DDN can be used to get the dialed number for CLASS MDM (digits only)

• MACLIP_DDN can be used to get the dialed number for ACLIP MDM (digits only)

• CLIP_NAME can be used to get the calling line subscriber name for CLIP

Table 8. Caller ID CLIP Message Types

Value Definition/Returns

CLIP_DATETIME Date and Time (as sent by CO without format characters / and :)

CLIP_DN Calling line directory number (digits only)

CLIP_DDN Dialed number (digits only)

CLIP_ABSENCE1 Reason for absence of caller ID (only available if caller name is absent):
O = out of area, P = private

CLIP_NAME Calling line subscriber name

CLIP_ABSENCE2 Reason for absence of name (only available if caller name is absent): O = out
of area, P = private

CLIP_CALLTYPE 1 = voice call, 2 = ring back when free call, 129 = message waiting call

CLIP_NETMSG Network Message System status: number of messages waiting

Table 9. Caller ID JCLIP Message Types (Multiple Data Message)

Value Definition/Returns

JCLIP_DN Calling line directory number (digits only)

JCLIP_DDN Dialed number (digits only)

JCLIP_ABSENCE1 Reason for absence of caller ID (only available if caller name is absent):
O = out of area or unknown reason, P = private (denied by call originator),
C = public phone, S = service conflict (denied by call originator’s network)

JCLIP_ABSENCE2 Reason for absence of name (only available if caller name is absent): O = out
of area or unknown reason, P = private (denied by call originator), C = public
phone, S = service conflict (denied by call originator’s network)

274 Voice API Library Reference — June 2005

dx_gtextcallid() — retrieve a caller ID message

• MACLIP_NAME can be used to get the calling line subscriber name for ACLIP

Caller ID information is available for the call from the moment the ring event is generated (if the
ring event is set to occur on or after the second ring (CLASS, ACLIP) or set to occur on or after the
first ring (CLIP, JCLIP)) until either of the following occurs:

• If the call is answered (the application channel goes off-hook), the caller ID information is
available to the application until the call is disconnected (the application channel goes on-
hook).

• If the call is not answered (the application channel remains on-hook), the caller ID information
is available to the application until rings are no longer received from the Central Office
(signaled by ring off event, if enabled).

Cautions

• To allow the reception of caller ID information from the central office before answering a call
(application channel goes off-hook):

• For CLASS and ACLIP, set the ring event to occur on or after the second ring.

• For CLIP and JCLIP, set the ring event to occur on or after the first ring.

Note: If the call is answered before caller ID information has been received from the CO, caller ID
information will not be available.

• CLASS and ACLIP: Do not use Multiple Data Message Type IDs with caller ID information in
Single Data Message format.

• Make sure the buffer size is large enough to hold the caller ID message(s) returned by this
function.

• JCLIP operation requires that the Japanese country-specific parameter file be installed and
configured (select Japan in the country configuration).

• If the application program performs a dx_sethook() on an on-hook channel device during the
short period before the first ring and when the channel is receiving JCLIP caller ID
information, the function will return an error.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BUSY
Channel is busy

EDX_CLIDBLK
Caller ID is blocked or private or withheld (infotype = CLIDINFO_CALLID)

EDX_CLIDINFO
Caller ID information not sent, sub-message(s) requested not available or caller ID
information invalid

Voice API Library Reference — June 2005 275

retrieve a caller ID message — dx_gtextcallid()

EDX_CLIDOOA
Caller ID is out of area (infotype = CLIDINFO_CALLID)

EDX_SYSTEM
Error from operating system

All Message Types (infotype) can produce an EDX_CLIDINFO error. Message Type
CLIDINFO_CALLID can also produce EDX_CLIDOOA and EDX_CLIDBLK errors. Table 10
indicates which caller ID-related error codes are returned for the different Message Types.

Example 1

/*$ dx_gtextcallid() example to obtain all available caller ID information $*/

#include <sys/types.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
/* Intel Dialogic Includes */
#include "srllib.h"
#include "dxxxlib.h"

int main()
{
 int numRings = 2; /* In the US */
 int ringTimeout = 20; /* 20 seconds */
 int chdev; /* Channel descriptor */
 unsigned short parmval;
 unsigned char buffer[81];
 /* Open channel */
 if ((chdev=dx_open("dxxxB1C1", NULL)) == -1) {
 /* process error */
 exit(0);
 }

 /* Enable the caller ID functionality */
 parmval = DX_CALLIDENABLE;
 if (dx_setparm(chdev, DXCH_CALLID, (void *) &parmval) == -1) {
 /* process error */
 exit(0);
 }

Table 10. Caller ID-Related Error Codes Returned for Different Message Types

Message Type ID
Error Codes

EDX_CLIDINFO EDX_CLIDBLK EDX_CLIDOOA

xx_CMPLT (all formats)

xx_GENERAL (all formats)

xx_CALLID (all formats)

xx_FRAMETYPE (all formats)

MCLASS_xx (CLASS MDM only)

276 Voice API Library Reference — June 2005

dx_gtextcallid() — retrieve a caller ID message

 /**
 * Set the number of rings required for a RING event to permit
 * receipt of the caller ID information. In the US, caller ID
 * information is transmitted between the first and second rings
 **/
 parmval = numRings; /* 2 in the US */
 if (dx_setparm(chdev, DXCH_RINGCNT, &parmval) == -1) {
 /* process error */
 exit(0);
 }

 /* Put the channel onhook */
 if (dx_sethook(chdev, DX_ONHOOK, EV_SYNC) == -1) {
 /* process error */
 exit (0);
 }

 /* Wait for 2 rings and go offhook (timeout after 20 seconds) */
 if (dx_wtring(chdev, numRings, DX_OFFHOOK, ringTimeout) == -1) {
 /* process error */
 }

 /***
 * If the message is an MDM (Multiple Data Message), then
 * individual submessages are available.
 * First get the frame and check the frame type. If Class MDM,
 * get and print information from submessages.
 ***/
 if (dx_gtextcallid(chdev,CLIDINFO_FRAMETYPE, buffer) != -1) {
 if(buffer[0] == CLASSFRAME_MDM) {
 /* Get and print the caller ID */
 if (dx_gtextcallid(chdev, MCLASS_DN, buffer) != -1) {
 printf("Caller ID = %s\n", buffer);
 }
 /* This is another way to obtain caller ID (regardless of frame type)*/
 else if (dx_gtextcallid(chdev, CLIDINFO_CALLID, buffer) != -1) {
 printf("Caller ID = %s\n", buffer);
 }
 else {
 /* print the reason for the Absence of caller ID */
 printf("Caller ID not available: %s\n", ATDV_ERRMSGP(chdev));
 }
 /* Get and print the Caller Name */
 if (dx_gtextcallid(chdev, MCLASS_NAME, buffer) != -1) {
 printf("Caller Name = %s\n", buffer);
 }
 /* Get and print the Date and Time */
 if (dx_gtextcallid(chdev, MCLASS_DATETIME, buffer) != -1) {
 printf("Date/Time = %s\n", buffer);
 }
 /* Get and print the Dialed Number */
 if (dx_gtextcallid(chdev, MCLASS_DDN, buffer) != -1) {
 printf("Dialed Number = %s\n", buffer);
 }
 }

 else {
 printf("Submessages not available - not an MDM message\n");
 /* Get just the caller ID */
 if (dx_gtextcallid(chdev, CLIDINFO_CALLID, buffer) != -1) {
 printf("Caller ID = %s\n", buffer);
 }
 else {
 /* print the reason for the absence of caller ID */
 printf("Caller ID not available: %s\n", ATDV_ERRMSGP(chdev));
 }

Voice API Library Reference — June 2005 277

retrieve a caller ID message — dx_gtextcallid()

 /***
 * If desired, the date/time, caller name, and caller ID can
 * be obtained together.
 **/
 if (dx_gtextcallid(chdev, CLIDINFO_GENERAL, buffer) != -1) {
 printf("Date/Time, Caller Number, and Caller ID = %s\n", buffer);
 }
 else {
 /* Print out the error message */
 printf("Error: %s\n", ATDV_ERRMSGP(chdev));
 }

 }
 }
 dx_close(chdev);
 return(0);
}

Example 2

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{

unsigned char buffer[81]; /* char buffer */
DX_EBLK eblk; /* event block struct */
int timeout; /* timeout for function */
int chdev; /* channel descriptor */
unsigned short parmval; /* parameter value */

/* open channel */
if ((chdev = dx_open("dxxxB1C1", NULL) == -1) {
 /* process error */
}

/* Enable Caller ID */
parmval = DX_CALLIDENABLE;
if (dx_setparm(chdev, DXCH_CALLID, (void *)&parmval) == -1) {
 /* process error */
}

/* set RINGS as events to wait for */
if (dx_setevtmsk(chdev, DM_RINGS) == -1) {
 /* process error */
}

timeout = 5; /* 5 seconds */
if (dx_getevt(chdev, &eblk, timeout) == -1) {
 /* process error */
}

/* Upon receiving ring event, check event data (bit 0) to see if caller ID
 * is available
 */
if ((eblk->ev_data & 0x0001) == 0)
 exit(0);

/* get caller’s name (use equates specific to your caller ID implementation) */
if (dx_gtextcallid(chdev,MCLASS_NAME,buffer) == -1) {
 printf("Error getting caller’s name: 0x%x\n", ATDV_LASTERR(chdev));
 /* process error */
}
printf("Caller Name = %s\n", buffer);

278 Voice API Library Reference — June 2005

dx_gtextcallid() — retrieve a caller ID message

/* get general information - date & time, number, and name */
if (dx_gtextcallid(chdev,CLIDINFO_GENERAL,buffer) == -1) {
 printf("Error getting date&time, number, and name.\n");
 /* process error */
}
printf("Date&time, number, and name = %s\n", buffer);

}

See Also

• dx_gtcallid()

• dx_wtcallid()

Voice API Library Reference — June 2005 279

retrieve the board serial number — dx_gtsernum()

dx_gtsernum()

retrieve the board serial number

Description

The dx_gtsernum() function returns the board serial number, either the standard serial number or
the silicon serial number, where supported. When available, the silicon serial number is the
preferred method for uniquely identifying boards.

The board serial number consists of eight ASCII characters and is printed on the serial number
sticker on the board. The silicon serial number consists of an additional six-byte serial number
encoded into the board and can include non-printable characters.

The serial number and silicon serial number can be used for developing software security in an
application program. For example, an application program can be “locked” to an Intel® telecom
board as part of the application installation procedure, by getting and saving the serial number in a
secure place within the application. From then on, when the application is executed, it can check
for the presence of the board and match it with the board serial number secured within the
application program.

Name: int dx_gtsernum (devd, subfcn, buffp)

Inputs: int devd • valid board device handle

int subfcn • sub-function

void *buffp • pointer to buffer for returned serial number

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: DM3, Springware

Parameter Description

devd specifies a valid board device handle

subfcn specifies one of the following sub-functions:
• GS_SN – returns the standard board serial number, consisting of eight

ASCII characters followed by a NULL byte. This number is printed on the
serial number sticker attached to the board.

• GS_SSN – returns the board silicon serial number (if supported), consisting
of six bytes of any value, including 0x00. An EDX_BADPROD error is
returned if the specified board does not support the silicon serial number.

buffp pointer to buffer where the serial number is returned

280 Voice API Library Reference — June 2005

dx_gtsernum() — retrieve the board serial number

Cautions

None.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_SYSTEM
Error from operating system

EDX_BADPARM
Invalid device handle or sub-function.

EDX_BADPROD
The board does not support GS_SSN (silicon serial number).

Example

/*$ dx_gtsernum() example $*/

#include "stdio.h"
#include "srllib.h"
#include "dxxxlib.h"

void main(int argc, char **argv)
{
 int dev;
 char serial[10];
 /* open the board device */
 if ((dev=dx_open("dxxxB1",0)) == -1) {
 printf("Error opening dxxxB1\n");
 exit(1);
 }

 /* get the board serial number and display it */
 if (dx_gtsernum(dev, GS_SN, serial) == 0) {
 printf("dxxxB1: %s\n", serial);
 } else {
 printf("Error %d, %s\n", ATDV_LASTERR(dev), ATDV_ERRMSGP(dev));
 }
 dx_close(dev);
 exit(0);
}

See Also

• dx_open()

Voice API Library Reference — June 2005 281

initialize and activate call progress analysis — dx_initcallp()

dx_initcallp()

initialize and activate call progress analysis

Description

On Springware boards, the dx_initcallp() function initializes and activates call progress analysis
on the channel identified by chdev. In addition, this function adds all tones used in call progress
analysis to the channel’s global tone detection (GTD) templates.

On DM3 boards, call progress analysis is enabled directly through the dx_dial() function.

On Springware boards, to use call progress analysis, dx_initcallp() must be called prior to using
dx_dial() or dx_dialtpt() on the specified channel. If dx_dial() or dx_dialtpt() is called before
initializing the channel with dx_initcallp(), then call progress analysis will operate in basic mode
only for that channel.

Call progress analysis allows the application to detect three different types of dial tone, two busy
signals, ringback, and two fax or modem tones on the channel. It is also capable of distinguishing
between a live voice and an answering machine when a call is connected. Parameters for these
capabilities are downloaded to the channel when dx_initcallp() is called.

The voice driver comes equipped with useful default definitions for each of the signals mentioned
above. The application can change these definitions through the dx_chgdur(), dx_chgfreq(), and
dx_chgrepcnt() functions. The dx_initcallp() function takes whatever definitions are currently in
force and uses these definitions to initialize the specified channel.

Once a channel is initialized with the current tone definitions, these definitions cannot be changed
for that channel without deleting all tones (via dx_deltones()) and re-initializing with another call
to dx_initcallp(). dx_deltones() also disables call progress analysis. Note, however, that
dx_deltones() will erase all user-defined tones from the channel (including any global tone
detection information), and not just the call progress analysis tones.

Name: int dx_initcallp(chdev)

Inputs: int chdev • valid channel device handle

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Progress Analysis

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

282 Voice API Library Reference — June 2005

dx_initcallp() — initialize and activate call progress analysis

Cautions

When you issue this function, the channel must be idle.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;
 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

 /*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default busy cadence
 */
 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }

 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

Voice API Library Reference — June 2005 283

initialize and activate call progress analysis — dx_initcallp()

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }
 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;
 case CR_BUSY:
 printf(" %s engaged\n", dialstrg);
 break;
 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;
 default:
 break;
 }
 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

See Also

• dx_chgdur()

• dx_chgfreq()

• dx_chgrepcnt()

• dx_deltones()

• dx_TSFStatus()

284 Voice API Library Reference — June 2005

dx_listen() — connect a voice listen channel to TDM bus time slot

dx_listen()

connect a voice listen channel to TDM bus time slot

Description

The dx_listen() function connects a voice receive channel to a TDM bus time slot, using
information stored in the SC_TSINFO data structure. The function sets up a half-duplex
connection. For a full-duplex connection, the receive channel of the other device must be connected
to the voice transmit channel.

The dx_listen() function returns immediately with success before the operation is completed.
After the operation is completed, the voice receive channel is connected to the TDM bus time slot.

Although multiple voice channels may listen (be connected) to the same TDM bus time slot, the
receive of a voice channel can connect to only one TDM bus time slot.

Note: TDM bus convenience function nr_scroute() includes dx_listen() functionality.

Cautions

• This function fails when an invalid channel device handle is specified or when an invalid TDM
bus time slot number is specified.

• On DM3 boards, this function is supported in a flexible routing configuration but not a fixed
routing configuration. This document assumes that a flexible routing configuration is the
configuration of choice. For more information on API restrictions in a fixed routing
configuration, see the Voice API Programming Guide.

• On DM3 boards, in a configuration where a network interface device listens to the same TDM
bus time slot device as a local, on board voice device or other media device, the sharing of time
slot (SOT) algorithm applies. This algorithm imposes limitations on the order and sequence of

Name: int dx_listen(chdev, sc_tsinfop)

Inputs: int chdev • valid channel device handle

SC_TSINFO *sc_tsinfop • pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: TDM Routing

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the voice channel device handle obtained when the channel was
opened using dx_open()

sc_tsinfop specifies a pointer to the SC_TSINFO structure

http://resource.intel.com/telecom/support/tnotes/tnbyos/2000/tn043.htm
http://resource.intel.com/telecom/support/tnotes/tnbyos/2000/tn043.htm
http://resource.intel.com/telecom/support/tnotes/tnbyos/2000/tn043.htm

Voice API Library Reference — June 2005 285

connect a voice listen channel to TDM bus time slot — dx_listen()

“listens” and “unlistens” between network and media devices. For details on application
development rules and guidelines regarding the sharing of time slot (SOT) algorithm, see the
technical note posted on the Intel telecom support web site:
http://resource.intel.com/telecom/support/tnotes/tnbyos/2000/tn043.htm

This caution applies to DMV, DMV/A, DM/IP, and DM/VF boards. This caution does not
apply to DMV/B, DI series, and DMV160LP boards.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function not supported in current bus configuration

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLTSCNCT
Channel is already connected to TDM bus

EDX_SH_LIBBSY
Switch Handler library busy

EDX_SH_LIBNOTINIT
Switch Handler library uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

http://resource.intel.com/telecom/support/tnotes/tnbyos/2000/tn043.htm

286 Voice API Library Reference — June 2005

dx_listen() — connect a voice listen channel to TDM bus time slot

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <ipmlib.h>

main()
{
 int dxdev, ipdev; /* Channel device handles */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

 /* Open IP channel ipmB1C1 */
 if((ipdev = ipm_Open("ipmB1C1", NULL, EV_SYNC)) == -1) {
 /* process error */
 }
 /* Open voice channe1 dxxxB1C1 */
 if ((dxdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* process error */
 }

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get transmit time slot of IP channel ipmB1C1 */
 if (ipm_GetXmitSlot(ipdev, &sc_tsinfo, EV_SYNC) == -1) {
 /* process error */
 }

 /* Connect the receive timeslot of voice channel dxxxB1C1 to the transmit time slot
 ...of IP channel ipmB1C1 */
 if (dx_listen(dxdev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(dxdev));
 exit(1);
 }
}

See Also

• ag_getxmitslot()

• dx_getxmitslot()

• dx_unlisten()

• dx_unlistenecr()

• ipm_Open() in IP Media Library API Library Reference

• ipm_GetXmitSlot() in IP Media Library API Library Reference

Voice API Library Reference — June 2005 287

enable echo cancellation resource mode — dx_listenecr()

dx_listenecr()

enable echo cancellation resource mode

Description

The dx_listenecr() function enables echo cancellation resource (ECR) mode on a specified voice
channel and connects the voice channel to the echo-referenced signal on the specified TDM bus
time slot. The TDM bus time slot information is contained in the SC_TSINFO data structure. For
more information on this structure, see SC_TSINFO, on page 557.

Note: The ECR functions have been replaced by the continuous speech processing (CSP) API functions.
CSP provides enhanced echo cancellation. For more information, see the Continuous Speech
Processing API Programming Guide and Continuous Speech Processing API Library Reference.

Note: For this function, NLP is enabled by default. If you do not want NLP enabled, use
dx_listenecrex() with NLP disabled.

The sc_numts field of the SC_TSINFO structure must be set to 1. The sc_tsarrayp field of the
SC_TSINFO structure must be initialized with a pointer to a valid array. The first element of this
array must contain a valid TDM bus time-slot number (between 0 and 1023) which was obtained
by issuing a call to xx_getxmitslot() (where xx_ is ag_, dt_, dx_, fx_, or ms_) or
dx_getxmitslotecr(), depending on the application of the function. Upon return from the
dx_listenecr() function, the echo canceller of the specified voice channel is connected to the TDM
bus time slot specified, and it uses the signal carried on the TDM bus time slot as the echo-
reference signal for echo cancellation.

Name: int dx_listenecr(chdev, sc_tsinfop)

Inputs: int chdev • handle of voice channel device on which echo cancellation is to
be performed

SC_TSINFO *sc_tsinfop • pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Echo Cancellation Resource

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the voice channel device handle obtained when the channel was
opened using dx_open()

sc_tsinfop specifies a pointer to the SC_TSINFO structure

288 Voice API Library Reference — June 2005

dx_listenecr() — enable echo cancellation resource mode

Cautions

This function fails when:

• An invalid channel device handle is specified.

• An invalid TDM bus time-slot number is specified.

• The ECR feature is not enabled on the board specified.

• The ECR feature is not supported on the board specified.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Function is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_CMDBLOCK
Blocking function is in progress

EDX_SH_LCLTSCNCT
Channel is already connected to TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

Voice API Library Reference — June 2005 289

enable echo cancellation resource mode — dx_listenecr()

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <msilib.h>

main()
{
 int msdev1, chdev2; /* MSI/SC Station, and Voice Channel device handles */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

 /* Open MSI/SC board 1 station 1 device */
 if ((msdev1 = ms_open("msiB1C1", 0)) == -1) {
 /* Perform system error processing */
 exit(1);
 }

 /* Open board 1 channel 2 device */
 if ((chdev2 = dx_open("dxxxB1C2", 0)) == -1) {
 /* Perform system error processing */
 exit(1);
 }

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get TDM bus time slot connected to transmit of MSI/SC station 1 on board 1 */
 if (ms_getxmitslot(msdev1, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(msdev1));
 exit(1);
 }

 /* Connect the echo-reference receive of voice channel 2 on board 1 to
 the transmit signal of msdev1 */
 if (dx_listenecr(chdev2, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev2));
 exit(1);
 }
 /* Continue
 .
 .
 .
 /* Then perform xx_unlisten()s and dx_unlistenecr(), plus all xx_close()s */
 return(0);
}

See Also

• dx_getxmitslotecr()

• dx_listen()

• dx_listenecrex()

• dx_unlistenecr()

• xx_getxmitslot(), where xx refers to the type of device such as ag_ (analog), dt_ (digital
network interface), dx_ (voice), fx_ (fax), and ms_ (modular station interface)

290 Voice API Library Reference — June 2005

dx_listenecrex() — modify characteristics of the echo canceller

dx_listenecrex()

modify characteristics of the echo canceller

Description

The dx_listenecrex() function performs identically to dx_listenecr() and also modifies the
characteristics of the echo canceller. The characteristics of the echo canceller can be set using the
DX_ECRCT structure. For more information on this structure, see DX_ECRCT, on page 533.

Note: The ECR functions have been replaced by the continuous speech processing (CSP) API functions.
CSP provides enhanced echo cancellation. For more information, see the Continuous Speech
Processing API Programming Guide and Continuous Speech Processing API Library Reference.

One characteristic of the echo canceller that can be set using dx_listenecrex() is non-linear
processing (NLP). When NLP is activated, the output of the echo canceller is replaced with an
estimate of the background noise. The NLP provides full echo suppression as long as the echo-
reference signal contains speech signals and the echo-carrying signal does not. In this case, the
echo canceller cancels the echo and maintains the full duplex connection.

Note: Disable NLP when using the echo canceller output for voice recognition algorithms as NLP may
clip the beginning of speech.

Cautions

This function fails when:

Name: int dx_listenecrex(chdev, sc_tsinfop, ecrctp)

Inputs: int chdev • handle of voice channel device on which echo cancellation will
be performed

SC_TSINFO *sc_tsinfop • pointer to TDM bus time slot information structure

DX_ECRCT void *ecrctp • pointer to ECR characteristic structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Echo Cancellation Resource

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the voice channel device handle obtained when the channel was
opened using dx_open()

sc_tsinfop specifies a pointer to the SC_TSINFO structure

ecrctp specifies a pointer to the DX_ECRCT structure cast to a (void *)

Voice API Library Reference — June 2005 291

modify characteristics of the echo canceller — dx_listenecrex()

• An invalid channel device handle is specified.

• The ECR feature is not enabled on the board specified.

• The ECR feature is not supported on the board specified.

• The characteristic table contains invalid fields.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Function is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking function is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

292 Voice API Library Reference — June 2005

dx_listenecrex() — modify characteristics of the echo canceller

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <msilib.h>

main()
{
 int msdev1, chdev2; /* MSI/SC Station and Voice Channel device handles */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 DX_ECRCT dx_ecrct; /* ECR Characteristic Table */
 long scts; /* TDM bus time slot */

 /* Open MSI/SC board 1 station 1 device */
 if ((msdev1 = ms_open("msiB1C1", 0)) == -1) {
 /* Perform system error processing */
 exit(1);
 }

 /* Open board 1 channel 2 device */
 if ((chdev2 = dx_open("dxxxB1C2", 0)) == -1) {
 /* Perform system error processing */
 exit(1);
 }

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Fill in the ECR Characteristic Table : with NLP turned off */
 dx_ecrct.ct_length = size_of_ecr_ct;
 dx_ecrct.ct_NLPflag = ECR_CT_DISABLE;

 /* Get TDM bus time slot connected to transmit of MSI/SC station 1 on board 1 */
 if (ms_getxmitslot(msdev1, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(msdev1));
 exit(1);
 }

 /* Connect the echo-reference receive of voice channel 2 on board 1 to
 the transmit signal of msdev1 */
 if (dx_listenecrex(chdev2, &sc_tsinfo, (void *)&dx_ecrct) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev2));
 exit(1);
 }

 /* Continue
 .
 .
 .
 /* Then perform xx_unlisten()s and dx_unlistenecr(), plus all xx_close()s */
 return(0);
}

See Also

• dx_listenecr()

Voice API Library Reference — June 2005 293

record voice data from two TDM bus time slots — dx_mreciottdata()

dx_mreciottdata()

record voice data from two TDM bus time slots

Description

The dx_mreciottdata() function records voice data from two TDM bus time slots. The data may
be recorded to a combination of data files, memory or custom devices.

This function is used for the transaction record feature, which allows you to record two TDM bus
time slots from a single channel. Voice activity on two channels can be summed and stored in a
single file, device, and/or memory.

Notes: 1. This function is not supported on HDSI (High Density Station Interface) products, because HDSI
products do not support routable voice resources.

2. On Springware boards on Linux, use the dx_recm() and dx_recmf() functions for transaction
record.

Name: dx_mreciottdata (devd, iotp, tptp, xpb, mode, sc_tsinfop)

Inputs: int devd • valid channel device handle

DX_IOTT *iotp • pointer to I/O transfer table

DV_TPT *tptp • pointer to termination control block

DX_XPB *xpb • pointer to I/O transfer parameter block

USHORT *mode • switch to set audible tone, or DTMF termination

SC_TSINFO *sc_tsinfop • pointer to time slot information structure

Returns: 0 success
-1 error return code

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: DM3, Springware Windows

294 Voice API Library Reference — June 2005

dx_mreciottdata() — record voice data from two TDM bus time slots

Note: When using RM_TONE bit for tone-initiated record, each time slot must be “listening” to the
transmit time slot of the recording channel; the alert tone can only be transmitted on the recording
channel’s transmit time slot.

After dx_mreciottdata() is called, recording continues until one of the following occurs:

• dx_stopch() is called on the channel whose device handle is specified in the devd parameter

• the data requirements specified in the DX_IOTT structure are fulfilled

• one of the conditions for termination specified in the DV_TPT structure is satisfied

Cautions

• All files specified in the DX_IOTT structure are of the file format specified in DX_XPB.

• All files recorded will have the same data encoding and rate as DX_XPB.

• When recording VOX files, the data format is specified in DX_XPB rather than through the
dx_setparm() function.

• Voice data files that are specified in the DX_IOTT structure must be opened with the
O_BINARY flag.

• When using MSI stations for transaction recording, make sure a full duplex connection is
established. You must issue an ms_listen() even though the MSI station is used only for
transmitting.

• On Springware boards, because the DSP sums the PCM values of the two TDM bus time slots
before processing them during transaction recording, all voice-related terminating conditions

Parameter Description

devd specifies the valid channel device handle on which the recording is to occur.
The channel descriptor may be that associated with either of the two TDM bus
transmit time slots or a third device also connected to the TDM bus.

iotp points to the I/O Transfer Table Structure, DX_IOTT, which specifies the
order of recording and the location of voice data. For more information on this
structure, see DX_IOTT, on page 534.

tptp points to the Termination Parameter Table Structure, DV_TPT, which
specifies the termination conditions for recording. For more information on
this structure, see DV_TPT, on page 510.

xpb points to a DX_XPB structure, which specifies the file format, data format,
sampling rate, and resolution for I/O data transfer. For more information on
this structure, see DX_XPB, on page 546.

mode specifies the attributes of the recording mode. One or more of the following
values can be specified:
• 0 – standard record mode
• RM_TONE – transmit a 200 msec tone before initiating record

sc_tsinfop points to the SC_TSINFO structure and specifies the TDM bus transmit time
slot values of the two time slots being recorded.

In the SC_TSINFO structure, sc_numts should be set to 2 for channel
recording and sc_tsarrayp should point to an array of two long integers,
specifying the two TDM bus transmit time slots from which to record.

Voice API Library Reference — June 2005 295

record voice data from two TDM bus time slots — dx_mreciottdata()

or features such as DTMF detection, Automatic Gain Control (AGC), and sample rate change
will apply to both time slots. In other words, for terminating conditions specified by a DTMF
digit, either time slot containing the DTMF digit will stop the recording. Also, maximum
silence length requires simultaneous silence from both time slots to meet the specification.

• If both time slots transmit a DTMF digit at the same time, the recording will contain an
unintelligible result.

• Since this function uses dx_listen() to connect the channel to the first specified time slot, any
error returned from dx_listen() will terminate the function with the error indicated.

• This function connects the channel to the time slot specified in the SC_TSINFO data structure
sc_tsarrayp[0] field and remains connected after the function has completed. Both
sc_tsarrayp[0] and sc_tsarrayp[1] must be within the range allowed in SC_TSINFO. No
checking is done to verify that sc_tsarrayp[0] or sc_tsarrayp[1] has been connected to a valid
channel.

• Upon termination of the dx_mreciottdata() function, the recording channel continues to
listen to the first time slot (pointed to by sc_tsarray[0]).

• The application should check for a TDX_RECORD event with T_STOP event data after
executing a dx_stopch() function during normal and transaction recording. This will ensure
that all data is written to the disk.

• On Springware boards, the recording channel can only detect a loop current drop on a physical
analog front end that is associated with that channel. If you have a configuration where the
recording channel is not listening to its corresponding front end, you will have to design the
application to detect the loop current drop and issue a dx_stopch() to the recording device.
The recording channel hook state should be off-hook while the recording is in progress.

• The transaction record feature may not detect a DTMF digit over a dial tone.

• When using dx_mreciottdata() and a dial tone is present on one of the time slots, digits will
not be detected until dial tone is no longer present. This is because the DSP cannot determine
the difference between dial tone and DTMF tones.

• On DM3 boards, tone termination conditions such as DTMF and TONE apply only to the
primary input of the function; that is, the TDM time slot specified in the SC_TSINFO data
structure sc_tsarrayp[0] field.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADDEV
Invalid device handle

EDX_BADIOTT
Invalid DX_IOTT entry

EDX_BADPARM
Invalid parameter passed

EDX_BADTPT
Invalid DV_TPT entry

296 Voice API Library Reference — June 2005

dx_mreciottdata() — record voice data from two TDM bus time slots

EDX_BUSY
Busy executing I/O function

EDX_SYSTEM
Error from operating system

Example 1

The following example is for Linux applications.

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

#include <stdio.h>
#include <stdlib.h>

#define MAXLEN 100000

/* Define logging macro */
#define log_rc(B, F) \
 printf (" %-60.60s: ", #B); \
 fflush (stdout); \
 retval = B; \
 printf ("RC=%d\n", retval); \
 if (retval F) { printf ("Fatal error!\n"); exit (1); }

main(int argc, char *argv[])
{
 int playerOne, playerTwo, recorder;
 DX_IOTT playOneiott={0}, playTwoiott={0}, recordiott={0};
 DV_TPT playOnetpt={0}, playTwotpt={0}, recordtpt ={0};
 DX_XPB recordxpb={0}, playOnexpb={0}, playTwoxpb={0};

 SC_TSINFO playOnetsinfo, playTwotsinfo, recordtsinfo;
 long playOnescts, playTwoscts;
 long mRectslots[32];

 /* open two play channels and one record channel */
 if ((playerOne = dx_open(argv[3], NULL)) == -1) {
 printf("Could not open %s\n", argv[3]);
 exit (1);
 }

 if ((playerTwo = dx_open(argv[4], NULL)) == -1) {
 printf("Could not open %s\n", argv[4]);
 exit (1);
 }

 if ((recorder = dx_open(argv[5], NULL)) == -1) {
 printf("Could not open %s\n", argv[5]);
 exit (1);
 }

 dx_clrtpt (&playOnetpt, 1);
 dx_clrtpt (&playTwotpt, 1);
 dx_clrtpt (&recordtpt, 1);

 log_rc (playTwoiott.io_fhandle = open (argv[2], O_RDONLY), == -1)
 log_rc (playOneiott.io_fhandle = open (argv[1], O_RDONLY), == -1)

Voice API Library Reference — June 2005 297

record voice data from two TDM bus time slots — dx_mreciottdata()

 playOneiott.io_type = IO_DEV | IO_EOT;
 playOneiott.io_offset = 0;
 playOneiott.io_length = -1;

 playOnexpb.wFileFormat = FILE_FORMAT_VOX;
 playOnexpb.wDataFormat = DATA_FORMAT_MULAW;
 playOnexpb.nSamplesPerSec = DRT_8KHZ;
 playOnexpb.wBitsPerSample = 8;

 playTwoiott.io_type = IO_DEV | IO_EOT;
 playTwoiott.io_offset = 0;
 playTwoiott.io_length = -1;

 playTwoxpb.wFileFormat = FILE_FORMAT_VOX;
 playTwoxpb.wDataFormat = DATA_FORMAT_MULAW;
 playTwoxpb.nSamplesPerSec = DRT_8KHZ;
 playTwoxpb.wBitsPerSample = 8;

 /* Get channels' external time slots and fill in mRectslots[] array */
 playOnetsinfo.sc_numts = 1;
 playOnetsinfo.sc_tsarrayp = &playOnescts;
 if (dx_getxmitslot (playerOne, &playOnetsinfo) == -1){
 /* Handle error */
 }

 playTwotsinfo.sc_numts = 1;
 playTwotsinfo.sc_tsarrayp = &playTwoscts;
 if (dx_getxmitslot (playerTwo, &playTwotsinfo) == -1) {
 /* Handle error */
 }

 mRectslots[1] = playTwoscts;
 mRectslots[0] = playOnescts;

 /* Set up SC_TSINFO structure */
 recordtsinfo.sc_numts = 2;
 recordtsinfo.sc_tsarrayp = &mRectslots[0];

 log_rc (recordiott.io_fhandle = open(argv[6], O_CREAT | O_RDWR, 0666), == -1);
 recordiott.io_type = IO_EOT|IO_DEV;
 recordiott.io_offset = 0;
 recordiott.io_length = MAXLEN;
 recordiott.io_bufp = 0;
 recordiott.io_nextp = NULL;

 recordxpb.wFileFormat = FILE_FORMAT_VOX;
 recordxpb.wDataFormat = DATA_FORMAT_MULAW;
 recordxpb.nSamplesPerSec = DRT_8KHZ;
 recordxpb.wBitsPerSample = 8;

 /* Play user-supplied files */
 log_rc (dx_playiottdata(playerOne, &playOneiott, NULL, &playOnexpb, EV_ASYNC), ==-1)
 log_rc (dx_playiottdata(playerTwo, &playTwoiott, NULL, &playTwoxpb, EV_ASYNC), ==-1)

 /* And record from both play channels */
 printf("\n Starting dx_mreciottdata");
 if (dx_mreciottdata(recorder, &recordiott, NULL, &recordxpb, EV_SYNC|RM_TONE,
 &recordtsinfo) == -1) {
 printf("Error recording from dxxxB1C1 and dxxxB1C2\n");
 printf("error = %s\n", ATDV_ERRMSGP(recorder));
 exit(2);
 }
 printf("\n Finished dx_mreciottdata\n");

 /* Display termination condition value */
 printf ("The termination value = %d\n", ATDX_TERMMSK(playerOne));

298 Voice API Library Reference — June 2005

dx_mreciottdata() — record voice data from two TDM bus time slots

 /* Close two play channels and one record channel */
 if (dx_close(recorder) == -1){
 printf("Error closing recorder \n");
 printf("errno = %d\n", errno);
 exit(3);
 }
 if (dx_close(playerTwo) == -1){
 printf("Error closing playerTwo\n");
 printf("errno = %d\n", errno);
 exit (3);
 }
 if (dx_close(playerOne) == -1) {
 printf("Error closing playerOne\n");
 printf("errno = %d\n", errno);
 exit (3);
 }
 if (close(recordiott.io_fhandle) == -1){
 printf("File close error \n");
 exit(1);
 }
 if (close(playOneiott.io_fhandle) == -1){
 printf("File close error \n");
 exit(1);
 }
 if (close(playTwoiott.io_fhandle) == -1){
 printf("File close error \n");
 exit(1);
 }
 /* And finish */
 return 1;
}

Example 2

The following example is for Windows applications.

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#include <stdio.h>
#include <stdlib.h>

#define MAXLEN 100000

/* Define logging macro */
#define log_rc(B, F) \
 printf (" %-60.60s: ", #B); \
 fflush (stdout); \
 retval = B; \
 printf ("RC=%d\n", retval); \
 if (retval F) { printf ("Fatal error!\n"); exit (1); }

main(int argc, char *argv[])
{
 int playerOne, playerTwo, recorder;
 DX_IOTT playOneiott={0}, playTwoiott={0}, recordiott={0};
 DV_TPT playOnetpt={0}, playTwotpt={0}, recordtpt ={0};
 DX_XPB recordxpb={0}, playOnexpb={0}, playTwoxpb={0};

 SC_TSINFO playOnetsinfo, playTwotsinfo, recordtsinfo;
 long playOnescts, playTwoscts;
 long mRectslots[32];

Voice API Library Reference — June 2005 299

record voice data from two TDM bus time slots — dx_mreciottdata()

 /* open two play channels and one record channel */
 if ((playerOne = dx_open(argv[3], NULL)) == -1) {
 printf("Could not open %s\n", argv[3]);
 exit (1);
 }

 if ((playerTwo = dx_open(argv[4], NULL)) == -1) {
 printf("Could not open %s\n", argv[4]);
 exit (1);
 }

 if ((recorder = dx_open(argv[5], NULL)) == -1) {
 printf("Could not open %s\n", argv[5]);
 exit (1);
 }

 dx_clrtpt (&playOnetpt, 1);
 dx_clrtpt (&playTwotpt, 1);
 dx_clrtpt (&recordtpt, 1);

 log_rc (playTwoiott.io_fhandle = dx_fileopen (argv[2], O_RDONLY|O_BINARY), == -1)
 log_rc (playOneiott.io_fhandle = dx_fileopen (argv[1], O_RDONLY|O_BINARY), == -1)

 playOneiott.io_type = IO_DEV | IO_EOT;
 playOneiott.io_offset = 0;
 playOneiott.io_length = -1;

 playOnexpb.wFileFormat = FILE_FORMAT_VOX;
 playOnexpb.wDataFormat = DATA_FORMAT_MULAW;
 playOnexpb.nSamplesPerSec = DRT_8KHZ;
 playOnexpb.wBitsPerSample = 8;

 playTwoiott.io_type = IO_DEV | IO_EOT;
 playTwoiott.io_offset = 0;
 playTwoiott.io_length = -1;

 playTwoxpb.wFileFormat = FILE_FORMAT_VOX;
 playTwoxpb.wDataFormat = DATA_FORMAT_MULAW;
 playTwoxpb.nSamplesPerSec = DRT_8KHZ;
 playTwoxpb.wBitsPerSample = 8;

 /*
 * Get channels' external time slots and fill in mRectslots[] array
 */
 playOnetsinfo.sc_numts = 1;
 playOnetsinfo.sc_tsarrayp = &playOnescts;
 if (dx_getxmitslot (playerOne, &playOnetsinfo) == -1){
 /* Handle error */
 }

 playTwotsinfo.sc_numts = 1;
 playTwotsinfo.sc_tsarrayp = &playTwoscts;
 if (dx_getxmitslot (playerTwo, &playTwotsinfo) == -1) {
 /* Handle error */
 }

 mRectslots[1] = playTwoscts;
 mRectslots[0] = playOnescts;

 /* Set up SC_TSINFO structure */
 recordtsinfo.sc_numts = 2;
 recordtsinfo.sc_tsarrayp = &mRectslots[0];

 log_rc (recordiott.io_fhandle = dx_fileopen(argv[6], O_RDWR|O_BINARY|O_CREAT), == -1);
 recordiott.io_type = IO_EOT|IO_DEV;
 recordiott.io_offset = 0;
 recordiott.io_length = MAXLEN;

300 Voice API Library Reference — June 2005

dx_mreciottdata() — record voice data from two TDM bus time slots

 recordiott.io_bufp = 0;
 recordiott.io_nextp = NULL;

 recordxpb.wFileFormat = FILE_FORMAT_VOX;
 recordxpb.wDataFormat = DATA_FORMAT_MULAW;
 recordxpb.nSamplesPerSec = DRT_8KHZ;
 recordxpb.wBitsPerSample = 8;

 /* Play user-supplied files */
 log_rc (dx_playiottdata(playerOne, &playOneiott, NULL, &playOnexpb, EV_ASYNC), ==-1)
 log_rc (dx_playiottdata(playerTwo, &playTwoiott, NULL, &playTwoxpb, EV_ASYNC), ==-1)

 /* And record from both play channels */
 printf("\n Starting dx_mreciottdata");
 if (dx_mreciottdata(recorder, &recordiott, NULL, &recordxpb, EV_SYNC|RM_TONE,
 &recordtsinfo) == -1) {
 printf("Error recording from dxxxB1C1 and dxxxB1C2\n");
 printf("error = %s\n", ATDV_ERRMSGP(recorder));
 exit(2);
 }
 printf("\n Finished dx_mreciottdata\n");

 /* Display termination condition value */
 printf ("The termination value = %d\n", ATDX_TERMMSK(playerOne));

 /* Close two play channels and one record channel */
 if (dx_close(recorder) == -1){
 printf("Error closing recorder \n");
 printf("errno = %d\n", errno);
 exit(3);
 }
 if (dx_close(playerTwo) == -1){
 printf("Error closing playerTwo\n");
 printf("errno = %d\n", errno);
 exit (3);
 }
 if (dx_close(playerOne) == -1) {
 printf("Error closing playerOne\n");
 printf("errno = %d\n", errno);
 exit (3);
 }
 if (dx_fileclose(recordiott.io_fhandle) == -1){
 printf("File close error \n");
 exit(1);
 }
 if (dx_fileclose(playOneiott.io_fhandle) == -1){
 printf("File close error \n");
 exit(1);
 }
 if (dx_fileclose(playTwoiott.io_fhandle) == -1){
 printf("File close error \n");
 exit(1);
 }
 /* And finish */
 return 1;
}

See Also

• dx_rec()

• dx_play()

• dx_reciottdata()

• dx_playiottdata()

Voice API Library Reference — June 2005 301

open a voice device and return a unique device handle — dx_open()

dx_open()

open a voice device and return a unique device handle

Description

The dx_open() function opens a voice board device, channel device, or physical board device, and
returns a unique device handle to identify the device. All subsequent references to the opened
device must be made using the handle until the device is closed.

The device handle returned by this function is defined by Intel. It is not a standard operating system
file descriptor. Any attempts to use operating system commands such as read(), write(), or ioctl()
will produce unexpected results.

On Windows, by default, the maximum number of times you can simultaneously open the same
channel in your application is set to 30 in the Windows Registry.

Use Standard Runtime Library device mapper functions to return information about the structure of
the system, including a list of all physical boards, all virtual boards on a physical board, and all
subdevices on a virtual board. This device information is used as input in the dx_open() function.
For more information on these functions, see the Standard Runtime Library API Library Reference.

Name: int dx_open(namep, oflags)

Inputs: char *namep • pointer to device name to open

Returns: >0 to indicate valid device handle if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Device Management

Mode: synchronous

Platform: DM3, Springware

Parameter Description

namep points to an ASCIIZ string that contains the name of the valid device. These
valid devices can be either boards or channels.

The standard board device naming convention for voice devices is: dxxxB1,
dxxxB2, and so on.

The standard channel device naming convention for voice devices is:
dxxxB1C1, dxxxB1C2, and so on.

On DM3 boards, if issuing this function for cached prompt management, then
this parameter points to a physical board device. The physical board device
naming convention is: brdB1, brdB2, and so on. For more information on
cached prompt management, see the Voice API Programming Guide.

oflags reserved for future use. Set this parameter to 0.

302 Voice API Library Reference — June 2005

dx_open() — open a voice device and return a unique device handle

Cautions

• Do not use the operating system open() function to open a voice device. Unpredictable results
will occur.

• In applications that spawn child processes from a parent process, the device handle is not
inheritable by the child process. Make sure devices are opened in the child process.

• On DM3 boards, two processes cannot open and access the same device. On Springware
boards, a device can be opened more than once by any number of processes.

• In Linux, If STDOUT has been closed and an Intel® Dialogic® device is then opened, the
device may get the same handle as STDOUT. Subsequent calls to printf() (which goes to
STDOUT) may cause a kernel panic.

• On Springware boards in Linux, when developing an application for a large system (more than
350 devices), the application should open all the voice devices (board and/or channel) first, and
then open all other devices.

Errors

In Windows, if this function returns -1 to indicate failure, a system error has occurred; use
dx_fileerrno() to obtain the system error value. Refer to the dx_fileerrno() function for a list of
the possible system error values.

In Linux, if this function returns -1 to indicate failure, check errno for one of the following reasons:

EBADF
Invalid file descriptor

EINTR
A signal was caught

EINVAL
Invalid argument

EIO
Error during a Linux STREAMS open

This function will fail and return -1 if:

• The device name is invalid.

• A hardware error on the board or channel is discovered.

Example 1

This example illustrates how to open a channel device.

#include "srllib.h>"
#include "dxxxlib.h>"

main()
{
 int chdev; /* channel descriptor */
 .
 .
 .

Voice API Library Reference — June 2005 303

open a voice device and return a unique device handle — dx_open()

 /* Open Channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 /* process error */
 }
 .
 .
}

Example 2

This example illustrates how to open a physical board device when using cached prompts.

#include "srllib.h>"
#include "dxxxlib.h>"

main()
{
 int brdhdl; /* board handle */
 .
 .
 .

 /* Open board */
 if ((brdhdl = dx_open("brdB1",0)) == -1) {
 /* process system error */
 exit(1);
 }
 .
 .
 .
}

See Also

• dx_close()

304 Voice API Library Reference — June 2005

dx_OpenStreamBuffer() — create and initialize a circular stream buffer

dx_OpenStreamBuffer()

create and initialize a circular stream buffer

Description

The dx_OpenStreamBuffer() function allocates and initializes a circular stream buffer for
streaming to a voice device.

You can create as many stream buffers as needed on a channel; however, you are limited by the
amount of memory on the system. You can use more than one stream buffer per play via the
DX_IOTT structure. In this case, specify that the data ends in one buffer using the STREAM_EOD
flag so that the play can process the next DX_IOTT structure in the chain. For more information
about using the streaming to board feature, see the Voice API Programming Guide.

This function initializes the circular stream buffer to the same initial state as
dx_ResetStreamBuffer().

Cautions

The buffer identified by the circular stream buffer handle cannot be used by multiple channels for
the play operation.

Errors

This function fails with -1 error if there is not enough system memory available to process this
request.

Unlike other voice API library functions, the streaming to board functions do not use SRL device
handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used to retrieve
error codes and error descriptions.

Name: int dx_OpenStreamBuffer(BuffSize)

Inputs: int BuffSize • size in bytes of circular stream buffer

Returns: stream buffer handle if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: streaming to board

Mode: synchronous

Platform: DM3

Parameter Description

BuffSize specifies the size in bytes of the circular stream buffer to allocate

Voice API Library Reference — June 2005 305

create and initialize a circular stream buffer — dx_OpenStreamBuffer()

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int nBuffSize = 32768, vDev = 0;
 int hBuffer = -1;
 char pData[1024];
 DX_IOTT iott;
 DV_TPT ptpt;

 if ((hBuffer = dx_OpenStreamBuffer(nBuffSize)) < 0)
 {
 printf("Error opening stream buffer \n");
 exit(1);
 }
 if ((vDev = dx_open("dxxxB1C1", 0)) < 0)
 {
 printf("Error opening voice device\n");
 exit(2);
 }

 iott.io_type = IO_STREAM|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play until STREAM_EOD */
 iott.io_fhandle = hBuffer;

 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 if (dx_play(vDev, &iott, &tpt, EV_ASYNC) < 0)
 {
 printf("Error in dx_play() %d\n", ATDV_LASTERR(vDev));
 }
 /* Repeat the following until all data is streamed */

 if (dx_PutStreamData(hBuffer, pData, 1024, STREAM_CONT) < 0)
 {
 printf("Error in dx_PutStreamData \n");
 exit(3);
 }
 /* Wait for TDX_PLAY event and other events as appropriate */

 if (dx_CloseStreamBuffer(hBuffer) < 0)
 {
 printf("Error closing stream buffer \n");
 }
}

See Also

• dx_CloseStreamBuffer()

• dx_SetWaterMark()

306 Voice API Library Reference — June 2005

dx_pause() — pause on-going play

dx_pause()

pause on-going play

Description

The dx_pause() function pauses an on-going play until a subsequent dx_resume() function is
issued. To stop the paused play, use dx_stopch(). The application will not get an event when
dx_pause() is issued. This function does not return an error if the channel is already in the
requested state. This function returns -1 if no play is in progress on the channel.

You can also pause and resume play using a DTMF digit. For more information, see SV_PAUSE
and SV_RESUME in the DX_SVCB data structure and dx_setsvcond().

For more information on the pause and resume play feature, see the Voice API Programming
Guide.

Cautions

None.

Errors

An error of -1 is returned if you issue this function when no play is in progress.

If the function returns -1, use the Standard Runtime Library ATDV_LASTERR() standard
attribute function to return the error code or ATDV_ERRMSGP() to return the descriptive error
message. Possible errors for this function include:

EDX_BUSY
Invalid state. Returned when the function is issued but no play is in progress on the channel.

Name: int dx_pause(chdev)

Inputs: int chdev • valid channel device handle

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: synchronous

Platform: DM3

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 307

pause on-going play — dx_pause()

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int lDevHdl;
 DX_IOTT iott;

 /* Open a voice channel */
 int lDevHdl = dx_open("dxxxB1C1", 0);

 /* Set up DX_IOTT */
 DX_IOTT iott;
 /* Fill in the iott structure for the play */
 .
 .
 .

 /* Start playing a prompt */
 if(dx_playiottdata(lDevHdl, &iott, NULL, NULL, EV_ASYNC) < 0)
 {
 /* process error */
 }

 /* Pause the play */
 if(dx_pause(lDevHdl) <0)
 {
 /* process error */
 }
 .
 .
 .
}

See Also

• dx_resume()

308 Voice API Library Reference — June 2005

dx_play() — play recorded voice data

dx_play()

play recorded voice data

Description

The dx_play() function plays recorded voice data, which may come from any combination of data
files, memory, or custom devices. In the case of DM3 boards, voice data may also come from
already downloaded cached prompts.

For a single file synchronous play, dx_playf() is more convenient because you do not have to set
up a DX_IOTT structure. See the dx_playf() function description for more information.

To specify format information about the data to be played, including file format, data encoding,
sampling rate, and bits per sample, use dx_playiottdata().

Name: int dx_play(chdev, iottp, tptp, mode)

Inputs: int chdev • valid channel device handle

DX_IOTT *iottp • pointer to I/O Transfer Table structure

DV_TPT *tptp • pointer to Termination Parameter Table structure

unsigned short mode • asynchronous/synchronous playing mode bit mask for this play session

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: DM3, Springware

Parameter Description

chdev Specifies the valid channel device handle obtained when the channel was
opened using dx_open().

iottp Points to the I/O Transfer Table Structure, DX_IOTT, which specifies the
order of playback and the location of voice data. See DX_IOTT, on page 534,
for information about the data structure.

tptp Points to the Termination Parameter Table structure, DV_TPT, which
specifies termination conditions for playing. For more information on this
structure, see DV_TPT, on page 510.

Note: In addition to DV_TPT terminations, the function can fail due to
maximum byte count, dx_stopch(), or end of file. See
ATDX_TERMMSK() for a full list of termination reasons.

Voice API Library Reference — June 2005 309

play recorded voice data — dx_play()

Notes: 1. The rate specified in the last play function applies to the next play function, unless the rate was
changed in the parameter DXCH_PLAYDRATE using dx_setparm().

2. Specifying PM_SR6 or PM_SR8 changes the setting of the parameter DXCH_PLAYDRATE.
DXCH_PLAYDRATE can also be set and queried using dx_setparm() and dx_getparm(). The
default setting for DXCH_PLAYDRATE is 6 kHz.

3. Make sure data is played using the same encoding algorithm and sampling rate used when the
data was recorded.

mode Defines the play mode and asynchronous/synchronous mode. One or more of
the play mode parameters listed below may be selected in the bit mask for
play mode combinations (see Table 11).

Choose one only:
• EV_ASYNC – run asynchronously
• EV_SYNC – run synchronously (default)

On DM3 boards, choose one or more of the following:
• MD_ADPCM – play using Adaptive Differential Pulse Code Modulation

encoding algorithm (4 bits per sample). Playing with ADPCM is the
default setting.

• MD_PCM – play using Pulse Code Modulation encoding algorithm
• PM_ALAW – play using A-law
• PM_SR6 – play using 6 kHz sampling rate (6000 samples per second)
• PM_SR8 – play using 8 kHz sampling rate (8000 samples per second)
• PM_TONE – transmit a 200 msec tone before initiating play

On Springware boards, choose one or more of the following:
• MD_ADPCM – play using Adaptive Differential Pulse Code Modulation

encoding algorithm (4 bits per sample). Playing with ADPCM is the
default setting.

• MD_PCM – play using Pulse Code Modulation encoding algorithm (8 bits
per sample)

• PM_ALAW – play using A-law
• PM_ADSI – play using the ADSI protocol without an alert tone preceding

play. If ADSI protocol mode is selected, it is not necessary to select any
other play mode parameters. If ADSI data will be transferred, PM_ADSI
should be ORed with the EV_SYNC or EV_ASYNC parameter in the
mode parameter.

• PM_ADSIALERT – play using the ADSI protocol with an alert tone
preceding play. If ADSI protocol mode is selected, it is not necessary to
select any other play mode parameters. PM_ADSIALERT should be
ORed with the EV_SYNC or EV_ASYNC parameter in the mode
parameter.

• PM_SR6 – play using 6 kHz sampling rate (6000 samples per second)
• PM_SR8 – play using 8 kHz sampling rate (8000 samples per second)
• PM_TONE – transmit a tone before initiating play. If this mode is not

selected, no tone will be transmitted. No tone transmitted is the default
setting.

Parameter Description

310 Voice API Library Reference — June 2005

dx_play() — play recorded voice data

Table 11 shows play mode selections when transmitting or not transmitting a tone before initiating
play. The first column of the table lists the two play features (tone or no tone), and the first row lists
each type of encoding algorithm (ADPCM or PCM) and data storage rate for each
algorithm/sampling rate combination in parenthesis (24 kbps, 32 kbps, 48 kbps, or 64 kbps).

Select the desired play feature in the first column of the table and look across that row until the
column containing the desired encoding algorithm and data-storage rate is reached. The play
modes that must be entered in the mode bit mask are provided where the feature row and encoding
algorithm/data-storage rate column intersect. Parameters listed in braces, { }, are default settings
and do not have to be specified.

Asynchronous Operation

To run this function asynchronously, set the mode field to EV_ASYNC. When running
asynchronously, this function returns 0 to indicate it has initiated successfully, and generates a
TDX_PLAY termination event to indicate completion.

Termination conditions for play are set using the DV_TPT structure. Play continues until all data
specified in DX_IOTT has been played, or until one of the conditions specified in DV_TPT is
satisfied.

Termination of asynchronous play is indicated by a TDX_PLAY event. Use the Standard Runtime
Library (SRL) Event Management functions to handle the termination event.

After dx_play() terminates, the current channel’s status information, including the reason for
termination, can be accessed using extended attribute functions. Use the ATDX_TERMMSK()
function to determine the reason for termination.

Note: The DX_IOTT structure must remain in scope for the duration of the function if running
asynchronously.

Synchronous Operation

By default, this function runs synchronously, and returns a 0 to indicate that it has completed
successfully.

Table 11. Play Mode Selections

Feature(s) ADPCM (24 kbps) ADPCM (32 kbps) PCM (48 kbps) PCM (64 kbps)

Tone PM_TONE
PM_SR6
{MD_ADPCM}

PM_TONE
PM_SR8
{MD_ADPCM}

PM_TONE
PM_ALAW*
PM_SR6
MD_PCM

PM_TONE
PM_ALAW*
PM_SR8
MD_PCM

No Tone PM_SR6
{MD_ADPCM}

PM_SR8
{MD_ADPCM}

PM_SR6
MD_PCM

PM_SR8
MD_PCM

{ } = Default modes.
 * = Select if file was encoded using A-law

Voice API Library Reference — June 2005 311

play recorded voice data — dx_play()

Termination conditions for play are set using the DV_TPT structure. Play continues until all data
specified in DX_IOTT has been played, or until one of the conditions specified in DV_TPT is
satisfied.

Termination of synchronous play is indicated by a return value of 0. After dx_play() terminates,
use the ATDX_TERMMSK() function to determine the reason for termination.

Cautions

• Whenever dx_play() is called, its speed and volume is based on the most recent adjustment
made using dx_adjsv() or dx_setsvcond().

• If A-law encoding is selected (PM_ALAW), the A-law parameter must be passed each time the
play function is called or the setting will return to mu-law (the default).

• On DM3 boards, when playing a file that contains DTMFs, the same voice device might detect
the DTMFs as incoming ones and process the DTMFs as a termination condition. The louder
the recorded DTMFs in the file being played out, the more likely the chances of those DTMFs
to be detected as incoming ones. It's been observed that the problem can be avoided if the
amplitude of the DTMFs being played is below -6.5 dB; but this should only be taken as a
guideline since environment conditions are also a factor.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADIOTT
Invalid DX_IOTT entry

EDX_BADTPT
Invalid DV_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_SYSTEM
Error from operating system

Example 1

This example illustrates how to use dx_play() in synchronous mode.

/* Play a voice file. Terminate on receiving 4 digits or at end of file */
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

312 Voice API Library Reference — June 2005

dx_play() — play recorded voice data

main()
{
 int chdev;
 DX_IOTT iott;
 DV_TPT tpt;
 DV_DIGIT dig;
 .
 .

 /* Open the device using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play till end of file */
 if((iott.io_fhandle = dx_fileopen("prompt.vox", O_RDONLY|O_BINARY))
 == -1) {
 /* process error */
 }

 /* set up DV_TPT */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 4; /* terminate on four digits */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */

 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }

 /* Now play the file */
 if (dx_play(chdev,&iott,&tpt,EV_SYNC) == -1) {
 /* process error */
 }
 /* get digit using dx_getdig() and continue processing. */
 .
 .
}

Example 2

This example illustrates how to use dx_play() in asynchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXCHAN 24

int play_handler();
DX_IOTT prompt[MAXCHAN];
DV_TPT tpt;
DV_DIGIT dig;

Voice API Library Reference — June 2005 313

play recorded voice data — dx_play()

main()
{
 int chdev[MAXCHAN], index, index1;
 char *chname;
 int i, srlmode, voxfd;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 /* initialize all the DX_IOTT structures for each individual prompt */
 .
 .

