
Dialogic® Modular Station
Interface API
Library Reference

May 2008

05-1906-006

Dialogic® Modular Station Interface API Library Reference – May 2008
Dialogic Corporation

Copyright © 1998-2008 Dialogic Corporation. All rights reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on
the part of Dialogic Corporation or its subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in the
document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions
that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor,
Montreal, Quebec, Canada H4M 2V9. The software referred to in this document is provided under a Software License Agreement. Refer to the
Software License Agreement for complete details governing the use of the software.

Dialogic encourages all users of its products to procure all necessary intellectual property licenses required to implement any concepts or
applications and does not condone or encourage any intellectual property infringement and disclaims any responsibility related thereto.
These intellectual property licenses may differ from country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

Dialogic, Dialogic Pro, Brooktrout, Cantata, SnowShore, Eicon, Eicon Networks, Eiconcard, Diva, SIPcontrol, Diva ISDN, TruFax, Realblocs,
Realcomm 100, NetAccess, Instant ISDN, TRXStream, Exnet, Exnet Connect, EXS, ExchangePlus VSE, Switchkit, N20, Powering The Service-
Ready Network, Vantage, Connecting People to Information, Connecting to Growth, Making innovation Thrive, and Shiva, among others as well as
related logos, are either registered trademarks or trademarks of Dialogic. Dialogic's trademarks may be used publicly only with permission from
Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M
2V9. Any authorized use of Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to time and
any use of Dialogic’s trademarks requires proper acknowledgement.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Other names of actual companies and
products mentioned herein are the trademarks of their respective owners.

Publication Date: May 2008

Document Number: 05-1906-006

Dialogic® Modular Station Interface API Library Reference – May 2008 3
Dialogic Corporation

Contents

Revision History . 7

About This Publication . 9
Purpose . 9
Applicability . 9
Intended Audience. 9
How to Use This Publication . 10
Related Information . 10

1 Function Summary by Category . 11

1.1 Attribute Functions. 11
1.2 Conference Management Functions . 11
1.3 Configuration Functions. 12
1.4 Device Management Functions . 12
1.5 Diagnostic Functions . 13
1.6 Extended Connection Functions . 13
1.7 TDM Routing Functions . 13
1.8 Station Functions . 14
1.9 Extended Attribute Functions. 15
1.10 MSI Function Support by Platform. 15

2 Function Information . 19

2.1 Function Syntax Conventions . 19
ATMS_STATINFO() – retrieve information about the MSI board . 20
ATMS_TSSGBIT() – retrieve the current station hook status . 22
ms_addtoconf() – add one party to an existing conference. 25
ms_chgxtder() – change the attribute of the connection extender . 28
ms_close() – close the MSI device . 31
ms_delconf() – delete a conference . 33
ms_delxtdcon() – delete an extended connection . 35
ms_dsprescount() – retrieve the available DSP resource count . 37
ms_estconf() – establish a conference . 40
ms_estxtdcon() – establish an extended connection. 44
ms_genring() – generate ringing to a station. 47
ms_genringCallerID() – send distinctive ring and caller ID information. 52
ms_genringex() – generate distinctive ringing to a station . 56
ms_genziptone() – generate a zip tone . 62
ms_getbrdparm() – retrieve board parameters . 64
ms_getcde() – retrieve the attributes of a participant . 66
ms_getcnflist() – retrieve a conference list . 69
ms_getctinfo() – retrieve device information . 71
ms_getevt() – block and return control to the application . 73
ms_getevtmsk() – retrieve station event mask . 76
ms_getxmitslot() – return TDM bus time slot . 79

4 Dialogic® Modular Station Interface API Library Reference – May 2008
Dialogic Corporation

Contents

ms_listen() – connect receive channel of station device to a TDM bus time slot 81
ms_listenEx() – connect receive channel of station device to TDM bus time slot 84
ms_monconf() – add a monitor to a conference. 89
ms_open() – open an MSI device. 92
ms_remfromconf() – remove a party from a conference . 94
ms_ResultMsg() – retrieve an ASCII string describing a result code . 97
ms_ResultValue() – retrieve the cause of an event . 100
ms_SendData() – send data to station during a call. 103
ms_setbrdparm() – change board parameters . 107
ms_setcde() – change the attributes of a party . 114
ms_setevtmsk() – change transition event masks . 117
ms_SetMsgWaitInd() – toggle message waiting indicator lamp . 121
ms_setstparm() – change the MSI station level parameters . 123
ms_setvol() – change or reset the station volume . 125
ms_stopfn() – stop a multitasking function . 127
ms_tstcom() – test the communication ability of a board . 129
ms_tstdat() – perform a data test on the MSI board. 131
ms_unlisten() – disconnect receive channel of a station device . 134
ms_unlistenEx() – disconnect receive channel of a station device . 136
ms_unmonconf() – remove a monitor from a conference. 139

3 Events. 143

4 Data Structures . 145

CT_DEVINFO – channel/station information. 146
MS_CADENCE – cadence information for distinctive ringing . 149
MS_CDT – conference properties . 151
MS_DataInfo – call waiting caller ID information . 153
MS_NCB – notification tone characteristics . 155
SC_TSINFO – TDM bus time slot information. 156

5 Error Codes . 157

Glossary . 161

Index . 165

Dialogic® Modular Station Interface API Library Reference – May 2008 5
Dialogic Corporation

Contents

Figures

1 Ring Cadence Examples . 112

6 Dialogic® Modular Station Interface API Library Reference – May 2008
Dialogic Corporation

Contents

Tables

1 MSI Function Support by Platform . 15
2 Dialogic® MSI Board/Device Parameters. 108
3 MSI Ring Cadence Examples. 111
4 Ring Cadence Group A . 150
5 Valid Attribute Combinations . 152

Dialogic® Modular Station Interface API Library Reference — May 2008 7

Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-1906-006 May 2008 Made global changes to reflect Dialogic brand and changed title to “Dialogic®
Modular Station Interface API Library Reference.”

05-1906-005 February 2006 This document version was released in conjunction with SR 6.1 Windows for
CompactPCI*.

ms_setevtmsk() and ms_getevtmsk() functions: Added MSEV_CHANSTATE for
handling station interface alarms.

Events chapter : Added MSEV_CHANSTATE for handling station interface alarms.

MS_CDT: Added note to chan_sel field that MSPN_STATION is supported on
Springware products only. [PTR 35565]

05-1906-004 September 2005 ms_listenEx() and ms_unlistenEx() functions: Added new functions providing
asynchronous mode execution and updated Function Summary by Category
and Events chapters. Also corrected related information in ms_listen() and
ms_unlisten().

05-1906-003 November 2004 Global changes: Removed references to operating system errno global variable and
errno.h from example code (PTR 28013).

Error Codes chapter : For E_MSSYSTEM, corrected error code description to say
“operating system error” (PTR 28013).

ms_SendData() function: Added a caution regarding timing of the ms_SendData()
function call and reliable reception of call waiting caller ID (PTR 31361).

05-1906-002 November 2003 Global changes: Corrected description of MSMM_RNGOFFHK, MSMM_RNGSTOP,
and MSMM_TERM; these are event data for MSEV_RING, not for
MSEV_NORING. This change was made on the following function reference
pages: ms_genring(), ms_genringCallerID(), and ms_genringex(). Also, no
longer show E_MSBADRNGSTA as event data for MSEV_RING and
MSEV_NORING. (PTR 25051)
In code examples, changed “tsinfo.sc_tsarray” to “tsinfo.sc_tsarrayp”. This
change was made on the following function reference pages: ms_addtoconf(),
ms_chgxtder(), ms_estconf(), ms_estxtdcon(), ms_getxmitslot(), ms_listen(),
ms_monconf(), and ms_unmonconf(). (PTR 29446)
Changed mode from asynchronous to synchronous for the following functions:
ms_getxmitslot(), ms_listen(), and ms_unlisten(). (PTR 29710)

ms_genringCallerID() function reference: Noted that the T:Time and Date sub-field
used by the OrigAddr parameter is required as per Bellcore FR-NWT-00064
spec. (PTR 29371)

CT_DEVINFO data structure reference: Provided updated and more detailed field
descriptions.

MS_CDT data structure reference: Added new values for the chan_attr field.

05-1906-001 January 2003 Initial version of document. Much of the information contained in this document was
previously published in the MSI Software Reference for UNIX and Windows,
document number 05-1218-003.

8 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

Revision History

Dialogic® Modular Station Interface API Library Reference — May 2008 9

Dialogic Corporation

About This Publication

The following topics provide information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication provides a reference to the functions, parameters, and data structures in the
Dialogic® Modular Station Interface (MSI) API library. It is a companion document to the
Dialogic® Modular Station Interface API Programming Guide.

Applicability

This document version (05-1906-006) is published for Dialogic® System Release 6.0 PCI for
Windows®, Dialogic® System Release 6.1 CompactPCI for Windows®, and Dialogic® System
Release 6.1 for Linux.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This guide is intended for any of the following:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

10 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

About This Publication

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software which
includes the modular station interface software. This publication assumes that you are familiar with
the Linux or Windows® operating system and the C programming language.

The information in this guide is organized as follows:

• Chapter 1, “Function Summary by Category” groups the modular station interface library
APIs into categories.

• Chapter 2, “Function Information” provides details about each modular station interface
library function, including parameters, cautions, and error codes.

• Chapter 3, “Events” describes the events returned by the modular station interface library.

• Chapter 4, “Data Structures” provides details about each data structure used by the modular
station interface library, including fields and descriptions.

• Chapter 5, “Error Codes” lists the error codes included in the modular station interface library.

• The Glossary provides definitions of key terms used in this document.

Related Information

See the following for additional information:

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/
http://www.dialogic.com/support/
http://www.dialogic.com

Dialogic® Modular Station Interface API Library Reference — May 2008 11

Dialogic Corporation

11.Function Summary by Category

This chapter describes the categories into which the Dialogic® Modular Station Interface (MSI)
library functions can be logically grouped. This chapter also includes a table listing function
support on various platforms.

• Attribute Functions . 11

• Conference Management Functions . 11

• Configuration Functions . 12

• Device Management Functions . 12

• Diagnostic Functions . 13

• Extended Connection Functions . 13

• TDM Routing Functions . 13

• Station Functions . 14

• Extended Attribute Functions . 15

• MSI Function Support by Platform . 15

1.1 Attribute Functions

These functions are used to retrieve specific information about the Dialogic® MSI board.

ms_dsprescount()
returns DSP resource count

ms_getctinfo()
returns information about the station interface device

1.2 Conference Management Functions

These functions are used to manage all conference activities.

ms_addtoconf()
adds a party to an existing conference

ms_delconf()
deletes a conference

ms_estconf()
establishes a conference

ms_getcde()
retrieves the attributes of a conference

12 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

Function Summary by Category

ms_getcnflist()
gets participant list

ms_monconf()
adds a monitor to a conference

ms_remfromconf()
removes a party from a conference

ms_setcde()
sets the attributes of a conference

ms_unmonconf()
removes a monitor from a conference

1.3 Configuration Functions

These functions set the Dialogic® MSI device or station level parameters and event masks, and
check the status of the Dialogic MSI device parameter settings.

ms_getbrdparm()
returns board parameters

ms_getevt() (Windows only)
retrieves an unsolicited event

ms_getevtmsk()
returns the station event mask

ms_ResultMsg()
retrieves an ASCII string describing a result code

ms_ResultValue()
retrieves the cause of an event

ms_setbrdparm()
changes board parameters

ms_setevtmsk()
changes station event mask

ms_setstparm()
changes station level parameters

1.4 Device Management Functions

These functions are used to open and close devices. Before using any other Dialogic® MSI library
function, the device must be opened to obtain the handle.

ms_close()
closes an open MSI device

ms_open()
opens an MSI device and returns a unique handle

Dialogic® Modular Station Interface API Library Reference — May 2008 13

Dialogic Corporation

Function Summary by Category

ms_stopfn()
stops a multitasking function in progress

1.5 Diagnostic Functions

Diagnostic functions check the functionality of the Dialogic® MSI firmware and hardware.

ms_tstcom()
runs MSI communications test to determine whether the PC can communicate with the
Dialogic MSI board

ms_tstdat()
runs data test on the Dialogic MSI board to determine whether data is passed successfully
between the PC and the Dialogic MSI board

1.6 Extended Connection Functions

These functions are used to manage all extended connection activities.

ms_chgxtder()
changes the attributes of the connection extender

ms_delxtdcon()
deletes the extended connection

ms_estxtdcon()
establishes an extended connection

1.7 TDM Routing Functions

TDM routing functions are used in time division multiplexing (TDM) bus configurations, which
include the CT Bus and SCbus. A TDM bus is resource sharing bus that allows information to be
transmitted and received among resources over multiple time slots.

TDM routing functions enable the application to make or break a connection between voice,
telephone network interface, and other resource channels connected via TDM bus time slots. Each
device connected to the bus has a transmit component that can transmit on a time slot and a receive
component that can listen to a time slot.

The transmit component of each channel of a device is assigned to a time slot at system
initialization and download. To listen to other devices on the bus, the receive component of the
device channel is connected to any one time slot. Any number of device channels can listen to a
time slot.

Note: When you see references to the SCbus or SCbus routing, this information also applies to the CT
Bus. That is, the physical interboard connection can be either SCbus or CT Bus. The SCbus
protocol is used and the SCbus routing API applies to all the boards regardless of whether they use
an SCbus or CT Bus physical interboard connection.

