
Native Configuration Manager
API for Windows Operating
Systems
Library Reference

December 2003

05-1903-002

NCM API Library Reference – December 2003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This Native Configuration Manager API for Windows Operating Systems Library Reference as well as the software described in it is furnished under
license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use
only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this
document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without express written consent of Intel Corporation.

Copyright © 2002-2003, Intel Corporation

AnyPoint, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP,
InstantIP, Intel, Intel Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel InBusiness, Intel Inside,
Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon,
Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon,
Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

* Other names and brands may be claimed as the property of others.

Publication Date: December 2003

Document Number: 05-1903-002

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page at:
http://www.intel.com/buy/wtb/wtb1028.htm

http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/wtb/wtb1028.htm

NCM API Library Reference – December 2003 3

Contents

Revision History . 5

About This Publication . 7
Purpose . 7
Intended Audience. 7
How to Use This Publication . 7
Related Information . 8

1 Function Summary by Category . 9

1.1 Query Configuration Functions . 9
1.2 Modify Configuration Functions . 10
1.3 System Functions . 11
1.4 System Administration Functions . 11
1.5 TDM Bus Functions . 12
1.6 Third Party Device Functions. 13

2 Function Information . 15

2.1 Function Syntax Conventions . 15
NCM_AddDevice() – instantiate a device . 16
NCM_AddThirdPartyDevice() – adds a third party device. 19
NCM_AllocateTimeslots() – allocates TDM bus time slots . 22
NCM_ApplyTrunkConfiguration() – configure DMV/B trunks . 27
NCM_Dealloc() – deallocate memory . 31
NCM_DeallocateTimeslots() – releases TDM bus time slots . 33
NCM_DeallocValue() – deallocate memory . 36
NCM_DeleteEntry() – remove configuration information. 38
NCM_DetectBoards() – detect auto-detectable boards. 41
NCM_DetectBoardsEx() – initiate board auto-detection . 43
NCM_EnableBoard() – enable or disable device initialization. 46
NCM_GetAllDevices() – get a list of installable device models . 49
NCM_GetAllFamilies() – get a list of installable families . 51
NCM_GetAUID() – get the AUID of a family or device . 53
NCM_GetClockMasterFallbackList() – get the clock master fallback list 55
NCM_GetCspCountries() – get a list of supported countries . 57
NCM_GetCspCountryCode() – get a country code . 59
NCM_GetCspCountryName() – get a country name. 61
NCM_GetCspFeaturesValue() – get a country-specific parameter value 63
NCM_GetCspFeatuesValueRange() – get the value range of a parameter 66
NCM_GetCspFeaturesVariables() – get the values for a parameter. 68
NCM_GetDialogicDir() – get a given Dialogic directory. 70
NCM_GetDlgSrvStartupMode() – get the startup mode of the system service 72
NCM_GetDlgSrvState() – get the state of the system service . 74
NCM_GetDlgSrvStateEx() – get the state of the system service . 76

4 NCM API Library Reference – December 2003

Contents

NCM_GetErrorMsg() – get the error message for an error code . 78
NCM_GetFamilyDeviceByAUID() – get the family or device from an AUID 80
NCM_GetInstalledDevices() – get all instantiated devices for a family . 82
NCM_GetInstalledFamilies() – get all instantiated families . 84
NCM_GetProperties() – get the installable properties of a device . 86
NCM_GetPropertyAttributes() – get a properties attributes . 89
NCM_GetSystemState() – returns the system service state . 91
NCM_GetTDMBusValue() – get a TDM bus parameter value . 93
NCM_GetThirdPartyDeviceBusCaps() – gets capabilities of a third party device 95
NCM_GetValue() – get an instantiated value . 97
NCM_GetValueEx() – get an instantiated value. 100
NCM_GetValueRange() – get the value range for a parameter . 103
NCM_GetValueRangeEx() – get the value range for a parameter. 106
NCM_GetVariableAttributes() – get a parameter’s attributes . 109
NCM_GetVariables() – get the parameters for a property section . 111
NCM_GetVersionInfo() – get OS and system software versions . 114
NCM_IsBoardEnabled() – determine if a device is enabled or disabled 116
NCM_IsEditable() – determine if a parameter can be edited . 118
NCM_QueryTimeslots() – query allocated time slots . 121
NCM_ReconfigureBoard() – reconfigure a DM3 board . 124
NCM_RemoveThirdPartyDevice() – removes a third party device. 126
NCM_SetClockMasterFallbackList() – set the clock master fallback list 128
NCM_SetDlgSrvStartupMode() – set the system service startup mode. 130
NCM_SetTDMBusValue() – set the TDM bus values. 132
NCM_SetValue() – sets a configuration parameter value . 134
NCM_SetValueEx() – instantiate a configuration parameter value . 137
NCM_StartBoard() – start an individual board . 140
NCM_StartDlgSrv() – initiate the system service . 142
NCM_StartSystem() – starts all boards . 144
NCM_StopBoard() – stop an individual board . 146
NCM_StopDlgSrv() – stop the system service . 148
NCM_StopSystem() – stop all boards in a system. 150

3 Events. 153

4 Data Structures . 155

NCM_DETECTION_DETAILS – board detection details . 156
NCM_DETECTION_INFO – board detection callback functions. 157
NCM_DETECTION_RESULT – board detection results . 158
NCMString – defines NCM variables. 159
NCMSysVersion – system software\operating system version information 160
NCMTrunkConfig – information needed for trunk configuration . 161
NCMValueEx – defines parameter values. 162
NCMVariableAttributes – defines attributes for a variable. 163

5 Error Codes . 165

Index . 169

NCM API Library Reference — December 2003 5

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-1903-002 November 2003 Global changes: Added a note to all the functions that have an Ex function saying
that the Ex functions should be used. Added a note wherever applicable about
not parsing the unique device name from an application.

Query Configuration Functions section: Changed “read configuration functions” to
“query configuration functions”.

New reference pages for new functions:
NCM_AddThirdPartyDevice()
NCM_AllocateTimeslots()
NCM_ApplyTrunkConfiguration()
NCM_DeallocateTimeslots()
NCM_GetCspCountries()
NCM_GetCspCountryCode()
NCM_GetCspCountryName()
NCM_GetCspFeaturesValue()
NCM_GetCspFeatuesValueRange()
NCM_GetCspFeaturesVariables()
NCM_GetSystemState()
NCM_GetThirdPartyDeviceBusCaps()
NCM_QueryTimeslots()
NCM_ReconfigureBoard()
NCM_RemoveThirdPartyDevice()
NCM_StartSystem()
NCM_StopSystem()

NCM_AddDevice() reference page: Updated description. Expanded See Also
section.

NCM_DetectBoardsEx() reference page: rUpdated description

NCM_GetDialogicDir() reference page: Updated description.

NCM_GetValue() reference page: Updated description.

NCM_GetValueEx() reference page: Updated description.

NCM_GetVersionInfo() reference page: Expanded See Also section.

NCM_StartBoard() reference page: Updated description.

NCM_StartDlgSrv() reference page: Updated description. Added new sample code.

NCM_StopBoard() reference page: Updated description.

NCM_StopDlgSrv() reference page: Updated description.

Events chapter : Updated description.

NCMTrunkConfig reference page: New data structure page.

05-1903-001 November 2002 Initial version of document. Much of the information contained in this document was
previously published in the Customization Tools for Installation and Configuration for
Windows, document number 05-1103-007.

6 NCM API Library Reference — December 2003

Revision History

NCM API Library Reference — December 2003 7

About This Publication

The following topics provide information about this publication:

• Purpose

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication provides a reference to the functions, data structures and error codes of the Native
Configuration Manager (NCM) library for Intel® telecom products.

This publication is a companion document to the Native Configuration Manager API for Windows
Operating Systems Programming Guide, which provides guidelines for developing applications
with the NCM API.

Intended Audience

This publication is intended for the following customer types:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

How to Use This Publication

This document assumes that you are familiar with the C programming language and the Windows*
operating system.

Throughout this publication, the term “installable” indicates that the configuration data element to
which it applies is supported by the DCM catalog. For example, an installable device is a device
that is supported in the DCM catalog. The terms “instantiate” and “instantiated” refer to the process
of creating system configuration data. Refer to the Native Configuration Manager API for Windows
Operating Systems Programming Guide for more information about the distinction between the
DCM catalog and the system configuration.

8 NCM API Library Reference — December 2003

About This Publication

This publication is organized as follows:

• Chapter 1, “Function Summary by Category” introduces the various categories of NCM
library functions and provides a brief description of each function.

• Chapter 2, “Function Information” provides an alphabetical reference to all NCM library
functions.

Note: The Ex versions of functions should be used where available (for example,
NCM_GetValueEx() instead of NCM_GetValue()). The non-Ex functions are
provided for backwards compatibility.

• Chapter 3, “Events” contains information about events that are generated by certain NCM
library functions.

• Chapter 4, “Data Structures” provides an alphabetical reference to the data structures used by
the NCM library functions.

• Chapter 5, “Error Codes” presents a list of error codes that may be returned by the NCM
library functions.

Related Information

Refer to the following publications and websites for more information:

• Native Configuration Manager API for Windows Operating Systems Programming Guide

• Event Service API for Windows Operating Systems Library Reference

• Event Service API for Windows Operating Systems Programming Guide

• The appropriate Configuration Guide(s):

– Intel DM3 Architecture PCI Products on Windows Configuration Guide

– Intel Dialogic on Springware Architecture Products for PCI on Windows Configuration
Guide

– Intel NetStructure Products on DM3 Architecture for CompactPCI on Windows
Configuration Guide

– Intel NetStructure IPT Series Configuration Guide

• High Availability Demo Guide if using CompactPCI boards

• http://developer.intel.com/design/telecom/support/ for technical support

• http://www.intel.com/network/csp/ for product information

http://developer.intel.com/design/telecom/support/
http://www.intel.com/network/csp

NCM API Library Reference — December 2003 9

11.Function Summary by Category

This chapter describes the categories into which the NCM library functions can be logically
grouped. Functions are divided into the following categories:

• Query Configuration Functions . 9

• Modify Configuration Functions . 10

• System Functions. 11

• System Administration Functions . 11

• TDM Bus Functions . 12

• Third Party Device Functions . 13

1.1 Query Configuration Functions

Query configuration functions query either the DCM catalog or your current system configuration
settings for information about device families and individual devices. Refer to the Native
Configuration Manager API for Windows Operating Systems Programming Guide for information
about the distinction between the DCM catalog and the system configuration.

The query configuration functions are as follows:

NCM_GetAllDevices()
returns a list of installable device models

NCM_GetAllFamilies()
gets a list of installable device families

NCM_GetCspCountries()
gets a list of supported countries

NCM_GetCspCountryCode()
gets the country code for a country

NCM_GetCspCountryName()
gets the country named for a country code

NCM_GetCspFeaturesValue()
gets a country-specific parameter value

NCM_GetCspFeatuesValueRange()
gets the value range

NCM_GetCspFeaturesVariables()
gets values

NCM_GetInstalledDevices()
gets all instantiated devices for a family

10 NCM API Library Reference — December 2003

Function Summary by Category

NCM_GetInstalledFamilies()
returns all instantiated device families

NCM_GetProperties()
gets the installable properties for a device

NCM_GetPropertyAttributes()
gets a properties attributes

NCM_GetValue()
returns the value of a parameter

NCM_GetValueEx()
extended function that behaves identically to NCM_GetValue(), but returns the value of a
parameter using the NCMValueEx data structure

NCM_GetValueRange()
gets the range of valid values for a parameter

NCM_GetValueRangeEx()
extended function that behaves identically to NCM_GetValueRange(), but returns the value
of a parameter using the NCMValueEx data structure

NCM_GetVariableAttributes()
returns a parameter’s attributes

NCM_GetVariables()
gets the parameters for a property section

NCM_IsBoardEnabled()
returns information about whether or not a device is to be initialized when the Intel Dialogic
system is started

NCM_IsEditable()
returns information about whether or not a given parameter can be modified

1.2 Modify Configuration Functions

The modify configuration functions allow you to add, modify, and delete configuration information
for device families and individual devices in your system.

Note: You can modify configuration data only for the Intel Dialogic hardware products supported by the
system software release. Refer to the Release Guide for list of supported hardware.

The modify configuration parameters include the following:

NCM_AddDevice()
instantiates a device in your system configuration

NCM_ApplyTrunkConfiguration()
creates trunk configuration files for DMV/B boards

NCM_DeleteEntry()
deletes configuration information

NCM API Library Reference — December 2003 11

Function Summary by Category

NCM_EnableBoard()
determines whether or not a device is to be initialized when the Intel Dialogic system is started

NCM_ReconfigureBoard()
reconfigures an individual DM3 board

NCM_SetValue()
sets the value of a configuration parameter

NCM_SetValueEx()
extended function that behaves identically to NCM_SetValue(), but uses the NCMValueEx
data structure as input

1.3 System Functions

The system functions allow you to interface with the Intel Dialogic system. You can set the system
startup mode and query its current status. Refer to the following “System Administration
Functions” section for functions that start and stop the Intel Dialogic system.

The system functions are as follows:

NCM_GetDlgSrvStartupMode()
returns the startup mode of the Intel Dialogic system

NCM_GetDlgSrvState()
returns the state of the Intel Dialogic system

NCM_GetDlgSrvStateEx()
extended function which returns the state of the Intel Dialogic system using the Win32
SERVICE_STATUS data structure

NCM_SetDlgSrvStartupMode()
sets the startup mode of the Intel Dialogic system

NCM_GetSystemState()
returns the status of the Intel Dialogic system service

1.4 System Administration Functions

The system administration functions allow you to manage the various components of your Intel
Dialogic system (hardware, memory, NCM library error messages, etc.).

System administration functions are as follows:

NCM_Dealloc()
deallocates memory occupied by an NCMString data structure

NCM_DeallocValue()
deallocates memory occupied by a NCMValueEx data structure

NCM_DetectBoards()
initiates auto-detection of instantiated boards in your system

12 NCM API Library Reference — December 2003

Function Summary by Category

NCM_DetectBoardsEx()
extended function that behaves identically to NCM_DetectBoards(), but uses the
NCM_DETECTION_RESULT data structure to return detailed information about the status of
the auto-detection process

NCM_GetAUID()
returns the Addressable Unit Identifier (AUID) for an instantiated device

NCM_GetDialogicDir()
returns directory information about specific Intel Dialogic files

NCM_GetErrorMsg()
gets the error message text string for a given error code

NCM_GetFamilyDeviceByAUID()
returns a the family name for a device that has been assigned a given Addressable Unit
Identifier (AUID)

NCM_GetVersionInfo()
gets Operating System and Intel Dialogic system software version information

NCM_StartBoard()
starts an individual board

NCM_StartDlgSrv()
initiates the system service

NCM_StartSystem()
starts all boards in a system

NCM_StopBoard()
stops an individual board

NCM_StopDlgSrv()
stops the system service

NCM_StopSystem()
stops all boards in a system

1.5 TDM Bus Functions

TDM bus functions allow you to manage the TDM bus within your Intel Dialogic system. You can
set a clock master fallback list and/or set the value of individual TDM bus parameters. Refer to the
Native Configuration Manager API for Windows Operating Systems Programming Guide for
information about clock master fallback.

The TDM bus functions are as follows:

NCM_GetClockMasterFallbackList()
returns the system’s list of clock master fallback devices

NCM_GetTDMBusValue()
gets a parameter value for the TDM bus

NCM API Library Reference — December 2003 13

Function Summary by Category

NCM_SetClockMasterFallbackList()
sets a user-defined list of clock master fallback devices

NCM_SetTDMBusValue()
sets a parameter value or the TDM bus

1.6 Third Party Device Functions

You can add one or more third party devices1 to the Intel Dialogic system using third party device
functions. Third party device functions also allow you to reserve TDM bus time slots for third party
devices.

Note: While you can add third party devices to the Intel Dialogic system, third party devices must be
configured according to the vendor’s documentation.

The third party device functions are as follows:

NCM_AddThirdPartyDevice()
adds a third party device

NCM_AllocateTimeslots()
allocates TDM bus time slot to third party devices

NCM_DeallocateTimeslots()
deallocates third party TDM bus time slots

NCM_GetThirdPartyDeviceBusCaps()
gets capabilities of a third party device

NCM_QueryTimeslots()
query allocated time slots

NCM_RemoveThirdPartyDevice()
removes a third party device

1.A third party device is any device that is not an Intel® telecom product.

14 NCM API Library Reference — December 2003

Function Summary by Category

NCM API Library Reference — December 2003 15

22.Function Information

This chapter provides an alphabetical reference to the functions in the NCM library.

2.1 Function Syntax Conventions

The NCM API functions use the following syntax:

NCMRetCode NCM_functionName(parameter1,...parameterN)

where:

NCMRetCode
refers to the return field for the function. NCMRetCode is defined in the NCMTypes.h file.

NCM_functionName
indicates the name of the function

parameter1
represents the first parameter

parameterN
represents the last parameter

16 NCM API Library Reference — December 2003

NCM_AddDevice() — instantiate a device

NCM_AddDevice()

instantiate a device

!!!! Description

The NCM_AddDevice() function instantiates a device in the system configuration. Upon adding
the device, this function will establish default settings for all configuration parameters pertaining to
the device.

!!!! Cautions

• Because devices are instantiated in the system configuration according to their unique device
name, it is impossible to correlate an instantiated device with a device model name. Therefore,
it is recommended that you embed the device model name within the unique device name
when you instantiate a device with the NCM_AddDevice() function.

• The pncmFamily and pncmDeviceModel pointers must reference information that is valid in
the current DCM catalog. For information about how to determine which families, devices and

Name: NCMRetCode NCM_AddDevice(pncmFamily, pncmDeviceModel, pncmDeviceUnique)

Inputs: NCMFamily* pncmFamily • pointer to a data structure containing a device family name

NCMDevice* pncmDeviceModel • pointer to a data structure containing a device model name

NCMDevice* pncmDeviceUnique • pointer to a data structure containing a unique device
name

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Modify configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing the family name. The
value of the data structure must be an installable family (i.e one that is
supported in the DCM catalog). All instantiated families of devices in
your current system configuration can be retrieved by
NCM_GetInstalledFamilies().

pncmDeviceModel points to an NCMString data structure containing the device’s model
name. The value of the structure must be an installable device.

pncmDeviceUnique points to an NCMString data structure containing the device’s unique
name. This name can be any string that sufficiently distinguishes
multiple instantiations of the same device model.

Note: You are strongly discouraged from parsing the unique device
name from your application. Although the name is guaranteed to be
unique, Intel reserves the right to change the format of the device name
in future releases.

NCM API Library Reference — December 2003 17

instantiate a device — NCM_AddDevice()

configuration parameters are valid in the current DCM catalog, refer the Native Configuration
Manager API for Windows Operating Systems Programming Guide.

• This function adds to the information instantiated in the current system configuration. It has no
effect on the installable families, devices and configuration parameters defined in the DCM
catalog. For more information about the distinction between the system configuration and the
DCM catalog, refer to the Native Configuration Manager API for Windows Operating Systems
Programming Guide.

!!!! Errors

Possible errors for this function include:

NCME_NO_RESOURCES
there are no more system resources available for the device to use (memory, IRQ or ports).

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_BAD_INF
there was an error parsing the DCM catalog

NCME_INVALID_FAMILY
family name is invalid

NCME_INVALID_DEVICE
device name is invalid

NCME_DUP_DEVICE
the device could not be added because a device of the same device model name and unique
device name is already instantiated in the system configuration

!!!! Example

#include "NCMApi.h"

...

//
// Prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice model;
model.name = "D/41D";
model.next = NULL;

NCMDeviceUniqueName;
UniqueName.name = "D/41D at ID 0";
uniqueName.next = NULL;

18 NCM API Library Reference — December 2003

NCM_AddDevice() — instantiate a device

//
// Execute
//

NCMRetCode ncmRc = NCM_AddDevice(&family, &model, &uniqueName);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
// Process error
 ...
}
...

!!!! See Also

• NCM_DeleteEntry()

• NCM_EnableBoard()

• NCM_SetValue()

• NCM_SetValueEx()

• NCM_DetectBoards()

• NCM_DetectBoardsEx()

NCM API Library Reference — December 2003 19

adds a third party device — NCM_AddThirdPartyDevice()

NCM_AddThirdPartyDevice()

adds a third party device

!!!! Description

The NCM_AddThirdPartyDevice() function adds a third party device to the Intel Dialogic
system. The function uses the NCM_TDM_BUSCAPS data structure to define the TDM bus
capabilities of the third party device. The TDM bus capabilities indicate the following:

• bus type (H.100, H.110, etc.)

• if the device is capable of being defined as the primary clock master and/or the secondary
clock master

The eMasterStatus parameter actually sets the TDM bus status of the third party device.

!!!! Cautions

• You cannot set the pDeviceName parameter to NULL.