 /* For Windows applications: open the vox file to play; the file descriptor will be used
 * by all channels.
 */
 if ((voxfd = dx_fileopen("prompt.vox", O_RDONLY|O_BINARY)) == -1) {
 /* process error */
 }

 /* For Linux applications, open the vox file to play; the file descriptor will be used
 * by all channels.
 */
 if ((voxfd = open("prompt.vox", O_RDONLY)) == -1) {
 /* process error */
 }

 /* For each channel, open the device using dx_open(), set up a DX_IOTT
 * structure for each channel, and issue dx_play() in asynchronous mode. */
 for (i=0; i<MAXCHAN; i++) {

 /* Set chname to the channel name, e.g., dxxxB1C1, dxxxB1C2,... */
 /* Open the device using dx_open(). chdev[i] has channel device
 * descriptor.
 */
 if ((chdev[i] = dx_open(chname,NULL)) == -1) {
 /* process error */
 }

 /* Use sr_enbhdlr() to set up handler function to handle play
 * completion events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_PLAY, play_handler) == -1) {
 /* process error */
 }

 /* Set the DV_TPT structures up for MAXDTMF. Play until one digit is
 * pressed or the file is played
 */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 1; /* terminate on the first digit */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */
 prompt[i].io_type = IO_DEV|IO_EOT; /* play from file */
 prompt[i].io_bufp = 0;
 prompt[i].io_offset = 0;
 prompt[i].io_length = -1; /* play till end of file */
 prompt[i].io_nextp = NULL;
 prompt[i].io_fhandle = voxfd;

314 Voice API Library Reference — June 2005

dx_play() — play recorded voice data

 /* play the data */
 if (dx_play(chdev[i],&prompt[i],&tpt,EV_ASYNC) == -1) {
 /* process error */
 }
 }

/* Use sr_waitevt to wait for the completion of dx_play().
 * On receiving the completion event, TDX_PLAY, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
}

int play_handler()
{
 long term;
 /* Use ATDX_TERMMSK() to get the reason for termination. */
 term = ATDX_TERMMSK(sr_getevtdev());
 if (term & TM_MAXDTMF) {
 printf("play terminated on receiving DTMF digit(s)\n");
 } else if (term & TM_EOD) {
 printf("play terminated on reaching end of data\n");
 } else {
 printf("Unknown termination reason: %x\n", term);
 }

 /* Kick off next function in the state machine model. */
 .
 .
 return 0;
}

Example 3

For Windows applications, this example illustrates how to define and play an alert tone, receive
acknowledgement of the alert tone, and use dx_play() to transfer ADSI data.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

int parm;
DV_TPT tpt[2];
DV_DIGIT digit;
TN_GEN tngen;
DX_IOTT iott;

main(argc,argv)
 int argc;
 char* argv[];
{
 int chfd;
 char channame[12];
 parm = SR_POLLMODE;
 sr_setparm(SRL_DEVICE, SR_MODEID, &parm);

 /*
 * Open the channel using the command line arguments as input
 */
 sprintf(channame, "%sC%s", argv[1],argv[2]);

 if ((chfd = dx_open(channame, NULL)) == -1) {
 printf("Board open failed on device %s\n",channame);

Voice API Library Reference — June 2005 315

play recorded voice data — dx_play()

 exit(1);
 }
 printf("Devices open and waiting\n");

 /*
 * Take the phone off-hook to talk to the ADSI phone
 * This assumes we are connected through a Skutch Box.
 */

 if (dx_sethook(chfd, DX_OFFHOOK, EV_SYNC) == -1) {
 printf("sethook failed\n");
 while (1) {
 sleep(5);
 dx_clrdigbuf(chfd);
 printf("Digit buffer cleared ..\n);

 /*
 * Generate the alert tone
 */
 iott.io_type =IO_DEV|IO_EOT;
 iott.io_fhandle = dx_fileopen("message.asc",O_RDONLY);
 iott.io_length = -1;
 parm = DM_D

 if (dx_setparm (chfd, DXCH_DTINITSET, (void *)parm) ==-1){
 printf ("dx_setparm on DTINITSET failed\n");
 exit(1);
 }

 if (dx_play(chfd,&iott,(DV_TPT *)NULL, PM_ADSIALERT|EV_SYNC) ==-1) {
 printf("dx_play on the ADSI file failed\n");
 exit(1);
 }
 }
 }
 dx_close(chfd);
 exit(0);
}

For Linux applications, this example illustrates how to define and play an alert tone, receive
acknowledgement of the alert tone, and use dx_play() to transfer ADSI data.

#include <errno.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXSIL 100 /* Terminate after 10 sec silence*/
#define MAXTIME 200 /* Terminate after 20 seconds */
#define MAXRING 1 /* Number of rings before OFFHOOK */

DX_IOTT iott;
DV_TPT tpt[4];
unsigned short mode = MD_ADPCM | EV_SYNC | PM_ADSIALERT;

void main(argc,argv)
 int argc;
 char* argv[];
{
 int voxfd;
 int ddd;
 int parmval;

316 Voice API Library Reference — June 2005

dx_play() — play recorded voice data

 if ((voxfd = open("play.vox",O_RDONLY)) == -1) {
 perror("");
 exit(1);
 }

/*
* Clear and initialize the iott structure.
*/
memset(&iott, 0, sizeof(DX_IOTT));
iott.io_type = IO_DEV | IO_EOT;
iott.io_fhandle = voxfd;
iott.io_length = -1;

/*
* Clear the tpt structure.
*/
memset(tpt,0,(sizeof(DV_TPT)*4));

/*
* Terminate after MAXSILENCE.
*/
tpt[0].tp_type = IO_CONT;
tpt[0].tp_termno = DX_MAXSIL;
tpt[0].tp_length = MAXSIL;
tpt[0].tp_flags = TF_MAXSIL;

/*
* Terminate on Loop Current Drop.
*/
tpt[1].tp_type = IO_CONT;
tpt[1].tp_termno = DX_LCOFF;
tpt[1].tp_length = 1;
tpt[1].tp_flags = TF_LCOFF;

/*
* Terminate after MAXTIME has elapsed.
*/
tpt[2].tp_type = IO_CONT;
tpt[2].tp_termno = DX_MAXTIME;
tpt[2].tp_length = MAXTIME;
tpt[2].tp_flags = TF_MAXTIME;

/*
* Terminate on receiving the DTMF digit 0.
*/
tpt[3].tp_type = IO_EOT;
tpt[3].tp_termno = DX_DIGMASK;
tpt[3].tp_length = DM_0;
tpt[3].tp_flags = TF_DIGMASK;

if ((ddd = dx_open("dxxxB1C1", 0)) == -1 {
 perror("");
 exit(1);
}

parmval = DM_A;
if(dx_setparm(ddd, DXCH_DTINITSET, (void *)&parmval) == -1 {
 fprintf(stderr,"%s: dx_setparm ERROR: %d: %s\n",ATDV_NAMEP(ddd),
 ATDV_LASTERR(ddd),ATDV_ERRMSGP(ddd));
dx_close(ddd);
exit(1);
}

Voice API Library Reference — June 2005 317

play recorded voice data — dx_play()

if (dx_clrdigbuf(ddd) == -1) {
 fprintf(stderr,"%s: dx_clrdigbuf ERROR: %d: %s\n",ATDV_NAMEP(ddd),
 ATDV_LASTERR(ddd),ATDV_ERRMSGP(ddd));
dx_close(ddd);
exit(1);
}

if (dx_play(ddd, &iott, tpt, mode) == -1 {
 fprintf(stderr,"%s: dx_play ERROR: %d: %s\n",ATDV_NAMEP(ddd),
 ATDV_LASTERR(ddd), ATDV_ERRMSGP(ddd));
exit(1);

See Also

• dx_playf()

• dx_playiottdata()

• dx_playvox()

• dx_setparm(), dx_getparm()

• dx_adjsv()

• dx_setsvcond()

• DX_IOTT data structure (to identify source or destination of the voice data)

• event management functions in Standard Runtime Library API Library Reference

• ATDX_TERMMSK()

• DV_TPT data structure (to specify a termination condition)

• dx_setuio()

318 Voice API Library Reference — June 2005

dx_playf() — synchronously play voice data

dx_playf()

synchronously play voice data

Description

dx_playf() is a convenience function that synchronously plays voice data from a single file.

Calling dx_playf() is the same as calling dx_play() and specifying a single file entry in the
DX_IOTT structure. Using dx_playf() is more convenient for single file playback, because you do
not have to set up a DX_IOTT structure for one file, and the application does not need to open the
file. The dx_playf() function opens and closes the file specified by fnamep.

Cautions

On DM3 boards, when playing a file that contains DTMFs, the same voice device might detect the
DTMFs as incoming ones and process the DTMFs as a termination condition. The louder the
recorded DTMFs in the file being played out, the more likely the chances of those DTMFs to be
detected as incoming ones. It's been observed that the problem can be avoided if the amplitude of
the DTMFs being played is below -6.5 dB; but this should only be taken as a guideline since
environment conditions are also a factor.

Name: int dx_playf(chdev, fnamep, tptp, mode)

Inputs: int chdev • valid channel device handle

char *fnamep • pointer to name of file to play

DV_TPT *tptp • pointer to Termination Parameter Table structure

unsigned short mode • playing mode bit mask for this play session

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O Convenience

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

fnamep points to the file from which voice data will be played

tptp points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for playing. For more information on this structure, see
DV_TPT, on page 510.

mode specifies the mode. This function supports EV_SYNC (synchronous mode)
only.

Voice API Library Reference — June 2005 319

synchronously play voice data — dx_playf()

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADIOTT
Invalid DX_IOTT entry

EDX_BADTPT
Invalid DX_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_SYSTEM
Error from operating system

Source Code

/***
 * NAME: int dx_playf(devd,filep,tptp,mode)
 * DESCRIPTION: This function opens and plays a
 * named file.
 * INPUTS: devd - channel descriptor
 * tptp - pointer to the termination control block
 * filep - pointer to file name
 * OUTPUTS: Data is played.
 * RETURNS: 0 - success -1 - failure
 * CALLS: open() dx_play() close()
 * CAUTIONS: none.
 ***/

int dx_playf(devd,filep,tptp,mode)
 int devd;
 char *filep;
 DV_TPT *tptp;
 USHORT mode;

{
 DX_IOTT iott;
 int rval;

 /*
 * If Async then return Error
 * Reason: IOTT's must be in scope for the duration of the play
 */
 if (mode & EV_ASYNC) {
 return(-1);
 }

 /* Open the File */
 if ((iott.io_fhandle = open(filep,O_RDONLY)) == -1) {
 return -1;
 }

 /* Use dx_play() to do the Play */
 iott.io_type = IO_EOT | IO_DEV;
 iott.io_offset = (unsigned long)0;
 iott.io_length = -1;

320 Voice API Library Reference — June 2005

dx_playf() — synchronously play voice data

 rval = dx_play(devd,&iott,tptp,mode);

 if (close(iott.io_fhandle) == -1) {
 return -1;
 }

 return rval;
}

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 DV_TPT tpt[2];

 /* Open the channel using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* Set up the DV_TPT structures for MAXDTMF. Play until one digit is
 * pressed or the file has completed play
 */
 dx_clrtpt(tpt,1);
 tpt[0].tp_type = IO_EOT; /* only entry in the table */
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 1; /* terminate on the first digit */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */
 if (dx_playf(chdev,"weather.vox",tpt,EV_SYNC) == -1) {
 /* process error */
 }
 .
 .
}

See Also

• dx_play()

• dx_playiottdata()

• dx_playvox()

• dx_setparm(), dx_getparm()

• dx_adjsv() (for speed or volume control)

• dx_setsvcond() (for speed or volume control)

• ATDX_TERMMSK()

• DV_TPT data structure (to specify a termination condition)

Voice API Library Reference — June 2005 321

play back recorded voice data from multiple sources — dx_playiottdata()

dx_playiottdata()

play back recorded voice data from multiple sources

Description

The dx_playiottdata() function plays back recorded voice data, which may come from any
combination of data files, memory, or custom devices. In the case of DM3 boards, voice data may
also come from already downloaded cached prompts.

The file format for the files to be played is specified in the wFileFormat field of the DX_XPB.
Other fields in the DX_XPB describe the data format. For files that include data format information
(for example, WAVE files), these other fields are ignored.

The dx_playiottdata() function is similar to dx_play(), but takes an extra parameter, xpbp,
which allows you to specify format information about the data to be played. This includes file
format, data encoding, sampling rate, and bits per sample.

Name: short dx_playiottdata(chdev, iottp, tptp, xpbp, mode)

Inputs: int chdev • valid channel device handle

DX_IOTT *iottp • pointer to I/O Transfer Table

DV_TPT *tptp • pointer to Termination Parameter Block

DX_XPB *xpbp • pointer to I/O Transfer Parameter Block

unsigned short mode • play mode

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: DM3, Springware

322 Voice API Library Reference — June 2005

dx_playiottdata() — play back recorded voice data from multiple sources

Cautions

• All files specified in the DX_IOTT table must be of the same file format type and match the
file format indicated in DX_XPB.

• All files specified in the DX_IOTT table must contain data of the type described in DX_XPB.

• When playing or recording VOX files, the data format is specified in DX_XPB rather than
through the mode argument of this function.

• The DX_IOTT data area must remain in scope for the duration of the function if running
asynchronously.

• The DX_XPB data area must remain in scope for the duration of the function if running
asynchronously.

• On DM3 boards, playing an empty WAVE file results in an invalid offset error. To play a silent
WAVE file successfully, ensure that there is at least one byte of silence data (0xFF) in the
payload.

• When set to play WAVE files, all other fields in the DX_XPB are ignored.

• When set to play WAVE files, this function will fail if an unsupported data format is attempted
to be played. For information about supported data formats, see the description for DX_XPB
and the Voice API Programming Guide.

• On DM3 boards, when playing a file that contains DTMFs, the same voice device might detect
the DTMFs as incoming ones and process the DTMFs as a termination condition. The louder
the recorded DTMFs in the file being played out, the more likely the chances of those DTMFs
to be detected as incoming ones. It's been observed that the problem can be avoided if the

Parameter Description

chdev Specifies the valid channel device handle obtained when the channel was
opened using dx_open().

iottp Points to the I/O Transfer Table structure, DX_IOTT, which specifies the order
of playback and the location of voice data. See DX_IOTT, on page 534, for
information about the data structure.

The order of playback and the location of the voice data is specified in an array
of DX_IOTT structures pointed to by iottp.

tptp Points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for this function. For more information on termination
conditions, see DV_TPT, on page 510.

xpbp Points to the I/O Transfer Parameter Block, DX_XPB. The file format for the
files to be played is specified in the wFileFormat field of the DX_XPB. Other
fields in the DX_XPB describe the data format.

For more information about this structure, see the description for DX_XPB, on
page 546. For information about supported data formats, see the Voice API
Programming Guide.

mode Specifies the play mode and synchronous/asynchronous mode. For a list of all
valid values, see the dx_play() function description.
• PM_TONE – transmit a 200 msec tone before initiating play
• EV_SYNC – synchronous mode
• EV_ASYNC – asynchronous mode

Voice API Library Reference — June 2005 323

play back recorded voice data from multiple sources — dx_playiottdata()

amplitude of the DTMFs being played is below -6.5 dB; but this should only be taken as a
guideline since environment conditions are also a factor.

Errors

In asynchronous mode, the function returns immediately and a TDX_PLAY event is queued upon
completion. Check ATDX_TERMMSK() for the termination reason. If a failure occurs during
playback, then a TDX_ERROR event will be queued. Use ATDV_LASTERR() to determine the
reason for the error. In some limited cases such as when invalid arguments are passed to the library,
the function may fail before starting the play. In such cases, the function returns -1 immediately to
indicate failure and no event is queued.

In synchronous mode, if this function returns -1 to indicate failure, use the Standard Runtime
Library (SRL) Standard Attribute function ATDV_LASTERR() to obtain the error code or use
ATDV_ERRMSGP() to obtain a descriptive error message. One of the following error codes may
be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or WAVE file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

Example 1

This example illustrates how to play back a VOX file in synchronous mode.

#include <srllib.h>
#include <dxxxlib.h>

main()
{

 int chdev; /* channel descriptor */
 int fd; /* file descriptor for file to be played */
 DX_IOTT iott; /* I/O transfer table */
 DV_TPT tpt; /* termination parameter table */
 DX_XPB xpb; /* I/O transfer parameter block */
 .
 .
 .

324 Voice API Library Reference — June 2005

dx_playiottdata() — play back recorded voice data from multiple sources

 /* Open channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 /* perform system error processing */
 exit(1);
 }

 /* Set to terminate play on 1 digit */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 /* For Windows applications: open VOX file to play */
 if ((fd = dx_fileopen("HELLO.VOX",O_RDONLY|O_BINARY)) == -1) {
 printf("File open error\n");
 exit(2);
 }

 /* For Linux applications: Open VOX file to play */
 if ((fd = open("HELLO.VOX",O_RDONLY)) == -1) {
 printf("File open error\n");
 exit(2);
 }

 /* Set up DX_IOTT */
 iott.io_fhandle = fd;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1;
 iott.io_type = IO_DEV | IO_EOT;

 /*
 * Specify VOX file format for ADPCM at 8KHz
 */
 xpb.wFileFormat = FILE_FORMAT_VOX;
 xpb.wDataFormat = DATA_FORMAT_DIALOGIC_ADPCM;
 xpb.nSamplesPerSec = DRT_8KHZ;
 xpb.wBitsPerSample = 4;

 /* Wait forever for phone to ring and go offhook */
 if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
 }

 /* Start playback */
 if (dx_playiottdata(chdev,&iott,&tpt,&xpb,EV_SYNC)==-1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

}

Example 2

This example illustrates how to play back a cached prompt (VOX file) that has already been
downloaded to on-board memory.

#include "srllib.h"
#include "dxxxlib.h"
#include <stdio.h>
#include <fcntl.h>

Voice API Library Reference — June 2005 325

play back recorded voice data from multiple sources — dx_playiottdata()

main()
{

 int chdev; /* channel descriptor */
 int brdhdl; /* board handle */
 int promptHandle; /* Handle of the prompt to be downloaded */
 int fd; /* file descriptor for file to be played */
 DX_IOTT iott; /* I/O transfer table for the play operation*/
 DX_IOTT iottp; /* I/O transfer table for the downloaded cache prompt*/
 DV_TPT tpt; /* termination parameter table */
 DX_XPB xpb; /* I/O transfer parameter block */

 /* Open channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Open board */
 if ((brdhdl = dx_open("brdB1",0)) == -1) {
 printf("Cannot open board\n");
 /* Perform system error processing */
 exit(1);
 }

 /* For Windows applications: open VOX file to cache */
 if ((fd = dx_fileopen("HELLO.VOX",O_RDONLY|O_BINARY)) == -1) {
 printf("File open error\n");
 exit(2);
 }

 /* For Linux applications: open VOX file to cache */
 if ((fd = open("HELLO.VOX",O_RDONLY)) == -1) {
 printf("File open error\n");
 exit(2);
 }

 /* This specifies the data to cache */
 iottp.io_fhandle = fd;
 iottp.io_bufp = 0;
 iottp.io_offset = 0;
 iottp.io_length = -1;
 iottp.io_type = IO_DEV | IO_EOT;

 /* Download a prompt to the on-board memory */
 if (dx_cacheprompt(brdhdl, &iottp, &promptHandle, EV_SYNC) == -1 {
 printf("dx_cacheprompt error \n");
 exit(3);
 }

 /* Set to terminate play on 1 digit */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 /*This block specifies the downloaded cache prompt */
 iott.io_type = IO_CACHED | IO_EOT
 iott.io_fhandle = promptHandle;
 iott.io_offset = 0;
 iott.io_length = -1;

326 Voice API Library Reference — June 2005

dx_playiottdata() — play back recorded voice data from multiple sources

 /* Specify VOX file format for ADPCM at 8KHz */
 xpb.wFileFormat = FILE_FORMAT_VOX;
 xpb.wDataFormat = DATA_FORMAT_DIALOGIC_ADPCM;
 xpb.nSamplesPerSec = DRT_8KHZ;
 xpb.wBitsPerSample = 4;

 /* Clear digit buffer */
 dx_clrdigbuf(chdev);

 /* Start playback */
 if (dx_playiottdata(chdev,&iott,&tpt,&xpb,EV_SYNC)==-1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

 dx_fileclose(fd);
 dx_close(brdhdl);
 dx_close(chdev);

}

See Also

• dx_play()

• dx_playf()

• dx_playwav()

• dx_playvox()

• dx_setuio()

Voice API Library Reference — June 2005 327

play tone defined by TN_GEN structure — dx_playtone()

dx_playtone()

play tone defined by TN_GEN structure

Description

The dx_playtone() function plays tones defined by the TN_GEN structure, which defines the
frequency, amplitude, and duration of a single- or dual-frequency tone to be played.

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. This function returns
0 to indicate it has initiated successfully, and generates a TDX_PLAYTONE termination event to
indicate completion. Use the Standard Runtime Library (SRL) Event Management functions to
handle the termination event; see the Standard Runtime Library API Library Reference for more
information.

Name: int dx_playtone(chdev, tngenp, tptp, mode)

Inputs: int chdev • valid channel device handle

TN_GEN *tngenp • pointer to the Tone Generation template structure

DV_TPT *tptp • pointer to a Termination Parameter Table structure

int mode • asynchronous/synchronous

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Generation

Mode: asynchronous or synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tngenp points to the TN_GEN structure, which defines the frequency, amplitude, and
duration of a single- or dual-frequency tone. For more information, see
TN_GEN, on page 558. You can use the dx_bldtngen() function to set up the
structure.

tptp points to the DV_TPT data structure, which specifies a terminating condition
for this function. For more information, see DV_TPT, on page 510.

mode specifies whether to run this function asynchronously or synchronously. Set to
one of the following:
• EV_ASYNC – asynchronous mode
• EV_SYNC – synchronous mode (default)

328 Voice API Library Reference — June 2005

dx_playtone() — play tone defined by TN_GEN structure

Set termination conditions using a DV_TPT structure, which is pointed to by the tptp parameter.
After dx_playtone() terminates, use the ATDX_TERMMSK() function to determine the reason
for termination.

Synchronous Operation

By default, this function runs synchronously, and returns a 0 to indicate that it has completed
successfully.

Set termination conditions using a DV_TPT structure, which is pointed to by the tptp parameter.
After dx_playtone() terminates, use the ATDX_TERMMSK() function to determine the reason
for termination.

Cautions

• The channel must be idle when calling this function.

• If the tone generation template contains an invalid tg_dflag, or the specified amplitude or
frequency is outside the valid range, dx_playtone() will generate a TDX_ERROR event if
asynchronous, or -1 if synchronous.

• On DM3 boards, the DX_MAXTIME termination condition is not supported by tone
generation functions, which include dx_playtone().

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_AMPLGEN
Invalid amplitude value in TN_GEN structure

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_BADTPT
Invalid DV_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_FLAGGEN
Invalid tn_dflag field in TN_GEN structure

EDX_FREQGEN
Invalid frequency component in TN_GEN structure

EDX_SYSTEM
Error from operating system

Voice API Library Reference — June 2005 329

play tone defined by TN_GEN structure — dx_playtone()

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_1 101

main()
{
 TN_GEN tngen;
 DV_TPT tpt[5];
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Enable Detection of ToneId TID_1
 */
 if (dx_enbtone(dxxxdev, TID_1, DM_TONEON | DM_TONEOFF) == -1) {
 printf("Unable to Enable Detection of Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Build a Tone Generation Template.
 * This template has Frequency1 = 1140,
 * Frequency2 = 1020, amplitute at -10dB for
 * both frequencies and duration of 100 * 10 msecs.
 */
 dx_bldtngen(&tngen, 1140, 1020, -10, -10, 100);

 /*
 * Set up the Terminating Conditions
 */
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_TONE;
 tpt[0].tp_length = TID_1;
 tpt[0].tp_flags = TF_TONE;

330 Voice API Library Reference — June 2005

dx_playtone() — play tone defined by TN_GEN structure

 tpt[0].tp_data = DX_TONEON;

 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_TONE;
 tpt[1].tp_length = TID_1;
 tpt[1].tp_flags = TF_TONE;
 tpt[1].tp_data = DX_TONEOFF;

 tpt[2].tp_type = IO_EOT;
 tpt[2].tp_termno = DX_MAXTIME; /* On DM3 boards, DX_MAXTIME not supported */
 tpt[2].tp_length = 6000;
 tpt[2].tp_flags = TF_MAXTIME;

 if (dx_playtone(dxxxdev, &tngen, tpt, EV_SYNC) == -1){
 printf("Unable to Play the Tone\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_bldtngen()

• TN_GEN data structure

• global tone generation topic in Voice API Programming Guide

• event management functions in Standard Runtime Library API Library Reference

• DV_TPT data structure (to specify a termination condition)

• ATDX_TERMMSK()

Voice API Library Reference — June 2005 331

play the cadenced tone defined by TN_GENCAD — dx_playtoneEx()

dx_playtoneEx()

play the cadenced tone defined by TN_GENCAD

Description

The dx_playtoneEx() function plays the cadenced tone defined by TN_GENCAD, which
describes a signal by specifying the repeating elements of the signal (the cycle) and the number of
desired repetitions. The cycle can contain up to four segments, each with its own tone definition
and on/off duration, which creates the signal pattern or cadence. Each segment consists of a
TN_GEN single- or dual-tone definition (frequency, amplitude and duration) followed by a
corresponding off-time (silence duration) that is optional. The dx_bldtngen() function can be used
to set up the TN_GEN components of the TN_GENCAD structure. The segments are seamlessly
concatenated in ascending order to generate the signal cycle.

This function returns the same errors, return codes, and termination events as the dx_playtone()
function. Also, the TN_GEN array in the TN_GENCAD data structure has the same requirements
as the TN_GEN used by the dx_playtone() function.

Set termination conditions using the DV_TPT structure. This structure is pointed to by the tptp
parameter. After dx_playtoneEx() terminates, use the ATDX_TERMMSK() function to
determine the termination reason.

For signals that specify an infinite repetition of the signal cycle (cycles = 255) or an infinite
duration of a tone (tg_dur = -1), you must specify the appropriate termination conditions in the
DV_TPT structure used by dx_playtoneEx(). Be aware that on DM3 boards, valid values are for
the cycles field of TN_GENCAD is 1 to 40 cycles. On Springware boards, valid values are from 1
to 255 (255 = infinite repetitions).

Name: int dx_playtoneEx(chdev, tngencadp, tptp, mode)

Inputs: int chdev • valid channel device handle

TN_GENCAD *tngencadp • pointer to the Cadenced Tone Generation template structure

DV_TPT *tptp • pointer to a Termination Parameter Table structure

int mode • asynchronous/synchronous

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Generation

Mode: asynchronous or synchronous

Platform: DM3, Springware

332 Voice API Library Reference — June 2005

dx_playtoneEx() — play the cadenced tone defined by TN_GENCAD

To run this function asynchronously, set the mode parameter to EV_ASYNC. When running
asynchronously, this function will return 0 to indicate that it has initiated successfully, and will
generate a TDX_PLAYTONE termination event to indicate successful termination.

By default, this function will run synchronously, and will return a 0 to indicate successful
termination of synchronous play.

Cautions

• The channel must be idle when calling this function.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tngencadp On DM3 boards, points to a TN_GENCAD structure (which defines a signal
by specifying a cycle and its number of repetitions).

On Springware boards, points to a TN_GENCAD structure (which defines a
signal by specifying a cycle and its number of repetitions), or specifies one of
the following predefined, standard, PBX call progress signals:
• CP_DIAL – dial tone
• CP_REORDER – reorder tone (paths-busy, all-trunks-busy, fast busy)
• CP_BUSY – busy tone (slow busy)
• CP_RINGBACK1 – audible ring tone 1 (ringback tone)
• CP_RINGBACK2 – audible ring tone 2 (slow ringback tone)
• CP_RINGBACK1_CALLWAIT – special audible ring tone 1
• CP_RINGBACK2_CALLWAIT – special audible ring tone 2
• CP_RECALL_DIAL – recall dial tone
• CP_INTERCEPT – intercept tone
• CP_CALLWAIT1 – call waiting tone 1
• CP_CALLWAIT2 – call waiting tone 2
• CP_BUSY_VERIFY_A – busy verification tone (Part A)
• CP_BUSY_VERIFY_B – busy verification tone (Part B)
• CP_EXEC_OVERRIDE – executive override tone
• CP_FEATURE_CONFIRM – confirmation tone
• CP_STUTTER_DIAL – Stutter dial tone (same as message waiting dial

tone)
• CP_MSG_WAIT_DIAL – message waiting dial tone (same as stutter dial

tone)

tptp points to the DV_TPT data structure, which specifies one or more terminating
conditions for this function. For more information on this structure, see
DV_TPT, on page 510.

mode specifies whether to run this function asynchronously or synchronously. Set to
one of the following:
• EV_ASYNC – asynchronous mode
• EV_SYNC – synchronous mode (default)

Voice API Library Reference — June 2005 333

play the cadenced tone defined by TN_GENCAD — dx_playtoneEx()

• If a TN_GEN tone generation template contains an invalid tg_dflag, or the specified amplitude
or frequency is outside the valid range, dx_playtoneEx() will generate a TDX_ERROR event
if asynchronous, or -1 if synchronous.

• On DM3 boards, the DX_MAXTIME termination condition is not supported by tone
generation functions, which include dx_playtoneEx().

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_AMPLGEN
Invalid amplitude value in TN_GEN structure

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_BADTPT
Invalid DV_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_FLAGGEN
Invalid tg_dflag field in TN_GEN structure

EDX_FREQGEN
Invalid frequency component in TN_GEN structure

EDX_SYSTEM
Error from operating system

Example

/*$ dx_playtoneEx() example $*/

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 TN_GEN tngen;
 TN_GENCAD tngencad;
 DV_TPT tpt[2];
 int dxxxdev;
 long term;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

334 Voice API Library Reference — June 2005

dx_playtoneEx() — play the cadenced tone defined by TN_GENCAD

 /*
 * Set up the Terminating Conditions.
 * (Play until a digit is pressed or until time-out at 45 seconds.)
 */

 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF;
 tpt[0].tp_length = 1;
 tpt[0].tp_flags = TF_MAXDTMF;

 tpt[1].tp_type = IO_EOT;
 tpt[1].tp_termno = DX_MAXTIME; /* On DM3 boards, DX_MAXTIME not supported */
 tpt[1].tp_length = 450;
 tpt[1].tp_flags = TF_MAXTIME;

 /*
 * Build a custom cadence dial tone to indicate that a priority message is waiting.
 * Signal cycle has 4 segments & repeats forever (cycles=255) until tpt termination:
 * Note that cycles = 255 is supported on Springware but not on DM3 boards.
 * 1) 350 + 440 Hz at -17dB ON for 125 * 10 msec and OFF for 10 *10 msec
 * 2) 350 + 440 Hz at -17dB ON for 10 * 10 msec and OFF for 10 *10 msec
 * 3) 350 + 440 Hz at -17dB ON for 10 * 10 msec and OFF for 10 *10 msec
 * 4) 350 + 440 Hz at -17dB ON for 10 * 10 msec and OFF for 10 *10 msec
 */

 tngencad.cycles = 255;
 tngencad.numsegs = 4;
 tngencad.offtime[0] = 10;
 tngencad.offtime[1] = 10;
 tngencad.offtime[2] = 10;
 tngencad.offtime[3] = 10;

 dx_bldtngen(&tngencad.tone[0], 350, 440, -17, -17, 125);
 dx_bldtngen(&tngencad.tone[1], 350, 440, -17, -17, 10);
 dx_bldtngen(&tngencad.tone[2], 350, 440, -17, -17, 10);
 dx_bldtngen(&tngencad.tone[3], 350, 440, -17, -17, 10);

 /*
 * Play the custom dial tone.
 */
 if (dx_playtoneEx(dxxxdev, &tngencad, tpt, EV_SYNC) == -1) {
 printf("Unable to Play the Cadenced Tone\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 /* Examine termination reason in bitmap.
 /* If time-out caused termination, play reorder tone.
 */
 if((term = ATDX_TERMMSK(dxxxdev)) == AT_FAILURE) {
 /* Process error */
 }

 if(term & TM_MAXTIME) {
 /*
 * Play the standard Reorder Tone (fast busy) using the predefined tone
 * from the set of standard call progress signals.
 */
 if (dx_playtoneEx(dxxxdev, CP_REORDER, tpt, EV_SYNC) == -1) {
 printf("Unable to Play the Cadenced Tone\n");
 printf("Lasterror = %d Err Msg = %s\n",

Voice API Library Reference — June 2005 335

play the cadenced tone defined by TN_GENCAD — dx_playtoneEx()

 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }
 }

 /* Terminate the Program */
 dx_close(dxxxdev);
 exit(0);
}

See Also

• dx_playtone()

• dx_bldtngen()

• TN_GEN data structure

• TN_GENCAD data structure

336 Voice API Library Reference — June 2005

dx_playvox() — play voice data stored in a single VOX file

dx_playvox()

play voice data stored in a single VOX file

Description

The dx_playvox() convenience function plays voice data stored in a single VOX file. This
function calls dx_playiottdata().

Name: int dx_playvox(chdev, filenamep, tptp, xpbp, mode)

Inputs: int chdev • valid channel device handle

char *filenamep • pointer to name of file to play

DV_TPT *tptp • pointer to Termination Parameter Table structure

DX_XPB *xpbp • pointer to I/O Transfer parameter block structure

unsigned short mode • play mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O Convenience

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

filenamep points to name of VOX file to play

tptp points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for this function. For more information on termination
conditions, see DV_TPT, on page 510.

xpbp points to the I/O Transfer Parameter Block structure, which specifies the file
format, data format, sampling rate, and resolution of the voice data. For more
information, see DX_XPB, on page 546.

If xpbp is set to NULL, this function interprets the data as 6 kHz linear
ADPCM.

mode specifies the play mode. The following two values can be used individually or
ORed together:
• PM_TONE – transmit a 200 msec tone before initiating play
• EV_SYNC – synchronous operation (must be specified)

Voice API Library Reference — June 2005 337

play voice data stored in a single VOX file — dx_playvox()

Cautions

When playing or recording VOX files, the data format is specified in DX_XPB rather than through
the mode parameter of dx_playvox().

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or WAVE file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

Example

#include "srllib.h"
#include "dxxxlib.h"

main()
{

 int chdev; /* channel descriptor */
 DV_TPT tpt; /* termination parameter table */.
 .
 .

 /* Open channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Set to terminate play on 1 digit */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 /* Wait forever for phone to ring and go offhook */
 if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
 }

338 Voice API Library Reference — June 2005

dx_playvox() — play voice data stored in a single VOX file

 /* Start 6KHz ADPCM playback */
 if (dx_playvox(chdev,"HELLO.VOX",&tpt,NULL,EV_SYNC) = = -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

}

See Also

• dx_play()

• dx_playf()

• dx_playiottdata()

• dx_playwav()

Voice API Library Reference — June 2005 339

play voice data stored in a single WAVE file — dx_playwav()

dx_playwav()

play voice data stored in a single WAVE file

Description

The dx_playwav() convenience function plays voice data stored in a single WAVE file. This
function calls dx_playiottdata().

The function does not specify a DX_XPB structure because the WAVE file contains the necessary
format information.

Cautions

This function fails when an unsupported WAVE file format is attempted to be played. For
information on supported data formats, see the description for DX_XPB, on page 546 and the Voice
API Programming Guide.

Name: int dx_playwav(chdev, filenamep, tptp, mode)

Inputs: int chdev • valid channel device handle

char *filenamep • pointer to name of file to play

DV_TPT *tptp • pointer to Termination Parameter Table structure

unsigned short mode • play mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O Convenience

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tptp points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for playing. For more information on this function, see
DV_TPT, on page 510.

filenamep points to the name of the file to play

mode specifies the play mode. The following two values can be used individually or
ORed together:
• PM_TONE – transmit a 200 msec tone before initiating play
• EV_SYNC – synchronous operation (must be specified)

340 Voice API Library Reference — June 2005

dx_playwav() — play voice data stored in a single WAVE file

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or WAVE file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{

 int chdev; /* channel descriptor */
 DV_TPT tpt; /* termination parameter table */
 .
 .
 .

 /* Open channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Set to terminate play on 1 digit */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 /* Wait forever for phone to ring and go offhook */
 if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
 }

 /* Start playback */
 if (dx_playwav(chdev,"HELLO.WAV",&tpt,EV_SYNC) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

Voice API Library Reference — June 2005 341

play voice data stored in a single WAVE file — dx_playwav()

}

See Also

• dx_playiottdata()

• dx_playvox()

342 Voice API Library Reference — June 2005

dx_PutStreamData() — place data into a circular stream buffer

dx_PutStreamData()

place data into a circular stream buffer

Description

The dx_PutStreamData() function puts data into the specified circular stream buffer. If there is
not enough room in the buffer (an overrun condition), an error of -1 is returned and none of the data
will be placed in the stream buffer. Writing 0 bytes of data to the buffer is not considered an error.
The flag field is used to indicate that this is the last block of data. Set this flag to STREAM_CONT
(0) for all buffers except the last one, which should be set to STREAM_EOD (1). This function can
be called at any time between the opening and closing of the stream buffer.

Cautions

None.

Errors

If there is not enough room in the buffer (an overrun condition), this function returns an error of -1.

Name: int dx_PutStreamData(hBuffer, pNewData, BuffSize, flag)

Inputs: int hBuffer • stream buffer handle

char* pNewData • pointer to user buffer of data to place in the stream buffer

int BuffSize • number of bytes in the user buffer

int flag • flag indicating last block of data

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: streaming to board

Mode: synchronous

Platform: DM3

Parameter Description

hBuffer specifies the circular stream buffer handle obtained from
dx_OpenStreamBuffer()

pNewData a pointer to the user buffer containing data to be placed in the circular
stream buffer

BuffSize specifies the number of bytes in the user buffer

flag a flag indicating whether this is the last block of data in the user buffer.
Valid values are:
• STREAM_CONT – for all buffers except the last one
• STREAM_EOD – for the last buffer

Voice API Library Reference — June 2005 343

place data into a circular stream buffer — dx_PutStreamData()

Unlike other voice API library functions, the streaming to board functions do not use SRL device
handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used to retrieve
error codes and error descriptions.

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int nBuffSize = 32768, vDev = 0;
 int hBuffer = -1;
 char pData[1024];
 DX_IOTT iott;
 DV_TPT ptpt;

 if ((hBuffer = dx_OpenStreamBuffer(nBuffSize)) < 0)
 {
 printf("Error opening stream buffer \n");
 exit(1);
 }
 if ((vDev = dx_open("dxxxB1C1", 0)) < 0)
 {
 printf("Error opening voice device\n");
 exit(2);
 }

 iott.io_type = IO_STREAM|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play until STREAM_EOD */
 iott.io_fhandle = hBuffer;

 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 if (dx_play(vDev, &iott, &tpt, EV_ASYNC) < 0)
 {
 printf("Error in dx_play() %d\n", ATDV_LASTERR(vDev));
 }
 /* Repeat the following until all data is streamed */

 if (dx_PutStreamData(hBuffer, pData, 1024, STREAM_CONT) < 0)
 {
 printf("Error in dx_PutStreamData \n");
 exit(3);
 }
 /* Wait for TDX_PLAY event and other events as appropriate */

 if (dx_CloseStreamBuffer(hBuffer) < 0)
 {
 printf("Error closing stream buffer \n");
 }
}

See Also

• dx_OpenStreamBuffer()

344 Voice API Library Reference — June 2005

dx_querytone() — get tone information for a specific call progress tone

dx_querytone()

get tone information for a specific call progress tone

Description

The dx_querytone() function returns tone information for a call progress tone currently available
on the physical board device. On successful completion of the function, the TONE_DATA structure
contains the relevant tone information.

Before creating a new tone definition with dx_createtone(), first use dx_querytone() to get tone
information for the tone ID, then use dx_deletetone() to delete that same tone ID. Only tones
listed in the toneid parameter description are supported for this function. For more information on
modifying call progress analysis tone definitions, see the Voice API Programming Guide.

When running in asynchronous mode, this function returns 0 to indicate that it initiated
successfully and generates the TDX_QUERYTONE event to indicate completion or
TDX_QUERYTONE_FAIL to indicate failure. The TONE_DATA structure should remain in scope
until the application receives these events.

By default, this function runs in synchronous mode and returns 0 to indicate completion.

Name: int dx_querytone(brdhdl, toneid, tonedata, mode)

Inputs: int brdhdl • a valid physical board level device

int toneid • tone ID of the call progress tone

TONE_DATA *tonedata • pointer to the TONE_DATA structure

unsigned short mode • mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Progress Analysis

Mode: asynchronous or synchronous

Platform: DM3

Parameter Description

brdhdl specifies a valid physical board device handle (not a virtual board device)
of the format brdBn obtained by a call to dx_open().

To get the physical board name, use the SRLGetPhysicalBoardName()
function. This function and other device mapper functions return
information about the structure of the system. For more information, see
the Standard Runtime Library API Library Reference.

Voice API Library Reference — June 2005 345

get tone information for a specific call progress tone — dx_querytone()

Cautions

• Only the default call progress tones as listed in the toneid parameter description are supported
for this function. The following tone IDs are not supported by this function: TID_SIT_ANY,
TID_SIT_NO_CIRCUIT_INTERLATA, TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

• To modify a default tone definition, use the three functions dx_querytone(),
dx_deletetone(), and dx_createtone() in this order, for one tone at a time.

• When dx_querytone() is issued on a physical board device in asynchronous mode, and the
function is immediately followed by another similar call prior to completion of the previous
call on the same device, the subsequent call will fail with device busy.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
invalid parameter

toneid specifies the tone ID of the call progress tone. Valid values are:

• TID_BUSY1

• TID_BUSY2

• TID_DIAL_INTL

• TID_DIAL_LCL

• TID_DISCONNECT

• TID_FAX1

• TID_FAX2

• TID_RNGBK1

• TID_RNGBK2

• TID_SIT_NC

• TID_SIT_IC

• TID_SIT_VC

• TID_SIT_RO

Note: The following tone IDs are not supported by this function:
TID_SIT_ANY, TID_SIT_NO_CIRCUIT_INTERLATA,
TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

tonedata specifies a pointer to the TONE_DATA data structure that contains the
tone information for the call progress tone identified by toneid

mode specifies the mode in which the function will run. Valid values are:
• EV_ASYNC – asynchronous mode
• EV_SYNC – synchronous mode (default)

Parameter Description

346 Voice API Library Reference — June 2005

dx_querytone() — get tone information for a specific call progress tone

EDX_SYSTEM
error from operating system

EDX_TONEID
bad tone template ID

Example

#include "srllib.h"
#include "dxxxlib.h"

main()
{
 int brdhdl; /* board handle */
 .
 .
 .
 /* Open board */
 if ((brdhdl = dx_open("brdB1",0)) == -1)
 {
 printf("Cannot open board\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Get the tone information for the TID_BUSY1 Tone*/
 int result;
 TONE_DATA tonedata;
 if ((result = dx_querytone(brdhdl, TID_BUSY1, &tonedata, EV_SYNC)) == -1)
 {
 printf("Cannot obtain tone information for TID_BUSY1 \n");
 /* Perform system error processing */
 exit(1);
 }
}

See Also

• dx_deletetone()

• dx_createtone()

Voice API Library Reference — June 2005 347

record voice data from a single channel — dx_rec()

dx_rec()

record voice data from a single channel

Description

The dx_rec() function records voice data from a single channel. The data may be recorded to a
combination of data files, memory, or custom devices. The order in which voice data is recorded is
specified in the DX_IOTT structure.

After dx_rec() is called, recording continues until dx_stopch() is called, until the data
requirements specified in the DX_IOTT are fulfilled, or until one of the conditions for termination
in the DV_TPT is satisfied. When dx_rec() terminates, the current channel’s status information,
including the reason for termination, can be accessed using extended attribute functions. Use the
ATDX_TERMMSK() function to determine the reason for termination.

Note: For a single file synchronous record, dx_recf() is more convenient because you do not have to set
up a DX_IOTT structure. See the function description of dx_recf() for information.

Name: int dx_rec(chdev, iottp, tptp, mode)

Inputs: int chdev • valid channel device handle

DX_IOTT *iottp • pointer to I/O Transfer Table structure

DV_TPT *tptp • pointer to Termination Parameter Table structure

unsigned short mode • asynchronous/synchronous setting and recording mode bit mask

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

iottp points to the I/O Transfer Table Structure, DX_IOTT, which specifies the order
of recording and the location of voice data. This structure must remain in
scope for the duration of the function if using asynchronously. See DX_IOTT,
on page 534, for more information on this data structure.

348 Voice API Library Reference — June 2005

dx_rec() — record voice data from a single channel

Notes: 1. If both MD_ADPCM and MD_PCM are set, MD_PCM will take precedence. If both MD_GAIN
and MD_NOGAIN are set, MD_NOGAIN will take precedence. If both RM_TONE and NULL
are set, RM_TONE takes precedence. If both RM_SR6 and RM_SR8 are set, RM_SR6 will take
precedence.

2. Specifying RM_SR6 or RM_SR8 in mode changes the setting of the parameter
DXCH_RECRDRATE. DXCH_RECRDRATE can also be set and queried using dx_setparm()
and dx_getparm(). The default setting for DXCH_RECRDRATE is 6 kHz.

3. The rate specified in the last record function will apply to the next record function, unless the rate
was changed in the parameter DXCH_RECRDRATE using dx_setparm().

4. When using the RM_TONE bit for tone-initiated record, each time slot must be “listening” to the
transmit time slot of the recording channel because the alert tone can only be transmitted on the
recording channel transmit time slot.

tptp points to the Termination Parameter Table Structure, DV_TPT, which specifies
termination conditions for recording. For more information on this structure,
see DV_TPT, on page 510.

Note: In addition to DV_TPT terminations, the function can fail due to
maximum byte count, dx_stopch(), or end of file. See
ATDX_TERMMSK() for a full list of termination reasons.

mode defines the recording mode. One or more of the values listed below may be
selected in the bit mask using bitwise OR (see Table 12 for record mode
combinations).

Choose one only:
• EV_ASYNC – run asynchronously
• EV_SYNC – run synchronously (default)

Choose one or more:
• MD_ADPCM – record using Adaptive Differential Pulse Code Modulation

encoding algorithm (4 bits per sample). Recording with ADPCM is the
default setting.

• MD_GAIN – record with Automatic Gain Control (AGC). Recording with
AGC is the default setting.

• MD_NOGAIN – record without AGC
• MD_PCM – record using Pulse Code Modulation encoding algorithm (8

bits per sample)
• RM_ALAW – record using A-law
• RM_TONE – transmit a 200 msec tone before initiating record
• RM_SR6 – record using 6 kHz sampling rate (6000 samples per second).

This is the default setting.
• RM_SR8 – record using 8 kHz sampling rate (8000 samples per second)
• RM_NOTIFY – (Windows only) generate record notification beep tone
• RM_USERTONE – (Linux only) Play a user-defined tone before initiating

record. If RM_USERTONE is not set but RM_TONE is set, the built-in
tone will be played prior to initiating a record. This value is not supported
on DM3 boards.

Parameter Description

Voice API Library Reference — June 2005 349

record voice data from a single channel — dx_rec()

Table 12 shows recording mode selections. The first column of the table lists all possible
combinations of record features, and the first row lists each type of encoding algorithm (ADPCM
or PCM) and the data-storage rate for each algorithm/sampling rate combination in parenthesis
(24 kbps, 32 kbps, 48 kbps, or 64 kbps).

Select the desired record feature in the first column of the table and move across that row until the
column containing the desired encoding algorithm and data storage rate is reached. The record
modes that must be entered in dx_rec() are provided where the features row, and encoding
algorithm/data storage rate column intersect. Parameters listed in braces, { }, are default settings
and do not have to be specified.

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. When running
asynchronously, this function returns 0 to indicate it has initiated successfully, and generates a
TDX_RECORD termination event to indicate completion.

Set termination conditions using the DV_TPT structure, which is pointed to by the tptp parameter.

Termination of asynchronous recording is indicated by a TDX_RECORD event. Use the Standard
Runtime Library (SRL) event management functions to handle the termination event.

After dx_rec() terminates, use the ATDX_TERMMSK() function to determine the reason for
termination.

Note: The DX_IOTT data area must remain in scope for the duration of the function if running
asynchronously.

Table 12. Record Mode Selections

Feature ADPCM (24 kbps) ADPCM (32 kbps) PCM (48 kbps) PCM (64 kbps)

AGC
No Tone

RM_SR6
{MD_ADPCM}
{MD_GAIN}

RM_SR8
{MD_ADPCM}
{MD_GAIN}

RM_SR6
RM_ALAW*
MD_PCM
{MD_GAIN}

RM_SR8
RM_ALAW*
MD_PCM
{MD_GAIN}

No AGC
No Tone

MD_NOGAIN
RM_SR6
{MD_ADPCM}

MD_NOGAIN
RM_SR8
{MD_ADPCM}

MD_NOGAIN
RM_SR6
MD_PCM

MD_NOGAIN
RM_SR8
MD_PCM

AGC
Tone

RM_TONE
RM_SR6
{MD_ADPCM}
{MD_GAIN}

RM_TONE
RM_SR8
{MD_ADPCM}
{MD_GAIN}

RM_TONE
RM_ALAW*
RM_SR6
MD_PCM
{MD_GAIN}

RM_TONE
RM_ALAW*

RM_SR8
MD_PCM
{MD_GAIN}

No AGC
Tone

MD_NOGAIN
RM_TONE
RM_SR6
{MD_ADPCM}

MD_NOGAIN
RM_TONE
RM_SR8
{MD_ADPCM}

MD_NOGAIN
MD_PCM
RM_SR6
RM_TONE
RM_ALAW*

MD_NOGAIN
MD_PCM
RM_SR8
RM_TONE
RM_ALAW*

{ } = Default modes.
 * = Select if A-law encoding is required

350 Voice API Library Reference — June 2005

dx_rec() — record voice data from a single channel

Synchronous Operation

By default, this function runs synchronously, and returns a 0 to indicate that it has completed
successfully.

Set termination conditions using the DV_TPT structure, which is pointed to by the tptp parameter.
After dx_rec() terminates, use the ATDX_TERMMSK() function to determine the reason for
termination.

Cautions

• If A-law data encoding is selected (RM_ALAW), the A-law parameters must be passed each
time the record function is called or the setting will return to mu-law (the default).

• On DM3 boards using a flexible routing configuration, voice channels must be listening to a
TDM bus time slot in order for voice recording functions, such as dx_rec(), to work. In other
words, you must issue a dx_listen() function call on the device handle before calling a voice
recording function for that device handle. If not, that voice channel will be in a stuck state and
can only be cleared by issuing dx_stopch() or dx_listen(). The actual recording operation
will start only after the voice channel is listening to the proper external time slot.

• The io_fhandle member of the DX_IOTT is normally set to the value of the descriptor
obtained when opening the file used for recording. That file cannot be opened in append mode
since multiple recordings would corrupt the file during playback because of different coders
used, header and other format-related issues. Consequently, when opening a file, the
O_APPEND flag is not supported and will cause TDX_ERROR to be returned if used.

• It is recommended that you start recording before receiving any incoming data on the channel
so that initial data is not missed in the recording.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADDEV
Invalid Device Descriptor

EDX_BADIOTT
Invalid DX_IOTT entry

EDX_BADPARM
Invalid parameter

EDX_BADTPT
Invalid DX_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_SYSTEM
Error from operating system

Voice API Library Reference — June 2005 351

record voice data from a single channel — dx_rec()

Example 1

This example illustrates how to using dx_rec() in synchronous mode.

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXLEN 10000

main()
{
 DV_TPT tpt;
 DX_IOTT iott[2];
 int chdev;
 char basebufp[MAXLEN];

 /*
 * open the channel using dx_open()
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /*
 * Set up the DV_TPT structures for MAXDTMF
 */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* last entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 1; /* terminate on the first digit */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */

 /*
 * Set up the DX_IOTT. The application records the voice data to memory
 * allocated by the user.
 */

 iott[0].io_type = IO_MEM|IO_CONT; /* Record to memory */
 iott[0].io_bufp = basebufp; /* Set up pointer to buffer */
 iott[0].io_offset = 0; /* Start at beginning of buffer */
 iott[0].io_length = MAXLEN; /* Record 10,000 bytes of voice data */

 iott[1].io_type = IO_DEV|IO_EOT; /* Record to file, last DX_IOTT entry */
 iott[1].io_bufp = 0; /* Set up pointer to buffer */
 iott[1].io_offset = 0; /* Start at beginning of buffer */
 iott[1].io_length = MAXLEN; /* Record 10,000 bytes of voice data */

 /* For Windows applications */
 if((iott[1].io_fhandle = dx_fileopen("file.vox",
 O_RDWR|O_CREAT|O_TRUNC|O_BINARY,0666)) == -1) {
 /* process error */
 }

 /* For Linux applications */
 if((iott[1].io_fhandle = open("file.vox", O_RDWR|O_CREAT|O_TRUNC,
 0666)) == -1) {
 /* process error */
 }

 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }
 if (dx_rec(chdev,&iott[0],&tpt,RM_TONE|EV_SYNC) == -1) {
 /* process error */

352 Voice API Library Reference — June 2005

dx_rec() — record voice data from a single channel

 }
 /* Analyze the data recorded */
 .
 .
}

Example 2

This example illustrates how to use dx_rec() in asynchronous mode.

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXLEN 10000
#define MAXCHAN 24

int record_handler();
DV_TPT tpt;
DX_IOTT iott[MAXCHAN];
int chdev[MAXCHAN];
char basebufp[MAXCHAN][MAXLEN];

main()
{
 int i, srlmode;
 char *chname;
 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 /* Start asynchronous dx_rec() on all the channels. */
 for (i=0; i<MAXCHAN; i++) {

 /* Set chname to the channel name, e.g., dxxxB1C1, dxxxB1C2,... */
 /*
 * open the channel using dx_open()
 */
 if ((chdev[i] = dx_open(chname,NULL)) == -1) {
 /* process error */
 }

 /* Using sr_enbhdlr(), set up handler function to handle record
 * completion events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_RECORD, record_handler) == -1) {
 /* process error */
 }

 /*
 * Set up the DV_TPT structures for MAXDTMF
 */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* last entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 1; /* terminate on the first digit */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */

Voice API Library Reference — June 2005 353

record voice data from a single channel — dx_rec()

 /*
 * Set up the DX_IOTT. The application records the voice data to memory
 * allocated by the user.
 */
 iott[i].io_type = IO_MEM|IO_EOT; /* Record to memory, last DX_IOTT
 * entry */
 iott[i].io_bufp = basebufp[i]; /* Set up pointer to buffer */
 iott[i].io_offset = 0; /* Start at beginning of buffer */
 iott[i].io_length = MAXLEN; /* Record 10,000 bytes voice data */

 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }

 /* Start asynchronous dx_rec() on the channel */
 if (dx_rec(chdev[i],&iott[i],&tpt,RM_TONE|EV_ASYNC) == -1) {
 /* process error */
 }
 }

 /* Use sr_waitevt to wait for the completion of dx_rec().
 * On receiving the completion event, TDX_RECORD, control is transferred
 * to a handler function previously established using sr_enbhdlr().
 */
 .
 .
}

int record_handler()
{
 long term;

 /* Use ATDX_TERMMSK() to get the reason for termination. */
 term = ATDX_TERMMSK(sr_getevtdev());
 if (term & TM_MAXDTMF) {
 printf("record terminated on receiving DTMF digit(s)\n");
 } else if (term & TM_NORMTERM) {
 printf("normal termination of dx_rec()\n");
 } else {
 printf("Unknown termination reason: %x\n", term);
 }
 /* Kick off next function in the state machine model. */
 .
 .
 return 0;
}

See Also

• dx_recf()

• dx_reciottdata()

• dx_recm()

• dx_recmf()

• dx_recvox()

• dx_setparm()

• dx_getparm()

• DX_IOTT data structure (to identify source or destination of the voice data)

• event management functions in Standard Runtime Library API Library Reference

• ATDX_TERMMSK()

354 Voice API Library Reference — June 2005

dx_rec() — record voice data from a single channel

• DV_TPT data structure (to specify a termination condition)

• dx_setuio()

Voice API Library Reference — June 2005 355

record voice data to a single file — dx_recf()

dx_recf()

record voice data to a single file

Description

The dx_recf() function is a convenience function that records voice data from a channel to a single
file.

Calling dx_recf() is the same as calling dx_rec() and specifying a single file entry in the
DX_IOTT structure. Using dx_recf() is more convenient for recording to one file, because you do
not have to set up a DX_IOTT structure for one file, and the application does not need to open the
file. The dx_recf() function opens and closes the file specified by fnamep.

Cautions

None.

Name: int dx_recf(chdev, fnamep, tptp, mode)

Inputs: int chdev • valid channel device handle

char *fnamep • pointer to name of file to record to

DV_TPT *tptp • pointer to Termination Parameter Table structure

unsigned short mode • recording mode bit mask for this record session

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O Convenience

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

fnamep points to the name of the file where voice data will be recorded

tptp points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for recording. For more information on this structure,
see DV_TPT, on page 510.

mode defines the recording mode. One or more of the values listed in the mode
description of dx_rec() may be selected in the bitmask using bitwise OR (see
Table 12, “Record Mode Selections”, on page 349 for record mode
combinations).

356 Voice API Library Reference — June 2005

dx_recf() — record voice data to a single file

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT entry

EDX_BADPARM
Invalid parameter

EDX_BADTPT
Invalid DX_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_SYSTEM
Error from operating system

Source Code

/***
 * NAME: int dx_recf(devd,filep,tptp,mode)
 * DESCRIPTION: Record data to a file
 * INPUTS: devd - channel descriptor
 * tptp - TPT pointer
 * filep - ASCIIZ string for name of file to read into
 * mode - tone initiation flag
 * OUTPUTS: Data stored in file, status in CSB pointed to by csbp
 * RETURNS: 0 or -1 on error
 * CALLS: open() dx_rec() close()
 * CAUTIONS: none.
**

*/
int dx_recf(devd,filep,tptp,mode)
 int devd;
 char *filep;
 DV_TPT *tptp;
 USHORT mode;
{

 int rval;
 DX_IOTT iott;
 /*
 * If Async then return Error
 * Reason: IOTT's must be in scope for the duration of the record
 */
 if (mode & EV_ASYNC) {
 return(-1);
 }

 /* Open the File */
 if ((iott.io_fhandle = open(filep,(O_WRONLY|O_CREAT|O_TRUNC),0666)) == -
 1) {
 return -1;
 }

Voice API Library Reference — June 2005 357

record voice data to a single file — dx_recf()

 /* Use dx_rec() to do the record */
 iott.io_type = IO_EOT | IO_DEV;
 iott.io_offset = (long)0;
 iott.io_length = -1;

 rval = dx_rec(devd,&iott,tptp,mode);

 if (close(iott.io_fhandle) == -1) {
 return -1;
 }

 return rval;
}

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 long termtype;
 DV_TPT tpt[2];

 /* Open the channel using dx_open(). Get channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* Set the DV_TPT structures up for MAXDTMF and MAXSIL */
 dx_clrtpt(tpt,2);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 1; /* terminate on the first digit */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */

 /*
 * If the initial silence period before the first non-silence period
 * exceeds 4 seconds then terminate. If a silence period after the
 * first non-silence period exceeds 2 seconds then terminate.
 */
 tpt[1].tp_type = IO_EOT; /* last entry in the table */
 tpt[1].tp_termno = DX_MAXSIL; /* Maximum silence */
 tpt[1].tp_length = 20; /* terminate on 2 seconds of
 * continuous silence */
 tpt[1].tp_flags = TF_MAXSIL|TF_SETINIT; /* Use the default flags and
 * initial silence flag */
 tpt[1].tp_data = 40; /* Allow 4 seconds of initial
 * silence */
 if (dx_recf(chdev,"weather.vox",tpt,RM_TONE) == -1) {
 /* process error */
 }
 termtype = ATDX_TERMMSK(chdev); /* investigate termination reason */
 if (termtype & TM_MAXDTMF) {
 /* process DTMF termination */
 }
 . . .
}

See Also

• dx_rec()

358 Voice API Library Reference — June 2005

dx_recf() — record voice data to a single file

• dx_reciottdata()

• dx_recm()

• dx_recmf()

• dx_recvox()

• dx_setparm()

• dx_getparm()

• ATDX_TERMMSK()

• DV_TPT data structure (to specify a termination condition)

Voice API Library Reference — June 2005 359

record voice data to multiple destinations — dx_reciottdata()

dx_reciottdata()

record voice data to multiple destinations

Description

The dx_reciottdata() function records voice data to multiple destinations, a combination of data
files, memory, or custom devices.

dx_reciottdata() is similar to dx_rec(), but takes an extra parameter, xpbp, which allows the user
to specify format information about the data to be recorded. This includes file format, data
encoding, sampling rate, and bits per sample.