14 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

Function Summary by Category

A set of TDM routing functions exist for each Dialogic® library, such as fax (fx_ functions) and
voice (dx_ functions). See the appropriate Dialogic® API Library Reference for more information
on these functions.

ms_getxmitslot()
returns the number of the TDM bus time slot connected to the transmit component of the
station

ms_listen()
connects the receive channel of a station device to a TDM bus time slot

ms_unlisten()
disconnects the receive channel of a station device from a TDM bus time slot

ms_listenEx()
connects the receive channel of a station device to a TDM bus time slot (asynchronous)

ms_unlistenEx()
disconnects the receive channel of a station device from a TDM bus time slot (asynchronous)

Note: TDM routing convenience functions, nr_scroute() and nr_scunroute(), are provided to make or
break a half- or full-duplex connection between any two channels transmitting on the bus. These
functions are not a part of any library but are provided in a separate C source file called sctools.c
located in the /usr/dialogic/sctools directory. The functions are defined in sctools.h. MSI
functionality may be conditionally compiled in or out of these functions using the SC_MSI and
SC_DTI defines in the makefile provided. Refer to the Dialogic® Voice API Library Reference for
more details.

1.8 Station Functions

These functions set individual characteristics to a station.

ms_genring()
generates a ring to a station

ms_genringCallerID()
sends distinctive ring and caller ID information

ms_genringex()
generates distinctive ringing to a station

ms_genziptone()
generates zip tone to a station

ms_SendData()
sends data to station during a call

ms_SetMsgWaitInd()
toggles message waiting indicator lamp

ms_setvol()
sets station volume

Dialogic® Modular Station Interface API Library Reference — May 2008 15

Dialogic Corporation

Function Summary by Category

1.9 Extended Attribute Functions

Extended Attribute functions return information specific to the Dialogic MSI device specified in
the function call.

ATMS_STATINFO()
returns station information, including station number and location

ATMS_TSSGBIT()
retrieves the current channel signaling bit status (on-hook or off-hook)

1.10 MSI Function Support by Platform

Table 1, “MSI Function Support by Platform”, on page 15 provides an alphabetical listing of
Dialogic MSI API functions. The table indicates which platforms are supported for each of the
functions. There are three Dialogic® platforms that use the Dialogic MSI library: DI, HDSI, and
Springware.

Dialogic® DM3 boards is a collective name used in this document to refer to products that are
based on the Dialogic® DM3 mediastream architecture. Examples of Dialogic® DM3 boards that
use the Dialogic MSI library are Dialogic® High Density Station Interface (HDSI) boards and
Dialogic® Integrated Series (DI) boards.

Dialogic® Springware boards refer to boards based on earlier-generation architecture, such as the
Dialogic® MSI-Global Series boards.

Although a function may be supported on both Dialogic® DM3 and Springware boards, there may
be some restrictions on its use. For example, some parameters or parameter values may not be
supported. For details, see the function reference descriptions in Chapter 2, “Function
Information”.

Table 1. MSI Function Support by Platform

Function
Dialogic® Platform

DI HDSI Springware

ATMS_STATINFO() S S S

ATMS_TSSGBIT() S S S

ms_addtoconf() S NS S

ms_chgxtder() NS NS S

ms_close() S S S

ms_delconf() S NS S

ms_delxtdcon() NS NS S

Legend:
NS = Not Supported
S = Supported
* = Variance between platforms, refer to the function description for more information.

16 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

Function Summary by Category

ms_dsprescount() S S S

ms_estconf() S NS S

ms_estxtdcon() NS NS S

ms_genring() S S S

ms_genringCallerID() S S NS

ms_genringex() S* S* S

ms_genziptone() NS NS S

ms_getbrdparm() S* S* S

ms_getcde() S S S

ms_getcnflist() S NS S

ms_getctinfo() S S S

ms_getevt() S S S

ms_getevtmsk() S S S

ms_getxmitslot() S S S

ms_listen() S S S

ms_listenEx() S S S

ms_monconf() S NS S

ms_open() S S S

ms_remfromconf() S NS S

ms_ResultMsg() S S NS

ms_ResultValue() S S NS

ms_SendData() S S NS

ms_setbrdparm() S* S* S

ms_setcde() S NS S

ms_setevtmsk() S S S

ms_SetMsgWaitInd() S S NS

ms_setstparm() S S S

ms_setvol() S S S

ms_stopfn() S S S

ms_tstcom() S S S

ms_tstdat() S S S

Table 1. MSI Function Support by Platform (Continued)

Function
Dialogic® Platform

DI HDSI Springware

Legend:
NS = Not Supported
S = Supported
* = Variance between platforms, refer to the function description for more information.

Dialogic® Modular Station Interface API Library Reference — May 2008 17

Dialogic Corporation

Function Summary by Category

ms_unlisten() S S S

ms_unlistenEx() S S S

ms_unmonconf() S NS S

Table 1. MSI Function Support by Platform (Continued)

Function
Dialogic® Platform

DI HDSI Springware

Legend:
NS = Not Supported
S = Supported
* = Variance between platforms, refer to the function description for more information.

18 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

Function Summary by Category

Dialogic® Modular Station Interface API Library Reference — May 2008 19

Dialogic Corporation

22.Function Information

This chapter provides an alphabetical reference to the functions in the Dialogic® Modular Station
Interface (MSI) library.

2.1 Function Syntax Conventions

The Dialogic® MSI functions use the following syntax:

data_type ms_function(device_handle, parameter1, ... parameterN)

data_type
refers to the data type, such as integer, long, or void

ms_function
represents the function name. Typically, Dialogic MSI functions begin with “ms”. Extended
Attribute functions begin with “ATMS.”

device_handle
represents the device handle, which is a numeric reference to a device, obtained when a device
is opened. The device handle is used for all operations on that device.

parameter1
represents the first parameter

parameterN
represents the last parameter

Note: Some Dialogic MSI library functions can operate in either synchronous or asynchronous mode,
using a mode parameter. Synchronous functions do not return control to the calling process until
the function call is completed. When a function operates in asynchronous mode, the calling process
retains control and a completion event is passed to the application to notify that the function is
complete.

20 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ATMS_STATINFO() — retrieve information about the MSI board

ATMS_STATINFO()

retrieve information about the MSI board

Description

The ATMS_STATINFO() function returns information about the board running the Dialogic®
Modular Station Interface (MSI) software. This information includes the number and location of
the stations on the board. The application is responsible for allocating the space (4 bytes) for the
station information buffer.

Cautions

This function fails if an invalid device handle is specified. If no stations are present on the module,
0xFF is returned.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

Name: long ATMS_STATINFO (devh, statinfop)

Inputs: int devh • Dialogic® MSI board device handle

char * statinfop • pointer to four bytes containing station information

Returns: station information on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Extended Attribute

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the valid Dialogic® MSI board device handle returned by a call to
ms_open()

statinfop pointer to four bytes. When the function returns, the first byte contains the
total number of stations on the board.

For Dialogic® DM3 boards (DI and HDSI), byte 2 is fixed at 1 and bytes 3
and 4 are fixed at -1 (0xFF).

For Dialogic MSI boards, bytes 2, 3, and 4 indicate the status of the
baseboard and two daughterboards, respectively.

Dialogic® Modular Station Interface API Library Reference — May 2008 21

Dialogic Corporation

retrieve information about the MSI board — ATMS_STATINFO()

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int i;
int devh; /* Board device handle */
unsigned char statinfo[4];

/* Open board 1, device */
if ((devh = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: system error/n");
 exit(1);
}

/*
 * Continue processing
 */125

/* Get board Ids and number of stations */
if ((ATMS_STATINFO(devh,statinfo)== -1){
 printf("Error getting station info\n");
 /* Close device and exit */
}

printf("Number of stations = %d\n",statinfo[0]);

for (i=0;i<4;i++){
 switch (statinfo[i]){
 case 0x01:
 printf("Board #%d present\n",i);
 break;
 case 0xff:
 printf("Board #%d not present\n",i);
 break;
 default:
 printf("Invalid module number %d\n",i);
 break;
 }
}

/*
 * Continue Processing
 */

 /* Done processing - close device */
if (ms_close(devh) == -1) {
 printf("Cannot close device msiB1: system error/n");
 exit(1);
}

See Also

None.

22 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ATMS_TSSGBIT() — retrieve the current station hook status

ATMS_TSSGBIT()

retrieve the current station hook status

Description

The ATMS_TSSGBIT() function retrieves the current station hook status.

The returned bitmask represents the following:

MS_ONHOOK
MSI station is on-hook

MS_OFFHOOK
MSI station is off-hook

These equates are defined in msilib.h.

Cautions

This function fails if an invalid device handle is specified.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: long ATMS_TSSGBIT (devh)

Inputs: int devh • Dialogic® MSI station device handle

Returns: state of channel on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Extended Attribute

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the MSI station device handle returned by a call to ms_open()

Dialogic® Modular Station Interface API Library Reference — May 2008 23

Dialogic Corporation

retrieve the current station hook status — ATMS_TSSGBIT()

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);
 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int tsdev; /* Station device descriptor variable */
 long tsbits; /* Time slot signaling bits */

 /*
 * Open board 1 channel 1 device
 */
 if ((tsdev = ms_open("msiB1C1", 0)) == -1) {
 printf("Cannot open station msiB1C1: system error/n");
 exit(1);
 }

 /*
 * Get station signaling bits
 */
 tsbits = ATMS_TSSGBIT(tsdev);
 if (tsbits == -1) {
 do_error(tsdev, "ATMS_TSSGBIT()");
 exit(1);
 }

 switch(tsbits) {
 case MS_ONHOOK:
 /* continue processing (on-hook) */
 break;
 case MS_OFFHOOK:
 /* continue processing (off-hook) */
 break;
 default:
 printf("undefined parameter value = %d\n", tsbits);
 break;
 }

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device. */
 if (ms_close(tsdev) == -1) {
 printf("Cannot close station msiB1C1: system error/n”);
 }
}

24 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ATMS_TSSGBIT() — retrieve the current station hook status

See Also

None.

Dialogic® Modular Station Interface API Library Reference — May 2008 25

Dialogic Corporation

add one party to an existing conference — ms_addtoconf()

ms_addtoconf()

add one party to an existing conference

Description

The ms_addtoconf() function adds one party to an existing conference. The conference identifier
specifies the conference to which the party will be added. When this function completes
successfully, a party is added to a conference which causes a conferencing resource to be used.
Only one party at a time can be added using this function.

In SCbus mode, this function returns the listen TDM bus time slot number for the MSPN_TS party.
The number is placed in the MS_CDT structure for the MSPN_TS party. For an MSPN_STATION
party, such information is not returned because the conferenced signal is not placed on the TDM
bus. In SCbus mode, the chan_attr field in the MS_CDT structure is redefined as follows:

#define chan_lts chan_attr

Note: In SCbus mode, the MS_CDT structure is reused to return the listen TDM bus time slot
information. The application is responsible for maintaining the integrity of the data in the structure.

Cautions

This function fails when:

• The device handle specified is invalid

Name: int ms_addtoconf (devh, confID, cdt)

Inputs: int devh • Dialogic® MSI board device handle

int confID • conference identifier

MS_CDT *cdt • pointer to conference descriptor table

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management

Mode: synchronous

Dialogic®

Platform:
DI, Springware

Parameter Description

devh the Dialogic MSI board device handle

confID the conference identifier number

cdt pointer to the conference descriptor table. See the MS_CDT data structure
page for details.

26 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_addtoconf() — add one party to an existing conference

• Too many parties are specified for a single conference

• The party is part of another conference

• The conference ID is invalid

• The board is out of DSP conferencing resources

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

#define NUM_PARTIES 2

int dev1; /* Board dev descriptor variables */
int chdev2; /* Channel dev descriptor */
int tsdev1, tsdev2; /* Time slot dev desc */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */
SC_TSINFO tsinfo; /* Time slot info */
int ts1, ts2; /* SCbus time slots */
int station; /* Station number */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: system error/n”);
 exit(1);
}

/* Open board 1, channel 2 device */
if ((chdev2 = ms_open("msiB1C2",0) == -1) {
 printf("Cannot open MSIB1C2: system error/n”);
 exit(1);
}

/* Assume MSI/SC is connected to a DTI via SCbus. */
/* Need to do a dt_open() for DTI time slots */
/* followed by dt_getxmitslot() to get SCbus time slots */
/* These SCbus time slots are passed on to the CDT */

/* ts1 & ts2 are used as the time slots */

/* Set up CDT structure */
cdt[0].chan_num = station ; /* station is a valid station number */
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

/* SCbus time slot to be conferenced */
cdt[1].chan_num = ts1 ; /* ts1 should be a valid time slot */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_NULL;

Dialogic® Modular Station Interface API Library Reference — May 2008 27

Dialogic Corporation

add one party to an existing conference — ms_addtoconf()

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Do a listen for the TS */

tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &cdt[1].chan_lts;

if (dt_listen(tsdev1, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}

/* Continue processing */

/* Add another party to conference */
cdt[0].chan_num = ts2; /* ts2 should be a valid time slot */
cdt[0].chan_sel = MSPN_TS;
cdt[0].chan_attr = MSPA_RO|MSPA_TARIFF;

if (ms_addtoconf(dev1, confID,&cdt[0]) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Do a listen for the TS */

tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &cdt[0].chan_lts;

if (dt_listen(tsdev2, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev2));
 exit(1);
}

/* Continue processing */

See Also

• ms_delconf()

• ms_estconf()

• ms_monconf()

• ms_remfromconf()

• ms_addtoconf()

28 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_chgxtder() — change the attribute of the connection extender

ms_chgxtder()

change the attribute of the connection extender

Description

The ms_chgxtder() function changes the attribute of the connection extender. After an extended
connection has been established, only the channel attributes of the connection extender may be
changed.