Name: NCMRetCode NCM_AddThirdPartyDevice(pDeviceName, TDMBusCapabilities,
eMasterStatus)

Inputs: NCMDevice* pDeviceName • third party device name that is being added

NCM_TDM_BUSCAPS
TDMBusCapabilities

• TDM bus capabilities of the third party device

NCMMasterStatus eMasterStatus • specifies the clock role of the third party device

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Third party device

Mode: synchronous

Parameter Description

pDeviceName pointer to the data structure containing the name of the third party
device being added

TDMBusCapabilities indicates the TDM bus capabilities of the third party device as defined
by the NCM_TDM_BUSCAPS data structure

eMasterStatus sets the TDM bus status of the third party device. Possible values are as
follows:
• NCM_PRIMARY – device will serve as the primary clock master in

the system
• NCM_SECONDARY – device will serve as the secondary clock

master in the system
• NCM_SLAVE – device will be a slave in the system

20 NCM API Library Reference — December 2003

NCM_AddThirdPartyDevice() — adds a third party device

• You must ensure that each third party device that is added to the system has a unique device
name. The recommended way to do this is to embed a “ThirdPartyDevice” prefix to any third
party device name that is added to the system. For example, if your third party board is from
XYZ company, use “ThirdPartyDevice-XYZnnn” as the device name, where nnn is a device
number or an identifiable string.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
invalid inputs

NCME_MISSING_BUS_CAPABILITIES
invalid TDM bus capabilities

NCME_SYSTEMERROR
lack of system resources

NCME_FAIL_TO_SET_PRIMARY
device could not be set to primary clock master

NCME_FAIL_TO_SET_SECONDARY
device could not be set to secondary clock master

NCME_FAIL_TO_CONFIGURE_BUS
failure to configure TDM bus

!!!! Example

#include "NCMApi.h"

NCM_TDM_BUSCAPS busCAps;
NCMRetCode ncmRc=NCM_SUCCESS;
NCMMasterStatus clockStatus=NCM_PRIMARY;

NCMDevice deviceName;
Char DeviceString[] = "ThirdPartyDevice-XYZ#1";
deviceName.name = (char *) DeviceString;
deviceName.next = NULL;

//adding a third party device that is only SCBus/H100 capable

BusCaps.structVersion = NCM_BUSCAPS_VER_0100;
BusCaps.bH100MasterCapable = true;
BusCaps.bH100SlaveCapable = true;
BusCaps.bH110MasterCapable = false;
BusCaps.bH110SlaveCapable = false;
BusCaps.bScbusMasterCapable = true;
BusCaps.bScbusSlaveCapable = true;
BusCaps.bMvipMasterCapable = false;
BusCaps.bMvipSlaveCapable = false;
BusCaps.bScbus2MhzCapable = false;
BusCaps.bScbus4MhzCapable = true;
BusCaps.bScbus8MhzCapable = true

//call NCM API function:
ncmRc = NCM_AddThirdPartyDevice(deviceName, busCaps, clockStatus);

NCM API Library Reference — December 2003 21

adds a third party device — NCM_AddThirdPartyDevice()

if (ncmRc ! = NCM_SUCCESS)
{
 /*process error*/
}
else
{
 //process successful function call
}
...

!!!! See Also

• NCM_RemoveThirdPartyDevice()

22 NCM API Library Reference — December 2003

NCM_AllocateTimeslots() — allocates TDM bus time slots

NCM_AllocateTimeslots()

allocates TDM bus time slots

!!!! Description

The NCM_AllocateTimeslots() function is used to allocate TDM bus time slots for use by third
party devices. Intel Dialogic boards will not use time slots that are allocated for third party devices.

Name: NCMRetCode NCM_AllocateTimeslots(pDeviceName, iNumTimeSlots, eArbitrary, ePersistent,
pnNumOfBlocks, pNCMTSBlock)

Inputs: int iNumTimeSlots • number of time slots to be allocated

NCMTSRequestType eArbitrary • determines whether the time slots that are allocated will be
determined by the system or specifically set by the user

NCMTSReserveType ePersistent • determines the time slot reservation type (transient,
persistent or all)

int *pnNumOfBlocks • pointer to the actual number of time slot blocks that are
allocated

NCM_TS_BLOCK_STRUCT
*pNCMTSBlock

• pointer to the block of time slots to be returned

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Third party device

Mode: synchronous

Parameter Description

pDeviceName pointer to the data structure containing the name of the third party device
that will be associated with the allocated time slots. A device name for this
parameter is optional. If you do not want to associate a specific third party
device with the allocated time slots, set this parameter to NULL. If you are
associating a specific third party device with the allocated time slots, then
the device name must be the same name you used to add the third party
device to the system configuration with the
NCM_AddThirdPartyDevice() function.

iNumTimeSlots indicates the number of time slots to be allocated. This parameter is
ignored if the eArbitrary parameter is set to
NCM_TIMESLOT_SPECIFIC.

NCM API Library Reference — December 2003 23

allocates TDM bus time slots — NCM_AllocateTimeslots()

The following table summarizes the valid parameter combinations for the
NCM_AllocateTimeslots() function:

eArbitrary indicates whether the allocated time slots will be arbitrary or specific.
Valid settings are as follows:
• NCM_TIMESLOT_ARBITRARY – time slot numbers within the

reserved block of allocated time slots is determined by the system
software.

• NCM_TIMESLOT_SPECIFIC – time slot numbers within the reserved
block of allocated time slots is set by the user. The iNumTimeSlots
parameter is ignored when this value is used.

ePersistent determines whether or not the allocated time slots will persist when the
system is rebooted. Valid settings are as follows:
• NCM_TIMESLOT_PERSISTENT – allocated time slot blocks will be

retained each time the system is rebooted.
• NCM_TIMESLOT_TRANSIENT – allocated time slots will be

released after the system is rebooted.

pnNumOfBlocks pointer to the actual number of time slot blocks that are allocated by the
function call. A value of 1 indicates that a single, continuous block of time
slots will be allocated. A value of greater than 1 indicates that multiple
blocks of time slots will be allocated.

pNCMTSBlock pointer to NCM_TS_BLOCK_STRUCT data structure containing a block
of time slots that is returned by the function call

Parameter Description

pDeviceName eArbitrary ePersistent Result

NULL NCM_TIMESLOT_
ARBITRARY

NCM_TIMESLOT_
PERSISTENT

time slot blocks are not associated with a
specific device, determined by the system
software and retained when the system is
rebooted.

NULL NCM_TIMESLOT_
SPECIFIC

NCM_TIMESLOT_
PERSISTENT

time slot blocks are not associated with a
specific device, determined by the user and
retained when the system is rebooted.

NULL NCM_TIMESLOT_
ARBITRARY

NCM_TIMESLOT_
TRANSIENT

time slot blocks are not associated with a
specific device, determined by the system
software and released when the system is
rebooted.

NULL NCM_TIMESLOT_
SPECIFIC

NCM_TIMESLOT_
TRANSIENT

time slot blocks are not associated with a
specific device, determined by the user and
released when the system is rebooted.

set to a valid
device name

NCM_TIMESLOT_
ARBITRARY

NCM_TIMESLOT_
PERSISTENT

time slot blocks are associated with a specific
device, determined by the system software
and retained when the system is rebooted.

set to a valid
device name

NCM_TIMESLOT_
SPECIFIC

NCM_TIMESLOT_
PERSISTENT

time slot blocks are associated with a specific
device, determined by the user and retained
when the system is rebooted.

24 NCM API Library Reference — December 2003

NCM_AllocateTimeslots() — allocates TDM bus time slots

!!!! Cautions

• You must set the pnNumOfBlocks parameter to at least one. Similarly, you must allocate at
least one element for the pNCMTSBlock parameter.

• If you are reserving more than one block of time slots, the number of reserved time slot blocks
(set by the pnNumOfBlocks parameter) must match the number of reserved
NCM_TS_BLOCK_STRUCT data structures (set by pNCMTSBlock parameter).

• The function returns NCME_BUFFER_TOO_SMALL if the memory reserved for the
pNCMTSBlock parameter is not enough and returns the actual number of blocks needed in
pNumOfBlocks. In this case, the caller should reallocate sufficient memory for the
pNCMTSBlock parameter. Then make a second call to the NCM_AllocateTimeslots()
function.

!!!! Errors

Possible errors for this function include:

NCME_BUFFER_TOO_SMALL
buffer is of an insufficient size

NCME_INVALID_INPUTS
invalid inputs

NCME_UNAVAILABLE_TIMESLOT
requested time slot is not available

NCME_INVALID_THIRDPARTY_DEVICE
specified third party device does not exist

!!!! Example

#include "NCMApi.h"

int iBusNumber = 0;
NCM_TS_BLOCK_STRUCT *lpTimeSlotBlock = NULL;
int iNumOfBlocks = 1;
int iNumofTimeslot = 512;
NCMRetCode ncmRc = NCM_SUCCESS;
int i = 0;
int timeslot = 0;
NCMDevice deviceName;
Char DeviceString[] = "ThirdPartyDevice-XYZ#1";
deviceName.name = (char *) DeviceString;
deviceName.next = NULL;

/*example for arbitrary time slot allocation*/

set to a valid
device name

NCM_TIMESLOT_
ARBITRARY

NCM_TIMESLOT_
TRANSIENT

time slot blocks are associated with a specific
device, determined by the system software
and released when the system is rebooted.

set to a valid
device name

NCM_TIMESLOT_
SPECIFIC

NCM_TIMESLOT_
TRANSIENT

time slot blocks are associated with a specific
device, determined by the user and released
when the system is rebooted.

pDeviceName eArbitrary ePersistent Result

NCM API Library Reference — December 2003 25

allocates TDM bus time slots — NCM_AllocateTimeslots()

do
{
 if (lpTimeSlotBlock)
 free(lpTimeSlotBlock);

 lpTimeSlotBlock = (NCM_TS_BLOCK_STRUCT *)malloc
 (sizeof(TS_BLOC_STRUCT) * lNumOfBlocks);
 memset(lpTimeSlotBlock, 0, sizeof(TS_BLOCK_STRUCT);

for (int i = 0; i < lNumOfBlocks; i++)
{
 lpTimeSlotBlock[i].version = NCM_TIMESLOT_VER_0100;
}

 //call NCM API function
 ncmRc = NCM_AllocateTimeslots(&deviceName, iNumofTimeslot, NCM_TIMESLOT_ARBITRARY,
NCM_TIMESLOT_TRANSIENT, lpTimeSlotBlock, &iNumOfBlocks);
}
while (ncmRc == NCME_BUFFER_TOO_SMALL)

if (ncmRc == NCM_SUCCESS)
{
for (i=0; i < dwNumOfBlocks; i++)
{
 for (timeSlot = lpTimeSlotBlock[i].start_time_slot;
 timeSlot < lTimeSlotBlock[i].start_time_slot +
 lpTimeSlotBlock[i].number_of_time_slots; timeSlot++)
 { //timeSlot is an acutal value of a time slot
 //do something with timeSlot
 }
}}

/*example for allocation of a set of user-defined time slots (10-310, 500-712)*/
iNumOfBlocks = 2;

lpTimeSlotBlock = (NCM_TS_BLOCK_STRUCT *)malloc (sizeof(NCM_TS_BLOCK_STRUCT) *iNumOfBlocks);
lpTimeSlotBlock[0].version = NCM_TIMESLOT_VER_0100;
lpTimeSlotBlock[0].struct_size = sizeof(NCM_TS_BLOCK_STRUCT);
lpTimeSlotBlock[0].start_time_slot = 10;
lpTimeSlotBlock[0].number_of_time_slots = 300;
lpTimeSlotBlock[1].version = NCM_TIMESLOT_VER_0100;
lpTimeSlotBlock[1].struct_size = sizeof(NCM_TS_BLOCK_STRUCT);
lpTimeSlotBlock[1].start_time_slot = 500;
lpTimeSlotBlock[1].number_of_time_slots = 212;

//call NCM API function
ncmRc = NCM_AllocateTimeslots(NULL, iNumofTimeslot, NCM_TIMESLOT_SPECIFIC,
 NCM_TIMESLOT_TRANSIENT, lpTimeSlotBlock, &iNumOfBlocks);

if (ncmRc !=NCM_SUCCESS)
 /*process error*/

if (ncmRc == NCM_SUCCESS)
{
 /*print out the time slots in each block*/
 printf("For the request of %d time slots, %d block(s) of time slots have been
 allocated: \n", iNumofTimeslot, iNumOfBlocks);
 for (i=0; i < iNumOfBlocks; i++)
 {
 printf("Block %d: \n", i);
 for (timeslot = lpTimeSlotBlock[i].start_time_slot;
 + lpTimeSlotBlock[i].number_of_time_slots; timeslot ++)
 { /*timeSlot is an actual value of a time slot
 do something with timeslot */

26 NCM API Library Reference — December 2003

NCM_AllocateTimeslots() — allocates TDM bus time slots

 printf(“%d”, timeslot);
 }
 printf(“\n”);
 }
 }

/*you might choose to keep the starting time slot number in this transaction to use it in
releasing time slots. */

...
/*free the memory for time slot block after use*/
if (lpTimeSlotBlock)
 free(lpTimeSlotBlock);

!!!! See Also

• NCM_DeallocateTimeslots()

NCM API Library Reference — December 2003 27

configure DMV/B trunks — NCM_ApplyTrunkConfiguration()

NCM_ApplyTrunkConfiguration()

configure DMV/B trunks

!!!! Description

The NCM_ApplyTrunkConfiguration() function is for trunk configuration. This function takes
the Media load for the board and protocols for the trunks and then creates the configuration files
such as PCD, FCD, and CONFIG. If the function call is successful, the newly generated
configuration file names are set in the DCM’s data storage (Registry) for the next download.

Note: As of System Release 6.0 on PCI for Windows, only the Intel® Dialogic® DMV600BTEC and
DMV1200BTEC (DMV/B series boards with network interfaces) support trunk configuration.

Name: NCMRetCode NCM_ApplyTrunkConfiguration (pncmFamily, pncmDeviceUnique,
pTrunkConfig*)

Inputs: NCMFamily* pncmFamily • pointer to a data structure containing a device family
name

NCMDevice* pncmDeviceUnique • pointer to a data structure containing a unique device
name

NCMTrunkConfig* pTrunkConfig • pointer to a data structure containing a trunk
configuration

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Modify configuration

Mode: Synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing the family name. The
value of the data structure must be an installable family (that is, one that
is supported in the DCM catalog). All instantiated families of devices in
your current system configuration can be retrieved by
NCM_GetInstalledFamilies().

28 NCM API Library Reference — December 2003

NCM_ApplyTrunkConfiguration() — configure DMV/B trunks

For DMV/B boards there are five protocol groupings available and the all the trunks will have the
protocols from the same group:

Group 1
4ess(T1), 5ess(T1), ntt(T1), ni2(T1), dms(T1), and qsigt1(T1)

Group 2
qsige1(E1) and net5(E1)

Group 3
cas(T1) and t1cc(T1)

Group 4
r2mf(E1) and e1cc(E1)

Group5
dpnss(E1) and dass2(E1)

!!!! Cautions

All the trunks must have protocols from the same group.

!!!! Errors

Possible errors for this function include:

NCME_TRUNK_CONFIG_FILE_NOT_FOUND
The CONFIG file that corresponds to the board’s PCD file cannot be found.

 NCME_TRUNK_CONFIG_FILE_PARSE
Trunk configuration entries were not found in the board’s CONFIG file.

NCME_TRUNK_CONFIG_PROCESS_CREATION
Process required to create trunk configuration files failed.

NCME_TRUNK_CONFIG_SPECIFIC
Trunk Configuration file creation failed.

pncmDeviceUnique points to an NCMString data structure containing the device’s unique
name. This name can be any string that sufficiently distinguishes
multiple instantiations of the same device model.

Note: You are strongly discouraged from parsing the unique device
name from your application. Although the name is guaranteed to be
unique, Intel reserves the right to change the format of the device
name in future releases.

pTrunkConfig points to a list of trunk details including the “MediaLoad” for the board
and protocols for the trunks. For media load information, the value of
the TrunkName field in the list should be “MediaLoad” and the value of
the TrunkValue field should be one of the supported media loads for the
board. For protocols, the value of TrunkName should be “Trunk1”,
“Trunk2”, etc., and the value of the TrunkValue field should be a
supported protocol value.

Parameter Description

NCM API Library Reference — December 2003 29

configure DMV/B trunks — NCM_ApplyTrunkConfiguration()

NCME_TRUNK_CONFIG_FILE_ACTIVITY
System could not create or delete a required temporary file during trunk configuration.

NCME_TRUNK_CONFIG_INVALID_PROTOCOL
An invalid protocol has been passed in the trunk protocol list.

NCME_TRUNK_CONFIG_PROTOCOL_MISMATCH
Protocol mismatch. Refer the Intel Dialogic documentation or DCM online help for the list of
protocols that can be grouped together.

!!!! Example

The following example code is for a DMV/B series quad span board (i.e., DMV1200BTEC).

#include "NCMApi.h"

...

//
// Prepare inputs
//
NCMFamily family;
family.name = "DM3";
family.next = NULL;

NCMDevice UniqueName;
UniqueName.name = " DMV1200BTEP #1 in slot 2/10";
UniqueName.next = NULL;

NCMTrunkConfig TrunkConfigData;
//--First set the media load information.
TrunkConfigData.TrunkName = "MediaLoad";
TrunkConfigData.TrunkValue = "UL1";//--Media load supported for the board.
TrunkConfigData.next = NULL;

NCMTrunkConfig * pTrunkConfigData = TrunkConfigData;

//--set protocols details for trunk 1;
NCMTrunkConfig Trunk1Info;
Trunk1Info.TrunkName = "Trunk1";
Trunk1Info.TrunkValue = "4ess(T1)";
TrunkI1nfo.next = NULL;
//--add to the list
TrunkConfigData.next = Trunk1Info;
TrunkConfigData = TrunkConfigData.next;

//--set protocols details for trunk 2;
NCMTrunkConfig Trunk2Info;
Trunk2Info.TrunkName = "Trunk2";
Trunk2Info.TrunkValue = "5ess(T1)";
Trunk2Info.next = NULL;
//--add to the list
pTrunkConfigData.next = Trunk2Info;
pTrunkConfigData = pTrunkConfigData.next;

//--set protocols details for trunk 3;
NCMTrunkConfig Trunk3Info;
Trunk3Info.TrunkName = "Trunk3";
Trunk3Info.TrunkValue = "ntt(T1)";
Trunk3Info.next = NULL;
//--add to the list
pTrunkConfigData.next = Trunk3Info;
pTrunkConfigData = pTrunkConfigData.next;

30 NCM API Library Reference — December 2003

NCM_ApplyTrunkConfiguration() — configure DMV/B trunks

//--set protocols details for trunk 4;
NCMTrunkConfig Trunk4Info;
Trunk4Info.TrunkName = "Trunk4";
Trunk4Info.TrunkValue = "ni2(T1)";
Trunk4Info.next = NULL;

//
// Execute
//
NCMRetCode ncmRc = NCM_ApplyTrunkConfig(&family, &UniqueName, &TrunkConfigData);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
// Process error
...
}
...

!!!! See Also

• NCM_DetectBoards()

• NCM_DetectBoardsEx()

• NCM_EnableBoard()

• NCM_StartBoard()

• NCM_StartDlgSrv()

NCM API Library Reference — December 2003 31

deallocate memory — NCM_Dealloc()

NCM_Dealloc()

deallocate memory

!!!! Description

The NCM_Dealloc() function deallocates memory allocated for NCMString data structures. For
more information about memory allocation, refer to the Native Configuration Manager API for
Windows Operating Systems Programming Guide.

!!!! Cautions

To release memory that was allocated for one or more NCMValueEx data structures, use
NCM_DeallocValue() instead of NCM_Dealloc().

!!!! Errors

None.

!!!! Example

#include "NCMApi.h"

...

NCMFamily *pFamilies = NULL;

//get family list
NCMRetCode ncmRc = NCM_GetAllFamilies(&pFamilies);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
 ... //process error
}

Name: NCMRetCode NCM_Dealloc(pncmString)

Inputs: NCMString* pncmString • pointer to an NCMString data structure

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

Parameter Description

pncmString points to the NCMString data structure occupying the memory to be freed.
If the data structure is the first in a linked list, this function deallocates the
memory occupied by all data structures in the list.

32 NCM API Library Reference — December 2003

NCM_Dealloc() — deallocate memory

//
// Execute
//

//Deallocate memory for family list
NCM_Dealloc(pFamilies);
...

!!!! See Also

• NCM_DeallocValue()

NCM API Library Reference — December 2003 33

releases TDM bus time slots — NCM_DeallocateTimeslots()

NCM_DeallocateTimeslots()

releases TDM bus time slots

!!!! Description

The NCM_DeallocateTimeslots() function is used to release a single block of time slots that had
been reserved for third party devices.

The following table summarizes the different parameter combinations for the
NCM_DeallocateTimeslots() function:

Name: NCMRetCode NCM_DeallocateTimeslots(pDeviceName, nStartTimeSlot, bPermanent)

Inputs: NCMDevice *pDeviceName • pointer to a third party device name

int nStartTimeSlot • starting time slot number of the block to be released

bool bPermanent • determines whether or not the released time slots are
persistent

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Third party device

Mode: synchronous

Parameter Description

pDeviceName pointer to the data structure containing the name of the third party device
that was associated with the allocated block of time slots. The device
name must be the same name you associated with the time slot block
using the NCM_AllocateTimeslots() function.

A device name for this parameter is optional. If the block of time slots you
are deallocating was not associated with a third party device name, set this
parameter to NULL.

nStartTimeSlot starting time slot for the block of time slots that is to be deallocated. You
can set this parameter to a time slot number or to NO_UNIQUE_ID

bPermanent indicates whether or not the block of time slots will be permanently
released. If the Boolean is set to TRUE, then the block of time slots is
permanently deallocated. If the Boolean is set to FALSE then the
deallocation will not be preserved when the system is rebooted (i.e., the
time slot block will be automatically re-allocated when the system is
rebooted).

34 NCM API Library Reference– December 2003 — December 2003– December 2003

NCM_DeallocateTimeslots() — releases TDM bus time slots

!!!! Cautions

The function cannot partially release the time slot block(s) that are allocated by the
NCM_AllocateTimeslots() function. You must deallocate a complete block of time slots each
time the NCM_DeallocateTimeslots() function is called.

!!!! Errors

Possible errors for this function include:

NCME_RELEASE_TIMESLOT
time slots could not be released

NCME_INVALID_THIRDPARTY_DEVICE
specified third party device does not exist

NCME_CTBB_LIB
CTBBFace.dll (a required library) file is either not in the system or is the incorrect version

NCME_RELEASE_TIMESLOT
failed to release the specified time slots

NCME_SYSTEMERROR
specific system resources were not found

pDeviceName nStartTimeSlot bPermanent Result

NULL set to a valid value TRUE time slots within the block associated with the
start time slot will be permanently released.

NULL set to a valid value FALSE all time slots will be released and available for
use by other devices until the system is
rebooted. After the system is rebooted, the time
slots will be reclaimed.

NULL NO_UNIQUE_ID TRUE all time slots will be permanently released.