Name: int dx_reciottdata(chdev, iottp, tptp, xpbp, mode)

Inputs: int chdev • valid channel device handle

DX_IOTT *iottp • pointer to I/O Transfer Table structure

DV_TPT *tptp • pointer to Termination Parameter Table structure

DX_XPB *xpbp • pointer to I/O Transfer Parameter block

unsigned short mode • play mode

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

iottp points to the I/O Transfer Table Structure, DX_IOTT, which specifies the order
of recording and the location of voice data. This structure must remain in
scope for the duration of the function if using asynchronously. See DX_IOTT,
on page 534, for more information on this data structure.

tptp points to the Termination Parameter Table Structure, DV_TPT, which specifies
termination conditions for recording. For more information on this structure,
see DV_TPT, on page 510.

360 Voice API Library Reference — June 2005

dx_reciottdata() — record voice data to multiple destinations

Cautions

• On High Density Station Interface (HDSI) boards, this function is supported provided that the
correct play/record PCD file is downloaded.

• On DM3 boards using a flexible routing configuration, voice channels must be listening to a
TDM bus time slot in order for voice recording functions, such as dx_reciottdata(), to work.
In other words, you must issue a dx_listen() function call on the device handle before calling
a voice recording function for that device handle. If not, that voice channel will be in a stuck
state and can only be cleared by issuing dx_stopch() or dx_listen(). The actual recording
operation will start only after the voice channel is listening to the proper external time slot.

• All files specified in the DX_IOTT structure will be of the file format described in DX_XPB.

• All files recorded to will have the data encoding and sampling rate as described in DX_XPB.

• When playing or recording VOX files, the data format is specified in DX_XPB rather than
through the dx_setparm() function.

• The DX_IOTT data area must remain in scope for the duration of the function if running
asynchronously.

• The DX_XPB data area must remain in scope for the duration of the function if running
asynchronously.

xpbp points to the I/O Transfer Parameter Block, DX_XPB, which specifies the file
format, data format, sampling rate, and resolution for I/O data transfer. For
more information on this structure, see DX_XPB, on page 546.

mode specifies the recording mode. One or more of the values listed below may be
selected in the bit mask using bitwise OR.
• EV_ASYNC – asynchronous mode
• EV_SYNC – synchronous mode
• RM_TONE – transmits a 200 msec tone before initiating record
• RM_VADNOTIFY – generates an event, TDX_VAD, on detection of voice

energy by the voice activity detector (VAD) during the recording
operation. For details on recording with the voice activity detector (VAD),
see the Voice API Programming Guide.
Note that TDX_VAD does not indicate function termination; it is an
unsolicited event. Do not confuse this event with the TEC_VAD event
which is used in the continuous speech processing (CSP) library.

• RM_ISCR – adds initial silence compression to the voice activity detector
(VAD) capability. Note that the RM_ISCR mode can only be used in
conjunction with RM_VADNOTIFY. For details on recording with the
voice activity detector (VAD), see the Voice API Programming Guide.

• RM_NOTIFY – (Windows only) generates record notification beep tone.
• RM_USERTONE – (Linux only) plays a user-defined tone before initiating

record. This value is not supported on DM3 boards.

On Linux, once the GTG tone template has been set in firmware, the
application may use the customized tone preceding a record by specifying both
the RM_TONE and RM_USERTONE bits. If the RM_USERTONE bit is not
set but the RM_TONE bit is set in the record mode field, the built-in tone will
be played prior to initiating a record. For details, see dx_settone().

Parameter Description

Voice API Library Reference — June 2005 361

record voice data to multiple destinations — dx_reciottdata()

• The io_fhandle member of the DX_IOTT is normally set to the value of the descriptor
obtained when opening the file used for recording. That file cannot be opened in append mode
since multiple recordings would corrupt the file during playback because of different coders
used, header and other format-related issues. Consequently, when opening a file, the
O_APPEND flag is not supported and will cause TDX_ERROR to be returned if used.

• It is recommended that you start recording before receiving any incoming data on the channel
so that initial data is not missed in the recording.

Errors

In asynchronous mode, the function returns immediately and a TDX_RECORD event is queued
upon completion. Check ATDX_TERMMSK() for the termination reason. If a failure occurs
during recording, then a TDX_ERROR event will be queued. Use ATDV_LASTERR() to
determine the reason for error. In some limited cases such as when invalid arguments are passed to
the library, the function may fail before starting the record. In such cases, the function returns -1
immediately to indicate failure and no event is queued.

In synchronous mode, if this function returns -1 to indicate failure, use the Standard Runtime
Library (SRL) Standard Attribute function ATDV_LASTERR() to obtain the error code or use
ATDV_ERRMSGP() to obtain a descriptive error message. One of the following error codes may
be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX_BUSY
Channel is busy

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

EDX_SH_BADCMD
Unsupported command or WAVE file format

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{

 int chdev; /* channel descriptor */
 int fd; /* file descriptor for file to be played */
 DX_IOTT iott; /* I/O transfer table */
 DV_TPT tpt; /* termination parameter table */
 DX_XPB xpb; /* I/O transfer parameter block */
 .
 .
 .

362 Voice API Library Reference — June 2005

dx_reciottdata() — record voice data to multiple destinations

 /* Open channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Set to terminate play on 1 digit */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 /* For Windows applications: open file */
 if ((fd = dx_fileopen("MESSAGE.VOX",O_RDWR|O_BINARY)) == -1) {
 printf("File open error\n");
 exit(2);
 }

 /* For Linux applications: open file */
 if ((fd = open("MESSAGE.VOX",O_RDWR)) == -1) {
 printf("File open error\n");
 exit(2);
 }

 /* Set up DX_IOTT */
 iott.io_fhandle = fd;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1;
 iott.io_type = IO_DEV | IO_EOT;

 /*
 * Specify VOX file format for PCM at 8KHz.
 */
 xpb.wFileFormat = FILE_FORMAT_VOX;
 xpb.wDataFormat = DATA_FORMAT_PCM;
 xpb.nSamplesPerSec = DRT_8KHZ;
 xpb.wBitsPerSample = 8;

 /* Wait forever for phone to ring and go offhook */
 if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
 }

 /* Play intro message */
 if (dx_playvox(chdev,"HELLO.VOX",&tpt,&xpb,EV_SYNC) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

 /* Start recording */
 if (dx_reciottdata(chdev,&iott,&tpt,&xpb,PM_TONE|EV_SYNC) == -1) {
 printf("Error recording file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

}

See Also

• dx_rec()

• dx_recf()

• dx_recm()

Voice API Library Reference — June 2005 363

record voice data to multiple destinations — dx_reciottdata()

• dx_recmf()

• dx_recvox()

• dx_recwav()

• dx_setuio()

364 Voice API Library Reference — June 2005

dx_recm() — record voice data from two channels

dx_recm()

record voice data from two channels

Description

Supported on Linux only. The dx_recm() function records voice data from two channels to a
combination of data files, memory, or custom devices.

This function is used for the Transaction record feature, which enables the recording of a two-party
conversation by allowing two TDM bus time slots from a single channel to be recorded.

Note: On DM3 boards, use the dx_mreciottdata() function for transaction record.

Name: int dx_recm(chdev, iottp, tptp, mode, tsinfop)

Inputs: int chdev • valid channel device handle

DX_IOTT *iottp • pointer to I/O Transfer Table structure

DV_TPT *tptp • pointer to Termination Parameter Table structure

unsigned short mode • recording mode bit mask for this record session

SC_TSINFO *tsinfop • pointer to TDM bus Time Slot Information structure

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or asynchronous

Platform: Springware Linux

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

iottp points to the I/O Transfer Table Structure, DX_IOTT, which specifies the order
of recording and the location of voice data. This structure must remain in
scope for the duration of the function if using asynchronously. See DX_IOTT,
on page 534, for more information on this data structure.

tptp points to the Termination Parameter Table Structure, DV_TPT, which specifies
termination conditions for this function. For a list of termination conditions
and for more information on this structure, see DV_TPT, on page 510.

Voice API Library Reference — June 2005 365

record voice data from two channels — dx_recm()

After dx_recm() is called, recording continues until dx_stopch() is called, until the data
requirements specified in the DX_IOTT are fulfilled, or until one of the conditions for termination
in the DV_TPT is satisfied. In addition, recording will stop if the function fails; for example, if
maximum byte count is exceeded or the end of the file is reached.

When dx_recm() terminates, the current channel’s status information, including the reason for
termination, can be accessed using extended attribute functions. Use the ATDX_TERMMSK()
function to determine the reason for termination.

By default, this function runs synchronously, and returns 0 to indicate that it has completed
successfully.

To run this function asynchronously, set the mode parameter to EV_ASYNC. When running
asynchronously, this function returns 0 to indicate it has initiated successfully, and generates a
TDX_RECORD termination event to indicate completion.

Termination of asynchronous recording is indicated by the same TDX_RECORD event used in
dx_rec().Use the Standard Runtime Library (SRL) Event Management functions to handle the
termination event.

Cautions

• When playing pre-recorded data, ensure it is played using the same encoding algorithm and
sampling rate used when the data was recorded.

• When using MSI/SC products for transaction recording, ensure that a full duplex connection is
established. You must call ms_listen() even though the MSI station is used for transmitting.

• Since the digital signal processor (DSP) sums the PCM values of the two TDM bus time slots
before processing them during transaction recording, all voice related terminating conditions
or features such as DTMF detection, automatic gain control (AGC), and sampling rate changes
will apply to both time slots. Thus, for terminating conditions specified by a DTMF digit,
either time slot containing the DTMF digit will stop the recording. Also, maximum silence
length requires simultaneous silence from both time slots to meet the specification.

• If both time slots transmit a DTMF digit at the same time, the recording will contain an
unintelligible result.

• Since this function uses dx_listen() to connect the channel to the first specified time slot, any
error returned from dx_listen() will terminate the API with the error indicated. See
dx_listen() for an explanation of the errors.

mode defines the recording mode for the record session. One or more of the values
listed in the description of the mode parameter for dx_rec() may be selected
in the bitmask using bitwise OR (see Table 12, “Record Mode Selections”, on
page 349 for record mode combinations).

tsinfop points to the SC_TSINFO structure that contains the TDM bus time slot
information.

To have two-channel recording, you need to provide information on both time
slots in the SC_TSINFO. For more information on this structure, see
SC_TSINFO, on page 557.

Parameter Description

366 Voice API Library Reference — June 2005

dx_recm() — record voice data from two channels

• The API will connect the channel to the time slot specified in the sc_tsarrayp[0] field of the
SC_TSINFO structure. The record channel will continue to listen to both time slots after the
function has completed, until dx_listen() or dx_unlisten() is subsequently issued to re-route
the record channel. Both sc_tsarrayp[0] and sc_tsarrayp[1] must be within the range 0 to 1023.
No checking is made to verify that sc_tsarrayp[0] or sc_tsarrayp[1] has been connected to a
valid channel. For more information on this structure, see SC_TSINFO, on page 557.

• Upon termination of the dx_recm() or dx_recmf() function, the recording channel continues
to listen to the time slot pointed to by sc_tsarray[0].

• The recording channel can only detect a loop current drop on a physical analog interface that is
associated with that channel. If you have a configuration where the recording channel is not
listening to its corresponding analog interface, you will have to design the application to detect
the loop current drop event and issue a dx_stopch() to the recording device. The recording
channel hook state should be off-hook while the recording is in progress.

• Any device connected via the TDM bus to the recording device of the transaction record
function dx_recm() will be unrouted before the transaction record starts and will not be
routed back to the device when the transaction is completed.

• The io_fhandle member of the DX_IOTT is normally set to the value of the descriptor
obtained when opening the file used for recording. That file cannot be opened in append mode
since multiple recordings would corrupt the file during playback because of different coders
used, header and other format-related issues. Consequently, when opening a file, the
O_APPEND flag is not supported and will cause TDX_ERROR to be returned if used.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example 1

This example illustrates using dx_recm() in synchronous mode.

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXLEN 10000

main()
{

 DV_TPT tpt;
 DX_IOTT iott[2];
 int chdev1;
 char basebufp[MAXLEN];
 SC_TSINFO tsinfo;
 long scts1, scts2, arrayp[32];

 /* Open the channel */
 if ((chdev1 = dx_open("dxxxB1C1", NULL)) == -1){
 printf("Could not open dxxxB1C1\n”);
 exit (1);
 }

Voice API Library Reference — June 2005 367

record voice data from two channels — dx_recm()

 /* get two external timeslots */
 arrayp[0] = scts1;
 arrayp[1] = scts2;

 tsinfo.sc_numts = 2;
 tsinfo.sc_tsarrayp = &arrayp[0];

 /* Setup DV_TPT structure */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 /* Setup DX_IOTT */
 iott[0].io_type = IO_MEM | IO_CONT ;
 iott[0].io_bufp = basebufp ;
 iott[0].io_offset= 0;
 iott[0].io_length= MAXLEN;

 iott[1].io_type = IO_DEV | IO_EOT ;
 iott[1].io_bufp = 0;
 iott[1].io_offset = 0;
 iott[1].io_length = MAXLEN ;

 if ((iott[1].io_fhandle = open("file.vox", O_RDWR | O_CREAT | O_TRUNC,
 0666)) == -1){
 printf("File open error\n");
 exit (1);
 }
 if (dx_clrdigbuf(chdev1) == -1) {
 printf("Error Message = %s\n", ATDV_ERRMSGP(chdev1));
 exit (1);
 }

 if (dx_recm(chdev1, &iott[0], &tpt, RM_TONE | EV_SYNC, &tsinfo) == -1) {
 printf("Error Message = %s\n", ATDV_ERRMSGP(chdev1));
 exit (1);
 }

 if (dx_close(chdev1) == -1) {
 printf("Error Message = %s\n", ATDV_ERRMSGP(chdev1));
 exit (1);
 }
}

Example 2

This example illustrates using dx_recm() in asynchronous mode.

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXLEN 10000

main()
{

368 Voice API Library Reference — June 2005

dx_recm() — record voice data from two channels

 DV_TPT tpt;
 DX_IOTT iott[2];
 int chdev1;
 char basebufp[MAXLEN];
 SC_TSINFO tsinfo;
 long scts1, scts2, arrayp[32];
 int srlmode;

 /* Open the channel */
 if ((chdev1 = dx_open("dxxxB1C1", NULL)) == -1){
 printf("Could not open dxxxB1C1\n”);
 exit (1);
 }

 srlmode = SR_POLLMODE;

 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1){
 printf("Cannot set SRL to Polled mode ! \n");
 exit(1);
 }

 if (sr_enbhdlr(chdev1, TDX_RECORD, record_handler) == -1){
 printf("Enable handler fialed from CH-1\n");
 exit (1);
 }

 /* get two external timeslots */
 arrayp[0] = scts1;
 arrayp[1] = scts2;
 tsinfo.sc_numts = 2;
 tsinfo.sc_tsarrayp = &arrayp[0];

 /* Set up DV_TPT structure */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 /* Set up DX_IOTT */
 iott[1].io_type = IO_DEV | IO_EOT ;
 iott[1].io_bufp = basebufp;
 iott[1].io_offset = 0;
 iott[1].io_length = -1 ;

 if ((iott[1].io_fhandle = open("file.vox", O_RDWR | O_CREAT | O_TRUNC,
 0666)) == -1){
 printf("File open error\n");
 exit (1);
 }

if (dx_clrdigbuf(chdev1) == -1) {
 printf("Error Message = %s\n", ATDV_ERRMSGP(chdev1));
 exit (1);
 }

 if (dx_recm(chdev1, &iott[1], &tpt, RM_TONE | EV_ASYNC, &tsinfo) == -1) {
 printf("Error Message = %s\n", ATDV_ERRMSGP(chdev1));
 exit (1);
 }

 printf ("Waiting for Event\n");

Voice API Library Reference — June 2005 369

record voice data from two channels — dx_recm()

 if(sr_waitevt(-1) == -1){
 printf("sr_waitevt, %s\n",ATDV_ERRMSGP(SRL_DEVICE));
 exit(1);
 }
 /*Disable the handler*/
 if (sr_dishdlr(chdev1, TDX_RECORD, record_handler) == -1){
 printf("Disable handler fialed from CH-1\n");
 exit (1);
 }

 if (dx_close(chdev1) == -1) {
 printf("Error Message = %s\n", ATDV_ERRMSGP(chdev1));
 exit (1);
 }
}

int record_handler(){

 long term;
 term = ATDX_TERMMSK(sr_getevtdev());

 if (term & TM_MAXDTMF) {
 printf("Record terminated on receiving DTMF digit\n");
 }else if (term & TM_NORMTERM) {
 printf ("Normal termination of dx_rec\n");
 }else {
 printf("Unknown termination reason : %x\n", term);
 }
}

See Also

• dx_recf()

• dx_reciottdata()

• dx_recmf()

• dx_recvox()

• dx_setparm()

• dx_getparm()

370 Voice API Library Reference — June 2005

dx_recmf() — record voice data from a single channel

dx_recmf()

record voice data from a single channel

Description

Supported on Linux only. The dx_recmf() function records voice data from two channels to a
single file.

This function is used for the transaction record feature, which enables the recording of a two-party
conversation by allowing two TDM bus time slots from a single channel to be recorded.

Note: On DM3 boards, use the dx_mreciottdata() function for transaction record.

Calling dx_recmf() is the same as calling dx_recm() and specifying a single file entry in the
DX_IOTT structure. Using dx_recmf() is more convenient for recording to single file, because
you do not have to set up a DX_IOTT structure for one file, and the application does not need to
open the file. The dx_recmf() function opens and closes the file specified by fnamep.

Name: int dx_recmf(chdev, fnamep, tptp, mode, tsinfop)

Inputs: int chdev • valid channel device handle

char *fnamep • pointer to file where voice data will be recorded

DV_TPT *tptp • pointer to Termination Parameter Table structure

unsigned short mode • recording mode bit mask for this record session

SC_TSINFO *tsinfop • pointer to TDM bus Time Slot Information structure

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: Springware Linux

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

fnamep points to the file to which voice data will be recorded

tptp points to the Termination Parameter Table Structure, DV_TPT, which specifies
termination conditions for recording. For a list of termination conditions and
for more information on this structure, see DV_TPT, on page 510.

Voice API Library Reference — June 2005 371

record voice data from a single channel — dx_recmf()

After dx_recmf() is called, recording continues until dx_stopch() is called, until the data
requirements specified in the DX_IOTT are fulfilled, or until one of the conditions for termination
in the DV_TPT is satisfied. In addition, recording will stop if the function fails; for example, if
maximum byte count is exceeded or the end of the file is reached.

When dx_recmf() terminates, the current channel’s status information, including the reason for
termination, can be accessed using Extended Attribute functions. Use the ATDX_TERMMSK()
function to determine the reason for termination.

By default, this function runs synchronously, and returns 0 to indicate that it has completed
successfully.

To run this function asynchronously, set the mode parameter to EV_ASYNC. When running
asynchronously, this function returns 0 to indicate it has initiated successfully, and generates a
TDX_RECORD termination event to indicate completion.

Termination of asynchronous recording is indicated by the same TDX_RECORD event used in
dx_rec(). Use the Standard Runtime Library (SRL) Event Management functions to handle the
termination event.

Cautions

See the Cautions section in the dx_recm() function description for information.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#define MAXLEN 10000

mode defines the recording mode for the record session. One or more of the values
listed in the description of the mode parameter for dx_rec() may be selected
in the bitmask using bitwise OR (see Table 12, “Record Mode Selections”, on
page 349 for record mode combinations).

tsinfop points to the SC_TSINFO data structure that contains the TDM bus time slot
information.

To have two-channel recording, you need to provide information on both time
slots in the SC_TSINFO. For more information on this structure, see
SC_TSINFO, on page 557.

Parameter Description

372 Voice API Library Reference — June 2005

dx_recmf() — record voice data from a single channel

main()
{
 int chdev;
 DV_TPT tpt[2];
 long termtype;
 SC_TSINFO tsinfo;
 long scts1,scts2, ts_array[32];

/* Open the channel */
 if ((chdev = dx_open("dxxxB1C1", NULL)) == -1){
 printf("Could not open dxxxB1C1\n”);
 exit (1);
 }

/* get two external timeslots */
 arrayp[0] = scts1;
 arrayp[1] = scts2;
 tsinfo.sc_numts = 2;
 tsinfo.sc_tsarrayp = &arrayp[0];

/* Set up DV_TPT structure */
 dx_clrtpt(tpt,2);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF;
 tpt[0].tp_length = 1;
 tpt[0].tp_flags = TF_MAXDTMF;

 tpt[1].tp_type = IO_EOT;
 tpt[1].tp_termno= DX_MAXSIL;
 tpt[1].tp_length= 20;
 tpt[1].tp_flags = TF_MAXSIL | TF_SETINIT;
 tpt[1].tp_data = 40;

 if (dx_recmf(chdev,"file.vox", tpt, RM_TONE, &tsinfo) == -1) {
 printf("Error Message = %s\n", ATDV_ERRMSGP(chdev));
 exit (1);
 }

 termtype = ATDX_TERMMSK(chdev);

 if (dx_unlisten(chdev) == -1) {
 printf("Error Message = %s\n", ATDV_ERRMSGP(chdev));
 exit (1);
 }

 if (dx_close(chdev) == -1) {
 printf("Error Message = %s\n", ATDV_ERRMSGP(chdev));
 exit (1);
 }
}

See Also

• dx_recf()

• dx_reciottdata()

• dx_recm()

• dx_recvox()

• dx_setparm()

• dx_getparm()

Voice API Library Reference — June 2005 373

record voice data to a single VOX file — dx_recvox()

dx_recvox()

record voice data to a single VOX file

Description

The dx_recvox() function records voice data from a channel to a single VOX file. This is a
convenience function.

Name: int dx_recvox(chdev, filenamep, tptp, xpbp, mode)

Inputs: int chdev • valid channel device handle

char *filenamep • pointer to name of file to record to

DV_TPT *tptp • pointer to Termination Parameter Table structure

DX_XPB *xpbp • pointer to I/O Transfer Parameter Block structure

unsigned short mode • record mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O Convenience

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

filenamep points to the name of the VOX file to record to

tptp points to the Termination Parameter Table Structure, DV_TPT, which
specifies termination conditions for recording. For more information on this
structure, see DV_TPT, on page 510.

xpbp points to the I/O Transfer Parameter Block structure, which specifies the file
format, data format, sampling rate, and resolution of the voice data. For more
information, see DX_XPB, on page 546.

Note: If xpbp is set to NULL, this function interprets the data as 6 kHz linear
ADPCM.

mode specifies the record mode. The following values may be used individually or
ORed together:
• EV_SYNC – synchronous operation (must be specified)
• RM_TONE – transmits a 200 msec tone before initiating record

374 Voice API Library Reference — June 2005

dx_recvox() — record voice data to a single VOX file

Cautions

• On DM3 boards using a flexible routing configuration, voice channels must be listening to a
TDM bus time slot in order for voice recording functions, such as dx_reciottdata(), to work.
In other words, you must issue a dx_listen() function call on the device handle before calling
a voice recording function for that device handle. If not, that voice channel will be in a stuck
state and can only be cleared by issuing dx_stopch() or dx_listen(). The actual recording
operation will start only after the voice channel is listening to the proper external time slot.

• When playing or recording VOX files, the data format is specified in DX_XPB rather than
through the mode parameter of dx_recvox().

• It is recommended that you start recording before receiving any incoming data on the channel
so that initial data is not missed in the recording.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or VOX file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

Example

#include "srllib.h"
#include "dxxxlib.h"

main()
{

 int chdev; /* channel descriptor */
 DV_TPT tpt; /* termination parameter table */
 DX_XPB xpb; /* I/O transfer parameter block */
 .
 .
 .

 /* Open channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 /* Perform system error processing */
 exit(1);
 }

Voice API Library Reference — June 2005 375

record voice data to a single VOX file — dx_recvox()

 /* Set to terminate play on 1 digit */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 /* Wait forever for phone to ring and go offhook */
 if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
 }

 /* Start prompt playback */
 if (dx_playvox(chdev,"HELLO.VOX",&tpt,EV_SYNC) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

 /* clear digit buffer */
 dx_clrdigbuf(chdev);

 /* Start 6KHz ADPCM recording */
 if (dx_recvox(chdev,"MESSAGE.VOX",&tpt,NULL,RM_TONE|EV_SYNC) == -1){
 printf("Error recording file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

}

See Also

• dx_rec()

• dx_recf()

• dx_reciottdata()

• dx_recm()

• dx_recmf()

• dx_recwav()

376 Voice API Library Reference — June 2005

dx_recwav() — record voice data to a single WAVE file

dx_recwav()

record voice data to a single WAVE file

Description

The dx_recwav() convenience function records voice data to a single WAVE file. This function in
turn calls dx_reciottdata().

Name: int dx_recwav(chdev, filenamep, tptp, xpbp, mode)

Inputs: int chdev • valid channel device handle

char *filenamep • pointer to name of file to record to

DV_TPT *tptp • pointer to Termination Parameter Table structure

DX_XPB *xpbp • pointer to I/O Transfer Parameter Block

unsigned short mode • record mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O Convenience

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tptp points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for playing. For more information on this function, see
DV_TPT, on page 510.

filenamep points to the name of the file to record to

xpbp points to the I/O Transfer Parameter Block, DX_XPB, which specifies the file
format, data format, sampling rate, and resolution. For more information on
this structure, see DX_XPB, on page 546.

Note: If xpbp is set to NULL, the function will record in 11 kHz linear 8-bit
PCM.

mode specifies the record mode. The following values may be used individually or
ORed together:
• EV_SYNC – synchronous operation (must be specified)
• RM_TONE – transmits a 200 msec tone before initiating record

Voice API Library Reference — June 2005 377

record voice data to a single WAVE file — dx_recwav()

Cautions

• On DM3 boards using a flexible routing configuration, voice channels must be listening to a
TDM bus time slot in order for voice recording functions, such as dx_reciottdata(), to work.
In other words, you must issue a dx_listen() function call on the device handle before calling
a voice recording function for that device handle. If not, that voice channel will be in a stuck
state and can only be cleared by issuing dx_stopch() or dx_listen(). The actual recording
operation will start only after the voice channel is listening to the proper external time slot.

• It is recommended that you start recording before receiving any incoming data on the channel
so that initial data is not missed in the recording.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or WAVE file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{

 int chdev; /* channel device handle */
 DV_TPT tpt; /* termination parameter table */
 DX_XPB xpb; /* I/O transfer parameter block */
 .
 .
 .

 /* Open channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 /* Perform system error processing */
 exit(1);
 }

378 Voice API Library Reference — June 2005

dx_recwav() — record voice data to a single WAVE file

 /* Set to terminate play on 1 digit */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

 /* Wait forever for phone to ring and go offhook */
 if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
 }

 /* Start playback */
 if (dx_playwav(chdev,"HELLO.WAV",&tpt,EV_SYNC) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

 /* clear digit buffer */
 dx_clrdigbuf(chdev);

 /* Start 11 kHz PCM recording */
 if (dx_recwav(chdev,"MESSAGE.WAV", &tpt, (DX_XPB *)NULL,PM_TONE|EV_SYNC) == -1) {
 printf("Error recording file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

}

See Also

• dx_reciottdata()

• dx_recvox()

Voice API Library Reference — June 2005 379

reset internal data for a circular stream buffer — dx_ResetStreamBuffer()

dx_ResetStreamBuffer()

reset internal data for a circular stream buffer

Description

The dx_ResetStreamBuffer() function resets the internal data for a circular stream buffer,
including zeroing out internal counters as well as the head and tail pointers. This allows a stream
buffer to be reused without having to close and open the stream buffer. This function will report an
error if the stream buffer is currently in use (playing).

Cautions

You cannot reset or delete the buffer while it is in use by a play operation.

Errors

This function returns -1 when the buffer is in use by a play operation.

Unlike other voice API library functions, the streaming to board functions do not use SRL device
handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used to retrieve
error codes and error descriptions.

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int nBuffSize = 32768;
 int hBuffer = -1;

 if ((hBuffer = dx_OpenStreamBuffer(nBuffSize)) < 0)
 {
 printf("Error opening stream buffer \n");

Name: int dx_ResetStreamBuffer(hBuffer)

Inputs: int hBuffer • stream buffer handle

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: streaming to board

Mode: synchronous

Platform: DM3

Parameter Description

hBuffer specifies the circular stream buffer handle

380 Voice API Library Reference — June 2005

dx_ResetStreamBuffer() — reset internal data for a circular stream buffer

 exit(1);
 }
 if (dx_ResetStreamBuffer(hBuffer) < 0)
 {printf("Error resetting stream buffer \n");
 exit (2);
 }
 if (dx_CloseStreamBuffer(hBuffer) < 0)
 {
 printf("Error closing stream buffer \n");
 }
}

See Also

• dx_OpenStreamBuffer()

• dx_CloseStreamBuffer()

Voice API Library Reference — June 2005 381

resume paused play — dx_resume()

dx_resume()

resume paused play

Description

The dx_resume() function resumes the play that was paused using dx_pause(). The play is
resumed exactly where the play was paused (that is, no data is lost). The application will not get an
event when dx_resume() is issued. This function does not return an error if the channel is already
in the requested state.

You can also pause and resume play using a DTMF digit. For more information, see SV_PAUSE
and SV_RESUME in the DX_SVCB data structure and dx_setsvcond().

For more information on the pause and resume play feature, see the Voice API Programming
Guide.

Cautions

None.

Errors

If the function returns -1, use the Standard Runtime Library ATDV_LASTERR() standard
attribute function to return the error code or ATDV_ERRMSGP() to return the descriptive error
message. Possible errors for this function include:

EDX_BUSY
Invalid state. Returned when the function is issued but play has not been paused on the
channel.

Name: int dx_resume(chdev)

Inputs: int chdev • valid channel device handle

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: synchronous

Platform: DM3

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

382 Voice API Library Reference — June 2005

dx_resume() — resume paused play

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int lDevHdl;
 DX_IOTT iott;

 /* Open a voice channel */
 int lDevHdl = dx_open("dxxxB1C1", 0);

 /* Start playing a prompt */
 DX_IOTT iott;
 /* Fill in the iott structure for the play */
 .
 .
 .

 /* Start playing */
 if(dx_playiottdata(lDevHdl, &iott, NULL, NULL, EV_ASYNC) < 0)
 {
 /* process error */
 }

 /* Pause the play */
 if(dx_pause(lDevHdl) <0)
 {
 /* process error */
 }

 /* Start the paused play again */
 if_dx_resume(lDevHdl) < 0)
 {
 /* process error */
 }
 .
 .
 .
}

See Also

• dx_pause()

Voice API Library Reference — June 2005 383

receive data on a specified channel — dx_RxIottData()

dx_RxIottData()

receive data on a specified channel

Description

The dx_RxIottData() function is used to receive data on a specified channel. The wType
parameter specifies the type of data to be received, for example ADSI data.

Name: int dx_RxIottData(chdev, iottp, lpTerminations, wType, lpParams, mode)

Inputs: int chdev • valid channel device handle

DX_IOTT *iottp • pointer to I/O Transfer Table

DV_TPT *lpTerminations • pointer to Termination Parameter Table

int wType • data type

LPVOID lpParams • pointer to data type-specific information

int mode • function mode

Returns: 0 if successful
-1 if error

Includes: srllib.h
dxxxlib.h

Category: Analog Display Services Interface (ADSI)

Mode: asynchronous or synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

iottp points to the I/O Transfer Table, DX_IOTT. The iottp parameter specifies
the destination for the received data. This is the same DX_IOTT structure
used in dx_playiottdata() and dx_reciottdata(). See DX_IOTT, on
page 534, for more information on this data structure.

lpTerminations points to the Termination Parameter Table Structure, DV_TPT, which
specifies termination conditions for the device handle.

Supported values are:

• DX_MAXTIME

• DX_MAXDATA (valid values are 1 - 65535 for tp_length field) (not
supported on Springware boards)

For more information on this structure, see DV_TPT, on page 510.

wType specifies the type of data to be received. To receive ADSI data, set wType
to DT_ADSI.

384 Voice API Library Reference — June 2005

dx_RxIottData() — receive data on a specified channel

After dx_RxIottData() is called, data reception continues until one of the following occurs:

• dx_stopch() is called

• the data requirements specified in the DX_IOTT are fulfilled

• the channel detects end of FSK data

• one of the conditions in the DV_TPT is satisfied

If the channel detects end of FSK data, the function is terminated. Use ATDX_TERMMSK() to
return the reason for the last I/O function termination on the channel. Possible return values are:

TM_EOD
End of FSK data detected on receive

TM_ERROR
I/O device error

TM_MAXDATA (not supported on Springware boards)
Maximum FSK data reached; returned when the last I/O function terminates on
DX_MAXDATA

TM_MAXTIME
Maximum function time exceeded

TM_USRSTOP
Function stopped by user

When running asynchronously, this function returns 0 to indicate it has initiated successfully, and
generates a TDX_RXDATA termination event to indicate completion.

Cautions

• Library level data is buffered when it is received. Applications can adjust the size of the buffers
to address buffering delay. The DXCH_RXDATABUFSIZE channel parameter can be used
with the dx_setparm() and dx_getparm() functions to adjust the buffer size.

• On Springware boards, dx_RxIottData() will sometimes show an extra byte when receiving
data. At the application level, this extra byte can be discarded by looking at the total number of
bytes of data.

lpParams points to information specific to the data type specified in wType. The
format of the parameter block depends on wType. For ADSI data, set
lpParams to point to an ADSI_XFERSTRUC structure. For more
information on this structure, see ADSI_XFERSTRUC, on page 502.

mode specifies how the function should execute:
• EV_ASYNC – asynchronous
• EV_SYNC – synchronous

Parameter Description

Voice API Library Reference — June 2005 385

receive data on a specified channel — dx_RxIottData()

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT (pointer to I/O transfer table)

EDX_BADPARM
Invalid data mode

EDX_BUSY
Channel already executing I/O function

EDX_SYSTEM
Error from operating system

Example

This example illustrates how to use dx_RxIottData() in synchronous mode.

// Synchronous receive ADSI data

#include "srllib.h"
#include "dxxxlib.h"

main()
{

 DX_IOTT iott = {0};
 char *devnamep = "dxxxB1C1";
 char buffer[16];
 ADSI_XFERSTRUC adsimode;
 DV_TPT tpt;
 int chdev;
 .
 .
 .

 sprintf(buffer, "RECEIVE.ADSI");

 if ((iott.io_fhandle = dx_fileopen(buffer, O_RDWR|O_CREAT|O_TRUNC|O_BINARY, 0666)) == -1) {
 // process error
 exit(1);
 }

 if ((chdev = dx_open(devnamep, 0)) == -1) {
 fprintf(stderr, "Error opening channel %s\n",devnamep);
 dx_fileclose(iott.io_fhandle);
 exit(2);
 }
 .
 .
 .

 // destination is a file
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1;

386 Voice API Library Reference — June 2005

dx_RxIottData() — receive data on a specified channel

 adsimode.cbSize = sizeof(adsimode);
 adsimode.dwRxDataMode = ADSI_NOALERT;

 printf("Waiting for incoming ring\n");
 dx_wtring(chdev, 2, DX_OFFHOOK, -1);

 // Specify maximum time termination condition in the DV_TPT.
 // Application specific value is used to terminate dx_RxIottData()
 // if end of data is not detected over a specified duration.

 tpt.tp_type = IO_EOT;
 if (dx_clrtpt(&tpt, 1) == -1) {
 // Process error
 }

 tpt.tp_termno = DX_MAXTIME;
 tpt.tp_length = 1000;
 tpt.tp_flags = TF_MAXTIME;

 if (dx_RxIottData(chdev, &iott, NULL, DT_ADSI, &adsimode, EV_SYNC) < 0) {
 fprintf(stderr, "ERROR: dx_TxIottData failed on Channel %s; error:
 %s\n", ATDV_NAMEP(chdev), ATDV_ERRMSGP(chdev));
 }
 .
 .
 .
}

See Also

• dx_TxIottData()

• dx_TxRxIottData()

Voice API Library Reference — June 2005 387

allow inter-process event communication — dx_sendevt()

dx_sendevt()

allow inter-process event communication

Description

The dx_sendevt() function allows inter-process event communication. The event type parameter,
evttype, and its associated data are sent to one or all processes that have the dev device opened.

The events generated by this function can be retrieved using sr_waitevt(), by registering an event
handler via sr_enbhdlr(), or by calling dx_getevt() to catch the event if the evttype is set to
TDX_CST.

Name: int dx_sendevt(dev, evttype, evtdatap, evtlen, flags)

Inputs: int dev • valid channel device handle

long evttype • type of event to be sent

void *evtdatap • pointer to data block associated with evttype

short evtlen • length of the data block in bytes

unsigned short flags • which processes will receive this event

Returns: 0 if successful
-1 error return code

Includes: srllib.h
dxxxlib.h

Category: Call Status Transition Event

Mode: synchronous

Platform: Springware

Parameter Description

dev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

evttype specifies the type of event to be sent. See the following page for more
information on defining the type of event.

evtdatap points to a data block associated with evttype.

Note: The evtdatap parameter can be NULL and the evtlen parameter 0 if
there is no data associated with an event type.

evtlen specifies the length of the data block in bytes (between 0 and 256)

flags determines which processes are going to receive this event. Valid values are:
• EVFL_SENDSELF – Only the process calling dx_sendevt() will receive

the event.
• EVFL_SENDOTHERS – All processes that have the device opened except

the process calling dx_sendevt() will receive the event.
• EVFL_SENDALL – All processes that have the device opened will receive

the event.

388 Voice API Library Reference — June 2005

dx_sendevt() — allow inter-process event communication

The application can define the evttype and evtdata to be any values as long as evttype is greater
than 0x1FFFFFF and less than 0x7FFFFFF0. The only exception to this rule is the use of this
function to stop dx_wtring() and dx_getevt() by sending TDX_CST events. To unblock a process
waiting in dx_wtring() or dx_getevt(), send an event of type TDX_CST to that process. The
evtlen will be the size of the DX_CST structure and evtdatap will point to a DX_CST structure
with cst.cst_event set to DE_STOPRINGS or DE_STOPGETEVT as the case may be.

Cautions

• This function will fail if an invalid device handle is specified.

• No event will be generated if event type value is greater than 0x7FFFFFF0.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Example

#include "srllib.h"
#include "dxxxlib.h"

main()
{

 int dev; /* device handle */
 DX_CST cst; /* TDX_CST event data block */

 /* Open board 1 channel 1 device */
 if ((dev = dx_open("dxxxB1C1", 0)) == -1) {
 /* Perform system error processing */
 exit(1);
 }

 /* Set up DX_CST structure */
 cst.cst_event = DE_STOPGETEVT;
 cst.cst_data = 0;

 /* Send the event to all other processes that have dxxxB1C1 open */
 if (dx_sendevt(dev, TDX_CST, &cst, sizeof(DX_CST), EVFL_SENDOTHERS) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(dev));
 exit(1);
 }

}

See Also

• dx_getevt()

• sr_enbhdlr()

• sr_waitevt()

Voice API Library Reference — June 2005 389

set the bulk queue buffer size — dx_setchxfercnt()

dx_setchxfercnt()

set the bulk queue buffer size

Description

The dx_setchxfercnt() function sets the bulk queue buffer size for the channel. This function can
change the size of the buffer used to transfer voice data between a user application and the board.

The dx_setchxfercnt() allows a smaller data transfer buffer size. The minimum buffer size is 1
Kbytes, and the largest is 32 Kbytes. This function is typically used in conjunction with the user
I/O feature or the streaming to board feature. For more information on user I/O, see the
dx_setuio() function. This function sets up the frequency with which the application-registered
read or write functions are called by the voice DLL. For applications requiring more frequent
access to voice data in smaller chunks, you can use dx_setchxfercnt() on a per channel basis to
lower the buffer size. For information on streaming to board functions, see Section 1.5, “Streaming
to Board Functions”, on page 21.

Name: int dx_setchxfercnt(chdev, bufsize_identifier)

Inputs: int chdev • valid channel device handle

int bufsize_identifier • equate for a buffer size

Returns: 0 to indicate successful completion
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid device handle obtained when the device was opened
using xx_open(), where “xx” is the prefix identifying the device to be
opened

bufsize_identifier specifies the bulk queue buffer size for the channel. Use one of the
following values:
• 0 – sets the buffer size to 4 Kbytes
• 1 – sets the buffer size to 8 Kbytes
• 2 – sets the buffer size to 16 Kbytes (default)
• 3 – sets the buffer size to 32 Kbytes
• 4 – sets the buffer size to 2 Kbytes
• 5 – sets the buffer size to 1 Kbytes
• 6 – sets the buffer size to 1.5 Kbytes

Equates for these values are not available as #define in any header file.

390 Voice API Library Reference — June 2005

dx_setchxfercnt() — set the bulk queue buffer size

Cautions

• This function fails if an invalid device handle is specified.

• Do not use this function unless it is absolutely necessary to change the bulk queue buffer size
between a user application and the board. Setting the buffer size to a smaller value can degrade
system performance because data is transferred in smaller chunks.

• A wrong buffer size can result in loss of data.

• On DM3 boards operating in Windows, it is not recommended to set the bulk queue buffer size
to less than 2 Kbytes as this can result in loss of data (underrun condition) under high density
load on a board basis. To monitor underrun conditions, set DM_UNDERRUN in
dx_setevtmsk().

• On DM3 boards operating in Linux, for bulk queue buffer sizes of 2 Kbytes or less
(bufsize_identifier is set to 4, 5 or 6), the application UIO routine will get invoked 6 to 7
consecutive times (with no delay) initially for a given buffer size. This means that a sufficient
amount of data must be available for the entire sequence of consecutive invocations for
successful playback of that data. Note that this caution does not apply to newer DMV/B
boards.

The minimum amount of data to be available also applies to the streaming to board interface.
For example, if the buffer size is set to 1 Kbyte, it is recommended that you have 6 to 7 Kbytes
of data available in the circular stream buffer before streaming begins. This is to ensure that no
underrun conditions occur.

There is a limit of 120 channels when using a bulk queue buffer size of 2 Kbytes or less.
Exceeding the 120 channel limit may result in underrun conditions.

• On DM3 boards operating in Linux, for bulk queue buffer sizes of 4 Kbytes or more
(bufsize_identifier is set to 0 to 3), the number of initial consecutive callbacks invoked
depends on the buffer size used. To avoid underrun conditions, it is recommended that you
have a minimum of 16 Kbytes of data required to successfully start playback or streaming. For
example, for a buffer size of 4 Kbytes, the application UIO routine will get invoked 4
consecutive times initially with no delay. For a buffer size of 8 Kbytes, the application UIO
routine will get invoked 2 consecutive times initially with no delay, and so on. Note that this
caution does not apply to newer DMV/B boards.

The minimum amount of data to be available also applies to the streaming to board interface. It
is recommended that you have 16 Kbytes of data available in the circular stream buffer before
streaming begins. This is to ensure that no underrun conditions occur.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_ BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Voice API Library Reference — June 2005 391

set the bulk queue buffer size — dx_setchxfercnt()

Example

#include "srllib.h"
#include "dxxxlib.h"

main()
{

int dev; /* device handle */

 /* Open board 1 channel 1 device */
 if ((dev = dx_open("dxxxB1C1", 0)) == -1) {
 /* Perform system error processing */
 exit(1);
 }

 /* Set the bulk data transfer buffer size to 1.5 kilobytes
 */
 if (dx_setchxfercnt(dev, 6) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(dev));
 exit(1);
 }
}

See Also

• dx_setuio()

• dx_playiottdata()

• dx_reciottdata()

• DXCH_XFERBUFSIZE in dx_setparm()

• dx_OpenStreamBuffer()

• streaming to board topic in the Voice API Programming Guide

392 Voice API Library Reference — June 2005

dx_setdevuio() — install and retrieve user-defined I/O functions

dx_setdevuio()

install and retrieve user-defined I/O functions

Description

The dx_setdevuio() function installs and retrieves user-defined I/O functions on a per channel
device basis. These user I/O functions are used on all subsequent I/O operations performed on the
channel even if the application installs global user I/O functions for all devices using the
dx_setuio() function. The user I/O functions are installed by installing a pointer to a DX_UIO
structure which contains addresses of the user-defined I/O functions.

For more information on working with user-defined I/O functions, see the Application
Development Guidelines chapter in the Voice API Programming Guide.

Name: int dx_setdevuio(chdev, devuiop, retuiop)

Inputs: int chdev • valid channel device handle

DX_UIO *devuiop • pointer to user I/O routines structure

DX_UIO **retuiop • pointer to return pointer for user I/O routines structure

Returns: 0 if successful
-1 error return code

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev the channel for which the user-defined I/O functions will be installed

devuiop a pointer to an application-defined global DX_UIO structure which
contains the addresses of the user-defined I/O functions. This pointer to
the DX_UIO structure will be stored in the voice DLL for the specified
chdev channel device. The application must not overwrite the DX_UIO
structure until dx_setdevuio() has been called again for this device with
the pointer to another DX_UIO structure.

Voice API Library Reference — June 2005 393

install and retrieve user-defined I/O functions — dx_setdevuio()

Cautions

• The DX_UIO structure pointed to by devuiop must not be altered until the next call to
dx_setdevuio() with new values for user-defined I/O functions.

• For proper operation, it is the application’s responsibility to properly define the three DX_UIO
user routines: u_read, u_write and u_seek. NULL is not permitted for any function. Refer to
DX_UIO, on page 545 for more information.

• On DM3 boards, user-defined I/O functions installed by dx_setdevuio() are called in a
different thread than the main application thread. If data is being shared among these threads,
the application must carefully protect access to this data using appropriate synchronization
mechanisms (such as mutex) to ensure data integrity.

Errors

If the function returns -1 to indicate an error, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or you can use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes returned by ATDV_LASTERR() are:

EDX_BADDEV
Invalid device descriptor

EDX_BADPARM
Invalid parameter

Example

#include "windows.h"
#include "srllib.h"
#include "dxxxlib.h"

int chdev; /* channel descriptor */
DX_UIO devio; /* User defined I/O functions */
DX_UIO *getiop; /* Retrieve I/O functions */

retuiop the address of a pointer to a DX_UIO structure. Any previously installed
I/O functions for the chdev device are returned to the application as a
pointer to DX_UIO structure in retuiop. If this is the first time
dx_setdevuio() is called for a device, then retuiop will be filled with the
pointer to the global DX_UIO structure which may contain addresses of
the user-defined I/O function that apply to all devices.

Either of devuiop or retuiop may be NULL, but not both at the same
time. If retuiop is NULL, the dx_setdevuio() function will only install
the user I/O functions specified via the DX_UIO pointer in devuiop but
will not return the address of the previously installed DX_UIO structure.
If devuiop is NULL, then the previously installed DX_UIO structure
pointer will be returned in retuiop but no new functions will be installed.

Parameter Description

394 Voice API Library Reference — June 2005

dx_setdevuio() — install and retrieve user-defined I/O functions

int appread(fd, ptr, cnt)
 int fd;
 char *ptr;
 unsigned cnt;
{
 printf("appread: Read request\n");
 return(read(fd, ptr, cnt));
}

int appwrite(fd, ptr, cnt)
 int fd;
 char *ptr;
 unsigned cnt;
{
 printf("appwrite: Write request\n");
 return(write(fd, ptr, cnt));
}

int appseek(fd, offset, whence)
 int fd;
 long offset;
 int whence;
{
 printf("appseek: Seek request\n");
 return(lseek(fd, offset, whence));
}

main(argc, argv)
 int argc;
 char *argv[];
{
 /* Open channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 /* Perform system error processing */
 exit(1);
 }
 .
 . /* Other initialization */
 .

 /* Initialize the device specific UIO structure */
 devio.u_read = appread;
 devio.u_write = appwrite;
 devio.u_seek = appseek;

 /* Install the applications I/O routines */
 if (dx_setdevuio(chdev, &devio, &getiop) == -1) {
 printf("error registering the UIO routines = %d\n", ATDV_LASTERR(chdev));
 }
}

See Also

• dx_setuio()

Voice API Library Reference — June 2005 395

set the digit buffering mode — dx_setdigbuf()

dx_setdigbuf()

set the digit buffering mode

Description

The dx_setdigbuf() function sets the digit buffering mode that will be used by the voice driver.
Once the digit buffer is full, the application may select whether subsequent digits will be ignored or
will overwrite the oldest digits in the queue. The maximum size of the digit buffer varies with the
board type and technology.

Cautions

When you call dx_setdigbuf(), the function clears the previously detected digits in the digit buffer.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Name: int dx_setdigbuf(chdev, mode)

Inputs: int chdev • valid channel device handle

int mode • digit buffering mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

mode specifies the type of digit buffering that will be used. Mode can be:
• DX_DIGCYCLIC – Incoming digits will overwrite the oldest digits in the

buffer if the buffer is full.
• DX_DIGTRUNC – Incoming digits will be ignored if the digit buffer is full

(default).

396 Voice API Library Reference — June 2005

dx_setdigbuf() — set the digit buffering mode

EDX_TIMEOUT
Timeout limit is reached

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{

 int chfd;

 int init_digbuf()
 {
 /* open the device using dx_open, chfd has the device handle */
 /*
 * Set up digit buffering to be Cyclic. When digit
 * queue overflows oldest digit will be overwritten
 */
 if (dx_setdigbuf(chfd, DX_DIGCYCLIC) == -1) {
 printf("Error during setdigbuf %s\n", ATDV_ERRMGSP(chfd));
 return(1);
 }
 return(0);
 }

}

See Also

None.

Voice API Library Reference — June 2005 397

control the types of digits detected by the voice channel — dx_setdigtyp()

dx_setdigtyp()

control the types of digits detected by the voice channel

Description

The dx_setdigtyp() function controls the types of digits the voice channel detects.

Notes: 1. This function only applies to the standard voice board digits; that is, DTMF, MF, DPD. To set
user-defined digits, use the dx_addtone() function.

2. dx_setdigtyp() does not clear the previously detected digits in the digit buffer.

Name: int dx_setdigtyp(chdev, dmask)

Inputs: int chdev • valid channel device handle

unsigned short dmask • type of digit the channel will detect

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

dmask sets the type of digits the channel will detect. More than one type of digit
detection can be enabled in a single function call, as shown in the function
example.

On DM3 boards, the following are valid values:
• DM_DTMF – enable DTMF digit detection
• DM_MF – enable MF digit detection
• NULL – disable digit detection

On Springware boards, the following are valid values:
• D_DTMF – enable DTMF digit detection (default setting)
• D_LPD – enable loop pulse detection
• D_APD – enable audio pulse digits detection
• D_MF – enable MF digit detection
• D_DPD – enable dial pulse digit (DPD) detection
• D_DPDZ – enable zero train DPD detection

To disable digit detection, set dmask to NULL.

398 Voice API Library Reference — June 2005

dx_setdigtyp() — control the types of digits detected by the voice channel

Notes: 1. MF detection can only be enabled on systems with MF capability.

2. The digit detection type specified in dmask will remain valid after the channel has been closed
and reopened.

3. Global DPD can only be enabled on systems with this capability.

4. The Global DPD feature must be implemented on a call-by-call basis to work correctly. Global
DPD must be enabled for each call by calling dx_setdigtyp().

5. dx_setdigtyp() overrides digit detection enabled in any previous use of dx_setdigtyp().

For any digit detected, you can determine the digit type, DTMF, MF, GTD (user-defined) or DPD,
by using the DV_DIGIT data structure in the application. When a dx_getdig() call is performed,
the digits are collected and transferred to the user’s digit buffer. The digits are stored as an array
inside the DV_DIGIT structure. This method allows you to determine very quickly whether a pulse
or DTMF telephone is being used. For more information on this structure, see DV_DIGIT, on
page 507.

Cautions

Some MF digits use approximately the same frequencies as DTMF digits (see Chapter 6,
“Supplementary Reference Information”). Because there is a frequency overlap, if you have the
incorrect kind of detection enabled, MF digits may be mistaken for DTMF digits, and vice versa.
To ensure that digits are correctly detected, do NOT enable DTMF and MF detection at the same
time.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Example

/*$ dx_setdigtyp()and dx_getdig() example for Global Dial Pulse Detection $*/

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

void main(int argc, char **argv)
{

 int dev; /* device handle */
 DV_DIGIT dig;
 DV_TPT tpt;

 /*
 * Open device, make or accept call
 */

Voice API Library Reference — June 2005 399

control the types of digits detected by the voice channel — dx_setdigtyp()

 /* setup TPT to wait for 3 digits and terminate */
 dx_clrtpt(&tpt, 1);
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 3;
 tpt.tp_flags = TF_MAXDTMF;

 /* enable DPD and DTMF digits */
 dx_setdigtyp(dev, D_DPDZ|D_DTMF);

 /* clear the digit buffer */
 dx_clrdigbuf(dev);

 /* collect 3 digits from the user */
 if (dx_getdig(dev, &tpt, &dig, EV_SYNC) == -1) {
 /* error, display error message */
 printf("dx_getdig error %d, %s\n", ATDV_LASTERR(dev), ATDV_ERRMSGP(dev));
 } else {

 /* display digits received and digit type */
 printf("Received \"%s\"\n", dig.dg_value);
 printf("Digit type is ");

 /*
 * digit types have 0x30 ORed with them strip it off
 * so that we can use the DG_xxx equates from the header files
 */
 switch ((dig.dg_type[0] & 0x000f)) {
 case DG_DTMF:
 printf("DTMF\n");
 break;
 case DG_DPD:
 printf("DPD\n");
 break;
 default:
 printf("Unknown, %d\n", (dig.dg_type[0] &0x000f));
 }
 }

 /*
 * continue processing call
 */

See Also

• dx_addtone()

400 Voice API Library Reference — June 2005

dx_setevtmsk() — enable detection of call status transition (CST) events

dx_setevtmsk()

enable detection of call status transition (CST) events

Description

The dx_setevtmsk() function enables detection of call status transition (CST) event or group of
events. This function can be used by synchronous or asynchronous applications waiting for a CST
event.

When you enable detection of a CST event and the event occurs, it will be placed on the event
queue. You can collect the event by getting it or waiting for it with an event handling function, such
as sr_waitevt(), sr_waitevtEx(), or dx_getevt(). For a list of call status transition events, see
Section 3.4, “Call Status Transition (CST) Events”, on page 498.

Notes: 1. This function can enable detection for all CST events except user-defined tone detection. See
dx_addtone() and dx_enbtone() for information.

2. The dx_wtring() function affects CST events that are enabled. It enables detection of the
DM_RINGS event and disables detection of other events.

Name: int dx_setevtmsk(chdev, mask)

Inputs: int chdev • valid channel device handle

unsigned int mask • event mask of events to enable

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Status Transition Event

Mode: synchronous

Platform: DM3, Springware

Voice API Library Reference — June 2005 401

enable detection of call status transition (CST) events — dx_setevtmsk()

If DM_DIGITS is specified, a digits flag is set that causes individual digit events to queue until this
flag is turned off by DM_DIGOFF. Setting the event mask for DM_DIGITS and then subsequently
resetting the event mask without DM_DIGITS does not disable the queueing of digit events. Digit

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

mask specifies the events to enable. To poll for multiple events, perform an OR
operation on the bit masks of the events you want to enable. The first enabled
CST event to occur will be returned. If an event is not specified in the mask,
the event will be disabled. If an event is enabled, it will remain enabled until it
is disabled through another function call; exceptions are DM_DIGITS and
DM_DIGOFF.

On DM3 boards, one or more of the following bits can be set:
• DM_SILOF – wait for non-silence
• DM_SILON – wait for silence
• DM_DIGITS – enable digit reporting on the event queue (each detected

digit is reported as a separate event on the event queue)
• DM_DIGOFF – disable digit reporting on the event queue (as enabled by

DM_DIGITS). This is the only way to disable DM_DIGITS.
• DM_UNDERRUN – enables firmware underrun reporting

(TDX_UNDERRUN event) for streaming to board feature. This mask
works like a toggle key. If set once, the next call to the function will unset
this mask.

• DM_VADEVTS – voice activity detector (VAD) event notification (used in
conjunction with the continuous speech processing (CSP) API library
only)

• DM_CONVERGED – echo cancellation convergence notification (used in
conjunction with the continuous speech processing (CSP) API library
only)

On Springware boards, one or more of the following bits can be set:
• DM_LCOFF – wait for loop current to be off
• DM_LCON – wait for loop current to be on
• DM_RINGS – wait for rings; see also dx_wtring()
• DM_RNGOFF – wait for ring to drop (hang-up)
• DM_SILOF – wait for non-silence
• DM_SILON – wait for silence
• DM_WINK – wait for wink to occur on an E&M line. If DM_WINK is not

enabled and DM_RINGS is enabled, a wink may be interpreted as an
incoming call, depending upon the setting of the DXBD_R_ON
parameter.

• DM_DIGITS – enable digit reporting on the event queue (each detected
digit is reported as a separate event on the event queue)

• DM_DIGOFF – disable digit reporting on the event queue (as enabled by
DM_DIGITS). This is the only way to disable DM_DIGITS.

• DM_LCREV – wait for flow of current to reverse. When the DM_LCREV
bit is enabled, a DE_LCREV event message is queued when the flow of
current over the line is reversed.

402 Voice API Library Reference — June 2005

dx_setevtmsk() — enable detection of call status transition (CST) events

events will remain in the queue until collected by an event handling function such as sr_waitevt(),
sr_waitevtEx(), or dx_getevt(). The event queue is not affected by dx_getdig() calls.

To enable DM_DIGITS:

/* Set event mask to collect digits */
if (dx_setevtmsk(chdev, DM_DIGITS) == -1) {

To disable DM_DIGITS (turn off the digits flag and stop queuing digits):

dx_setevtmsk(DM_DIGOFF);
dx_clrdigbuf(chdev); /*Clear out queue*/

The following outlines the synchronous or asynchronous handling of CST events:

Cautions

• If you call this function on a busy device, and specify DM_DIGITS as the mask argument, the
function will fail.

• On Linux, events are preserved between dx_getevt() function calls. The event that was set
remains the same until another call to dx_setevtmsk() or dx_wtring() changes it. See
dx_wtring() for more information on how it changes the event mask.