The signal that the connection extender should listen to is always present on the TDM bus,
irrespective of the connection extender setting of the chan_sel field in the MS_CDT data structure.

Note: There can be only one connection extender per extended connection.

Cautions

This function fails when:

• The device handle specified is invalid

• The board is not a Dialogic MSI board

• The connection ID is invalid

Name: int ms_chgxtder (devh, xid, cdt)

Inputs: int devh • Dialogic® MSI board device handle

int xid • extended connection identifier

MS_CDT *cdt • pointer to descriptor table

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Extended Connection

Mode: synchronous

Dialogic®

Platform:
Springware

Parameter Description

devh the Dialogic MSI board device handle

xid the extended connection identifier

cdt pointer to the conference descriptor table. See the MS_CDT data structure
page for details.

Dialogic® Modular Station Interface API Library Reference — May 2008 29

Dialogic Corporation

change the attribute of the connection extender — ms_chgxtder()

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Device handle for board */
int chdev2; /* Station dev descriptor */
int tsdev1,tsdev2; /* DTI time slot device handles */
MS_CDT cdt[3]; /* Connection descriptors */
int xid; /* Connection ID */
long lts; /* listen time slot */
SC_TSINFO tsinfo; /* Time slot information structure */
int rc; /* Return Code */
int station, ts1, ts2;

/* Start System */

/* Assume that there is a DTI in the system.
 * Assume two DTI transmit time slots. ts1 and
 * ts2, are identified by device handles tsdev1
 * and tsdev2, respectively.
 */

/*
 * Continue processing
 */
/*
 * Establish connection between a station and time slot ts1
 */
if ((rc=nr_scroute(tsdev1,SC_DTI,chdev2,SC_MSI,SC_FULLDUP))== -1) {
 printf("Error making connection between DTI timeslot\n");
 printf("and MSI station. rc = 0x%x\n",rc);
 exit(1);
}

/*
 * Now extend the connection established earlier
 */
cdt[0].chan_num = station ; /* Use MSI station as connection identifier*/
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_PUPIL;

cdt[1].chan_num = ts2; /* DTI time slot ts2 for connection extender */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_RO;

/* Establish extended connection. Since the extender is in receive only mode,
 * the connection will be extended without interrupting the conversation between the
 * external party and the station
 */

30 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_chgxtder() — change the attribute of the connection extender

if (ms_estxtdcon(dev1,cdt,&xid) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Make tsdev2 listen to time slot returned by the ms_estxtdcon function */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &cdt[1].chan_lts;
if (dt_listen(tsdev2,&tsinfo) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev2));
 exit(1);
}

/* Prepare cdt to change the attribute of the connection extender */
cdt[0].chan_num = ts2 ; /* Required station number */
cdt[0].chan_sel = MSPN_TS;
cdt[0].chan_attr = MSPA_COACH;

/* Change extender to coach */
if (ms_chgxtder(dev1,xid,cdt)== -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

See Also

• ms_delxtdcon()

• ms_estxtdcon()

Dialogic® Modular Station Interface API Library Reference — May 2008 31

Dialogic Corporation

close the MSI device — ms_close()

ms_close()

close the MSI device

Description

The ms_close() function closes the Dialogic® Modular Station Interface (MSI) device previously
opened by the calling process and ms_open(). The devices are either Dialogic® MSI boards or
stations. The ms_close() function releases the handle and breaks the link between the calling
process and the device.

Cautions

• This function fails if the device handle is invalid.

• The ms_close() function affects only the link between the calling process and the device.
Other processes are unaffected by ms_close().

• If event notification is active for the device to be closed, call the SRL sr_dishdlr() function
prior to calling ms_close().

• A call to ms_close() does not affect the configuration of the MSI.

• Devices should never be closed using close().

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: int ms_close (devh)

Inputs: int devh • Dialogic® MSI device handle

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Device Management

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the valid Dialogic® MSI device handle returned by a call to ms_open()

32 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_close() — close the MSI device

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

main()
{
 int bddev; /* Board device descriptor variable */

 /* Open board 1 device */
 if ((bddev = ms_open("msiB1", 0)) == -1) {
 printf("Cannot open board msiB1: system error/n”);
 exit(1);
 }

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(bddev) == -1) {
 printf("Cannot close board msiB1: system error/n”);
 }
}

See Also

• ms_open()

Dialogic® Modular Station Interface API Library Reference — May 2008 33

Dialogic Corporation

delete a conference — ms_delconf()

ms_delconf()

delete a conference

Description

The ms_delconf() function deletes a conference previously established. The conference ID is the
value previously returned by ms_estconf().

Notes: 1. Calling this function frees all resources in use by the conference.

2. It is the responsibility of the application to perform an unlisten for each party of the conference.

Cautions

None.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: int ms_delconf (devh, confID)

Inputs: int devh • Dialogic® MSI board device handle

int confID • conference identifier

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management

Mode: synchronous

Dialogic®

Platform:
DI, Springware

Parameter Description

devh the Dialogic MSI board device handle

confID the Dialogic® MSI conference identifier

34 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_delconf() — delete a conference

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

#define NUM_PARTIES 3

int dev1; /* Board dev descriptor variables */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: system error/n”);
 exit(1);
}

/*
 * Continue processing
 */

/* Set up CDT structure */
/* station 2, 4 and 7 are used to establish a conference */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

cdt[1].chan_num = 4;
cdt[1].chan_sel = MSPN_STATION;
cdt[1].chan_attr = MSPA_PUPIL;

cdt[2].chan_num = 7;
cdt[2].chan_sel = MSPN_STATION;
cdt[2].chan_attr = MSPA_COACH;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) != 0) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue processing
 */

if (ms_delconf(dev1, confID) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}
/* Continue processing */

See Also

• ms_addtoconf()

• ms_estconf()

• ms_monconf()

• ms_remfromconf()

• ms_unmonconf()

Dialogic® Modular Station Interface API Library Reference — May 2008 35

Dialogic Corporation

delete an extended connection — ms_delxtdcon()

ms_delxtdcon()

delete an extended connection

Description

The ms_delxtdcon() function deletes an extended connection. The connection extender is
removed on successful completion of this function. Calling this function does not affect the
integrity of the connection. The two parties will still remain in a connection.

Notes: 1. It is the responsibility of the application to do an ms_unlisten() for the connection extender.

2. Calling this function frees three resources.

Cautions

This function fails when:

• The device handle specified is invalid

• The device is not a Dialogic MSI board

• The connection ID is invalid

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

Name: int ms_delxtdcon (devh, xid)

Inputs: int devh • Dialogic® MSI board device handle

int xid • extended connection identifier

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Extended Connection

Mode: synchronous

Dialogic®

Platform:
Springware

Parameter Description

devh the Dialogic® MSI board device handle

xid the extended connection identifier number

36 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_delxtdcon() — delete an extended connection

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"
int dev1; /* Device handle for board */
int xid; /* Connection ID */
SC_TSINFO tsinfo; /* Time slot information structure */

/* Start System */
/*
 * Assume that there is an extended connection between a
 * station and a time slot. xid is obtained from the previous
 * extended connection.
*/

/*
 * Continue processing
 */

/*
 * Do an unlisten for the connection extender if it is a external
 * party
 */

/*
 * Delete the extended connection
 */
if (ms_delxtdcon(dev1,xid) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue processing
 */

See Also

• ms_chgxtder()

• ms_estxtdcon()

Dialogic® Modular Station Interface API Library Reference — May 2008 37

Dialogic Corporation

retrieve the available DSP resource count — ms_dsprescount()

ms_dsprescount()

retrieve the available DSP resource count

Description

The ms_dsprescount() function returns the available DSP resource count.

Each DSP has a number of resources managed by the application. Calling certain Dialogic®
Modular Station Interface (MSI) API library functions may cause the available resource count to
change. However, the channel selector of the party does not affect the resource usage. When zip
tone support is enabled, one resource is used.

Note: On Dialogic® Springware boards, a conference is limited to eight parties. A monitor is counted as
one of the eight parties.

The following Dialogic® MSI functions cause a change to the available resource count:

ms_addtoconf()
Uses one resource every time a party is added to a conference

ms_remfromconf()
Frees one resource

ms_delconf()
Frees all resources in use by the conference

ms_delxtdcon()
Frees three resources

Name: int ms_dsprescount (devh, valuep)

Inputs: int *devh • Dialogic® MSI board device handle

int *valuep • pointer to the memory location to receive the free DSP resource
count

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Attribute

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the Dialogic MSI board device handle

valuep pointer to the location containing the free DSP resource count

38 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_dsprescount() — retrieve the available DSP resource count

ms_estconf()
Uses the total number of parties in the conference

ms_estxtdcon()
Uses three resources

ms_monconf()
Uses one resource

ms_setbrdparm()
When parm_id = MSG_ZIPENA and value = MS_ZIPENABLE, one resource will be used

When parm_id = MSG_ZIPENA and value = MS_ZIPDISABLE, one resource will be freed

ms_unmonconf()
Frees one resource

Cautions

This function fails when the device handle specified is invalid.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Board dev descriptor variables */
int valuep; /* Resource count */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: system error/n”);
 exit(1);
}
/* Get DSP resource count */
if (ms_dsprescount(dev1, &valuep) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

printf("Free DSP resource count = %d\n", valuep);

/*
 * Continue processing
 *
 */

Dialogic® Modular Station Interface API Library Reference — May 2008 39

Dialogic Corporation

retrieve the available DSP resource count — ms_dsprescount()

if (ms_close(dev1)== -1){
 printf("Cannot Close MSIB1: system error/n”);
 exit(1);
}

See Also

• ms_addtoconf()

• ms_remfromconf()

• ms_delconf()

• ms_delxtdcon()

• ms_estconf()

• ms_estxtdcon()

• ms_monconf()

• ms_setbrdparm()

• ms_unmonconf()

40 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_estconf() — establish a conference

ms_estconf()

establish a conference

Description

The ms_estconf() function establishes a conference of up to four parties. ms_addtoconf() must
be used to increase the size of the conference beyond four and up to eight parties.

Name: int ms_estconf (devh, cdt, numpty, confattr, confID)

Inputs: int devh • Dialogic® MSI board device handle

MS_CDT *cdt • pointer to conference descriptor table

int numpty • number of parties in a conference

int confattr • conference attributes

int *confID • pointer to memory location to receive the conference identifier

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management

Mode: synchronous

Dialogic®

Platform:
DI, Springware

Parameter Description

devh Dialogic MSI board device handle

cdt pointer to the conference descriptor table. See the MS_CDT data structure
page for details.

numpty number of parties in the conference. When this function completes
successfully, the conference is established and numpty resources are used.

confattr bitmask describing the properties of the conference. These properties
affect all parties in the conference.
• MSCA_ND – All parties in conference are notified by a tone if another

party is being added or removed from a conference.
• MSCA_NN – If MSCA_ND is set, do not notify participants if a party

joins the conference in “receive-only” mode or as a monitor.
• MSCA_NULL – No special attributes.

Note: The default MSCA_NULL must be used if the conference attribute
is not specified.

confID pointer to the memory location containing the conference ID number

Dialogic® Modular Station Interface API Library Reference — May 2008 41

Dialogic Corporation

establish a conference — ms_estconf()

In SCbus mode, this function returns the listen TDM bus time slot number for the MSPN_TS party.
The number is placed in the MS_CDT structure for the MSPN_TS party. For an MSPN_STATION
party, such information is not returned because the conferenced signal is not placed on the TDM
bus. In SCbus mode, the chan_attr field in the MS_CDT structure is redefined as follows:

#define chan_lts chan_attr

Note: In SCbus mode, the MS_CDT structure is reused to return the listen TDM bus time slot
information. The application is responsible for maintaining the integrity of the data in the structure.

Cautions

• Parties to be added to a conference must be off-hook when ms_estconf() is called.

• Cascading conferences are not supported in any form. A cascading conference occurs when
the maximum number of eight participants are already joined in a conference and more
participants are added. The cascading conference contains a time slot participant that is a time
slot from a second monitored conference, therefore, creating a conference within a conference.
Cascading conferences may significantly deteriorate conference voice quality.