NULL NO_UNIQUE_ID FALSE all time slots will be released and available for
use by other devices until the system is
rebooted. After the system is rebooted, the time
slots will be reclaimed.

set to a valid
device name

set to a valid value TRUE time slot block associated with the device and
the starting time slot number will be
permanently released.

set to a valid
device name

set to a valid value FALSE time slot block associated with the device and
the starting time slot number will be released
and available for use by other devices until the
system is rebooted. After the system is
rebooted, the time slots will be reclaimed.

set to a valid
device name

NO_UNIQUE_ID TRUE all time slots associated with the device will be
permanently released.

set to a valid
device name

NO_UNIQUE_ID FALSE all time slots associated with the device will be
released and available for use by other devices
until the system is rebooted. After the system is
rebooted, the time slots will be reclaimed.

NCM API Library Reference — December 2003 35

releases TDM bus time slots — NCM_DeallocateTimeslots()

!!!! Example

#include "NCMApi.h"

NCMRetCode ncmRc=NCM_SUCCESS;

int start_timeslot = 10;
bool bPermanent = true;
NCMDevice deviceName;
char DeviceString[] = “ThirdPartyDevice-XYZ#1”;
deviceName.name = (char *) DeviceString;
deviceName.next = NULL;

ncmRc = NCM_DeallocateTimeslots(NULL, start_timeslot, true);

if (ncmRc != NCM_SUCCESS)
{
 //process error
}
ncmRc = NCM_DeallocateTimeslots(&deviceName, NO_UNIQUE_ID, true);

if (ncmRc != NCM_SUCCESS)
{
 //process error
}

...

!!!! See Also

• NCM_AllocateTimeslots()

36 NCM API Library Reference — December 2003

NCM_DeallocValue() — deallocate memory

NCM_DeallocValue()

deallocate memory

!!!! Description

The NCM_DeallocValue() function deallocates memory allotted for NCMValueEx data
structures. For more information about memory allocation, refer to the Native Configuration
Manager API Programming Guide.

!!!! Cautions

None.

!!!! Errors

None.

!!!! Example

#include "NCMAPI.h"

...
//
//Prepare inputs
//

NCMFamily.family;
family.name = "DM3";
family.next = NULL;

NCMDevice device;
device.name = "VOIP-T1-1";
device.next = NULL;

NCMVariable variable;
variable.name = "PciID";
variable.next = NULL;

Name: NCMRetCode NCM_DeallocValue(pncmValueEx)

Inputs: NCMValueEx *pncmValueEx • pointer to an NCMValueEx data structure

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

Parameter Description

pncmValueEx points to the NCMValueEx data structure occupying the memory to be
freed. If the data structure is the first in a linked list, this function
deallocates the memory occupied by all data structures in the list.

NCM API Library Reference — December 2003 37

deallocate memory — NCM_DeallocValue()

NCMValueEx *pValueEx = NULL;

NCMRetCode ncmRc = NCM_GetValueEx(&family, &device, & variable, *pValueEx);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
 ... //proecess error
}

...

//
// Execute
//

//Deallocate memory when through with it
NCM_DeallocValue(pValueEx);

...

!!!! See Also

• NCM_Dealloc()

38 NCM API Library Reference — December 2003

NCM_DeleteEntry() — remove configuration information

NCM_DeleteEntry()

remove configuration information

!!!! Description

The NCM_DeleteEntry() function removes configuration information from the system
configuration.

This function’s scope depends upon what values are passed to the NCMFamily and NCMDevice
pointers, as follows:

• To remove configuration information for an individual device: NCMFamily and NCMDevice
should point to an instantiated device.

• To remove configuration information for a family: NCMFamily should point to a valid family
and NCMDevice should point to NULL.

• To remove all configuration information: NCMFamily and NCMDevice should both point to
NULL.

!!!! Cautions

This function removes configuration information instantiated in the current system configuration. It
has no effect on the installable families, devices and configuration parameters defined in the DCM
catalog. For more information about the distinction between the system configuration and the

Name: NCMRetCode NCM_DeleteEntry(pncmFamily, pncmDeviceUnique)

Inputs: NCMFamily *pncmFamily • pointer to a structure containing a family name

NCMDevice *pncmDeviceUnique • pointer to a structure containing a unique device name

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Modify configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing the family name. The
value of the data structure must be an instantiated family (i.e one that
exists in your current system configuration).

pncmDeviceUnique points to an NCMString data structure containing the device’s unique
name. The unique device name must be the same name you used to add
the device to the system configuration with the NCM_AddDevice()
function.

Note: You are strongly discouraged from parsing the unique device name
from your application. Although the name is guaranteed to be unique,
Intel reserves the right to change the format of the device name in
future releases.

NCM API Library Reference — December 2003 39

remove configuration information — NCM_DeleteEntry()

DCM catalog, refer to the Native Configuration Manager API for Windows Operating Systems
Programming Guide.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

NCME_GENERAL
a problem occurred retrieving the data

!!!! Example

#include "NCMApi.h"

...

//
//prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

//
//execute
//

//delete a single device
NCMRetCode ncmRc = NCM_DeleteEntry(&family, &device);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
 ... //process error
{

// delete a family of devices
ncmRc = NCM_DeleteEntry(&family, NULL);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
 ... //process error
{

//delete all devices
ncmRc = NCM_DeleteEntry(NULL, NULL);
if (ncmRc == NCM_SUCCESS)
{
 ...

40 NCM API Library Reference — December 2003

NCM_DeleteEntry() — remove configuration information

}
else
{
 ... //process error
{

!!!! See Also

None.

NCM API Library Reference — December 2003 41

detect auto-detectable boards — NCM_DetectBoards()

NCM_DetectBoards()

detect auto-detectable boards

!!!! Description

The NCM_DetectBoards() function initiates a process that detects auto-detectable boards
installed in the system.

Note: The Ex functions should be used where available (for example, NCM_DetectBoardsEx instead of
NCM_DetectBoards). The non-Ex function is provided for backwards compatibility.

!!!! Cautions

• The NCM_DetectBoards() function is intended for non-DM3 boards only. Use the
NCM_DetectBoardsEx() function for DM3 boards.

• The callback function defined within the client application that is referenced by the
pCallBackFunc pointer must follow the int func_name (UINT percentageCompleted,
const char *message) format, where:

• percentageCompleted is the address of an unsigned integer variable that the
NCM_DetectBoards() function will fill to indicate the progress of the detection process
as a percentage of overall time required for detection.

• message is a NULL-terminated character string containing a message to indicate
detection progress status, such as “Detected Board #5”.

• If pCallBackFunc is NULL, then no message is sent to the client application from the
detection process.

Name: NCMRetCode NCM_DetectBoards(pCallBackFunc, pnNumBrdsFound)

Inputs: GL_PROG_FUNC *pCallBackFunc • pointer to a callback function

int *pnNumBrdsFound • pointer to a variable indicating the number of boards
found through the auto-detect process

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

Parameter Description

pCallbackFunc points to a function that is defined as part of the client application and will
be called by the NCM API to provide updates on the status of the auto-
detection process (See Cautions below.)

pnNumBrdsFound points to a variable where the number of boards found through the auto-
detection process will be stored

Note: The client application must declare the variable referenced by this
pointer prior to calling NCM_DetectBoards().

42 NCM API Library Reference — December 2003

NCM_DetectBoards() — detect auto-detectable boards

!!!! Errors

Possible errors for this function include:

NCME_REG_CALLBK
callback function cannot be registered with initialization process

NCME_BRD_DETECT
auto-detect failed

NCME_SP
invalid state transition

NCME_CTBB_DEVICE_DETECTED
error configuring the TDM bus

NCME_GENERAL
a problem occurred retrieving the data

NCME_DETECTOR_LIB_NOT_FOUND
there was an error loading the detector library

NCME_DETECTOR_FCN_NOT_FOUND
there was an error getting the detector function

!!!! Example

#include “NCMApi.h”

int CallbackFunc(UINT uipercent, const char *message)
{
 //use the percentage and message to show status of the auto-detection process
 return TRUE;
}

...

int nNumBoardsFound = 0;

//
// Execute
//

NCMRetCode ncmRc = NCM_DetectBoards(CallBackFunc, &nNumBoardsFound);
...

!!!! See Also

• NCM_DetectBoardsEx()

• NCM_GetAUID()

• NCM_StartBoard()

• NCM_StopBoard()

• NCM_StartDlgSrv()

• NCM_StopDlgSrv()

NCM API Library Reference — December 2003 43

initiate board auto-detection — NCM_DetectBoardsEx()

NCM_DetectBoardsEx()

initiate board auto-detection

!!!! Description

The NCM_DetectBoardsEx() function initiates a process that detects any auto-detectable boards
installed in the system.

Note: NCM_DetectBoardsEx() does not give list of .pcd files for DM3 boards. One of the data types in
NCMTypes.h (NCM_MAX_FILEDESC) has changed from 81 characters to 2 * MAX_PATH
(512). You must recompile your application if you use NCMTypes.h (directly or via other
dependencies).

!!!! Cautions

The Intel® Dialogic® framework always performs a full system detection upon reboot. Any
subsequent calls to this NCM_DetectBoardsEx() function will complete the detection more
quickly and return. In most of the cases, callback functions (NCM_CALLBACK_FCN and
NCM_PCDFILE_SELECTION_FCN) might not be invoked.

Recommendations are as follows:

• Use NULL for both of these parameters: NCM_CALLBACK_FCN and
NCM_PCDFILE_SELECTION_FCN. This will ensure that NCM_DetectBoardsEx()
behaves consistently, callback functions will be ignored, and default configurations will be
selected.

• If your application is always running (for example, if it is running as a Windows service and
set to automatic mode) then the application can listen to event service events generated during
detection and act accordingly. Refer to the Event Service documentation for events that are
generated during detection.

Name: NCMRetCode NCM_DetectBoardsEx(pdetectInfo, pdetectResult)

Inputs: NCM_DETECTION_INFO *pdetectInfo • pointer to a NCM_DETECTION_INFO data
structure

NCM_DETECTION_RESULT *pdetectResult • pointer to a NCM_DETECTION_RESULT
data structure

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

Parameter Description

pdetectInfo points to the NCM_DETECTION_INFO data structure

pdetectResult points to a NCM_DETECTION_RESULT data structure

44 NCM API Library Reference — December 2003

NCM_DetectBoardsEx() — initiate board auto-detection

• To reconfigure the boards use the NCM_ReconfigureBoard() function.

!!!! Errors

Possible errors for this function include:

NCME_REG_CALLBK
callback function cannot be registered with initialization process

NCME_BRD_DETECT
auto-detect failed

NCME_SP
invalid state transition

NCME_CTBB_DEVICE_DETECTED
error configuring the TDM bus

NCME_GENERAL
a problem occurred retrieving the data

NCME_DETECTOR_LIB_NOT_FOUND
there was an error loading the detector library

NCME_DETECTOR_FCN_NOT_FOUND
there was an error getting the detector function

NCME_PCD_SELECTION
no PCD callback function present for DM3 boards

!!!! Example

#include "NCMAPI.h"

int CallBackFunc(UINT uipercent, const char *message)
{
 printf("%d percent complete \n Status message: %s \n", uipercent, message);
 return TRUE;
}

int GetPCDFile(NCMFileInfo *fileList, int NumFiles, NCMDevInfo devInfo, int *index)
{
 //if necessary, print out the devInfo, it contains information about the device for
 // (int i=0; I<numFiles; I++) displays the file index and file name

 printf ("index %d, file name = %s\n", i, fileList[i]);

 printf("please select file index");

 scanf("%d", index);
 return *index;
}

bool DetectBoardsEx()
{
 NCMRetCode ncmRc = NCM_SUCCESS;
 NCM_DETECTION_INFO detectionInfo;
 NCM_DETECTION_RESULT detectionResult;
 detectionInfo.structSize = sizeof(NCM_DETECTION_INFO);
 detectionInfo.callbackFcn = (NCM_CALLBACK_FCN*) CallBackFunc;
 detectionInfo.pcdFileSelectionFcn = (NCM_PCDFILE_SELECTION_FCN*) GetPCDFile;
 ncmRc = NCM_DetectBoardsEx(detectionInfo, detectionResult);

NCM API Library Reference — December 2003 45

initiate board auto-detection — NCM_DetectBoardsEx()

 if (ncmRc ! = NCM_SUCCESS)
 {
 NCMErrorMsg *pncmErrorMsg = NULL;
 ncmRc = NCM_GetErrorMsg(ncmRc, *pncmErrorMsg);
 if (ncmRc== NCM_SUCCESS)
 printf ("NCM_DetectBoardsEx() returns error: %s \n", pncmErrorMsg->name);
 else
 {
 printf("NCM_DetectBoardsEx() returns unknown error \n";
 NCM_Dealloc(pncmErrorMsg);
 return false;
 }
 else
 {
 printf("NCM_DetectBoardsEx() success, detected %d boards \n",
 detectionResult.totalDetectedBoards);
 return true;
 }
}

!!!! See Also

• NCM_DetectBoards()

• NCM_GetErrorMsg()

• NCM_StartBoard()

• NCM_StopBoard()

• NCM_StartDlgSrv()

• NCM_StopDlgSrv()

46 NCM API Library Reference — December 2003

NCM_EnableBoard() — enable or disable device initialization

NCM_EnableBoard()

enable or disable device initialization

!!!! Description

The NCM_EnableBoard() function enables or disables device initialization when the Intel
Dialogic system is started. Any board that is disabled will not start when the system is started using
NCM_StartDlgSrv().

The effect of this function depends on how you set the bEnable parameter:

• To allow device initialization: Set bEnable to TRUE.

• To prevent device initialization: Set bEnable to FALSE.

This function’s scope depends upon what values are passed for the NCMFamily and NCMDevice
pointers:

• To affect initialization for a device: pncmFamily and pncmDeviceUnique should point to an
instantiated device.

• To affect initialization for a family: pncmFamily should point to a valid family and
pncmDeviceUnique should be NULL.

• To affect initialization for all devices: pncmFamily and pncmDeviceUnique should both be
NULL.

Name: NCMRetCode NCM_EnableBoard(pncmFamily, pncmDeviceUnique, bEnable)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDeviceUnique • pointer to a data structure containing a unique device
name

BOOL bEnable • boolean indicator of enable or disable option

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Modify configuration

Mode: synchronous

NCM API Library Reference — December 2003 47

enable or disable device initialization — NCM_EnableBoard()

!!!! Cautions

This function only affects devices instantiated in the current system configuration. It has no effect
on the installable families, devices, and configuration parameters defined in the DCM catalog.

!!!! Errors

Possible errors for this function include:

NCME_SP
invalid state transition

NCME_BAD_DATA_LOC
the data destination is invalid or indeterminate

NCME_GENERAL
a problem occurred retrieving the data

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

!!!! Example

#include "NCMApi.h"

...

//
//prepare inputs
//

NCMFamily.family;
family.name = "D/x1D";
family.next = NULL;

Parameter Description

pncmFamily points to an NCMString data structure containing a family name. The
value of the data structure must be an instantiated family (i.e one that
exists in your current system configuration)

pncmDeviceUnique points to the NCMString data structure containing the device’s unique
name. The unique device name must be the same name you used to add
the device to the system configuration with the NCM_AddDevice()
function.

Note: You are strongly discouraged from parsing the unique device
name from your application. Although the name is guaranteed to be
unique, Intel reserves the right to change the format of the device name
in future releases.

bEnable specifies whether devices should be enabled (TRUE) or disabled
(FALSE)

48 NCM API Library Reference — December 2003

NCM_EnableBoard() — enable or disable device initialization

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

//
//execute
//

//enable a single device
NCMRetCode ncmRc = NCM_EnableBoard(&family, &device, TRUE);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
 //process error
}

//enable a family of devices
NCMRetCode ncmRc = NCM_EnableBoard(&family, NULL, TRUE);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
 //process error
}

...

!!!! See Also

• NCM_AddDevice()

• NCM_IsBoardEnabled()

• NCM_DeleteEntry()

NCM API Library Reference — December 2003 49

get a list of installable device models — NCM_GetAllDevices()

NCM_GetAllDevices()

get a list of installable device models

!!!! Description

The NCM_GetAllDevices() function gets a list of installable device models for a specific family.
For information about using this function to fill all the data structures you need to instantiate and
modify configuration parameter values, refer to the Native Configuration Manager API for
Windows Operating Systems Programming Guide.

Note: This function provides a list of installable device models from the DCM catalog. This function
does not return a list of installed devices for your current system configuration. See the
NCM_GetInstalledDevices() for that functionality.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
The DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

Name: NCMRetCode NCM_GetAllDevices(pncmFamily, ppncmDeviceModel)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice **ppncmDeviceModel • address of pointer where installable device model names
will be output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing the family name. The
value of the data structure must be an installable family (i.e one that is
supported in the DCM catalog)

ppncmDeviceModel indicates the address of the pointer to the list to be filled with
NCMString data structures containing installable device model names

50 NCM API Library Reference — December 2003

NCM_GetAllDevices() — get a list of installable device models

NCME_GENERAL
a problem occurred retrieving the data

NCME_INVALID_FAMILY
the family name is invalid

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

//
//prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice *pDevices = NULL;

//
//Execute
//

ncmRc = NCM_GetAllDevices(&family, &pDevices);

if (ncmRc == NCM_SUCCESS)
{
 NCMDevice * pModels = pDevices;
 while (pModels != NULL)
 {
 //process list
 ...
 pModels = pModels ->next;
 }
}

else
{
 //process error
 ...
}

//deallocate memory when through with it
NCM_Dealloc(pDevices);
...

!!!! See Also

• NCM_GetAllFamilies()

• NCM_GetInstalledDevices()

• NCM_GetInstalledFamilies()

• NCM_AddDevice()

NCM API Library Reference — December 2003 51

get a list of installable families — NCM_GetAllFamilies()

NCM_GetAllFamilies()

get a list of installable families

!!!! Description

The NCM_GetAllFamilies() function gets a list of installable family names. For information
about using this function to fill all the data structures you need to instantiate and modify
configuration parameter values, refer to the Native Configuration Manager API for Windows
Operating Systems Programming Guide.

Note: This function provides a list of installable family names from the DCM catalog. This function does
not return a list of family names for your current system configuration. See the
NCM_GetInstalledFamilies() for that functionality.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
The DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

Name: NCMRetCode NCM_GetAllFamilies(ppncmFamily)

Inputs: NCMFamily **ppncmFamily • address of a pointer in which the list of installable family
names will be output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

ppncmFamily indicates the address of the pointer to the list to be filled with NCMString
data structures containing installable family names

52 NCM API Library Reference — December 2003

NCM_GetAllFamilies() — get a list of installable families

!!!! Example

#include "NCMApi.h"

...

NCMFamily *pFamilies = NULL;

//
//Execute
//

NCMRetCode ncmRc = NCM_GetAllFamilies(&pFamilies);

if (ncmRc == NCM_SUCCESS)
{
 NCMFamily * pCurrFamilies = pFamilies;
 while (pCurrFamilies != NULL)
 {
 //process list
 ...
 pCurrFamilies = pCurrFamilies ->next;
 }
}

else
{
 //process error
 ...
}

//deallocate memory when through with it
NCM_Dealloc(pFamilies);
...

!!!! See Also

• NCM_GetAllDevices()

• NCM_GetInstalledDevices()

• NCM_GetInstalledFamilies()

• NCM_AddDevice()

NCM API Library Reference — December 2003 53

get the AUID of a family or device — NCM_GetAUID()

NCM_GetAUID()

get the AUID of a family or device

!!!! Description

The NCM_GetAUID() function returns the Addressable Unit Identfier (AUID) for a given family
or device. An AUID is a unique string of numbers that the Intel Dialogic system software assigns to
each component with which communications can be initiated. In the context of the NCM API,
devices are assigned AUIDs. You can use this function to get the AUID of an individual device or a
list of AUIDs from all instantiated devices in a given family.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
invalid inputs supplied to the function

NCME_GENERAL
a problem occurred retrieving the data

Name: NCMRetCode NCM_GetAUID(pncmFamily, pncmDevice, pNumAuid, pAuidList)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDevice • pointer to a data structure containing a device name

int *pNumAuid • pointer to the number of AUIDs to be returned by the
function

int *pAuidList • pointer to the list of AUIDs to be returned

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h
devmap.h

Category: System administration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a device name

pnumAuid points to the number of AUIDs to be returned by the function

pAuidList points to where the list of AUIDs will be output

54 NCM API Library Reference — December 2003

NCM_GetAUID() — get the AUID of a family or device

!!!! Example

#include "NCMApi.h"
#include "devmap.h"

//1--get AUID for an individual device
//prepare inputs

int fruAuid=0;
int numAuid=1;
NCMFamily ncmFamily = {"DM3", NULL};
NCMDevice ncmDevice = {"QS_T1", NULL};

//execute

ncmRc = NCM_GetAUID(&ncmFamily, &ncmDevice, &numAuid, &fruAuid);
if (ncmRc ==NCM_SUCCESS)
{
 //pring out AUID
 printf("The AUID for %s/%s is %d: \n", ncmFamily.name, ncmDevice.name, fruAuid);
}
else
 //process error

//2---get AUIDs for a family
//prepare inputs

int *pfruAuid = (int*)malloc(sizeof(int)*1);
int numAuid=1;
NCMFamily ncmFamily = {“DM3”, NULL};

//execute

do
{
 pfruAuid= (int*)realloc(pfruAuid, sizeof(int)*(numAuid));
 ncmRc = NCMGetAUID(&ncmFamily, NULL, &numAuid, pfruAuid);
} While (ncmRc == NCME_BUFFER_TOO_SMALL)

if (ncmRc == NCM_SUCCESS)
{
 //print out the AUIDs
 printf("The AUIDs for family %s are \n", ncmFamily.name);
 for (int I=0; I<numAuid; I++)
 {
 printf("AUID %d = %d \n", i, *pfruAuid++);
 }
}
else
 //process error
}

!!!! See Also

• NCM_GetFamilyDeviceByAUID()

NCM API Library Reference — December 2003 55

get the clock master fallback list — NCM_GetClockMasterFallbackList()

NCM_GetClockMasterFallbackList()

get the clock master fallback list

!!!! Description

The NCM_GetClockMasterFallbackList() function returns the clock master fallback list. This
function fills a pointer to a pointer with the beginning address of a list of devices in the clock
master fallback list. In addition, this function also returns the total number of devices in the list. For
more information about the clock master fallback list, refer to the Native Configuration Manager
API for Windows Operating Systems Programming Guide.