• On Linux, in a TDM bus configuration, when a voice resource is not listening to a network
device, it may report spurious silence-off transitions and ring events if the events are enabled.
To eliminate this problem:

• Disable the ring and silence detection on unrouted/unlistened channels using the
dx_setevtmsk() function.

• When you need to change the resource currently connected to your network device, do a
half duplex disconnect of the current resource to disconnect the transmit time slot of the
current resource (since two resources cannot transmit on the same time slot, although they
can both listen), and a full duplex connect on the new resource using the appropriate
listen/unlisten functions or the convenience functions nr_scroute() and nr_scunroute().

Errors

This function will fail and return -1 if the channel device handle is invalid or if any of the masks set
for that device are invalid.

Synchronous Application Asynchronous Application

Call dx_setevtmsk() to enable CST events. Call dx_setevtmsk() to enable CST events.

Call dx_getevt() to wait for CST events.
Events are returned to the DX_EBLK
structure.

Use Standard Runtime Library (SRL) to
asynchronously wait for TDX_CST events.

Use sr_getevtdatap() to retrieve DX_CST
structure.

Voice API Library Reference — June 2005 403

enable detection of call status transition (CST) events — dx_setevtmsk()

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Example 1

This example illustrates how to use dx_setevtmsk() to wait for ring events in a synchronous
application.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 DX_EBLK eblk;
 .
 .

 /* open a channel with chdev as descriptor */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 .
 .

 /* Set event mask to receive ring events */
 if (dx_setevtmsk(chdev, DM_RINGS) == -1) {
 /* error setting event */
 }
 .
 .

 /* check for ring event, timeout set to 20 seconds */
 if (dx_getevt(chdev,&eblk,20) == -1) {
 /* error timeout */
 }
 if(eblk.ev_event==DE_RINGS) {
 printf("Ring event occurred\n");
 }
 .
 .
}

Example 2

This example illustrates how to use dx_setevtmsk() to handle call status transition events in an
asynchronous application.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

404 Voice API Library Reference — June 2005

dx_setevtmsk() — enable detection of call status transition (CST) events

#define MAXCHAN 24

int cst_handler();

main()
{
 int chdev[MAXCHAN];
 char *chname;
 int i, srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }
 for (i=0; i<MAXCHAN; i++) {
 /* Set chname to the channel name, e.g., dxxxB1C1, dxxxB1C2,... */
 /* Open the device using dx_open(). chdev[i] has channel device
 * descriptor.
 */
 if ((chdev[i] = dx_open(chname,NULL)) == -1) {
 /* process error */
 }

 /* Use dx_setevtmsk() to enable call status transition events
 * on this channel.
 */
 if (dx_setevtmsk(chdev[i],
 DM_LCOFF|DM_LCON|DM_RINGS|DM_SILOFF|DM_SILON|DM_WINK) == -1) {
 /* process error */
 }

 /* Using sr_enbhdlr(), set up handler function to handle call status
 * transition events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_CST, cst_handler) == -1) {
 /* process error */
 }

 /* Use sr_waitevt to wait for call status transition event.
 * On receiving the transition event, TDX_CST, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
 }
}

int cst_handler()
{
 DX_CST *cstp;

 /* sr_getevtdatap() points to the event that caused the call status
 * transition.
 */
 cstp = (DX_CST *)sr_getevtdatap();
 switch (cstp->cst_event) {
 case DE_RINGS:
 printf("Ring event occurred on channel %s\n",
 ATDX_NAMEP(sr_getevtdev()));
 break;
 case DE_WINK:
 printf("Wink event occurred on channel %s\n",
 ATDX_NAMEP(sr_getevtdev()));
 break;
 case DE_LCON:
 printf("Loop current ON event occurred on channel %s\n",

Voice API Library Reference — June 2005 405

enable detection of call status transition (CST) events — dx_setevtmsk()

 ATDX_NAMEP(sr_getevtdev()));
 break;
 case DE_LCOFF:
 .
 .
 }

 /* Kick off next function in the state machine model. */
 .
 .
 return 0;
}

See Also

• dx_getevt() (to handle call status transition events, synchronous operation)

• sr_getevtdatap() (to handle call status transition events, asynchronous operation)

• DX_CST data structure

• dx_addtone()

406 Voice API Library Reference — June 2005

dx_setevtmsk() — enable detection of call status transition (CST) events

Voice API Library Reference — June 2005 407

set up the tone detection amplitudes — dx_setgtdamp()

dx_setgtdamp()

set up the tone detection amplitudes

Description

The dx_setgtdamp() function sets up the amplitudes to be used by the general tone detection. This
function must be called before calling dx_blddt(), dx_blddtcad(), dx_bldst(), or dx_bldstcad()
followed by dx_addtone(). Once called, the values set will take effect for all dx_blddt(),
dx_blddtcad(), dx_bldst(), and dx_bldstcad() function calls.

If this function is not called, then the MINERG firmware parameters that were downloaded remain
at the following settings: -42 dBm for minimum amplitude and 0 dBm for maximum amplitude.

Cautions

• If this function is called, then the amplitudes set will take effect for all tones added afterwards.
To reset the amplitudes back to the defaults, call this function with the defines GT_MIN_DEF
and GT_MAX_DEF for minimum and maximum defaults.

Name: void dx_setgtdamp(gtd_minampl1, gtd_maxampl1, gtd_minampl2, gtd_maxampl2)

Inputs: short int gtd_minampl1 • minimum amplitude of the first frequency

short int gtd_maxampl1 • maximum amplitude of the first frequency

short int gtd_minampl2 • minimum amplitude of the second frequency

short int gtd_maxampl2 • maximum amplitude of the second frequency

Returns: void

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

Platform: DM3, Springware

Parameter Description

gtd_minampl1 specifies the minimum amplitude of tone 1, in dB

gtd_maxampl1 specifies the maximum amplitude of tone 1, in dB

gtd_minampl2 specifies the minimum amplitude of tone 2, in dB

gtd_maxampl2 specifies the maximum amplitude of tone 2, in dB

Default Value Description

GT_MIN_DEF Default value in dB for minimum GTD amplitude that can be entered for
gtd_minampl* parameters.

GT_MAX_DEF Default value in dB for maximum GTD amplitude that can be entered for
gtd_maxampl* parameters.

408 Voice API Library Reference — June 2005

dx_setgtdamp() — set up the tone detection amplitudes

• When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Errors

None.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID 1; /* Tone ID */

.

.

.
/*
 * Set amplitude for GTD;
 * freq1 -30dBm to 0 dBm
 * freq2 -30dBm to 0 dBm
 */
dx_setgtdamp(-30,0,-30,0);

/*
 * Build temporary simple dual tone frequency tone of
 * 950-1050 Hz and 475-525 Hz. using trailing edge detection, and
 * -30dBm to 0dBm.
if (dx_blddt(TID1, 1000, 50, 500, 25, TN LEADING) ==-1) {
 /* Perform system error processing */
 exit(3);
}
.
.
.

See Also

None.

Voice API Library Reference — June 2005 409

set up the tone detection amplitudes — dx_setgtdamp()

410 Voice API Library Reference — June 2005

dx_sethook() — provide control of the hook switch status

dx_sethook()

provide control of the hook switch status

Description

The dx_sethook() function provides control of the hook switch status of the specified channel. A
hook switch state may be either on-hook or off-hook.

Notes: 1. Do not call this function for a digital T-1 TDM bus configuration. Transparent signaling for TDM
bus digital interface devices is not supported.

2. Calling dx_sethook() with no parameters clears the loop current and silence history from the
channel’s buffers.

Asynchronous Operation

To run dx_sethook() asynchronously, set the mode field to EV_ASYNC. The function will return
0 to indicate it has initiated successfully, and will generate a termination event to indicate
completion. Use the Standard Runtime Library (SRL) Event Management functions to handle the
termination event.

Name: int dx_sethook(chdev, hookstate, mode)

Inputs: int chdev • valid channel device handle

int hookstate • hook state (on-hook or off-hook)

unsigned short mode • asynchronous/synchronous

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: asynchronous or synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

hookstate forces the hookstate of the specified channel to on-hook or off-hook. The
following values can be specified:
• DX_OFFHOOK – set to off-hook state
• DX_ONHOOK – set to on-hook state

mode specifies whether to run dx_sethook() asynchronously or synchronously.
Specify one of the following:
• EV_ASYNC – run dx_sethook() asynchronously
• EV_SYNC – run dx_sethook() synchronously (default)

Voice API Library Reference — June 2005 411

provide control of the hook switch status — dx_sethook()

If running asynchronously, termination is indicated by a TDX_SETHOOK event. The cst_event
field in the DX_CST data structure will specify one of the following:

• DX_ONHOOK if the hookstate has been set to on-hook

• DX_OFFHOOK if the hookstate has been set to off-hook

Use the Event Management function sr_getevtdatap() to return a pointer to the DX_CST
structure.

ATDX_HOOKST() will also return the type of hookstate event.

Synchronous Operation

By default, this function runs synchronously.

If running synchronously, dx_sethook() will return 0 when complete.

Cautions

None.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Example 1

This example illustrates how to use dx_sethook() in synchronous mode.

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 /* open a channel with chdev as descriptor */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* put the channel on-hook */
 if (dx_sethook(chdev,DX_ONHOOK,EV_SYNC) == -1) {
 /* error setting hook state */
 }
 .
 .

412 Voice API Library Reference — June 2005

dx_sethook() — provide control of the hook switch status

 /* take the channel off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* error setting hook state */
 }
 .
 .
}

Example 2

This example illustrates how to use dx_sethook() in asynchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXCHAN 24

int sethook_hdlr();

main()
{
 int i, chdev[MAXCHAN];
 char *chnamep;
 int srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }
 for (i=0; i<MAXCHAN; i++) {
 /* Set chnamep to the channel name - e.g, dxxxB1C1, dxxxB1C2,... */

 /* open a channel with chdev[i] as descriptor */
 if ((chdev[i] = dx_open(chnamep,NULL)) == -1) {
 /* process error */
 }

 /* Using sr_enbhdlr(), set up handler function to handle sethook
 * events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_SETHOOK, sethook_hdlr) == -1) {
 /* process error */
 }

 /* put the channel on-hook */
 if (dx_sethook(chdev[i],DX_ONHOOK,EV_ASYNC) == -1) {
 /* error setting hook state */
 }
 }

 /* Use sr_waitevt() to wait for the completion of dx_sethook().
 * On receiving the completion event, TDX_SETHOOK, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
}

int sethook_hdlr()
{
 DX_CST *cstp;

Voice API Library Reference — June 2005 413

provide control of the hook switch status — dx_sethook()

 /* sr_getevtdatap() points to the call status transition
 * event structure, which contains the hook state of the
 * device.
 */
 cstp = (DX_CST *)sr_getevtdatap();
 switch (cstp->cst_event) {
 case DX_ONHOOK:
 printf("Channel %s is ON hook\n", ATDX_NAMEP(sr_getevtdev()));
 break;
 case DX_OFFHOOK:
 printf("Channel %s is OFF hook\n", ATDX_NAMEP(sr_getevtdev()));
 break;
 default:
 /* process error */
 break;
 }

 /* Kick off next function in the state machine model. */
 .
 .
 return 0;
}

See Also

• sr_getevtdatap()

• ATDX_HOOKST()

414 Voice API Library Reference — June 2005

dx_sethook() — provide control of the hook switch status

Voice API Library Reference — June 2005 415

set physical parameters of a channel or board device — dx_setparm()

dx_setparm()

set physical parameters of a channel or board device

Description

The dx_setparm() function sets physical parameters of a channel or board device, such as
off-hook delay, length of a pause, and flash character. You can set only one parameter at a time.

A different set of parameters is available for board and channel devices. Board parameters affect all
channels on the board. Channel parameters affect the specified channel only.

The channel must be idle (that is, no I/O function running) when calling dx_setparm().

Name: int dx_setparm(dev, parm, valuep)

Inputs: int dev • valid channel or board device handle

unsigned long parm • parameter type to set

void *valuep • pointer to parameter value

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: DM3, Springware

Parameter Description

dev Specifies the valid channel or board device handle obtained when the channel
or board was opened using dx_open().

parm Specifies the channel or board parameter to set. The voice device parameters
allow you to query and control device-level information and settings related to
the voice functionality.

For DM3 boards, board parameter defines are described in Table 13 and
channel parameter defines are described in Table 15.

For Springware boards, board parameter defines are described in Table 14 and
channel parameter defines are described in Table 16.

Note: The parameters set in parm will remain valid after the device has been
closed and reopened.

valuep Points to the 4-byte variable that specifies the channel or board parameter to
set.

Note: You must use a void * cast on the address of the parameter being sent to
the driver in valuep as shown in the Example section.

416 Voice API Library Reference — June 2005

dx_setparm() — set physical parameters of a channel or board device

The dxxxlib.h file contains defined masks for parameters that can be examined and set using
dx_getparm() and dx_setparm().

The voice device parameters fall into two classes:

• Board parameters, which apply to all channels on the board; voice board parameter defines
have a DXBD_ prefix.

• Channel parameters, which apply to individual channels on the board; voice channel
parameter defines have a DXCH_ prefix.

Board Parameter Defines

For DM3 boards, the supported board parameter defines are shown in Table 13.

For Springware boards, the supported board parameter defines are shown in Table 14.

Table 13. Voice Board Parameters (DM3)

Define Bytes
Read/
Write

Default Description

DXBD_CHNUM 1 R - Channel Number. Number of channels on the board

DXBD_HWTYPE 1 R - Hardware Type. On DM3 boards, TYP_D41

DXBD_SYSCFG 1 R - System Configuration. On DM3 boards, 1 is always returned.

Table 14. Voice Board Parameters (Springware)

Define Bytes
Read/
Write

Default Description

DXBD_CHNUM 1 R - Channel Number. Number of channels on the board

DXBD_FLASHCHR 1 R/W & Flash character. Character that causes a hook flash when detected

DXBD_FLASHTM 2 R/W 50 Flash Time. Length of time onhook during flash (10 msec units)

DXBD_HWTYPE 1 R - Hardware Type - value can be:
• TYP_D40 – D/40 board
• TYP_D41 – D/21, D/41, D/xxxSC board

DXBD_MAXPDOFF 2 R/W 50 Maximum Pulse Digit Off. Maximum time loop current may be off
before the existing loop pulse digit is considered invalid and
reception is reinitialized (10 msec units)

DXBD_MAXSLOFF 2 R/W 25 Maximum Silence Off. Maximum time for silence being off, during
audio pulse detection (10 msec units)

DXBD_MFDELAY 2 R/W 6 MF Interdigit Delay. Sets the length of the silence period between
tones during MF dialing (10 msec units).

DXBD_MFLKPTONE 2 R/W 10 MF Length of LKP Tone. Specifies the length of the LKP tone during
MF dialing.

Maximum value: 15 (10 msec units)

DXBD_MFMINON 2 R/W 0 Minimum MF On. Sets the duration to be added to the standard MF
tone duration before the tone is detected. The minimum detection
duration is 65 msec for KP tones and 40 msec for all other tones (10
msec units).

Voice API Library Reference — June 2005 417

set physical parameters of a channel or board device — dx_setparm()

DXBD_MFTONE 2 R/W 6 MF Minimum Tone Duration. Specifies the duration of a dialed MF
tone. This parameter affects all the channels on the board.

Maximum value: 10 (10 msec units).

DXBD_MINIPD 2 R/W 25 Minimum Loop Interpulse Detection. Minimum time between loop
pulse digits during loop pulse detection (10 msec units)

DXBD_MINISL 2 R/W 25 Minimum Interdigit Silence. Minimum time for silence on between
pulse digits for audio pulse detection (10 msec units)

DXBD_MINLCOFF 2 R/W 0 Minimum Loop Current Off. Minimum time before loop current drop
message is sent (10 msec units)

DXBD_MINOFFHKTM 2 R/W 250 Minimum offhook time (10 msec units)

DXBD_MINPDOFF 1 R/W 2 Minimum Pulse Detection Off. Minimum break interval for valid loop
pulse detection (10 msec units)

DXBD_MINPDON 1 R/W 2 Minimum Pulse Detection On. Minimum make interval for valid loop
pulse detection (10 msec units)

DXBD_MINSLOFF 1 R/W 2 Minimum Silence Off. Minimum time for silence to be off for valid
audio pulse detection (10 msec units)

DXBD_MINSLON 1 R/W 1 Minimum Silence On. Minimum time for silence to be on for valid
audio pulse detection (10 msec units)

DXBD_MINTIOFF 1 R/W 5 Minimum DTI Off. Minimum time required between rings-received
events (10 msec units)

DXBD_MINTION 1 R/W 5 Minimum DTI On. Minimum time required for rings received event
(10 msec units)

DXBD_OFFHDLY 2 R/W 50 Offhook Delay. Period after offhook, during which no events are
generated; that is, no DTMF digits will be detected during this
period (10 msec units).

DXBD_P_BK 2 R/W 6 Pulse Dial Break. Duration of pulse dial off-hook interval (10 msec
units)

DXBD_P_IDD 2 R/W 100 Pulse Interdigit Delay. Time between digits in pulse dialing(10 msec
units)

DXBD_P_MK 2 R/W 4 Pulse Dial Make. Duration of pulse dial offhook interval (10 msec
units)

DXBD_PAUSETM 2 R/W 200 Pause Time. Delay caused by a comma in the dialing string (10
msec units)

DXBD_R_EDGE 1 R/W ET_ROFF Ring Edge. Detection of ring edge, values can be:
• ET_RON – beginning of ring
• ET_ROFF – end of ring

DXBD_R_IRD 2 R/W 80 Inter-ring Delay. Maximum time to wait for the next ring (100 msec
units). Used to distinguish between calls. Set to 1 for T-1
applications.

DXBD_R_OFF 2 R/W 5 Ring-off Interval. Minimum time for ring not to be present before
qualifying as “not ringing” (100 msec units)

DXBD_R_ON 2 R/W 3 Ring-on Interval. Minimum time ring must be present to qualify as a
ring (100 msec units)

Table 14. Voice Board Parameters (Springware) (Continued)

Define Bytes
Read/
Write

Default Description

418 Voice API Library Reference — June 2005

dx_setparm() — set physical parameters of a channel or board device

Channel Parameter Defines

For DM3 boards, the supported channel parameter defines are shown in Table 15. All time units are
in multiples of 10 msec unless otherwise noted.

DXBD_S_BNC 2 R/W 4 Silence and Non-silence Debounce. Length of a changed state
before call status transition message is generated (10 msec units)

DXBD_SYSCFG 1 R - System Configuration. JP8 status for D/4x boards.
• 0 – loop start interface (JP8 in)
• 1 – DTI/xxx interface (JP8 out)

DXBD_T_IDD 2 R/W 5 DTMF Interdigit delay. Time between digits in DTMF dialing (10
msec units)

DXBD_TTDATA 1 R/W 10 DTMF length (duration) for dialing (10 msec units)

Table 14. Voice Board Parameters (Springware) (Continued)

Define Bytes
Read/
Write

Default Description

Table 15. Voice Channel Parameters (DM3)

Define Bytes
Read/
Write

Default Description

DXCH_AGC_MAXGAIN 2 W 116 Automatic Gain Control. Specifies the maximum gain measured
in 0.1 dB units. The default value of 116 is equivalent to 11.6
dB.

DXCH_AGC_MEMORY
MAXIMUMSIZE

2 W 300 Automatic Gain Control. Specifies the maximum size of
memory measured in 1 msec units.

DXCH_AGC_MEMORY
SILENCERESET

2 W 50 Automatic Gain Control. Specifies the size of memory after
each long silence between words or sentences measured in 1
msec units.

DXCH_AGC_NOISE
THRESHOLD

2 W -780 Automatic Gain Control. AGC noise threshold level. Specifies
the lower threshold for noise level estimate: below is
considered noise. Measured in 0.1 dB units. The default value
of -780 is equivalent to -78 dB.

DXCH_AGC_SPEECH
THRESHOLD

2 W -400 Automatic Gain Control. AGC speech threshold level. Specifies
the upper threshold for noise level estimate: above is
considered speech. Measured in 0.1 dB units. The default
value of -400 is equivalent to -40 dB.

DXCH_AGC_TARGET
OUTPUTLEVEL

2 W -196 Automatic Gain Control. Specifies the AGC target level; also
known as AGC K constant. Measured in 0.1 dB units. The
default value of -196 is equivalent to -19.6 dB.

Voice API Library Reference — June 2005 419

set physical parameters of a channel or board device — dx_setparm()

DXCH_FSKCHSEIZURE 2 R/W ADSI two-way FSK. For a given FSK protocol standard
specified in DXCH_FSKSTANDARD, this parameter allows the
application to set the channel seizure.

When transmitting data, the range of possible values is 0 to 300
bits. If you specify a value outside of this range, the library uses
300 bits as the default when transmitting data. If you do not
specify a value for channel seizure, the library uses 0 bits as
the default.

When receiving data, the range of possible values is 0 to 60
bits. If you specify a value outside of this range, it uses 60 bits
as the default when receiving data. If you do not specify a value
for channel seizure, the library uses 0 bits as the default.

DXCH_FSKINTERBLK
TIMEOUT

2 R/W 120 ADSI two-way FSK. Measured in milliseconds. The firmware
gets FSK data in bursts. This parameter specifies how long the
firmware should wait for the next burst of FSK data before it can
conclude that no more data will be coming and can terminate
the receive session. In short, this parameter denotes the
maximum time between any two FSK data bursts in one receive
session. This property can only be supplied for reception of
FSK data with dx_RxIottData().

DXCH_FSKMARKLENGTH 2 R/W ADSI two-way FSK. For a given FSK protocol standard
specified in DXCH_FSKSTANDARD, the
DXCH_FSKMARKLENGTH parameter allows the application to
set the mark length.

When transmitting data, the range of possible values is 80 to
180 bits. If you specify a value outside of this range, the library
uses 180 bits as the default when transmitting data. If you do
not specify a value for mark length, the library uses 80 bits as
the default.

When receiving data, the range of possible values is 0 to 60
bits. If you specify a value outside of this range, it uses 30 bits
as the default when receiving data. If you do not specify a value
for mark length, the library uses 0 bits as the default.

DXCH_FSKSTANDARD 2 R/W ADSI two-way FSK. Specifies the FSK protocol standard, which
is used for transmission and reception of FSK data. Using this
channel parameter, the protocol standard can be set to either
DX_FSKSTDBELLCORE (Bellcore standard) or
DX_FSKSTDETSI (ETSI standard). The default value is
DX_FSKSTDBELLCORE.

If you set DXCH_FSKSTANDARD to DX_FSKSTDETSI, it is
recommended that you explicitly specify values for the
DXCH_FSKCHSEIZURE and DXCH_FSKMARKLENGTH
parameters.

DXCH_PLAYDRATE 2 R/W 6000 Play Digitization Rate. Sets the digitization rate of the voice
data that is played on this channel. Voice data must be played
at the same rate at which it was recorded. Valid values are:
• 6000 – 6 kHz sampling rate
• 8000 – 8 kHz sampling rate

Table 15. Voice Channel Parameters (DM3) (Continued)

Define Bytes
Read/
Write

Default Description

420 Voice API Library Reference — June 2005

dx_setparm() — set physical parameters of a channel or board device

For Springware boards, the supported channel parameter defines are shown in Table 16. All time
units are in multiples of 10 msec unless otherwise noted.

DXCH_RECRDRATE 2 R/W 6000 Record Digitization Rate. Sets the rate at which the recorded
voice data is digitized. Valid values are:
• 6000 – 6 kHz sampling rate
• 8000 – 8 kHz sampling rate

DXCH_SCRFEATURE 2 R/W - Silence Compressed Record (SCR). Valid values are:
• DXCH_SCRDISABLED – SCR feature disabled
• DXCH_SCRENABLED – SCR feature enabled

DXCH_XFERBUFSIZE 4 R 16
kbytes

Transfer buffer size. Returns the bulk queue buffer size as set
by the dx_setchxfercnt() function.

Table 15. Voice Channel Parameters (DM3) (Continued)

Define Bytes
Read/
Write

Default Description

Table 16. Voice Channel Parameters (Springware)

Define Bytes
Read/
Write

Default Description

DXCH_AUDIOLINEIN Enables or disables the ProLine/2V audio jack line-in on voice
channel 2

DXCH_CALLID disabled Enables or disables caller ID for the channel. Valid values are:

• DX_CALLIDENABLE

• DX_CALLIDDISABLE (default)

DXCH_DFLAGS 2 R/W 0 DTMF detection edge select

DXCH_DTINITSET 2 R/W 0 Specifies which DTMF digits to initiate play on. Values of
different DTMF digits may be ORed together to form the bit
mask. Possible values and the corresponding digits are:
• DM_1 – DTMF digit 1
• DM_2 – DTMF digit 2
• DM_3 – DTMF digit 3
• DM_4 – DTMF digit 4
• DM_5 – DTMF digit 5
• DM_6 – DTMF digit 6
• DM_7 – DTMF digit 7
• DM_8 – DTMF digit 8
• DM_9 – DTMF digit 9
• DM_0 – DTMF digit 0
• DM_S – *
• DM_P – #
• DM_A – a
• DM_B – b
• DM_C – c
• DM_D – d

DXCH_DTMFDEB 2 R/W 0 DTMF debounce time (record delay). Sets the minimum time
for DTMF to be present to be considered valid. Used to remove
false DTMF signals during recording. Increase the value for
less sensitivity to DTMF.

Voice API Library Reference — June 2005 421

set physical parameters of a channel or board device — dx_setparm()

DXCH_DTMFTLK 2 R/W 5 Sets the minimum time for DTMF to be present during playback
to be considered valid. Increasing the value provides more
immunity to talk-off/playoff.

Set to -1 to disable.

DXCH_MAXRWINK 2 R/W 20 Maximum Loop Current for Wink. Sets the maximum time that
loop current needs to be on before recognizing a wink (10 msec
units).

DXCH_MFMODE 2 R/W 2 Specifies a word-length bit mask that selects the minimum
length of KP tones to be detected. The possible values of this
field are:
• 0 – detect KP tone > 40 msec
• 2 – detect KP tone > 65 msec

If the value is set to 2, any KP tone greater than 65 msec will be
returned to the application during MF detection. This ensures
that only standard-length KP tones (100 msec) are detected. If
set to 0 (zero), any KP tone longer than 40 msec will be
detected.

DXCH_MINRWINK 2 R/W 10 Minimum Loop Current for Wink. Specifies the minimum time
that loop current needs to be on before recognizing a wink (10
msec units).

DXCH_NUMRXBUFFERS 2 R/W 2 Supported on Windows only. Changes the number of record
buffers used. Before you can use DXCH_NUMRXBUFFERS,
you must set DXCH_VARNUMBUFFERS to 1 and specify the
size of the record buffer in DXCH_RXDATABUFSIZE. This
value can be 2 or greater.

DXCH_NUMTXBUFFERS 2 R/W 2 Supported on Windows only. Sets the number of play buffers.
Before you can use DXCH_NUMTXBUFFERS, you must set
DXCH_VARNUMBUFFERS to 1 and specify the size of the
play buffer in DXCH_TXDATABUFSIZE. This value can be 2 or
greater.

DXCH_PLAYDRATE 2 R/W 6000 Play Digitization Rate. Sets the digitization rate of the voice
data that is played on this channel. Voice data must be played
at the same rate at which it was recorded. Valid values are:
• 6000 – 6 kHz sampling rate
• 8000 – 8 kHz sampling rate

DXCH_RECRDRATE 2 R/W 6000 Record Digitization Rate. Sets the rate at which the recorded
voice data is digitized. Valid values are:
• 6000 – 6 kHz sampling rate
• 8000 – 8 kHz sampling rate

DXCH_RINGCNT 2 R/W 4 Specifies number of rings to wait before returning a ring event.
This parameter will work even if the application has been
restarted after an exit.

Table 16. Voice Channel Parameters (Springware) (Continued)

Define Bytes
Read/
Write

Default Description

422 Voice API Library Reference — June 2005

dx_setparm() — set physical parameters of a channel or board device

Cautions

• A constant cannot be used in place of valuep. The value of the parameter to be set must be
placed in a variable and the address of the variable cast as void * must be passed to the
function.

• When setting channel parameters, the channel must be open and in the idle state.

• When setting board parameters, all channels on that board must be idle.

DXCH_RXDATABUFSIZE 4 R/W 32
kbytes

Supported on Windows only. Sets the size of the record buffers
only that are used to transfer data (e.g., ADSI data) between
the application on the host and the driver to control buffering
delay. The buffer is used by the dx_RxIottData() and
dx_TxRxIottData() functions. The minimum buffer size is 128
bytes. The largest available buffer size is 32 kbytes (must be in
multiples of 128). If play and record buffers are the same size,
use DXCH_XFERBUFSIZE.

DXCH_T_IDD 2 R/W 5 Specifies DTMF Interdigit delay (time between digits in DTMF
dialing)

DXCH_TTDATA 1 R/W 10 Specifies DTMF length (duration) for dialing.

DXCH_TXDATABUFSIZE 4 R/W 32
kbytes

Supported on Windows only. Sets the size of the play buffers
only that are used to transfer data between the application on
the host and the driver. The minimum buffer size is 128 bytes.
The largest available buffer size is 32 kbytes (must be in
multiples of 128). If play and record buffers are the same size,
use DXCH_XFERBUFSIZE.

DXCH_VARNUMBUFFERS 4 R/W 0 Supported on Windows only. Allows you to use more than two
play or record buffers when set to 1. This parameter is used in
conjunction with DXCH_XFERBUFSIZE,
DXCH_RXDATABUFSIZE, DXCH_TXDATABUFSIZE,
DXCH_NUMRXBUFFERS and DXCH_NUMTXBUFFERS.
Valid parameter values are:
• 1 (True) – more than 2 buffers
• 0 (False) – 2 buffers

DXCH_WINKDLY 1 R/W 15 Wink Delay. Specifies the delay after a ring is received before
issuing a wink (10 msec units)

DXCH_WINKLEN 1 R/W 15 Wink Length. Specifies the duration of a wink in the off-hook
state (10 msec units)

DXCH_XFERBUFSIZE 4 R/W 16
kbytes

Sets the size of both the play and record buffers used to
transfer data between the application on the host and the
driver. These buffers are also called driver buffers. The
minimum buffer size is 128 bytes. The largest available buffer
size is 32 kbytes (must be in multiples of 128).This parm can be
used with the dx_getparm() function. The dx_setchxfercnt()
function sets the bulk queue buffer size for the channel. This
function can change the size of the buffer used to transfer voice
data between a user application and the hardware.

Table 16. Voice Channel Parameters (Springware) (Continued)

Define Bytes
Read/
Write

Default Description

Voice API Library Reference — June 2005 423

set physical parameters of a channel or board device — dx_setparm()

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int bddev, parmval;
 /* Open the board using dx_open(). Get board device descriptor in
 * bddev.
 */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* process error */
 }

 /* Set the inter-ring delay to 6 seconds (default = 8) */
 parmval = 6;
 if (dx_setparm(bddev, DXBD_R_IRD, (void *)&parmval) == -1) {
 /* process error */
 }

 /* now wait for an incoming ring */
 . . .
}

See Also

• dx_getparm()

424 Voice API Library Reference — June 2005

dx_setparm() — set physical parameters of a channel or board device

Voice API Library Reference — June 2005 425

specify the template of the cadenced tone — dx_SetRecordNotifyBeepTone()

dx_SetRecordNotifyBeepTone()

specify the template of the cadenced tone

Description

Supported on Windows only. The dx_SetRecordNotifyBeepTone() function specifies the
template of the cadenced tone to be used as the record notification beep tone during subsequent
calls to the Voice record functions. This function overwrites the default template used on the board.
If no template is specified, the default beep tone has these specifications: 1400 Hz, -18 dB, 420
msecs on, 15 secs off.

The RM_NOTIFY flag in the mode parameter of various Voice record functions is used to instruct
these functions to generate a record notification beep tone.

Note: The amplitude for the beep tone specified in the TN_GEN structure is reduced by 9 dB due to the
high impedance telephone interface. Therefore, if you require an amplitude of -18 dB, you must
specify the value of -9 dB in the TN_GEN structure. It is not recommended that you specify a value
higher than -8 dB (such as -7 dB or -6 dB) as this can produce a distorted beep tone on the line.

Cautions

None.

Name: int dx_SetRecordNotifyBeepTone(chdev, tngencadp)

Inputs: int chdev • voice channel device handle

const TN_GENCAD *tngencadp • pointer to the cadenced tone generation data structure

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: configuration

Mode: synchronous

Platform: DM3 Windows

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tngencadp points to a TN_GENCAD structure which contains parameters for the
cadenced tone generation template. This structure in turn uses the
TN_GEN structure which specifies single-frequency or dual-frequency
tone definitions.

426 Voice API Library Reference — June 2005

dx_SetRecordNotifyBeepTone() — specify the template of the cadenced tone

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message.

Example

For an example of how to use this function, see the example code for dx_playtoneEx().

See Also

• dx_playtoneEx()

Voice API Library Reference — June 2005 427

set conditions that adjust speed or volume of play — dx_setsvcond()

dx_setsvcond()

set conditions that adjust speed or volume of play

Description

The dx_setsvcond() function sets adjustments and adjustment conditions for all subsequent plays
on the specified channel (until changed or cancelled).

An adjustment is a modification to play speed, play volume, or play (pause/resume) due to an
adjustment condition such as start of play, or the occurrence of an incoming digit during play. This
function uses the specified channel’s Speed or Volume Modification Table. For more information
about these tables, see the Voice API Programming Guide.

Note: Calls to dx_setsvcond() are cumulative. If adjustment blocks have been set previously, calling this
function adds more adjustment blocks to the list. To replace existing adjustment blocks, clear the
current set of blocks using dx_clrsvcond() before issuing a dx_setsvcond().

The following adjustments and adjustment conditions are defined in the Speed and Volume
Adjustment Condition Blocks structure (DX_SVCB):

• which Speed or Volume Modification Table to use (speed or volume)

• adjustment type (increase/decrease, absolute value, toggle, pause/resume)

• adjustment conditions (incoming digit, beginning of play)

• level/edge sensitivity for incoming digits

See DX_SVCB, on page 539, for a full description of the data structure. Up to 20 DX_SVCB
blocks can be specified in the form of an array.

Notes: 1. For speed and volume adjustment, this function is similar to dx_adjsv(). Use dx_adjsv() to
explicitly adjust the play immediately and use dx_setsvcond() to adjust the play in response to
specified conditions. See the description of dx_adjsv() for more information.

2. Whenever the play is started, its speed and volume is based on the most recent modification.

Name: int dx_setsvcond(chdev, numblk, svcbp)

Inputs: int chdev • valid channel device handle

unsigned short numblk • number of DX_SVCB blocks

DX_SVCB * svcbp • pointer to array of DX_SVCB structures

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

Platform: DM3, Springware

428 Voice API Library Reference — June 2005

dx_setsvcond() — set conditions that adjust speed or volume of play

Cautions

• Speed control is not supported for all voice coders. For more information on supported coders,
see the speed control topic in the Voice API Programming Guide.

• On DM3 boards, digits that are used for play adjustment may also be used as a terminating
condition. If a digit is defined as both, then both actions are applied upon detection of that
digit.

• On Springware boards, digits that are used for play adjustment will not be used as a
terminating condition. If a digit is defined as both, then the play adjustment will take priority.

• On DM3 boards, when adjustment is associated with a DTMF digit, speed can be increased or
decreased in increments of 1 (10%) only.

• On DM3 boards, when adjustment is associated with a DTMF digit, volume can be increased
or decreased in increments of 1 (2 dB) only.

• Condition blocks can only be added to the array (up to a maximum of 20). To reset or remove
any condition, you should clear the whole array, and reset all conditions if required. For
example, if DTMF digit 1 has already been set to increase play speed by one step, a second call
that attempts to redefine digit 1 to the origin will have no effect; the digit will retain its original
setting.

• The digit that causes the play adjustment will not be passed to the digit buffer, so it cannot be
retrieved using dx_getdig() or ATDX_BUFDIGS().

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SVADJBLKS
Invalid number of speed/volume adjustment blocks

EDX_SYSTEM
Error from operating system

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

numblk specifies the number of DX_SVCB blocks in the array. Set to a value between
1 and 20.

svcbp points to an array of DX_SVCB structures

Voice API Library Reference — June 2005 429

set conditions that adjust speed or volume of play — dx_setsvcond()

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

/*
 * Global Variables
 */
DX_SVCB svcb[10] = {
 /* BitMask AjustmentSize AsciiDigit DigitType */
 { SV_SPEEDTBL | SV_RELCURPOS, 1, '1', 0 }, /* 1 */
 { SV_SPEEDTBL | SV_ABSPOS, -4, '2', 0 }, /* 2 */
 { SV_VOLUMETBL | SV_ABSPOS, 1, '3', 0 }, /* 3 */
 { SV_SPEEDTBL | SV_ABSPOS, 1, '4', 0 }, /* 4 */
 { SV_SPEEDTBL | SV_ABSPOS, 1, '5', 0 }, /* 5 */
 { SV_VOLUMETBL | SV_ABSPOS, 1, '6', 0 }, /* 6 */
 { SV_SPEEDTBL | SV_RELCURPOS, -1, '7', 0 }, /* 7 */
 { SV_SPEEDTBL | SV_ABSPOS, 6, '8', 0 }, /* 8 */
 { SV_VOLUMETBL | SV_RELCURPOS, -1, '9', 0 }, /* 9 */
 { SV_SPEEDTBL | SV_ABSPOS, 10, '0', 0 }, /* 10 */ };

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Set Speed and Volume Adjustment Conditions
 */
 if (dx_setsvcond(dxxxdev, 10, svcb) == -1) {
 printf("Unable to Set Speed and Volume");
 printf(" Adjustment Conditions\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

430 Voice API Library Reference — June 2005

dx_setsvcond() — set conditions that adjust speed or volume of play

See Also

• dx_clrsvcond()

• DX_SVCB structure

• dx_pause()

• dx_resume()

• dx_setsvmt()

• dx_getcursv()

• dx_getsvmt()

• dx_adjsv()

• speed and volume modification tables in Voice API Programming Guide

Voice API Library Reference — June 2005 431

change default values of the speed or volume modification table — dx_setsvmt()

dx_setsvmt()

change default values of the speed or volume modification table

Description

The dx_setsvmt() function updates the speed or volume modification table for a channel using the
values contained in a specified DX_SVMT structure.

This function can modify the speed or volume modification table so that the following occurs:

• When speed or volume adjustments reach their highest or lowest value, wrap the next
adjustment to the extreme opposite value. For example, if volume reaches a maximum level
during a play, the next adjustment would modify the volume to its minimum level.

• Reset the speed or volume modification table to its default values. Defaults are listed in the
Voice API Programming Guide.

For more information on speed and volume modification tables, refer to DX_SVMT, on page 543,
and see also the Voice API Programming Guide.

Name: int dx_setsvmt(chdev, tabletype, svmtp, flag)

Inputs: int chdev • valid channel device handle

unsigned short tabletype • type of table to update (speed or volume)

DX_SVMT * svmtp • pointer to speed or volume modification table to modify

unsigned short flag • optional modification flag

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tabletype specifies whether to update the speed modification table or the volume
modification table:
• SV_SPEEDTBL – update the speed modification table values
• SV_VOLUMETBL – update the volume modification table values

432 Voice API Library Reference — June 2005

dx_setsvmt() — change default values of the speed or volume modification table

Cautions

On DM3 boards, if you close a device via dx_close() after modifying speed and volume table
values using dx_setsvmt(), the dx_getcursv() function may return incorrect speed and volume
settings for the device. This is because the next dx_open() resets the speed and volume tables to
their default values. Therefore, it is recommended that you do not issue a dx_close() during a call
where you have modified speed and volume table values.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_NONZEROSIZE
Reset to default was requested but size was non-zero

EDX_SPDVOL
Neither SV_SPEEDTBL nor SV_VOLUMETBL was specified

EDX_SVMTRANGE
An entry in DX_SVMT was out of range

EDX_SVMTSIZE
Invalid table size specified

EDX_SYSTEM
Error from operating system

svmtp points to the DX_SVMT structure whose contents are used to update either
the speed or volume modification table

This structure is not used when SV_SETDEFAULT has been set in the flag
parameter.

flag Specifies one of the following:
• SV_SETDEFAULT – reset the table to its default values. See the Voice API

Programming Guide for a list of default values.
In this case, the DX_SVMT pointed to by svmtp is ignored.

• SV_WRAPMOD – wrap around the speed or volume adjustments that
occur at the top or bottom of the speed or volume modification table.

Note: Set flag to 0 if you do not want to use either SV_WRAPMOD or
SV_SETDEFAULT.

Parameter Description

Voice API Library Reference — June 2005 433

change default values of the speed or volume modification table — dx_setsvmt()

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

/*
 * Global Variables
 */

main()
{
 DX_SVMT svmt;
 int dxxxdev, index;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Set up the Speed/Volume Modification
 */
 memset(&svmt, 0, sizeof(DX_SVMT));
 svmt.decrease[0] = -128;
 svmt.decrease[1] = -128;
 svmt.decrease[2] = -128;
 svmt.decrease[3] = -128;
 svmt.decrease[4] = -128;
 svmt.decrease[5] = -20;
 svmt.decrease[6] = -16;
 svmt.decrease[7] = -12;
 svmt.decrease[8] = -8;
 svmt.decrease[9] = -4;
 svmt.origin = 0;
 svmt.increase[0] = 4;
 svmt.increase[1] = 8;
 svmt.increase[2] = 10;
 svmt.increase[3] = -128;
 svmt.increase[4] = -128;
 svmt.increase[5] = -128;
 svmt.increase[6] = -128;
 svmt.increase[7] = -128;
 svmt.increase[8] = -128;
 svmt.increase[9] = -128;

 /*
 * Update the Volume Modification Table without Wrap Mode.
 */
 if (dx_setsvmt(dxxxdev, SV_VOLUMETBL, &svmt, 0) == -1){
 printf("Unable to Set the Volume Modification Table\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 */

434 Voice API Library Reference — June 2005

dx_setsvmt() — change default values of the speed or volume modification table

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• dx_adjsv()

• dx_getcursv()

• dx_getsvmt()

• speed and volume modification tables in Voice API Programming Guide

• DX_SVMT data structure

Voice API Library Reference — June 2005 435

adds a GTG tone template — dx_settone()

dx_settone()

adds a GTG tone template

Description

Supported on Linux only. The dx_settone() function adds a global tone generation (GTG) tone
template defined by TN_GEN to the firmware. This tone template can be later used by the
application for tone-initiated record. In previous versions, an application had to use the built-in
tone of fixed frequency and amplitude to provide notification of start-of-record. The duration of the
tone may be changed; however, the units of duration are 200 msec, thus limiting the shortest beep
to 200 msec.

The customization of record pre-beep lets the user select the frequencies, amplitudes, and duration
of the beep being played prior to record. The dx_bldtngen() function is used to build the tone
definition in tngenp. The dx_settone() function is then used to download this GTG tone template
to the firmware for the channel device chdev. The toneid parameter for record pre-beep must be set
to TID_RECBEEP.

Once the GTG tone template has been set in firmware, the application may use the customized tone
preceding a record by specifying the RM_TONE and RM_USERTONE bits in the mode parameter
of dx_rec() (or other record function). If RM_USERTONE is not set but RM_TONE is set, then
the built-in tone will be played prior to initiating a record. This approach maintains existing
functionality.

Name: int dx_settone(chdev, toneid, tngenp)

Inputs: int chdev • valid channel device handle

int toneid • tone identifier

TN_GEN *tngenp • pointer to the Tone Generation Template structure

Returns: 0 if success
-1 if failure

Includes: dxxxlib.h
srllib.h

Category: Global Tone Generation (GTG)

Mode: Synchronous

Platform: Springware Linux

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

436 Voice API Library Reference — June 2005

dx_settone() — adds a GTG tone template

Cautions

• This function will fail if an invalid device handle is specified.

• Only call this function during initialization. Do not call this function after a dx_playtone()
has been initiated.

Errors

If this function returns -1 to indicate failure, call the Standard Runtime Library (SRL) Standard
Attribute function ATDV_LASTERR() to obtain the error code, or use ATDV_ERRMSGP() to
obtain a descriptive error message. For a list of error codes returned by ATDV_LASTERR(), see
the Error Codes chapter.

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{

 int ChDev; /* Channel Device handle */
 TN_GEN tngen; /* Tone Generation Template */
 DV_TPT tpt; /* Termination Parameter Table for record */

 /* Open board 1 channel 1 device */
 if ((ChDev = dx_open("dxxxB1C1", 0)) == -1) {
 printf("Cannot open channel dxxxB1C1. errno = %d", errno);
 exit(1);
 }

 /*
 * Build a Single Tone Generation Template.
 * Frequency = 1000Hz, Amplitude = -10db and
 * Duration of 2 * 200msec = 400msec
 */
 dx_bldtngen(&tngen, 1000, 0, -10, 0, 2);

 /* Set the Tone Generation Template in firmware for record pre-beep */
 if (dx_settone(ChDev, TID_RECBEEP, &tngen) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(dev));
 exit(1);
 }

 /* Now issue a record using this tone */
 dx_clrtpt(&tpt, 1);
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 1;
 tpt.tp_flags = TF_MAXDTMF;

toneid specifies the user-defined tone identifier

For record pre-beep, set this parameter to TID_RECBEEP.

tngenp points to the TN_GEN template structure, which defines the frequency,
amplitude, and duration of a single- or dual-frequency tone. See TN_GEN, on
page 558, for a full description of this structure.

Parameter Description

Voice API Library Reference — June 2005 437

adds a GTG tone template — dx_settone()

 if (dx_recf(ChDev, "usertone.vox", &tpt, RM_TONE|RM_USERTONE) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(dev));
 exit(1);
 }
}

See Also

• dx_bldtngen()

• dx_rec()

438 Voice API Library Reference — June 2005

dx_settone() — adds a GTG tone template

Voice API Library Reference — June 2005 439

change the duration of the built-in beep tone — dx_settonelen()

dx_settonelen()

change the duration of the built-in beep tone

Description

Supported on Windows only. The dx_settonelen() function changes the duration of the built-in
beep tone (sometimes referred to as a pre-record beep), which some application programs make use
of to indicate the start of a recording or playback.

When a record or playback function specifies RM_TONE or PM_TONE (respectively) in the mode
parameter, a beep tone will be transmitted immediately before the record or play is initiated. The
duration of the beep tone can be altered by this function.

A device handle is not used when calling dx_settonelen(). The beep tone will be modified for all
voice resources used in the current process. The beep tone will not be affected in other processes.

Cautions

When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

Errors

None.

Name: int dx_settonelen(tonelength)

Inputs: int tonelength • tone duration

Returns: 0 if successful

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: Springware Windows

Parameter Description

tonelength specifies the duration of the tone in 200 ms units.

Default: 1 (200 ms). Range: 1 - 65535.

440 Voice API Library Reference — June 2005

dx_settonelen() — change the duration of the built-in beep tone

Example

#include "srllib.h"
#include "dxxxlib.h"

int chdev; /* channel descriptor */
DV_TPT tpt; /* termination parameter table */
DX_XPB xpb; /* I/O transfer parameter block */
.
.
.

/* Increase beep tone len to 800ms */
dx_settonelen (4);

/* Open channel */
if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 /* Perform system error processing */
 exit(1);
}

/* Set to terminate play on 1 digit */
tpt.tp_type = IO_EOT;
tpt.tp_termno = DX_MAXDTMF;
tpt.tp_length = 1;
tpt.tp_flags = TF_MAXDTMF;

/* Wait forever for phone to ring and go offhook */
if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(2);
}

/* Start playback */
if (dx_playwav(chdev,"HELLO.WAV",&tpt,PM_TONE|EV_SYNC) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(3);
}

/* clear digit buffer */
dx_clrdigbuf(chdev);

/* Start 6KHz ADPCM recording */
if (dx_recvox(chdev,"MESSAGE.VOX", &tpt, NULL,RM_TONE|EV_SYNC) == -1) {
 printf("Error recording file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
}

/* hang up the phone*/
if (dx_sethook (chdev,DX_ONHOOK,EV_SYNC)) {
 printf("Error putting phone on hook - %s\n", ATDV_ERRMSGP(chdev));
 exit(5);
}

/* close the channel */
if (dx_close (chdev,DX_ONHOOK,EV_SYNC)) {
 printf("Error closing channel - %s\n", ATDV_ERRMSGP(chdev));
 exit(6);
}

See Also

• dx_play()

• dx_playiottdata()

Voice API Library Reference — June 2005 441

change the duration of the built-in beep tone — dx_settonelen()

• dx_playvox()

• dx_rec()

• dx_reciottdata()

• dx_recvox()

442 Voice API Library Reference — June 2005

dx_setuio() — install user-defined I/O functions

dx_setuio()

install user-defined I/O functions

Description

The dx_setuio() function installs user-defined read(), write(), and lseek() functions in your
application. These functions are then used by play and record functions, such as dx_play() and
dx_rec(), to read and/or write to nonstandard storage media.

The application provides the addresses of user-defined read(), write() and lseek() functions by
initializing the DX_UIO structure. See DX_UIO, on page 545 for more information on this
structure.

You can override the standard I/O functions on a file-by-file basis by setting the IO_UIO flag in the
io_type field of the DX_IOTT structure. You must OR the IO_UIO flag with the IO_DEV flag for
this feature to function properly. See DX_IOTT, on page 534 for more information.

For more information on working with user-defined I/O functions, see the Application
Development Guidelines chapter in the Voice API Programming Guide.

Cautions

• In order for the application to work properly, the user-provided functions must conform to
standard I/O function semantics.

• A user-defined function must be provided for all three I/O functions. NULL is not permitted.

• On DM3 boards, user-defined I/O functions installed by dx_setuio() are called in a different
thread than the main application thread. If data is being shared among these threads, the
application must carefully protect access to this data using appropriate synchronization
mechanisms (such as mutex) to ensure data integrity.

Name: int dx_setuio(uioblk)

Inputs: uioblk • DX_UIO data structure

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: synchronous

Platform: DM3, Springware

Parameter Description

uioblk specifies the DX_UIO structure, a user-defined I/O structure

Voice API Library Reference — June 2005 443

install user-defined I/O functions — dx_setuio()

Errors

None.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h> /* voice library header file */

int cd; /* channel descriptor */
DX_UIO myio; /* user definable I/O structure */

/*
 * User defined I/O functions
 */
int my_read9(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
 printf("My read\n");
 return(read(fd,ptr,cnt));
}

/*
 * my write function
 */
int my_write(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
 printf("My write \n");
 return(write(fd,ptr,cnt));
}

/*
 * my seek function
 */
long my_seek(fd,offset,whence)
int fd;
long offset;
int whence;
{
 printf("My seek\n");
 return(lseek(fd,offset,whence));
}

void main(argc,argv)
int argc;
char *argv[];
{
 .
 . /* Other initialization */
 .
 DX_UIO uioblk;

 /* Initialize the UIO structure */
 uioblk.u_read=my_read;
 uioblk.u_write=my_write;
 uioblk.u_seek=my_seek;

444 Voice API Library Reference — June 2005

dx_setuio() — install user-defined I/O functions

 /* Install my I/O routines */
 dx_setuio(uioblk);
 vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR|O_BINARY);

 /*This block uses standard I/O functions */
 iott->io_type = IO_DEV|IO_CONT
 iott->io_fhandle = vodat_fd;
 iott->io_offset = 0;
 iott->io_length = 20000;

 /*This block uses my I/O functions */
 iottp++;
 iottp->io_type = IO_DEV|IO_UIO|IO_CONT
 iottp->io_fhandle = vodat_fd;
 iott->io_offset = 20001;
 iott->io_length = 20000;

 /*This block uses standard I/O functions */
 iottp++
 iott->io_type = IO_DEV|IO_CONT
 iott->io_fhandle = vodat_fd;
 iott->io_offset = 20002;
 iott->io_length = 20000;

 /*This block uses my I/O functions */
 iott->io_type = IO_DEV|IO_UIO|IO_EOT
 iott->io_fhandle = vodat_fd;
 iott->io_offset = 10003;
 iott->io_length = 20000;

 devhandle = dx_open("dxxxB1C1", 0);
 dx_sethook(devhandle, DX_ONHOOK,EV_SYNC)
 dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
 dx_clrdigbuf;
 if(dx_rec(devhandle,iott,(DX_TPT*)NULL,RM_TONE|EV_SYNC) == -1) {
 perror("");
 exit(1);
 }

 dx_clrdigbuf(devhandle);
 if(dx_play(devhandle,iott,(DX_TPT*)EV_SYNC) == -1 {
 perror("");
 exit(1);
 }
 dx_close(devhandle);

}

See Also

• dx_cacheprompt()

• dx_play()

• dx_playiottdata()

• dx_rec()

• dx_reciottdata()

Voice API Library Reference — June 2005 445

set water mark for the circular stream buffer — dx_SetWaterMark()

dx_SetWaterMark()

set water mark for the circular stream buffer

Description

The dx_SetWaterMark() function sets the low and high water marks for the specified stream
buffer. If you don’t use this function, default values are in place for the low and high water marks
based on the stream buffer size. See parameter description table for more information.

When setting the low and high water mark values for the stream buffer, do so in conjunction with
the buffer size in dx_OpenStreamBuffer(). For hints and tips on setting water mark values, see
the streaming to board topic in the Voice API Programming Guide.

The application receives TDX_LOWWATER and TDX_HIGHWATER events regardless of
whether or not dx_SetWaterMark() is used in your application. These events are generated when
there is a play operation with this buffer and are reported on the device that is performing the play.
If there is no active play, the application will not receive any of these events.

Cautions

None.

Name: int dx_SetWaterMark(hBuffer, parm_id, value)

Inputs: int hBuffer • circular stream buffer handle

int parm_id • LOW_MARK or HIGH_MARK

int value • value of water mark in bytes

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: streaming to board

Mode: synchronous

Platform: DM3

Parameter Description

hBuffer specifies the circular stream buffer handle

parm_id specifies the type of water mark. Valid values are:
• LOW_MARK – low water mark, which by default is set to 10% of the

stream buffer size
• HIGH_MARK – high water mark, which by default is set to 90% of the

stream buffer size

value specifies the value of the water mark in bytes

446 Voice API Library Reference — June 2005

dx_SetWaterMark() — set water mark for the circular stream buffer

Errors

This function returns -1 in case of error.

Unlike other voice API library functions, the streaming to board functions do not use SRL device
handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used to retrieve
error codes and error descriptions.

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int nBuffSize = 32768;
 int hBuffer = -1;

 if ((hBuffer = dx_OpenStreamBuffer(nBuffSize)) < 0)
 {
 printf("Error opening stream buffer \n");
 exit(1);
 }
 if (dx_SetWaterMark(hBuffer, LOW_MARK, 1024) < 0)
 {
 printf("Error setting low water mark \n");
 exit(2);
 }
 if (dx_SetWaterMark(hBuffer, HIGH_MARK, 31744) < 0)
 {
 printf("Error getting setting high water mark \n");
 exit(3);
 }
 if (dx_CloseStreamBuffer(hBuffer) < 0)
 {
 printf("Error closing stream buffer \n");
 }
}

See Also

• dx_OpenStreamBuffer()

Voice API Library Reference — June 2005 447

force termination of currently active I/O functions — dx_stopch()

dx_stopch()

force termination of currently active I/O functions

Description

The dx_stopch() function forces termination of currently active I/O functions on a channel. It
forces a channel in the busy state to become idle. If the channel specified in chdev already is idle,
dx_stopch() has no effect and will return a success.

Running this function asynchronously will initiate dx_stopch() without affecting processes on
other channels.

Running this function synchronously within a process does not block other processing. Other
processes continue to be serviced.

When you issue dx_stopch() to terminate an I/O function, the termination reason returned by
ATDX_TERMMSK() is TM_USRSTOP. However, if dx_stopch() terminates a dx_dial()
function with call progress analysis, use ATDX_CPTERM() to determine the reason for call
progress analysis termination, which is CR_STOPD.

Name: int dx_stopch(chdev, mode)

Inputs: int chdev • valid channel device handle

unsigned short mode • mode flag

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: DM3, Springware

448 Voice API Library Reference — June 2005

dx_stopch() — force termination of currently active I/O functions

Cautions

• dx_stopch() has no effect on a channel that has any of the following functions issued:

• dx_dial() without call progress analysis enabled

• dx_dialtpt() (supported on Linux only) without call progress analysis enabled

• dx_wink()

The functions will continue to run normally, and dx_stopch() will return a success. For
dx_dial() or dx_dialtpt(), the digits specified in the dialstrp parameter will still be dialed.

• If dx_stopch() is called on a channel dialing with call progress analysis enabled, the call
progress analysis process will stop but dialing will be completed. Any call progress analysis
information collected prior to the stop will be returned by extended attribute functions.

• If an I/O function terminates (due to another reason) before dx_stopch() is issued, the reason
for termination will not indicate dx_stopch() was called.

• When calling dx_stopch() from a signal handler, mode must be set to EV_ASYNC.

• On Linux, when issued on a channel that is already idle, dx_stopch() will return an event,
TDX_NOSTOP, to specify that no STOP was needed or issued. To use this functionality, “OR”
the mode flag with the EV_NOSTOP flag. This does not affect the existing functionality of
dx_stopch(). If a function is in progress when dx_stopch() is called with the EV_NOSTOP
flag, that function will be stopped as usual and EV_NOSTOP will be ignored.

• On Linux, an application can use dx_stopch() from within a signal handler to stop the
dx_getevt() function. To do so, “OR” the mode flag with the EV_STOPGETEVT flag. The
dx_getevt() function will successfully return with the event DE_STOPGETEVT.

• On Windows, an application can use dx_stopch() from within a signal handler to stop the
dx_getevt() and dx_wtring() functions. To do so, “OR” the mode flag with the
EV_STOPGETEVT and EV_STOPWTRING flags, respectively, to stop these functions. In
these cases, dx_getevt() will successfully return with the event DE_STOPGETEVT while

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

mode a bit mask that specifies the mode:
• EV_SYNC – synchronous mode
• EV_ASYNC – asynchronous mode. The stop will be issued, but the driver

does not “sleep” and wait for the channel to become idle before
dx_stopch() returns.

• EV_NOSTOP – If this bit is set and the channel is idle, TDX_NOSTOP
event is generated.

• EV_STOPGETEVT – If this bit is set and dx_stopch() is issued during
dx_getevt(), TDX_CST event is generated with reason of
DE_STOPGETEVT.

• EV_STOPWTRING – (Windows only) If this bit is set and dx_stopch() is
issued during dx_wtring(), EDX_WTRINGSTOP error is generated.

• IGNORESTATE – (Windows only) Ignores the busy/idle state of the
channel. Performs a stop on the channel regardless of whether the channel
is busy or idle. If this flag is used, the function will not check for a busy
state on the channel and will issue a stop even if the channel is busy.

Voice API Library Reference — June 2005 449

force termination of currently active I/O functions — dx_stopch()

dx_wtring() will fail with a return value of -1 and the lasterr will be set to
EDX_WTRINGSTOP.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev, srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 /* Open the channel using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* continue processing */
 .
 .