• This function fails when:

• An invalid device handle is specified

• More than four parties are specified using ms_estconf()

• DSP resources are not available

• Any of the parties specified are already in another conference on this device

• Any of the stations specified are already listening to a TDM bus time slot

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

#define NUM_PARTIES 3

int dev1; /* Board dev descriptor variables */
int chdev1,chdev2; /* Channel dev descriptor */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */
int ts1, ts2;

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: system error/n”);
 exit(1);
}

42 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_estconf() — establish a conference

/* Assume MSI/SC is connected to a DTI via SCbus. */
/* Need to do a dt_open() for DTI time slots */
/* This returns tsdev1 and tsdev2 as 2 device handles
/* for 2 time slots. Follow this by dt_getxmitslot()
/* to get SCbus time slots */
/* These SCbus time slots are passed on to the CDT */

/*
 * Continue processing
 */

/* Set up CDT structure */
/* Include station 2 on MSI board in conference */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

/* The chan_num below is the SCbus time slot for tsdev1 on which */
/* DTI time slot is transmitting. It is received as a result of */
/* dt_getxmitslot() function above */
cdt[1].chan_num = ts1;
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_PUPIL;

/* Set up another SCbus time slot for tsdev2 to be part of a 3 party conference. Another DTI
time slot transmits on this SCbus time slot, just like above */

cdt[2].chan_num = ts2;
cdt[2].chan_sel = MSPN_TS;
cdt[2].chan_attr = MSPA_COACH;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) != 0) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Note no listen required for cdt[0] because it is a station */
/* Do a listen for cdt[1] */
/* Set up SC_TSINFO structure for SCbus tslot */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &cdt[1].chan_lts;

/* Now, listen to TS */
if (dt_listen(tsdev1,&tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}

/* Do a listen for cdt[2] */
/* Set up SC_TSINFO structure for SCbus tslot */
tsinfo.sc_tsarrayp = &cdt[2].chan_lts;

/* Now, listen to TS */
if (dt_listen(tsdev2,&tsinfo) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev2));
 exit(1);
}

/*
 * Continue processing
 *
 */
if (ms_delconf(dev1, confID) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

Dialogic® Modular Station Interface API Library Reference — May 2008 43

Dialogic Corporation

establish a conference — ms_estconf()

/* Continue processing */

See Also

• ms_addtoconf()

• ms_delconf()

• ms_remfromconf()

44 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_estxtdcon() — establish an extended connection

ms_estxtdcon()

establish an extended connection

Description

The ms_estxtdcon() function establishes an extended connection. An extended connection is a
connection in which there is a third party. Calling this function uses three resources.

For the purpose of this function, a connection is a full-duplex, TDM bus routing between two
parties. A connection may be set up using the convenience function nr_scroute(). It is the
responsibility of the application to set up the connection prior to extending it. No verification of the
presence of a connection between parties is made prior to extending the connection.

One party of the connection to be extended must be a station on the board for which the
ms_estxtdcon() function is issued. The other party is another station or a TDM bus time slot.
Extended connections have a connection extender and a connection identifier. The differences are
as follows:

• A connection extender is always the third party in a connection and can be either a station or a
TDM bus time slot.

• A connection identifier must be a station. The attributes of the connection identifier can only
be set at the time the extended connection is established.

Name: int ms_estxtdcon (devh, cdt, xid)

Inputs: int devh • Dialogic® MSI board device handle

MS_CDT *cdt • pointer to descriptor table

int *xid • pointer to memory location containing the extended connection
identifier

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Extended Connection

Mode: synchronous

Dialogic®

Platform:
Springware

Parameter Description

devh the Dialogic MSI board device handle

cdt pointer to the conference descriptor table

xid pointer to the memory location containing the extended connection
number

Dialogic® Modular Station Interface API Library Reference — May 2008 45

Dialogic Corporation

establish an extended connection — ms_estxtdcon()

Cautions

• Stations to be added to an extended connection must be off-hook when ms_estxtdcon() is
called.

• This function fails when:

• The device handle specified is invalid

• A prior connection has not been established

• DSP resources are not available

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Device handle for board */
int chdev2; /* Station dev descriptor */
int tsdev1,tsdev2; /* DTI time slot device handles */
MS_CDT cdt[3]; /* Connection descriptors */
int xid; /* Connection ID */
long lts; /* listen time slot */
SC_TSINFO tsinfo; /* Time slot information structure */
int rc; /* Return Code */
int station, ts1, ts2;
/* Start System */

/* Assume that there is a DTI in the system.
 * Assume two DTI transmit time slots. ts1 and
 * ts2, are identified by device handles tsdev1
 * and tsdev2, respectively.
 */
/*
 * Continue processing
 */

/*
 * Establish connection between a station and time slot ts1
 */
if ((rc=nr_scroute(tsdev1,SC_DTI,chdev2,SC_MSI,SC_FULLDUP))== -1) {
 printf("Error making connection between DTI time slot\n");
 printf("and MSI station. rc = 0x%x\n",rc);
 exit(1);
}

/*
 * Now extend the connection established earlier
 */
cdt[0].chan_num = station ; /* Use MSI station as connection identifier*/
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_PUPIL;

46 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_estxtdcon() — establish an extended connection

cdt[1].chan_num = ts2; /* DTI time slot ts2 for connection extender */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_RO;

/* Establish extended connection. Since the extender is in receive only mode,
 * the connection will be extended without interrupting the conversation between the
 * external party and the station
 */

if (ms_estxtdcon(dev1,cdt,&xid) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Make tsdev2 listen to time slot returned by the ms_estxtdcon function */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &cdt[1].chan_lts;
if (dt_listen(tsdev2,&tsinfo) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev2));
 exit(1);
}

/* Prepare cdt to change the attribute of the connection extender */
cdt[0].chan_num = ts2 ; /* Required station number */
cdt[0].chan_sel = MSPN_TS;
cdt[0].chan_attr = MSPA_COACH;

/* Change extender to coach */
if (ms_chgxtder(dev1,xid,cdt)== -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

See Also

• ms_chgxtder()

• ms_delxtdcon()

Dialogic® Modular Station Interface API Library Reference — May 2008 47

Dialogic Corporation

generate ringing to a station — ms_genring()

ms_genring()

generate ringing to a station

Description

The ms_genring() function generates ringing to a station. The function will terminate when the
phone goes off-hook or the specified number of rings has been generated. ms_genring() is only
supported on boards that have ringing capability.

This function will use the default ring, which is the last distinctive ring that was generated on the
station by the ms_genringex() function, or if none, the board-level ring cadence as set by the
MSG_UDRNGCAD parameter in the ms_setbrdparm() function.

A ring duty cycle includes an on time (ring generation) and off time (no ring). If ms_genring() is
received by the Dialogic® MSI board during off time, ring generation will be delayed until the on
time portion of the duty cycle is reached. This delay can be up to approximately four seconds.

Name: int ms_genring (devh, len, mode)

Inputs: int devh • device handle for station

unsigned short len • length in cycles for ring

unsigned short mode • asynchronous/synchronous

Returns: 0 on success for asynchronous
>0 on success for synchronous
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Station

Mode: asynchronous or synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the station device handle

len the number of cycles to ring a station; a maximum value of 255 is allowed

mode the operation mode

For synchronous mode, EV_SYNC must be specified as the third
parameter. The function will return only on termination of ringing due to
an error, off hook, or completion of ring cycles.

For asynchronous mode, EV_ASYNC must be specified as the third
parameter. The function will return on initiation of ringing or on error. To
get the completion status, a termination event is generated.

48 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_genring() — generate ringing to a station

Specifying a length, or cycle, of at least two rings is recommended to make sure that at least one
full ring cycle is generated. If you specify one ring, the phone may not ring.

Note: For Dialogic® MSI/SC boards: When you ring a station, a built-in (non-modifiable) 500 ms ring is
“splashed” to the station immediately before its ring cadence begins. The splash may make the
beginning of the ring cadence sound slightly different from the rest of the cadence. This ring splash
serves as a fast way to produce a ring at the station and, therefore, to reduce the glare window.
Otherwise, glare could occur when a ring starts in the off-time (non-ringing) portion of the ring
cycle (where there is no notification that the phone is being rung) and a person picks up the (silent)
phone expecting to get dial tone and instead is connected with a caller.

Termination Events

When this function is called in asynchronous mode, a return value of 0 indicates that the function
was initiated, while a return value of -1 indicates error. The following events may be received:

MSEV_RING
Indicates successful completion of ring operation. The event data for MSEV_RING is:

• MSMM_RNGOFFHK – Solicited off hook detected
• MSMM_RNGSTOP – Ringing stopped by ms_stopfn()
• MSMM_TERM – Ringing terminated

MSEV_NORING
Indicates the ring operation was not successful.

When this function is called in synchronous mode, a return value of -1 indicates failure and a
positive return value (>0) indicates the reason for termination. Reasons for termination are:

MSMM_RNGOFFHK
Solicited off hook detected

MSMM_RNGSTOP
Ringing stopped by ms_stopfn()

MSMM_TERM
Ringing terminated

Cautions

• A glare condition occurs when two parties seize the same line for different purposes. If glare
occurs in your application, the function returns successfully. However, it is followed by the
event MSEV_NORING. The data associated with the event is E_MSBADRNGSTA, indicating
that the station was off-hook when the ring was attempted.

• This function fails when:

• Executed on a station currently off hook. The error returned is E_MSBADRNGSTA.

• The Dialogic MSI board does not support ringing capabilities

• The device handle is invalid

Dialogic® Modular Station Interface API Library Reference — May 2008 49

Dialogic Corporation

generate ringing to a station — ms_genring()

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example - Synchronous

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Station device descriptor */
int rc; /* Return code */

/* Open board 1, station 1 device */
if ((dev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSIBC11, station 1,channel 1: system error/n”);
 exit(1);
}

/*
 * Continue processing
 */
/* Generate ringing for 10 cycles in sync mode*/
if ((rc =ms_genring(dev1,10,EV_SYNC)) == -1) {
 /* process error */
}

/* If timeout, process the condition */
if (rc=MSMM_TERM) {
 printf("Station not responding");
}

/*
 * Continue Processing
 */

 /* Done processing - close device */
if (ms_close(dev1) == -1) {
 printf("Cannot close device msiB1C1: system error/n”);
 exit(1);
}

Example - Asynchronous

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Station dev descriptor */
int srlmode; /* SRL mode indicator */

/* Open board 1, station 1 device */
if ((dev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSIB1C1, station 1,channel 1: system error/n”);
 exit(1);
}

50 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_genring() — generate ringing to a station

/* Set up handler function to handle play completion */
if (sr_enbhdlr(dev1,MSEV_RING,sig_hdlr) == -1) {
 /* process error */
}

/*
 * Continue processing
 */
/* Generate ringing */
if (ms_genring(dev1,10,EV_ASYNC) == -1) {
 printf("Error could not set up ringing: system error/n”);
 exit(1);
}

/* On receiving the completion event, MSEV_RING, control is
 transferred to the handler function previously established
 using sr_enbhdlr().
*/

/*
 * Continue Processing
 */

 /* Done processing - close device */
if (ms_close(dev1) == -1) {
 printf("Cannot close device msiB1C1: system error/n”);
 exit(1);
}

/*
 * Continue processing
 */

int sig_hdlr()
{
 int dev = sr_getevtdev();
 unsigned short *sigtype = (unsigned short *)sr_getevtdatap();

 if (sigtype != NULL) {
 switch (*sigtype) {
 case MSMM_TERM:
 printf("Station does not answer");
 return 0;

 case MSMM_RNGOFFHK:
 printf("Station offhook detected\n");
 return 0;

 default:
 return 1;
 }
 }

 /*
 * Continue processing
 */

}

See Also

• ms_genringCallerID()

• ms_genringex()

• ms_setbrdparm()

Dialogic® Modular Station Interface API Library Reference — May 2008 51

Dialogic Corporation

generate ringing to a station — ms_genring()

• ms_setevtmsk()

• ms_stopfn()

52 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_genringCallerID() — send distinctive ring and caller ID information

ms_genringCallerID()

send distinctive ring and caller ID information

Description

The ms_genringCallerID() function allows transmission of analog caller ID data (call originator
information) to telephones equipped with FSK caller ID detectors.

Name: int ms_genringCallerID(devh, len, mode, Cadid, OrigAddr, rfu)

Inputs: int devh • station device handle

unsigned short len • length in cycles for ring

unsigned short mode • asynchronous/synchronous

unsigned short Cadid • cadence ID or default ring

char* OrigAddr • call origination information

void* rfu • reserved for future use

Returns: 0 on success for asynchronous operation
>0 on success for synchronous operation
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Station

Mode: asynchronous or synchronous

Dialogic®

Platform:
DI, HDSI

Parameter Description

devh device handle

len ring length (in cycles)

mode set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution

Cadid Either a CadenceID for distinctive rings or the current default ring
(MS_RNG_DEFAULT) may be specified

OrigAddr ASCII character string that holds the information about the origination
party. The maximum length is 64 characters. With this feature, OrigAddr
can be divided into multiple sub-fields identified by field identifiers to
hold analog caller identification (FSK) transmission data.

rfu reserved for future use

Dialogic® Modular Station Interface API Library Reference — May 2008 53

Dialogic Corporation

send distinctive ring and caller ID information — ms_genringCallerID()

The sub-fields used by the OrigAddr parameter include:

Caller Name
identifies the name of the call originator if available. Maximum value is 36 characters.

Caller Name Absence Reason
identifies why call originator's name is not available. Possible reasons are Private (P) or Out of
Area (O).

Caller Number
identifies the number of the call originator if available.

Caller Number Absence Reason
identifies why call originator's number is not available. Possible reasons are Private (P) or Out
of Area (O).

Date Time
identifies the date and time at which the call is sent, in the format: month, day, hour, minutes.
For example, a string of T:01221215 would be interpreted as Jan 22, 12:15 PM.

Note: The T:Date Time sub-field is required as per Bellcore FR-NWT-00064 spec.

User Data
identifies that the data in this field is user-defined analog caller identification (FSK) data and it
should be transmitted without parsing. This gives flexibility to the applications to transmit data
that is not defined in the above sub-fields.

Sub-group identifiers with format X: are used to specify sub-fields for caller ID transmission. Note
that the user strings embed this character as part of sub-field identifiers. Thus this sub-group
identifier is implicit by nature.

The following sub-group identifiers are supported:

A:
identifies beginning of Caller Number Absence Reason sub-field.

B:
identifies beginning of Caller Name Absence Reason sub-field.

I:
identifies beginning of Caller Number sub-field.