!!!! Cautions

• The current system software release supports a single TDM bus. Therefore, the bus name for
the pncmBus parameter should always be “Bus-0”.

• The NCM API allocates memory for the data returned by this function. To avoid memory
leaks, the client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

Name: NCMRetCode NCM_GetClockMasterFallbackList(pncmBus, pnumInList, ppfallbackList)

Inputs: NCMDevice *pncmBus • pointer to a specific bus name

int *pnumInList • pointer to the total number of boards in the list to be
returned

NCMDevice **ppfallbackList • address of a pointer to the list of devices in the clock master
fallback list to be returned

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: TDM bus

Mode: synchronous

Parameter Description

pncmBus points to an NCMString data structure containing the specific bus name
(“Bus-0”)

pnumInList points to the total number of devices in the clock master fallback list

ppfallbackList address of a pointer to the list of devices to be returned

56 NCM API Library Reference — December 2003

NCM_GetClockMasterFallbackList() — get the clock master fallback list

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

//
//prepare inputs
//

NCMDevice bus;
device.name = "Bus-0";
device.next = NULL;

NCMValue * pfallbackList = NULL;
int total;

//
//Execute
//

NCMRetCode ncmRc = NCMGetClockMasterFallbackList(&bus, &total, &pfallbackList);

if (ncmRc == NCM_SUCCESS)
{
 NCMValue * pCurrList = pfallbackList;
 while (pCurrList !=NULL)
 {
 //process list
 ...
 pCurrList = pCurrList->next;
 }
}
else
{
 //process error
 ...
}

//deallocate memory
NCM_Dealloc(pfallbackList);

!!!! See Also

• NCM_GetTDMBusValue()

• NCM_SetClockMasterFallbackList()

• NCM_SetTDMBusValue()

NCM API Library Reference - — December 2003December 2003 57

get a list of supported countries — NCM_GetCspCountries()

NCM_GetCspCountries()

get a list of supported countries

!!!! Description

The NCM_GetCspCountries() function gets a list of supported countries from the DCM catalog.

This function fills a pointer to a pointer with the beginning address of a list of countries. The list
represents those countries for which Intel telecom devices may be configured.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

Name: NCMRetCode NCM_GetCspCountries(ppncmCountries)

Inputs: NCMValue **ppncmCountries • address of pointer where countries will be output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Function category (to match categories in FuncsByCategory module)

Mode: synchronous

Parameter Description

ppncmCountries indicates the address of the pointer to the list to be filled with structures
containing countries

58 NCM API Library Reference — December 2003

NCM_GetCspCountries() — get a list of supported countries

!!!! Example

#include "NCMApi.h"

...

NCMValue *pCountries = NULL;

//
//Execute
//

NCMRetCode ncmRc = NCM_GetCspCountries(&pCountries);

if (ncmRc == NCM_SUCCESS)
{
 NCMValue * pCurrCountries = pCountries;
 while (pCurrCountries != NULL)
 {
 //process list
 ...
 pCurrCountries = pCurrCountries ->next;
 }
}

else
{
 //process error
 ...
}

//deallocate memory when through with it
NCM_Dealloc(pCountries);
...

!!!! See Also

• NCM_GetCspCountryCode()

• NCM_GetCspCountryName()

• NCM_GetCspFeaturesValue()

• NCM_GetCspFeatuesValueRange()

• NCM_GetCspFeaturesVariables()

NCM API Library Reference — December 2003 59

get a country code — NCM_GetCspCountryCode()

NCM_GetCspCountryCode()

get a country code

!!!! Description

The NCM_GetCspCountryCode() function gets the country code for a country from the DCM
catalog. This function returns the ISO country code for a specified country via the address of a
pointer that is passed to it.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

Name: NCMRetCode NCM_GetCspCountryCode(szCountryName, ppncmCode)

Inputs: char *szCountryName • pointer to a country name

NCMValue **ppncmCode • address of pointer where the ISO country code will be
output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Function category (to match categories in FuncsByCategory module)

Mode: synchronous

Parameter Description

szCountryName points to an ASCII-Z string containing the country name you would like to
get the code for

ppncmCode indicates the address of the pointer that will point to the ISO country code

60 NCM API Library Reference — December 2003

NCM_GetCspCountryCode() — get a country code

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

NCMValue *pCode = NULL;

//
//execute
//

NCMRetCode ncmRc = NCM_GetCspCountryCode("United States", &pCode);

if (ncmRc== NCM_SUCCESS)

{
 ...
}
else
{
 //process error
 ...
{

//deallocate memory when through with it
NCM_Dealloc(pCode);
...

!!!! See Also

• NCM_GetCspCountries()

• NCM_GetCspCountryName()

• NCM_GetCspFeaturesValue()

• NCM_GetCspFeatuesValueRange()

• NCM_GetCspFeaturesVariables()

NCM API Library Reference — December 2003 61

get a country name — NCM_GetCspCountryName()

NCM_GetCspCountryName()

get a country name

!!!! Description

The NCM_GetCspCountryName() function gets the country name for a given ISO country code
from the DCM catalog.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

Name: NCMRetCode NCM_GetCspCountryName(szCountryCode, ppncmName)

Inputs: char *szCountryCode • pointer to a country code

NCMValue **ppncmName • address of pointer where the country name will be output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Function category (to match categories in FuncsByCategory module)

Mode: synchronous

Parameter Description

szCountryCode points to an ASCII-Z string containing the country code you would like to
get the name for

ppncmName indicates the address of the pointer that will point to the country name

62 NCM API Library Reference — December 2003

NCM_GetCspCountryName() — get a country name

!!!! Example

#include "NCMApi.h"

...

NCMValue *pName = NULL;

//
//execute
//

NCMRetCode ncmRc = NCM_GetCspCountryName("US", &pName);

if (ncmRc== NCM_SUCCESS)

{
 ...
 //process error
}
else
{
 //process error
 ...
{

//deallocate memory when through with it
NCM_Dealloc(pName);
...

!!!! See Also

• NCM_GetCspCountryCode()

• NCM_GetCspCountryCode()

• NCM_GetCspFeaturesValue()

• NCM_GetCspFeatuesValueRange()

• NCM_GetCspFeaturesVariables()

NCM API Library Reference — December 2003 63

get a country-specific parameter value — NCM_GetCspFeaturesValue()

NCM_GetCspFeaturesValue()

get a country-specific parameter value

!!!! Description

The NCM_GetCspFeaturesValue() function gets a country-specific parameter value from within
the pointer to a comma-separated list of country-specific configuration parameters. A list of
country-specific configuration parameters is contained in the Features configuration parameter.
The value is either extracted from the string of values passed in the szFeatures parameter or found
in the current system configuration.

Whether the country-specific configuration parameter value this function gets is from the DCM
catalog or the system configuration depends on the value of the szFeatures parameter, as follows:

• To retrieve the default country-specific configuration parameter value from the DCM catalog,
set szFeatures to an ASCII-Z string containing a pointer to a comma-separated list of country-
specific configuration parameters.

• To retrieve the country-specific configuration parameter value from the system configuration,
set the szFeatures to NULL.

Name: NCMRetCode NCM_GetCspFeaturesValue(szCountryCode, szFeatures, pncmVariable,
ppncmValue)

Inputs: char *szCountryCode • pointer to a country code

char *szFeatures • pointer to a comma-separated list of country specific
configuration parameters

NCMVariable *pncmVariable • pointer to a country specific configuration parameter listed
in the szFeatures parameter

NCMValue **ppncmValue • address of the pointer to the value of the variable specified
in the pncmVariable parameter

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Function category (to match categories in FuncsByCategory module)

Mode: synchronous

Parameter Description

szCountryCode points to an ASCII-Z string containing an ISO country code. This value
determines the set of country-specific parameters that are returned by the
function. Each country has a unique set of configurable parameters.

szFeatures points to an ASCII-Z string that contains either a pointer to a comma-
separated list of country-specific configuration parameters or NULL

64 NCM API Library Reference — December 2003

NCM_GetCspFeaturesValue() — get a country-specific parameter value

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

//
//prepare inputs
//

NCMVariable variable;
variable.name = "Receive Gain";
variable.next = NULL;

NCMValue *pValue = NULL;

//
//Execute
//

NCMRetCode ncmRc = NCM_GetCspFeaturesValue("US", "RXGAIN_0, FREQRES_HIGH", &variable, &pValue);

pncmVariable points to the country-specific configuration parameter for which a value
will be returned

ppncmValue indicates the address of the pointer that will contain the value of the
country-specific configuration parameter

Parameter Description

NCM API Library Reference — December 2003 65

get a country-specific parameter value — NCM_GetCspFeaturesValue()

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
 //process error
 ...
}

//deallocate memory when through with it
NCM_Dealloc(pValue);
...

!!!! See Also

• NCM_GetCspCountryCode()

• NCM_GetCspCountryName()

• NCM_GetCspCountries()

• NCM_GetCspFeatuesValueRange()

• NCM_GetCspFeaturesVariables()

66 NCM API Library Reference — December 2003

NCM_GetCspFeatuesValueRange() — get the value range of a parameter

NCM_GetCspFeatuesValueRange()

get the value range of a parameter

!!!! Description

The NCM_GetCspFeaturesValueRange() function gets the value range for a country-specific
configuration parameter.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

Name: NCMRetCode NCM_GetCspFeaturesValueRange(szCountryCode, pncmVariable, ppncmRange)

Inputs: char *szCountryCode • pointer to a country code

NCMVariable *pncmVariable • pointer to a country-specific configuration parameter

NCMValue **ppncmRange • address of a pointer where the range will be output

Returns: NCM_SUCCESS if success
NCM_error code if failure

Includes: NCMApi.h

Category: Function category (to match categories in FuncsByCategory module)

Mode: synchronous

Parameter Description

szCountryCode points to an ASCII-Z string containing an ISO country code

pncmVariable points to the country-specific configuration parameter for which a range
will be returned

ppncmRange indicates the address of the pointer that will contain the value range of the
country specific configuration parameter

NCM API Library Reference — December 2003 67

get the value range of a parameter — NCM_GetCspFeatuesValueRange()

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

//
//prepare inputs
//

NCMVariable variable;
variable.name = "Receive Gain";
variable.next = NULL;

NCMValue *pRange=NULL;

//
//execute
//

NCMRetCode ncmRc = NCM_GetCspFeaturesValueRange("US", &variable, &pRange);

if (ncmRc== NCM_SUCCESS)
{
 NCMValue *pCurrRange = pRange;
 while (pCurrRange !=NULL)
 {
 ...
 pCurrRange = pCurrRange->next
 }
}
else
{
 //process error
 ...
{

//deallocate memory when through with it
NCM_Dealloc(pRange);
...

!!!! See Also

• NCM_GetCspCountries()

• NCM_GetCspCountryCode()

• NCM_GetCspCountryName()

• NCM_GetCspFeaturesValue()

• NCM_GetCspFeaturesVariables()

68 NCM API Library Reference — December 2003

NCM_GetCspFeaturesVariables() — get the values for a parameter

NCM_GetCspFeaturesVariables()

get the values for a parameter

!!!! Description

The NCM_GetCspFeaturesVariables() function gets values for country-specific configuration
parameters for a specific country. The country must be supported by the DCM catalog. Use the
NCM_GetCSPCountries() function to get a list of countries that are supported by the DCM
catalog.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

Name: NCM_RetCode NCM_GetCspFeaturesVariables(szCountryCode, ppncmVariables)

Inputs: char *szCountryCode • pointer to a country code

NCMVariable **ppncmVariables • address of a pointer where the pointer to a comma
separated list of country-specific configuration parameters
will be stored

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Function category (to match categories in FuncsByCategory module)

Mode: synchronous

Parameter Description

szCountryCode points to an ASCII-Z string containing an ISO country code

ppncmVariables indicates the address of the pointer that will point to the returned
“Features” components

NCM API Library Reference — December 2003 69

get the values for a parameter — NCM_GetCspFeaturesVariables()

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include “NCMApi.h”

...

NCMVariable *pVariables = NULL;

//
//execute
//

NCMRetCode ncmRc = NCM_GetCspFeaturesVariables(“US”, &pVariables);

if (ncmRc== NCM_SUCCESS)
{
 NCMVariable *pCurrVariables = pVariables;
 while (pCurrVariables !=NULL)
 {
 ...
 pCurrVariables = pCurrVariables->next
 }
}
else
{
 //process error
 ...
{

//deallocate memory when through with it
NCM_Dealloc(pVariables);
...

!!!! See Also

• NCM_GetCspCountries()

• NCM_GetCspCountryCode()

• NCM_GetCspCountryName()

• NCM_GetCspFeaturesValue()

• NCM_GetCspFeatuesValueRange()

70 NCM API Library Reference — December 2003

NCM_GetDialogicDir() — get a given Dialogic directory

NCM_GetDialogicDir()

get a given Dialogic directory

!!!! Description

The NCM_GetDialogicDir() function returns the corresponding Intel Dialogic directory. The
function queries the Intel Dialogic software for the specified path key. For example, if the supplied
path key value is “DLFWLPATH”, then “...\Dialogic\data” would be returned.

!!!! Cautions

The application needs to allocate memory for the directory to be returned and needs to provide the
size of the buffer. If the buffer size is too small, the function will return a
NCME_BUFFER_TOO_SMALL error.

!!!! Errors

Possible errors for this function include:

NCME_BUFFER_TOO_SMALL
buffer is too small

Name: NCMRetCode NCM_GetDialogicDir(szKey, size, pDlgcDir)

Inputs: char *szKey • pointer to the Intel Dialogic path key

int *size • pointer to the returned buffer size

char *pDlgcDir • pointer to the directory to be returned

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

Parameter Description

szKey points to an ASCII-Z string containing the specific path key value. The
possible key values along with their corresponding path are defined as
follows:
• DIALOGICDIR – “...Dialogic\”
• DLCFGPATH – “...\Dialogic\cfg”
• DLFWLPATH – “...\Dialogic\data”
• DLINFPATH – “...\Dialogic\inf”
• DNASDKDIR – “...|Dialogic\bin”
• GFAX – “...\Dialogic\cpfax” (if Gammalink fax is installed)

size indicates the buffer size allocated for the returned pDlgcDir parameter

pDlgDir points to the directory to be returned

NCM API Library Reference — December 2003 71

get a given Dialogic directory — NCM_GetDialogicDir()

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

NCMRetCode ncmRc = NCM_SUCCESS;

//get directory
char *pDlg_data_path= NULL;
int bufferSize = MAX_PATH;
char pathKey[MAX_PATH] = {0};

strcpy(pathKey, "DLFWLPATH");

//
//execute
//

do
{
 pDlg_data_path = (char*)realloc(pDlg_data_path, bufferSize *sizeof(char));
 memset (pDlg_data_path, ‘/0’, bufferSize);

 ncmRc= NCM_GetDialogicDir(pathKey, &buffersize, pDlg_data_path);
 bufferSize *=2;
}

 while (ncmRc ==NCME_BUFFER_TOO_SMALL);

if (ncmRc != NCM_SUCCESS && ncmRc !=NCME_BUFFER_TOO_SMALL)
 {
 //process error
 ...
 }

else if (pDlg_data_path != NULL)
{
 printf("dialogic dir path is %s\n", pDlg_data_path);
}

//clean up
if(pDlg_data_path)
 free(pDlg_data_path);

...

!!!! See Also

None.

72 NCM API Library Reference — December 2003

NCM_GetDlgSrvStartupMode() — get the startup mode of the system service

NCM_GetDlgSrvStartupMode()

get the startup mode of the system service

!!!! Description

The NCM_GetDlgSrvStartupMode() function gets the startup mode of the Intel Dialogic
System. Refer to the Native Configuration Manager API for Windows Operating Systems
Programming Guide for more information about the system.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

NCME_OPENING_SCM
an error occurred while opening the service control manager

NCME_OPENING_DLGC_SVC
an error occurred while opening the Intel Dialogic system

Name: NCMRetCode NCM_GetDlgSrvStartupMode(pncmStartupMode)

Inputs: NCMDlgSrvStartupMode *pncmStartupMode • pointer to where the startup mode will be
output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: system

Mode: synchronous

Parameter Description

pncmStartupMode points to the current startup mode setting for the Intel Dialogic System.
Possible modes are as follows:
• NCM_DLGSRV_AUTO – The Intel Dialogic System starts

automatically whenever the system is re-started
• NCM_DLGSRV_MANUAL – The Intel Dialogic System must be

started manually
• NCM_DLGSRV_DISABLED – The Intel Dialogic System is currently

disabled
• NCM_DLGSRV_STARTUP_UNDEFINED – The Intel Dialogic

System startup mode is undefined

NCM API Library Reference — December 2003 73

get the startup mode of the system service — NCM_GetDlgSrvStartupMode()

NCME_QUERY_SVC_STATUS
an error occurred while querying the status of the Intel Dialogic system

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

NCMDlgSrvStartupMode startupMode = NCM_DLGRV_AUTO;

//
// execute
//

NCMRetCode ncmRc = NCM_GetDlgSrvStartupMode(&startupMode);
if (ncmRc == NCM_SUCCESS)
{
 switch (startupMode)
 {
 case NCM_DLGSRV_AUTO;
 printf("Startup mode is set to Auto\n");
 break;
 case NCM_DLGSRV_MANUAL;
 printf("Startup mode is set to Manual\n");
 break;
 case NCM_DLGSRV_DISABLED;
 printf("Startup mode is set to Disabled\n");
 break;
 default:
 printf("Startup mode is undefined\n");
 break;
 } //endswitch

 }
else
{
 //process error
 ...
}
...

!!!! See Also

• NCM_GetDlgSrvState()

• NCM_GetDlgSrvStateEx()

• NCM_SetDlgSrvStartupMode()

74 NCM API Library Reference — December 2003

NCM_GetDlgSrvState() — get the state of the system service

NCM_GetDlgSrvState()

get the state of the system service

!!!! Description

The NCM_GetDlgSrvState() function gets the current state of the Intel Dialogic system. Refer to
the Native Configuration Manager API for Windows Operating Systems Programming Guide for
more information about the system. The NCM_GetDlgSrvState() function outputs the value in
the parameter passed to the values of SERVICE_STATUS structure. For details about
SERVICE_STATUS structure, refer to the Microsoft Windows documentation (MSDN Library at
http://msdn.microsoft.com/library.)

Note: The Ex functions should be used where available (for example, NCM_GetDlgSrvStateEx instead
of NCM_GetDlgSrvStates). The non-Ex function is provided for backwards compatibility.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_OPENING_SCM
an error occurred while opening the service control manager

NCME_OPENING_DLGC_SVC
an error occurred while opening the Intel Dialogic system

NCME_QUERY_SVC_STATUS
an error occurred while querying the status of the Intel Dialogic system

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

Name: NCMRetCode NCM_GetDlgSrvState(pncmSrvState)

Inputs: NCMDlgSrvState *pncmSrvState • pointer to where the system state will be output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System

Mode: synchronous

Parameter Description

pncmSrvState points to the current state of the Intel Dialogic System. Refer to the
Windows documentation for possible states of the system.

http://msdn.microsoft.com/library
http://msdn.microsoft.com/library
http://msdn.microsoft.com/library

NCM API Library Reference — December 2003 75

get the state of the system service — NCM_GetDlgSrvState()

!!!! Example

#include "NCMApi.h"

...
//
// Execute
//

NCMDlgSrvState serviceState = 0;
NCMRetCode ncmRc = NCM_GetDlgSrvState(&serviceState);

if (ncmRc == NCM_SUCCESS)
{
 if (serviceState == SERVICE_CONTINUE_PENDING)
 {
 printf("Continue Pending\n");
 }
 else if (serviceState == SERVICE_PAUSE_PENDING)
 {
 printf("Pause Pending\n");
 }
 else if (serviceState == SERVICE_STOP_PENDING)
 {
 printf("Stop Pending\n");
 }
 else if (serviceState == SERVICE_START_PENDING)
 {
 printf("Start Pending\n");
 }
 else if (serviceState == SERVICE_RUNNING)
 {
 printf("Running\n");
 }
 else if (serviceState == SERVICE_STOPPED)
 {
 printf("Stopped\n");
 }
 else if (serviceState == SERVICE_PAUSED)
 {
 printf("Paused\n");
 }
 else
 {
 printf("Unknown\n");
 }
}
else
{ // process error
 ...
}
...

!!!! See Also

• NCM_GetDlgSrvStartupMode()

• NCM_GetDlgSrvStateEx()

• NCM_SetDlgSrvStartupMode()

76 NCM API Library Reference — December 2003

NCM_GetDlgSrvStateEx() — get the state of the system service

NCM_GetDlgSrvStateEx()

get the state of the system service

!!!! Description

The NCM_GetDlgSrvStateEx() function gets the current state of the Intel Dialogic system. Refer
to the Native Configuration Manager API for Windows Operating Systems Programming Guide for
more information about the system. The NCM_GetDlgSrvStateEx() function outputs the value in
the parameter passed to the values of SERVICE_STATUS structure. For details about
SERVICE_STATUS structure, refer to the Microsoft Windows documentation (MSDN Library at
http://msdn.microsoft.com/library.)