 /* Force the channel idle. The I/O function that the channel is
 * executing will be terminated, and control passed to the handler
 * function previously enabled, using sr_enbhdlr(), for the
 * termination event corresponding to that I/O function.
 * In the asynchronous mode, dx_stopch() returns immediately,
 * without waiting for the channel to go idle.
 */
 if (dx_stopch(chdev, EV_ASYNC) == -1) {
 /* process error */
 }
}

See Also

• dx_dial()

• dx_dialtpt() (Linux only)

• dx_getdig()

• dx_getdigEx() (Linux only)

450 Voice API Library Reference — June 2005

dx_stopch() — force termination of currently active I/O functions

• dx_play()

• dx_playf()

• dx_playiottdata()

• dx_playtone()

• dx_playvox()

• dx_rec()

• dx_recf()

• dx_reciottdata()

• dx_recm() (Linux only)

• dx_recmf() (Linux only)

• dx_recvox()

• dx_wink()

• ATDX_TERMMSK()

• ATDX_CPTERM() - dx_dial() with call progress analysis

Voice API Library Reference — June 2005 451

return the status of tone set file loading — dx_TSFStatus()

dx_TSFStatus()

return the status of tone set file loading

Description

Supported on Windows only. The dx_TSFStatus() function returns the status of tone set file
loading. Tone set file (TSF) loading is an optional procedure used to customize the default call
progress analysis tone definitions with TSF tone definitions created by the PBX Expert utility. TSF
loading occurs when you execute your application and a valid, existing TSF was configured and
enabled in the configuration manager (DCM).

Cautions

None.

Errors

If this function returns a negative value (corresponding to the EDX_ define below), it indicates that
the TSF failed to load for one of the following error reasons:

EDX_SYSTEM
Error from operating system; use dx_fileerrno() to obtain error value. Failed to load
PBXPERT.DLL.

EDX_BADREGVALUE
Unable to locate value in registry. The configuration manager (DCM) does not specify a TSF
name and therefore the registry either doesn’t contain a value for “TSF Download File” or the
PBX Expert key is missing.

EDX_BADTSFFILE
The TSF specified in the configuration manager (DCM) does not exist or is not a valid TSF
file.

EDX_BADTSFDATA
TSF data not consolidated. The TSF specified in the configuration manager (DCM) does not
contain valid downloadable data.

Name: int dx_TSFStatus (void)

Inputs: None

Returns: 0 if TSF loading was successful
non-zero value if TSF loading failed; see EDX error codes for reason

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: Springware Windows

452 Voice API Library Reference — June 2005

dx_TSFStatus() — return the status of tone set file loading

EDX_FEATUREDISABLED
The TSF feature is disabled in the configuration manager (DCM).

Example

/*$ dx_TSFStatus() example $*/

#include <stdio.h>
#include <dxxxlib.h>

main ()
{
 int rc;

 rc = dx_TSFStatus ();
 switch (rc)
 {

 case 0:
 break;

 case EDX_SYSTEM:
 printf ("General system error loading PBXpert.DLL \n");
 break;

 case EDX_BADREGVALUE:
 printf ("Cannot find PBX Expert registry entry\n");
 break;

 case EDX_BADTSFFILE:
 printf ("Downloadable filename in registry invalid or does not exist \n");
 break;

 case EDX_BADTSFDATA:
 printf ("Downloadable TSF file does not contain valid consolidated data\n");
 break;

 case EDX_FEATUREDISABLED:
 printf ("TSF feature is disabled in Intel Dialogic Configuration Manager\n");
 break;

 default:
 break;
 }
}

See Also

• dx_initcallp()

Voice API Library Reference 453

transmit data on a specified channel — dx_TxIottData()

dx_TxIottData()

transmit data on a specified channel

Description

The dx_TxIottData() function is used to transmit data on a specified channel. The data may come
from any combination of data files, memory, or custom devices. The wType parameter specifies the
type of data to be transmitted, for example ADSI data. The iottp parameter specifies the messages
to be transmitted.

Name: int dx_TxIottData(chdev, iottp, lpTerminations, wType, lpParams, mode)

Inputs: int chdev • valid channel device handle

DX_IOTT *iottp • pointer to I/O Transfer Table

DV_TPT *lpTerminations • pointer to Termination Parameter Table

int wType • data type

LPVOID lpParams • pointer to data type-specific information

int mode • function mode

Returns: 0 if successful
-1 if error

Includes: srllib.h
dxxxlib.h

Category: Analog Display Services Interface (ADSI)

Mode: asynchronous or synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open().

iottp points to the I/O Transfer Table structure. The source of message(s) to be
transmitted is specified by this transfer table. This is the same DX_IOTT
structure used in dx_playiottdata() and dx_reciottdata(). See
DX_IOTT, on page 534, for more information on this data structure.

lpTerminations points to the Termination Parameter Table Structure, DV_TPT, which
specifies termination conditions for the device handle.

Supported values are:

• DX_MAXTIME

• DX_MAXDATA (valid values are 1 - 65535 for tp_length field) (not
supported on Springware boards)

For more information on this structure, see DV_TPT, on page 510.

wType specifies the type of data to be transmitted. To transmit ADSI data, set
wType to DT_ADSI.

454 Voice API Library Reference

dx_TxIottData() — transmit data on a specified channel

Upon asynchronous completion of dx_TxIottData(), the TDX_TXDATA event is posted. Use
ATDX_TERMMSK() to return the reason for the last I/O function termination on the channel.
Possible return values are:

TM_EOD
End of FSK data detected on transmit

TM_ERROR
I/O device error

TM_MAXDATA (not supported on Springware boards)
Maximum FSK data reached; returned when the last I/O function terminates on
DX_MAXDATA

TM_MAXTIME
Maximum function time exceeded

TM_USRSTOP
Function stopped by user

Cautions

Library level data is buffered when it is received. The buffer size is 255, which is the default buffer
size used by the library.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT (pointer to I/O transfer table)

EDX_BADPARM
Invalid data mode

EDX_BUSY
Channel already executing I/O function

EDX_SYSTEM
Error from operating system

lpParams points to information specific to the data type specified in wType. The
format of the parameter block depends on wType. For ADSI data, set
lpParams to point to an ADSI_XFERSTRUC structure. For more
information on this structure, see ADSI_XFERSTRUC, on page 502.

mode specifies how the function should execute:
• EV_ASYNC – asynchronous
• EV_SYNC – synchronous

Parameter Description

Voice API Library Reference 455

transmit data on a specified channel — dx_TxIottData()

Example

// Synchronous transmit ADSI data

#include "srllib.h"
#include "dxxxlib.h"

main()
{

DX_IOTT iott = {0};
char *devnamep = "dxxxB1C1";
char buffer[16];
ADSI_XFERSTRUC adsimode;
int chdev;
 .
 .
 .
 sprintf(buffer, "MENU.ADSI");

 if ((iott.io_fhandle = dx_fileopen(buffer, _O_RDONLY|O_BINARY)) == -1) {
 // process error
 exit(1);
 }

 if ((chdev = dx_open(devnamep, 0)) == -1) {
 fprintf(stderr, "Error opening channel %s\n",devnamep);
 dx_fileclose(iott.io_fhandle);
 exit(2);
 }

 // source is a file
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1;

 adsimode.cbSize = sizeof(adsimode);
 adsimode.dwTxDataMode = ADSI_ALERT; // send out ADSI data with CAS

 printf("Waiting for incoming ring\n");
 dx_wtring(chdev, 2, DX_OFFHOOK, -1);

 if (dx_TxIottData(chdev, &iott, NULL, DT_ADSI, &adsimode, EV_SYNC) < 0) {
 fprintf(stderr, "ERROR: dx_TxIottData failed on Channel %s; error:
 %s\n", ATDV_NAMEP(chdev), ATDV_ERRMSGP(chdev));
 }
 .
 .
 .
}

See Also

• dx_RxIottData()

• dx_TxRxIottData()

456 Voice API Library Reference — June 2005

dx_TxRxIottData() — start a transmit-initiated reception of data

dx_TxRxIottData()

start a transmit-initiated reception of data

Description

The dx_TxRxIottData() function is used to start a transmit-initiated reception of ADSI two-way
FSK (Frequency Shift Keying) data, where faster remote terminal device (CPE) turnaround occurs,
typically within 100 msec. Faster turnaround is required for two-way FSK so that the receive data
is not missed while the application turns the channel around after the last sample of FSK
transmission is sent.

The wType parameter specifies the type of data that will be transmitted and received; that is, two-
way ADSI. The transmitted data may come from and the received data may be directed to any
combination of data files, memory, or custom devices. The data is transmitted and received on a
specified channel.

Name: int dx_TxRxIottData(chdev, lpTxIott, lpTxTerminations, lpRxIott, lpRxTerminations. wType,
lpParams, mode)

Inputs: int chdev • valid channel device handle

DX_IOTT *lpTxIott • pointer to I/O Transfer Table

DV_TPT *lpTxTerminations • pointer to Termination Parameter Table

DX_IOTT *lpRxIott • pointer to I/O Transfer Table

DV_TPT *lpRxTerminations • pointer to Termination Parameter Table

int wType • data type

LPVOID lpParams • pointer to data type-specific information

int mode • function mode

Returns: 0 if successful
-1 if error

Includes: srllib.h
dxxxlib.h

Category: Analog Display Services Interface (ADSI)

Mode: asynchronous or synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open().

lpTxIott points to the I/O Transfer Table structure. lpTxIott specifies the location
of the messages to be transmitted. This is the same DX_IOTT structure
used in dx_playiottdata() and dx_reciottdata(). See DX_IOTT, on
page 534, for more information on this data structure.

Voice API Library Reference — June 2005 457

start a transmit-initiated reception of data — dx_TxRxIottData()

The transmit portion of the dx_TxRxIottData() function will continue until one of the following
occurs:

• all data specified in DX_IOTT has been transmitted

• dx_stopch() is issued on the channel

• one of the conditions specified in DV_TPT is satisfied

The receive portion of the dx_TxRxIottData() function will continue until one of the following
occurs:

• dx_stopch() is called

• the data requirements specified in the DX_IOTT are fulfilled

• the channel detects end of FSK data

• one of the conditions in the DV_TPT is satisfied

lpTxTerminations points to the Termination Parameter Table structure, DV_TPT, which
specifies termination conditions for the device handle.

Supported values are:

• DX_MAXTIME

• DX_MAXDATA (valid values are 1 - 65535 for tp_length field) (not
supported on Springware boards)

For more information on this structure, see DV_TPT, on page 510.

lpRxIott points to the I/O Transfer Table structure. lpRxIott specifies the
destination of the messages to be received. This is the same DX_IOTT
structure used in dx_playiottdata() and dx_reciottdata().

lpRxTerminations points to the Termination Parameter Table structure, DV_TPT, which
specifies termination conditions for the device handle.

Supported values are:

• DX_MAXTIME

• DX_MAXDATA (valid values are 1 - 65535 for tp_length field) (not
supported on Springware boards)

For more information on this structure, see DV_TPT, on page 510.

wType specifies the type of data to be transmitted and received. To transmit and
receive ADSI data, set wType to DT_ADSI.

lpParams points to a structure that specifies additional information about the data
that is to be sent and received. The structure type is determined by the data
type (ADSI) specified by wType. For ADSI data, set lpParams to point to
an ADSI_XFERSTRUC parameter block structure. For more information
on this structure, see ADSI_XFERSTRUC, on page 502.

mode specifies how the function should execute:
• EV_ASYNC – asynchronous
• EV_SYNC – synchronous

Parameter Description

458 Voice API Library Reference — June 2005

dx_TxRxIottData() — start a transmit-initiated reception of data

If the channel detects end of FSK data during the receive portion, the function is terminated. Use
ATDX_TERMMSK() to return the reason for the last I/O function termination on the channel.
Possible return values are:

TM_EOD
End of FSK data detected on transmit or receive

TM_ERROR
I/O device error

TM_MAXDATA (not supported on Springware boards)
Maximum FSK data reached; returned when the last I/O function terminates on
DX_MAXDATA

TM_MAXTIME
Maximum function time exceeded

TM_USRSTOP
Function stopped by user

Upon asynchronous completion of the transmit portion of the function, a TDX_TXDATA event is
generated. Upon asynchronous completion of the receive portion of the function, a TDX_RXDATA
event is generated.

Cautions

• Library level data is buffered when it is received. The buffer size is 255, which is the default
buffer size used by the library.

• When using dx_TxRxIottData() in asynchronous mode, note the following:

• If the FSK transmission is completed with a termination mask value of TM_MAXTIME,
TM_MAXDATA or TM_EOD, then the channel automatically initiates a receive session.
On completion of the receive session, a TDX_RXDATA event will be generated.

• If the FSK transmission is completed with a termination mask value of TM_USRSTOP or
TM_ERROR, then the channel does not initiate a receive session and the TDX_RXDATA
event will not be generated.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT (pointer to I/O transfer table)

EDX_BADPARM
Invalid data mode

EDX_BUSY
Channel already executing I/O function

EDX_SYSTEM
Error from operating system

Voice API Library Reference — June 2005 459

start a transmit-initiated reception of data — dx_TxRxIottData()

Example

// Synchronous transmit initiated receive ADSI data

#include "srllib.h"
#include "dxxxlib.h"

main()
{

DX_IOTT TxIott = {0};
DX_IOTT RxIott = {0};
DV_TPT tpt;
char *devnamep = "dxxxB1C1";
char buffer[16];
ADSI_XFERSTRUC adsimode;
int chdev;
 .
 .
 .

 sprintf(buffer, "MENU.ADSI");
 if ((TxIott.io_fhandle = dx_fileopen(buffer, _O_RDONLY|O_BINARY)) == -1) {
 /* Perform system error processing */
 exit(1);
 }

 sprintf(buffer, "RECEIVE.ADSI");
 if ((RxIott.io_fhandle = dx_fileopen(buffer, O_RDWR|O_CREAT|O_TRUNC|O_BINARY, 0666)) == -1) {
 /* Perform system error processing */
 dx_fileclose(TxIott.io_fhandle);
 exit(2);
 }

 if ((chdev = dx_open(devnamep, 0)) == -1) {
 fprintf(stderr, "Error opening channel %s\n",devnamep);
 dx_fileclose(TxIott.io_fhandle);
 dx_fileclose(RxIott.io_fhandle);
 exit(1);
 }
 .
 .
 .

 // source is a file
 TxIott.io_type = IO_DEV|IO_EOT;
 TxIott.io_bufp = 0;
 TxIott.io_offset = 0;
 TxIott.io_length = -1;

 // destination is a file
 RxIott.io_type = IO_DEV|IO_EOT;
 RxIott.io_bufp = 0;
 RxIott.io_offset = 0;
 RxIott.io_length = -1;

 adsimode.cbSize = sizeof(adsimode);
 adsimode.dwTxDataMode = ADSI_ALERT;
 adsimode.dwRxDataMode = ADSI_NOALERT;

 // Specify maximum time termination condition in the TPT for the
 // receive portion of the function. Application specific value is
 // used to terminate dx_TxRxIottData() if end of data is not
 // detected over a specified duration.
 tpt.tp_type = IO_EOT;
 if (dx_clrtpt(&tpt, 1) == -1) {

460 Voice API Library Reference — June 2005

dx_TxRxIottData() — start a transmit-initiated reception of data

 // Process error
 }
 tpt.tp_termno = DX_MAXTIME;
 tpt.tp_length = 1000;
 tpt.tp_flags = TF_MAXTIME;

 printf("Waiting for incoming ring\n");
 dx_wtring(chdev, 2, DX_OFFHOOK, -1);

 if (dx_TxRxIottData(chdev, &TxIott, NULL, &RxIott, &tpt, DT_ADSI,
 &adsimode, EV_SYNC) < 0) {
 fprintf(stderr, "ERROR: dx_TxIottData failed on Channel %s; error:
 %s\n", ATDV_NAMEP(chdev), ATDV_ERRMSGP(chdev));
 }
 .
 .
 .

}

See Also

• dx_TxIottData()

• dx_RxIottData()

Voice API Library Reference — June 2005 461

start a transmit-initiated reception of data — dx_TxRxIottData()

462 Voice API Library Reference — June 2005

dx_unlisten() — disconnect voice receive channel from TDM bus

dx_unlisten()

disconnect voice receive channel from TDM bus

Description

The dx_unlisten() function disconnects the voice receive channel from the TDM bus.

Calling the dx_listen() function to connect to a different TDM bus time slot automatically breaks
an existing connection. Thus, when changing connections, you do not need to call the
dx_unlisten() function first.

Cautions

• This function will fail when an invalid channel device handle is specified.

• On DM3 boards, this function is supported in a flexible routing configuration but not a fixed
routing configuration. This document assumes that a flexible routing configuration is the
configuration of choice. For more information on API restrictions in a fixed routing
configuration, see the Voice API Programming Guide.

• On DM3 boards, in a configuration where a network interface device listens to the same TDM
bus time slot device as a local, on board voice device or other media device, the sharing of time
slot (SOT) algorithm applies. This algorithm imposes limitations on the order and sequence of
“listens” and “unlistens” between network and media devices. For details on application
development rules and guidelines regarding the sharing of time slot (SOT) algorithm, see the
technical note posted on the Intel telecom support web site:
http://resource.intel.com/telecom/support/tnotes/tnbyos/2000/tn043.htm

This caution applies to DMV, DMV/A, DM/IP, and DM/VF boards. This caution does not
apply to DMV/B, DI series, and DMV160LP boards.

Name: int dx_unlisten(chdev)

Inputs: int chdev • voice channel device handle

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: TDM Routing

Mode: synchronous

Platform: DM3, Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

http://resource.intel.com/telecom/support/tnotes/tnbyos/2000/tn043.htm
http://resource.intel.com/telecom/support/tnotes/tnbyos/2000/tn043.htm
http://resource.intel.com/telecom/support/tnotes/tnbyos/2000/tn043.htm

Voice API Library Reference — June 2005 463

disconnect voice receive channel from TDM bus — dx_unlisten()

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock failback failed

EDX_SYSTEM
Error from operating system

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{

 int chdev; /* Voice Channel device handle */

464 Voice API Library Reference — June 2005

dx_unlisten() — disconnect voice receive channel from TDM bus

 /* Open board 1 channel 1 device */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* process error */
 }

 /* Disconnect receive of board 1, channel 1 from all TDM bus time slots */
 if (dx_unlisten(chdev) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }
}

See Also

• dx_listen()

Voice API Library Reference — June 2005 465

disable echo cancellation resource (ECR) mode — dx_unlistenecr()

dx_unlistenecr()

disable echo cancellation resource (ECR) mode

Description

The dx_unlistenecr() function disables echo cancellation resource (ECR) mode on the voice
channel and sets the channel back into standard voice processing (SVP) mode echo cancellation.

Notes: 1. Calling the dx_listenecr() or dx_listenecrex() function to connect to a different TDM bus time
slot automatically breaks an existing connection. Thus, when changing connections, you do not
need to call the dx_unlistenecr() function.

2. The ECR functions have been replaced by the continuous speech processing (CSP) API
functions. CSP provides enhanced echo cancellation. For more information, see the Continuous
Speech Processing API Programming Guide and Continuous Speech Processing API Library
Reference.

Cautions

This function fails when:

• An invalid channel device handle is specified.

• The ECR feature is not enabled on the board specified.

• The ECR feature is not supported on the board specified.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

Name: int dx_unlistenecr(chdev)

Inputs: int chdev • voice channel device handle

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: Echo Cancellation Resource

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

466 Voice API Library Reference — June 2005

dx_unlistenecr() — disable echo cancellation resource (ECR) mode

EDX_SH_BADCMD
Function is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking function is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* Voice Channel device handle */

 /* Open board 1 channel 1 device */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 /* Perform system error processing */
 exit(1);
 }

Voice API Library Reference — June 2005 467

disable echo cancellation resource (ECR) mode — dx_unlistenecr()

 /* Disconnect echo-reference receive of board 1, channel 1 from the TDM bus, and stop
 the ECR feature */
 if (dx_unlistenecr(chdev) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }
 return(0);
}

See Also

• dx_listenecr()

• dx_listenecrex()

468 Voice API Library Reference — June 2005

dx_wink() — generate an outbound wink

dx_wink()

generate an outbound wink

Description

The dx_wink() function generates an outbound wink on the specified channel. A wink from a
voice board is a momentary rise of the A signaling bit, which corresponds to a wink on an E&M
line. A wink’s typical duration of 150 to 250 milliseconds is used for communication between the
called and calling stations on a T-1 span.

Note: Do not call this function on a non-E&M line or for a TDM bus T-1 digital interface device such as
on an Intel® Dialogic® D/240SC-2T1 board. Transparent signaling for TDM bus digital interface
devices is not supported. See the Digital Network Interface Software Reference for information
about E&M lines.

Notes: 1. The dx_wink() function is supported on T-1 E&M line connected to any T-1 based boards.

2. All values referenced for this function are subject to a 10 msec clocking resolution. Actual values
will be in a range: (parameter value - 9 msec) < actual value < (parameter value)

By default, this function runs synchronously, and will return a 0 to indicate that it has completed
successfully.

To run this function asynchronously set the mode parameter to EV_ASYNC. When running
asynchronously, this function will return 0 to indicate it has initiated successfully, and will generate
a TDX_WINK termination event to indicate completion. Use the Standard Runtime Library (SRL)
Event Management functions to handle the termination event.

Name: int dx_wink(chdev, mode)

Inputs: int chdev • valid channel device handle

unsigned short mode • synchronous/asynchronous setting

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O

Mode: asynchronous or synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

mode specifies whether to run dx_wink() asynchronously or synchronously:
• EV_ASYNC – run asynchronously
• EV_SYNC – run synchronously (default)

Voice API Library Reference — June 2005 469

generate an outbound wink — dx_wink()

For more information on wink signaling, such as how to set delay prior to wink, see the Voice API
Programming Guide.

Cautions

Make sure the channel is on-hook when dx_wink() is called.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Example 1

This example illustrates how to use dx_wink() in synchronous mode.

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev;
 DV_TPT tpt;
 DV_DIGIT digitp;
 char buffer[8];

 /* open a channel with chdev as descriptor */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* set hookstate to on-hook and wink */
 if (dx_sethook(chdev,DX_ONHOOK,EV_SYNC) == -1) {
 /* process error */
 }
 if (dx_wink(chdev,EV_SYNC) == -1) {
 /* error winking channel */
 }
 dx_clrtpt(&tpt,1);

 /* set up DV_TPT */
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 1; /* terminate on the first digit */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */

 /* get digits while on-hook */
 if (dx_getdig(chdev,&tpt, &digitp, EV_SYNC) == -1) {
 /* error getting digits */
 }

470 Voice API Library Reference — June 2005

dx_wink() — generate an outbound wink

 /* now we can go off-hook and continue */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC)== -1) {
 /* process error */
 }
 .
 .
}

Example 2

This example illustrates how to use dx_wink() in asynchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXCHAN 24

int wink_handler();

main()
{
 int i, chdev[MAXCHAN];
 char *chnamep;
 int srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 for (i=0; i<MAXCHAN; i++) {
 /* Set chnamep to the channel name - e.g., dxxxB1C1 */
 /* open the channel with dx_open(). Obtain channel device
 * descriptor in chdev[i]
 */
 if ((chdev[i] = dx_open(chnamep,NULL)) == -1) {
 /* process error */
 }
 /* Using sr_enbhdlr(), set up handler function to handle wink
 * completion events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_WINK, wink_handler) == -1) {
 /* process error */
 }

 /* Before issuing dx_wink(), ensure that the channel is onhook,
 * else the wink will fail.
 */
 if(dx_sethook(chdev[i], DX_ONHOOK, EV_ASYNC)==-1){
 /* error setting channel on-hook */
 }

 /* Use sr_waitevt() to wait for the completion of dx_sethook(). */
 if (dx_wink(chdev[i], EV_ASYNC) == -1) {
 /* error winking channel */
 }
 }

Voice API Library Reference — June 2005 471

generate an outbound wink — dx_wink()

 /* Use sr_waitevt() to wait for the completion of wink.
 * On receiving the completion event, TDX_WINK, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
}

int wink_handler()
{
 printf("wink completed on channel %s\n", ATDX_NAMEP(sr_getevtdev()));
 return 0;
}

See Also

• dx_setparm()

• dx_getparm()

• event management functions in Standard Runtime Library API Library Reference

• DV_TPT data structure (to specify a termination condition)

• ATDX_TERMMSK()

• dx_wtring() (when handling outbound winks)

• dx_setevtmsk() (when handling inbound winks)

• dx_sethook() (when handling inbound winks)

• DX_CST data structure (call status transition)

• dx_getevt() (for synchronous applications)

• DX_EBLK data structure (for synchronous applications)

472 Voice API Library Reference — June 2005

dx_wtcallid() — wait for rings and report caller ID

dx_wtcallid()

wait for rings and report caller ID

Description

The dx_wtcallid() function is a convenience function that waits for rings and reports caller ID, if
available. Using this function is equivalent to using the voice functions dx_setevtmsk() and
dx_getevt(), and the caller ID function dx_gtcallid() to return the caller’s Directory Number
(DN).

On successful completion, a NULL-terminated string containing the caller’s phone number is
placed in the buffer pointed to by bufferp.

Note: Non-numeric characters (punctuation, space, dash) may be included in the number string. The
string may not be suitable for dialing without modification.

Name: int dx_wtcallid (chdev, nrings, timeout, bufferp)

Inputs: int chdev • valid channel device handle

int nrings • number of rings to wait

short timeout • time to wait for rings (in seconds)

unsigned char *bufferp • pointer to where to return the caller ID information

Returns: 0 success
-1 error return code

Includes: srllib.h
dxxxlib.h

Category: Caller ID

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

nrings specifies the number of rings to wait before answering

On Windows, valid values: ≥ 1 (Note: Minimum 2 for CLASS and ACLIP)

On Linux, valid values: ≥ 2

Voice API Library Reference — June 2005 473

wait for rings and report caller ID — dx_wtcallid()

The dx_wtcallid() function is a caller ID convenience function provided to allow applications to
wait for a specified number of rings (as set for the ring event) and returns the calling station’s
Directory Number (DN).

Caller ID information is available for the call from the moment the ring event is generated (if the
ring event is set to occur on or after the second ring (CLASS, ACLIP), or set to occur on or after the
first ring (CLIP, JCLIP) until either of the following occurs:

• If the call is answered (the application channel goes off-hook), the caller ID information is
available to the application until the call is disconnected (the application channel goes on-
hook).

• If the call is not answered (the application channel remains on-hook), the caller ID information
is available to the application until rings are no longer received from the Central Office
(signaled by ring off event, if enabled).

Cautions

• dx_wtcallid() changes the event enabled on the channel to DM_RINGS.

• If a checksum error occurs on the line, the API functions will fail and return
EDX_CLIDINFO.

• Make sure the buffer is large enough to hold the DN returned by the function.

• If caller ID is enabled, on-hook digit detection (DTMF, MF, and global tone detection) will not
function.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BUSY
Channel is busy

timeout specifies the maximum length of time to wait for a ring

Valid values (0.1-second units):

• ≥ 0

• -1 waits forever; never times out

If timeout is set to 0 and a ring event does not already exist, the function
returns immediately.

bufferp pointer to buffer where the calling line Directory Number (DN) is to be stored

Note: The application must allocate a buffer large enough to accommodate
the DN.

Parameter Description

474 Voice API Library Reference — June 2005

dx_wtcallid() — wait for rings and report caller ID

EDX_CLIDBLK
Caller ID is blocked or private or withheld
(other information may be available using dx_gtextcallid())

EDX_CLIDINFO
Caller ID information not sent, sub-message(s) requested not available or caller ID
information invalid

EDX_CLIDOOA
Caller ID is out of area
(other information may be available using dx_gtextcallid())

EDX_SYSTEM
Error from operating system

EDX_TIMEOUT
Time out limit is reached

Example

/*$ dx_wtcallid() example $*/

#include <srllib.h>
#include <dxxxlib.h>

unsigned char buffer[21]; /* char buffer */
int rc; /* value returned by function */
int chdev; /* channel descriptor */
unsigned short parmval; /* Parameter value */

/* open channel */
if ((chdev = dx_open("dxxxB1C1", NULL) == -1) {
 /* process error *.
}
/* Enable Caller ID */
parmval = DX_CALLIDENABLE;
if (dx_setparm(chdev, DXCH_CALLID, (void *)&parmval) == -1) {
 /* process error */
}
/* sit and wait for two rings on this channel - no timeout */
if (dx_wtcallid(chdev,2,-1,buffer) == -1) {
 printf("Error waiting for ring (with Caller ID): 0x%x\n",
 ATDV_LASTERR(chdev));
 /* process error */
}
printf("Caller ID = %s\n", buffer);

See Also

• dx_gtcallid()

• dx_setevtmsk()

• dx_getevt()

Voice API Library Reference — June 2005 475

wait for a specified number of rings — dx_wtring()

dx_wtring()

wait for a specified number of rings

Description

The dx_wtring() function waits for a specified number of rings and sets the channel to on-hook or
off-hook after the rings are detected. Using dx_wtring() is equivalent to using dx_setevtmsk(),
dx_getevt(), and dx_sethook() to wait for a ring. When dx_wtring() is called, the specified
channel’s event is set to DM_RINGS in dx_setevtmsk().

Note: Do not call this function for a digital T-1 TDM bus configuration that includes a D/240SC,
D/240SC-T1, or DTI/241SC board. Transparent signaling for TDM bus digital interface devices is
not supported.

An application can stop the dx_wtring() function from within a process or from another process,
as follows:

• From within a process, a signal handler may issue a dx_stopch() with the handle for the
device waiting in dx_wtring(). The mode parameter to dx_stopch() should be ORed with
EV_STOPWTRING flag to stop dx_wtring(). The EV_STOPWTRING flag influences
dx_wtring() only. It does not affect the existing functionality of dx_stopch(). Specifically, if
a different function besides dx_wtring() is in progress when dx_stopch() is called with
EV_STOPWTRING mode, that function will be stopped as usual. EV_STOPWTRING will
simply be ignored if dx_wtring() is not in progress.

• From another process, dx_wtring() may be stopped using the inter-process event
communication mechanism. The event-sending process should open the device that has issued
dx_wtring() and call dx_sendevt() with its device handle to send the DE_STOPWTRING
event.

Using either of the two mechanisms above, dx_wtring() will fail and return a -1. lasterr will be
set to EDX_WTRINGSTOP.

Name: int dx_wtring(chdev, nrings, hstate, timeout)

Inputs: int chdev • valid channel device handle

int nrings • number of rings to wait for

int hstate • hook state to set after rings are detected

int timeout • timeout, in seconds

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

Platform: Springware

476 Voice API Library Reference — June 2005

dx_wtring() — wait for a specified number of rings

Cautions

• dx_wtring() changes the event enabled on the channel to DM_RINGS. For example, process
A issues dx_setevtmsk() to enable detection of another type of event (such as DM_SILON)
on channel one. If process B issues dx_wtring() on channel one, then process A will now be
waiting for a DM_RINGS event since process B has reset the channel event to DM_RINGS
with dx_wtring().

• A channel can detect rings immediately after going on hook. Rings may be detected during the
time interval between dx_sethook() and dx_wtring(). Rings are counted as soon as they are
detected.

If the number of rings detected before dx_wtring() returns is equal to or greater than nrings,
dx_wtring() will not terminate. This may cause the application to miss calls that are already
coming in when the application is first started.

• Do not use the sigset() system call with SIGALRM while waiting for rings.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

EDX_TIMEOUT
Timeout limit is reached

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open() function

nrings specifies the number of rings to wait for before setting the hook state

hstate sets the hookstate of the channel after the number of rings specified in
nrings are detected. Valid values:
• DX_OFFHOOK – channel goes off-hook when nrings number of

rings are detected
• DX_ONHOOK – channel remains on-hook when nrings number of

rings are detected

timeout specifies the maximum length of time in tenths of seconds to wait for a
ring. Valid values:
• number of seconds – maximum length of time to wait for a ring
• -1 – dx_wtring() waits forever and never times out
• 0 – dx_wtring() returns -1 immediately if a ring event does not already

exist

Voice API Library Reference — June 2005 477

wait for a specified number of rings — dx_wtring()

Example

#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int chdev; /* channel descriptor */
 .
 .

 /* Open Channel */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* Wait for two rings on this channel - no timeout */
 if (dx_wtring(chdev,2,DX_OFFHOOK,-1) == -1) {
 /* process error */
 }
 .
 .
}

See Also

• dx_setevtmsk()

• dx_getevt()

• dx_sethook()

• DX_EBLK data structure

478 Voice API Library Reference — June 2005

li_attendant() — perform the actions of an automated attendant

li_attendant()

perform the actions of an automated attendant

Description

Supported on Windows only. The li_attendant() function performs the actions of an automated
attendant. It is an implementation of an automated attendant application and works as a created
thread. Before the application can create the thread, it must initialize the DX_ATTENDANT data
structure.

This function loops forever or until the named event specified in the szEventName field of the
DX_ATTENDANT data structure becomes signaled. While waiting for the named event to be
signaled, this function checks for an incoming call. By default, it assumes that an analog front end
is present and uses dx_setevtmsk() and dx_getevt() to determine if an incoming call is present.

The application can override the default analog front end behavior by supplying a function in the
pfnWaitForRings field of the data structure.

Once an incoming call is detected, the call is answered. A voice file intro.att is played back, and
li_attendant() waits for digit input. By default, dx_sethook() is called unless pfnAnswerCall is
not NULL. The application can override the default analog front end behavior by supplying a
function in the pfnAnswerCall field.

The maximum number of DTMF digits is specified in the nExtensionLength field. If timeout
occurs or the maximum number is reached, the translation function in the pfnExtensionMap field is
called. The translated string, whose maximum length is nDialStringLength, is then dialed. The
translation function should insert pauses and flash hook sequences where appropriate. The call is
terminated using dx_sethook() unless pfnDisconnectCall is registered, and li_attendant() awaits
the next incoming call. The application can override the default analog front end behavior by
supplying a function in the pfnDisconnectCall field.

Name: int li_attendant(pAtt)

Inputs: DX_ATTENDANT *pAtt • pointer to DX_ATTENDANT data structure

Returns: 0 if success
EDX_BADPARM, EDX_BADPROD, EDX_SYSTEM, or -1 if failure

Includes: syntellect.h

Category: Syntellect License Automated Attendant

Mode: synchronous, multitasking

Platform: Springware Windows

Parameter Description

pAtt pointer to the Automated Attendant data structure, DX_ATTENDANT, that
specifies termination conditions for this function and more.

Voice API Library Reference — June 2005 479

perform the actions of an automated attendant — li_attendant()

Cautions

• This function must supply values for all required fields in the DX_ATTENDANT structure.

• This function must supply an extension mapping function even if no extension translation is
required. You should prefix the extension to be dialed with the “flash hook” character and
possibly the “pause” character as well.

• The function does not return when a non fatal error occurs during operation. The current call
may be dropped but li_attendant() continues its operation. The application can choose to
open the device on its own and use ATDV_LASTERR() to find out if the li_attendant()
thread is experiencing trouble.

Errors

This function fails and returns the specified error under the following conditions:

-1
Indicates one of the following:

• Unable to open the device specified in the szDevName field

• pfnDisconnectCall fails the first time around

EDX_BADPARM
Indicates one of the following:

• pAtt is NULL

• pfnExtensionMap is NULL

• nDialStringLength is 0

• nExtensionLength is 0

• named event does not exist

EDX_BADPROD
The opened device is on a board that is not enabled with the Syntellect patent license (non-
STC board).

EDX_SYSTEM
Indicates one of the following:

• Error from operating system; use dx_fileerrno() to obtain error value.

• Unable to allocate nDialStringLength +1 characters.

Source Code

To view the source code for li_attendant(), refer to the syntellect.c file in the samples\syntellect
directory under the Intel® Dialogic® home directory.

Example

To view the source file for the example, refer to the attendant.c file in the samples\syntellect
directory under the Intel® Dialogic® home directory.

480 Voice API Library Reference — June 2005

li_attendant() — perform the actions of an automated attendant

#include <windows.h>

#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <process.h>

#include <srllib.h>
#include <dxxxlib.h>

#include "syntellect.h"

#define EXTENSION_LENGTH 2

#define EVENT_NAME "ExitEvent"

// define functions used for the hook
static int att_onhook(int dev); // optional
static int att_offhook(int dev); // optional
static BOOL att_mapextension(char *, char *); // obligatory !!
static int att_waitforrings(int dev, BOOL *bWaiting); // optional

int main (int argc, char *argv[])
{
HANDLE hEvent;
HANDLE hThread[2];
DX_ATTENDANT Att[2];
BOOL ret;

 ZeroMemory(&Att, sizeof(Att));

 // initialize structure for two thread
 // thread 1 uses custom call back functions
 // for telephony control
 Att[0].nSize = sizeof(DX_ATTENDANT);
 strcpy(Att[0].szDevName, "dxxxB1C1");
 Att[0].pfnDisconnectCall = (PFUNC) att_onhook;
 Att[0].pfnAnswerCall = (PFUNC) att_offhook;
 Att[0].pfnExtensionMap = (PMAPFUNC) att_mapextension;
 Att[0].pfnWaitForRings = (PWAITFUNC) att_waitforrings;
 strcpy(Att[0].szEventName, EVENT_NAME);
 Att[0].nExtensionLength = EXTENSION_LENGTH;
 Att[0].nDialStringLength = EXTENSION_LENGTH+10;
 Att[0].nTimeOut = 5;

 // thread 2 uses built-in functions
 // for telephony control
 Att[1].nSize = sizeof(DX_ATTENDANT);
 strcpy(Att[1].szDevName , "dxxxB1C2");
 Att[1].pfnDisconnectCall = (PFUNC) NULL;
 Att[1].pfnAnswerCall = (PFUNC) NULL;
 Att[1].pfnExtensionMap = (PMAPFUNC) att_mapextension;
 Att[1].pfnWaitForRings = (PWAITFUNC) NULL;
 strcpy(Att[1].szEventName , EVENT_NAME);
 Att[1].nExtensionLength = EXTENSION_LENGTH;
 Att[1].nDialStringLength = EXTENSION_LENGTH+10;
 Att[1].nTimeOut = 5;

 // create the named event
 if ((hEvent = CreateEvent(
 NULL, // no security attributes
 TRUE, //FALSE, // not a manual-reset event
 FALSE, // initial state is not signaled
 EVENT_NAME // object name
)) == (HANDLE) NULL)
 return (-1);

Voice API Library Reference — June 2005 481

perform the actions of an automated attendant — li_attendant()

 // start the first attendant thread
 if ((hThread[0] = (HANDLE) _beginthread(li_attendant, 0, (void *) &Att[0])) == (HANDLE) -1)
 {
 printf("Cannot create thread 1.\n");
 exit(0);
 }

 // start the second attendant thread
 if ((hThread[1] = (HANDLE) _beginthread(li_attendant, 0, (void *) &Att[1])) == (HANDLE) -1)
 {
 printf("Cannot create thread 2.\n");
 exit(0);
 }

 Sleep(30000); // Wait as long as you want to run the application

 SetEvent(hEvent); // notify threads to exit

 WaitForMultipleObjects(2, hThread, TRUE, INFINITE); // wait until the threads are done

 CloseHandle(hEvent);

 return(0);
}

int att_onhook(int dev)
{
 printf("ONHOOK\n");
 return (dx_sethook(dev, DX_ONHOOK, EV_SYNC));
}

int att_offhook(int dev)
{
 printf("OFFHOOK\n");
 return(dx_sethook(dev, DX_OFFHOOK, EV_SYNC));
}

int att_waitforrings(int dev, BOOL *bWaiting)
{
int ret;
DX_EBLK eblk;

 ret = dx_getevt(dev, &eblk, 0);
 if (ret == 0)
 {
 if (eblk.ev_event == DE_RINGS)
 *bWaiting = FALSE;
 }
 return (0);
}

BOOL att_mapextension(char *szExtension, char *szMappedExtension)
{
int nExtId;

 // for demo purposes use a dumb translation, increment extension by one...
 nExtId = atoi(szExtension) + 1;

 // prefix with flash hook and pause characters
 sprintf(szMappedExtension, "&,,%*.d", EXTENSION_LENGTH, nExtId);
 return(TRUE);
}

See Also

• li_islicensed_syntellect()

482 Voice API Library Reference — June 2005

li_islicensed_syntellect() — verify Syntellect patent license on board

li_islicensed_syntellect()

verify Syntellect patent license on board

Description

Supported on Windows only. The li_islicensed_syntellect() function verifies Syntellect patent
license on board. This function is a convenience function used to determine whether the board is
enabled with the Syntellect patent license.

Cautions

When an internal error occurs, li_islicensed_syntellect() returns FALSE. When FALSE is
returned on a board that you are certain is enabled with the Syntellect patent license, use
ATDV_LASTERR() to find the reason for the error.

Errors

None.

Source Code

To view the source code for li_islicensed_syntellect(), refer to the end of the syntellect.c file in the
samples\syntellect directory under the Intel® Dialogic® home directory.

Example

To view the source file for the example, refer to the attendant.c file in the samples\syntellect
directory under the Intel® Dialogic® home directory.

See Also

• li_attendant()

Name: BOOL li_is licensed_syntellect(chdev)

Inputs: int chdev • valid device handle

Returns: TRUE if board is enabled with Syntellect license
FALSE if board is not enabled with Syntellect license

Includes: syntellect.h

Category: Syntellect License Automated Attendant

Mode: synchronous

Platform: Springware Windows

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Voice API Library Reference — June 2005 483

make a full or half-duplex connection — nr_scroute()

nr_scroute()

make a full or half-duplex connection

Description

The nr_scroute() convenience function makes a full or half-duplex connection between two
devices connected to the time division multiplexing (TDM) bus.

This convenience function is not a part of any library and is provided in a separate C source file
called sctools.c in the sctools subdirectory.

The nr_sc prefix to the function signifies network (analog and digital) devices and resource (voice,
and fax) devices accessible via the TDM bus.

Note: Digital Network Interface (DTI), Modular Station Interface (MSI), and fax functionality may be
conditionally compiled in or out of the function using the DTISC, MSISC, and FAXSC defines in
the makefile provided with the function. For example, to compile in DTI functionality, link with the
DTI library. To compile in fax functionality, link with the fax library. Error message printing may
also be conditionally compiled in or out by using the PRINTON define in the makefile.

Name: int nr_scroute(devh1, devtype1, devh2, devtype2, mode)

Inputs: int devh1 • valid channel device handle

unsigned short devtype1 • type of device for devh1

int devh2 • valid channel device handle

unsigned short devtype2 • type of device for devh2

unsigned char mode • half or full duplex connection

Returns: 0 on success
-1 on error

Includes: stdio.h
varargs.h
srllib.h
dxxxlib.h
dtilib.h (optional)
msilib.h (optional)
faxlib.h (optional)
sctools.h

Category: TDM Routing

Mode: synchronous

Platform: DM3, Springware

484 Voice API Library Reference — June 2005

nr_scroute() — make a full or half-duplex connection

Cautions

• The devtype1 and devtype2 parameters must match the types of the device handles in devh1
and devh2.

• If you have not defined DTISC, MSISCI, and FAXSC when compiling the sctools.c file, you
cannot use this function to route digital channels or fax channels.

• If you have not defined PRINTON in the makefile, errors will not be displayed.

• It is recommended that you do not use the nr_scroute() convenience function in high
performance or high density applications because this convenience function performs one or
more xx_getxmitslot invocations that consume CPU cycles unnecessarily.

Errors

None.

Example

See source code. The C source code for this function is provided in the sctools.c file located in the
sctools subdirectory.

See Also

• nr_scunroute()

Parameter Description

devh1 specifies the valid channel device handle obtained when the channel was
opened for the first device (the transmitting device for half duplex)

devtype1 specifies the type of device for devh1:
• SC_VOX – voice channel device
• SC_LSI – analog network (loop start interface) channel device
• SC_DTI – digital network interface device
• SC_MSI – MSI station device
• SC_FAX – fax channel device

On DM3 boards, the SC_LSI value is not supported.

devh2 specifies the valid channel device handle obtained when the channel was
opened for the second device (the listening device for half duplex)

devtype2 specifies the type of device for devh1. See devtype1 for a list of defines.

mode specifies full or half-duplex connection. This parameter contains one of
the following defines from sctools.h to specify full or half duplex:
• SC_FULLDUP – full-duplex connection (default)
• SC_HALFDUP – half-duplex connection

When SC_HALFDUP is specified, the function returns with the second
device listening to the TDM bus time slot connected to the first device.

Voice API Library Reference — June 2005 485

break a full or half-duplex connection — nr_scunroute()

nr_scunroute()

break a full or half-duplex connection

Description

The nr_scunroute() convenience function breaks a full or half-duplex connection between two
devices connected to the time division multiplexing (TDM) bus.

This convenience function is not a part of any library and is provided in a separate C source file
called sctools.c in the sctools subdirectory.

The nr_sc prefix to the function signifies network (analog and digital) devices and resource (voice,
and fax) devices accessible via the TDM bus.

Note: Digital Network Interface (DTI), Modular Station Interface (MSI), and fax functionality may be
conditionally compiled in or out of the function using the DTISC, MSISC, and FAXSC defines in
the makefile provided with the function. For example, to compile in DTI functionality, link with the
DTI library. To compile in fax functionality, link with the fax library. Error message printing may
also be conditionally compiled in or out by using the PRINTON define in the makefile.

Name: int nr_scunroute(devh1, devtype1, devh2, devtype2, mode)

Inputs: int devh1 • valid channel device handle

unsigned short devtype1 • type of device for devh1

int devh2 • valid channel device handle

unsigned short devtype2 • type of device for devh2

unsigned char mode • half or full duplex connection

Returns: 0 on success
-1 on error

Includes: stdio.h
varargs.h
srllib.h
dxxxlib.h
dtilib.h (optional)
msilib.h (optional)
faxlib.h (optional)
sctools.h

Category: TDM Routing

Mode: synchronous

Platform: DM3, Springware

486 Voice API Library Reference — June 2005

nr_scunroute() — break a full or half-duplex connection

Cautions

• The devtype1 and devtype2 parameters must match the types of the device handles in devh1
and devh2.

• If you have not defined DTISC, MSISCI, and FAXSC when compiling the sctools.c file, you
cannot use this function to route digital channels or fax channels.

• If you have not defined PRINTON in the makefile, errors will not be displayed.

• It is recommended that you do not use the nr_scunroute() convenience function in high
performance or high density applications because this convenience function performs one or
more xx_getxmitslot invocations that consume CPU cycles unnecessarily.

Errors

None.

Example

See source code. The C source code for this function is provided in the sctools.c file located in the
sctools subdirectory.

See Also

• nr_scroute()

Parameter Description

devh1 specifies the valid channel device handle obtained when the channel was
opened for the first device (the transmitting device for half duplex)

devtype1 specifies the type of device for devh1:
• SC_VOX – voice channel device
• SC_LSI – analog (loop start interface) channel device
• SC_DTI – digital network interface device
• SC_MSI – MSI station device
• SC_FAX – fax channel device

On DM3 boards, the SC_LSI value is not supported.

devh2 specifies the valid channel device handle obtained when the channel was
opened for the second device (the listening device for half duplex)

devtype2 specifies the type of device for devh1. See devtype1 for a list of defines.

mode specifies full or half-duplex connection. This parameter contains one of
the following defines from sctools.h to specify full or half duplex:
• SC_FULLDUP – full-duplex connection (default)
• SC_HALFDUP – half-duplex connection

When SC_HALFDUP is specified, the function returns with the second
device listening to the TDM bus time slot connected to the first device.

Voice API Library Reference — June 2005 487

create R2/MF forward signal tone — r2_creatfsig()

r2_creatfsig()

create R2/MF forward signal tone

Description

The r2_creatfsig() function is a convenience function that defines and enables leading edge
detection of an R2/MF forward signal on a channel. This function calls the dx_blddt() function to
create the template.

User-defined tone IDs 101 through 115 are used by this function.

Note: R2/MF signaling is typically accomplished through the Global Call API. For more information, see
the Global Call documentation set. The R2/MF function described here is provided for backward
compatibility only and should not be used for R2/MF signaling.

Name: int r2_creatfsig(chdev, forwardsig)

Inputs: int chdev • channel device handle

int forwardsig • group I/II forward signal

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: R2/MF Convenience

Mode: synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

forwardsig specifies the name of a Group I or Group II forward signal which provides the
tone ID for detection of the associated R2/MF tone (or tones). Set to
R2_ALLSIG to enable detection of all 15 tones or set to one of the following
defines:

Group I
Defines

Group II
Defines

Associated
Tone ID

SIGI_1 SIGII_1 101

SIGI_2 SIGII_2 102

SIGI_3 SIGII_3 103

SIGI_4 SIGII_4 104

SIGI_5 SIGII_5 105

SIGI_6 SIGII_6 106

SIGI_7 SIGII_7 107

488 Voice API Library Reference — June 2005

r2_creatfsig() — create R2/MF forward signal tone

Cautions

• The channel must be idle when calling this function.

• Prior to creating the R2/MF tones on a channel, you should delete any previously created user-
defined tones (including non-R2/MF tones) to avoid getting an error for having too many tones
enabled on a channel.

• This function creates R2/MF tones with user-defined tone IDs from 101 to 115, and you
should reserve these tone IDs for R2/MF. If you attempt to create a forward signal tone with
this function and you previously created a tone with the same tone ID, an invalid tone ID error
will occur.

• The maximum number of user-defined tones is on a per-board basis.

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_ASCII
Invalid ASCII value in tone template description

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_CADENCE
Invalid cadence component value

EDX_DIGTYPE
Invalid dg_type value in tone template description

EDX_FREQDET
Invalid tone frequency

EDX_INVSUBCMD
Invalid sub-command

SIGI_8 SIGII_8 108

SIGI_9 SIGII_9 109

SIGI_10 SIGII_10 110

SIGI_11 SIGII_11 111

SIGI_12 SIGII_12 112

SIGI_13 SIGII_13 113

SIGI_14 SIGII_14 114

SIGI_15 SIGII_15 115

Note: Either the Group I or the Group II define can be used to specify the forward signal,
because the Group I and Group II defines correspond to the same set of 15 forward signals,
and the same user-defined tones are used for Group I and Group II.

Voice API Library Reference — June 2005 489

create R2/MF forward signal tone — r2_creatfsig()

EDX_MAXTMPLT
Maximum number of user-defined tones for the board

EDX_SYSTEM
Error from operating system

EDX_TONEID
Invalid tone template ID

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Create all forward signals
 */
 if (r2_creatfsig(dxxxdev, R2_ALLFSIG) == -1) {
 printf("Unable to Create the Forward Signals\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• r2_playbsig()

• dx_addtone()

• dx_blddt()

• R2/MF Signaling in Voice API Programming Guide

490 Voice API Library Reference — June 2005

r2_playbsig() — play R2/MF backward signal tone

r2_playbsig()

play R2/MF backward signal tone

Description

The r2_playbsig() function is a convenience function that plays a tone and controls the timing
sequence required by the R2/MF compelled signaling procedure.

Note: R2/MF signaling is typically accomplished through the Global Call API. For more information, see
the Global Call documentation set. The R2/MF function described here is provided for backward
compatibility only and should not be used for R2/MF signaling.

This function plays a specified backward R2/MF signal on the specified channel until a tone-off
event is detected for the specified forward signal.

Compelled signaling sends each signal until it is responded to by a return signal, which in turn is
sent until responded to by the other party. See the Voice API Programming Guide for more
information about R2/MF compelled signaling.

This function calls the dx_playtone() function to play the tone.

Name: int r2_playbsig(chdev, backwardsig, forwardsig, mode)

Inputs: int chdev • channel device handle

int backwardsig • group A/B backward signal

int forwardsig • group I/II forward signal

int mode • asynchronous/synchronous

Returns: 0 if success
error return code

Includes: srllib.h
dxxxlib.h

Category: R2/MF Convenience

Mode: asynchronous or synchronous

Platform: Springware

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

backwardsig specifies the name of a Group A or Group B backward signal to play

Specify one of the defines in Group A or one of the defines in Group B:

Group A Defines Group B Defines Associated Tone ID

SIGA_1 SIGB_1 101

SIGA_2 SIGB_2 102

Voice API Library Reference — June 2005 491

play R2/MF backward signal tone — r2_playbsig()

Cautions

The channel must be idle when calling this function.

SIGA_3 SIGB_3 103

SIGA_4 SIGB_4 104

SIGA_5 SIGB_5 105

SIGA_6 SIGB_6 106

SIGA_7 SIGB_7 107

SIGA_8 SIGB_8 108

SIGA_9 SIGB_9 109

SIGA_10 SIGB_10 110

SIGA_11 SIGB_11 111

SIGA_12 SIGB_12 112

SIGA_13 SIGB_13 113

SIGA_14 SIGB_14 114

SIGA_15 SIGB_15 115

forwardsig specifies the name of the Group I or Group II forward signal for which a
tone-on event was detected, and for which a tone-off event will terminate this
function.

Specify one of the defines from Group I or one of the defines from Group II:

Group I Defines Group II Defines Associated Tone ID

SIGI_1 SIGII_1 101

SIGI_2 SIGII_2 102

SIGI_3 SIGII_3 103

SIGI_4 SIGII_4 104

SIGI_5 SIGII_5 105

SIGI_6 SIGII_6 106

SIGI_7 SIGII_7 107

SIGI_8 SIGII_8 108

SIGI_9 SIGII_9 109

SIGI_10 SIGII_10 110

SIGI_11 SIGII_11 111

SIGI_12 SIGII_12 112

SIGI_13 SIGII_13 113

SIGI_14 SIGII_14 114

SIGI_15 SIGII_15 115

Parameter Description

492 Voice API Library Reference — June 2005

r2_playbsig() — play R2/MF backward signal tone

Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_AMPLGEN
Invalid amplitude value in TN_GEN structure

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_BADTPT
Invalid DV_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_FLAGGEN
Invalid tn_dflag field in TN_GEN structure

EDX_FREQGEN
Invalid frequency component in TN_GEN structure

EDX_SYSTEM
Error from operating system

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Create all forward signals
 */
 if (r2_creatfsig(dxxxdev, R2_ALLFSIG) == -1) {
 printf("Unable to Create the Forward Signals\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

Voice API Library Reference — June 2005 493

play R2/MF backward signal tone — r2_playbsig()

 /*
 * Continue Processing
 * .
 * .
 * .
 *
 * Detect an incoming call using dx_wtring()
 *
 * Enable the detection of all forward signals using
 * dx_enbtone(). In this example, only the first
 * forward signal will be enabled.
 */
 if (dx_enbtone(dxxxdev, SIGI_1, DM_TONEON | DM_TONEOFF) == -1) {
 printf("Unable to Enable Detection of Tone %d\n", SIGI_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Now wait for the TDX_CST event and event type,
 * DE_TONEON. The data part contains the ToneId of
 * the forward signal detected. Based on the forward
 * signal, determine the backward signal to generate.
 *
 * In this example, we will be generating the Group A
 * backward signal A-1 (send next digit) assuming
 * forward signal received is SIGI_1.
 */
 if (r2_playbsig(dxxxdev, SIGA_1, SIGI_1, EV_SYNC) == -1) {
 printf("Unable to generate the backward signals\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

See Also

• r2_creatfsig()
• dx_blddt()

• dx_playtone()

• R2/MF Signaling in Voice API Programming Guide

494 Voice API Library Reference — June 2005

r2_playbsig() — play R2/MF backward signal tone

Voice API Library Reference — June 2005 495

33.Events

This chapter provides information on events that may be returned by the voice software. The
following topics are discussed:

• Overview of Events . 495

• Termination Events . 495

• Unsolicited Events . 497

• Call Status Transition (CST) Events . 498

3.1 Overview of Events

An event indicates that a specific activity has occurred on a channel. The voice host library reports
channel activity to the application program in the form of events, which allows the program to
identify and respond to a specific occurrence on a channel. Events provide feedback on the
progress and completion of functions and indicate the occurrence of other channel activities. Voice
library events are defined in the dxxxlib.h header file.

Events in the voice library can be categorized as follows:

• termination events, which are produced when a function running in asynchronous mode
terminates

• unsolicited events, which are not generated in response to the completion of a function. Rather,
they are either generated in response to a condition of a given function or as a result of a call
status transition (CST) condition that has been met.

• call status transition (CST) events, which indicate changes in the status of a call, such as rings
or a tone detected, or the line going on-hook or off-hook. CST events are unsolicited events
that are produced as a consequence of setting a CST mask.

For information on event handling, see the Voice API Programming Guide. For details on event
management and event handling, see the Standard Runtime Library API Programming Guide.

3.2 Termination Events

Termination events are produced when a function running in asynchronous mode terminates. To
collect termination event codes, use Standard Runtime Library (SRL) functions such as
sr_waitevt() and sr_enbhdlr() depending on the programming model in use. For more
information, see the Standard Runtime Library documentation.

496 Voice API Library Reference — June 2005

Events

The following termination events may be returned by the voice library:

TDX_CACHEPROMPT
Termination event. Indicates that downloading a cached prompt using dx_cacheprompt()
completed.

TDX_CALLP
Termination event. Returned by dx_dial() or dx_dialtpt() to indicate that dialing with call
progress analysis completed. Use ATDX_CPTERM() to determine the reason for
termination.

TDX_CST
Termination event. Specifies a call status transition (CST) event. See Section 3.4, “Call Status
Transition (CST) Events”, on page 498 for more information on these events.

TDX_CREATETONE
Termination event. Returned by dx_createtone() to indicate completion of create tone.

TDX_CREATETONE_FAIL
Termination event. Returned by dx_createtone() to indicate failure of create tone.

TDX_DELETETONE
Termination event. Returned by dx_deletetone() to indicate completion of delete tone.

TDX_DELETETONE_FAIL
Termination event. Returned by dx_deletetone() to indicate failure of delete tone.

TDX_DIAL
Termination event. Returned by dx_dial() or dx_dialtpt() to indicate that dialing without call
progress analysis completed. Use ATDX_TERMMSK() to determine the reason for
termination.

TDX_ERROR
Termination event. Returned by a function running in asynchronous mode to indicate an error.
May also indicate that the TN_GEN tone generation template contains an invalid tg_dflag, or
the specified amplitude or frequency is outside the valid range.

TDX_GETDIG
Termination event. Returned by dx_getdig() and dx_getdigEx() to indicate completion of
asynchronous digit collection from a channel digit buffer.

TDX_NOSTOP
Termination event. Returned by dx_stopch(). On Linux, when issued on a channel that is
already idle, dx_stopch() with EV_NOSTOP flag will return this event to indicate that no
STOP was needed or issued.

TDX_PLAY
Termination event. Returned by play functions such as dx_play() to indicate completion of
play.

TDX_PLAYTONE
Termination event. Returned by dx_playtone() and dx_playtoneEx() to indicate completion
of play tone.

TDX_QUERYTONE
Termination event. Returned by dx_querytone() to indicate completion of query tone.

Voice API Library Reference — June 2005 497

Events

TDX_QUERYTONE_FAIL
Termination event. Returned by dx_querytone() to indicate failure of query tone.

TDX_RECORD
Termination event. Returned by record functions such as dx_rec() to indicate completion of
record.

TDX_RXDATA
Termination event. Returned by dx_RxIottData() and dx_TxRxIottData() to indicate
completion of ADSI two-way FSK data reception.

TDX_SETHOOK
Termination event. Returned by dx_sethook() to indicate completion of this function in
asynchronous mode. The cst_event field in the DX_CST data structure or the ev_event field in
the DX_EBLK data structure indicates whether the hook switch state has been set to on or off.

TDX_TXDATA
Termination event. Returned by dx_TxIottData() and dx_TxRxIottData() to indicate
completion of ADSI two-way FSK data transmission.

TDX_WINK
Termination event. Returned by dx_wink() to indicate completion of this function in
asynchronous mode.

3.3 Unsolicited Events

Unsolicited events are produced in response to a condition of a given function or as a result of a call
status transition (CST) condition that has been met. They are not generated in response to the
completion of a function. For more information on CST events, see Section 3.4, “Call Status
Transition (CST) Events”, on page 498.