N:
identifies beginning of Caller Name sub-field.

T:
identifies beginning of Time and Date sub-field. This sub-field is required as per Bellcore FR-
NWT-00064 spec.

R:
identifies beginning of user-defined FSK data. This string holds the checksum data at the end.
This field provides application support for transmission of FSK data that is not covered by the
above fields.

54 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_genringCallerID() — send distinctive ring and caller ID information

Notes: 1. Use the character ‘/’ as an escape character to indicate that ‘:’ is part of the string. For example,
Next string “N:J/:NamathI:993-3000” uses the escape character / to embed the name J:Namath.

2. The end of a sub-field is recognized by the character ‘:’ or the end of string when a sub-field is
located at the end of the string.

Termination Events

When this function is called in asynchronous mode, a return value of 0 indicates that the function
was initiated, while a return value of -1 indicates error. The following events may be received:

MSEV_RING
Indicates successful completion of ring operation. The event data for MSEV_RING is:

• MSMM_RNGOFFHK – Solicited off hook detected
• MSMM_RNGSTOP – Ringing stopped by ms_stopfn()
• MSMM_TERM – Ringing terminated

MSEV_NORING
Indicates the ring operation was not successful.

When this function is called in synchronous mode, a return value of -1 indicates failure and a
positive return value (>0) indicates the reason for termination. Reasons for termination are:

MSMM_RNGOFFHK
Solicited off hook detected

MSMM_RNGSTOP
Ringing stopped by ms_stopfn()

MSMM_TERM
Ringing terminated

Cautions

None.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

The following code snippets demonstrate different uses of the OrigAddr parameter.

Application sends Caller Name and Date to a Caller ID phone connected to a station:

OriginationAddress[128] = "T:01310930N:John Doe" which is:
Caller Name = John Doe
Date Time = Jan 31, 9 30 am

Dialogic® Modular Station Interface API Library Reference — May 2008 55

Dialogic Corporation

send distinctive ring and caller ID information — ms_genringCallerID()

Application sends Caller Number absence reason (O: Out Of Area) and Date and Time to a Caller
ID phone connected to a station:

OriginationAddress[128] = "T:01310930A:O" which is:
Caller Number Absence Reason : Out Of Area
Date Time = Jan 31, 9 30 am

Application sends proprietary data to a Caller ID phone connected to a station:

OriginationAddress[128] = "T:01310930R:xxxxxxxxxxx" which is:
xxxx represents the proprietary data to be sent
Date Time = Jan 31, 9 30 am (as per Bellcore FR-NWT-00064 spec, T:Time and Date is a mandatory
field)

See Also

• ms_genring()

• ms_genringex()

• ms_SetMsgWaitInd()

• ms_stopfn()

56 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_genringex() — generate distinctive ringing to a station

ms_genringex()

generate distinctive ringing to a station

Description

The ms_genringex() function generates distinctive ringing to a station. The function will
terminate when the phone goes off hook or the specified number of rings has been generated.
ms_genringex() is only supported on boards with ringing capability.

A distinctive ring becomes that station's default ring. If you generate a distinctive ring on a station
by setting the cadid parameter to a cadence ID, the specified distinctive ring becomes the default
ring cadence for that station. Future rings generated either by the ms_genringex() function when
cadid is set to MS_RNG_DEFAULT or by the ms_genring() function will use the default ring
cadence. The default ring cadence is either the last distinctive ring that was generated on the
station, or if none, the board-level ring cadence as set by the MSG_UDRNGCAD parameter in the
ms_setbrdparm() function.

Name: int ms_genringex (devh, len, mode, cadid)

Inputs: int devh • device handle for station

unsigned short len • length in cycles for ring

unsigned short mode • asynchronous/synchronous

unsigned short cadid • cadence ID for distinctive ring

Returns: 0 on success for asynchronous
>0 on success for synchronous
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Station

Mode: asynchronous or synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the station device handle

len the number of cycles to ring a station. A maximum value of 255 is
allowed.

Dialogic® Modular Station Interface API Library Reference — May 2008 57

Dialogic Corporation

generate distinctive ringing to a station — ms_genringex()

A ring duty cycle includes an on time (ring generation) and off time (no ring). If ms_genringex()
is received by the Dialocig MSI board during off time, ring generation will be delayed until the on
time portion of the duty cycle is reached. This delay can be up to approximately four seconds.
Specifying a length, or cycle, of at least two rings is recommended to make sure that at least one
full ring cycle is generated. If you specify one ring, the phone may not ring.

Note: For Dialogic® MSI/SC boards: When you ring a station, a built-in (non-modifiable) 500 ms ring is
“splashed” to the station immediately before its ring cadence begins. The splash may make the
beginning of the ring cadence sound slightly different from the rest of the cadence. This ring splash
serves as a fast way to produce a ring at the station and, therefore, to reduce the glare window.
Otherwise, glare could occur when a ring starts in the off time (non-ringing) portion of the ring
cycle (where there is no notification that the phone is being rung) and a person picks up the (silent)
phone expecting to get dial tone and instead is connected with a caller.

Termination Events

When this function is called in asynchronous mode, a return value of 0 indicates that the function
was initiated, while a return value of -1 indicates error. The following events may be received:

MSEV_RING
Indicates successful completion of ring operation. The event data for MSEV_RING is:

• MSMM_RNGOFFHK – Solicited off hook detected
• MSMM_RNGSTOP – Ringing stopped by ms_stopfn()
• MSMM_TERM – Ringing terminated

MSEV_NORING
Indicates the ring operation was not successful.

mode the operation mode

For synchronous mode, EV_SYNC must be specified as the third
parameter. The function will return only on termination of ringing due to
an error, off hook, or completion of ring cycles.

For asynchronous mode, EV_ASYNC must be specified as the third
parameter. The function will return on initiation of ringing or on error. To
get the completion status, a termination event is generated.

cadid the cadence ID for distinctive ringing. Range: 1 - 8. See
ms_setbrdparm() MSG_DISTINCTRNG for information on initializing
distinctive ring and assigning cadence IDs.

Note: The following distinctive rings are not supported on DM3 boards:
MS_RNGA_SPLASH3 and MS_RNGA_SPLASH4.

Set cadid to MS_RNG_DEFAULT to use the default ring for that station.
Rings generated either by the ms_genring() function or by
ms_genringex() function when cadid is set to MS_RNG_DEFAULT will
use the default ring cadence of 2 seconds ON, 4 seconds OFF.

For Dialogic® MSI boards, you can change the default ring cadence length
using the download parameter file, RING.PRM (see the Dialogic®
Configuration Manager (DCM) on-line help for more information).

Parameter Description

58 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_genringex() — generate distinctive ringing to a station

When this function is called in synchronous mode, a return value of -1 indicates failure and a
positive return value (>0) indicates the reason for termination. Reasons for termination are:

MSMM_RNGOFFHK
Solicited off hook detected

MSMM_RNGSTOP
Ringing stopped by ms_stopfn()

MSMM_TERM
Ringing terminated

Cautions

• A glare condition occurs when two parties seize the same line for different purposes. If glare
occurs in your application, the function returns successfully. However, it is followed by the
event MSEV_NORING. The data associated with the event is E_MSBADRNGSTA, indicating
that the station was off-hook when the ring was attempted.

• ms_genringex() will fail when specifying an invalid cadid or if distinctive ring has not been
initialized with the ms_setbrdparm() MSG_DISTINCTRNG parameter. The error returned
is E_MSBADRNGCAD.

• This function fails when:

• Executed on a station currently off hook. The error returned is E_MSBADRNGSTA.

• The Dialogic MSI board does not support ringing capabilities.

• The device handle is invalid.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example - Synchronous

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Station device descriptor */
int rc; /* Return code */
MS_CADENCE cadence;
BYTE pattern;

/* Open board 1, station 1 device */
if ((dev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSIB1C1, station 1,channel 1: system error/n”);
 exit(1);
}

Dialogic® Modular Station Interface API Library Reference — May 2008 59

Dialogic Corporation

generate distinctive ringing to a station — ms_genringex()

/*
 * Setup distinctive cadence
 */
cadence.cadid = 1; /* First distinctive cadence */
cadence.cadlength = MS_RNGA_CADLEN;
pattern = MS_RNGA_TWOSEC;
cadence.cadpattern = &pattern; /* Pattern (secs) : 2 on 4 off */

/* Set 1st ring cadence to MS_RNGA_TWOSEC */
if (ms_setbrdparm(devh, MSG_DISTINCTRNG, (void *)&cadence)) == -1){
 printf("Error setting board parameter : %s\n",
 ATDV_ERRMSGP(devh));
 exit(1);
}

/*
 * Continue processing
 */

/* Generate ringing using distinctive ring 1 */
if ((rc =ms_genringex(dev1,10,EV_SYNC,1)) == -1) {
 /* process error */
}

/* If timeout, process the condition */
if (rc=MSMM_TERM) {
 printf("Station not responding");
}

/*
 * Continue Processing
 */

 /* Done processing - close device */
if (ms_close(dev1) == -1) {
 printf("Cannot close device msiB1C1: system error/n”);
 exit(1);
}

Example - Asynchronous

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Station dev descriptor */
int srlmode; /* SRL mode indicator */
MS_CADENCE cadence;
BYTE pattern;

/* Open board 1, station 1 device */
if ((dev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSIB1C1, station 1,channel 1: system error/n”);
 exit(1);
}

/* Set up handler function to handle play completion */
if (sr_enbhdlr(dev1,MSEV_RING,sig_hdlr) == -1) {
 /* process error */
}

60 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_genringex() — generate distinctive ringing to a station

/* Setup distinctive cadence 1 */
cadence.cadid = 1; /* First distinctive cadence */
cadence.cadlength = MS_RNGA_CADLEN;
pattern = MS_RNGA_TWOSEC;
cadence.cadpattern = &pattern; /* Pattern (secs) : 2 on 4 off */

/* Set 1st ring cadence to MS_RNGA_TWOSEC */
if (ms_setbrdparm(devh, MSG_DISTINCTRNG, (void *)&cadence)) == -1){
 printf("Error setting board parameter : %s\n", ATDV_ERRMSGP(devh));
 exit(1);
}

/*
 * Continue processing
 */

/* Generate asynchronous ringing using distinctive ring 1 */
if ((rc = ms_genringex(dev1,10,EV_ASYNC,1)) == -1) {
 /* process error */
}

/* Use sr_waitevt to wait for the completion of ms_genring().
 On receiving the completion event, MSEV_RING, control is
 transferred to the handler function previously established
 using sr_enbhdlr().
*/

/*
 * Continue Processing
 */

/* Done processing - close device */
if (ms_close(dev1) == -1) {
 printf("Cannot close device msiB1C1: system error/n”);
 exit(1);
}

/*
 * Continue processing
 */

int sig_hdlr()
{
 int dev = sr_getevtdev();
 unsigned short *sigtype = (unsigned short *)sr_getevtdatap();

 if (sigtype != NULL) {
 switch (*sigtype) {
 case MSMM_TERM:
 printf("Station does not answer");
 return 0;

 case MSMM_RNGOFFHK:
 printf("Station offhook detected\n");
 return 0;
 default:
 return 1;
 }
 }

 /*
 * Continue processing
 */
}

Dialogic® Modular Station Interface API Library Reference — May 2008 61

Dialogic Corporation

generate distinctive ringing to a station — ms_genringex()

See Also

• ms_genring()

• ms_genringCallerID()

• ms_setbrdparm()

• ms_setevtmsk()

• ms_stopfn()

62 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_genziptone() — generate a zip tone

ms_genziptone()

generate a zip tone

Description

The ms_genziptone() function generates a zip tone to the station associated with the device
handle. A zip tone indicates an incoming call to agents using headsets.

The tone generated is defined by the zip tone block specified in the ms_setbrdparm() function
description. Tone will only be generated to a Dialogic® Modular Station Interface (MSI) station
that is not part of a conference or routed to a TDM bus time slot.

Cautions

This function fails when:

• The station device handle is invalid.

• Zip tone is disabled.

• On Dialogic® DM3 boards, this function fails with error: “Can't map or allocate memory in
driver.”

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: int ms_genziptone (devh)

Inputs: int devh • Dialogic® MSI station device handle

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Station

Mode: synchronous

Dialogic®

Platform:
Springware

Parameter Description

devh the valid Dialogic MSI station device handle returned by a call to
ms_open()

Dialogic® Modular Station Interface API Library Reference — May 2008 63

Dialogic Corporation

generate a zip tone — ms_genziptone()

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int chdev1; /*Station dev descriptor variable */

/* Open station 1 device */

if ((chdev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSIB1C1: system error/n”);
 exit(1);
}

/* Generate Ziptone */
if (ms_genziptone(chdev1) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

/* Close station 1 */

if (ms_close(chdev1)) == -1) {
 printf("Cannot Close MSIB1C1: system error/n”);
 exit(1);
}

See Also

• ms_setbrdparm()

64 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getbrdparm() — retrieve board parameters

ms_getbrdparm()

retrieve board parameters

Description

The ms_getbrdparm() function returns board parameters. Each parameter has a symbolic name
that is defined in dtilib.h and msilib.h.

Cautions

• The value of the parameter returned by this function is an integer. valuep is the address of an
integer, but should be cast as a void pointer when passed in the value field.

• This function fails when:

• The device handle is invalid

• The parameter specified is invalid

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

Name: int ms_getbrdparm (devh, param, valuep)

Inputs: int devh • Dialogic® MSI device handle

unsigned long param • device parameter defined name

void *valuep • pointer to variable where the parameter value will be placed

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh valid device handle returned by a call to ms_open()

param parameter to be examined; see the ms_setbrdparm() function description
for details.