This function returns the state of the system by filling the passed pointer.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_OPENING_SCM
an error occurred while opening the service control manager

NCME_OPENING_DLGC_SVC
an error occurred while opening the Intel Dialogic system

NCME_QUERY_SVC_STATUS
an error occurred while querying the status of the Intel Dialogic system

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

Name: NCMRetCode NCMGetDlgSrvStateEx(pncmSrvState)

Inputs: SERVICE_STATUS *pncmSrvState • pointer to the Win32 SERVICE_STATUS data
structure

Returns: NCM_SUCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System

Mode: synchronous

Parameter Description

pncmSrvState points to the current state of the Intel Dialogic system. Refer to the
Windows documentation for possible states of a service.

http://msdn.microsoft.com/library
http://msdn.microsoft.com/library
http://msdn.microsoft.com/library

NCM API Library Reference — December 2003 77

get the state of the system service — NCM_GetDlgSrvStateEx()

!!!! Example

#include "NCMApi.h"

...
//
// Execute
//

SERVICE_STATUS srvcStatus;

NCMRetCode ncmRc = NCM_GetDlgSrvStateEx(&srvcStatus);

if (ncmRc == NCM_SUCCESS)
{
 if (srvcStatus.dwCurrentState == SERVICE_CONTINUE_PENDING)
 {
 printf("Continue Pending\n");
 }
 else if (srvcStatus.dwCurrentState == SERVICE_PAUSE_PENDING)
 {
 printf("Pause Pending\n");
 }
 else if (srvcStatus.dwCurrentState == SERVICE_STOP_PENDING)
 {
 printf("Stop Pending\n");
 }
 else if (srvcStatus.dwCurrentState == SERVICE_START_PENDING)
 {
 printf("Start Pending\n");
 }
 else if (srvc.dwCurrentState == SERVICE_RUNNING)
 {
 printf("Running\n");
 }
 else if (srvcStatus.dwCurrentState == SERVICE_STOPPED)
 {
 printf("Stopped\n");
 }
 else if (srvcStatus.dwCurrentState == SERVICE_PAUSED)
 {
 printf("Paused\n");
 }
 else
 {
 printf("Unknown\n");
 }
}
else
{ // process error
 ...
}
...

!!!! See Also

• NCM_GetDlgSrvStartupMode()

• NCM_GetDlgSrvState()

• NCM_SetDlgSrvStartupMode()

78 NCM API Library Reference — December 2003

NCM_GetErrorMsg() — get the error message for an error code

NCM_GetErrorMsg()

get the error message for an error code

!!!! Description

The NCM_GetErrorMsg() function gets the error message for a given NCM error code. Each
function in the NCM API returns an error code indicating the success or failure of the function. The
NCM_GetErrorMsg() function accepts any one of the error codes and returns its associated text
string.

Notes: 1. Refer to the System Log of the Windows Event Viewer for a detailed explanation of generated
NCM API error messages.

2. All NCM error codes are defined in the NCMTypes.h file.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

Name: NCMRetCode NCM_GetErrorMsg(ncmRcIn, ppncmErrorMsg)

Inputs: NCMRetCode ncmRcIn • NCM return code

NCMErrorMsg **ppncmErrorMsg • address of a pointer where the error message will be
output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

Parameter Description

ncmRcIn specifies the return code whose error message should be returned

ppncmErrorMsg indicates a pointer to a pointer to be filled with the error message

NCM API Library Reference — December 2003 79

get the error message for an error code — NCM_GetErrorMsg()

!!!! Example

#include "NCMApi.h"

...

NCMFamily *pFamilies= NULL;

NCMRetCode ncmRc= NCM_GetAllFamilies(&pFamilies);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
 //process error

 //execute
 ncmErrorMsg *pErrorMsg = NULL;
 ncmRc = NCM_GetErrorMsg(ncmRc, &pErrorMsg);
 if (ncmRc = NCM_SUCCESS)
 {
 printf("Failed to get families: %s\n", pErrorMsg->name);
 }

 //deallocate memory
 NCM_Dealloc(pErrorMsg);
}

//deallocate memory when through with it
NCM_Dealloc(pFamilies);
...

!!!! See Also

None.

80 NCM API Library Reference — December 2003

NCM_GetFamilyDeviceByAUID() — get the family or device from an AUID

NCM_GetFamilyDeviceByAUID()

get the family or device from an AUID

!!!! Description

The NCM_GetFamilyDeviceByAUID() function returns device name that has been assigned a
given Addressable Unit Identifier (AUID). The family name that the device belongs to is also
returned by this function. An AUID is a unique string of numbers that the Intel Dialogic system
software assigns to each component with which communications can be initiated. In the context of
the NCM API, devices are assigned AUIDs.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
invalid inputs supplied to the function

NCME_GENERAL
a problem occurred retrieving the data

Name: NCMRetCode NCM_GetAUID(fruAuid, ppncmFamily, ppncmDevice)

Inputs: int fruAuid • AUID

NCMFamily **pncmFamily • pointer to the address where the family name will be
returned

NCMDevice **ppncmDevice • pointer to the address where the device name will be
returned

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h
devmap.h

Category: System administration

Mode: synchronous

Parameter Description

fruAuid indicates the AUID

pncmFamily points to the address where the family name will be returned

pncmDevice points to the address where the device name will be returned

NCM API Library Reference — December 2003 81

get the family or device from an AUID — NCM_GetFamilyDeviceByAUID()

!!!! Example

#include "NCMApi.h"
#include "devmap.h"

//prepare inputs

int fruAuid = 1223456;
NCMFamily *pncmFamily=NULL;
NCMDevice *pncmDevice=NULL’

//execute

ncmRc = NCM_GetFamilyDeviceByAuid(fruAuid, &pncmFamily, pncmDevice);

if (ncmRc ==NCM_SUCCESS)
{
 //print out the family/device name
 if (pncmFamily && pncmFamily ->neme && pncmDevice && pncmDevice->name)
 {
 printf("The family & device name for AUID %d are %s---%s: \n", fruAuid, pncmFamily->name
 pncmDevice->name);
 }
 NCM_Dealloc(pncmFamily);
 NCM_Dealloc(pncmDevice);
}

else
 //process error
}

!!!! See Also

• NCM_GetAUID()

82 NCM API Library Reference — December 2003

NCM_GetInstalledDevices() — get all instantiated devices for a family

NCM_GetInstalledDevices()

get all instantiated devices for a family

!!!! Description

The NCM_GetInstalledDevices() function queries your system configuration for all instantiated
devices in a given family.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

Name: NCMRetCode NCM_GetInstalledDevices(pncmFamily, ppncmDeviceUnique)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice **ppncmDeviceUnique • address of pointer where unique names of installed
devices will be output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name. The
value of the data structure must be a family that is included in your
current system configuration.

ppncmDeviceUnique indicates the address of the pointer to the list to be filled with
NCMString data structures containing unique device names. The unique
device names will be the same names used to add the devices to the
system configuration with the NCM_AddDevice() function.

Note: You are strongly discouraged from parsing the unique device
name from your application. Although the name is guaranteed to be
unique, Intel reserves the right to change the format of the device name
in future releases.

NCM API Library Reference — December 2003 83

get all instantiated devices for a family — NCM_GetInstalledDevices()

NCME_INVALID_FAMILY
the family name is invalid

!!!! Example

#include "NCMApi.h"

...

//
//prepare inputs
//

NCMFamily family;
family.name= "D/x1D";
family.next= NULL;

//
//Execute
//

NCMRetCode ncmRc = NCM_GetInstalledDevices(&family, &pDevices);

if (ncmRc == NCM_SUCCESS)
{
 NCMDevice *pCurrDevices = pDevices;
 while(pCurrDevices !=NULL)
 {
 //process list
 ...
 pCurrDevices = pCurrDevices->next;
 }

}

else
{
 //process error
 ...
}

//deallocate memory when through with it
NCM_Dealloc(pDevices);
...

!!!! See Also

• NCM_GetAllDevices()

• NCM_GetAllFamilies()

• NCM_GetInstalledFamilies()

84 NCM API Library Reference — December 2003

NCM_GetInstalledFamilies() — get all instantiated families

NCM_GetInstalledFamilies()

get all instantiated families

!!!! Description

The NCM_GetInstalledFamilies() function gets all instantiated families of devices in your
current system configuration. This function fills a pointer to a pointer with the beginning address of
a list of instantiated device families.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

!!!! Example

#nclude "NCMApi.h"

...

NCMFamily *pFamilies = NULL;

//
// execute
//

NCMRetCode ncmRc = NCM_GetInstalledFamilies(&pFamilies);

Name: NCMRetCode NCM_GetInstalledFamilies(ppncmFamily)

Inputs: NCMFamily *ppncmFamily • address of the pointer where the instantiated device families
will be output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

ppncmFamily indicates the address of the pointer to the list to be filled with NCMString
data structures containing family names from your current system
configuration

NCM API Library Reference — December 2003 85

get all instantiated families — NCM_GetInstalledFamilies()

if (ncmRc == NCM_SUCCESS)
{
 NCMFamily *pCurrFamilies = pFamilies;
 while (pCurrFamilies !=NULL)
 {
 //process list
 ...
 pCurrFamilies = pCurrFamilies->next;
 }
}

else
{
 //process error
 ...
}

//deallocate memory when through with it
NCM_Dealloc(pFamilies);
...

!!!! See Also

• NCM_GetAllDevices()

• NCM_GetAllFamilies()

• NCM_GetInstalledDevices()

86 NCM API Library Reference — December 2003

NCM_GetProperties() — get the installable properties of a device

NCM_GetProperties()

get the installable properties of a device

!!!! Description

The NCM_GetProperties() function gets the installable properties for a device. For information
about using this function to fill all the structures you ned to instantiate and modify configuration
parameter values, refer to the Native Configuration Manager API for Windows Operating Systems
Programming Guide.

!!!! Cautions

• The NCM API allocates memory for the data returned by this function. To avoid memory
leaks, the client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

• The pncmFamily and pncmDevice parameters must reference information that is valid in the
current DCM catalog.

Name: NCMRetCode NCM_GetProperties(pncmFamily, pncmDevice, ppncmProperties)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDevice • pointer to a data structure containing a device name

NCMProperty **ppncmProperties • address of the pointer where the device’s properties will be
output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a device name. The
device name can either be a device model name or a unique device name
(the unique device name must be the same name you used to add the
device to the system configuration with the NCM_AddDevice()
function).

ppncmProperties specifies the address of the pointer to the list to be filled with NCMString
data structures that contain the properties of a device

NCM API Library Reference — December 2003 87

get the installable properties of a device — NCM_GetProperties()

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...
//
// Prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

NCMProperty * pProperties = NULL;

//
// Execute
//

NCMRetCode ncmRc = NCM_GetProperties(&family, &device, &pProperties);

if (ncmRc == NCM_SUCCESS)
{
 NCMProperty * pCurrProperties = pProperties;
 while (pCurrProperties != NULL)
 {
 // Process list
 ...
 pCurrProperties = pCurrProperties ->next;
 }
}
else
{ // Process error
...
}

// Deallocate memory
NCM_Dealloc(pProperties);
...

!!!! See Also

• NCM_GetAllDevices()

88 NCM API Library Reference — December 2003

NCM_GetProperties() — get the installable properties of a device

• NCM_GetAllFamilies()

• NCM_GetInstalledDevices()

• NCM_GetInstalledFamilies()

• NCM_GetPropertyAttributes()

NCM API Library Reference — December 2003 89

get a properties attributes — NCM_GetPropertyAttributes()

NCM_GetPropertyAttributes()

get a properties attributes

!!!! Description

The NCM_GetPropertyAttributes() function gets a property’s attributes. It queries the system
configuration to determine whether an attribute is HIDDEN, VISIBLE or UNDEFINED.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
the inputs to the function were invalid

Name: NCMRetCode NCM_GetPropertyAttributes(pncmFamily, pncmDevice, pncmProperty,
pncmPropAttribs)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family
name

NCMDevice *pncmDevice • pointer to a data structure containing a device
name

NCMProperty *pncmProperty • pointer to a data structure containing a property
section

NCMPropertyAttributes *pncmPropAttribs • pointer to the property’s attributes

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a device name. The
device name can either be a device model name or a unique device name
(the unique device name must be the same name you used to add the
device to the system configuration with the NCM_AddDevice()
function).

pncmProperties points to the NCMString data structure containing the property name

pncmPropAttribs points to the property’s attributes to be returned

90 NCM API Library Reference — December 2003

NCM_GetPropertyAttributes() — get a properties attributes

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

!!!! Example

#include "NCMApi.h"

...
//
// Prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

NCMProperty propert;
property.name = "Misc";
property.next = NULL;

NCMPropertyAttributes pPropAttribs;

//
// Execute
//

NCMRetCode ncmRc = NCM_GetPropertyAttributes(&family, &device, &property,
 &pPropAttribs);

if (ncmRc == NCM_SUCCESS)
{
 //Process attributes
 ...
}
else
{ //Process error
 ...
}
...

!!!! See Also

• NCM_GetAllDevices()

• NCM_GetAllFamilies()

• NCM_GetInstalledDevices()

• NCM_GetInstalledFamilies()

• NCM_GetProperties()

NCM API Library Reference — December 2003 91

returns the system service state — NCM_GetSystemState()

NCM_GetSystemState()

returns the system service state

!!!! Description

The NCM_GetSystemState() function returns the state of the Intel Dialogic system service by
filling in the pointer that is passed to the function.

The function parameters are defined as follows:

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_OPENING_SCM
an error occurred while opening the service control manager

NCME_OPENING_DLGC_SVC
an error occurred while opening the Intel Dialogic system service

NCME_QUERY_SVC_STATUS
an error occurred while querying the status of the Intel Dialogic system service

Name: NCMRetCode NCM_GetSystemState(pncmSystemState)

Inputs: NCMSystemState *pncmSystemState • pointer to where the system service state will be
output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System

Mode: Synchronous

Parameter Description

pncmSystemState pointer to where the system service state will be returned.

Possible system service states are as follows:

• NCM_SYSTEM_START_PENDING

• NCM_SYSTEM_STOP_PENDING

• NCM_SYSTEM_STOPPED

• NCM_SYSTEM_RUNNING

• NCM_SYSTEM_HALTED

• NCM_SYSTEM_STATE_UNDEFINED

92 NCM API Library Reference — December 2003

NCM_GetSystemState() — returns the system service state

NCME_INVALID_INPUTS
invalid inputs

!!!! Example

#include "NCMApi.h"

...
NCMRetCode rc = NCM_GetSystemState(&state);
if (rc == NCM_SUCCESS)
{
 switch (state)
 {
 case NCM_SYSTEM_START_PENDING:
 printf("Intel Dialogic System in <Start_Pending> \n");
 break;
 case NCM_SYSTEM_STOP_PENDING:
 printf("Intel Dialogic System in <Stop_Pending> \n");
 break;
 case NCM_SYSTEM_STOPPED:
 printf("Intel Dialogic System is <Stopped> \n");
 break;
 case NCM_SYSTEM_RUNNING:
 printf("Intel Dialogic System is <Running> \n");
 break;
 case NCM_SYSTEM_HALTED:
 printf("Intel Dialogic System is <Halted> \n");
 break;
 case NCM_SYSTEM_STATE_UNDEFINED:
 printf("Intel Dialogic System is <Undefined> \n");
 break;
 default:
 printf("Intel Dialogic System is <Unknown> \n");
 break;
 }
}
else
{
 printf("Fail to get the Intel Dialogic system state \n");
}
...

!!!! See Also

• NCM_StartSystem()

• NCM_StopSystem()

NCM API Library Reference — December 2003 93

get a TDM bus parameter value — NCM_GetTDMBusValue()

NCM_GetTDMBusValue()

get a TDM bus parameter value

!!!! Description

The NCM_GetTDMBusValue() function gets the parameter value of the TDM bus. This function
also allows you to retrieve the value of user defined and resolved variables in the TDM Bus family.

!!!! Cautions

• The variable must be a valid parameter under the TDM bus configuration, otherwise the
function returns an NCME_INVALID_INPUTS error.

• The NCM API allocates memory for the data returned by this function. To avoid memory
leaks, the client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

• The current system software release supports a single TDM bus. Therefore, the bus name for
the pncmBus parameter should always be “Bus-0”.

!!!! Errors

Possible errors for this function include:

NCME_CTBB_LIB
a failure to load the CTBB library occurred

NCME_MEM_ALLOC
memory could not be allocated to perform the function

Name: NCMRetCode NCM_GetTDMBusValue(pncmBus, pvariable, ppvalue)

Inputs: NCMDevice *pncmBus • pointer to a data structure containing a specific bus name

NCMVariable *pvariable • pointer to a data structure containing the variable name to
be returned

NCMValue **pvalue • address of the pointer to the value to be returned

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: TDM bus

Mode: synchronous

Parameter Description

pncmBus points to the NCMString data structure containing a specific bus name, for
example “Bus-0”

pvariable points to the variable name to be returned

ppvalue specifies the address of the pointer where the variable value will be
returned

94 NCM API Library Reference — December 2003

NCM_GetTDMBusValue() — get a TDM bus parameter value

NCME_GENERAL
a problem occurred retrieving the data

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...
//
// Prepare inputs
//

NCMDevice bus;
device.name = "Bus-0";
device.next = NULL;

NCMVariable variable1;
variable.name = "Primary Master FRU (Resolved)";
variable.next = NULL;

NCMVariable variable2;
variable.name = "NETREF One FRU (Resolved)";
variable.next = NULL;

NCMValue * pValue1 = NULL;
NCMValue * pValue2 = NULL;

//
// Execute
//

//Get current Primary Master FRU
NCMRetCode ncmRc = NCM_GetValue(&bus, &variable1, &pValue1);

if (ncmRc != NCM_SUCCESS)
{ // Process error
 ...
}

//Get current Net Ref FRU
NCMRetCode ncmRc = NCM_GetValue(&bus, &variable2, &pValue2);

if (ncmRc != NCM_SUCCESS)
{ // Process error
 ...
}

// Deallocate memory
NCM_Dealloc(pValue1);
NCM_Dealloc(pValue2);

!!!! See Also

• NCM_GetClockMasterFallbackList()

• NCM_SetClockMasterFallbackList()

• NCM_SetTDMBusValue()

NCM API Library Reference — December 2003 95

gets capabilities of a third party device — NCM_GetThirdPartyDeviceBusCaps()

NCM_GetThirdPartyDeviceBusCaps()

gets capabilities of a third party device

!!!! Description

The NCM_GetThirdPartyDeviceBusCaps() function returns the TDM bus capabilities of a third
party device. The TDM bus capabilities of a third party device is defined when the
NCM_AddThirdPartyDevice() function is called to add the device to the system.

!!!! Cautions

You cannot set the pDeviceName parameter to NULL.

!!!! Errors

Possible errors for this function include:

NCME_INALID_INPUTS
invalid inputs

!!!! Example

#include "NCMApi.h"

NCM_TDM_BUSCAPS busCaps;
NCMRetCode nmcRc=NCM_SUCCESS;

Name: NCMRetCode NCM_GetThirdPartyDeviceBusCaps(pDeviceName, pTDMBusCapabilities)

Inputs: NCMDevice *pDeviceName • third party device name

NCM_TDM_BUSCAPS
*pTDMBusCapabilities

• pointer to the TDM bus capabilities of the third party
device

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Third party device

Mode: synchronous

Parameter Description

pDeviceName pointer to the data structure containing the name of a third party device.
The device name must be the same name you used to add the third party
device to the system configuration with the
NCM_AddThirdPartyDevice() function

pTDMBusCapabil
ities

pointer to the NCM_TDM_BUSCAPS data structure that holds the
devices TDM bus capabilities

96 NCM API Library Reference — December 2003

NCM_GetThirdPartyDeviceBusCaps() — gets capabilities of a third party device

NCMDevice deviceName;
Char DeviceString[] = "ThirdPartyDevice-XYZ#1";
deviceName.name = (char *) DeviceString;
deviceName.next = NULL;

//call NCM API function:
ncmRc = NCM_GetThirdPartyDeviceBusCaps(deviceName, &busCaps);

if (ncmRc !=NCM_SUCCESS)
{
 /*process error*/
}
else
{
 /*process success*/
}

...

!!!! See Also

None.

NCM API Library Reference — December 2003 97

get an instantiated value — NCM_GetValue()

NCM_GetValue()

get an instantiated value

!!!! Description

The NCM_GetValue() function gets an instantiated value. This function enables you to determine
the instantiated value of a configuration parameter in your current system configuration.

Note: The Ex functions should be used where available (for example, NCM_GetValueEx instead of
NCM_GetValue). The non-Ex function is provided for backwards compatibility.

To get an instantiated configuration parameter value: pncmDevice must point to a unique device
name. The unique device must be the same name you used to add the device to the system
configuration with the NCM_AddDevice() function).

Name: NCMRetCode NCM_GetValue(pncmFamily, pncmDevice, pncmProperty, pncmVariable,
ppncmValue)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDevice • pointer to a data structure containing a device name

NCMProperty *pncmProperty • pointer to a data structure containing a property

NCMVariable *pncmVariable • pointer to a data structure containing a configuration
parameter

NCMValue **ppncmValue • address of a pointer where the parameter value will be
output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a device name. The
device name can either be a device model name or a unique device name
(the unique device name must be the same name you used to add the
device to the system configuration with the NCM_AddDevice()
function).

pncmProperty points to an NCMString data structure containing the property name

pncmVariable points to an NCMString data structure containing the configuration
parameter name

ppncmValue indicates the address of the pointer to be filled with the configuration
parameter value

98 NCM API Library Reference — December 2003

NCM_GetValue() — get an instantiated value

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_SP
invalid state transition

NCME_GENERAL
a problem occurred retrieving the data

NCME_BAD_INF
there was an error parsing the DCM catalog

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...
//
// Prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

NCMProperty property;
property.name = "System";
property.next = NULL;

NCMVariable variable;
variable.name = "D41DAddress";
variable.next = NULL;

NCMValue * pValue = NULL;

//
// Execute
//

NCMRetCode ncmRc = NCM_GetValue(&family, &device, &property, &variable, &pValue);

NCM API Library Reference — December 2003 99

get an instantiated value — NCM_GetValue()

if (ncmRc == NCM_SUCCESS)
{
 if (pValue != Null && pValue ->name ! = Null)
 //use the value
}
else
{ // Process error
 ...
}

// Deallocate memory
NCM_Dealloc(pValue);

...