The following unsolicited events may be returned by the voice library:

TDX_FWASSERT
Unsolicited event supported on Springware boards only. Generated when a detectable
firmware assert occurs. This event notifies the application so that it can stop sending calls to
the board.

Note: This event is available only when using an asynchronous programming model.

Note: You must have a channel opened on the board that is asserting. The event is sent to
any opened channel in the application.

Note: On DM3 boards, control processor or signal processor failure notification is handled
through eventing service. For more information, on Linux, see the OA&M API
Library Reference; on Windows, see the Event Service API Library Reference.

TDX_HIGHWATER
Unsolicited event. Generated when a high water mark is reached during a streaming to board
operation.

TDX_LOWWATER
Unsolicited event. Generated when a low water mark is reached during a streaming to board
operation.

498 Voice API Library Reference — June 2005

Events

TDX_UNDERRUN
Unsolicited event. Generated when an underrun condition occurs during a streaming to board
operation. This event is generated when the firmware (not the stream buffer) runs out of data.
This event will only be generated when dx_setevtmsk() is set to DM_UNDERRUN. This
works like a toggle key. If set once, the next call to the function will unset this mask.

TDX_VAD
Unsolicited event. Generated when the voice activity detector (VAD) detects voice energy
during a dx_reciottdata() recording operation. This event will only be generated when
dx_reciottdata() is set to RM_VADNOTIFY.

3.4 Call Status Transition (CST) Events

Call status transition (CST) events indicate changes in the status of a call, such as rings or a tone
detected, or the line going on-hook or off-hook. A CST event is an unsolicited event that is
produced as a consequence of setting a CST mask.

The dx_setevtmsk() function enables detection of CST events. User-defined tones are CST events,
but detection for these events is enabled using dx_addtone() or dx_enbtone().

The dx_getevt() function retrieves CST events in a synchronous environment. Events are returned
to DX_EBLK, on page 531. To retrieve CST events in an asynchronous environment, use the
Standard Runtime Library (SRL) Event Management functions such as sr_getevtdatap(). Events
are returned to the DX_CST structure.

Call Status Transition Events on DM3 Boards

On DM3 boards, the following CST events may be returned by the voice library:

DE_DIGITS
Call status transition event. Indicates digit received. Returned by dx_getdig().

Instead of getting digits from the DV_DIGIT structure using dx_getdig(), an alternative
method is to enable the DE_DIGITS call status transition event using dx_setevtmsk() and get
them from the DX_EBLK event queue data (ev_data) using dx_getevt() or from the DX_CST
call status transition data (cst_data) using sr_getevtdatap().

DE_DIGOFF
Call status transition event. Specifies digit tone off event.

DE_SILOFF
Call status transition event. Indicates non-silence detected on the channel.

DE_SILON
Call status transition event. Indicates silence detected on the channel.

DE_STOPGETEVT
Call status transition event. Indicates that the dx_getevt() function which was in progress has
been stopped.

DE_TONEOFF
Call status transition event. Indicates tone off event received.

Voice API Library Reference — June 2005 499

Events

DE_TONEON
Call status transition event. Indicates tone on event received.

Note: Cadence tone on events are reported differently on DM3 boards versus Springware
boards. On DM3 boards, if a cadence tone occurs continuously, a DE_TONEON
event is reported for each on/off cycle. On Springware boards, a DE_TONEON event
is reported for the first on/off cycle only. On both types of boards, a DE_TONEOFF
event is reported when the tone is no longer present.

Call Status Transition Events on Springware Boards

On Springware boards, the following CST events may be returned by the voice library:

DE_DIGITS
Call status transition event. Indicates digit received. Returned by dx_getdig().

Instead of getting digits from the DV_DIGIT structure using dx_getdig(), an alternative
method is to enable the DE_DIGITS call status transition event using dx_setevtmsk() and get
them from the DX_EBLK event queue data (ev_data) using dx_getevt() or from the DX_CST
call status transition data (cst_data) using sr_getevtdatap().

DE_DIGOFF
Call status transition event. Specifies digit tone off event.

DE_LCOFF
Call status transition event. Indicates loop current off.

DE_LCON
Call status transition event. Indicates loop current on.

DE_LCREV
Call status transition event. Indicates loop current reversal.

DE_RINGS
Call status transition event. Indicates rings received.

DE_RNGOFF
Call status transition event. Specifies ring off event.

DE_SILOFF
Call status transition event. Indicates non-silence detected on the channel.

DE_SILON
Call status transition event. Indicates silence detected on the channel.

DE_STOPGETEVT
Call status transition event. Indicates that the dx_getevt() function which was in progress has
been stopped.

DE_STOPWTRING
Call status transition event. Indicates that the dx_wtring() function which was in progress has
been stopped.

DE_STOPRINGS
Call status transition event.

DE_TONEOFF
Call status transition event. Indicates tone off event received.

500 Voice API Library Reference — June 2005

Events

DE_TONEON
Call status transition event. Indicates tone on event received.

DE_WINK
Call status transition event. Indicates wink received.

DX_OFFHOOK
Call status transition event. Indicates off-hook status.

DX_ONHOOK
Call status transition event. Indicates on-hook status.

Voice API Library Reference — June 2005 501

44.Data Structures

This chapter provides an alphabetical reference to the data structures used by voice library
functions. The following data structures are discussed:

• ADSI_XFERSTRUC. 502

• CT_DEVINFO. 503

• DV_DIGIT. 507

• DV_DIGITEX . 509

• DV_TPT. 510

• DX_ATTENDANT . 519

• DX_CAP . 521

• DX_CST . 529

• DX_EBLK . 531

• DX_ECRCT. 533

• DX_IOTT. 534

• DX_SVCB . 539

• DX_SVMT . 543

• DX_STREAMSTAT . 537

• DX_UIO . 545

• DX_XPB . 546

• FEATURE_TABLE . 551

• SC_TSINFO . 557

• TN_GEN . 558

• TN_GENCAD . 559

• TONE_DATA. 561

502 Voice API Library Reference — June 2005

ADSI_XFERSTRUC — ADSI 2-way FSK data transfer buffer

ADSI_XFERSTRUC

ADSI 2-way FSK data transfer buffer
typedef struct_ADSI_XFERSTRUC
{
 UINT cbSize;
 DWORD dwTxDataMode;
 DWORD dxRxDataMode;
} ADSI_XFERSTRUC;

Description

The ADSI_XFERSTRUC data structure stores information for the reception and transmission of
Analog Display Services Interface (ADSI) 2-way frequency shift keying (FSK) data. This structure
is used by the dx_RxIottData(), dx_TxIottData(), and dx_TxRxIottData() functions.

This structure is defined in dxxxlib.h.

Field Descriptions

The fields of the ADSI_XFERSTRUC data structure are described as follows:

cbSize
Specifies the size of the structure, in bytes.

dwTxDataMode
Specifies one of the following data transmission modes:

• ADSI_ALERT – for FSK with Alert (CAS)
• ADSI_NOALERT – for FSK without Alert (CAS)
• ADSI_ONHOOK_SEIZURE – for on-hook with seizure
• ADSI_ONHOOK_NOSEIZURE – for on-hook without seizure

dwRxDataMode
Specifies one of the following data reception modes:

• ADSI_ALERT – for FSK with Alert (CAS)
• ADSI_NOALERT – for FSK without Alert (CAS)
• ADSI_ONHOOK_SEIZURE – for on-hook with seizure
• ADSI_ONHOOK_NOSEIZURE – for on-hook without seizure

Example

For an example of how to use this data structure, see the Example section for dx_RxIottData(),
dx_TxIottData(), or dx_TxRxIottData() in Chapter 2, “Function Information”.

Voice API Library Reference — June 2005 503

channel/time slot device information — CT_DEVINFO

CT_DEVINFO

channel/time slot device information
typedef struct ct_devinfo {
 unsigned long ct_prodid; /* product ID */
 unsigned char ct_devfamily; /* device family */
 unsigned char ct_devmode; /* device mode */
 unsigned char ct_nettype; /* network interface */
 unsigned char ct_busmode; /* bus architecture */
 unsigned char ct_busencoding; /* bus encoding */
 union {
 unsigned char ct_RFU[7]; /* reserved */
 struct {
 unsigned char ct_prottype;
 } ct_net_devinfo;
 } ct_ext_devinfo;
} CT_DEVINFO;

Description

The CT_DEVINFO data structure supplies information about a device. On return from the
dx_getctinfo() function, CT_DEVINFO contains the relevant device and device configuration
information.

The valid values for each field of the CT_DEVINFO structure are defined in ctinfo.h, which is
referenced by dxxxlib.h.

Field Descriptions (DM3 Boards)

The fields of the CT_DEVINFO data structure are described as follows for DM3 boards:

ct_prodid
Contains a valid product identification number for the device.

ct_devfamily
Specifies the device family. Possible values are:

• CT_DFDM3 – DM3 device
• CT_DFHMPDM3 – HMP device (Host Media Processing)

Note: For information about the value returned for IPT Series boards, see the IP Media
Library API Library Reference.

ct_devmode
Specifies the device mode. Possible values are:

• CT_DMRESOURCE – DM3 voice device in flexible routing configuration
• CT_DMNETWORK – DM3 network device or DM3 voice device in fixed routing

configuration

For information on flexible routing and fixed routing, see the Voice API Programming Guide.

ct_nettype
Specifies the type of network interface for the device. Possible values are:

• CT_NTIPT – IP connectivity
• CT_NTANALOG – analog interface. Analog and voice devices on board are handling call

processing
• CT_NTT1 – T-1 digital network interface

504 Voice API Library Reference — June 2005

CT_DEVINFO — channel/time slot device information

• CT_NTE1 – E-1 digital network interface
• CT_NTMSI – MSI/SC station interface
• CT_NTHIZ – high impedance (HiZ) interface. This value is bitwise-ORed with the type

of network interface. A digital HiZ T-1 board would return CT_NTHIZ | CT_NTT1. A
digital HiZ E-1 board would return CT_NTHIZ | CT_NTE1. An analog HiZ board would
return CT_NTHIZ | CT_NTTXZSWITCHABLE | CT_NTANALOG.

• CT_NTTXZSWITCHABLE – The network interface can be switched to the transmit
impedance state. This value is bitwise-ORed with the type of network interface. An
analog HiZ board would return CT_NTHIZ | CT_NTTXZSWITCHABLE |
CT_NTANALOG. This is used to transmit the record notification beep tone.

ct_busmode
Specifies the bus architecture used to communicate with other devices in the system. Possible
values are:

• CT_BMSCBUS – TDM bus architecture
• CT_H100 – H.100 bus
• CT_H110 – H.110 bus

ct_busencoding
Describes the PCM encoding used on the bus. Possible values are:

• CT_BEULAW – mu-law encoding
• CT_BEALAW – A-law encoding
• CT_BELLAW – linear encoding
• CT_BEBYPASS – encoding is being bypassed

ct_ext_devinfo.ct_RFU
Returned by ms_getctinfo() for DM3 MSI devices. This field returns a character string
containing the board and channel of the voice channel resource associated with the station
interface. This data is returned in BxxCy format, where xx is the voice board and y is the voice
channel. For example, dxxxB1C1 would be returned as B1C1. To subsequently use this
information in a dx_open() function, you must add the dxxx prefix to the returned character
string.

ct_ext_devinfo.ct_net_devinfo.ct_prottype
Contains information about the protocol used on the specified digital network interface device.
Possible values are:

• CT_CAS – channel associated signaling
• CT_CLEAR – clear channel signaling
• CT_ISDN – ISDN
• CT_R2MF – R2MF

Field Descriptions (Springware Boards)

The fields of the CT_DEVINFO data structure are described as follows for Springware boards:

ct_prodid
Contains a valid product identification number for the device.

ct_devfamily
Specifies the device family. Possible values are:

• CT_DFD41D – D/41D board family
• CT_DFD41E – analog or voice channel of a D/xx or VFX/xx board such as D/41ESC or

VFX/40ESC

Voice API Library Reference — June 2005 505

channel/time slot device information — CT_DEVINFO

• CT_DFSPAN – analog channel such as of a D/160SC-LS board; a voice channel such as
of a D/240SC, D/320SC, D/240SC-T1, D/300SC-E1 or D/160SC-LS board; or a digital
channel such as of a D/240SC-T1 or D/300SC-E1 board

• CT_DFMSI – a station on an MSI board
• CT_DFSCX – SCX160 SCxbus adapter family

ct_devmode
Specifies the device mode field that is valid only for a D/xx or VFX/xx board. Possible values
are:

• CT_DMRESOURCE – analog channel not in use
• CT_DMNETWORK – analog channel available to process calls from the telephone

network

ct_nettype
Specifies the type of network interface for the device. Possible values are:

• CT_NTNONE – D/xx or VFX/xx board configured as a resource device; voice channels
are available for call processing; analog channels are disabled.

• CT_NTANALOG – analog and voice devices on board are handling call processing
• CT_NTT1 – T-1 digital network interface
• CT_NTE1 – E-1 digital network interface
• CT_NTMSI – MSI/SC station interface

Note: In Windows, the dx_getctinfo() function does not return a value of ct_nettype =
CT_NTNONE when a D/41ESC or D/41E-PCI board is configured as a resource
device. Use ct_devmode returned from dx_getctinfo() to determine the resource
mode of the product. If D41ESC_RESOURCE is set to ON in the configuration
manager (DCM) utility, ct_devmode = CT_DMRESOURCE. If
D41ESC_RESOURCE is OFF, ct_devmode = CT_DMNETWORK.

ct_busmode
Specifies the bus architecture used to communicate with other devices in the system. Possible
values are:

• CT_BMSCBUS – TDM bus architecture

ct_busencoding
Describes the PCM encoding used on the bus. Possible values are:

• CT_BEULAW – Mu-law encoding
• CT_BEALAW – A-law encoding

ct_ext_devinfo.ct_rfu
Reserved for future use.

ct_ext_devinfo.ct_net_devinfo.ct_prottype
Contains information about the protocol used on the specified digital network interface device.
Possible values are:

• CT_CAS – channel associated signaling
• CT_CLEAR – clear channel signaling
• CT_ISDN – ISDN
• CT_R2MF – R2/MF signaling

Example

For an example of how to use the CT_DEVINFO structure, see the Example section for
dx_getctinfo().

506 Voice API Library Reference — June 2005

CT_DEVINFO — channel/time slot device information

Voice API Library Reference — June 2005 507

user digit buffer — DV_DIGIT

DV_DIGIT

user digit buffer
typedef struct DV_DIGIT {
 char dg_value[DG_MAXDIGS +1]; /* ASCII values of digits */
 char dg_type[DG_MAXDIGS +1]; /* Type of digits */
} DV_DIGIT;

Description

The DV_DIGIT data structure stores an array of digits. When dx_getdig() is called, the digits are
collected from the firmware and transferred to the user’s digit buffer. The digits are stored as an
array inside the DV_DIGIT structure.

The DG_MAXDIGS define in dxxxlib.h indicates the maximum number of digits that can be
returned by a single call to dx_getdig(). The maximum size of the digit buffer varies with the
board type and technology.

Field Descriptions

The fields of the DV_DIGIT data structure are described as follows:

dg_value
Specifies a null-terminated string of the ASCII values of the digits collected.

dg_type
Specifies an array (terminated by DG_END) of the digit types that correspond to each of the
digits contained in the dg_value string.

On DM3 boards, use the following defines to identify the digit type:
• DG_DTMF_ASCII – DTMF
• DG_DPD_ASCII – DPD (dial pulse)
• DG_MF_ASCII – MF
• DG_USER1 – GTD user-defined
• DG_USER2 – GTD user-defined
• DG_USER3 – GTD user-defined
• DG_USER4 – GTD user-defined
• DG_USER5 – GTD user-defined
• DG_END – Terminator for dg_type array

On Springware boards in Linux, use the following defines to identify the digit type:
• DG_DTMF – DTMF
• DG_LPD – loop pulse digit
• DG_DPD – DPD (dial pulse)
• DG_MF – MF
• DG_USER1 – GTD user-defined
• DG_USER2 – GTD user-defined
• DG_USER3 – GTD user-defined
• DG_USER4 – GTD user-defined
• DG_USER5 – GTD user-defined

On Springware boards in Windows, use the following defines to identify the digit type:
• DG_DTMF_ASCII – DTMF
• DG_DPD_ASCII – DPD (dial pulse)

508 Voice API Library Reference — June 2005

DV_DIGIT — user digit buffer

• DG_MF_ASCII – MF
• DG_USER1_ASCII – GTD user-defined
• DG_USER2_ASCII – GTD user-defined
• DG_USER3_ASCII – GTD user-defined
• DG_USER4_ASCII – GTD user-defined
• DG_USER5_ASCII – GTD user-defined
• DG_END – Terminator for dg_type array

Example

For an example of how to use this data structure, see the Example section for dx_getdig().

Voice API Library Reference — June 2005 509

extended digit buffer — DV_DIGITEX

DV_DIGITEX

extended digit buffer
typedef struct dv_digitEx {
 short numdigits; // size in bytes of array
 char *dg_valuep; // ASCII value of digits
 char *dg_typep; // type of digits
} DV_DIGITEX;

Description

Supported on Linux only. The DV_DIGITEX data structure stores an array of digits. When a
dx_getdigEx() function is executed, the digits are collected from the firmware and transferred to
the user’s digit buffer. The digits are stored as an array in the DV_DIGITEX structure. After the
function has completed, information on the digits detected is available to the application.

Field Descriptions

The fields of the DV_DIGITEX data structure are described as follows:

numdigits
Contains the size in bytes of the user-allocated array pointed to by dg_valuep and dg_typep.

dg_value
Points to a user-allocated array, which on return from dx_getdigEx() is filled with a NULL-
terminated string of the ASCII values of the digits collected.

dg_typep
Points to another user-allocated array. On return from dx_getdigEx(), this user-allocated
array is filled with the digit types corresponding to each of the digits contained in the array (as
pointed to by dg_valuep) and is terminated by DG_END. For the defines for the digit types,
see DV_DIGIT, on page 507.

Example

For an example of how to use this data structure, see the Example section for dx_getdigEx().

510 Voice API Library Reference — June 2005

DV_TPT — termination parameter table

DV_TPT

termination parameter table
typedef struct DV_TPT {
 unsigned short tp_type; /* Flags describing this entry */
 unsigned short tp_termno; /* Termination Parameter number */
 unsigned short tp_length; /* Length of terminator */
 unsigned short tp_flags; /* Parameter attribute flag */
 unsigned short tp_data; /* Optional additional data */
 unsigned short rfu; /* Reserved */
 DV_TPT *tp_nextp; /* Pointer to next termination
 * parameter if IO_LINK set */
}DV_TPT;

Description

The DV_TPT data structure specifies a termination condition for an I/O function. To specify
multiple termination conditions for a function, use multiple DV_TPT structures configured as a
linked list, an array, or a combined linked list and array, with each DV_TPT specifying a
termination condition. The first termination condition that is met will terminate the I/O function.

For a list of functions in the I/O category, see Chapter 1, “Function Summary by Category”. For
more information on termination conditions, see the I/O terminations topic in the Voice API
Programming Guide.

The DV_TPT structure is defined in the Standard Runtime Library (srllib.h).

Notes: 1. Not all termination conditions are supported by all I/O functions. Exceptions are noted in the
description of the termination condition.

2. Use the dx_clrtpt() function to clear the field values of the DV_TPT structure before using this
structure in a function call. This action prevents possible corruption of data in the allocated
memory space.

Field Descriptions

The fields of the DV_TPT data structure are described as follows:

tp_type
Describes whether the structure is part of a linked list, part of an array, or the last DV_TPT
entry in the DV_TPT table. Specify one of the following values:

• IO_CONT – next DV_TPT entry is contiguous in an array
• IO_EOT – last DV_TPT in the chain
• IO_LINK – tp_nextp points to next DV_TPT structure in linked list

tp_termno
Specifies a condition that will terminate an I/O function.

On DM3 boards, the supported termination conditions are:
• DX_DIGMASK – digit termination for a bit mask of digits received
• DX_DIGTYPE – digit termination for user-defined tone. The ASCII value set in the

tp_length field must match a real DTMF tone (0-9, a-d, *, #).
• DX_IDDTIME – maximum delay between digits. On DM3 boards, this termination

condition is only supported by the dx_getdig() function.

Voice API Library Reference — June 2005 511

termination parameter table — DV_TPT

• DX_MAXDATA – maximum data for ADSI 2-way FSK. A Transmit/Receive FSK
session is terminated when the specified value of FSK DX_MAXDATA (in bytes) is
transmitted/received. This termination condition is only supported by dx_RxIottData(),
dx_TxIottData(), and dx_TxRxIottData().

• DX_MAXDTMF – maximum number of digits received
• DX_MAXSIL – maximum length of silence. The range is 10 msec to 250 sec (25000 in

10 msec units).
• DX_MAXTIME – maximum function time. On DM3 boards, this termination condition is

not supported by tone generation functions such as dx_playtone() and
dx_playtoneEx().

• DX_TONE – tone on or tone off termination for global tone detection (GTD)

On Springware boards, the supported termination conditions are:
• DX_DIGMASK – digit termination for bit mask of digits received
• DX_DIGTYPE – digit termination for user-defined tone
• DX_IDDTIME – maximum delay between digits
• DX_LCOFF – loop current drop
• DX_MAXDTMF – maximum number of digits received
• DX_MAXNOSIL – maximum length of non-silence
• DX_MAXSIL – maximum length of silence
• DX_MAXTIME – maximum function time
• DX_PMOFF – pattern match of non-silence
• DX_PMON – pattern match of silence
• DX_TONE – tone on or tone off termination for global tone detection (GTD) termination

conditions

Note: DX_PMOFF and DX_PMON must be used in tandem. See the Example section for
more information.

Note: When using the DX_PMON and DX_PMOFF termination conditions, some of the
DV_TPT fields are set differently from other termination conditions.

Note: If you specify DX_IDDTIME in tp_termno, then you must specify TF_IDDTIME in
tp_flags. Similarly, if you specify DX_MAXTIME in tp_termno, then you must
specify TF_MAXTIME in tp_flags.

Note: It is not valid to set both DX_MAXTIME and DX_IDDTIME to 0. If you do so and
no other termination conditions are set, the function will never terminate.

You can call the extended attribute function ATDX_TERMMSK() to determine all the
termination conditions that occurred. This function returns a bitmap of termination conditions.
The “TM_” defines corresponding to this bitmap of termination conditions are provided in the
function description for ATDX_TERMMSK().

tp_length
Refers to the length or size for each specific termination condition. When tp_length represents
length of time for a termination condition, the maximum value allowed is 60000. This field can
represent the following:

• time in 10 or 100 msec units – Applies to any termination condition that specifies
termination after a specific period of time, up to 60000. Units is specified in tp_flags field.
Default units is 100 msec.

• size – When using DX_MAXDATA, which specifies maximum data for ADSI 2-way
FSK, valid values in tp_length are 1 to 65535.

• number of digits – Applies when using DX_MAXDTMF, which specifies termination
after a certain number of digits is received.

512 Voice API Library Reference — June 2005

DV_TPT — termination parameter table

• digit type description – Applies when using DX_DIGTYPE, which specifies termination
on a user-specified digit. Specify the digit type in the high byte and the ASCII digit value
in the low byte. See the global tone detection topic in the Voice API Programming Guide
for information.

• digit bit mask – Applies to DX_DIGMASK, which specifies a bit mask of digits to
terminate on. Set the digit bit mask using one or more of the appropriate “Digit Defines”
from the table below:

• number of pattern repetitions – Applies to DX_PMOFF, which specifies the number of
times a pattern should repeat before termination.

Note: When DX_PMOFF is the termination condition, tp_length contains the tp_flags
information. See the tp_flags description and also the Example section for more
information.

tp_flags
A bit mask representing various characteristics of the termination condition to use. The defines
for the termination flags are:

• TF_10MS – Set units of time for tp_length to 10 msec. If not set, the default unit is 100
msec.

• TF_CLRBEG – History of this termination condition is cleared when the function begins.
This bit overrides the TF_LEVEL bit. If both are set, the history will be cleared and no
past history of this terminator will be taken into account.

• TF_CLREND – History of this termination condition is cleared when the function
terminates. This bit has special meaning for DX_IDDTIME (interdigit delay). If set, the
terminator will be started after the first digit is received; otherwise, the terminator will be
started as soon as the function is started. This bit has no effect on DM3 boards and will be
ignored.

• TF_EDGE – Termination condition is edge-sensitive. Edge-sensitive means that the
function will not terminate unless the condition occurs after the function starts. Refer to

Digit Digit Define

0 DM_0

1 DM_1

2 DM_2

3 DM_3

4 DM_4

5 DM_5

6 DM_6

7 DM_7

8 DM_8

9 DM_9

* DM_S

DM_P

a DM_A

b DM_B

c DM_C

d DM_D

Voice API Library Reference — June 2005 513

termination parameter table — DV_TPT

the table later in this section to see which termination conditions can be edge-sensitive and
which can be level-sensitive. This bit has no effect on DM3 boards and will be ignored.

• TF_FIRST – This bit is only used for DX_IDDTIME termination. If set, start looking for
termination condition (interdigit delay) to be satisfied after first digit is received.

• TF_IMMEDIATE – This bit is only used for DX_MAXSIL and DX_MAXNOSIL
termination. This bit is not supported on Springware boards. If set, the silence timer starts
immediately at the onset of ec_stream()or ec_reciottdata() instead of waiting for
dx_play() to finish. For more information on ec_ functions, see the Continuous Speech
Processing API Library Reference.

• TF_LEVEL – Termination condition is level-sensitive. Level-sensitive means that if the
condition is satisfied when the function starts, termination will occur immediately.
Termination conditions that can be level-sensitive have a history associated with them
which records the state of the terminator before the function started. Refer to the table
later in this section to see which termination conditions can be edge-sensitive and which
can be level-sensitive. This bit has no effect on DM3 boards and will be ignored.

• TF_SETINIT – This bit is only used for DX_MAXSIL termination. If the termination is
edge-sensitive and this bit is set, the tp_data field should contain an initial length of
silence to terminate upon if silence is detected before non-silence. In general, the tp_data
value should be greater than the value in tp_length. If the termination is level-sensitive,
then this bit must be set to 0 and tp_length will be used for the termination.

• TF_USE – Terminator used for termination. If this bit is set, the terminator will be used
for termination. If the bit is not set, the history for the terminator will be cleared
(depending on TF_CLRBEG and TF_CLREND bits), but the terminator will still not be
used for termination. This bit is not valid for the following termination conditions:
DX_DIGMASK
DX_IDDTIME
DX_MAXTIME
DX_PMOFF
DX_PMON

A set of default tp_flags values appropriate to the various termination conditions is also
available. These default values are:

Default Define Underlying Flags

TF_DIGMASK (TF_LEVEL)

TF_DIGTYPE (TF_LEVEL)

TF_IDDTIME (TF_EDGE)

TF_LCOFF (TF_LEVEL | TF_USE | TF_CLREND)

TF_MAXDTMF (TF_LEVEL | TF_USE)

TF_MAXNOSIL (TF_EDGE | TF_USE)

TF_MAXSIL (TF_EDGE | TF_USE)

TF_MAXTIME (TF_EDGE)

TF_PMON (TF_EDGE)

TF_TONE (TF_LEVEL | TF_USE | TF_CLREND)

514 Voice API Library Reference — June 2005

DV_TPT — termination parameter table

Notes: 1. The TF_SETINIT termination flag cannot be used with RM_TONE record mode on Springware
boards with analog front-ends.

2. DX_PMOFF does not have a default tp_flags value. The tp_flags value for DX_PMOFF is set in
tp_length. See the tp_length field description and also the Example section for more information.

3. If you specify TF_IDDTIME in tp_flags, then you must specify DX_IDDTIME in tp_termno.
Similarly, if you specify TF_MAXTIME in tp_flags, then you must specify DX_MAXTIME in
tp_termno. Other flags may be set at the same time using an OR combination.

4. DX_PMOFF does not have a default tp_flags value. The tp_flags value for DX_PMOFF is set in
tp_length. See the tp_length field description and also the Example section for more information.

The bitmap for the tp_flags field is as follows:

For DM3 boards, the following table shows the default sensitivity of a termination condition.

For Springware boards, the following table shows whether a termination condition can be
level-sensitive or edge-sensitive.

tp_data
Specifies optional additional data. This field can be used as follows:

Bit 7 6 5 4 3 2 1 0
Name rfu rfu units ini use beg end level

Termination Condition Level-sensitive Edge-sensitive

DX_DIGMASK

DX_DIGTYPE

DX_IDDTIME

DX_MAXDTMF

DX_MAXNOSIL

DX_MAXSIL

DX_MAXTIME

DX_TONE

Termination Condition Level-sensitive Edge-sensitive

DX_DIGMASK

DX_DIGTYPE

DX_IDDTIME

DX_LCOFF

DX_MAXDTMF

DX_MAXNOSIL

DX_MAXSIL

DX_MAXTIME

DX_PMON/DX_PMOFF

DX_TONE

Voice API Library Reference — June 2005 515

termination parameter table — DV_TPT

• If tp_termno contains DX_MAXSIL, tp_data can specify the initial length of silence to
terminate on.

• If tp_termno contains DX_PMOFF, tp_data can specify the maximum time of silence off.

• If tp_termno contains DX_PMON, tp_data can specify the maximum time of silence on.

• If tp_termno contains DX_TONE, tp_data can specify one of the following values:
DX_TONEOFF (for termination after a tone-off event)
DX_TONEON (for termination after a tone-on event)

tp_nextp
Points to the next DV_TPT structure in a linked list if the tp_type field is set to IO_LINK.

Table 17 indicates how DV_TPT fields should be filled. In the table, the tp_flags column describes
the effect of the field when set to one and not set to one. “*” indicates the default value for each bit.
The default defines for the tp_flags field are listed in the description of the tp_flags, above. To
override defaults, set the bits in tp_flags individually, as required.

Table 17. DV_TPT Field Settings Summary

tp_termno tp_type tp_length
tp_flags:
not set

tp_flags:
set

tp_data tp_nextp

DX_MAXDTMF IO_LINK

IO_EOT

IO_CONT

max number
of digits

bit 0:

TF_EDGE

bit 1: no clr*

bit 2: no clr*

bit 3: clr hist

TF_LEVEL*

TF_CLREND

TF_CLRBEG

TF_USE*

N/A pointer to
next
DV_TPT
if linked
list

DX_MAXSIL IO_LINK

IO_EOT

IO_CONT

max length
silence

bit 0:

bit 1: no clr*

bit 2: no clr*

bit 3: clr hist

bit 4: no-setinit

bit 5: 100 msec*

TF_EDGE*

TF_LEVEL

TF_CLREND

TF_CLRBEG

TF_USE*

TF_SETINIT

TF_10MS

length of
init silence

pointer to
next
DV_TPT
in linked
list

DX_MAXNOSIL IO_LINK

IO_EOT

IO_CONT

max length
non-silence

bit 0: TF_EDGE*

bit 1: no clr*

bit 1: no clr*

bit 2: no clr*

bit 3: clr hist

bit 4: N/A

bit 5: 100 msec*

TF_LEVEL

TF_CLREND

TF_CLRBEG

TF_USE*

N/A

TF_10MS

N/A pointer to
next
DV_TPT
if linked
list

DX_LCOFF IO_LINK

IO_EOT

IO_CONT

max length
loop current
drop

bit 0: TF_EDGE

bit 1: no clr

bit 2: no clr*

bit 3: clr hist

bit 4: N/A

bit 5: 100 msec*

TF_LEVEL*

TF_CLREND*

TF_CLRBEG

TF_USE*

N/A

TF_10MS

N/A pointer to
next
DV_TPT
if linked
list

516 Voice API Library Reference — June 2005

DV_TPT — termination parameter table

DX_IDDTIME IO_LINK

IO_EOT

IO_CONT

max length
interdigit
delay

bit 0: TF_EDGE*

bit 1: start@call*

bit 2: N/A

bit 3: N/A

bit 4: N/A

bit 5: 100 msec*

N/A

start@1st

N/A

N/A

N/A

TF_10MS

N/A pointer to
next
DV_TPT
if linked
list

DX_MAXTIME IO_LINK

IO_EOT

IO_CONT

max length
function time

bit 0: TF_EDGE*

bit 1: N/A

bit 2: N/A

bit 3: N/A

bit 4: N/A

bit 5: 100 msec*

N/A

N/A

N/A

N/A

N/A

TF_10MS

N/A pointer to
next
DV_TPT
if linked
list

DX_DIGMASK IO_LINK

IO_EOT

IO_CONT

bit 0: d (set)

bit 1: 1

bit 2: 2

bit 3: 3

bit 4: 4

bit 5: 5

bit 6: 6

bit 7: 7

bit 8: 8

bit 9: 9

bit 10: 0

bit 11: *
bit 12: #

bit 13: a

bit 14: b

bit 15: c

bit 0: TF_EDGE TF_LEVEL* N/A pointer to
next
DV_TPT
if linked
list

DX_PMOFF IO_LINK

IO_EOT

IO_CONT

number of
pattern
repetitions

minimum time silence off max time
silence off

pointer to
next
DV_TPT
if linked
list

DX_PMON IO_LINK

IO_EOT

IO_CONT

bit 0:
TF_EDGE*/
TF_LEVEL

bit 1: N/A

bit 2: N/A

bit 3: N/A

bit 4: N/A

bit 5: 100
msec/
TF_10MS

maximum time silence on max time
silence on

pointer to
next
DV_TPT
if linked
list

Table 17. DV_TPT Field Settings Summary (Continued)

tp_termno tp_type tp_length
tp_flags:
not set

tp_flags:
set

tp_data tp_nextp

Voice API Library Reference — June 2005 517

termination parameter table — DV_TPT

Example

See dx_playiottdata() and dx_reciottdata() for an example of how to use the DV_TPT structure.

This section provides an example of how to use DX_PMOFF and DX_PMON.

The DX_PMOFF and DX_PMON termination conditions must be used in tandem. The
DX_PMON termination condition must directly follow the DX_PMOFF termination condition.
Each condition is specified in a DV_TPT structure. A combination of both DV_TPT structures is
used to form a single termination condition.

In the first block of the example code below, tp_termno is set to DX_PMOFF. The tp_length holds
the number of patterns before termination. tp_flags holds the minimum time for silence off while
tp_data holds the maximum time for silence off. In the next DV_TPT structure, tp_termno is
DX_PMON, and the tp_length field holds the flag bit mask. Only the “units” bit is valid; all other
bits must be 0. The tp_flags field holds the minimum time for silence on, while tp_data holds the
maximum time for silence on.

#include <srllib.h>
#include <dxxxlib.h>
DV_TPT tpt[2];

/*
 * detect a pattern which repeats 4 times of approximately 2 seconds
 * off 2 seconds on.
 */

tpt[0].tp_type = IO_CONT; /* next entry is contiguous */
tpt[0].tp_termno = DX_PMOFF; /* specify pattern match off */
tpt[0].tp_length = 4; /* terminate if pattern repeats 4 times */
tpt[0].tp_flags = 175; /* minimum silence off is 1.75 seconds
 * (10 msec units) */
tpt[0].tp_data = 225; /* maximum silence off is 2.25 seconds
 * (10 msec units) */

DX_TONE IO_LINK

IO_EOT

IO_CONT

Tone ID bit 0: TF_EDGE

bit 1: no clr

bit 2: no clr*

bit 3: clr hist

TF_LEVEL*

TF_CRLREND*

TF_CLRBEG

TF_USE*

DX_
TONEON

DX_
TONEOFF

pointer to
next
DV_TPT
if linked
list

DX_DIGTYPE IO_LINK

IO_EOT

IO_CONT

low byte:
ASCII val.

*hi byte:
digit type

bit 0: TF_EDGE TF_LEVEL N/A pointer to
next
DV_TPT
if linked
list

Table 17. DV_TPT Field Settings Summary (Continued)

tp_termno tp_type tp_length
tp_flags:
not set

tp_flags:
set

tp_data tp_nextp

518 Voice API Library Reference — June 2005

DV_TPT — termination parameter table

tpt[1].tp_type = IO_EOT; /* This is the last in the chain */
tpt[1].tp_termno = DX_PMON; /* specify pattern match on */
tpt[1].tp_length = TF_10MS; /* use 10 msec timer units */
tpt[1].tp_flags = 175; /* minimum silence on is 1.75 seconds
 * (10 msec units) */
tpt[1].tp_data = 225; /* maximum silence on is 2.25 seconds
 * (10 msec units) */
/* issue the function */

Voice API Library Reference — June 2005 519

Syntellect License Automated Attendant — DX_ATTENDANT

DX_ATTENDANT

Syntellect License Automated Attendant
typedef int (*PWAITFUNC)(int dev, BOOL *bWaiting);
typedef int (*PFUNC)(int dev);
typedef BOOL (*PMAPFUNC) (char *, char *);

typedef struct {
 int nSize;
 char szDevName[15];
 PFUNC pfnDisconnectCall;
 PWAITFUNC pfnWaitForRings;
 PFUNC pfnAnswerCall;
 PMAPFUNC pfnExtensionMap;
 char szEventName[MAX_PATH+1];
 int nExtensionLength;
 int nTimeOut; // in seconds
 int nDialStringLength;
} DX_ATTENDANT, *PDX_ATTENDANT;

Description

Supported on Springware boards on Windows only.

The DX_ATTENDANT data structure contains parameters for Syntellect License Automated
Attendant.

This structure provides the information necessary for the proper operation and initialization of
li_attendant(). This structure is used in a synchronous environment and is defined in syntellect.h
located in the \inc directory.

Field Descriptions

The fields of the DX_ATTENDANT data structure are described as follows:

nSize
Required. Represents the size of this data structure in bytes. Used for version control.

SzDevName
Required. Identifies the device name to open on which li_attendant() will run; for example,
“dxxxB1C1”.

pfnDisconnectCall
Optional. Specifies the address of a disconnect function. When NULL, dx_sethook() is
called. This field can be used to override default analog front end interface behavior. For
example, on a T-1 interface a function that manipulates the A and B bits can be used instead to
disconnect a call.

pfnWaitForRings
Optional. Specifies the address of a “Wait for Rings” function. When NULL, dx_getevt() is
called. This field can be used to override default analog front end interface behavior. For
example, on a T-1 interface, a function that monitors the A and B bits can be used instead to
wait for an incoming call.

pfnAnswerCall
Optional. Specifies the address of a connect function. When NULL, dx_sethook() is called.
This field can be used to override default analog front end interface behavior. For example, on

520 Voice API Library Reference — June 2005

DX_ATTENDANT — Syntellect License Automated Attendant

a T-1 interface a function that manipulates the A and B bits can be used instead to answer a
call.

pfnExtensionMap
Required. Specifies the address of a function that translates the extension digits as received for
the caller to a digit string, representing the physical extension, to actually dial. For example,
when a caller enters “0” (usually for operator) the extension for the operator may actually be
“1500”.

szEventName
Required. Specifies the string name for the event used by the application to notify the
li_attendant() thread to terminate. An example is “MyEventName”.

nExtensionLength
Required. Specifies the maximum number of DTMF digits a caller can enter in response to the
prompt asking for an extension.

nTimeOut
Required. Specifies the amount of time, in seconds, before dx_getdig() returns and times out
when waiting for caller input.

nDialStringLength
Required. Specifies the length in bytes of the maximum translated extension dial string. For
example, for “1500” this field would be 4.

Example

For an example of DX_ATTENDANT, see the Example section for li_attendant().

Voice API Library Reference — June 2005 521

call progress analysis parameters — DX_CAP

DX_CAP

call progress analysis parameters
 * DX_CAP
 * call progress analysis parameters
 */

typedef struct DX_CAP {
 unsigned short ca_nbrdna; /* # of rings before no answer. */
 unsigned short ca_stdely; /* Delay after dialing before analysis. */
 unsigned short ca_cnosig; /* Duration of no signal time out delay. */
 unsigned short ca_lcdly; /* Delay after dial before lc drop connect */
 unsigned short ca_lcdly1; /* Delay after lc drop con. Before msg. */
 unsigned short ca_hedge; /* Edge of answer to send connect message. */
 unsigned short ca_cnosil; /* Initial continuous noise timeout delay. */
 unsigned short ca_lo1tola; /* % acceptable pos. dev of short low sig. */
 unsigned short ca_lo1tolb; /* % acceptable neg. dev of short low sig. */
 unsigned short ca_lo2tola; /* % acceptable pos. dev of long low sig. */
 unsigned short ca_lo2tolb; /* % acceptable neg. dev of long low sig. */
 unsigned short ca_hi1tola; /* % acceptable pos. dev of high signal. */
 unsigned short ca_hi1tolb; /* % acceptable neg. dev of high signal. */
 unsigned short ca_lo1bmax; /* Maximum interval for shrt low for busy. */
 unsigned short ca_lo2bmax; /* Maximum interval for long low for busy. */
 unsigned short ca_hi1bmax; /* Maximum interval for 1st high for busy */
 unsigned short ca_nsbusy; /* Num. of highs after nbrdna busy check. */
 unsigned short ca_logltch; /* Silence deglitch duration. */
 unsigned short ca_higltch; /* Non-silence deglitch duration. */
 unsigned short ca_lo1rmax; /* Max. short low dur. of double ring. */
 unsigned short ca_lo2rmin; /* Min. long low dur. of double ring. */
 unsigned short ca_intflg; /* Operator intercept mode. */
 unsigned short ca_intfltr; /* Minimum signal to qualify freq. detect. */
 unsigned short rfu1; /* reserved for future use */
 unsigned short rfu2; /* reserved for future use */
 unsigned short rfu3; /* reserved for future use */
 unsigned short rfu4; /* reserved for future use */
 unsigned short ca_hisiz; /* Used to determine which lowmax to use. */
 unsigned short ca_alowmax; /* Max. low before con. if high >hisize. */
 unsigned short ca_blowmax; /* Max. low before con. if high <hisize. */
 unsigned short ca_nbrbeg; /* Number of rings before analysis begins. */
 unsigned short ca_hi1ceil; /* Maximum 2nd high dur. for a retrain. */
 unsigned short ca_lo1ceil; /* Maximum 1st low dur. for a retrain. */
 unsigned short ca_lowerfrq; /* Lower allowable frequency in Hz. */
 unsigned short ca_upperfrq; /* Upper allowable frequency in Hz. */
 unsigned short ca_timefrq; /* Total duration of good signal required. */
 unsigned short ca_rejctfrq; /* Allowable % of bad signal. */
 unsigned short ca_maxansr; /* Maximum duration of answer. */
 unsigned short ca_ansrdgl; /* Silence deglitching value for answer. */
 unsigned short ca_mxtimefrq; /* max time for 1st freq to remain in bounds */
 unsigned short ca_lower2frq; /* lower bound for second frequency */
 unsigned short ca_upper2frq; /* upper bound for second frequency */
 unsigned short ca_time2frq; /* min time for 2nd freq to remains in bounds */
 unsigned short ca_mxtime2frq; /* max time for 2nd freq to remain in bounds */
 unsigned short ca_lower3frq; /* lower bound for third frequency */
 unsigned short ca_upper3frq; /* upper bound for third frequency */
 unsigned short ca_time3frq; /* min time for 3rd freq to remains in bounds */
 unsigned short ca_mxtime3frq; /* max time for 3rd freq to remain in bounds */
 unsigned short ca_dtn_pres; /* Length of a valid dial tone (def=1sec) */
 unsigned short ca_dtn_npres; /* Max time to wait for dial tone (def=3sec)*/
 unsigned short ca_dtn_deboff; /* The dialtone off debouncer (def=100msec) */
 unsigned short ca_pamd_failtime; /* Wait for PAMD/PVD after cadence break (def=4s)*/
 unsigned short ca_pamd_minring; /* min allowable ring duration (def=1.9sec)*/
 byte ca_pamd_spdval; /* Set to 2 selects quick decision (def=1) */
 byte ca_pamd_qtemp; /* The Qualification template to use for PAMD */
 unsigned short ca_noanswer; /* time before no answer after 1st ring (def=30s) */
 unsigned short ca_maxintering; /* Max inter ring delay before connect (10 sec) */
} DX_CAP;

522 Voice API Library Reference — June 2005

DX_CAP — call progress analysis parameters

Description

The DX_CAP data structure contains call progress analysis parameters.

The DX_CAP structure modifies parameters that control frequency detection, cadence detection,
loop current, positive voice detection (PVD), and positive answering machine detection (PAMD).
The DX_CAP structure is used by dx_dial().

For more information about call progress analysis as well as how and when to use the DX_CAP
structure, see the Voice API Programming Guide.

Note: Use the dx_clrcap() function to clear the field values of the DX_CAP structure before using this
structure in a function call. This action prevents possible corruption of data in the allocated
memory space.

Field Descriptions (DM3 Boards)

The following fields of the DX_CAP data structure are supported on DM3 boards (DM3 boards use
PerfectCall call progress analysis):

Note: By setting a DX_CAP field to 0, the default value for that field will be used.

ca_cnosig
Continuous No Signal. The maximum time of silence (no signal) allowed immediately after
cadence detection begins. If exceeded, a “no ringback” is returned.

Length: 2 Default: 4000 Units: 10 msec

ca_intflg
Intercept Mode Flag. Enables or disables SIT frequency detection, positive voice detection
(PVD), and/or positive answering machine detection (PAMD), and selects the mode of
operation for SIT frequency detection.

• DX_OPTDIS – Disable SIT frequency detection, PAMD, and PVD.
This setting provides call progress without SIT frequency detection.

• DX_OPTNOCON – Enable SIT frequency detection and return an “intercept”
immediately after detecting a valid frequency.
This setting provides call progress with SIT frequency detection.

• DX_PVDENABLE – Enable PVD and fax tone detection.
This setting provides PVD call analysis only (no call progress).

• DX_PVDOPTNOCON – Enable PVD, DX_OPTNOCON, and fax tone detection.
This setting provides call progress with SIT frequency detection and PVD call analysis.

• DX_PAMDENABLE – Enable PAMD, PVD, and fax tone detection.
This setting provides PAMD and PVD call analysis only (no call progress).

• DX_PAMDOPTEN – Enable PAMD, PVD, DX_OPTNOCON, and fax tone detection.
This setting provides full call progress and call analysis.

Length: 1 Default: DX_OPTNOCON

ca_noanswer
No Answer. Length of time to wait after first ringback before deciding that the call is not
answered.

Default: 3000 Units: 10 msec

Voice API Library Reference — June 2005 523

call progress analysis parameters — DX_CAP

ca_pamd_failtime
PAMD Fail Time. Maximum time to wait for positive answering machine detection or positive
voice detection after a cadence break.

Default: 400 Units: 10 msec

ca_pamd_spdval
PAMD Speed Value. Quick or full evaluation for PAMD detection

• PAMD_FULL – Full evaluation of response
• PAMD_QUICK – Quick look at connect circumstances
• PAMD_ACCU – Recommended setting. Does the most accurate evaluation detecting live

voice as accurately as PAMD_FULL but is more accurate than PAMD_FULL (although
slightly slower) in detecting an answering machine. Use PAMD_ACCU when accuracy is
more important than speed.

Default: PAMD_ACCU

Field Descriptions (Springware Boards)

The fields of the DX_CAP data structure are described as follows for Springware boards:

Note: A distinction is made in the following descriptions between support for PerfectCall
call progress analysis (PerfectCall CPA only), basic call progress analysis (Basic CPA
only), and call progress analysis (CPA).

ca_nbrdna
Number of Rings before Detecting No Answer. The number of single or double rings to wait
before returning a “no answer” (Basic CPA only)

Length: 1 Default: 4 Units: rings

ca_stdely
Start Delay. The delay after dialing has been completed and before starting analysis for
cadence detection, frequency detection, and positive voice detection (CPA)

Length: 2 Default: 25 Units: 10 msec

ca_cnosig
Continuous No Signal. The maximum time of silence (no signal) allowed immediately after
cadence detection begins. If exceeded, a “no ringback” is returned. (CPA)

Length: 2 Default: 4000 Units: 10 msec

ca_lcdly
Loop Current Delay. The delay after dialing has been completed and before beginning loop
current detection. (CPA) The value -1 means disable loop current detection.

Length: 2 Default: 400 Units: 10 msec

ca_lcdly1
Loop Current Delay 1. The delay after loop current detection detects a transient drop in loop
current and before call analysis returns a “connect” to the application (CPA)

Length: 2 Default: 10 Units: 10 msec

ca_hedge
Hello Edge. The point at which a “connect” will be returned to the application (CPA)

• 1 – Rising Edge (immediately when a connect is detected)

524 Voice API Library Reference — June 2005

DX_CAP — call progress analysis parameters

• 2 – Falling Edge (after the end of the salutation)

Length: 1 Default: 2

ca_cnosil
Continuous Non-silence. The maximum length of the first or second period of non-silence
allowed. If exceeded, a “no ringback” is returned. (CPA)

Length: 2. Default: 650 Units: 10 msec

ca_lo1tola
Low 1 Tolerance Above. Percent acceptable positive deviation of short low signal (Basic CPA
only)

Length: 1 Default: 13 Units:%

ca_lo1tolb
Low 1 Tolerance Below. Percent acceptable negative deviation of short low signal (Basic CPA
only)

Length: 1 Default: 13 Units:%

ca_lo2tola
Low 2 Tolerance Above. Percent acceptable positive deviation of long low signal (Basic CPA
only)

Length: 1 Default: 13 Units:%

ca_lo2tolb
Low 2 Tolerance Below. Percent acceptable negative deviation of long low signal (Basic CPA
only)

Length: 1 Default: 13 Units:%

ca_hi1tola
High 1 Tolerance Above. Percent acceptable positive deviation of high signal (Basic CPA
only)

Length: 1 Default: 13 Units:%

ca_hi1tolb
High 1 Tolerance Below. Percent acceptable negative deviation of high signal (Basic CPA
only)

Length: 1 Default: 13 Units:%

ca_lo1bmax
Low 1 Busy Maximum. Maximum interval for short low for busy (Basic CPA only)

Length: 2 Default: 90 Units: 10 msec

ca_lo2bmax
Low 2 Busy Maximum. Maximum interval for long low for busy (Basic CPA only)

Length: 2 Default: 90 Units: 10 msec

ca_hi1bmax
High 1 Busy Maximum. Maximum interval for first high for busy (Basic CPA only)

Length: 2 Default: 90 Units: 10 msec

Voice API Library Reference — June 2005 525

call progress analysis parameters — DX_CAP

ca_nsbusy
Non-silence Busy. The number of non-silence periods in addition to nbrdna to wait before
returning a “busy” (Basic CPA only)

Length: 1 Default: 0 Negative values are valid

ca_logltch
Low Glitch. The maximum silence period to ignore. Used to help eliminate spurious silence
intervals. (CPA)

Length: 2 Default: 15 Units: 10 msec

ca_higltch
High Glitch. The maximum nonsilence period to ignore. Used to help eliminate spurious
nonsilence intervals. (CPA)

Length: 2 Default: 19 Units: 10 msec

ca_lo1rmax
Low 1 Ring Maximum. Maximum short low duration of double ring (Basic CPA only)

Length: 2 Default: 90 Units: 10 msec

ca_lo2rmin
Low 2 Ring Minimum. Minimum long low duration of double ring (Basic CPA only)

Length: 2 Default: 225 Units: 10 msec

ca_intflg
Intercept Mode Flag. Enables or disables SIT frequency detection, positive voice detection
(PVD), and/or positive answering machine detection (PAMD), and selects the mode of
operation for SIT frequency detection (CPA)

• DX_OPTDIS – Disable SIT frequency detection, PAMD, and PVD.
• DX_OPTNOCON – Enable SIT frequency detection and return an “intercept”

immediately after detecting a valid frequency.
• DX_PVDENABLE – Enable PVD.
• DX_PVDOPTNOCON – Enable PVD and DX_OPTNOCON.
• DX_PAMDENABLE – Enable PAMD and PVD.
• DX_PAMDOPTEN – Enable PAMD, PVD, and DX_OPTNOCON.

Note: DX_OPTEN and DX_PVDOPTEN are obsolete. Use DX_OPTNOCON and
DX_PVDOPTNOCON instead.

Length: 1 Default: DX_OPTNOCON

ca_intfltr
Not used

ca_hisiz
High Size. Used to determine whether to use alowmax or blowmax (Basic CPA only)

Length: 2 Default: 90 Units: 10 msec

ca_alowmax
A Low Maximum. Maximum low before connect if high > hisiz (Basic CPA only)

Length: 2 Default: 700 Units: 10 msec

ca_blowmax
B Low Maximum. Maximum low before connect if high < hisiz (Basic CPA only)

Length: 2 Default: 530 Units: 10 msec

526 Voice API Library Reference — June 2005

DX_CAP — call progress analysis parameters

ca_nbrbeg
Number Before Beginning. Number of non-silence periods before analysis begins (Basic CPA
only)

Length: 1 Default: 1 Units: rings

ca_hi1ceil
High 1 Ceiling. Maximum 2nd high duration for a retrain (Basic CPA only)

Length: 2 Default: 78 Units: 10 msec

ca_lo1ceil
Low 1 Ceiling. Maximum 1st low duration for a retrain (Basic CPA only)

Length: 2 Default: 58 Units: 10 msec

ca_lowerfrq
Lower Frequency. Lower bound for 1st tone in an SIT (CPA)

Length: 2 Default: 900 Units: Hz

ca_upperfrq
Upper Frequency. Upper bound for 1st tone in an SIT (CPA)

Length: 2 Default: 1000 Units: Hz

ca_timefrq
Time Frequency. Minimum time for 1st tone in an SIT to remain in bounds. The minimum
amount of time required for the audio signal to remain within the frequency detection range
specified by upperfrq and lowerfrq for it to be considered valid. (CPA)

Length: 1 Default: 5 Units: 10 msec

ca_rejctfrq
Not used

ca_maxansr
Maximum Answer. The maximum allowable length of ansrsize. When ansrsize exceeds
maxansr, a “connect” is returned to the application. (CPA)

Length: 2 Default: 1000 Units: 10 msec

ca_ansrdgl
Answer Deglitcher. The maximum silence period allowed between words in a salutation. This
parameter should be enabled only when you are interested in measuring the length of the
salutation. (Basic CPA only)

• -1 – Disable this condition

Length: 2 Default: -1 Units: 10 msec

ca_mxtimefrq
Maximum Time Frequency. Maximum allowable time for 1st tone in an SIT to be present

Default: 0 Units: 10 msec

ca_lower2frq
Lower Bound for 2nd Frequency. Lower bound for 2nd tone in an SIT

Default: 0 Units: Hz

ca_upper2frq
Upper Bound for 2nd Frequency. Upper bound for 2nd tone in an SIT

Default: 0 Units: Hz

Voice API Library Reference — June 2005 527

call progress analysis parameters — DX_CAP

ca_time2frq
Time for 2nd Frequency. Minimum time for 2nd tone in an SIT to remain in bounds

Default: 0 Units: 10 msec

ca_mxtime2frq
Maximum Time for 2nd Frequency. Maximum allowable time for 2nd tone in an SIT to be
present

Default: 0 Units: 10 msec

ca_lower3frq
Lower Bound for 3rd Frequency. Lower bound for 3rd tone in an SIT

Default: 0 Units: Hz

ca_upper3frq
Upper Bound for 3rd Frequency. Upper bound for 3rd tone in an SIT

Default: 0 Units: Hz

ca_time3frq
Time for 3rd Frequency. Minimum time for 3rd tone in an SIT to remain in bounds

Default: 0 Units: 10 msec

ca_mxtime3frq
Maximum Time for 3rd Frequency. Maximum allowable time for 3rd tone in an SIT to be
present

Default: 0 Units: 10 msec

ca_dtn_pres
Dial Tone Present. Length of time that a dial tone must be continuously present (PerfectCall
CPA only)

Default: 100 Units: 10 msec

ca_dtn_npres
Dial Tone Not Present. Maximum length of time to wait before declaring dial tone failure
(PerfectCall CPA only)

Default: 300 Units: 10 msec

ca_dtn_deboff
Dial Tone Debounce. Maximum gap allowed in an otherwise continuous dial tone before it is
considered invalid (PerfectCall CPA only)

Default: 10 Units: 10 msec

ca_pamd_failtime
PAMD Fail Time. Maximum time to wait for positive answering machine detection or positive
voice detection after a cadence break (PerfectCall CPA only)

Default: 400 Units: 10 msec

ca_pamd_minring
Minimum PAMD Ring. Minimum allowable ring duration for positive answering machine
detection (PerfectCall CPA only)

Default: 190 Units: 10 msec

ca_pamd_spdval
PAMD Speed Value. Quick or full evaluation for PAMD detection

528 Voice API Library Reference — June 2005

DX_CAP — call progress analysis parameters

• PAMD_FULL – Full evaluation of response
• PAMD_QUICK – Quick look at connect circumstances (PerfectCall CPA only)
• PAMD_ACCU – Recommended setting. Does the most accurate evaluation detecting live

voice as accurately as PAMD_FULL but is more accurate than PAMD_FULL (although
slightly slower) in detecting an answering machine. Use PAMD_ACCU when accuracy is
more important than speed.

Default: PAMD_FULL

ca_pamd_qtemp
PAMD Qualification Template. Which PAMD template to use. Options are
PAMD_QUAL1TMP or PAMD_QUAL2TMP; at present, only PAMD_QUAL1TMP is
available. (PerfectCall CPA only)

Default: PAMD_QUAL1TMP

ca_noanswer
No Answer. Length of time to wait after first ringback before deciding that the call is not
answered. (PerfectCall CPA only)

Default: 3000 Units: 10 msec

ca_maxintering
Maximum Inter-ring Delay. Maximum time to wait between consecutive ringback signals
before deciding that the call has been connected. (PerfectCall CPA only)

Default: 1000 Units: 10 msec

Example

For an example of DX_CAP, see the Example section for dx_dial().

Voice API Library Reference — June 2005 529

call status transition (CST) information — DX_CST

DX_CST

call status transition (CST) information
typedef struct DX_CST {
 unsigned short cst_event;
 unsigned short cst_data;
} DX_CST;

Description

The DX_CST data structure contains parameters for call status transition.

DX_CST contains call status transition information after an asynchronous TDX_CST termination
or TDX_SETHOOK event occurs. Use Standard Runtime Library (SRL) Event Management
function, sr_getevtdatap(), to retrieve the structure.

Field Descriptions

The fields of the DX_CST data structure are described as follows:

cst_event
Contains the event type.

On DM3 digital boards, use the following defines to identify the event type:
• DE_DIGITS – digit received
• DE_DIGOFF – digit tone-off event
• DE_SILOFF – non-silence detected
• DE_SILON – silence detected
• DE_STOPGETEVT – dx_getevt() stopped
• DE_TONEOFF – tone off event
• DE_TONEON – tone on event

On Springware boards, use the following defines to identify the event type:
• DE_DIGITS – digit received
• DE_DIGOFF – digit tone-off event
• DE_LCOFF – loop current off
• DE_LCON – loop current on
• DE_LCREV – loop current reversal
• DE_RINGS – rings received
• DE_RNGOFF – caller hang up event (incoming call is dropped before being accepted)
• DE_SILOFF – non-silence detected
• DE_SILON – silence detected
• DE_STOPGETEVT – dx_getevt() stopped
• DE_STOPWTRING – dx_wtring() stopped
• DE_TONEOFF – tone off event
• DE_TONEON – tone on event
• DE_WINK – received a wink
• DX_OFFHOOK – offhook event
• DX_ONHOOK – onhook event

Note: DX_ONHOOK and DX_OFFHOOK are returned if a TDX_SETHOOK termination
event is received.