Note: On Dialogic® DM3 boards, only MSG_RNG is supported for this
function.

valuep pointer to the variable where the parameter value will be returned

Dialogic® Modular Station Interface API Library Reference — May 2008 65

Dialogic Corporation

retrieve board parameters — ms_getbrdparm()

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

main()
{
 int devh; /* MSI/SC board device descriptor */
 int value; /* Parameter value */
 int cadence[8]; /* Ring cadence length and pattern */
 int cadence_len; /* Cadence active period length (in bytes) */

 if ((devh = ms_open("msiB1", 0)) == -1) {
 printf("Error opening msiB1: system error/n”);
 exit(1);
 }

 /* Determine board type : Ringing or Non-ringing */

 if (ms_getbrdparm(devh, MSG_RING, (void *)&value)) == -1) {
 printf("Error retrieving board parameter : %s\n ", ATDV_ERRMSGP(devh));
 exit(1);
 }

 if (value == MS_RNGBRD){
 printf("You have a ringing MSI/SC board\n");
 }
 else
 printf("You have a non-ringing MSI/SC board\n");

 /* Retrieve the board's ring-cadence pattern */

 if (ms_getbrdparm(devh, MSG_RNGCAD, (void *)&cadence[0]))== -1) {
 printf("Error retrieving board parameter : %s\n ", ATDV_ERRMSGP(devh));
 exit(1);
 }
 printf("The ring cadence is %d x 250ms long\n", cadence[0]);
 cadence_len = (cadence[0]+7)/8;

 for (index = 1; index <= cadence_len; index++) {
 printf("Active period cadence pattern is 0x%x\n", cadence[index]);
 }

 if (ms_close(devh) == -1) {
 printf("Error Closing msiB1: system error/n”);
 exit(1);
 }
 return;
}

See Also

• ms_setbrdparm()

66 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getcde() — retrieve the attributes of a participant

ms_getcde()

retrieve the attributes of a participant

Description

The ms_getcde() function retrieves the attributes of a participant in an existing conference. This
function requires that the participant’s chan_num and chan_sel are specified in the MS_CDT
structure. On successful completion of this function, the conference party attribute will be returned
in the chan_attr field of the MS_CDT structure.

The chan_attr field of the MS_CDT structure is a bitmask that describes the party’s properties
within the conference. It is possible that a combination of any of the attributes will be returned.

Note: Invoke ms_getcde() multiple times if the attributes of more than one party are desired.

Cautions

This function fails when:

• The device handle specified is invalid.

• An invalid conference ID is specified.

• The queried party is not in the conference.

Name: int ms_getcde (devh, confID, cdt)

Inputs: int devh • Dialogic® MSI board device handle

int confID • conference identifier

MS_CDT *cdt • pointer to MS_CDT structure

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the Dialogic MSI board device handle

confID the conference identifier

cdt pointer to structure; see MS_CDT for details.

Dialogic® Modular Station Interface API Library Reference — May 2008 67

Dialogic Corporation

retrieve the attributes of a participant — ms_getcde()

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

#define NUM_PARTIES 2
int dev1=1; /* Board dev descriptor variables */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */
int attr; /* Channel attribute */
int station, ts;

/* Start the system */

/* Set up CDT structure */
cdt[0].chan_num = station ; /* station is a valid station number */
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

/* SCbus time slot to be conferenced */
cdt[1].chan_num = ts ; /* ts should be a valid time slot */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_NULL;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 *
 * Continue processing
 *
 */

/* Now get the attribute of MSI Station */
cdt[0].chan_num = station; /* Station in the conference */
cdt[0].chan_sel = MSPN_STATION;

if(ms_getcde(dev1, confID, &cdt[0])== -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

attr = cdt[0].chan_attr;

/*
 * Continue Processing
 *
 */

68 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getcde() — retrieve the attributes of a participant

See Also

• ms_setcde()

Dialogic® Modular Station Interface API Library Reference — May 2008 69

Dialogic Corporation

retrieve a conference list — ms_getcnflist()

ms_getcnflist()

retrieve a conference list

Description

The ms_getcnflist() function retrieves a conference list. The function returns the total number of
parties within a conference, and information specific to each party in that conference. The party-
specific information retrieved includes a party’s channel, TDM bus time slot number, selector, and
attribute description.

Note: The list is not returned in any specified order.

If the conference is being monitored, one member of the conference list will be the monitor.
chan_num will equal 0x7FFF and chan_sel will be MSPN_TS.

Cautions

This function fails when an invalid conference ID is specified.

Name: int ms_getcnflist (devh, confID, numpty, cdt)

Inputs: int devh • Dialogic® MSI board device handle

int confID • conference identifier

int *numpty • pointer to the number of parties in the conference

MS_CDT *cdt • pointer to conference descriptor table

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management

Mode: synchronous

Dialogic®

Platform:
DI, Springware

Parameter Description

devh the Dialogic MSI board device handle

confID the conference identifier

numpty pointer to the party count

cdt pointer to conference descriptor table; see MS_CDT for details.

Note: The application is responsible for allocating an MS_CDT table with
sufficient elements.

70 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getcnflist() — retrieve a conference list

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Board dev descriptor variables */
int partycnt; /* Number of parties*/
MS_CDT cdtp[8]; /* Conf. desc. table */
int confID; /* Conf. ID */
int i;

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSIB1: system error/n”);
 exit(1);
}

/* Get conference list */
if (ms_getcnflist(dev1, confID, &partycnt, &cdtp[0]) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

printf("Number of parties = %d\n", partycnt);

for (i=0; i<partycnt; i++){
 printf("Chan_num = %x", cdtp[i].chan_num);
 printf("Chan_sel = %x", cdtp[i].chan_sel);
 printf("Chan_att = %x', cdtp[i].chan_attr);
 }
if (ms_close(dev1)== -1){
 printf("Cannot Close MSIB1: system error/n”);
 exit(1);
}

See Also

• ms_estconf()

Dialogic® Modular Station Interface API Library Reference — May 2008 71

Dialogic Corporation

retrieve device information — ms_getctinfo()

ms_getctinfo()

retrieve device information

Description

The ms_getctinfo() function retrieves information related to a station device on the Dialogic®
Modular Station Interface (MSI) board.

Cautions

This function fails if an invalid station handle is specified.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

Name: int ms_getctinfo (devh, ct_devinfop)

Inputs: int devh • Dialogic® MSI station device handle

CT_DEVINFO *ct_devinfop • pointer to information structure

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Attribute

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the Dialogic MSI station device handle

ct_devinfop pointer to channel/station information structure. Upon function return, the
structure contains device information. See CT_DEVINFO for details.

72 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getctinfo() — retrieve device information

int devh; /* Time slot device handle */
CT_DEVINFO ct_devinfo; /* Device information structure */

/* Open board 1 station 1 device */
if ((devh = ms_open("msiB1C1", 0)) == -1) {
 printf("Cannot open station msiB1C1: system error/n”);
 exit(1);
}

/* Get Device Information */
if (ms_getctinfo(devh, &ct_devinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(devh));
 exit(1);
}

printf("%s Product Id = 0x%x, Family = %d, Network = %d, Bus mode = %d, Encoding = %d",
 ATDV_NAMEP(devh), ct_devinfo.ct_prodid, ct_devinfo.ct_devfamily,
 ct_devinfo.ct_nettype, ct_devinfo.ct_busmode, ct_devinfo.ct_busencoding);

See Also

• ag_getctinfo()

• dx_getctinfo()

• dt_getctinfo()

Dialogic® Modular Station Interface API Library Reference — May 2008 73

Dialogic Corporation

block and return control to the application — ms_getevt()

ms_getevt()

block and return control to the application

Description

The ms_getevt() function is supported under Windows® only. It blocks and returns control to the
application for a specified event. This happens after one of the unsolicited events set by
ms_setevtmsk() occurs on the station device specified by the devh parameter or if a time-out
occurs.

On successful return from the function, the event block structure, EV_EBLK, will have the
following information:

ev_dev
The device on which the event occurred. This is the same as the devh passed to the function.

ev_event
MSEV_SIGEVT indicating signaling transition event.

ev_data
An array of bytes where ev_data[0] and ev_data[1] contain the signaling information.
Signaling information is retrieved in short variable. Refer to the example below for
information on retrieving this data.

Name: int ms_getevt (devh, eblkp, timeout)

Inputs: int devh • Dialogic® MSI device handle

EV_EBLK * eblkp • pointer to event block

int timeout • time-out value

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the valid device handle returned by a call to ms_open()

evtblkp pointer to the event that ended the blocking

timeout the maximum amount of time to wait for an event to occur. If timeout is
set to -1, the ms_getevt() function does not time out and blocks until an
event occurs. If timeout is set to 0 and an event is not present, the function
returns immediately with a -1 return code.

74 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getevt() — block and return control to the application

The event block structure is defined as follows:

typedef struct ev_eblk {
 int ev_dev; /* Device on which event occurred */
 unsigned long ev_event; /* Event type */
 int ev_len; /* Length of data associated with event */
 unsigned char ev_data[8]; /* 8 byte data buffer */
 void ev_datap; /* variable pointer if more than 8 bytes of data */
} EV_EBLK;

Cautions

• The ms_getevt() function is not supported under the Linux operating system.

• This function fails when:

• The device handle is invalid for an MSI device

• The event field is invalid

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h>
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

EV_EBLK eblk;

main()
{
 int devh; /* Board device handle */
 unsigned short sigmsk = MSMM_ONHOOK | MSMM_OFFHOOK | MSMM_HOOKFLASH;
 short sig;

 /*
 * Open station 1 device
 */

 if ((devh = ms_open("msiB1C1",0)) == -1) {
 printf("Error: Cannot open board 1 station 1: system error/n”);
 exit(1);
 }

 if (ms_setevtmsk(devh, MSEV_SIG, sigmsk, DTA_SETMSK) == -1) {
 printf("%s: ms_setevtmsk MSEV_SIGMSK DTA_SETMSK ERROR %d: %s:Mask = 0x%x\n",
 ATDV_NAMEP(devh),ATDV_LASTERR(devh),ATDV_ERRMSGP(devh),sigmsk);
 ms_close(devh);
 exit(1);
 }

Dialogic® Modular Station Interface API Library Reference — May 2008 75

Dialogic Corporation

block and return control to the application — ms_getevt()

 /*
 * Wait for events on this time slot
 */
 while(1) {
 ms_getevt (devh, &eblk, -1); /* Wait forever */
 if (eblk.ev_event == MSEV_SIGEVT) {
 sig = eblk.ev_data[0] | (short) eblk.ev_data[1] << 8 ;
 if ((sig & MSMM_ONHOOK) == MSMM_ONHOOK)
 printf("Onhook signal received\n");
 if ((sig & MSMM_OFFHOOK) == MSMM_OFFHOOK)
 printf("Offhook signal received\n");
 if ((sig & MSMM_HOOKFLASH) == MSMM_HOOKFLASH)
 printf("Hook flash signal received\n");
 }
 } /* end of while statement */
}

See Also

• ms_getevtmsk()

76 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getevtmsk() — retrieve station event mask

ms_getevtmsk()

retrieve station event mask

Description

The ms_getevtmsk() function returns a station event mask for a specified event.

Cautions

This function fails when:

• The device handle is invalid for a Dialogic MSI station device

• The event field is invalid

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

Name: int ms_getevtmsk (devh, event, bitmaskp)

Inputs: int devh • Dialogic® MSI station device handle

int event • event to retrieve

unsigned short *bitmaskp • pointer to bitmask variable

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the valid station device handle returned by a call to ms_open()

event event type:
• MSEV_CHANSTATE – station interface alarms (Dialogic® DI and

HDSI boards only)
• MSEV_SIGMSK – hook switch transition event (on-hook transition

event, off-hook transition event, hookflash event)

bitmaskp pointer to a variable that will contain the value of the bitmask. Refer to
ms_setevtmsk() for the valid bitmask values.

Dialogic® Modular Station Interface API Library Reference — May 2008 77

Dialogic Corporation

retrieve station event mask — ms_getevtmsk()

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);
 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int tsdev; /* Station device descriptor variable */
 unsigned short bitmask; /* Bitmask variable */

 /* Open board 1 device */
 if ((tsdev = ms_open("msiB1C1", 0)) == -1) {
 printf("Cannot open board msiB1C1: system error/n”);
 exit(1);
 }
 /* Get signaling event mask*/
 if (ms_getevtmsk(tsdev, MSEV_SIGMSK, &bitmask) == -1) {
 do_error(tsdev, "ms_getevtmsk()");
 }

 if (bitmask & MS_ONHOOK) {
 /* continue processing (ON-HOOK event is set) */
 printf("ON-HOOK event is set\n");
 }

 if (bitmask & MS_OFFHOOK) {
 /* continue processing (OFF-HOOK event is set) */
 printf("OFF-HOOK event is set\n");
 }

 if (bitmask & MS_HOOKFLASH) {
 /* continue processing (HOOK FLASH event is set) */
 printf("HOOK FLASH event is set\n");
 }

 /*
 * .
 * Continue processing
 * .
 */

 /* Done processing - close device */
 if (ms_close(tsdev) == -1) {
 printf("Cannot close board msiB1C1: system error/n”);
 }
}

78 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getevtmsk() — retrieve station event mask

See Also

• ms_setevtmsk()

Dialogic® Modular Station Interface API Library Reference — May 2008 79

Dialogic Corporation

return TDM bus time slot — ms_getxmitslot()

ms_getxmitslot()

return TDM bus time slot

Description

The ms_getxmitslot() function returns the TDM bus time slot of the station transmit channel.