!!!! See Also

• NCM_GetValueEx()

• NCM_GetValueRange()

• NCM_GetValueRangeEx()

100 NCM API Library Reference — December 2003

NCM_GetValueEx() — get an instantiated value

NCM_GetValueEx()

get an instantiated value

!!!! Description

The NCM_GetValueEx() function gets an instantiated value. The return format is t. This function
enables you to determine the instantiated value of a configuration parameter in the current system
configuration.

Note: The NCM_GetValueEx() function returns different value types (numeric versus alphanumeric)
for PCI bus number and PCI slot number for Springware and DM3 architecture boards.

To get an instantiated configuration parameter value: pncmDevice must point to a unique device
name. The unique device must be the same name you used to add the device to the system
configuration with the NCM_AddDevice() function).

Name: NCMRetCode NCM_GetValueEx(pncmFamily, pncmDevice, pncmVariable, ppncmValueEx)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDevice • pointer to a data structure containing a device name

NCMVariable *pncmVariable • pointer to a data structure containing a configuration
parameter property section

NCMValueEx **ppncmValueEx • address of a pointer where the parameter value will be
output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a device name. The
device name can either be a device model name or a unique device name
(the unique device name must be the same name you used to add the
device to the system configuration with the NCM_AddDevice()
function).

pncmVariable points to an NCMString data structure containing the configuration
parameter name

ppncmValueEx specifies the address of the pointer to the NCMValueEx data structure to
be filled with the configuration parameter value

NCM API Library Reference — December 2003 101

get an instantiated value — NCM_GetValueEx()

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_SP
invalid state transition

NCME_GENERAL
a problem occurred retrieving the data

NCME_BAD_INF
there was an error parsing the DCM catalog

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

//
// Prepare inputs
//

NCMFamily family;
family.name = "DM3";
family.next = NULL;

NCMDevice device;
device.name = "VOIP-T1-1";
device.next = NULL;

NCMVariable variable;
variable.name = "PciID";
variable.next = NULL;

NCMValueEx * pValueEx = NULL;

//
// Execute
//

NCMRetCode ncmRc = NCM_GetValueEx(&family, &device, &variable, &pValueEx);
if (ncmRc == NCM_SUCCESS)
{
 if (pValueEx != NULL && pValueEx->dataValue !=NULL)
 {

102 NCM API Library Reference — December 2003

NCM_GetValueEx() — get an instantiated value

 Switch (pValueEx -> dataType)
 {
 case ALPHANUMERIC:
 cout << (char*) pValueEx -> dataValue >> endl;
 break;
 case NUMERIC:
 cout <<(*((unsigned long*)pValueEx->dataValue)) <<endl;
 break;
 default:
 cout << "*** Bad datatype!!! ***" << endl;
 break;
 }
 }
}
else
{
 // Process error
 ...
}

// Deallocate memory when through
// with it

NCM_DeallocValue(pValueEx);

...

!!!! See Also

• NCM_GetValue()

• NCM_GetValueRange()

• NCM_GetValueRangeEx()

NCM API Library Reference — December 2003 103

get the value range for a parameter — NCM_GetValueRange()

NCM_GetValueRange()

get the value range for a parameter

!!!! Description

The NCM_GetValueRange() function provides the range of values that can be set for an
installable configuration parameter. To determine the value of a configuration parameter
instantiated in your current system configuration, use the NCM_GetValue() or
NCM_GetValueEx() function.

Note: The Ex functions should be used where available (for example, NCM_GetValueRangeEx instead
of NCM_GetValueRange). The non-Ex function is provided for backwards compatibility.

Name: NCMRetCode NCM_GetValueRange(pncmFamily, pncmDevice, pncmProperty, pncmVariable,
ppncmValues)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDevice • pointer to a data structure containing a device name

NCMProperty *pncmProperty • pointer to a data structure containing a property

NCMVariable *pncmVariable • pointer to a data structure containing a configuration
parameter

NCMValue **ppncmValues • address of a pointer where the parameter value range will
be output

Returns: NCM_SUCCESS if success

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a device name. The
device name can either be a device model name or a unique device name
(the unique device name must be the same name you used to add the
device to the system configuration with the NCM_AddDevice()
function).

pncmProperty points to an NCMString data structure containing the property name

pncmVariable points to an NCMString data structure containing the configuration
parameter name

ppncmValues indicates the address of the pointer to be filled with the configuration
parameter values

104 NCM API Library Reference — December 2003

NCM_GetValueRange() — get the value range for a parameter

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_BAD_INF
there was an error parsing the DCM catalog

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...
//
// Prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

NCMProperty property;
property.name = "System";
property.next = NULL;

NCMVariable variable;
variable.name = "D41DAddress";
variable.next = NULL;

NCMValue * pRange = NULL;

//
// Execute
//

NCMRetCode ncmRc = NCM_GetValueRange(&family, &device, &property, &variable, &pRange);

NCM API Library Reference — December 2003 105

get the value range for a parameter — NCM_GetValueRange()

if (ncmRc == NCM_SUCCESS)
{
 NCMValue * pCurrRange = pRange;
 while (pCurrRange != NULL)
 {
 // Process list
 ...
 pCurrRange = pCurrRange->next;
 }
}
else
{ // Process error
 ...
}

// Deallocate memory
NCM_Dealloc(pRange);
...

!!!! See Also

• NCM_GetValue()

• NCM_GetValueEx()

• NCM_GetValueRangeEx()

106 NCM API Library Reference — December 2003

NCM_GetValueRangeEx() — get the value range for a parameter

NCM_GetValueRangeEx()

get the value range for a parameter

!!!! Description

The NCM_GetValueRangeEx() function provides the range of values that can be set for an
installable configuration parameter. To determine the value of a configuration parameter
instantiated in your current system configuration, use the NCM_GetValue() or
NCM_GetValueEx() function.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

Name: NCMRetCode NCM_GetValueRangeEx(pncmFamily, pncmDevice, pncmVariable,
ppncmRangeEx)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDevice • pointer to a data structure containing a device name

NCMVariable *pncmVariable • pointer to a data structure containing a configuration
parameter

NCMValueEx **ppncmRangeEx • address of pointer where the value range will be output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a device name. The
device name can either be a device model name or a unique device name
(the unique device name must be the same name you used to add the
device to the system configuration with the NCM_AddDevice()
function).

pncmVariable points to an NCMString data structure containing the configuration
parameter name

ppncmRangeEx specifies the address of the pointer to the NCMValueEx data structure to
be filled with the configuration parameter value range

NCM API Library Reference — December 2003 107

get the value range for a parameter — NCM_GetValueRangeEx()

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_BAD_INF
there was an error parsing the DCM catalog

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

//
// Prepare inputs
//

NCMFamily family;
family.name = "DM3";
family.next = NULL;

NCMDevice device;
device.name = "VOIP-T1-1";
device.next = NULL;

NCMVariable variable;
variable.name = "PciID";
variable.next = NULL;

NCMValueEx * pRangeEx = NULL;

//
// Execute
//

NCMRetCode ncmRc = NCM_GetValueRangeEx(&family, &device, &variable, &pRangeEx);
if (ncmRc == NCM_SUCCESS)
{
 NCMValueEx * pCurrRangeEx = pRangeEx;
 while (pCurrRangeEx != NULL)
 { // Process list
 ...
 pCurrRangeEx = pCurrRangeEx->next;
 } // endwhile
}
else
{ // Process error
 ...
}

108 NCM API Library Reference — December 2003

NCM_GetValueRangeEx() — get the value range for a parameter

// Deallocate memory when through
// with it
NCM_DeallocValue(pRangeEx);

...

!!!! See Also

• NCM_GetValue()

• NCM_GetValueEx()

• NCM_GetValueRange()

NCM API Library Reference — December 2003 109

get a parameter’s attributes — NCM_GetVariableAttributes()

NCM_GetVariableAttributes()

get a parameter’s attributes

!!!! Description

The NCM_GetVariableAttributes() function returns a configuration parameter’s attributes. The
function fills a pointer to a pointer with the beginning address of a list of variables for a particular
property section.

!!!! Cautions

Global or family-level calls with this function are not supported. Default values are returned with
the NCM_SUCCESS return code.

!!!! Errors

Possible errors for this function include:

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

Name: NCMRetCode NCM_GetVariableAttributes(pncmFamily, pncmDevice, pncmVariable,
pncmVariableAttribs)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family
name

NCMDevice *pncmDevice • pointer to a data structure containing a device
name

NCMVariable *pncmVariable • pointer to a data structure containing a
property section

NCMVariableAttributes *pncmVariableAttribs • pointer to a data structure containing the
variable’s attributes

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing the device name for
which the variables should be returned

pncmVariable points to an NCMString data structure containing an individual variable

pncmVariableAttribs points to where the variable’s attributes are returned

110 NCM API Library Reference — December 2003

NCM_GetVariableAttributes() — get a parameter’s attributes

NCME_INVALID_INPUTS
invalid inputs

!!!! Example

None.

!!!! See Also

None.

NCM API Library Reference — December 2003 111

get the parameters for a property section — NCM_GetVariables()

NCM_GetVariables()

get the parameters for a property section

!!!! Description

The NCM_GerVariables() function gets the parameters for a property section. It fills a pointer to
a pointer with the beginning address of a list of configuration parameters for a particular property
section. This function can be used to retrieve a list of all global configuration parameters from the
DCM catalog by setting both the pncmFamily and the pncmDevice parameters to NULL.

This function provides configuration parameters that can be set for a device as defined in the DCM
catalog. To determine the value of a configuration parameter instantiated in your system
configuration, use NCM_GetValue() or NCM_GetValueEx().

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

Name: NCMRetCode NCM_GetVariables(pncmFamily, pncmDevice, pncmProperty, ppncmVariables)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDevice • pointer to a data structure containing a device name

NCMProperty *pncmProperty • pointer to a data structure containing a property section

NCMVariable **ppncmVariables • address of pointer where configuration parameters will be
output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a device name. The
device name can either be a device model name or a unique device name
(the unique device name must be the same name you used to add the
device to the system configuration with the NCM_AddDevice()
function).

pncmProperty points to the NCMString data structure containing the property name

ppncmVariables specifies the address of the pointer to the list to be filled with
configuration parameter data structures

112 NCM API Library Reference — December 2003

NCM_GetVariables() — get the parameters for a property section

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...
//
// Prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

NCMProperty property;
property.name = "System";
property.next = NULL;

NCMVariable * pVariables = NULL;

//
// Execute
//

NCMRetCode ncmRc = NCM_GetVariables(&family, &device, &property, &pVariables);
if (ncmRc == NCM_SUCCESS)
{
 NCMVariable * pCurrVariables = pVariables;
 while (pCurrVariables != NULL)
 { // Process list
 ...
 pCurrVariables = pCurrVariables ->next;
 }
}
else
{ // Process error
 ...
}

// Deallocate memory
NCM_Dealloc(pVariables);
...

NCM API Library Reference — December 2003 113

get the parameters for a property section — NCM_GetVariables()

!!!! See Also

NCM_GetVariableAttributes()

114 NCM API Library Reference — December 2003

NCM_GetVersionInfo() — get OS and system software versions

NCM_GetVersionInfo()

get OS and system software versions

!!!! Description

The NCM_GetVersionInfo() function returns Operating System (OS) and Intel Dialogic system
software version information for local and remote computers.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_REMOTE_REG_ERROR
error opening the registry key of remote computer

!!!! Example

#include "NCMApi.h"
#include "NCMTypes.h"
...

//
//Execute
//

NCMRetCode ncmRc = NCM_GetVersionInfo (*psysver);

if (ncmRc != NCM_SUCCESS)
{ //process error
 ...
}
...

Name: NCMRetCode NCM_GetVersionInfo(NCMSysVersion *psysver)

Inputs: NCMSysVersion *psysver • pointer to a data structure where the system version
information will be output

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

Parameter Description

psysver points to an NCMSysVersion data structure to be filled with the system
version information

NCM API Library Reference — December 2003 115

get OS and system software versions — NCM_GetVersionInfo()

!!!! See Also

NCM_GetDialogicDir()

116 NCM API Library Reference — December 2003

NCM_IsBoardEnabled() — determine if a device is enabled or disabled

NCM_IsBoardEnabled()

determine if a device is enabled or disabled

!!!! Description

The NCM_IsBoardEnabled() function determines if a device is to initialized when the Intel
Dialogic system is started. If a device is enabled, the address referenced by the pbEnabled pointer
is set to TRUE; otherwise it is set to FALSE.
I

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

Name: NCMRetCode NCM_IsBoardEnabled(pncmFamily, pncmDeviceUnique, pbEnabled)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDeviceUnique • pointer to a data structure containing a unique device
name

BOOL *pbEnabled • pointer to a Boolean

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDeviceUnique points to an NCMString data structure containing the device’s unique
name. The unique name must be the same name you used to add the
device with the NCM_AddDevice() function.

Note: You are strongly discouraged from parsing the unique device name
from your application. Although the name is guaranteed to be unique,
Intel reserves the right to change the format of the device name in future
releases.

pbEnabled points to a Boolean variable indicating that the device is enabled (TRUE)
or disabled (FALSE)

NCM API Library Reference — December 2003 117

determine if a device is enabled or disabled — NCM_IsBoardEnabled()

NCME_GENERAL
a problem occurred retrieving the data

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...
//
// Prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

BOOL bEnabled = TRUE;

//
// Execute
//

NCMRetCode ncmRc = NCM_IsBoardEnabled(&family, &device, &bEnabled);

if (ncmRc == NCM_SUCCESS)
{
 if (bEnabled == TRUE)
 {
 ...
 }
 else
 {
 ...
 }
}
else
{ // Process error
 ...
}
...

!!!! See Also

• NCM_EnableBoard()

118 NCM API Library Reference — December 2003

NCM_IsEditable() — determine if a parameter can be edited

NCM_IsEditable()

determine if a parameter can be edited

!!!! Description

The NCM_IsEditable() function determines if a configuration parameter can be edited. This
function queries the DCM catalog to determine if the passed configuration parameter can be edited.
If the configuration parameter can be edited; the address referenced by the pbEditable pointer is
set to TRUE, otherwise it is set to FALSE.

!!!! Cautions

The pncmFamily, pncmProperty and pncmVariable pointers must reference information that is
valid in the DCM catalog.

Name: NCMRetCode NCM_IsEditable(pncmFamily, pncmDevice, pncmProperty, pncmVariable,
pbEditable)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDevice • pointer to a data structure containing a device name

NCMProperty *pncmProperty • pointer to a data structure containing a property section

NCMVariable *pncmVariable • pointer to a data structure containing a configuration
parameter

BOOL *pbEditable • pointer to a Boolean where output is placed

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Read configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a device name. The
device name can either be a device model name or a unique device name
(the unique device name must be the same name you used to add the
device to the system configuration with the NCM_AddDevice()
function).

pncmProperty points to the NCMString data structure containing the property name

pncmVariable points to the NCMString data structure containing the configuration
parameter

pbEditable points to a Boolean specifying that the configuration parameter can be
edited (TRUE) or cannot be edited (FALSE)

NCM API Library Reference — December 2003 119

determine if a parameter can be edited — NCM_IsEditable()

!!!! Errors

Possible errors for this function include:

NCME_NO_INF
the DCM catalog could not be found

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...
//
// Prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

NCMProperty property;
property.name = "System";
property.next = NULL;

NCMVariable variable;
variable.name = "D41DAddress";
variable.next = NULL;

BOOL bEditable = TRUE;

//
// Execute
//

NCMRetCode ncmRc = NCM_IsEditable(&family, &device, &property,
 &variable, &bEditable);

if (ncmRc == NCM_SUCCESS)
{
 if (bEditable == TRUE)
 {
 ...
 }
 else
 {
 ...
 }
}

120 NCM API Library Reference — December 2003

NCM_IsEditable() — determine if a parameter can be edited

else
{ // Process error
 ...
}
...

!!!! See Also

• NCM_GetProperties()

• NCM_GetPropertyAttributes()

• NCM_GetValue()

• NCM_GetValueEx()

• NCM_GetValueRange()

• NCM_GetValueRangeEx()

• NCM_GetVariableAttributes()

• NCM_GetVariables()

NCM API Library Reference — December 2003 121

query allocated time slots — NCM_QueryTimeslots()

NCM_QueryTimeslots()

query allocated time slots

!!!! Description

The NCM_QueryTimeslots() function allows you to query either the entire Intel Dialogic system
for reserved time slots or a specific third party device for its associated time slots. The ePersistent
parameter determines whether the query returns persistent time slots only, transient time slots only
or all time slots (i.e both persistent and transient types).

Name: NCMRetCode NCM_QueryTimeslots(pDeviceName, nStartTimeSlotNum, ePersistent,
pnNumOfBlocks, pNCMTSBlock)

Inputs: NCMDevice *pDeviceName • pointer to a third party device name

int nStartTimeSlotNum • starting time slot number of the block to be queried

NCMTSReserveType ePersistent • type of time slots to be queried (persistent, transient or all)

int *pnNumOfBlocks • pointer to the number of time slot blocks to be returned

NCM_TS_BLOCK_STRUCT
*pNCMTSBlock

• pointer to the data structure containing the time slots being
queried

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Third party device

Mode: synchronous

Parameter Description

pDeviceName pointer to the data structure containing the name of the third party
device that you are querying. The device name must be the same
name you used to add the third party device to the system
configuration with the NCM_AddThirdPartyDevice() function

A device name for this parameter is optional. Set this parameter to
NULL to return all reserved third party device time slots within the
Intel Dialogic system.

nStartTimeSlotNum indicates the starting time slot for the block of time slots that is to be
queried. This parameter can either be set to a valid integer or
NO_UNIQUE_ID (if you are not associating the query with a specific
block of time slots).

122 NCM API Library Reference — December 2003

NCM_QueryTimeslots() — query allocated time slots

The following table summarizes the supported parameter combinations for the
NCM_QueryTimeslots() function:

!!!! Cautions

None.

ePersistent determines whether the query will return persistent time slots only,
transient time slots only or all time slots (i.e both transient and
persistent). Valid values are as follows:
• NCM_TIME_SLOT_PERSISTENT – only persistent time slots

are returned
• NCM_TIME_SLOT_TRANSIENT – only transient time slots are

returned
• NCM_TIME_SLOT_ALL – all time slots are returned (i.e. both

transient and persistent)

pnNumOfBlocks points to the number of time slot blocks to be returned

pNCMTSBlock points to the NCM_TS_BLOCK_STRUCT data structure that is
returned by the function

Parameter Description

pDeviceName nStartTimeSlotNum ePersistent Result

NULL set to a valid value NCM_TIMESLOT_ALL returns all reserved time slots
associated with the block that
starts with the
nStartTimeSlotNum value

NULL NO_UNIQUE_ID NCM_TIMESLOT_PERSISTENT returns all reserved time slots
in the system that are
persistent

NULL NO_UNIQUE_ID NCM_TIMESLOT_TRANSIENT returns all reserved time slots
in the system that are transient

NULL NO_UNIQUE_ID NCM_TIMESLOT_ALL returns all time slots that have
been reserved for third party
devices (i.e. persistent and
transient time slots for all third
party devices are returned)

set to a valid
device

NO_UNIQUE_ID NCM_TIMESLOT_PERSISTENT returns all reserved time slots
that are persistent and
associated with the third party
device indicated by the
pDeviceName parameter

set to a valid
device

set to a valid value NCM_TIMESLOT_PERSISTENT returns reserved time slots
within the block that starts with
the nStartTimeSlotNum
parameter, are associated with
the third party device indicated
by the pDeviceName
parameter and are persistent

NCM API Library Reference — December 2003 123

query allocated time slots — NCM_QueryTimeslots()

!!!! Errors

Possible errors for this function include:

NCME_NO_TIMESLOT
specified time slots queried do not exist

NCME_INVALID_THIRDPARTY_DEVICE
specified third party device does not exist

NCME_DATA_NOT_FOUND
data not found

NCME_BUFFER_TOO_SMALL
allocated buffer is too small

NCME_SYSTEMERROR
specific system resources were not found

!!!! Example

#include "NCMApi.h"

NCMDevice device.Name;
char DeviceString[] = “ThirdPartyDevice-XYZ#1”;
deviceName.name = (char *) DeviceString;
deviceName.next = NULL;

NCMRetCode ncmRc = NCM_SUCCESS;
NCMTSReserveType reserveType = NCM_TIMESLOT_PERSISTENT;
DWORD numBlocks = 1;
NCM_TS_BLOCK_STRUCT *pTimeslotBlock = NULL;

int nStartTimeSlotNum = 10;

ncmRc = NCM_QueryTimeslots(&deviceName, nStartTimeSlotNum, reserveType, &numBlocks,
pTimeslotBlock);

if (ncmRc != NCM_SUCCESS)
{
 //process error
}

!!!! See Also

• NCM_AllocateTimeslots()

• NCM_DeallocateTimeslots()

124 NCM API Library Reference — December 2003

NCM_ReconfigureBoard() — reconfigure a DM3 board

NCM_ReconfigureBoard()

reconfigure a DM3 board

!!!! Description

This function lets you reconfigure a single DM3 device.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
invalid inputs

NCME_GENERAL
a problem occured while retrieving the data

!!!! Example

#include "NCMApi.h"

int CallBackFunc(UINT uipercent, const char *message)

{
 // use the percentage and message
 // to show status of the auto-detection process
 return TRUE;
}

Name: NCMRetCode NCM_ReconfigDM3Board(pncmFamily, pncmDevice, NCMDetectInfo
*pdetectInfo, NCMDevice **ppncmDevice)

Inputs: NCMFamily *pncmFamily • pointer to the NCMFamily structure which stores the
family name

NCMDevice *pncmDevice • pointer to the NCMDevice structure which stores the
device name

NCMDetectInfo *pdetectInfo • pointer to the detection info structure

Output: NCMDevice **ppncmNewDevice • pointer to the address of the NCMDevice structure which
the new device name would be populated

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMTypes.h, NCMApi.h

Category: Modify configuration

Mode: Synchronous

NCM API Library Reference — December 2003 125

reconfigure a DM3 board — NCM_ReconfigureBoard()

int GetPCDFile(NCMFileInfo *fileList, int numFiles, NCMDevInfo devInfo, int *index)
{
 // Pick a PCD file from fileList
 // index = picked one
 return TRUE;
}
...