530 Voice API Library Reference — June 2005

DX_CST — call status transition (CST) information

cst_data
Contains data associated with the CST event.

On DM3 digital boards, the data are described for each event type as follows:
• DE_DIGITS – ASCII digit (low byte) and the digit type (high byte)
• DE_DIGOFF – digit tone-off event
• DE_SILOFF – time since previous silence started in 10 msec units
• DE_SILON – time since previous silence stopped in 10 msec units
• DE_STOPGETEVT – monitoring of channels for call status transition events has been

stopped
• DE_TONEOFF – user-specified tone ID
• DE_TONEON – user-specified tone ID

On Springware boards, the data are described for each event type as follows:
• DE_DIGITS – ASCII digit (low byte) and the digit type (high byte)
• DE_DIGOFF – digit tone-off event
• DE_LCOFF – time since previous loop current on transition in 10 msec units
• DE_LCON – time since previous loop current off transition in 10 msec units
• DE_LCREV – time since previous loop current reversal transition in 10 msec units
• DE_RINGS – 0
• DE_SILOFF – time since previous silence started in 10 msec units
• DE_SILON – time since previous silence stopped in 10 msec units
• DE_STOPGETEVT – monitoring of channels for call status transition events has been

stopped
• DE_STOPWTRING – waiting for a specified number of rings has been stopped
• DE_TONEOFF – user-specified tone ID
• DE_TONEON – user-specified tone ID
• DE_WINK – N/A
• DX_OFFHOOK – N/A
• DX_ONHOOK – N/A

Example

For an example of how to use the DX_CST structure, see the Example section for dx_sendevt()
and dx_setevtmsk().

Voice API Library Reference — June 2005 531

call status transition event block — DX_EBLK

DX_EBLK

call status transition event block
typedef struct DX_EBLK {
 unsigned short ev_event; /* Event that occurred */
 unsigned short ev_data; /* Event specific data */
 unsigned char ev_rfu[12]; /* Reserved for future use*/
}DX_EBLK;

Description

The DX_EBLK data structure contains parameters for the Call Status Event Block. This structure
is returned by dx_getevt() and indicates which call status transition event occurred. dx_getevt() is
a synchronous function which blocks until an event occurs. For information about asynchronously
waiting for CST events, see dx_setevtmsk().

Field Descriptions

The fields of the DX_EBLK data structure are described as follows:

ev_event
Contains the event type.

On DM3 digital boards, use the following defines to identify the event type:
• DE_DIGITS – digit received
• DE_SILOFF – non-silence detected
• DE_SILON – silence detected
• DE_TONEOFF – tone off event
• DE_TONEON – tone on event

On Springware boards, use the following defines to identify the event type:
• DE_DIGITS – digit received
• DE_LCOFF – loop current off
• DE_LCON – loop current on
• DE_LCREV – loop current reversal
• DE_RINGS – rings received
• DE_SILOFF – non-silence detected
• DE_SILON – silence detected
• DE_TONEOFF – tone off event
• DE_TONEON – tone on event
• DE_WINK – received a wink
• DX_OFFHOOK – offhook event
• DX_ONHOOK – onhook event

DX_ONHOOK and DX_OFFHOOK are returned if a TDX_SETHOOK termination event is
received.

ev_data
Contains data associated with the CST event. All durations of time are in 10 msec units.

On DM3 digital boards, the data are described for each event type as follows:
• DE_DIGITS – ASCII digit (low byte) and the digit type (high byte)
• DE_SILOFF – length of time that silence occurred before non-silence (noise or

meaningful sound) was detected
• DE_SILON – length of time that non-silence occurred before silence was detected

532 Voice API Library Reference — June 2005

DX_EBLK — call status transition event block

• DE_TONEOFF – user-specified tone ID for the tone-off event
• DE_TONEON – user-specified tone ID for the tone-on event

On Springware boards, the data are described for each event type as follows:
• DE_DIGITS – ASCII digit (low byte) and the digit type (high byte)
• DE_LCOFF – length of time that loop current was on before the loop-current-off event

was detected
• DE_LCON – length of time that loop current was off before the loop-current-on event was

detected
• DE_LCREV – length of time that loop current was reversed before the loop-current-

reversal event was detected
• DE_RINGS – 0 (no data)
• DE_SILOFF – length of time that silence occurred before non-silence (noise or

meaningful sound) was detected
• DE_SILON – length of time that non-silence occurred before silence was detected
• DE_TONEOFF – user-specified tone ID for the tone-off event
• DE_TONEON – user-specified tone ID for the tone-on event
• DE_WINK – (no data)
• DX_OFFHOOK – (no data)
• DX_ONHOOK – (no data)

Example

For an example of how to use the DX_EBLK structure, see the Example section for dx_getevt()
and dx_setevtmsk().

Voice API Library Reference — June 2005 533

echo cancellation resource (ECR) characteristics — DX_ECRCT

DX_ECRCT

echo cancellation resource (ECR) characteristics
typedef struct dx_ecrct {
 int ct_length; /* size of this structure */
 unsigned char ct_NLPflag /* ECR with NLP requested or not */
} DX_ECRCT;

#define SIZE_OF_ECR_CT sizeof (DX_ECRCT) /* size of DX_ECRCT */
#define ECR_CT_ENABLE 0
#define ECR_CT_DISABLE 1

Description

The DX_ECRCT data structure describes echo cancellation resource (ECR) characteristics. This
structure is used by the dx_listenecrex() function.

Note: The ECR feature has been replaced by the continuous speech processing (CSP) feature. CSP
provides enhanced echo cancellation. For more information, see the Continuous Speech Processing
API Programming Guide and Continuous Speech Processing API Library Reference.

Field Descriptions

The fields of the DX_ECRCT data structure are described as follows:

ct_length
Specifies the size of this structure. Use the following value to accommodate future growth in
the DX_ECRCT and the possibility of DX_ECRCT structures with different sizes:

• SIZE_OF_ECR_CT – size of the DX_ECRCT structure

ct_NLPflag
Specifies whether non-linear processing (NLP) is enabled or not. When NLP is enabled, the
output of the echo canceller is replaced with an estimate of the background noise. NLP
provides full echo suppression as long as the echo reference signal contains speech signals and
the echo-carrying signal does not. In this case, the echo canceller cancels the echo and
maintains the full duplex connection. Note: Do not enable NLP when using the echo canceller
output for voice recognition algorithms because the NLP may clip the beginning of speech.
The ct_NLPflag default is disabled. Values are:

• ECR_CT_ENABLE – enables NLP
• ECR_CT_DISABLE – disables NLP (default)

Note: The application must include the following line in order to handle DX_ECRCT structures of
different sizes without the need for recompiling the application:

ecrct.ct_length=size_of_ecr_ct;

Example

See dx_listenecrex() for an example of how to use the DX_ECRCT structure.

534 Voice API Library Reference — June 2005

DX_IOTT — input/output transfer table

DX_IOTT

input/output transfer table
typedef struct dx_iott {
 unsigned short io_type; /* Transfer type */
 unsigned short rfu; /* Reserved */
 int io_fhandle; /* File descriptor */
 char * io_bufp; /* Pointer to base memory */
 unsigned long io_offset; /* File/Buffer offset */
 long int io_length; /* Length of data */
 DX_IOTT *io_nextp; /* Pointer to next DX_IOTT if IO_LINK set */
 DX_IOTT *io_prevp; /* (Optional) Pointer to previous DX_IOTT */
}DX_IOTT;

Description

The DX_IOTT data structure contains parameters for input/output transfer. The DX_IOTT
structure identifies a source or destination for voice data. It is used with various play and record
functions, such as dx_play() and dx_rec(), as well as other categories of functions.

A DX_IOTT structure describes a single data transfer to or from one file, memory block, or custom
device. If the voice data is stored on a custom device, the device must have a standard Linux or
Windows device interface. The device must support open(), close(), read(), and write() and
lseek().

To use multiple combinations, each source or destination of I/O is specified as one element in an
array of DX_IOTT structures. The last DX_IOTT entry must have IO_EOT specified in the io_type
field.

Note: The DX_IOTT data area must remain in scope for the duration of the function if running
asynchronously.

Field Descriptions

The fields of the DX_IOTT data structure are described as follows:

io_type
This field is a bitmap that specifies whether the data is stored in a file or in memory. It also
determines if the next DX_IOTT structure is contiguous in memory, linked, or if this is the last
DX_IOTT in the chain. It is also used to enable WAVE data offset I/O. Set the io_type field to
an OR combination of the following defines.

On DM3 boards, specifies the data transfer type as follows:
• IO_CACHED – cached prompt
• IO_DEV – file data
• IO_MEM – memory data
• IO_STREAM – data for streaming to board
• IO_UIO – nonstandard storage media data using the dx_setuio() function; must be ORed

with IO_DEV

On Springware boards, specifies the data transfer type as follows:
• IO_DEV – file data
• IO_MEM – memory data

Voice API Library Reference — June 2005 535

input/output transfer table — DX_IOTT

• IO_UIO – nonstandard storage media data using the dx_setuio() function; must be ORed
with IO_DEV

Specify the structure linkage as follows:
• IO_CONT – the next DX_IOTT structure is contiguous (default)
• IO_LINK – the next DX_IOTT structure is part of a linked list
• IO_EOT – this is the last DX_IOTT structure in the chain

If no value is specified, IO_CONT is assumed.

Other Types:
• IO_USEOFFSET – enables use of the io_offset and io_length fields for WAVE data

To enable offset I/O for WAVE data, set the DX_IOTT io_type field to IO_USEOFFSET ORed
with the IO_DEV define (to indicate file data rather than memory buffer).

Note: Wave files cannot be recorded to memory buffers or played from memory buffers.

io_fhandle
In Linux, specifies a unique file descriptor if IO_DEV is set in io_type. If IO_DEV is not set in
io_type, io_fhandle should be set to 0.
In Windows, specifies a unique file descriptor provided by the dx_fileopen() function if
IO_DEV is set in io_type. If IO_DEV is not set in io_type, io_fhandle should be set to 0.

io_bufp
Specifies a base memory address if IO_MEM is set in io_type.

io_offset
Specifies one of the following:

• if IO_DEV is specified in io_type, an offset from the beginning of a file

• for WAVE file offset I/O (IO_DEV is ORed with IO_USEOFFSET in io_type), a file
offset value that is calculated from the beginning of the WAVE audio data rather than the
beginning of the file (that is, the first 80 bytes that make up the file header are not
counted).

• if IO_MEM is specified in io_type, an offset from the base buffer address specified in
io_bufp

io_length
Specifies the number of bytes allocated for recording or the byte length of the playback file.
Specify -1 to play until end of data. During dx_play(), a value of -1 causes playback to
continue until an EOF is received or one of the terminating conditions is satisfied. During
dx_rec(), a value of -1 in io_length causes recording to continue until one of the terminating
conditions is satisfied.

Note: When playing a GSM WAVE file and using an offset, you must set the io_length field
to the actual length of the file. Setting this field to -1 is not supported.

io_nextp
Points to the next DX_IOTT structure in the linked list if IO_LINK is set in io_type.

io_prevp
Points to the previous DX_IOTT structure. This field is automatically filled in when dx_rec()
or dx_play() is called. The io_prevp field of the first DX_IOTT structure is set to NULL.

536 Voice API Library Reference — June 2005

DX_IOTT — input/output transfer table

Example

The following example uses different sources for playback, an array or linked list of DX_IOTT
structures.

#include <srllib.h>
#include <dxxxlib.h>
DX_IOTT iott[3];

/* first iott: voice data in a file with descriptor fd1*/
iott[0].io_fhandle = fd1;
iott[0].io_offset = 0;
iott[0].io_length = -1;
iott[0].io_type = IO_DEV;

/* second iott: voice data in a file with descriptor fd2 */
iott[1].io_fhandle = fd2;
iott[1].io_offset = 0;
iott[1].io_length = -1;
iott[1].io_type = IO_DEV;

/* third iott: voice data in a file with descriptor fd3 */
iott[2].io_fhandle = fd3;
iott[2].io_offset = 0;
iott[2].io_length = -1;
iott[2].io_type = IO_DEV|IO_EOT;
 .
 .
 .

/* play all three voice files: pass &iott[0] as argument to dx_play()
 .
 .
/* form a linked list of iott[0] and iott[2] */
iott[0].io_nextp=&iott[2];
iott[0].io_type|=IO_LINK
/* pass &iott[0] as argument to dx_play(). This time only files 1 and 3
 * will be played.
 */
 .

Voice API Library Reference — June 2005 537

status of stream buffer — DX_STREAMSTAT

DX_STREAMSTAT

status of stream buffer
typedef struct streamStat
{
 unsigned int version; // version of the structure
 unsigned int bytesIn; // total number of bytes put into stream buffer
 unsigned int bytesOut; // total number of bytes sent to board
 unsigned int headPointer; // internal pointer to position in stream buffer
 unsigned int tailPointer; // internal pointer to position in stream buffer
 unsigned int currentState; // idle, streaming etc.
 unsigned int numberOfBufferUnderruns;
 unsigned int numberOfBufferOverruns;
 unsigned int BufferSize; // buffer size
 unsigned int spaceAvailable; // space in bytes available in stream buffer
 unsigned int highWaterMark; // high water mark for stream buffer
 unsigned int lowWaterMark; // low water mark for stream buffer
} DX_STREAMSTAT;

Description

The DX_STREAMSTAT data structure contains the current status of the circular stream buffer for
a voice device. This structure is used by the streaming to board feature and returned by the
dx_GetStreamInfo() function. This structure is defined in dxxxlib.h.

Field Descriptions

The fields of the DX_STREAMSTAT data structure are described as follows:

version
Contains the version of the data structure. The value is currently hardcoded to 1. This field is
reserved for future use.

bytesIn
Contains the total number of bytes put into the circular stream buffer.

bytesOut
Contains the total number of bytes sent to the board.

headPointer
Contains an internal pointer to the head position in the circular stream buffer.

tailPointer
Contains an internal pointer to the tail position in the circular stream buffer.

currentState
Contains the current state of the circular stream buffer.

• ASSIGNED_STREAM_BUFFER – stream buffer is in use by a play operation and
therefore is not available to any other play operation at this time

• UNASSIGNED_STREAM_BUFFER – stream buffer is free to be used by a play
operation at this time

numberOfBufferUnderruns
Represents the number of times the host library tries to read from the circular stream buffer
and finds that there is not enough data to satisfy that read request to send the data to the
firmware. The size of the read request for the host library is determined by the transfer buffer
size of the player.

538 Voice API Library Reference — June 2005

DX_STREAMSTAT — status of stream buffer

numberOfBufferOverruns
Represents the number of times the application tries to write the data into the buffer beyond the
circular stream buffer limit.

BufferSize
Contains the total size of the circular stream buffer.

spaceAvailable
Specifies the space, in bytes, available in the circular stream buffer.

highWaterMark
Specifies the high point in the circular stream buffer used to signal an event.

lowWaterMark
Specifies the low point in the circular stream buffer used to signal an event.

Example

See dx_GetStreamInfo() for an example of how to use the DX_STREAMSTAT structure.

Voice API Library Reference — June 2005 539

speed and volume adjustment condition block — DX_SVCB

DX_SVCB

speed and volume adjustment condition block
typedef struct DX_SVCB {
 unsigned short type; /* Bit Mask */
 short adjsize; /* Adjustment Size */
 unsigned char digit; /* ASCII digit value that causes the action */
 unsigned char digtype; /* Digit Type (e.g., 0 = DTMF) */
} DX_SVCB;

Description

The DX_SVCB data structure contains parameters for the speed and volume adjustment condition
block.

This structure is used by dx_setsvcond() function to specify a play adjustment condition that is
added to the internal speed and volume condition table (SVCT). The play adjustment conditions in
the SVCT are used to adjust speed or volume automatically at the beginning of playback or in
response to digits entered by the user during playback.

The dx_setsvcond(), dx_addspddig(), and dx_addvoldig() functions can be used to add play
adjustment conditions to the SVCT. These functions tie a speed or volume adjustment to an
external event, such as a DTMF digit.

You cannot change an existing speed or volume adjustment condition in the SVCT without using
the dx_clrsvcond() function to clear the SVCT of all conditions and then adding a new set of
adjustment conditions to the SVCT.

This structure is used to specify the following:

• table type (speed modification table, volume modification table)

• adjustment type (step, index, toggle, pause/resume play)

• adjustment size or action

• adjustment condition (incoming digit, beginning of play)

• level/edge sensitivity for incoming digits

For more information on speed and volume modification tables as well as the pause and resume
play feature, see the Voice API Programming Guide.

Field Descriptions

The fields of the DX_SVCB data structure are described as follows:

type
Type of Playback Adjustment: specifies an OR combination of the following:

Adjustment Table Type (required): specifies one adjustment type, either speed or volume
• SV_SPEEDTBL – selects speed table to be modified
• SV_VOLUMETBL – selects volume table to be modified

Adjustment Method (required except for pause/resume play): specifies one adjustment
method (step, index, or toggle), which also determines how the adjsize value is used

540 Voice API Library Reference — June 2005

DX_SVCB — speed and volume adjustment condition block

• SV_ABSPOS – Index Mode: Sets adjsize field to specify an absolute adjustment position
(index) in the speed or volume modification table. The index value can be from -10 to
+10, based on position 0, the origin, or center, of the table.

Note: In the speed modification table, the default entries for index values -10 to -6 and +6 to
+10 are -128 which represent a null-entry. In the volume modification table, the
default entries for index values +6 to +10 are -128 which represent a null-entry. To
customize the table entries, use the dx_setsvmt() function.

• SV_RELCURPOS – Step Mode: Sets adjsize field to specify a number of steps by which
to adjust the speed or volume relative to the current position in the table. Specify a positive
number of steps to increase the current speed or volume, or a negative number of steps to
decrease it. For example, specify -2 to lower the speed (or volume) by two steps in the
speed (or volume) modification table.

• SV_TOGGLE – Toggle Mode: Sets adjsize field to specify one of the toggle defines,
which control the values for the current and last-modified speed and volume settings and
allow you to toggle the speed or volume between standard (the origin) and any setting
selected by the user. See the description of the adjsize field for the toggle defines.

Options: specifies one or no options from the following:
• SV_LEVEL – Level: Sets the digit adjustment condition to be level-sensitive.

On Linux, at the start of play, adjustments will be made according to adjustment condition
digits contained in the digit buffer. If SV_LEVEL is not specified, the digit adjustment
condition is edge-sensitive, and will wait for a new occurrence of the digit before play
adjusting.

On Windows, at the start of play, existing digits in the digit buffer will be checked to see if
they are level-sensitive play adjustment digits. If the first digit in the buffer is a level-
sensitive play adjustment digit, it will cause a play adjustment and be removed from the
buffer. Subsequent digits in the buffer will be treated the same way until the first
occurrence of any digit that is not an SV_LEVEL play adjustment digit. If SV_LEVEL is
not specified, the digit adjustment condition is edge-sensitive. Existing edge-sensitive
play adjustment digits in the digit buffer will not cause a play adjustment; but after the
playback starts, edge-sensitive digits will cause a play adjustment.

• SV_BEGINPLAY – Automatic: Sets the play adjustment to occur automatically at the
beginning of the next playback. This sets a speed or volume level without using a digit
condition. The digit and digtype fields are ignored.

• SV_PAUSE – Use with SV_SPEEDTBL to pause the play on detection of the specified
DTMF digit.

• SV_RESUME – Use with SV_SPEEDTBL to resume the play on detection of the
specified DTMF digit.

adjsize
Adjustment Size: Specifies the adjustment size. The valid values follow according to the
adjustment method:

For Index Mode (SV_ABSPOS in type field)
an integer from -10 to +10 representing an absolute position in the SVMT

For Step Mode (SV_RELCURPOS in type field)

Voice API Library Reference — June 2005 541

speed and volume adjustment condition block — DX_SVCB

a positive or negative integer representing the number of steps to adjust the level relative
to the current setting in the SVMT

For Toggle Mode (SV_TOGGLE in type field)

On DM3 boards, the following are valid values:
• SV_TOGORIGIN – sets the digit to toggle between the origin and the last modified speed

or volume level (for example, between the -5 and 0 levels)
• SV_CURORIGIN – resets the current speed or volume level to the origin (same effect as

SV_ABSPOS with adjsize 0)

On Springware boards, the following are valid values:
• SV_TOGORIGIN – sets the digit to toggle between the origin and the last modified

speed or volume level (for example, between the -5 and 0 levels)
• SV_CURORIGIN – resets the current speed or volume level to the origin (same effect as

SV_ABSPOS with adjsize 0)
• SV_CURLASTMOD – sets the current speed or volume to the last modified speed

volume level (swaps the current and last-modified settings)
• SV_RESETORIG – resets the current speed or volume to the origin and the last modified

speed or volume to the origin

digit
Digit: Specifies an ASCII digit that will adjust the play.

Values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, #, *

digtype
Digit Type: Specifies the type of digit:

• DG_DTMF – DTMF digits

Example

This example illustrates how to set a DTMF digit to adjust playback volume. The following
DX_SVCB structure is set to decrease the volume by one step whenever the DTMF digit 1 is
detected:

svcb[0].type = SV_VOLUMETBL | SV_RELCURPOS;
svcb[0].adjsize = - 1;
svcb[0].digit = '1';
svcb[0].digtype = DG_DTMF;

This example illustrates how to set a DTMF digit to adjust playback speed. The following
DX_SVCB structure will set the playback speed to the value in the speed modification table
position 5 whenever the DTMF digit 2 is detected:

svcb[0].type = SV_SPEEDTBL | SV_ABSPOS;
svcb[0].adjsize = 5;
svcb[0].digit = '2';
svcb[0].digtype = DG_DTMF;

This example illustrates how to set a DTMF digit to pause and resume play.

svcb[0].type = SV_SPEEDTBL | SV_PAUSE;
svcb[0].adjsize = 0;
svcb[0].digit = '2';
svcb[0].digtype = DG_DTMF;

542 Voice API Library Reference — June 2005

DX_SVCB — speed and volume adjustment condition block

svcb[0].type = SV_SPEEDTBL | SV_RESUME;
svcb[0].adjsize = 0;
svcb[0].digit = '5';
svcb[0].digtype = DG_DTMF;

For additional examples of how to use the DX_SVCB structure, see the Example section for
dx_setsvcond().

Voice API Library Reference — June 2005 543

speed and volume modification tables — DX_SVMT

DX_SVMT

speed and volume modification tables
typedef struct DX_SVMT{
 char decrease[10]; /* Ten Downward Steps */
 char origin; /* Regular Speed or Volume */
 char increase[10]; /* Ten Upward Steps */
} DX_SVMT;

Description

The DX_SVMT data structure contains parameters for the speed modification table and volume
modification table.

You can specify the rate of change for speed or volume adjustments by customizing the speed or
volume modification table (SVMT) per channel. The DX_SVMT structure has 21 entries that
represent different levels of speed or volume. This structure is used to set or retrieve the SVMT
values, using dx_setsvmt() or dx_getsvmt() respectively.

For detailed information on speed and volume modification tables, see the Voice API Programming
Guide.

Note: Although there are 21 entries available in the DX_SVMT structure, all do not have to be utilized
for changing speed or volume; the number of entries can be as small as you require. Ensure that
you insert -128 (80h) in any table entries that do not contain a speed or volume setting.

Field Descriptions

The fields of the DX_SVMT data structure are described as follows:

decrease[10]
Array that provides a maximum of 10 downward steps from the standard (normal) speed or
volume. The size of the steps is specified in this table. Specify the value -128 (80h) in any
entry you are not using. This represents a null-entry and end-of-table marker. Valid values are:

• Speed – Percentage decrease from the origin (which is set to 0). Values must be between -
1 and -50.

• Volume – Decibel decrease from the origin (which is set to 0). Values must be between -1
and -30.

origin
Specifies the standard play speed or volume. This is the original setting or starting point for
speed and volume control. Set the origin to 0 to assume normal playback speed/volume for the
standard (normal volume is -8 dB).

increase[10]
Array that provides a maximum of 10 upward steps from the standard (normal) speed or
volume. The size of the steps is specified in this table. Specify the value -128 (80h) in any
entry you are not using. This represents a null-entry and end-of-table marker. Valid values are:

• Speed – Percentage increase from the origin (which is set to 0). Values must be between 1
and 50.

• Volume – Decibel decrease from the origin (which is set to 0). Values must be between 1
and 10.

544 Voice API Library Reference — June 2005

DX_SVMT — speed and volume modification tables

If you use dx_setsvmt() to customize the DX_SVMT, the changes are saved permanently. You can
obtain the manufacturer’s original defaults by specifying SV_SETDEFAULT for the dx_setsvmt()
function.

Example

For an example of how to use the DX_SVMT structure, see the Example section for dx_setsvmt().

Voice API Library Reference — June 2005 545

user-defined input/output — DX_UIO

DX_UIO

user-defined input/output
typedef struct DX_UIO {
 int (*u_read) ();
 int (*u_write) ();
 int (*u_seek) ();
} DX_UIO;

Description

The DX_UIO data structure contains parameters for user-defined input/output.

This structure, returned by dx_setuio(), contains pointers to user-defined I/O functions for
accessing non-standard storage devices.

Field Descriptions

The fields of the DX_UIO data structure are described as follows:

u_read
points to the user-defined read() function, which returns an integer equal to the number of
bytes read or -1 for error

u_write
points to the user-defined write() function, which returns an integer equal to the number of
bytes written or -1 for error

u_seek
points to the user-defined lseek() function, which returns a long equal to the offset into the I/O
device where the read or write is to start or -1 for error

Example

For an example of how to use the DX_UIO structure, see the Example section for dx_setuio().

546 Voice API Library Reference — June 2005

DX_XPB — input/output transfer parameter block

DX_XPB

input/output transfer parameter block
typedef struct {
 USHORT wFileFormat; // file format
 USHORT wDataFormat; // audio data format
 ULONG nSamplesPerSec; // sampling rate
 ULONG wBitsPerSample; // bits per sample
} DX_XPB;

Description

The DX_XPB data structure contains parameters for the input/output transfer parameter block.

Use the I/O transfer parameter block (DX_XPB) data structure to specify the file format, data
format, sampling rate, and resolution for certain play and record functions, such as dx_playvox(),
dx_recvox(), dx_playiottdata(), dx_reciottdata(), and dx_recwav().

The dx_playwav() convenience function does not specify a DX_XPB structure because the WAVE
file header contains the necessary format information.

The G.726 and GSM voice coders are supported by the I/O functions that use a DX_XPB data
structure:

• The G.726 voice coder is supported by the dx_playiottdata(), dx_reciottdata(),
dx_playvox(), and dx_recvox() functions.

• The GSM voice coders are supported by the dx_playiottdata(), dx_reciottdata(), and
dx_recwav() functions.

On DM3 boards, the media load in use determines the voice coders supported on a board. For more
information on media loads, see the configuration guide for your product or product family.

Field Descriptions

The fields of the DX_XPB data structure are described as follows:

wFileFormat
Specifies the audio file format. Note that this field is ignored by the convenience functions
dx_recwav(), dx_recvox(), and dx_playvox().

• FILE_FORMAT_VOX – Dialogic VOX file format
• FILE_FORMAT_WAV – Microsoft WAVE file format

wDataFormat
Specifies the data format.

On DM3 boards, the following are valid data formats:
• DATA_FORMAT_DIALOGIC_ADPCM – 4-bit OKI ADPCM (Dialogic registered

format)
• DATA_FORMAT_MULAW or DATA_FORMAT_G711_MULAW – 8-bit mu-law

G.711 PCM
• DATA_FORMAT_ALAW or DATA_FORMAT_G711_ALAW – 8-bit A-law G.711 PCM
• DATA_FORMAT_PCM – 8-bit or 16-bit linear PCM
• DATA_FORMAT_TRUESPEECH – TrueSpeech coder
• DATA_FORMAT_G721 – G.721 coder

Voice API Library Reference — June 2005 547

input/output transfer parameter block — DX_XPB

• DATA_FORMAT_G726 – G.726 bit-exact coder
• DATA_FORMAT_GSM610_MICROSOFT – GSM 6.10 full-rate coder (Microsoft

Windows compatible format) (Microsoft Windows Media Recorder Audio Compression
Codec: GSM 6.10 Audio CODEC)

• DATA_FORMAT_GSM610_TIPHON – GSM 6.10 VOX full-rate coder (TIPHON
format)

• DATA_FORMAT_IMA_ADPCM – IMA ADPCM coder (IMA is an acronym for
Interactive Multimedia Association)

On Springware boards, the following are valid data formats:
• DATA_FORMAT_DIALOGIC_ADPCM – 4-bit OKI ADPCM (Dialogic registered

format)
• DATA_FORMAT_MULAW – 8-bit mu-law PCM
• DATA_FORMAT_ALAW – 8-bit A-law PCM
• DATA_FORMAT_PCM – 8-bit linear PCM
• DATA_FORMAT_G726 – G.726 bit-exact coder
• DATA_FORMAT_GSM610_MICROSOFT – GSM 6.10 full-rate coder (Microsoft

Windows compatible format) (Microsoft Windows Media Recorder Audio Compression
Codec: GSM 6.10 Audio CODEC)

• DATA_FORMAT_GSM610_TIPHON – GSM 6.10 VOX full-rate coder (TIPHON
format)

nSamplesPerSec
Specifies one of the following sampling rates:

• DRT_6KHZ – 6 kHz sampling rate
• DRT_8KHZ – 8 kHz sampling rate
• DRT_11KHZ – 11 kHz sampling rate. Note: 11 kHz OKI ADPCM is not supported.

wBitsPerSample
Specifies the number of bits per sample.

On DM3 boards, this number varies with the data format. For more information, refer to the
Examples section next.

On Springware boards, set to 8 for mu-law, A-law, and linear PCM. Set to 4 for ADPCM. For
G.726 and GSM, refer to the Examples section next.

Examples (DM3)

Table 18 through Table 25 provide examples of how to fill the DX_XPB structure for various voice
coders on DM3 boards.

Table 18. G.711 Voice Coder Support Fields (DM3)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX

wDataFormat DATA_FORMAT_G711_ALAW or
DATA_FORMAT_ALAW

DATA_FORMAT_G711_MULAW or
DATA_FORMAT_MULAW

548 Voice API Library Reference — June 2005

DX_XPB — input/output transfer parameter block

nSamplesPerSec DRT_6KHZ or
DRT_8KHZ

wBitsPerSample 8 48 or 64 kbps

Table 19. G.721 Voice Coder Support Fields (DM3)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX

wDataFormat DATA_FORMAT_G721

nSamplesPerSec DRT_8KHZ

wBitsPerSample 4 32 kbps

Table 20. Linear PCM Voice Coder Support Fields (DM3)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX

wDataFormat DATA_FORMAT_PCM

nSamplesPerSec DRT_8KHZ

DRT_11KHZ

wBitsPerSample 8 or 16 64, 128, 88 or 176
kbps

Table 21. OKI ADPCM Voice Coder Support Fields (DM3)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX

wDataFormat DATA_FORMAT_DIALOGIC_ADPCM

nSamplesPerSec DRT_6KHZ or
DRT_8KHZ

wBitsPerSample 4 24 or 32 kbps

Table 22. G.726 Voice Coder Support Fields (DM3)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX

wDataFormat DATA_FORMAT_G726

nSamplesPerSec DRT_8KHZ

wBitsPerSample 2, 3, 4, or 5 16, 24, 32, or 40 kbps

Table 18. G.711 Voice Coder Support Fields (DM3) (Continued)

DX_XPB Field DX_XPB Field Value Note

Voice API Library Reference — June 2005 549

input/output transfer parameter block — DX_XPB

Examples (Springware)

Table 26 and Table 27 provide examples of how to fill the DX_XPB structure for various voice
coders on Springware boards.

Table 23. GSM Voice Coder Support Fields (DM3)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_WAV

FILE_FORMAT_VOX

WAVE format
supported only with
DATA_FORMAT_GSM
610_MICROSOFT

wDataFormat DATA_FORMAT_GSM610_MICROSOFT

DATA_FORMAT_GSM610_TIPHON

nSamplesPerSec DRT_8KHZ

wBitsPerSample 0 13 kbps

Table 24. TrueSpeech Voice Coder Support Fields (DM3)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX

wDataFormat DATA_FORMAT_TRUESPEECH

nSamplesPerSec DRT_8KHZ

wBitsPerSample 0 8.5 kbps

Table 25. IMA ADPCM Voice Coder Support Fields (DM3)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX

wDataFormat DATA_FORMAT_IMA_ADPCM

nSamplesPerSec DRT_8KHZ

wBitsPerSample 4

Table 26. G.726 Voice Coder Support Fields (Springware)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_VOX

wDataFormat DATA_FORMAT_G726

nSamplesPerSec DRT_8KHZ

wBitsPerSample 4 32 kbps

550 Voice API Library Reference — June 2005

DX_XPB — input/output transfer parameter block

Table 27. GSM Voice Coder Support Fields (Springware)

DX_XPB Field DX_XPB Field Value Note

wFileFormat FILE_FORMAT_WAV

wDataFormat DATA_FORMAT_GSM610_MICROSOFT

DATA_FORMAT_GSM610_TIPHON

nSamplesPerSec DRT_8KHZ

wBitsPerSample 0 This field can be any
numeric value; it is
ignored. However, the
recommended setting
is 0.

13 kbps

Voice API Library Reference — June 2005 551

feature information — FEATURE_TABLE

FEATURE_TABLE

feature information
typedef struct feature_table {
 unsigned short ft_play;
 unsigned short ft_record;
 unsigned short ft_tone;
 unsigned short ft_e2p_brd_cfg;
 unsigned short ft_fax;
 unsigned short ft_front_end;
 unsigned short ft_misc;
 unsigned short ft_send;
 unsigned short ft_receive;
 unsigned int ft_play_ext;
 unsigned int ft_record_ext;
 unsigned short ft_device;
 unsigned short ft_rfu[8];
} FEATURE_TABLE;

Description

The FEATURE_TABLE data structure provides information about the features supported on a
device. This structure is used by the dx_getfeaturelist() function. On return from the function, the
FEATURE_TABLE structure contains the relevant information for the device.

Features reported by each member of the FEATURE_TABLE structure are defined in dxxxlib.h. To
determine what features are enabled on a device, “bitwise AND” the returned bitmask with the
defines (see the example code for dx_getfeaturelist()).

Field Descriptions (DM3 Boards)

The fields of the FEATURE_TABLE data structure are described as follows for DM3 boards:

ft_play
Contains a bitmask of the play features supported on the specified device.

• FT_ADPCM – supports ADPCM encoding
• FT_ALAW – supports A-law encoding
• FT_DRT6KHZ – supports 6 kHz sampling rate
• FT_DRT8KHZ – supports 8 kHz sampling rate
• FT_DRT11KHZ – supports 11 kHz sampling rate
• FT_ITU_G_726 – supports ITU-T G.726 encoding
• FT_LINEAR – supports linear PCM encoding
• FT_PCM – supports PCM encoding
• FT_RAW64KBIT – supports raw 64 Kbps
• FT_RESRVD1 – reserved
• FT_RESRVD2 – reserved
• FT_ULAW – supports mu-law encoding

ft_record
Contains a bitmask of the record features supported on the specified device.

• FT_ADPCM – supports ADPCM encoding
• FT_ALAW – supports A-law encoding
• FT_DRT6KHZ – supports 6 kHz sampling rate
• FT_DRT8KHZ – supports 8 kHz sampling rate
• FT_DRT11KHZ – supports 11 kHz sampling rate

552 Voice API Library Reference — June 2005

FEATURE_TABLE — feature information

• FT_ITU_G_726 – supports ITU-T G.726 encoding
• FT_LINEAR – supports linear PCM encoding
• FT_PCM – supports PCM encoding
• FT_RAW64KBIT – supports raw 64 Kbps
• FT_RESRVD1 – reserved
• FT_RESRVD2 – reserved
• FT_ULAW – supports mu-law encoding

ft_tone
Contains a bitmask of the tone features supported on the specified device.

• FT_GTDENABLED – supports global tone detection (GTD)
• FT_GTGENABLED – supports global tone generation (GTG)
• FT_CADENCE_TONE – supports cadenced tone generation

ft_e2p_brd_cfg
Contains a bitmask of the board configuration features supported on the specified device.

• FT_CONFERENCE – supports conferencing
• FT_CSP – supports continuous speech processing

ft_fax
Contains a bitmask of the board type and fax features supported on the specified device.

• FT_FAX – specifies that the device has a fax daughterboard
• FT_VFX40 – specifies that the device is a VFX/40 fax board
• FT_VFX40E – specifies that the device is a VFX/40E fax board
• FT_VFX40E_PLUS – specifies that the device is a VFX/40ESCplus or VFX/PCI board

On DM3 boards, if the ft_fax field contains the bitmask FT_FAX | FT_VFX40 | FT_VFX40E |
FT_VFX40E_PLUS, then this device supports fax.

ft_front_end
Contains a bitmask of the front-end features supported on the specified device.

On DM3 boards, one or more of the following may be returned:
• FT_ANALOG_CID – returned by the DMV160LP board
• FT_CAS – supports CAS
• FT_ISDN – supports ISDN
• FT_R2MF – supports R2/MF signaling
• FT_ROUTEABLE – supports flexible routing configuration

For fixed routing, the FT_ROUTEABLE is not set, so none of the other bits is set. For flexible
routing, the FT_ROUTEABLE bit is set, and the other three bits are set based on cluster
contents.

For example, if the ft_front_end bitmask is FT_ROUTEABLE | FT_ISDN | FT_CAS, then the
channel is capable of flexible routing and can also work with an ISDN or a CAS (T1) frontend.
In this example, R2/MF is missing, so the channel cannot work with a front-end that is R2/MF
(E1 CAS) capable. As another example, FT_ROUTEABLE | FT_ISDN | FT_CAS | FT_R2MF
indicates support for flexible routing plus all three front-end capabilities, including R2/MF.

For more information on flexible and fixed routing configurations, see the Voice API
Programming Guide.

Note: On DM3 analog boards, use dx_getctinfo() rather than dx_getfeaturelist() to return
information about the type of front end or network interface on the board. The
network interface information is contained in the ct_nettype field of CT_DEVINFO.

Voice API Library Reference — June 2005 553

feature information — FEATURE_TABLE

ft_misc
Contains a bitmask of miscellaneous features supported on the specified device.

• FT_CALLERID – supports caller ID and/or FSK

ft_send
Contains a bitmask of send fax features supported on the specified device.

• FT_SENDFAX_TXFILE_ASCII – indicates that ASCII file transfer is supported. If this
bit is turned off and the FT_FAX_EXT_TBL bit (in ft_fax) is turned on, then the device
supports DSP Fax (also known as Softfax).

• FT_TX14400 – supports fax transmission at 14.4 kbps
• FT_TXASCII – supports ASCII data fax transmission
• FT_TXFILEMR – supports MR encoded file format
• FT_TXFILEMMR – supports MMR encoded file format
• FT_TXLINEMR – supports MR encoded file format over the phone line
• FT_TXLINEMMR – supports MMR encoded file format over the phone line
• FT_TXECM – capable of fax line transmission with error correction mode
• FT_TXCCTFAX – supports the header “CCT FAX” when enabled in a download

parameter file

ft_receive
Contains a bitmask of receive fax features supported on the specified device.

• FT_RX14400 – supports fax reception at 14.4 kbps
• FT_RX12000 – supports fax reception at 12 kbps
• FT_RXASCII – supports ASCII data fax reception
• FT_RXFILEMR – supports MR encoded file format
• FT_RXFILEMMR – supports MMR encoded file format
• FT_RXLINEMR – supports MR encoded file format over the phone line
• FT_RXLINEMMR – supports MMR encoded file format over the phone line
• FT_RXECM – capable of fax line reception with error correction mode

ft_play_ext
Contains a bitmask of extended play features supported on the specified device.

• FT_TRUSPEECH – supports TrueSpeech decoding

ft_record_ext
Contains a bitmask of extended record features supported on the specified device.

• FT_TRUSPEECH – supports TrueSpeech encoding

ft_device
Reserved for future use.

ft_rfu
Reserved for future use.

Field Descriptions (Springware Boards)

The fields of the FEATURE_TABLE data structure are described as follows for Springware boards:

ft_play
Contains a bitmask of the play features supported on the specified device.

• FT_ADPCM – supports ADPCM encoding
• FT_ADSI – supports Analog Display Services Interface (ADSI)
• FT_ALAW – supports A-law encoding
• FT_DRT6KHZ – supports 6 kHz sampling rate

554 Voice API Library Reference — June 2005

FEATURE_TABLE — feature information

• FT_DRT8KHZ – supports 8 kHz sampling rate
• FT_DRT11KHZ – supports 11 kHz sampling rate
• FT_FSK_OH – supports on-hook ADSI 2-way frequency shift encoding (FSK)
• FT_G729A – supports G.729a encoding
• FT_ITU_G_726 – supports ITU-T G.726 encoding
• FT_LINEAR – supports linear PCM encoding
• FT_MSGSM – supports Microsoft GSM encoding
• FT_PCM – supports PCM encoding
• FT_RAW64KBIT – supports raw 64 Kbps
• FT_RESRVD1 – reserved
• FT_RESRVD2 – reserved
• FT_ULAW – supports mu-law encoding

ft_record
Contains a bitmask of the record features supported on the specified device.

• FT_ADPCM – supports ADPCM encoding
• FT_ALAW – supports A-law encoding
• FT_DRT6KHZ – supports 6 kHz sampling rate
• FT_DRT8KHZ – supports 8 kHz sampling rate
• FT_DRT11KHZ – supports 11 kHz sampling rate
• FT_FFT – supports Fast Fourier Transform (FFT) algorithm on records
• FT_FSK_OH – supports on-hook ADSI 2-way frequency shift encoding (FSK)
• FT_G729A – supports G.729a encoding
• FT_ITU_G_726 – supports ITU-T G.726 encoding
• FT_LINEAR – supports linear PCM encoding
• FT_MSGSM – supports Microsoft GSM encoding
• FT_PCM – supports PCM encoding
• FT_RAW64KBIT – supports raw 64 Kbps
• FT_RESRVD1 – reserved
• FT_RESRVD2 – reserved
• FT_ULAW – supports mu-law encoding

ft_tone
Contains a bitmask of the tone features supported on the specified device.

• FT_GTDENABLED – supports global tone detection (GTD)
• FT_GTGENABLED – supports global tone generation (GTG)
• FT_CADENCE_TONE – supports cadenced tone generation

ft_e2p_brd_cfg
Contains a bitmask of the board configuration features supported on the specified device.

• FT_CONFERENCE – supports conferencing
• FT_CSP – supports continuous speech processing
• FT_DPD – supports dial pulse detection
• FT_ECR – supports echo cancellation resource

ft_fax
Contains a bitmask of the board type and fax features supported on the specified device.

• FT_FAX – specifies that the device has a fax daughterboard
• FT_RS_SHARE – supports fax resource sharing
• FT_VFX40 – specifies that the device is a VFX/40 fax board
• FT_VFX40E – specifies that the device is a VFX/40E fax board
• FT_VFX40E_PLUS – specifies that the device is a VFX/40ESCplus or VFX/PCI board

Voice API Library Reference — June 2005 555

feature information — FEATURE_TABLE

• FT_FAX_EXT_TBL – specifies send fax and receive fax feature support

On Springware boards, if this bit is turned on and the FT_SENDFAX_TXFILE_ASCII bit (in
ft_send) is turned on, then the device supports DSP Fax (also known as Softfax).

ft_front_end
Contains a bitmask of the front-end features supported on the specified device.

• FT_ANALOG – supports analog interface
• FT_EARTH_RECALL – supports earth recall

ft_misc
Contains a bitmask of miscellaneous features supported on the specified device.

• FT_CALLERID – supports caller ID
• FT_CSPEXTRATSLOT – reserves extra transmit time slot for continuous speech

processing
• FT_GAIN_AND_LAW – TDM ASIC supports AGC and law conversion
• FT_PROMPTEDREC – supports prompted record (triggered by VAD)
• FT_RECFLOWCONTROL – supports flow control on recording channels
• FT_VAD – supports voice activity detection

ft_send
Contains a bitmask of send fax features supported on the specified device.

• FT_SENDFAX_TXFILE_ASCII – indicates that ASCII file transfer is supported. If this
bit is turned off and the FT_FAX_EXT_TBL bit (in ft_fax) is turned on, then the device
supports DSP Fax (also known as Softfax).

• FT_TX14400 – supports fax transmission at 14.4 kbps
• FT_TXASCII – supports ASCII data fax transmission
• FT_TXFILEMR – supports MR encoded file format
• FT_TXFILEMMR – supports MMR encoded file format
• FT_TXLINEMR – supports MR encoded file format over the phone line
• FT_TXLINEMMR – supports MMR encoded file format over the phone line
• FT_TXECM – capable of fax line transmission with error correction mode
• FT_TXCCTFAX – supports the header “CCT FAX” when enabled in a download

parameter file

ft_receive
Contains a bitmask of receive fax features supported on the specified device.

• FT_RX14400 – supports fax reception at 14.4 kbps
• FT_RX12000 – supports fax reception at 12 kbps
• FT_RXASCII – supports ASCII data fax reception
• FT_RXFILEMR – supports MR encoded file format
• FT_RXFILEMMR – supports MMR encoded file format
• FT_RXLINEMR – supports MR encoded file format over the phone line
• FT_RXLINEMMR – supports MMR encoded file format over the phone line
• FT_RXECM – capable of fax line reception with error correction mode

ft_play_ext
Not used on Springware boards. Contains a bitmask of extended play features supported on the
specified device.

ft_record_ext
Not used on Springware boards. Contains a bitmask of extended record features supported on
the specified device.

556 Voice API Library Reference — June 2005

FEATURE_TABLE — feature information

ft_device
Reserved for future use.

ft_rfu
Reserved for future use.

Example

See dx_getfeaturelist() for an example of how to use the FEATURE_TABLE structure.

Voice API Library Reference — June 2005 557

TDM bus time slot information — SC_TSINFO

SC_TSINFO

TDM bus time slot information
typedef struct {
 unsigned long sc_numts;
 long *sc_tsarrayp;
} SC_TSINFO;

Description

The SC_TSINFO data structure contains the number of time division multiplexing (TDM) bus time
slots associated with a particular device and a pointer to an array that holds the actual TDM bus
time slot number(s). The SC_TSINFO structure is used by TDM bus routing functions identified by
the suffix:

• _getxmitslot() to supply TDM bus time slot information about a device and fill the data
structure

• _listen() to use this time slot information to connect two devices.

The prefix for these functions identifies the type of device, such as ag_ (analog), dx_ (voice) and
fx_ (fax).

The TDM bus includes the CT Bus and SCbus. The CT Bus has 4096 bi-directional time slots,
while the SCbus has 1024 bi-directional time slots.

This structure is defined in dxxxlib.h.

Field Descriptions

The fields of the SC_TSINFO structure are described as follows:

sc_numts
initialized with the number of TDM bus time slots associated with a device, typically 1. In
Linux, set to 2 for two-channel transaction recording (using dx_recm() or dx_recmf()
functions).

sc_tsarrayp
initialized with a pointer to an array of long integers. The first element of this array contains a
valid TDM bus time slot number which is obtained by issuing a call to a _getxmitslot()
function. Valid values are from 0 up to 4095.

Example

See dx_getxmitslot() for an example of how to use the SC_TSINFO structure.

558 Voice API Library Reference — June 2005

TN_GEN — tone generation template

TN_GEN

tone generation template
typedef struct {
 unsigned short tg_dflag; /* Dual Tone - 1, Single Tone - 0 */
 unsigned short tg_freq1; /* Frequency for Tone 1 (HZ) */
 unsigned short tg_freq2; /* Frequency for Tone 2 (HZ) */
 short tg_ampl1; /* Amplitude for Tone 1 (dB) */
 short tg_ampl2; /* Amplitude for Tone 2 (dB) */
 short tg_dur; /* Duration of the Generated Tone */
 /* Units = 10 msec */
} TN_GEN;

Description

The TN_GEN data structure contains parameters for the tone generation template.

The tone generation template defines the frequency, amplitude, and duration of a single- or dual-
frequency tone to be played. You can use the convenience function dx_bldtngen() to set up the
structure for the user-defined tone. Use dx_playtone() to play the tone.

Field Descriptions

The fields of the TN_GEN data structure are described as follows:

tg_dflag
Tone Generation Dual Tone Flag: Flag indicating single- or dual-tone definition. If single, the
values in tg_freq2 and tg_ampl2 will be ignored.

• TN_SINGLE – single tone
• TN_DUAL – dual tone

tg_freq1
specifies the frequency for tone 1 in Hz (range: 200 to 2000 Hz)

tg_freq2
specifies the frequency for tone 2 in Hz (range: 200 to 2000 Hz)

tg_ampl1
specifies the amplitude for tone 1 in dB (range: -40 to 0 dB)

tg_ampl2
specifies the amplitude for tone 2 in dB (range: -40 to 0 dB)

tg_dur
specifies the duration of the tone in 10 msec units; -1 = infinite duration

Example

For an example of how to use the TN_GEN structure, see the Example section for dx_bldtngen().

Voice API Library Reference — June 2005 559

cadenced tone generation template — TN_GENCAD

TN_GENCAD

cadenced tone generation template
typedef struct {
 unsigned char cycles; /* Number of cycles */
 unsigned char numsegs; /* Number of tones */
 short offtime[4]; /* Array of off-times */
 /* one for each tone */
 TN_GEN tone[4]; /* Array of tone templates */
} TN_GENCAD;

Description

The TN_GENCAD data structure contains parameters for the cadenced tone generation template. It
defines a cadenced tone that can be generated by using the dx_playtoneEx() function.

TN_GENCAD defines a signal by specifying the repeating elements of the signal (the cycle) and
the number of desired repetitions. The cycle can contain up to 4 segments, each with its own tone
definition and on/off duration, which creates the signal pattern or cadence. Each segment consists
of a TN_GEN single- or dual-tone definition (frequency, amplitude, & duration) followed by a
corresponding off-time (silence duration) that is optional. The dx_bldtngen() convenience
function can be used to set up the TN_GEN components of the TN_GENCAD structure. The
segments are seamlessly concatenated in ascending order to generate the signal cycle.

TN_GENCAD is defined in dxxxlib.h.

Field Descriptions

The fields of the TN_GENCAD data structure are described as follows:

cycles
The cycles field specifies the number of times the cycle will be played.

On DM3 boards, valid values are 1 to 40 cycles.

On Springware boards, valid values are from 1 to 255 (255 = infinite repetitions).

numsegs
The numsegs field specifies the number of segments used in the cycle, from 1 to 4. A segment
consists of a tone definition in the tone[] array plus the corresponding off-time in the
offtime[] array. If you specify less than four segments, any data values in the unused segments
will be ignored (if you specify two segments, the data in segments 3 and 4 will be ignored).
The segments are seamlessly concatenated in ascending order to generate the cycle.

offtime[4]
The offtime[] array contains four elements, each specifying an off-time (silence duration) in
10 msec units that corresponds to a tone definition in the tone[] array. The offtime[] element
is ignored if the segment is not specified in numsegs.

The off-times are generated after the tone on-time (TN_GEN tg_dur), and the combination of
tg_dur and offtime produce the cadence for the segment. Set the offtime = 0 to specify no off-
time for the tone.

560 Voice API Library Reference — June 2005

TN_GENCAD — cadenced tone generation template

tone[4]
The tone[] array contains four elements that specify TN_GEN single- or dual-tone definitions
(frequency, amplitude, & duration). The tone[] element is ignored if the segment is not
specified in numsegs.

The dx_bldtngen() function can be used to set up the TN_GEN tone[] elements. At least one
tone definition, tone[0], is required for each segment used, and you must specify a valid
frequency (tg_freq1); otherwise an EDX_FREQGEN error is produced. See the TN_GEN
structure for more information.

Example

For examples of TN_GENCAD, see the standard call progress signals used with the
dx_playtoneEx() function.

Voice API Library Reference — June 2005 561

tone information — TONE_DATA

TONE_DATA

tone information
typedef struct {

 unsigned int structver; /* version of TONE_SEG struct */
 unsigned short tn_dflag; /* Dual Tone - 1, Single Tone - 0 */
 unsigned short tn1_min; /* Min. Frequency for Tone 1 (in Hz) */
 unsigned short tn1_max; /* Max. Frequency for Tone 1 (in Hz) */
 unsigned short tn2_min; /* Min. Frequency for Tone 2 (in Hz) */
 unsigned short tn2_max; /* Max. Frequency for Tone 2 (in Hz) */
 unsigned short tn_twinmin; /* Min. Frequency for twin of dual tone (in Hz) */
 unsigned short tn_twinmax; /* Max. Frequency for twin of dual tone (in Hz) */
 unsigned short tnon_min; /* Debounce Min. ON Time (in 10msec units) */
 unsigned short tnon_max; /* Debounce Max. ON Time (in 10msec units) */
 unsigned short tnoff_min; /* Debounce Min. OFF Time (in 10msec units) */
 unsigned short tnoff_max; /* Debounce Max. OFF Time (in 10msec units) */
} TONE_SEG;

typedef struct {
 unsigned int structver; /* version of TONE_DATA struct */
 unsigned short tn_rep_cnt; /* Debounce Rep Count */
 unsigned int numofseg; /* Number of segments for a MultiSegment Tone */
 TONE_SEG toneseg[6];
} TONE_DATA

Description

The TONE_DATA data structure contains tone information for a specific call progress tone. This
structure is used by the dx_createtone() function. This structure is defined in dxxxlib.h. For
information on call progress analysis and default tone definitions, see the Voice API Programming
Guide.

The TONE_DATA structure contains a nested array of TONE_SEG substructures. A maximum of
six TONE_SEG substructures can be specified.

Note: Be sure to set all unused fields in the structure to 0 before using this structure in a function call.
This action prevents possible corruption of data in the allocated memory space.

Field Descriptions

The fields of the TONE_DATA structure are described as follows:

TONE_SEG.structver
Reserved for future use, to specify the version of the structure. Set to 0.

TONE_SEG.tn_dflag
Specifies whether the tone is dual tone or single tone. Values are 1 for dual tone and 0 for
single tone.

TONE_SEG.tn1_min
Specifies the minimum frequency in Hz for tone 1.

TONE_SEG.tn1_max
Specifies the maximum frequency in Hz for tone 1.

TONE_SEG.tn2_min
Specifies the minimum frequency in Hz for tone 2.

562 Voice API Library Reference — June 2005

TONE_DATA — tone information

TONE_SEG.tn2_max
Specifies the maximum frequency in Hz for tone 2.

TONE_SEG.tn_twinmin
Specifies the minimum frequency in Hz of the single tone proxy for the dual tone.

TONE_SEG.tn_twinmax
Specifies the maximum frequency in Hz of the single tone proxy for the dual tone.

TONE_SEG.tnon_min
Specifies the debounce minimum ON time in 10 msec units.

TONE_SEG.tnon_max
Specifies the debounce maximum ON time in 10 msec units.

TONE_SEG.tnoff_min
Specifies the debounce minimum OFF time in 10 msec units.

TONE_SEG.tnoff_max
Specifies the debounce maximum OFF time in 10 msec units.

TONE_DATA.structver
Reserved for future use, to specify the version of the structure. Set to 0.

TONE_DATA.tn_rep_cnt
Specifies the debounce repetition count.

TONE_DATA.numofseg
Specifies the number of segments for a multi-segment tone.

Example

For an example of this structure, see the Example code for dx_createtone().

Voice API Library Reference — June 2005 563

55.Error Codes

This chapter lists the error codes that may be returned for the voice library functions.

If a library function fails, use the standard attribute function ATDV_LASTERR() to return the
error code and ATDV_ERRMSGP() to return the error description. These functions are described
in the Standard Runtime Library API Library Reference.

The following error codes can be returned by the ATDV_ERRMSGP() function:

EDX_AMPLGEN
Invalid amplitude value in tone generation template

EDX_ASCII
Invalid ASCII value in tone template description

EDX_BADDEV
Device descriptor error

EDX_BADIOTT
DX_IOTT structure error

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_BADREGVALUE
Unable to locate value in registry

EDX_BADTPT
DV_TPT structure error

EDX_BADTSFDATA
Tone Set File (TSF) data was not consolidated

EDX_BADTSFFILE
Filename doesn’t exist, or not valid TSF

EDX_BADWAVEFILE
Bad/unsupported WAVE file

EDX_BUSY
Device or channel is busy; or invalid state

EDX_CADENCE
Invalid cadence component values in tone template description

EDX_CHANNUM
Invalid channel number specified

564 Voice API Library Reference — June 2005

Error Codes

EDX_CLIDBLK
Caller ID is blocked, or private, or withheld (other information may be available using
dx_gtextcallid())

EDX_CLIDINFO
Caller ID information is not sent or caller ID information invalid

EDX_CLIDOOA
Caller ID is out of area (other information may be available using dx_gtextcallid())

EDX_DIGTYPE
Invalid dg_type value in user digit buffer, DV_DIGIT data structure

EDX_FEATUREDISABLED
Feature disabled

EDX_FLAGGEN
Invalid tg_dflag field in tone generation template, TN_GEN data structure

EDX_FREQDET
Invalid frequency component values in tone template description

EDX_FREQGEN
Invalid frequency component in tone generation template, TN_GEN data structure

EDX_FWERROR
Firmware error

EDX_IDLE
Device is idle

EDX_INVSUBCMD
Invalid sub-command number

EDX_MAXTMPLT
Maximum number of user-defined tones for the board

EDX_MSGSTATUS
Invalid message status setting

EDX_NOERROR
No error

EDX_NONZEROSIZE
Reset to default was requested but size was non-zero

EDX_NOSUPPORT
Data format is not supported or function parameter is not supported on a DM3 board

EDX_NOTENOUGHBRDMEM
Error when downloading a cached prompt from multiple sources: total length of data to be
downloaded exceeds the available on-board memory

EDX_NOTIMP
Function is not implemented, such as when a function is not supported on a DM3 board

EDX_SH_BADCMD
Command is not supported in current bus configuration

Voice API Library Reference — June 2005 565

Error Codes

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler library index number

EDX_SH_BADCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid time slot channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LCLTSCNCT
Channel is already connected to TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SPDVOL
Must specify either SV_SPEEDTBL or SV_VOLUMETBL

EDX_SVADJBLKS
Invalid number of speed/volume adjustment blocks

EDX_SVMTRANGE
Entry out of range in speed/volume modification table, SV_SVMT

EDX_SVMTSIZE
Invalid table size specified

EDX_SYSTEM
Error from operating system. In Windows, use dx_fileerrno() to obtain error value. In Linux,
check the global variable errno for more information.

EDX_TIMEOUT
I/O function timed out

EDX_TONEID
Invalid tone template ID

EDX_TNMSGSTATUS
Invalid message status setting

566 Voice API Library Reference — June 2005

Error Codes

EDX_UNSUPPORTED
Function is not supported

EDX_WTRINGSTOP
Wait-for-Rings stopped by user

EDX_XBPARM
Bad XPB structure

Voice API Library Reference — June 2005 567

66.Supplementary Reference
Information

This chapter provides reference information on the following topics:

• DTMF and MF Tone Specifications . 567

• DTMF and MF Detection Errors . 568

6.1 DTMF and MF Tone Specifications

Table 28 provides information on DTMF specifications. Table 29 provides information on MF tone
specifications.