Note: The transmit of a Dialogic MSI station device can be connected to only one external TDM bus time
slot.

Cautions

This function fails when an invalid station device handle is specified.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: int ms_getxmitslot (devh, tsinfop)

Inputs: int devh • Dialogic® MSI station device handle

SC_TSINFO *tsinfop • pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: TDM Bus Routing

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the station device handle

tsinfop pointer to the TDM bus time slot information structure, see SC_TSINFO for
details.

Upon successful return from the function, SC_TSINFO contains the number
of TDM bus time slots connected to the transmit of the station and points to
the array that contains the TDM bus time slots (between 0 and 1023).

80 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getxmitslot() — return TDM bus time slot

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int chdev; /* Station dev descriptor */
SC_TSINFO tsinfo; /* Time slot information structure */
long scts; /* SCbus time slot */

/* Open board 1, station 1 device */
if ((chdev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSI B1, C1: system error/n”);
 exit(1);
}

/* Set up SC_TSINFO structure */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &scts;

/* Get time slot on which MSI board 1, channel 1 is transmitting */
if (ms_getxmitslot(chdev1,&tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
}

printf("msiB1C1 is transmitting on SCbus time slot %d",scts);

See Also

• ms_listen()

Dialogic® Modular Station Interface API Library Reference — May 2008 81

Dialogic Corporation

connect receive channel of station device to a TDM bus time slot — ms_listen()

ms_listen()

connect receive channel of station device to a TDM bus time slot

Description

The ms_listen() function connects the receive (listen) channel of a station interface device to a
TDM bus time slot.

Notes: 1. A Dialogic® Modular Station Interface (MSI) station device can listen to one and only one time
slot at a time; however, multiple devices may listen to the same time slot at the same time.

2. Calling this function to connect to a different TDM bus time slot automatically breaks an existing
connection. Thus, when changing connections, you do not need to call ms_unlisten() first.
However, it is recommended that you call ms_unlisten() before invoking this function.

Cautions

• The time slot routing can take up to 100 to 200 ms to complete.

• This function fails when:

• An invalid station handle is specified

• The TDM bus time slot number is invalid

• By default, Dialogic® MSI stations do not drive audio data onto their assigned TDM bus time
slot. Dialogic MSI stations only transmit audio data after receiving an ms_listen() command.
An application requiring a Dialogic MSI station to transmit audio data without listening to
another device (as in half-duplex mode) can have the Dialogic MSI station listen to its own
TDM bus time slot. This is accomplished as shown in the code sample below:

Name: int ms_listen (devh, tsinfop)

Inputs: int devh • Dialogic® MSI station device handle

SC_TSINFO *tsinfop • pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: TDM Bus Routing

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the station interface device handle

tsinfop pointer to the TDM bus time slot information structure, see SC_TSINFO
for details.

82 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_listen() — connect receive channel of station device to a TDM bus time slot

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int chdev1; /* Channel dev descriptor */
int tsdev1; /* Time slot dev desc */
SC_TSINFO tsinfo; /* Time slot info */
long scts; /* SCbus time slot */

/* Open board 1, channel 1 device */
if ((chdev1 = ms_open("msiB1C1",0) == -1) {
 printf("Cannot open MSIB1C1: system error/n”);
 exit(1);
}

if ((tsdev1 = dt_open("dtiB1T1",0) == -1) {
 printf("Cannot open dtiB1T1: system error/n”);
 exit(1);
}

/* Setup SC_TSINFO structure */

tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &scts;

/* Get transmit time slot of MSI/SC device chdev1*/
if (ms_getxmitslot(chdev1, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

/* Make chdev1 listen to itself */
if (ms_listen(chdev1, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

/* chdev1 is now transmitting on its SCbus time slot. Now, make tsdev1 listen to chdev1 */
if (dt_listen(tsdev1, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}

/* Continue processing */
if (dt_close(tsdev1) == -1){
 printf("Could not Close msiB1C1: system error/n”);
 exit(1);
}
if (ms_close(chdev1) == -1){
 printf("Could not Close msiB1C1: system error/n”);
 exit(1);
}

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Dialogic® Modular Station Interface API Library Reference — May 2008 83

Dialogic Corporation

connect receive channel of station device to a TDM bus time slot — ms_listen()

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int chdev1, tsdev4; /* Chan dev descriptor variables */
SC_TSINFO tsinfo; /* Time slot information structure */
long scts; /* SCbus time slot */

/* Open board 1, channel 1 device */
if ((chdev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSI B1, C1: system error/n”);
 exit(1);
}
/* Open board 1, time slot 4 device */
if ((tsdev1 = dt_open("dtiB1T4",0)) == -1) {
 printf("Cannot open DTI B1, T4: system error/n”);
 exit(1);
}
/* Set up SC_TSINFO structure */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &scts;

/* Get time slot on which DTI board 1, time slot 4 is transmitting */
if (dt_getxmitslot(tsdev4,&tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
}

/* Make MSI board 1, station 1 listen to transmit time slot
 of DTI Board 1 time slot 4 on SCbus */
if (ms_listen(chdev1,&tsinfo) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev4));
 exit(1);
}

See Also

• ms_getxmitslot()

• ms_unlisten()

• ms_listenEx()

• ms_unlistenEx()

84 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_listenEx() — connect receive channel of station device to TDM bus time slot

ms_listenEx()

connect receive channel of station device to TDM bus time slot

Description

The ms_listenEx() function connects the receive (listen) channel of a station interface device to a
TDM bus time slot. This function uses the information stored in the SC_TSINFO structure to
connect the receive channel on the device to an available TDM bus time slot. The time slot number
is returned in the SC_TSINFO structure. The function sets up a half-duplex connection. For a full-
duplex connection, the receive channel of the other device must be connected to the station device
transmit channel.

Note: The ms_listenEx() function extends and enhances the ms_listen() function by adding support for
the asynchronous mode of operation and providing event notification upon successful completion
or failure of the routing.

In synchronous mode, the station interface device is connected to the TDM bus time slot upon
return of the ms_listenEx() function. By default, this function runs in synchronous mode and
returns a 0 to indicate that it has completed successfully. If a failure occurs, this function returns -1.

Name: int ms_listenEx (devh, tsinfop, mode)

Inputs: int devh • Dialogic® MSI station device handle

SC_TSINFO *tsinfop • pointer to TDM bus time slot information structure

int mode • async or sync

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: TDM Bus Routing

Mode: asynchronous or synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the board device handle

tsinfop pointer to the TDM bus time slot information structure, see SC_TSINFO
for details.

mode specifies the mode of operation:

• EV_SYNC – synchronous mode (default)

• EV_ASYNC – asynchronous mode

Dialogic® Modular Station Interface API Library Reference — May 2008 85

Dialogic Corporation

connect receive channel of station device to TDM bus time slot — ms_listenEx()

In asynchronous mode, an MSEV_LISTEN event is queued upon successful completion of the
routing. If a failure occurs during routing, a MSEV_LISTEN_FAIL event is queued. In some
limited cases, such as when invalid arguments are passed to the library, the function may fail before
routing is attempted. In such cases, the function returns -1 immediately to indicate failure and no
event is queued.

Notes: 1. Although a Dialogic® Modular Station Interface (MSI) station device can listen to one and only
one TDM bus time slot at a time, multiple station interface devices may listen to the same TDM
bus time slot at the same time.

2. Calling this function to connect to a different TDM bus time slot automatically breaks an existing
connection. Thus, when changing connections, you do not need to call ms_unlistenEx() first.
However, it is recommended that you call ms_unlistenEx() before invoking this function.

Termination Events

MSEV_LISTEN
indicates that the time slot has been routed successfully

MSEV_LISTEN_FAIL
indicates that the time slot routing has failed

Cautions

• When executed in asynchronous mode, the ms_listenEx() function can take up to 10 ms to
return.

• The time slot routing can take up to 100 to 200 ms to complete. In asynchronous mode, the
MSEV_LISTEN event indicates that the routing is complete.

• This function fails when:

• An invalid station handle is specified

• The TDM bus time slot number is invalid

• By default, Dialogic® MSI stations do not drive audio data onto their assigned TDM bus time
slot. Dialogic MSI stations only transmit audio data after receiving an ms_listenEx()
command. An application requiring a Dialogic MSI station to transmit audio data without
listening to another device (as in half-duplex mode) can have the Dialogic MSI station listen to
its own TDM bus time slot. This is accomplished as shown in the code sample below:

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int chdev1; /* Channel dev descriptor */
int tsdev1; /* Time slot dev desc */
SC_TSINFO tsinfo; /* Time slot info */
long scts; /* SCbus time slot */

/* Open board 1, channel 1 device */
if ((chdev1 = ms_open("msiB1C1",0) == -1) {
 printf("Cannot open MSIB1C1: system error/n”);
 exit(1);
}

86 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_listenEx() — connect receive channel of station device to TDM bus time slot

if ((tsdev1 = dt_open("dtiB1T1",0) == -1) {
 printf("Cannot open dtiB1T1: system error/n”);
 exit(1);
}

/* Setup SC_TSINFO structure */

tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &scts;

/* Get transmit time slot of MSI/SC device chdev1*/
if (ms_getxmitslot(chdev1, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

/* Make chdev1 listen to itself */
if (ms_listen(chdev1, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

/* chdev1 is now transmitting on its SCbus time slot. Now, make tsdev1 listen to chdev1 */
if (dt_listen(tsdev1, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}

/* Continue processing */
if (dt_close(tsdev1) == -1){
 printf("Could not Close msiB1C1: system error/n”);
 exit(1);
}
if (ms_close(chdev1) == -1){
 printf("Could not Close msiB1C1: system error/n”);
 exit(1);
}

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example A - Asynchronous

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "msilib.h"

int chdev1; /* Channel dev descriptor */
int tsdev1; /* Time slot dev desc */
SC_TSINFO tsinfo; /* Time slot info */
long scts; /* SCbus time slot */

/* Open board 1, channel 1 device */
if ((chdev1 = ms_open("msiB1C1",0) == -1)
{
 printf("Cannot open MSIB1C1. System error.");

Dialogic® Modular Station Interface API Library Reference — May 2008 87

Dialogic Corporation

connect receive channel of station device to TDM bus time slot — ms_listenEx()

 exit(1);
}

/* Setup SC_TSINFO structure */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &scts;

/* Get transmit time slot of MSI/SC device chdev1*/
if (ms_getxmitslot(chdev1, &tsinfo) == -1)
{
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

/* Make chdev1 listen to itself */
if (ms_listen(chdev1, &tsinfo, EV_ASYNC) == -1)
{
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

While (1)
{
 // Poll for events
 rc = sr_waitevt(-1);
 dev = sr_getevtdev(0);

 if (iRet == -1)
 {
 printf("Error Device %s %s\n", ATDV_NAMEP(iDev), ATDV_ERRMSGP(iDev));
 break;
 }

 EvtType = sr_getevttype(0);

 // Check for LISTEN event
 if (EvtType == MSEV_LISTEN)
 {
 printf("MSEV_LISTEN event received\n");
 break;
 }

 // Check for listen failure event
 if (EvtType == MSEV_LISTEN_FAIL)
 {
 printf("MSEV_LISTEN_FAIL event received\n");
 break;
 }
}

if (ms_close(chdev1) == -1)
{
 printf("Could not Close msiB1C1. System error.");
 exit(1);
}

Example B - Synchronous

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int chdev1, tsdev4; /* Chan dev descriptor variables */
SC_TSINFO tsinfo; /* Time slot information structure */
long scts; /* SCbus time slot */

88 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_listenEx() — connect receive channel of station device to TDM bus time slot

/* Open board 1, channel 1 device */
if ((chdev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSI B1, C1: system error/n”);
 exit(1);
}
/* Open board 1, time slot 4 device */
if ((tsdev1 = dt_open("dtiB1T4",0)) == -1) {
 printf("Cannot open DTI B1, T4: system error/n”);
 exit(1);
}
/* Set up SC_TSINFO structure */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &scts;

/* Get time slot on which DTI board 1, time slot 4 is transmitting */
if (dt_getxmitslot(tsdev4,&tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
}

/* Make MSI board 1, station 1 listen to transmit time slot
 of DTI Board 1 time slot 4 on SCbus */
if (ms_listen(chdev1,&tsinfo) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev4));
 exit(1);
}

See Also

• ms_getxmitslot()

• ms_unlistenEx()

• ms_listen()

• ms_unlisten()

Dialogic® Modular Station Interface API Library Reference — May 2008 89

Dialogic Corporation

add a monitor to a conference — ms_monconf()

ms_monconf()

add a monitor to a conference

Description

The ms_monconf() function adds a monitor to a conference. Monitoring a conference guarantees
that the conferenced signal will be placed on the TDM bus. This is slightly different from when a
receive-only party is added to a conference. In case of a receive-only party, the conferenced signal
may or may not be placed on the TDM bus, depending on the chan_sel of the party. Since the
monitored signal is on the TDM bus, several parties can listen to the monitored signal
simultaneously. It is the application’s responsibility to listen to the TDM bus time slot on which the
monitored signal is transmitted.

A monitor counts as one of the parties in the conference. If the maximum number of parties
allowed is used, it is not possible to monitor the conference. When a conference is deleted, the
conference monitor is also deleted.