//
// Prepare inputs
//
NCMFamily ncmFamily = { "DM3", NULL };
NCMDevice ncmDevice = { "QS_T1 0", NULL);
NCMDevice * pncmNewDevice = NULL;
NCM_DETECTION_INFO detectionInfo;
detectionInfo.structSize = sizeof(NCM_DETECTION_INFO);
detectionInfo.callbackFcn = &CallBackFunc;
detectionInfo. pcdFileCallbackFcn = &GetPCDFile;

//
// Execute
//
NCMRetCode ncmRc = NCM_ReconfigureBoard(&ncmFamily, &ncmDevice, &detectionInfo, &pncmNewDevice);

if (ncmRc == ERROR_SUCCESS)
{
 ...
}
else
{
 // process error
 ...
}

//clean up
NCM_Dealloc(pncmNewDevice);
...

!!!! See Also

• NCM_DeleteEntry()

• NCM_DetectBoards()

• NCM_DetectBoardsEx()

• NCM_EnableBoard()

• NCM_SetValue()

• NCM_SetValueEx()

126 NCM API Library Reference — December 2003

NCM_RemoveThirdPartyDevice() — removes a third party device

NCM_RemoveThirdPartyDevice()

removes a third party device

!!!! Description

The NCM_RemoveThirdPartyDevice() function deletes a third party device’s TDM bus
configuration information from the Intel Dialogic system. This function also releases all time slots
that are allocated to the deleted third party device.

Note: If the third party device you are removing is the system’s primary clock master, you must define a
new primary clock master before calling the NCM_RemoveThirdPartyDevice() function.

!!!! Cautions

You cannot set the pDeviceName parameter to NULL.

!!!! Errors

Possible errors for this function include:

NCME_INVALID_INPUTS
invalid inputs

NCME_INVALID_THIRDPARTY_DEVICE
specified third party device does not exist

NCME_CTBB_LIB
CTBBface.dll file either cannot be found in the system or is the incorrect version

NCME_CTBB_DEVICESDETECTED
configuration of TDM Bus failed

Name: NCMRetCode NCM_RemoveThirdPartyDevice(pDeviceName)

Inputs: NCMDevice *pDeviceName • pointer to the third party device name that will be removed

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Third party device

Mode: synchronous

Parameter Description

pDeviceName pointer to the data structure containing the name of the third party device
being deleted. The device name must be the same name you used to add
the third party device to the system configuration with the
NCM_AddThirdPartyDevice() function

NCM API Library Reference — December 2003 127

removes a third party device — NCM_RemoveThirdPartyDevice()

!!!! Example

#include "NCMApi.h"

 NCMDevice deviceName;
 Char DeviceString[] = "ThirdPartyDevice-XYZ#1";
 deviceName.name = (char *)DeviceString;
 deviceName.next = NULL;

 //call NCM API function
 ncmRc = NCM_RemoveThirdPartyDevice(deviceName);

 if (ncmRc !=NCM_SUCCESS)
 {
 /*process error*/
 }
 else
 {
 /*process success*/
 }

...

!!!! See Also

• NCM_AddThirdPartyDevice()

128 NCM API Library Reference — December 2003

NCM_SetClockMasterFallbackList() — set the clock master fallback list

NCM_SetClockMasterFallbackList()

set the clock master fallback list

!!!! Description

The NCM_SetClockMasterFallbackList() function sets the clock master fallback list. The
function will issue a CTBB_USER_APPLY message to validate changes. If the Computer
Telephony Bus Broker (CTBB) returns an error, then the list will not be set and previous values will
remain unchanged.

Note: If only one device is defined in the list, this device will be the Primary Clock Master and the system
will select the Secondary Clock Master. If no devices are defined in the list, the system will choose
both the Primary and Secondary Clock Master.

The clock master fallback list is created in order of the user’s preference. The first device listed will
be the Primary Clock Master, the second device will be the Secondary Clock Master, the third
device will be the next fallback clock master and each subsequent device listed will be considered
by the system as a clock fallback master. The list will end with an NCMString=NULL.

!!!! Cautions

• The current system software release supports a single TDM bus. Therefore, the bus name for
the pncmBus parameter should always be “Bus-0”.

• The data structure that is passed to the function must be in single-link list form.

!!!! Errors

Possible errors for this function include:

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

Name: NCMRetCode NCM_SetClockMasterFallbackList(pncmBus, pfallbackList)

Inputs: NCMDevice *pncmBus • pointer to a data structure containing a specific bus name

NCMDevice *pfallbackList • pointer to a list of clock master fallback devices to be set

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: TDM bus

Mode: synchronous

Parameter Description

pncmBus points to an NCMString data structure containing the specific bus name
(“Bus-0”)

pfallbackList points to a device list that will be set as the clock master fallback list

NCM API Library Reference — December 2003 129

set the clock master fallback list — NCM_SetClockMasterFallbackList()

NCME_CTBB_LIB
a failure to load the CTBB library occurred

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

NCME_CTBB_USERAPPLY
error updating the TDM bus parameters

!!!! Example

#include "NCMApi.h"

...

//
// Prepare inputs
//

NCMDevice bus;
device.name = "Bus-0";
device.next = NULL;

NCMDevice * pfallbackList;
NCMDevice * pCurrList = pfallbackList;

//Populate List
while ()
{
 // Populate List
 ...
 pCurrList = pCurrList->next;
 pCurrList->next = NULL;
}

//
// Execute
//

NCMRetCode ncmRc = NCM_SetClockMasterFallbackList(&bus, pfallbackList);

if (ncmRc != NCM_SUCCESS)
{ // Process error
 ...
}

!!!! See Also

• NCM_GetClockMasterFallbackList()

• NCM_GetTDMBusValue()

• NCM_SetTDMBusValue()

130 NCM API Library Reference — December 2003

NCM_SetDlgSrvStartupMode() — set the system service startup mode

NCM_SetDlgSrvStartupMode()

set the system service startup mode

!!!! Description

The NCM_SetDlgSrvStartupMode() function sets the Intel Dialogic system startup mode.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_OPENING_SCM
an error occurred while opening the service control manager

NCME_OPENING_DLGC_SVC
an error occurred while opening the system

NCME_CHANGE_SVC_STATUS
an error occurred while changing the system status

NCME_UNKNOWN_SERVICE_TYPE
the current service type is unknown

!!!! Example

#include "NCMApi.h"

...

Name: NCMRetCode NCM_SetDlgSrvStartupMode(ncmStartupMode)

Inputs: NCMDlgSrvStartupMode ncmStartupMode • specifies the system startup mode to be set

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System

Mode: synchronous

Parameter Description

ncmStartupMode indicates the startup mode for the system. Possible values are as follows:
• NCM_DLGSRV_AUTO – The Intel Dialogic system starts

automatically when the system reboots
• NCM_DLGCSRV_MANUAL – The Intel Dialogic system must be

started manually
• NCM_DLGSRV_DISABLED – disable the Intel Dialogic system

NCM API Library Reference — December 2003 131

set the system service startup mode — NCM_SetDlgSrvStartupMode()

//
// Execute
//

// Set startup mode of Dialogic service to Automatic
NCMRetCode ncmRc = NCM_SetDlgSrvStartupMode(NCM_DLGSRV_AUTO);

if (ncmRc != NCM_SUCCESS)
{ // process error
 ...
}
...

!!!! See Also

• NCM_GetDlgSrvStartupMode()

• NCM_GetDlgSrvState()

• NCM_GetDlgSrvStateEx()

132 NCM API Library Reference — December 2003

NCM_SetTDMBusValue() — set the TDM bus values

NCM_SetTDMBusValue()

set the TDM bus values

!!!! Description

The NCM_SetTDMBusValue() function sets the values of the TDM bus. Variables under the
TDM bus family with “UserDefined” in the parameter name can be changed by the user. Variables
with “Resolved” in the parameter name cannot be modified by the user.

!!!! Cautions

• If you pass in a variable that cannot be modified, the function will return an
NCME_ACCESS_DENIED error message.

• The current system software release supports a single TDM bus. Therefore, the bus name for
the pncmBus parameter should always be “Bus-0”.

!!!! Errors

Possible errors for this function include:

NCME_CTBB_LIB
a failure to load the CTBB library occurred

NCME_MEM_ALLOC
memory could not be allocated to perform the function

NCME_GENERAL
a problem occurred retrieving the data

Name: NCMRetCode NCM_SetTDMBusValue(pncmBus, pvariable, pvalue)

Inputs: NCMDevice *pncmBus • pointer to a specific bus name

NCMVariable *pvariable • pointer to a data structure containing a variable name

NCMValue *pvalue • pointer to the value to be set

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: TDM bus

Mode: synchronous

Parameter Description

pncmBus points to an NCMString data structure containing the specific bus name
(“Bus-0”)

pvariable points to an NCMString data structure containing the name of a variable

pvalue points to an NCMString data structure containing the name of the value to
be set

NCM API Library Reference — December 2003 133

set the TDM bus values — NCM_SetTDMBusValue()

NCME_INVALID_INPUTS
the values of the parameters supplied are invalid

NCME_CTBB_USERAPPLY
error updating the TDM bus parameters

NCME_ACCESS_DENIED
variable is read-only or not modifiable

!!!! Example

#include "NCMApi.h"

...

//
// Prepare inputs
//

NCMDevice bus;
device.name = "Bus-0";
device.next = NULL;

NCMVariable variable;
variable.name = "Derive Primary Clock From (User Defined)";
variable.next = NULL;

NCMValue value;
value.name = "InternalOscillator";
value.next = NULL;

//
// Execute
//

//set Primary Master FRU clock to Internal Oscillator
NCMRetCode ncmRc = NCM_SetTDMBusValue(&bus, &variable, &value);

if (ncmRc != NCM_SUCCESS)
{ // Process error
 ...
}

...

!!!! See Also

• NCM_GetClockMasterFallbackList()

• NCM_GetTDMBusValue()

• NCM_SetClockMasterFallbackList()

134 NCM API Library Reference — December 2003

NCM_SetValue() — sets a configuration parameter value

NCM_SetValue()

sets a configuration parameter value

!!!! Description

The NCM_SetValue() function sets a configuration parameter value. This function enables you to
set the value of a configuration parameter in the system configuration. It does not enable you to add
configuration parameter values to the DCM catalog.

Note: The Ex functions should be used where available (for example, NCM_SetValueEx instead of
NCM_SetValue). The non-Ex function is provided for backwards compatibility.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

Name: NCMRetCode NCM_SetValue(pncmFamily, pncmDeviceUnique, pncmProperty, pncmVariable,
pncmValue)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family name

NCMDevice *pncmDeviceUnique • pointer to a data structure containing a device name

NCMProperty *pncmProperty • pointer to a data structure containing a property

NCMVariable *pncmVariable • pointer to a data structure containing a configuration
parameter

NCMValue *pncmValue • pointer to a data structure containing the new value to be
set

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Modify configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDevice points to an NCMString data structure containing a unique device name.
The device name must be the same name you used to add the device to the
system configuration with the NCM_AddDevice() function.

pncmProperty points to the NCMString data structure containing the property name

pncmVariable points to the NCMString data structure containing the configuration
parameter name

pncmValue points to an NCMString data structure containing the new value to be set

NCM API Library Reference — December 2003 135

sets a configuration parameter value — NCM_SetValue()

!!!! Errors

Possible errors for this function include:

NCME_SP
invalid state transition

NCME_BAD_DATA_TYPE
the data type of the variable is incorrect or indeterminable

NCME_BAD_DATA_LOC
the data destination is invalid or indeterminate

NCME_CTBB_DEVICE_DETECTED
error configuring the TDM bus

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

...

//
// Prepare inputs
//

NCMFamily family;
family.name = "D/x1D";
family.next = NULL;

NCMDevice device;
device.name = "D/41D-1";
device.next = NULL;

NCMProperty property;
property.name = "System";
property.next = NULL;

NCMVariable variable;
variable.name = "D41DAddress";
variable.next = NULL;

NCMValue value;
value.name = "d0000";
value.next = NULL;

//
// Execute
//

NCMRetCode ncmRc = NCM_SetValue(&family, &device, &property,
 &variable, &value);

if (ncmRc != NCM_SUCCESS)
{ // Process error
 ...
}

...

136 NCM API Library Reference — December 2003

NCM_SetValue() — sets a configuration parameter value

!!!! See Also

• NCM_AddDevice()

• NCM_DeleteEntry()

• NCM_EnableBoard()

• NCM_GetValue()

• NCM_GetValueEx()

• NCM_SetValueEx()

NCM API Library Reference — December 2003 137

instantiate a configuration parameter value — NCM_SetValueEx()

NCM_SetValueEx()

instantiate a configuration parameter value

!!!! Description

The NCM_SetValueEx() function instantiates a configuration parameter value.

!!!! Cautions

The NCM API allocates memory for the data returned by this function. To avoid memory leaks, the
client application must deallocate this memory by calling the NCM_Dealloc() or
NCM_DeallocValue() functions.

Name: NCMRetCode NCM_SetValueEx(pncmFamily, pncmDeviceUnique, pncmVariable,
pncmValueEx)

Inputs: NCMFamily *pncmFamily • pointer to a data structure containing a family

NCMDevice *pncmDeviceUnique • pointer to a data structure containing a unique device
name

NCMVariable *pncmVariable • pointer to a data structure containing a configuration
parameter

NCMValueEx *pncmValueEx • pointer to a data structure containing the value to be set

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: Modify configuration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDeviceUnique points to an NCMString data structure containing a unique device name.
The device name must be the same name you used to add the device to
the system configuration with the NCM_AddDevice() function.

Note: You are strongly discouraged from parsing the unique device
name from your application. Although the name is guaranteed to be
unique, Intel reserves the right to change the format of the device name
in future releases.

pncmVariable points to the NCMString data structure containing the configuration
parameter name

pncmValueEx points to the NCMValueEx data structure containing the variable to be
set

138 NCM API Library Reference — December 2003

NCM_SetValueEx() — instantiate a configuration parameter value

!!!! Errors

Possible errors for this function include:

NCME_SP
invalid state transition

NCME_GENERAL
a problem occurred retrieving the data

NCME_DATA_NOT_FOUND
requested data not found in NCM data storage

NCME_CTBB_DEVICE_DETECTED
error configuring the TDM bus

NCME_INVALID_INPUTS
values of the parameters supplied are invalid

!!!! Example

#include "NCMApi.h"

//
// Prepare inputs
//

NCMFamily family;
family.name = "DM3";
family.next = NULL;

NCMDevice device;
device.name = "VOIP-T1-1";
device.next = NULL;

NCMVariable variable;
variable.name = "NetworkTimeout";
variable.next = NULL;

unsigned long netTimeOut = 2;
NCMValueEx valueEx;

valueEx.structSize = sizeof(NCMValueEx);
valueEx.dataType = NUMERIC;
valueEx.dataValue = &netTimeOut;
valueEx.dataSize = sizeof(netTimeOut);
valueEx.next = NULL;

//
// Execute
//

ncmRC = NCM_SetValueEx(&family, &device, &variable, &valueEx);

 if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{ // Process error
 ...
}
...

NCM API Library Reference — December 2003 139

instantiate a configuration parameter value — NCM_SetValueEx()

!!!! See Also

• NCM_AddDevice()

• NCM_DeleteEntry()

• NCM_EnableBoard()

• NCM_GetValue()

• NCM_GetValueEx()

• NCM_SetValue()

140 NCM API Library Reference — December 2003

NCM_StartBoard() — start an individual board

NCM_StartBoard()

start an individual board

!!!! Description

The NCM_StartBoard() function starts an individual board. To start the entire Intel Dialogic
System use NCM_StartDlgSrv().

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCM_GENERAL
a problem occurred retrieving the data

Name: NCMRetCode NCM_StartBoard(pncmFamily, pncmDeviceUnique)

Inputs: NCMFamily *pncmFamily • pointer to the data structure containing a device family
name

NCMDevice *pncmDeviceUnique • pointer to a data structure containing a unique device
name

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDeviceUnique points to an NCMString data structure containing a unique device name.
The device name must be the same name you used to add the device to the
system configuration with the NCM_AddDevice() function.

Note: You are strongly discouraged from parsing the unique device name
from your application. Although the name is guaranteed to be unique,
Intel reserves the right to change the format of the device name in future
releases.

NCM API Library Reference — December 2003 141

start an individual board — NCM_StartBoard()

!!!! Example

#include "NCMApi.h"
...
//
// Prepare inputs
//

NCMFamily family;
Family.name = "DM3";
Family.next = NULL;

NCMDevice device;
device.name = "QS_T1-1";
device.next = NULL;

//
// Execute
//
NCMRetCode ncmRc = NCM_StartBoard(&family, &device);

if (ncmRc == NCM_SUCCESS)
{ // process related functions calls
 ...
}
else
{ // process error
 ...
}

!!!! See Also

• NCM_DetectBoards()

• NCM_DetectBoardsEx()

• NCM_GetAUID()

• NCM_GetFamilyDeviceByAUID()

• NCM_StopBoard()

• NCM_StartDlgSrv()

• NCM_StopDlgSrv()

142 NCM API Library Reference — December 2003

NCM_StartDlgSrv() — initiate the system service

NCM_StartDlgSrv()

initiate the system service

!!!! Description

The NCM_StartDlgSrv() function initiates the Intel Dialogic system. To start only one board, use
NCM_StartBoard().

Notes: 1. A successful completion code for this function (NCM_SUCCESS) only indicates that a start
message was sent to the Intel Dialogic system. Use NCM_GetDlgSrvState() or
NCM_GetDlgSrvStateEx() to determine whether or not the system actually started.

2. The NCM_StartSystem() function is intended to replace NCM_StartDlgSrv(), which will be
discontinued in a future release. The NCM_StartSystem() function was created to support
Semi-Automatic mode.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_OPENING_SCM
an error occurred opening the service control manager

NCME_OPENING_DLGC_SVC
an error occurred opening the Intel Dialogic system

NCME_STARTING_DLGC_SVC
an error occurred starting the Intel Dialogic system

!!!! Example

NCMRetCode ncmRc = NCM_SUCCESS;
ncmRc = NCM_StartDlgSrv();

Name: NCMRetCode NCM_StartDlgSrv(void)

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

NCM API Library Reference — December 2003 143

initiate the system service — NCM_StartDlgSrv()

if (ncmRc == NCM_SUCCESS)
{
 SERVICE_STATUS srvcStatus;
 DWORD dwMilSecs = 1000;
 // loop wait for status to change
 while (1)
 {
 ncmRc = NCM_GetDlgSrvStateEx(&srvcStatus);

 if (ncmRc == NCM_SUCCESS)
 {
 if (srvcStatus.dwWin32ExitCode == NO_ERROR &&
 srvcStatus.dwCurrentState != SERVICE_RUNNING)
 {
 Sleep(dwMilSecs);
 }

 if (desiredState == SERVICE_STOPPED &&
 srvcStatus.dwCurrentState == SERVICE_RUNNING)
 {
 ncmRc = NCME_STOPPING_DLGC_SVC; // Error stopping Dialogic Service
 return NCMToHresult(ncmRc);
 }

 if (srvcStatus.dwCurrentState == SERVICE_RUNNING)
 {
 break;
 }

 if (desiredState == SERVICE_RUNNING &&
 srvcStatus.dwCurrentState == SERVICE_STOPPED)
 {
 ncmRc = NCME_STARTING_DLGC_SVC; // Error starting Dialogic Service
 // Handle error ...
 return ncmRc;
 }

 }
 } // end while
}

!!!! See Also

• NCM_DetectBoards()

• NCM_DetectBoardsEx()

• NCM_StartBoard()

• NCM_StopBoard()

• NCM_StopDlgSrv()

144 NCM API Library Reference — December 2003

NCM_StartSystem() — starts all boards

NCM_StartSystem()

starts all boards

!!!! Description

The NCM_StartSystem() function starts all Intel telecom boards in the system. If your system is
running in Manual mode, the NCM_StartSystem() function will start the Intel Dialogic system
service and start all Intel telecom boards in the system. If your system is in Semi-Automatic mode,
the Intel Dialogic system service will run uninterrupted and a call to the NCM_StartSystem()
function will start all Intel telecom boards. Use the NCM_GetSystemState() function to
determine whether or not the system service is running.

Note: The NCM_StartSystem() function is intended to replace NCM_StartDlgSrv(), which will be
discontinued in a future release. The NCM_StartSystem() function was created to support Semi-
Automatic mode.

!!!! Cautions

None

!!!! Errors

Possible errors for this function include:

NCME_GENERAL
a problem occurred while starting the system service

!!!! Example

#include "NCMApi.h"

...

//
//Execute
//

NCMRetCode ncmRc = NCM_StartSystem();
if (ncmRc == NCM_SUCCESS)
{
 NCMSystemState desiredState == NCM_SYSTEM_RUNNING;
 while (1)
 {

Name: NCMRetCode NCM_StartSystem()

Inputs: None

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: Synchronous

NCM API Library Reference — December 2003 145

starts all boards — NCM_StartSystem()

 NCMSystemState curState;
 if (ncmRc == NCM_GetSystemState (&State))
 if (curState == desiredState)
 {
 //..successfully started the system service
 break;
 }
 else if (curState == NCM_SYSTEM_STOPPED)
 {
 //failure to start the system service
 break;
 }
 }
 }
 ...
}
else
{
 //process error
 ...
}
...

!!!! See Also

• NCM_StopSystem()

146 NCM API Library Reference — December 2003

NCM_StopBoard() — stop an individual board

NCM_StopBoard()

stop an individual board

!!!! Description

The NCM_StopBoard() function stops an individual board. To stop the whole system, use
NCM_StopDlgSrv().

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCM_GENERAL
a problem occurred retrieving the data

!!!! Example

#include "NCMApi.h"
...

Name: NCMRetCode NCM_StopBoard(pncmFamily, pncmDeviceUnique)

Inputs: NCMFamily *pncmFamily • pointer to the data structure containing a device family
name

NCMDevice *pncmDeviceUnique • pointer to a data structure containing a unique device
name

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

Parameter Description

pncmFamily points to an NCMString data structure containing a family name

pncmDeviceUnique points to an NCMString data structure containing a unique device name.
The device name must be the same name you used to add the device to
the system configuration with the NCM_AddDevice() function.