Table 28. DTMF Tone Specifications

Code
Tone Pair

Frequencies (Hz)
Default Length

(msec)

1 697, 1209 100

2 697, 1336 100

3 697, 1477 100

4 770, 1209 100

5 770, 1336 100

6 770, 1477 100

7 852, 1209 100

8 852, 1336 100

9 852, 1477 100

0 941, 1336 100

* 941, 1209 100

941, 1477 100

a 697, 1633 100

b 770, 1633 100

c 852, 1633 100

d 941, 1633 100

568 Voice API Library Reference — June 2005

Supplementary Reference Information

6.2 DTMF and MF Detection Errors

Some MF digits use approximately the same frequencies as DTMF digits (see Table 28 and
Table 29). Because there is a frequency overlap, if you have the incorrect kind of detection enabled,
MF digits may be mistaken for DTMF digits, and vice versa. To ensure that digits are correctly
detected, only one kind of detection should be enabled at any time. See the dx_setdigtyp()
function description for information on setting the type of digit detection.

Digit detection accuracy depends on two things:

• the digit sent

• the kind of detection enabled when the digit is detected

Table 30 and Table 31 show the digits that are detected when each type of detection is enabled.
Table 30 shows which digits are detected when MF digits are sent. Table 31 shows which digits are
detected when DTMF digits are sent.

Table 29. MF Tone Specifications (CCITT R1 Tone Plan)

Code
Tone Pair

Frequencies (Hz)
Default Length

(msec)
Name

1 700, 900 60 1

2 700, 1100 60 2

3 900, 1100 60 3

4 700, 1300 60 4

5 900, 1300 60 5

6 1100, 1300 60 6

7 700, 1500 60 7

8 900, 1500 60 8

9 1100, 1500 60 9

0 1300, 1500 60 0

* 1100, 1700 60 KP

1500, 1700 60 ST

a 900, 1700 60 ST1

b 1300, 1700 60 ST2

c 700, 1700 60 ST3

* The standard length of a KP tone is 100 msec

Voice API Library Reference — June 2005 569

Supplementary Reference Information

Table 30. Detecting MF Digits

MF Digit
Sent

String Received

Only MF
Detection Enabled

Only DTMF
Detection Enabled

MF and DTMF
Detection Enabled

1 1 1

2 2 2

3 3 3

4 4 2† 4,2†

5 5 5

6 6 6

7 7 3† 7,3†

8 8 8

9 9 9

0 0 0

* * *

#

a a a

b b b

c c c

† = detection error

Table 31. Detecting DTMF Digits

DTMF
Digit Sent

String Received

Only DTMF
Detection Enabled

Only MF
Detection Enabled

DTMF and MF
Detection Enabled

1 1 1

2 2 4† 4,2†

3 3 7† 7,3†

4 4 4

5 5 4† 4,5†

6 6 7† 7,6†

7 7 7

8 8 5† 5,8†

9 9 8† 8,9†

0 0 5† 5,0†

* * *

† = detection error

570 Voice API Library Reference — June 2005

Supplementary Reference Information

8† 8,#†

a a c† c,a†

b b c† c,b†

c c a† a,c†

d d a† a,d†

Table 31. Detecting DTMF Digits (Continued)

DTMF
Digit Sent

String Received

Only DTMF
Detection Enabled

Only MF
Detection Enabled

DTMF and MF
Detection Enabled

† = detection error

Voice API Library Reference — June 2005 571

Glossary

A-law: Pulse Code Modulation (PCM) algorithm used in digitizing telephone audio signals in E1 areas. Contrast
with mu-law.

ADPCM (Adaptive Differential Pulse Code Modulation): A sophisticated compression algorithm for
digitizing audio that stores the differences between successive samples rather than the absolute value of each
sample. This method of digitization reduces storage requirements from 64 kilobits/second to as low as 24
kilobits/second.

ADSI (Analog Display Services Interface): A Telcordia Technologies (previously Bellcore) standard
defining a protocol for the flow of information between a switch, a server, a voice mail system, a service bureau, or
a similar device and a subscriber’s telephone, PC, data terminal, or other communicating device with a screen.
ADSI adds words to a system that usually only uses touch tones. It displays information on a screen attached to a
phone. ADSI’s signaling is DTMF and standard Bell 202 modem signals from the service to a 202-modem-
equipped phone.

AGC (Automatic Gain Control): An electronic circuit used to maintain the audio signal volume at a constant
level. AGC maintains nearly constant gain during voice signals, thereby avoiding distortion, and optimizes the
perceptual quality of voice signals by using a new method to process silence intervals (background noise).

analog: 1. A method of telephony transmission in which the signals from the source (for example, speech in a
human conversation) are converted into an electrical signal that varies continuously over a range of amplitude
values analogous to the original signals. 2. Not digital signaling. 3. Used to refer to applications that use loop start
signaling.

ANI (Automatic Number Identification): Identifies the phone number that is calling. Digits may arrive in
analog or digital form.

API (Application Programming Interface): A set of standard software interrupts, calls, and data formats that
application programs use to initiate contact with network services, mainframe communications programs, or other
program-to-program communications.

ASCIIZ string: A null-terminated string of ASCII characters.

asynchronous function: A function that allows program execution to continue without waiting for a task to
complete. To implement an asynchronous function, an application-defined event handler must be enabled to trap
and process the completed event. Contrast with synchronous function.

bit mask: A pattern which selects or ignores specific bits in a bit-mapped control or status field.

bitmap: An entity of data (byte or word) in which individual bits contain independent control or status
information.

board device: A board-level object that can be manipulated by a physical library. Board devices can be real
physical boards, such as a D/41JCT-LS, or virtual boards. See virtual board.

572 Voice API Library Reference — June 2005

board locator technology (BLT): Operates in conjunction with a rotary switch to determine and set non-
conflicting slot and IRQ interrupt-level parameters, thus eliminating the need to set confusing jumpers or DIP
switches.

buffer: A block of memory or temporary storage device that holds data until it can be processed. It is used to
compensate for the difference in the rate of the flow of information (or time occurrence of events) when
transmitting data from one device to another.

bus: An electronic path that allows communication between multiple points or devices in a system.

busy device: A device that has one of the following characteristics: is stopped, being configured, has a
multitasking or non-multitasking function active on it, or I/O function active on it.

cadence: A pattern of tones and silence intervals generated by a given audio signal. The pattern can be classified
as a single ring, a double ring, or a busy signal.

cadence detection: A voice driver feature that analyzes the audio signal on the line to detect a repeating pattern
of sound and silence.

call progress analysis: A process used to automatically determine what happens after an outgoing call is
dialed. On DM3 boards, a further distinction is made. Call progress refers to activity that occurs before a call is
connected (pre-connect), such as busy or ringback. Call analysis refers to activity that occurs after a call is
connected (post-connect), such as voice detection and answering machine detection. The term call progress analysis
is used to encompass both call progress and call analysis.

call status transition event functions: A class of functions that set and monitor events on devices.

caller ID: calling party identification information.

CCITT (Comite Consultatif Internationale de Telegraphique et Telephonique): One of the four
permanent parts of the International Telecommunications Union, a United Nations agency based in Geneva. The
CCITT is divided into three sections: 1. Study Groups set up standards for telecommunications equipment, systems,
networks, and services. 2. Plan Committees develop general plans for the evolution of networks and services. 3.
Specialized Autonomous Groups produce handbooks, strategies, and case studies to support developing countries.

channel: 1. When used in reference to an Intel analog expansion board, an audio path, or the activity happening
on that audio path (for example, when you say the channel goes off-hook). 2. When used in reference to an Intel®
digital expansion board, a data path, or the activity happening on that data path. 3. When used in reference to a bus,
an electrical circuit carrying control information and data.

channel device: A channel-level object that can be manipulated by a physical library, such as an individual
telephone line connection. A channel is also a subdevice of a board. See also subdevice.

CO (Central Office): A local phone network exchange, the telephone company fadcility where subscriber lines
are linked, through switches, to other subscriber lines (including local and long distance lines). The term “Central
Office” is used in North America. The rest of the world calls it “PTT”, for Post, Telephone, and Telegraph.

computer telephony (CT): The extension of computer-based intelligence and processing over the telephone
network to a telephone. Sometimes called computer-telephony integration (CTI), it lets you interact with computer
databases or applications from a telephone, and enables computer-based applications to access the telephone

Voice API Library Reference — June 2005 573

network. Computer telephony technology supports applications such as: automatic call processing; automatic
speech recognition; text-to-speech conversion for information-on-demand; call switching and conferencing; unified
messaging, which lets you access or transmit voice, fax, and e-mail messages from a single point; voice mail and
voice messaging; fax systems, including fax broadcasting, fax mailboxes, fax-on-demand, and fax gateways;
transaction processing, such as Audiotex and Pay-Per-Call information systems; and call centers handling a large
number of agents or telephone operators for processing requests for products, services, or information.

configuration file: An unformatted ASCII file that stores device initialization information for an application.

convenience function: A class of functions that simplify application writing, sometimes by calling other,
lower-level API functions.

CPE: customer premise equipment.

CT Bus: Computer Telephony bus. A time division multiplexing communications bus that provides 4096 time
slots for transmission of digital information between CT Bus products. See TDM bus.

data structure: Programming term for a data element consisting of fields, where each field may have a different
type definition and length. A group of data structure elements usually share a common purpose or functionality.

DCM: configuration manager. On Windows only, a utility with a graphical user interface (GUI) that enables you to
add new boards to your system, start and stop system service, and work with board configuration data.

debouncing: Eliminating false signal detection by filtering out rapid signal changes. Any detected signal change
must last for the minimum duration as specified by the debounce parameters before the signal is considered valid.
Also known as deglitching.

deglitching: See debouncing.

device: A computer peripheral or component controlled through a software device driver. An Intel voice and/or
network interface expansion board is considered a physical board containing one or more logical board devices, and
each channel or time slot on the board is a device.

device channel: An Intel voice data path that processes one incoming or outgoing call at a time (equivalent to
the terminal equipment terminating a phone line).

device driver: Software that acts as an interface between an application and hardware devices.

device handle: Numerical reference to a device, obtained when a device is opened using xx_open(), where xx is
the prefix defining the device to be opened. The device handle is used for all operations on that device.

device name: Literal reference to a device, used to gain access to the device via an xx_open() function, where
xx is the prefix defining the device to be opened.

digitize: The process of converting an analog waveform into a digital data set.

DM3: Refers to Intel mediastream processing architecture, which is open, layered, and flexible, encompassing
hardware as well as software components. A whole set of products from Intel are built on the Intel® DM3™
architecture. Contrast with Springware, which is earlier-generation architecture.

574 Voice API Library Reference — June 2005

download: The process where board level program instructions and routines are loaded during board
initialization to a reserved section of shared RAM.

downloadable Springware firmware: Software features loaded to Intel voice hardware. Features include
voice recording and playback, enhanced voice coding, tone detection, tone generation, dialing, call progress
analysis, voice detection, answering machine detection, speed control, volume control, ADSI support, automatic
gain control, and silence detection.

driver: A software module which provides a defined interface between an application program and the firmware
interface.

DSP (Digital Signal Processor): A specialized microprocessor designed to perform speedy and complex
operations on digital signals.

DTMF (Dual-Tone Multi-Frequency): Push-button or touch-tone dialing based on transmitting a high- and a
low-frequency tone to identify each digit on a telephone keypad.

E1: A CEPT digital telephony format devised by the CCITT, used in Europe and other countries around the world.
A digital transmission channel that carries data at the rate of 2.048 Mbps (DS-1 level). CEPT stands for the
Conference of European Postal and Telecommunication Administrations. Contrast with T1.

echo: The component of an analog device’s receive signal reflected into the analog device’s transmit signal.

echo cancellation: Removal of echo from an echo-carrying signal.

emulated device: A virtual device whose software interface mimics the interface of a particular physical device,
such as a D/4x boards that is emulated by a D/12x board. On a functional level, a D/12x board is perceived by an
application as three D/4x boards. Contrast with physical device.

event: An unsolicited or asynchronous message from a hardware device to an operating system, application, or
driver. Events are generally attention-getting messages, allowing a process to know when a task is complete or
when an external event occurs.

event handler: A portion of an application program designed to trap and control processing of device-specific
events.

extended attribute functions: A class of functions that take one input parameter (a valid Intel device handle)
and return device-specific information. For instance, a voice device’s extended attribute function returns
information specific to the voice devices. Extended attribute function names are case-sensitive and must be in
capital letters. See also standard runtime library (SRL).

firmware: A set of program instructions that reside on an expansion board.

firmware load file: The firmware file that is downloaded to a voice board.

flash: A signal generated by a momentary on-hook condition. This signal is used by the voice hardware to alert a
telephone switch that special instructions will follow. It usually initiates a call transfer. See also hook state.

frequency shift keying (FSK): A frequency modulation technique used to send digital data over voice band
telephone lines.

Voice API Library Reference — June 2005 575

G.726: An international standard for encoding 8 kHz sampled audio signals for transmission over 16, 24, 32 and
40 kbps channels. The G.726 standard specifies an adaptive differential pulse code modulation (ADPCM) system
for coding and decoding samples.

GSM (Global System for Mobile Communications): A digital cellular phone technology based on time
division multiple access (TDMA) used in Europe, Japan, Australia and elsewhere around the world.

hook state: A general term for the current line status of the channel: either on-hook or off-hook. A telephone
station is said to be on-hook when the conductor loop between the station and the switch is open and no current is
flowing. When the loop is closed and current is flowing, the station is off-hook. These terms are derived from the
position of the old fashioned telephone set receiver in relation to the mounting hook provided for it.

hook switch: The circuitry that controls the on-hook and off-hook state of the voice device telephone interface.

I/O: Input-Output

idle device: A device that has no functions active on it.

in-band: The use of robbed-bit signaling (T1 systems only) on the network. The signaling for a particular channel
or time slot is carried within the voice samples for that time slot, thus within the 64 kbps (kilobits per second) voice
bandwidth.

in-band signaling: (1) In an analog telephony circuit, in-band refers to signaling that occupies the same
transmission path and frequency band used to transmit voice tones. (2) In digital telephony, in-band means
signaling transmitted within an 8-bit voice sample or time slot, as in T1 “robbed-bit” signaling.

kernel: A set of programs in an operating system that implement the system’s functions.

loop: The physical circuit between the telephone switch and the voice processing board.

loop current: The current that flows through the circuit from the telephone switch when the voice device is off-
hook.

loop current detection: A voice driver feature that returns a connect after detecting a loop current drop.

loop start: In an analog environment, an electrical circuit consisting of two wires (or leads) called tip and ring,
which are the two conductors of a telephone cable pair. The CO provides voltage (called “talk battery” or just
“battery”) to power the line. When the circuit is complete, this voltage produces a current called loop current. The
circuit provides a method of starting (seizing) a telephone line or trunk by sending a supervisory signal (going
off-hook) to the CO.

loop-start interfaces: Devices, such as an analog telephones, that receive an analog electric current. For
example, taking the receiver off-hook closes the current loop and initiates the calling process.

mu-law: (1) Pulse Code Modulation (PCM) algorithm used in digitizing telephone audio signals in T1 areas. (2)
The PCM coding and companding standard used in Japan and North America. See also A-law.

off-hook: The state of a telephone station when the conductor loop between the station and the switch is closed
and current is flowing. When a telephone handset is lifted from its cradle (or an equivalent condition occurs), the
telephone line state is said to be off-hook. See also hook state.

576 Voice API Library Reference — June 2005

on-hook: Condition or state of a telephone line when a handset on the line is returned to its cradle (or an
equivalent condition occurs). See also hook state.

PBX: Private Branch Exchange. A small version of the phone company’s larger central switching office. A local
premises or campus switch.

PCM (Pulse Code Modulation): A technique used in DSP voice boards for reducing voice data storage
requirements. Intel supports either mu-law PCM, which is used in North America and Japan, or A-law PCM, which
is used in the rest of the world.

physical device: A device that is an actual piece of hardware, such as a D/4x board; not an emulated device. See
emulated device.

polling: The process of repeatedly checking the status of a resource to determine when state changes occur.

PSTN (or STN): Public (or Private) Switched Telephony Network

resource: Functionality (for example, voice-store-and-forward) that can be assigned to a call. Resources are
shared when functionality is selectively assigned to a call and may be shared among multiple calls. Resources are
dedicated when functionality is fixed to the one call.

resource board: An Intel expansion board that needs a network or switching interface to provide a technology
for processing telecommunications data in different forms, such as voice store-and-forward, speech recognition,
fax, and text-to-speech.

RFU: reserved for future use

ring detect: The act of sensing that an incoming call is present by determining that the telephone switch is
providing a ringing signal to the voice board.

robbed-bit signaling: The type of signaling protocol implemented in areas using the T1 telephony standard. In
robbed-bit signaling, signaling information is carried in-band, within the 8-bit voice samples. These bits are later
stripped away, or “robbed,” to produce the signaling information for each of the 24 time slots.

route: Assign a resource to a time slot.

sampling rate: Frequency at which a digitizer quantizes the analog voice signal.

SCbus (Signal Computing Bus): A hardwired connection between Switch Handlers on SCbus-based
products. SCbus is a third generation TDM (Time Division Multiplexed) resource sharing bus that allows
information to be transmitted and received among resources over 1024 time slots.

SCR: See silence compressed record.

signaling insertion: The signaling information (on hook/off hook) associated with each channel is digitized,
inserted into the bit stream of each time slot by the device driver, and transmitted across the bus to another resource
device. The network interface device generates the outgoing signaling information.

silence compressed record: A recording that eliminates or limits the amount of silence in the recording
without dropping the beginning of words that activate recording.

Voice API Library Reference — June 2005 577

silence threshold: The level that sets whether incoming data to the voice board is recognized as silence or non-
silence.

SIT: (1) Standard Information Tones: tones sent out by a central office to indicate that the dialed call has been
answered by the distant phone. (2) Special Information Tones: detection of a SIT sequence indicates an operator
intercept or other problem in completing the call.

solicited event: An expected event. It is specified using one of the device library’s asynchronous functions.

Springware: Software algorithms built into the downloadable firmware that provide the voice processing features
available on older-generation Intel® Dialogic® voice boards. The term Springware is also used to refer to a whole
set of boards from Intel built using this architecture. Contrast with DM3, which is a newer-generation architecture.

SRL: See Standard Runtime Library.

standard attribute functions: Class of functions that take one input parameter (a valid device handle) and
return generic information about the device. For instance, standard attribute functions return IRQ and error
information for all device types. Standard attribute function names are case-sensitive and must be in capital letters.
Standard attribute functions for Intel telecom devices are contained in the SRL. See standard runtime library (SRL).

standard runtime library (SRL): An Intel software resource containing event management and standard
attribute functions and data structures used by Intel telecom devices.

station device: Any analog telephone or telephony device (such as a telephone or headset) that uses a loop-start
interface and connects to a station interface board.

string: An array of ASCII characters.

subdevice: Any device that is a direct child of another device. Since “subdevice” describes a relationship
between devices, a subdevice can be a device that is a direct child of another subdevice, as a channel is a child of a
board.

synchronous function: Blocks program execution until a value is returned by the device. Also called a
blocking function. Contrast with asynchronous function.

system release: The software and user documentation provided by Intel that is required to develop applications.

T1: The digital telephony format used in North America and Japan. In T1, 24 voice conversations are time-division
multiplexed into a single digital data stream containing 24 time slots. Signaling data are carried “in-band”; as all
available time slots are used for conversations, signaling bits are substituted for voice bits in certain frames.
Hardware at the receiving end must use the “robbed-bit” technique for extracting signaling information. T1 carries
data at the rate of 1.544 Mbps (DS-1 level).

TDM (Time Division Multiplexing): A technique for transmitting multiple voice, data, or video signals
simultaneously over the same transmission medium. TDM is a digital technique that interleaves groups of bits from
each signal, one after another. Each group is assigned its own time slot and can be identified and extracted at the
receiving end. See also time slot.

TDMA (Time Division Multiple Access): A method of digital wireless communication using time division
multiplexing.

578 Voice API Library Reference — June 2005

TDM bus: Time division multiplexing bus. A resource sharing bus such as the SCbus or CT Bus that allows
information to be transmitted and received among resources over multiple data lines.

termination condition: An event or condition which, when present, causes a process to stop.

termination event: An event that is generated when an asynchronous function terminates. See also
asynchronous function.

time division multiplexing (TDM): See TDM (Time Division Multiplexing).

time slot: The smallest, switchable data unit on a TDM bus. A time slot consists of 8 consecutive bits of data.
One time slot is equivalent to a data path with a bandwidth of 64 kbps. In a digital telephony environment, a
normally continuous and individual communication (for example, someone speaking on a telephone) is (1)
digitized, (2) broken up into pieces consisting of a fixed number of bits, (3) combined with pieces of other
individual communications in a regularly repeating, timed sequence (multiplexed), and (4) transmitted serially over
a single telephone line. The process happens at such a fast rate that, once the pieces are sorted out and put back
together again at the receiving end, the speech is normal and continuous. Each individual, pieced-together
communication is called a time slot.

time slot assignment: The ability to route the digital information contained in a time slot to a specific analog or
digital channel on an expansion board. See also device channel.

transparent signaling: The mode in which a network interface device accepts signaling data from a resource
device transparently, or without modification. In transparent signaling, outgoing T1 signaling bits are generated by
a TDM bus resource device. In effect the resource device performs signaling to the network.

underrun: data is not being delivered to the board quickly enough which can result in loss of data and gaps in the
audio

virtual board: The device driver views a single physical voice board with more than four channels as multiple
emulated D/4x boards. These emulated boards are called virtual boards. For example, a D/120JCT-LS has 12
channels of voice processing and contains three virtual boards.

voice processing: The science of converting human voice into data that can be reconstructed and played back at
a later time.

voice system: A combination of expansion boards and software that lets you develop and run voice processing
applications.

wink: In T1 or E1 systems, a signaling bit transition from on to off, or off to on, and back again to the original
state. In T1 systems, the wink signal can be transmitted on either the A or B signaling bit. In E1 systems, the wink
signal can be transmitted on either the A, B, C, or D signaling bit. Using either system, the choice of signaling bit
and wink polarity (on-off-on or off-on-off hook) is configurable through DTI/xxx board download parameters.

Voice API Library Reference — June 2005 579

Index

A
ACLIP

message types 272

adjusting speed and volume
explicitly 139
using conditions 427
using digits 427

adjustment conditions
digits 428
maximum number 428
setting 427

ADPCM 309, 348

ADSI 22
functions 22
two-way 456

ADSI_XFERSTRUC data structure 502

ag_getctinfo() 38

ag_getxmitslot() 40

ag_listen() 43

ag_unlisten() 46

AGC 348

ai_close() 48

ai_getxmitslot() 50

ai_open() 52

A-law 309, 546

alowmax 525

analog devices
connecting to time slot 43
disconnecting from TDM bus 46
get time slot number 40
getting information about 38

Analog Display Services Interface (ADSI) 22

ansrdgl 526

answering machine detection 54

array 536

asynchronous operation
dialing 194
digit collection 233
playing 310
playing tone 327
recording 349, 365
setting hook state 410
stopping I/O functions 447
wink 468

ATDX_ functions 30

ATDX_ANSRSIZ() 54

ATDX_BDNAMEP() 56

ATDX_BDTYPE() 58

ATDX_BUFDIGS() 60, 136

ATDX_CHNAMES() 62

ATDX_CHNUM() 64

ATDX_CONNTYPE() 66

ATDX_CPERROR() 69

ATDX_CPTERM() 69, 72

ATDX_CRTNID() 75

ATDX_DEVTYPE() 81

ATDX_DTNFAIL() 83

ATDX_FRQDUR() 86

ATDX_FRQDUR2() 88

ATDX_FRQDUR3() 90

ATDX_FRQHZ() 92

ATDX_FRQHZ2() 94

ATDX_FRQHZ3() 96

ATDX_FRQOUT() 98

ATDX_FWVER() 100

ATDX_HOOKST() 103, 411

ATDX_LINEST() 105

ATDX_LONGLOW() 107

ATDX_PHYADDR() 109

ATDX_SHORTLOW() 111

ATDX_SIZEHI() 113

ATDX_STATE() 115

ATDX_TERMMSK() 117, 121

ATDX_TONEID() 121

ATDX_TRCOUNT() 124

audio input functions
ai_close() 48
ai_getxmitslot() 50
ai_open() 52

audio pulse digits 397

automated attendant 478

automatic gain control 348

B
backward signal

specifying 490

580 Voice API Library Reference — June 2005

base memory address 535

beep tone
record notification 425

beep tone, pre-record 439

bits per sample 547

blowmax 525

board
device 81, 301
device name 56
parameters 416, 418, 420

setting 56
physical address 109

board device
handle 62
opening 301

breaking
connection to a time slot 462

buffer
firmware digit 178

buffer size
bulk queue 389

buffer, ADSI data 502

busy channel
forcing to idle state 447

C
ca_dtn_deboff 527

ca_dtn_npres 527

ca_dtn_pres 527

ca_lowerfrq 98

ca_maxintering 528

ca_noanswer 522, 528

ca_pamd_failtime 523, 527

ca_pamd_minring 527

ca_pamd_qtemp 528

ca_pamd_spdval 523, 527

ca_upperfrq 98

cached prompt management functions
dx_getcachesize() 157, 225

cached prompt managment functions 23

cached prompts
downloading voice data 157
playing 321
playing, example 324
size of on-board memory 225

cadence 54
repetition for user-defined tones 146

cadenced tone
playing 331

call progress analysis 54, 72, 111, 113
activating 281
answering machine detection 54
cadence 54
data structure 522
enabling 194
enhanced

activating 281
errors 69
frequency detection

SIT tones(tone 1) 86, 92
SIT tones(tone 2) 88, 94
SIT tones(tone 3) 90, 96

functions 27
dx_chgdur() 160
dx_chgfreq() 164
dx_chgrepcnt() 168

parameter structure 176
results

busy 72
called line answered by 72
connect 72
error 73
initial non-silence 113
longer silence 107
no answer 72
no ringback 72
operator intercept 72
shorter silence 111
stopped 73
timeout 72

stopping 197, 448
termination 72
tone definitions 160, 164, 168
using dx_dial() 193

call progress analysis functions
dx_initcallp() 281

call progress signals, standard 332

call progress tone 185, 189, 345

call status transition
DX_CST data structure 529
event block structure 531
event handling 402
synchronously monitoring events 241

call status transition event functions 23
dx_getevt() 241
dx_setevtmsk() 400

call status transition structure 529

caller ID
common message types 271

Voice API Library Reference — June 2005 581

caller ID functions 28
dx_gtcallid() 265
dx_gtextcallid() 270
dx_wtcallid() 472

channel
bulk queue buffer sizing function 389
current state 115
device 81, 301
digit buffer 232, 238
monitoring activity 105
names 62
number 64
number of processes 242
parameters 418, 420
status

dial 115
DTMF signal 105
get digit 115
idle 115
no loop current 105
no ringback 105
onhook 105
play 115
playing tone 115
record 115
ringback present 105
silence 105
stopped 115

channel device information structure 503

channel parameters 420, 421

CLASS
message types 272

clearing structures 176, 182

CLIP
message types 272

close(_) 171

close(_) function, Windows 171

closing devices 171

cnosig 522, 523

cnosil 524

coders 546

common message types 271

compelled signaling 490

CON_CAD 66

CON_LPC 66

CON_PAMD 66

CON_PVD 66

configuration functions 18
dx_clrdigbuf() 178
dx_getparm() 249
dx_GetRscStatus() 252
dx_gtsernum() 279
dx_setchxfercnt() 389
dx_setdigtyp() 397
dx_sethook() 410
dx_setparm() 415
dx_settonelen() 439
dx_TSFStatus() 451
dx_wtring() 475

connect
event 54
type 66

continuous speech processing (CSP) 29

convenience functions
dx_playf() 318
dx_playvox() 336
dx_recf() 355
dx_recvox() 373
dx_recwav() 376
I/O 20
nr_scroute() 483
nr_scunroute() 485
R2/MF 26
speed and volume 26
TDM Routing 24

CR_BUSY 72

CR_CEPT 72, 92, 94, 96

CR_CNCT 66, 72

CR_ERROR 69

CR_FAXTONE 72

CR_LGTUERR 69

CR_MEMERR 69

CR_MXFRQERR 69

CR_NOANS 72

CR_NODIALTONE 72

CR_NORB 72

CR_OVRLPERR 70

CR_STOPD 73

CR_TMOUTOFF 70

CR_TMOUTON 70

CR_UNEXPTN 70

CR_UPFRQERR 70

CS_CALL 115

CS_DIAL 115

CS_GTDIG 115

CS_HOOK 115

CS_IDLE 115

582 Voice API Library Reference — June 2005

CS_PLAY 115

CS_RECD 115

CS_RECVFAX 116

CS_SENDFAX 116

CS_STOPD 115

CS_TONE 115

CS_WINK 116

CSP 29

cst_data 530

cst_event 529

CT bus
references to 24

CT_DEVINFO data structure 38, 227, 503

current parameter settings 249

cycles 559

D
D_APD 397

D_DPD 397

D_DPDZ 397

D_DTMF 397

D_LPD 397

D_MF 397

data formats 546

data structure
user digit buffer 507

data structures
cadenced tone generation template 559
call progress analysis parameters 522
call status transition 529
clearing 29
echo cancellation resource 533
event block 531
feature information 551
I/O

user-definable 545
I/O transfer table 534
input/output transfer parameter block 546
speed and volume adjustment conditions 539
speed modification table 543
Syntellect license auto attendant 519
TDM bus time slot information 557
termination parameter table 510
tone generation template 558

DE_DIGITS event 498, 499, 529, 531

DE_DIGOFF event 498, 499

DE_LCOFF event 499, 529, 531

DE_LCON event 499, 529, 531

DE_LCREV event 499, 529, 531

DE_RINGS event 499, 529, 531

DE_RNGOFF event 499, 529

DE_SILOFF event 498, 499, 529, 531

DE_SILON event 498, 499, 529, 531

DE_STOPGETEVT event 498, 499

DE_STOPRINGS event 499

DE_STOPWTRING event 499

DE_TONEOFF event 498, 499, 529, 531

DE_TONEON event 499, 500, 529, 531

DE_WINK event 500, 529, 531

device
opening 52, 301

device handle 18, 58, 301
freeing 171

device information structure 503

device management functions 17
dx_close() 171
dx_open() 301

device names
displaying 62

device type 81

devices
closing 48, 171
multiple processes 171
returning features 551
type 58

DG_DTMF 507

DG_END 507

DG_LPD 507

DG_MAXDIGS 233, 507

DG_MF 507, 508

dg_type 507

DG_USER1 507, 508

dg_value 507

DI_D41BD 58

DI_D41CH 58

dial pulse digit (DPD) 397

dial tone
failure 83

Voice API Library Reference — June 2005 583

dialing
ASCIIZ string 193, 200
asynchronous 194, 201
DTMF 195, 196
enabling Call Progress Analysis 201
enabling call progress analysis 194
flash 195, 196
flash character 196
MF 195, 196
pause 195, 196
pause character 196
pulse 195, 196
specifying dial string 193, 195, 200
stopping 197
synchronous 194, 201
synchronous termination 194
termination events

TDX_CALLP 194, 496
TDX_DIAL 194, 496

with Call Progress Analysis 201
with call progress analysis 194

digit buffer 232, 233, 238
flushing 178

digit buffer, extended 509

digit buffer, user 507

digit collection 232, 238
asynchronous 233
DTMF digits 232, 238
MF digits 232, 238
synchronous 233
termination 233
user-defined digits 232, 238

digit detection 232
audio pulse 397
dial pulse 397
disabling 203
DPD, zero-train 397
DTMF 397
DTMF vs. MF tones 398
errors 568
mask 397
MF 397
multiple types 398
setting digit types 397

digits
adjustment conditions 428
collecting 60
defines for user-defined tones 131
detecting 60
speed and volume 136

disabling detection
user-defined tones 203

disconnecting
voice receive channel 462

DM_DIGITS 401

DM_DIGOFF 401

DM_LCON 401

DM_LCREV 401

DM_RINGS 401, 475

DM_RNGOFF 401

DM_SILOF 401

DM_SILON 401

DM_UNDERRUN 401

DM_WINK 401

DPD
support 398

DSP fax 252, 553, 555

DT_DXBD 81

DT_DXCH 81

DTMF 569
detection errors 568
tone specifications 567

DTMF digits 397
collection 232, 238
overlap with MF digits 233

DV_DIGIT data structure 232, 507
specifying 232

DV_DIGITEX 238

DV_DIGITEX data structure 509

DV_TPT data structure 510
clearing 182
contiguous 182
last entry in 182
linked 182

dx_addspddig() 126

dx_addtone() 130

dx_addvoldig() 135

dx_adjsv() 139

DX_ATTENDANT data structure 519

dx_blddt() 142

dx_blddtcad() 145

dx_bldst() 148

dx_bldstcad() 151

dx_bldtngen() 154

dx_cacheprompt() 157

DX_CAP data structure 522
clearing 176

dx_chgdur() 160

dx_chgfreq() 164

dx_chgrepcnt() 168

584 Voice API Library Reference — June 2005

dx_close() 171

dx_CloseStream() 174

dx_clrcap() 176

dx_clrdigbuf() 60, 178, 233

dx_clrsvcond() 180, 427

dx_clrtpt() 182

dx_createtone() 184

DX_CST data structure 529
hook state terminations 411

dx_deltones() 191

dx_dial() 54, 118, 176, 197, 447

dx_dialtpt() 200

dx_distone() 130, 203

DX_EBLK data structure 241, 531

DX_ECRCT data structure 533

dx_enbtone() 130, 206

dx_fileclose() 209

dx_fileerrno() 211

dx_fileopen() 214

dx_fileread() 216

dx_fileseek() 219

dx_filewrite() 222

dx_getcachesize() 225

dx_getctinfo() 227

dx_getcursv() 229

dx_getdig() 60, 179, 232, 507

dx_getdigEx() 238, 509

dx_getevt() 241, 402, 475, 531

dx_getfeaturelist() 244
FEATURE_TABLE data structure 551

dx_getparm() 249, 309, 348, 416

dx_GetRscStatus() 252

dx_GetStreamInfo() 254

dx_getsvmt() 256

dx_getxmitslot() 259

dx_getxmitslotecr() 262

dx_gtcallid() 265

dx_gtextcallid() 270

dx_gtsernum() 279

dx_initcallp() 281

DX_IOTT data structure 534

dx_listen() 284

dx_listenecr() 287

dx_listenecrex() 290
DX_ECRCT data structure 533

dx_mreciottdata() 293

DX_OFFHOOK event 103, 476, 500, 529, 531

DX_ONHOOK event 103, 476, 500, 529, 531

dx_open() 301

dx_OpenStreamBuffer() 304

dx_pause() 306

dx_play() 179, 308, 318, 535

dx_playf() 318

dx_playiottdata() 321

dx_playtone() 327

dx_playtoneEx() 331

dx_playvox() 336

dx_playwav() 339

dx_PutStreamData() 342

dx_query() 344

dx_querytone() 188

dx_rec() 179, 347, 535

dx_recf() 355

dx_reciottdata() 359

dx_recm() 364

dx_recmf() 370

dx_recvox() 373

dx_recwav() 376

dx_ResetStreamBuffer() 379

dx_resume() 381

dx_RxIottData() 383

dx_sendevt() 387

dx_setchxfercnt() 389

dx_setdevuio() 392

dx_setdigbuf() 395

dx_setdigtyp() 232

dx_setevtmsk() 241, 400, 475

dx_setgtdamp() 407

dx_sethook() 118, 410, 475, 519

dx_setparm() 309, 348, 415

dx_SetRecordNotifyBeepTone() 425

dx_setsvcond() 427

dx_setsvmt() 431

dx_settone() 435

dx_settonelen() 439

dx_setuio() 389, 442

dx_SetWaterMark() 445

dx_stopch() 197, 347, 384, 447

DX_STREAMSTAT data structure 537

DX_SVCB data structure 427, 539

DX_SVMT data structure 431, 543

dx_TSFStatus() 451

dx_TxIottData() 453

Voice API Library Reference — June 2005 585

dx_TxRxIottData() 456

DX_UIO data structure 545
used by dx_setdevuio() 392

dx_unlisten() 462

dx_unlistenecr() 465

dx_wink() 468

dx_wtcallid() 472

dx_wtring() 400, 475

DX_XPB data structure 546
examples (DM3) 547
examples (Springware) 549

DXBD_R_ON 401

DXCH_PLAYDRATE 309

DXCH_RECRDRATE 348

dxxxlib.h 416

E
E&M line 468

wink 468

echo cancellation resource (ECR)
data structure 533

echo cancellation resource functions
dx_getxmitslotecr() 262
dx_listenecr()) 287
dx_listenecrex() 290
dx_unlistenecr() 465

enabling detection
user-defined tones 206

enhanced call progress analysis 27

errors
call progress analysis 69
listing (voice library) 563

ev_data 531

ev_event 531

event
mask 401

event block structure 241

events 23
call status transition (CST) 498
categories 495
connect 54
disabling 171
inter-process communication 387
termination, list 495

extended attribute functions
ATDX_ANSRSIZ() 54
ATDX_BDNAMEP() 56
ATDX_BDTYPE() 58
ATDX_BUFDIGS() 60
ATDX_CHNAMES() 62
ATDX_CHNUM() 64
ATDX_CONNTYPE() 66
ATDX_CPERROR() 69
ATDX_CPTERM() 72
ATDX_CRTNID() 75
ATDX_DEVTYPE() 81
ATDX_DTNFAIL() 83
ATDX_FRQDUR() 86
ATDX_FRQDUR2() 88
ATDX_FRQDUR3() 90
ATDX_FRQHZ() 92
ATDX_FRQHZ2() 94
ATDX_FRQHZ3() 96
ATDX_FRQOUT() 98
ATDX_FWVER() 100
ATDX_HOOKST() 103
ATDX_LINEST() 105
ATDX_LONGLOW() 107
ATDX_PHYADDR() 109
ATDX_SHORTLOW() 111
ATDX_SIZEHI() 113
ATDX_STATE() 115
ATDX_TERMMSK() 117
ATDX_TONEID() 121
ATDX_TRCOUNT() 124

extended attribute functions category 30

extended digit buffer 509

F
fax 116

fax resource 252

feature information data structure 552, 554

FEATURE_TABLE data structure 551

file format 546

file manipulation functions 28
dx_fileclose() 209
dx_fileerrno(_) 211
dx_fileopen() 214
dx_fileread() 216
dx_fileseek() 219
dx_filewrite() 222

firmware
buffer 60
emulated D/4x version number 100
returning version number 100

firmware digit buffer 178

586 Voice API Library Reference — June 2005

fixed length string 250

flash character 196

flexible routing configuration
bitmask 552

flushing digit buffer 178

forward signal
specifying 487

FSK
two-way 456

full-duplex connection 43, 483, 485

functions
ADSI 22
ATDX_ 30
cached prompt management 23
call progress analysis 27
call status transition Event 23
caller ID 28
configuration 18
device management 17
extended attribute 30
global tone detection 25
global tone generation 25
I/O 19
I/O convenience 20
R2/MF convenience 26
speed and volume 26
speed and volume convenience 26
structure clearance 29
TDM routing 23
Windows

close(_) 171

G
G.711 PCM voice coder 546

G.721 voice coder 546

G.726 voice coder 546, 547

global dial pulse detection
support 398

global tone detection
adding a tone 130
deleting tones 191
disabling 203
dual frequency cadence tones 145
dual frequency tones 142
enabling 206
enabling detection 130
functions 25

dx_addtone() 130
dx_blddt() 142
dx_blddtcad() 145
dx_bldst() 148
dx_bldstcad() 151
dx_deltones() 191
dx_distone() 203
dx_enbtone() 206
dx_setgtdamp() 407

removing tones 191
single frequency cadence tones 151
single frequency tones 148

Global Tone Generation
adding a tone template 435

global tone generation
functions 25

dx_bldtngen() 154
dx_playtone() 327
dx_playtoneEx() 331

playing a cadenced tone 331
playing a tone 327
template 558

GSM voice coder 546, 547

GTD Frequency Amplitude
setting 407

H
half-duplex connection 43, 483, 485

hedge 523

hi1bmax 524

hi1ceil 526

hi1tola 524

hi1tolb 524

higltch 525

hisiz 525

hook state 103, 171
setting 410
termination events 411

hookstate 410

Voice API Library Reference — June 2005 587

I
I/O

function 117
transfer parameter block structure 546
transfer table 534
user-defined structure for 545

I/O convenience functions 20

I/O functions 19
dx_dial() 193
dx_dialtpt() 200
dx_getdig() 232
dx_getdigEx() 238
dx_mreciottdata() 293
dx_play() 308
dx_playiottdata() 321
dx_rec() 347
dx_reciottdata() 359
dx_recm() 364
dx_recmf() 370
dx_RxIottData() 383
dx_setdigbuf() 395
dx_stopch() 447
dx_TxIottData() 453
dx_TxRxIottData() 456
dx_wink() 468

IMA ADPCM voice coder 547

inter-process event communication 387

intflg 522, 525

io_bufp 535

IO_CACHED 534

IO_CONT 182, 535

IO_DEV 534

IO_EOT 182, 534, 535

io_fhandle 535

io_length 535

IO_LINK 182, 535

IO_MEM 534

io_nextp 535

io_offset 535

io_prevp 535

IO_STREAM 534

io_type 534

IO_UIO 534, 535

IO_USEOFFSET 535

J
JCLIP

message types 273

L
lcdly 523

lcdly1 523

leading edge notification
user-defined tones 142

learn mode functions 184, 188, 344

li_attendant() 478

li_islicensed_syntellect(_) 482

line status 115

lo1bmax 524

lo1ceil 526

lo1rmax 525

lo1tola 524

lo1tolb 524

lo2bmax 524

lo2rmin 525

lo2tola 524

lo2tolb 524

logltch 525

loop current
drop 66

loop pulse detection 397

lower2frq 526

lower3frq 527

lowerfrq 526

M
maxansr 526

MD_ADPCM 309, 348

MD_GAIN 348

MD_NOGAIN 348

MD_PCM 309, 348

message type ID 270

message types
ACLIP (multiple data message) 272
CLASS (multiple data message) 272
CLIP 272
common to CLASS, ACLIP, and CLIP 271
JCLIP (multiple data message) 273

MF
detection 569
detection errors 568
digit detection 397
digits

collection 232, 238
support 196, 398
tone specifications 567

588 Voice API Library Reference — June 2005

MF digits
overlap with DTMF digits 233

monitor channels 241

monitoring events 241

mu-law 546

mxtime2frq 527

mxtime3frq 527

mxtimefrq 526

N
names

board device 56

nbrbeg 526

nbrdna 523

non-standard I/O devices
dx_setdevuio() 392
dx_setuio() 442

nr_scroute() 483

nr_scunroute() 485

nsbusy 525

numsegs 559

O
offset 535

offtime 559

off-hook 103

off-hook state 410

OKI ADPCM voice coder 546

on-hook 103

on-hook state 410

open() function 302

opening devices 52, 301

operator intercept 86

P
parameter settings

getting current 249

parameters
board and channel 416, 418, 420, 421
call progress analysis 176
sizes 250

pause character 196

pause play 306

PBX call progress signals 332

physical address 109

physical board device
closing 171
closing, example 172
opening 301
opening, example 303

play
asynchronous 310
convenience function 318
default algorithm 309
default rate 309
encoding algorithm 309
mode 310
pausing 306, 540
resuming 381, 540
specifying mode 309
specifying number of bytes 535
synchronous 310
termination 311

TDX_PLAY 310
termination events 310
tone

asynchronous 327
asynchronous termination events 327
synchronous operation 328

transmitting tone before 309
voice data 336

play and record functions
dx_mreciottdata() 293
dx_pause() 306
dx_play() 308
dx_playf() 318
dx_playvox() 336
dx_rec() 347
dx_recf() 355
dx_reciottdata() 359
dx_recvox() 373
dx_recwav() 376
dx_resume() 381

playback
bytes transferred 124

playing
see play 310

playing voice data 321

PM_ADSI 309

PM_BYTE 250

PM_FLSTR 250

PM_INT 250

PM_LONG 250

PM_SHORT 250

PM_SR6 309

PM_SR8 309

PM_TONE 309, 439

Voice API Library Reference — June 2005 589

PM_VLSTR 250

positive answering machine detection 66

positive voice detection 66

pre-record beep 439

processes per channel 242

Pulse Code Modulation 309, 348

R
R2/MF

compelled signaling 490
convenience functions 26
enabling signal detection 487
playing backward signal 490
specifying forward signal 487
user-defined tone IDs 487, 488

R2/MF convenience functions 26
r2_creatfsig() 487
r2_playbsig() 490

r2_creatfsig() 487

r2_playbsig() 490

record notification beep tone 425

recording
algorithm 348
asynchronous 349, 365
asynchronous termination event

TDX_RECORD 349, 365
bytes transferred 124
convenience function 355
default algorithm 348
default gain setting 348
default sampling rate 348
gain control 348
mode 348, 349, 365, 371
sampling rate 348
specifying mode 348
specifying number of bytes 535
stopping 347
synchronous 350, 365
synchronous termination 350
voice data 347, 359, 364, 370, 373
WAVE data 376
with A-law 348
with tone 348
with voice activity detector (VAD) 360

resources
DSP fax 252
echo cancellation 262, 287, 290, 465

rings
wait for specified number 475

RLS_DTMF 105

RLS_HOOK 105

RLS_LCSENSE 105

RLS_RING 105

RLS_RINGBK 105

RLS_SILENCE 105

RM_ALAW 348

RM_SR6 348

RM_SR8 348

RM_TONE 348, 439

routing convenience functions
nr_scroute() 483
nr_scunroute() 485

routing functions
ag_getctinfo() 38
ag_getxmitslot() 40
ag_listen() 43
ag_unlisten() 46
dx_getctinfo() 227
dx_getxmitslot() 259
dx_listen() 284
dx_listenecr() 287
dx_unlisten() 462

S
sampling rates 547

SC_TSINFO data structure 40, 43, 557

SCbus
references to 24

sctools.c 483, 485

serial number
retrieving 279

setting hook state 410
asynchronous 410
synchronous 411

short messaging services (SMS) 22

SIGALRM 476

sigset() 476

silicon serial number
retrieving 279

SIT sequence
returning 76

SIT tones
detection 88, 90, 92, 94, 96

Softfax 553, 555
using dx_GetRscStatus() 252

Special Information Tone (SIT) sequence
returning 76

590 Voice API Library Reference — June 2005

speed
adjusting 126
adjustment conditions 427
explicitly adjusting 139
retrieving current 229

speed and volume
current 140
data structure 539
last modified 140
modification table

setting 543
resetting to origin 140

speed and volume convenience functions
dx_addspddig() 126
dx_addvoldig() 135

speed and volume function
dx_setsvmt() 431

speed and volume functions 26
dx_adjsv() 139
dx_clrsvcond() 180
dx_getcursv() 229
dx_getsvmt() 256
dx_setsvcond() 427

speed and volume modification table
resetting to defaults 431, 432
retrieving contents 256
specifying speed 431
specifying volume 431
updating 431

speed control 543

sr_getevtdatap() 402

stop I/O functions
dial 447
termination reason

TM_USRSTOP 447
wink 448

stopping call progress analysis 448

stopping I/O functions
synchronous 447

streaming to board
creating stream buffer 304
deleting stream buffer 174
DX_STREAMSTAT data structure 537
function summary 21
getting status info 254
putting data in buffer 342
resetting internal data 379
setting water mark 445

structure clearance functions 29
dx_clrcap() 176
dx_clrtpt() 182

structures
clearing 176, 182
digit buffer 232
DV_DIGIT 232
DV_DIGITEX 238
DX_CAP 176
DX_EBLK 241
DX_IOTT 308
event block 241
extended digit buffer 238

SV_ABSPOS 140

SV_CURLASTMOD 140

SV_CURORIGIN 140

SV_RELCURPOS 140

SV_RESETORIG 140

SV_SPEEDTBL 139

SV_TOGGLE 140

SV_TOGORIGIN 140

SV_VOLUMETBL 139

synchronous operation
dial 194
digit collection 233
play 310
playing tone 328
record 350, 365
setting hook state 411
stopping I/O functions 447, 448
wink 468

Syntellect license automated attendant functions
li_attendant() 478
li_islicensed() 482

syntellect.c 479

syntellect.h 519

T
TDM bus

time slot information structure 557

TDM bus routing
echo cancellation resource 262, 287, 290, 465

TDM bus routing functions 23
dx_getctinfo() 227
dx_getxmitslot() 259
dx_listen() 284
dx_listenecr() 287
dx_listenecrex() 290
dx_unlisten() 462

TDX_CACHEPROMPT event 496

TDX_CALLP event 194, 496

TDX_CREATETONE event 496

TDX_CREATETONE_FAIL event 496

Voice API Library Reference — June 2005 591

TDX_CST event 496

TDX_DELETETONE event 496

TDX_DELETETONE_FAIL 496

TDX_DIAL event 194, 496

TDX_ERROR event 496

TDX_GETDIG event 496

TDX_HIGHWATER event 497

TDX_LOWWATER event 497

TDX_NOSTOP event 496

TDX_PLAY event 310, 496

TDX_PLAYTONE event 327, 332, 496

TDX_QUERYTONE event 496

TDX_QUERYTONE_FAIL event 497

TDX_RECORD event 349, 365, 371, 497

TDX_RXDATA event 458, 497

TDX_SETHOOK 531

TDX_SETHOOK event 411, 497, 529

TDX_TXDATA event 458, 497

TDX_UNDERRUN event 498

TDX_VAD event 498

TDX_WINK event 497

termination
call progress analysis 72
stop I/O function 447
synchronous record 350

termination conditions 19

termination events 495
DX_CST data structure 411
TDX_SETHOOK 411
TDX_WINK 468

termination parameter table structure 510

terminations
asynchronous play 310
ATDX_TERMMSK() 117
end of data 117, 118, 384, 454, 458
function stopped 118, 384, 454, 458
I/O device error 117, 118, 384, 454, 458
I/O function 117
I/O functions 447
inter-digit delay 117, 118
loop current off 118
maximum DTMF count 117, 118
maximum function time 117, 118, 384, 454, 458
maximum period of non-silence 118
maximum period of silence 117, 118
normal termination 118
pattern matched 118
specific digit received 117, 118
synchronous play 311
tone-on/off event 118

tg_dflag 558

tg_freq1 558

TID_BUSY1 75, 76

TID_BUSY2 75, 76

TID_DIAL_INTL 75, 76

TID_DIAL_LCL 75, 76

TID_DIAL_XTRA 76

TID_DISCONNECT 75, 76

TID_FAX1 75, 76

TID_FAX2 75, 77

TID_RINGBK1 75, 77

TID_RINGBK2 76, 77

TID_SIT_ANY 76

TID_SIT_IC 76

TID_SIT_INEFFECTIVE_OTHER 76

TID_SIT_IO 76

TID_SIT_NC 76

TID_SIT_NC_INTERLATA 76

TID_SIT_NO_CIRCUIT 76

TID_SIT_NO_CIRCUIT_INTERLATA 76

TID_SIT_OPERATOR_INTERCEPT 76

TID_SIT_REORDER_TONE 76

TID_SIT_REORDER_TONE_INTERLATA 76

TID_SIT_RO 76

TID_SIT_RO_INTERLATA 76

TID_SIT_VACANT_CIRCUIT 76

TID_SIT_VC 76

time slot device information structure 503

time2frq 527

time3frq 527

timefrq 526

TM_DIGIT termination 117, 118

TM_EOD termination 117, 118, 384, 454, 458

TM_ERROR termination 117, 118, 384, 454, 458

TM_IDDTIME termination 117, 118

TM_LCOFF termination 118

TM_MAXDATA termination 117, 384, 454, 458

TM_MAXDTMF termination 118

TM_MAXDTMFtermination 117

TM_MAXNOSIL termination 118

TM_MAXSIL termination 117, 118

TM_MAXTIME termination 117, 118, 384, 454, 458

TM_NORMTERM termination 118

TM_PATTERN termination 118

TM_TONE termination 118

TM_USRSTOP termination 118, 384, 454, 458

592 Voice API Library Reference — June 2005

TN_GEN data structure 425, 558, 559
used by dx_settone() 435

TN_GENCAD data structure 425, 559

tone 560
adding 130
enabling detection 130

tone definitions 154, 160, 164, 168

tone generation template 425, 558

tone ID 121, 142, 185, 189, 345

tone identifier 75

tone template 435

tone, pre-record beep 439

tone, record notification beep tone 425

TONE_DATA data structure 184, 344

trailing edge notification
user-defined tones 142

Transaction Record
enabling using dx_recm() 364
enabling using dx_recmf() 370

transaction record feature 293

TrueSpeech voice coder 546

TSF function 451

two-way FSK 456

T1 468

U
unsolicited events 497

upper2frq 526

upper3frq 527

upperfrq 526

user digit buffer 507

user-defined
cadence 146

user-defined digits
collection 232, 238

user-defined functions
installing 392, 442

user-defined input/output data structure 545

user-defined Tone ID
R2/MF 487

user-defined tone ID 121

user-defined tones 130
cadence repetition 146
disabling detection 203
dual frequency 142
dual frequency cadence 145
enabling detection 206
first frequency 142
first frequency deviation 142
ID 142
leading or trailing edge notification 142
playing 331

also see playing tone 327
removing 191
second frequency 142
second frequency deviation 142
single frequency 148
single frequency cadence 151
tone ID 488

V
variable length string 250

version number
firmware 100

voice activity detector (VAD) 360

voice coders 546
examples (DM3) 547
examples (Springware) 549

volume
adjusting 135
adjustment conditions 427
explicitly adjusting 139
retrieving current 229

volume control 543

W
water mark 445

WAVE files
playing 339

Windows functions
close(_) 171

wink 468
asynchronous 468
on non-E&M line 468
synchronous 468
termination event 468

Z
zero-train DPD 397

	Contents
	Figures
	Tables
	Revision History
	About This Publication
	1. Function Summary by Category
	1.1 Device Management Functions
	1.2 Configuration Functions
	1.3 I/O Functions
	1.4 I/O Convenience Functions
	1.5 Streaming to Board Functions
	1.6 Analog Display Services Interface (ADSI) Functions
	1.7 Audio Input Functions
	1.8 Transaction Record Functions
	1.9 Cached Prompt Management Functions
	1.10 Call Status Transition (CST) Event Functions
	1.11 TDM Routing Functions
	1.12 Global Tone Detection (GTD) Functions
	1.13 Global Tone Generation (GTG) Functions
	1.14 R2/MF Convenience Functions
	1.15 Speed and Volume Functions
	1.16 Call Progress Analysis Functions
	1.17 Caller ID Functions
	1.18 File Manipulation Functions
	1.19 Echo Cancellation Resource Functions
	1.20 Structure Clearance Functions
	1.21 Syntellect License Automated Attendant Functions
	1.22 Extended Attribute Functions
	1.23 Voice Function Support by Platform

	2. Function Information
	2.1 Function Syntax Conventions
	ag_getctinfo()
	ag_getxmitslot()
	ag_listen()
	ag_unlisten()
	ai_close()
	ai_getxmitslot()
	ai_open()
	ATDX_ANSRSIZ()
	ATDX_BDNAMEP()
	ATDX_BDTYPE()
	ATDX_BUFDIGS()
	ATDX_CHNAMES()
	ATDX_CHNUM()
	ATDX_CONNTYPE()
	ATDX_CPERROR()
	ATDX_CPTERM()
	ATDX_CRTNID()
	ATDX_DEVTYPE()
	ATDX_DTNFAIL()
	ATDX_FRQDUR()
	ATDX_FRQDUR2()
	ATDX_FRQDUR3()
	ATDX_FRQHZ()
	ATDX_FRQHZ2()
	ATDX_FRQHZ3()
	ATDX_FRQOUT()
	ATDX_FWVER()
	ATDX_HOOKST()
	ATDX_LINEST()
	ATDX_LONGLOW()
	ATDX_PHYADDR()
	ATDX_SHORTLOW()
	ATDX_SIZEHI()
	ATDX_STATE()
	ATDX_TERMMSK()
	ATDX_TONEID()
	ATDX_TRCOUNT()
	dx_addspddig()
	dx_addtone()
	dx_addvoldig()
	dx_adjsv()
	dx_blddt()
	dx_blddtcad()
	dx_bldst()
	dx_bldstcad()
	dx_bldtngen()
	dx_cacheprompt()
	dx_chgdur()
	dx_chgfreq()
	dx_chgrepcnt()
	dx_close()
	dx_CloseStreamBuffer()
	dx_clrcap()
	dx_clrdigbuf()
	dx_clrsvcond()
	dx_clrtpt()
	dx_createtone()
	dx_deletetone()
	dx_deltones()
	dx_dial()
	dx_dialtpt()
	dx_distone()
	dx_enbtone()
	dx_fileclose()
	dx_fileerrno()
	dx_fileopen()
	dx_fileread()
	dx_fileseek()
	dx_filewrite()
	dx_getcachesize()
	dx_getctinfo()
	dx_getcursv()
	dx_getdig()
	dx_getdigEx()
	dx_getevt()
	dx_getfeaturelist()
	dx_getparm()
	dx_GetRscStatus()
	dx_GetStreamInfo()
	dx_getsvmt()
	dx_getxmitslot()
	dx_getxmitslotecr()
	dx_gtcallid()
	dx_gtextcallid()
	dx_gtsernum()
	dx_initcallp()
	dx_listen()
	dx_listenecr()
	dx_listenecrex()
	dx_mreciottdata()
	dx_open()
	dx_OpenStreamBuffer()
	dx_pause()
	dx_play()
	dx_playf()
	dx_playiottdata()
	dx_playtone()
	dx_playtoneEx()
	dx_playvox()
	dx_playwav()
	dx_PutStreamData()
	dx_querytone()
	dx_rec()
	dx_recf()
	dx_reciottdata()
	dx_recm()
	dx_recmf()
	dx_recvox()
	dx_recwav()
	dx_ResetStreamBuffer()
	dx_resume()
	dx_RxIottData()
	dx_sendevt()
	dx_setchxfercnt()
	dx_setdevuio()
	dx_setdigbuf()
	dx_setdigtyp()
	dx_setevtmsk()
	dx_setgtdamp()
	dx_sethook()
	dx_setparm()
	dx_SetRecordNotifyBeepTone()
	dx_setsvcond()
	dx_setsvmt()
	dx_settone()
	dx_settonelen()
	dx_setuio()
	dx_SetWaterMark()
	dx_stopch()
	dx_TSFStatus()
	dx_TxIottData()
	dx_TxRxIottData()
	dx_unlisten()
	dx_unlistenecr()
	dx_wink()
	dx_wtcallid()
	dx_wtring()
	li_attendant()
	li_islicensed_syntellect()
	nr_scroute()
	nr_scunroute()
	r2_creatfsig()
	r2_playbsig()

	3. Events
	3.1 Overview of Events
	3.2 Termination Events
	3.3 Unsolicited Events
	3.4 Call Status Transition (CST) Events

	4. Data Structures
	ADSI_XFERSTRUC
	CT_DEVINFO
	DV_DIGIT
	DV_DIGITEX
	DV_TPT
	DX_ATTENDANT
	DX_CAP
	DX_CST
	DX_EBLK
	DX_ECRCT
	DX_IOTT
	DX_STREAMSTAT
	DX_SVCB
	DX_SVMT
	DX_UIO
	DX_XPB
	FEATURE_TABLE
	SC_TSINFO
	TN_GEN
	TN_GENCAD
	TONE_DATA

	5. Error Codes
	6. Supplementary Reference Information
	6.1 DTMF and MF Tone Specifications
	6.2 DTMF and MF Detection Errors

	Glossary
	Index