Note: You are strongly discouraged from parsing the unique device
name from your application. Although the name is guaranteed to be
unique, Intel reserves the right to change the format of the device name
in future releases.

NCM API Library Reference — December 2003 147

stop an individual board — NCM_StopBoard()

//
// Prepare inputs
//

NCMFamily family;
Family.name = "DM3";
Family.next = NULL;

NCMDevice device;
device.name = "QS_T1-1";
device.next = NULL;

//
// Execute
//
NCMRetCode ncmRc = NCM_StopBoard(&family, &device);

if (ncmRc != NCM_SUCCESS)
{
 // process error code
 ...
}

!!!! See Also

• NCM_DetectBoards()

• NCM_DetectBoardsEx()

• NCM_GetAUID()

• NCM_GetFamilyDeviceByAUID()

• NCM_StartBoard()

• NCM_StartDlgSrv()

• NCM_StopDlgSrv()

148 NCM API Library Reference — December 2003

NCM_StopDlgSrv() — stop the system service

NCM_StopDlgSrv()

stop the system service

!!!! Description

The NCM_StopDlgSrv() function stops the Intel Dialogic system. To stop only one board, use
NCM_StopBoard().

Notes: 1. A successful completion code (NCM_SUCCESS) only indicates that this function attempted to
stop the system. Use NCM_GetDlgSrvState() or NCM_GetDlgSrvStateEx() to determine
whether or not the system was actually stopped.

2. The NCM_StopSystem() function is intended to replace NCM_StopDlgSrv(), which will be
discontinued in a future release. The NCM_StopSystem() function was created to support
Semi-Automatic mode.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_OPENING_SCM
an error occurred opening the service control manager

NCME_OPENING_DLGC_SVC
an error occurred opening the Intel Dialogic system

NCME_STOPPING_DLGC_SVC
an error occurred stopping the Intel Dialogic system

!!!! Example

#include "NCMApi.h"

...

//
// Execute
//

NCMRetCode ncmRc = NCM_StopDlgSrv();

Name: NCMRetCode NCM_StopDlgSrv(void)

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: synchronous

NCM API Library Reference — December 2003 149

stop the system service — NCM_StopDlgSrv()

if (ncmRc != NCM_SUCCESS)
{ // process error
 ...
}

!!!! See Also

• NCM_StartBoard()

• NCM_StopBoard()

• NCM_StartDlgSrv()

150 NCM API Library Reference — December 2003

NCM_StopSystem() — stop all boards in a system

NCM_StopSystem()

stop all boards in a system

!!!! Description

The NCM_StopSystem() function stops all Intel telecom boards in the system. If your system is
running in Semi-Automatic mode, the NCM_StopSystem() function will stop all Intel telecom
boards in the system, but will not stop theIntel Dialogic system service. If your system is running
in Automatic or Manual mode, the NCM_StopSystem() function will stop all Intel telecom
boards and stop the Intel Dialogic system service.

Note: The NCM_StopSystem() function is intended to replace NCM_StopDlgSrv(), which will be
discontinued in a future release. The NCM_StopSystem() function was created to support Semi-
Automatic mode.

!!!! Cautions

None.

!!!! Errors

Possible errors for this function include:

NCME_GENERAL
a problem occurred while starting the system service

!!!! Example

#include "NCMApi.h"

...

//
//Execute
//

NCMRetCode ncmRc = NCMStopSystem();

if (ncmRc == NCM_SUCCESS)
{
 NCMSystemState desiredState == NCM_SYSTEM_STOPPED;
 while (1)
 {

Name: NCMRetCode NCM_StopSystem(void)

Inputs: None

Returns: NCM_SUCCESS if success
NCM error code if failure

Includes: NCMApi.h

Category: System administration

Mode: Synchronous

NCM API Library Reference — December 2003 151

stop all boards in a system — NCM_StopSystem()

 NCMSystemState curState;
 if (ncmRc == NCM_GetSystemState(&curState))
 {
 if (curState == desiredState)
 {
 //..successfully stopped system service
 break;
 }
 else if (curState == NCM_SYSTEM_RUNNING)
 {
 //fail to stop system service
 break;
 }
 }
 }
 ...
}
else
{
 //process error
 ...
}
...

!!!! See Also

• NCM_StartSystem()

• NCM_GetSystemState()

152 NCM API Library Reference — December 2003

NCM_StopSystem() — stop all boards in a system

NCM API Library Reference — December 2003 153

33.Events

This chapter contains information about events generated by the functions in the NCM API.

All functions in the NCM API operate in synchronous mode, so the start/completion of each
function is tough to determine. However, certain functions generate events that are transmitted via
the Intel® Dialogic® system event notification framework’s ADMIN_CHANNEL. Refer to the
Event Service API for Windows Operating Systems Library Reference and the Event Service API
for Windows Operating Systems Programming Guide for information about registering your
application to receive events generated by select NCM library functions.

The following NCM library functions generate events that are carried on the event notification
framework’s ADMIN_CHANNEL:

• NCM_StartBoard()

• NCM_StartDlgSrv()

• NCM_StopBoard()

• NCM_StopDlgSrv()

154 NCM API Library Reference — December 2003

Events

NCM API Library Reference — December 2003 155

44.Data Structures

This chapter provides an alphabetical reference to the data structures used by the NCM library
functions. These data structures are defined in NCMTypes.h. (For your convenience, NCMApi.h
already includes NCMTypes.h.)

The following data structures are discussed:

• NCM_DETECTION_DETAILS . 156

• NCM_DETECTION_INFO . 157

• NCM_DETECTION_RESULT. 158

• NCMString . 159

• NCMSysVersion . 160

• NCMTrunkConfig . 161

• NCMValueEx. 162

• NCMVariableAttributes . 163

156 NCM API Library Reference — December 2003

NCM_DETECTION_DETAILS — board detection details

NCM_DETECTION_DETAILS

board detection details
typedef struct _NCM_DETECTION_DETAILS
{
 int structSize;
 int numDetectors;
 int numBoardsDetected[256];
 int returnCode[256];
 char returnMsg[64][256];
 char detector[64][256];
} NCM_DETECTION_DETAILS;

!!!! Description

The NCM_DETECTION_DETAILS data structure provides detailed information about the board
detection process when the NCM_DetectBoardsEx() function is invoked. Refer to the description
of the NCM_DETECTION_RESULT, on page 158 for more information about the
NCM_DETECTION_DETAILS data structure.

!!!! Field Descriptions

The fields of the NCM_DETECTION_DETAILS data structure are described as follows:

structSize
size of the NCM_DETECTION_DETAILS data structure

numDetectors
number of board detectors

numBoardsDetected
number of boards detected

returnCode
detector return code

returnMsg
detector returned message

detector
board detector name

NCM API Library Reference — December 2003 157

board detection callback functions — NCM_DETECTION_INFO

NCM_DETECTION_INFO

board detection callback functions
typedef struct _NCM_DETECTION_INFO
{
 int structSize;
 NCM_CALLBACK_FCN *callbackFcn;
 NCM_PCDFILE_SELECTION_FCN * pcdFileSelectionFcn;
} NCM_DETECTION_INFO;

!!!! Description

The NCM_DETECTION_INFO data structure provides information for the
NCM_DetectBoardsEx() function. This data structure contains the structure size and the address
of the following two callback functions, both of which are defined in the NCMTypes.h file:

• NCM_CALLBACK_FCN

• NCM_PCDFILE_SELECTION_FCN

!!!! Field Descriptions

The fields of the NCM_DETECTION_INFO data structure are described as follows:

structSize
size of the NCM_DETECTION_INFO data structure

callbackFcn
address of the callback function

pcdFileSelectionFcn
address of the PCD file callback function

158 NCM API Library Reference — December 2003

NCM_DETECTION_RESULT — board detection results

NCM_DETECTION_RESULT

board detection results
typedef struct _NCM_DETECTION_RESULT
{
 int structSize;
 int totalDetectedBoards;
 NCM_DETECTION_DETAILS returnInfo;
} NCM_DETECTION_RESULT;

!!!! Description

The NCM_DETECTION_RESULT data structure returns the results of the board detection
procedure after the NCM_DetectBoardsEx() function has been invoked.

!!!! Field Descriptions

The fields of the NCM_DETECTION_RESULT data structure are described as follows:

structSize
size of the NCM_DETECTION_RESULT data structure

totalDetectedBoards
total number of boards detected

returnInfo
returned information (NCM_DETECTION_DETAILS data structure)

NCM API Library Reference — December 2003 159

defines NCM variables — NCMString

NCMString

defines NCM variables
typedef struct NCMString
{
 char *name;
 struct NCMString *next;
} NCMString;

!!!! Description

The NCMString data structure defines most variables used by the NCM library functions. All of
following are aliases for NCMString:

• NCMFamily

• NCMDevice

• NCMProperty

• NCMValue

• NCMVariable

• NCMErrorMsg

!!!! Field Descriptions

The fields of the NCMString data structure are described as follows:

name
string that defines the name of a particular data type (for example “DM3” for NCMFamily,
“QS_T1” for NCMDevice etc.)

next
points the next NCMString data structure in a linked list (if applicable)

160 NCM API Library Reference — December 2003

NCMSysVersion — system software\operating system version information

NCMSysVersion

system software\operating system version information
typedef struct _NCMSysVersion
{
 char szOSName[MAX_PATH];
 char szOSVersion[MAX_PATH];
 char szOSBuild[MAX_PATH];
 char szOSType[MAX_PATH];
 char szOSSvcPack[MAX_PATH];
 char szDSSVersion[MAX_PATH];
 char szDSSRelease[MAX_PATH];
 char szDSSBuild[MAX_PATH];
 char szDSSSvcPack[MAX_PATH];
} NCMSysVersion;

!!!! Description

The NCMSysVersion data structure defines the Operating System and Intel® Dialogic® System
Software version information. This data structure is when the NCM_GetVersionInfo() is invoked.

!!!! Field Descriptions

The fields of the NCMSysVersion data structure are described as follows:

szOSName
name of the operating system

szOSVersion
version of the operating system

szOSBuild
operating system build

szOSType
type of operating system

szOSSvcPack
installed operating system service packs installed

szDSSVersion
Intel Dialogic system software version

szDSSRelease
Intel Dialogic system software release

szDSSBuild
Intel Dialogic system software build

szDSSSvcPack
Intel Dialogic system software service packs installed

NCM API Library Reference — December 2003 161

information needed for trunk configuration — NCMTrunkConfig

NCMTrunkConfig

information needed for trunk configuration
typedef struct _NCMTrunkConfig
{
char * TrunkName;
char * TrunkValue;
struct _NCMTrunkConfig * next;
} NCMTrunkConfig;

! Description

This structure is used to pass the information needed for trunk configuration such as Media Load
information for the board and protocols for the trunks.

! Field Descriptions

The fields of the NCMTrunkConfig data structure are described as follows:

TrunkName
For passing the Media Load, the value of this field should be Media Load. For passing the
protocols for the trunks, the value of this filed should be Trunk n, where n is the number of
trunks supported for the board.

TrunkValue
If MediaLoad is the value for the TrunkName field, this field should have a supported media
load for the board. Otherwise, it should have a supported protocol for the board.

162 NCM API Library Reference — December 2003

NCMValueEx — defines parameter values

NCMValueEx

defines parameter values
typedef struct _NCMValueEx
{
 int structSize;
 NCMDataType dataType;
 void *dataValue;
 int dataSize;
 struct _NCMValueEx *next;
} NCMValueEx;

!!!! Description

The NCMValueEx data structure defines configuration parameter values for use by the NCM API
extended functions (NCM_GetValueEx(), NCM_GetValueRangeEx(), etc.).

!!!! Field Descriptions

The fields of the NCMValueEx data structure are described as follows:

structSize
size of the NCMValueEx data structure

dataType
enumerated (enum) type to signify the type of data held by the variable. Possible data types, as
defined in NCMTypes.h, are as follows:

• UNDEFINED

• NUMERIC

• ALPHANUMERIC

• NCMFILE (to be used by filenames)

dataValue
a buffer that holds the variable

dataSize
size of the buffer allocated to hold the data (dataValue field)

next
points to the next NCMValueEx data structure in a linked list (if applicable)

NCM API Library Reference — December 2003 163

defines attributes for a variable — NCMVariableAttributes

NCMVariableAttributes

defines attributes for a variable
typedef struct _NCMVariableAttributes
{
 unsigned int structSize;
 NCMDataType dataType;
 int radix;
 NCMVariableDomainType domainType;
 NCMVariableVisibleType visibleType;
 NCMVariableEditType editType;
} _NCMVariableAttributes;

!!!! Description

The NCMVariableAttributes data structure defines the attributes of a configuration parameter. This
data structure is filled when the NCM_GetVariableAttributes() function is invoked.

!!!! Field Descriptions

The fields of the NCMVariableAttributes data structure are described as follows:

structSize
size of the NCMVariableAttributes data structure

dataType
enumerated (enum) type to signify the type of data held by the variable attribute. Possible data
types, as defined in NCMTypes.h, are as follows:

• UNDEFINED

• NUMERIC

• ALPHANUMERIC

• NCMFILE (to be used by filenames)

radix
radix of the variable

domainType
enumerated (enum) type to signify the domain/range of the variables valid settings. Possible
domain/range types, as defined in NCMTypes.h, are as follows:

• NCM_DOMAIN_UNDEFINED

• NCM_DOMAIN_OPEN

• NCM_DOMAIN_CLOSE

visibleType
enumerated (enum) type to signify whether or not the variable is visible. Possible visibility
types, as defined in NCMTypes.h, are as follows:

• NCM_VIS_UNDEFINED

• NCM_VARIABLE_VISIBLE

• NCM_VARIABLE_HIDDEN

editType
enumerated (enum) type to signify whether the variable is read-only (RO) or read-write (RW).
Possible edit types, as defined in NCMTypes.h, are as follows:

164 NCM API Library Reference — December 2003

NCMVariableAttributes — defines attributes for a variable

• NCM_ACC_UNDEFINED

• NCM_VARIABLE_RW

• NCM_VARIABLE_RO

NCM API Library Reference — December 2003 165

55.Error Codes

This chapter lists the error codes that may be returned by the NCM library functions.

If a library function fails, use the NCM_GetErrorMsg() function to return the error message. The
following errors can be returned by the NCM_GetErrorMsg() function:

NCME_ACCESS_DENIED
denied access error (configuration parameter may be read-only)

NCME_ADD_DEVICE
attempt to add device failed

NCME_BAD_DATA_LOC
destination of data (i.e., global, family, or device level) could not be determined

NCME_BAD_DATA_TYPE
data type of variable is incorrect or indeterminable

NCME_BAD_INF
error parsing the .inf file

NCME_BRD_DETECT
error auto-detecting boards

NCME_BUFFER_TOO_SMALL
allocated buffer is too small

NCME_CTBB_DEVICESDETECTED
re-detection of devices failed

NCME_CTBB_LIB
CTBBFace.dll file is either not in the system or is the incorrect version

NCME_CTBB_USERAPPLY
error updating TDM bus settings

NCME_DATA_NOT_FOUND
data not found

NCME_DETECTOR_LIB_NOT_FOUND
error loading detector library

NCME_DETECTOR_FCN_NOT_FOUND
error calling detector function

NCME_DUP_DEVICE
attempt to add a duplicate device name

NCME_FAIL_TO_CONFIGURE_BUS
failure to configure TDM bus

NCME_FAIL_TO_SET_PRIMARY
device could not be set to primary clock master

166 NCM API Library Reference — December 2003

Error Codes

NCME_FAIL_TO_SET_SECONDARY
device could not be set to secondary clock master

NCME_GENERAL
general error

NCME_INVALID_ARG
invalid version

NCME_INVALID_BUFF
received an invalid buffer

NCME_INVALID_DEVICE
invalid device name

NCME_INVALID_FAMILY
invalid family name

NCME_INVALID_INPUTS
invalid function inputs

NCME_INVALID_THIRDPARTY_DEVICE
specified third party device does not exist

NCME_MEM_ALLOC
memory allocation error

NCME_MISSING_BUS_CAPABILITIES
invalid TDM bus capabilities

NCME_MULTIPLE_PCDS
multiple .pcd files exist

NCME_NO_INF
.inf files could not be found

NCME_NO_RESOURCES
no system resources available

NCME_NO_TIMESLOT
specified time slots queried do not exist

NCME_OPENING_DLGC_SVC
error opening the Intel Dialogic system

NCME_OPENING_SCM
error opening the service control manager

NCME_PCD_SELECTION
no .pcd file was selected for DM3 boards

NCME_QUERY_SVC_STATUS
error querying the Intel Dialogic system status

NCME_REG_CALLBK
error registering a callback function with GENLOAD library

NCME_RELEASE_TIMESLOT
failed to release the specified timeslots

NCM API Library Reference — December 2003 167

Error Codes

NCME_REMOTE_REG_ERROR
error opening the Intel Dialogic key in the remote machine registry

NCME_SETTING_DEFAULTS
error occurred while setting the default values

NCME_SP
invalid state transition

NCME_STARTING_DLGC_SVC
error occurred while starting the Intel Dialogic system

NCME_STOPPING_DLGC_SVC
error occurred while stopping the Intel Dialogic system

NCME_SYSTEMERROR
lack of system resources

NCME_UNAVAILABLE_TIMESLOT
requested time slot is not available

NCME_UNKNOWN_SERVICE_TYPE
software cannot determine the Intel Dialogic system type

168 NCM API Library Reference — December 2003

Error Codes

NCM API Library Reference — December 2003 169

Index

A
ADMIN_CHANNEL 153

aliases for NCMString 159

auto-detection of boards 41

B
Bus-0 93

C
clock master fallback list 128

CTBB 128

CTBB_USER_APPLY 128

D
DCM catalog 17, 39, 49

deallocating memory 31

detecting DM3 boards 41

devmap.h 53, 80

disable a device 46

E
enable a device 46

enum 162, 163

error messages 165

event notification framework 153

extended functions 162

F
function syntax 15

H
HIDDEN property attribute 89

I
installable devices 7

instantiated devices 7

M
message variable 41

N
NCM_CALLBACK_FCN 157

NCM_PCDFILE_SELECTION_FCN 157

NCMRetCode 15

NCMSysVersion 114

NCMTypes.h 15, 157, 163

NCMValueEx 106

number of TDM busses supported 93

O
Operating System version 114

order of clock master fallback list 128

P
PCD file 157

percentageCompleted variable 41

Primary Clock Master 128

R
Resolved TDM bus parameters 132

S
Secondary Clock Master 128

supported TDM busses 93

system service startup modes 130

system software version 114

T
TDM bus parameters

Resolved 132
UserDefined 132

U
UNDEFINED property attribute 89

170 NCM API Library Reference — December 2003

unique device name 38

UserDefined TDM bus parameters 132

V
VISIBLE property attribute 89

	Contents
	Revision History
	About This Publication
	1. Function Summary by Category
	1.1 Query Configuration Functions
	1.2 Modify Configuration Functions
	1.3 System Functions
	1.4 System Administration Functions
	1.5 TDM Bus Functions
	1.6 Third Party Device Functions

	2. Function Information
	2.1 Function Syntax Conventions
	NCM_AddDevice(�)
	NCM_AddThirdPartyDevice(�)
	NCM_AllocateTimeslots(�)
	NCM_ApplyTrunkConfiguration(�)
	NCM_Dealloc(�)
	NCM_DeallocateTimeslots(�)
	NCM_DeallocValue(�)
	NCM_DeleteEntry(�)
	NCM_DetectBoards(�)
	NCM_DetectBoardsEx(�)
	NCM_EnableBoard(�)
	NCM_GetAllDevices(�)
	NCM_GetAllFamilies(�)
	NCM_GetAUID(�)
	NCM_GetClockMasterFallbackList(�)
	NCM_GetCspCountries(�)
	NCM_GetCspCountryCode(�)
	NCM_GetCspCountryName(�)
	NCM_GetCspFeaturesValue(�)
	NCM_GetCspFeatuesValueRange(�)
	NCM_GetCspFeaturesVariables(�)
	NCM_GetDialogicDir(�)
	NCM_GetDlgSrvStartupMode(�)
	NCM_GetDlgSrvState(�)
	NCM_GetDlgSrvStateEx(�)
	NCM_GetErrorMsg(�)
	NCM_GetFamilyDeviceByAUID(�)
	NCM_GetInstalledDevices(�)
	NCM_GetInstalledFamilies(�)
	NCM_GetProperties(�)
	NCM_GetPropertyAttributes(�)
	NCM_GetSystemState(�)
	NCM_GetTDMBusValue(�)
	NCM_GetThirdPartyDeviceBusCaps(�)
	NCM_GetValue(�)
	NCM_GetValueEx(�)
	NCM_GetValueRange(�)
	NCM_GetValueRangeEx(�)
	NCM_GetVariableAttributes(�)
	NCM_GetVariables(�)
	NCM_GetVersionInfo(�)
	NCM_IsBoardEnabled(�)
	NCM_IsEditable(�)
	NCM_QueryTimeslots(�)
	NCM_ReconfigureBoard(�)
	NCM_RemoveThirdPartyDevice(�)
	NCM_SetClockMasterFallbackList(�)
	NCM_SetDlgSrvStartupMode(�)
	NCM_SetTDMBusValue(�)
	NCM_SetValue(�)
	NCM_SetValueEx(�)
	NCM_StartBoard(�)
	NCM_StartDlgSrv(�)
	NCM_StartSystem(�)
	NCM_StopBoard(�)
	NCM_StopDlgSrv(�)
	NCM_StopSystem(�)

	3. Events
	4. Data Structures
	NCM_DETECTION_DETAILS
	NCM_DETECTION_INFO
	NCM_DETECTION_RESULT
	NCMString
	NCMSysVersion
	NCMTrunkConfig
	NCMValueEx
	NCMVariableAttributes

	5. Error Codes
	Index