Notes: 1. This function can only be issued once per conference. If you attempt to add another monitor
using ms_monconf(), you will receive the E_MSMONEXT error message.

2. Calling this function uses one resource.

Name: int ms_monconf (devh, confID, lts)

Inputs: int devh • Dialogic® MSI board device handle

int confID • conference identifier

long *lts • pointer to listen TDM bus time slot

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management

Mode: synchronous

Dialogic®

Platform:
DI, Springware

Parameter Description

devh the Dialogic MSI board device handle

confID the conference identifier

lts pointer to the listen TDM bus time slot; the monitored signal will be
present on this time slot

90 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_monconf() — add a monitor to a conference

Cautions

This function fails when:

• The device handle specified is invalid

• The conference is full

• The board is out of DSP resources

• The conference ID is invalid

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

#define NUM_PARTIES 2

int dev1; /* Board dev descriptor variables */
int tsdev1; /* DTI time slot device handle */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */
long lts; /* listen time slot */
SC_TSINFO tsinfo; /* Time slot information structure */
int ts1;

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: system error/n”);
 exit(1);
}

/* Assume that there is a DTI in the system.
 * Assume the device handle for a time slot on the DTI
 * is tsdev1 and time slot it is assigned to is ts1
*/

/* Set up CDT structure */
cdt[0].chan_num = station ; /* Valid MSI Station */
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr =MSPA_NULL;

cdt[1].chan_num = ts1; /* ts1 is a valid DTI time slot */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr =MSPA_TARIFF;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

Dialogic® Modular Station Interface API Library Reference — May 2008 91

Dialogic Corporation

add a monitor to a conference — ms_monconf()

/*
 * Continue Processing
 */

/* Now monitor the conference */

if (ms_monconf(dev1, confID,<s) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}
/* Assume that a DTI device tsdev1 is available */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = <s;
if (dt_listen(tsdev1,&tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}

/*
 * Continue Processing
 */

See Also

• ms_unmonconf()

92 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_open() — open an MSI device

ms_open()

open an MSI device

Description

The ms_open() function opens a Dialogic® Modular Station Interface (MSI) device and returns a
unique handle to identify the device. All subsequent references to the opened device must be made
using the device handle.

Note: If a parent process opens a device and enables events, there is no guarantee that the child process
will receive a particular event.

Cautions

• Dialogic® devices should never be opened using open().

• This function fails when:

• The device name is invalid

• The device is already open

• The system has insufficient memory to complete the open

Name: int ms_open (name, oflags)

Inputs: char *name • Dialogic® MSI station or board device name

int oflags • open attribute flags

Returns: device handle
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Device Management

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

name points to an ASCIIZ string that contains the name of a valid Dialogic MSI
station or board device

The name of the station device should be msiBbCc where:

• b is the board number (1 based)

• c is the station number (1 to 24)

The name of the board device should be msiBb where:

• b is the board number (1 based)

oflags reserved for future use. Set this parameter to 0.

Dialogic® Modular Station Interface API Library Reference — May 2008 93

Dialogic Corporation

open an MSI device — ms_open()

Errors

The ms_open() function does not return errors in the standard return code format. If an error
occurred during the ms_open() call, a -1 will be returned, and it indicates a system error. If a call
to ms_open() is successful, the return value will be a handle for the opened device.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

main()
{
 int bddev; /* Board device descriptor variable */

 /* Open board 1 device */
 if ((bddev = ms_open("msiB1", 0)) == -1) {
 printf("Cannot open board msiB1: system error/n”);
 exit(1);
 }

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(bddev) == -1) {
 printf("Cannot close board msiB1: system error/n”);
 }
}

See Also

• ms_close()

94 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_remfromconf() — remove a party from a conference

ms_remfromconf()

remove a party from a conference

Description

The ms_remfromconf() function removes a party from a conference. The conference ID is the
value previously returned by the ms_estconf() function. In this case, the channel attributes of the
MS_CDT structure are ignored.

Notes: 1. It is recommended to call ms_unlisten() before removing the TDM bus time slot member.

2. Calling this function frees one resource.

Cautions

• An error will be returned if this function is used to remove the last remaining party from a
conference. The ms_delconf() function must be used to end a conference.

• This function fails when:

• The device handle passed is invalid

• The conference ID is invalid

• The party to be removed is not part of the specified conference

Name: int ms_remfromconf (devh, confID, cdt)

Inputs: int devh • Dialogic® MSI board device handle

int confID • conference identifier

MS_CDT *cdt • pointer to MS_CDT structure

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management

Mode: synchronous

Dialogic®

Platform:
DI, Springware

Parameter Description

devh the Dialogic MSI board device handle

confID the conference identifier number

cdt pointer to the conference descriptor table. See the MS_CDT data structure
page for details.

Dialogic® Modular Station Interface API Library Reference — May 2008 95

Dialogic Corporation

remove a party from a conference — ms_remfromconf()

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

#define NUM_PARTIES 3

int dev1; /* Board dev descriptor variables */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: system error/n”);
 exit(1);
}

/*
 * Continue processing
 */

/* Set up CDT structure */
/* Assume MSI stations 2, 4 and 7 are in the conference */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

cdt[1].chan_num = 4
cdt[1].chan_sel = MSPN_STATION;
cdt[1].chan_attr = MSPA_PUPIL;

cdt[2].chan_num = 7;
cdt[2].chan_sel = MSPN_STATION;
cdt[2].chan_attr = MSPA_COACH;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) != 0) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue processing
 *
 */

cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;

if (ms_remfromconf(dev1, confID, &cdt[0]) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

96 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_remfromconf() — remove a party from a conference

if (ms_delconf(dev1, confID) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);

}

/* Continue processing */

See Also

• ms_addtoconf()

• ms_delconf()

• ms_estconf()

Dialogic® Modular Station Interface API Library Reference — May 2008 97

Dialogic Corporation

retrieve an ASCII string describing a result code — ms_ResultMsg()

ms_ResultMsg()

retrieve an ASCII string describing a result code

Description

The ms_ResultMsg() function returns an ASCII string which describes a result code.

Cautions

• Do not overwrite the *msg pointer since it points to private internal MSI data space.

• This function fails when an invalid devh or msg parameter is passed.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: int ms_ResultMsg(devh, result_code, msg)

Inputs: int devh • station device handle

long result_code • error code

char **msg • pointer to address of error code description

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration

Mode: Synchronous

Dialogic®

Platform:
DI, HDSI

Parameter Description

devh device handle for station

result_code error code. This parameter can be an error code returned by
ms_ResultValue()

msg pointer to address where the description of the result_code message is stored.

98 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_ResultMsg() — retrieve an ASCII string describing a result code

Example

#include <windows.h> /* For Windows application only */
#include <stdio.h>
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Station Device Descriptor */
int rc; /* Return Code */

long EventHandler (unsigned long temp)
{

 int dev=sr_getevtdev();
 long event=sr_getevttype();
 void* datap = (void*) sr_getevtdatap();
 char *errorMsg;
 long errorCode = 0;

 switch(event)
 {
 case MSEV_DATASENT :
 printf("Received MSEV_DATASENT for device = %s... \n",ATDV_NAMEP(dev));
 /* Continue processing */
 break;

 case MSEV_SENDDATAFAILED :
 ms_ResultValue(dev,event,datap,&errorCode);
 ms_ResultMsg(dev,errorCode,&errorMsg);
 printf("Received MSEV_SENDDATAFAILED for device = %s...ErrorCode =
 0X%X ErrorMessage = %s\n", ATDV_NAMEP(dev),errorCode,errorMsg);
 /* Continue processing */
 break;

 default :
 printf("Unknown event received on %s...Event = 0x%x Device = %d\n",
 ATDV_NAMEP(dev),event,dev);
 /* Continue processing */
 break;

 } /* switch event ends */

 /* Continue processing */
 return 0;
} /* EventHandler ends */

MS_DataInfo myDataInfo;
/* DataString Caller Name = John Doe
 Date Time = Jan 31, 9 30 am */
char DataString[128] = "T:01310930N:John Doe";

/* Open board 1, Station 1 device */
if ((dev1 = ms_open("msiB1C1", 0)) == -1)
{
 printf("Cannot open msiB1C1, Station 1, Channel 1: system error/n”);
 exit(1);
}

/* Set up handler function */
if (sr_enbhdlr(dev1, EV_ANYEVT, &EventHandler) == -1)
{
 /* process error */
}

Dialogic® Modular Station Interface API Library Reference — May 2008 99

Dialogic Corporation

retrieve an ASCII string describing a result code — ms_ResultMsg()

/*
* Continue processing
* make sure the station is already in a call
*/

/* Send data to a station which is already in a call in ASYNC mode */
myDataInfo.version=0;
myDataInfo.dataType=eMSFSK;
myDataInfo.uInfo.dataString=DataString;

if((rc=ms_SendData(dev1,myDataInfo,EV_ASYNC))==-1)
{
 /* process error */
}

/* Use sr_waitevt to wait for the completion of ms_SendData().
 On receiving the completion event, MSEV_DATASENT / MSEV_SENDDATAFAILED
 control is transferred to the handler function (EventHandler)
 previously established using sr_enbhdlr().
*/

/*
* Continue processing
*/

/* Done processing - close device */
if(ms_close(dev1)==-1)
{
 printf("Cannot close device msiB1C1: system error/n”);
 exit(1);
}

See Also

• ms_ResultValue()

100 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_ResultValue() — retrieve the cause of an event

ms_ResultValue()

retrieve the cause of an event

Description

The ms_ResultValue() function is used to retrieve the cause of an event.

Cautions

• This function will fail if an invalid devh, event, or eventInfo parameter is passed.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: int ms_ResultValue(devh, event, eventInfo, resultValue)

Inputs: int devh • station device handle

long event • event identifier

void *eventInfo • pointer to eventInfo block

long *resultValue • address of error code value

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration

Mode: Synchronous

Dialogic®

Platform:
DI, HDSI

Parameter Description

devh device handle for station

event event identifier

eventInfo pointer to eventInfo block. Retrieve the pointer by calling the Standard
Runtime Library function sr_getevtdatap(). See the Dialogic® Standard
Runtime Library API Library Reference for details.

resultValue address where the MSI result value is stored

Dialogic® Modular Station Interface API Library Reference — May 2008 101

Dialogic Corporation

retrieve the cause of an event — ms_ResultValue()

Example

#include <windows.h> /* For Windows application only */
#include <stdio.h>
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Station Device Descriptor */
int rc; /* Return Code */

long EventHandler (unsigned long temp)
{

 int dev=sr_getevtdev();
 long event=sr_getevttype();
 void* datap = (void*) sr_getevtdatap();
 char *errorMsg;
 long errorCode = 0;

 switch(event)
 {
 case MSEV_DATASENT :
 printf("Received MSEV_DATASENT for device = %s... \n",ATDV_NAMEP(dev));
 /* Continue processing */
 break;

 case MSEV_SENDDATAFAILED :
 ms_ResultValue(dev,event,datap,&errorCode);
 ms_ResultMsg(dev,errorCode,&errorMsg);
 printf("Received MSEV_SENDDATAFAILED for device = %s...ErrorCode =
 0X%X ErrorMessage = %s\n", ATDV_NAMEP(dev),errorCode,errorMsg);
 /* Continue processing */
 break;

 default :
 printf("Unknown event received on %s...Event = 0x%x Device = %d\n",
 ATDV_NAMEP(dev),event,dev);
 /* Continue processing */
 break;

 } /* switch event ends */

 /* Continue processing */
 return 0;
} /* EventHandler ends */

MS_DataInfo myDataInfo;
/* DataString Caller Name = John Doe
 Date Time = Jan 31, 9 30 am */
char DataString[128] = "T:01310930N:John Doe";

/* Open board 1, Station 1 device */
if ((dev1 = ms_open("msiB1C1", 0)) == -1)
{
 printf("Cannot open msiB1C1, Station 1, Channel 1: system error/n”);
 exit(1);
}

/* Set up handler function */
if (sr_enbhdlr(dev1, EV_ANYEVT, &EventHandler) == -1)
{
 /* process error */
}

102 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_ResultValue() — retrieve the cause of an event

/*
* Continue processing
* make sure the station is already in a call
*/

/* Send data to a station which is already in a call in ASYNC mode */
myDataInfo.version=0;
myDataInfo.dataType=eMSFSK;
myDataInfo.uInfo.dataString=DataString;

if((rc=ms_SendData(dev1,myDataInfo,EV_ASYNC))==-1)
{
 /* process error */
}

/* Use sr_waitevt to wait for the completion of ms_SendData().
 On receiving the completion event, MSEV_DATASENT / MSEV_SENDDATAFAILED
 control is transferred to the handler function (EventHandler)
 previously established using sr_enbhdlr().
*/

/*
* Continue processing
*/

/* Done processing - close device */
if(ms_close(dev1)==-1)
{
 printf("Cannot close device msiB1C1: system error/n”);
 exit(1);
}

See Also

• ms_ResultMsg()

Dialogic® Modular Station Interface API Library Reference — May 2008 103

Dialogic Corporation

send data to station during a call — ms_SendData()

ms_SendData()

send data to station during a call

Description

The ms_SendData() function sends data to a station while the station is already in conversation.
For example, this function can be used to send call waiting caller ID information for a new call
while a call is already in progress.

Termination Events

The following events may be returned when this function is called in asynchronous mode:

MSEV_DATASENT
Indicates the data was sent successfully to the specified station.

MSEV_SENDDATAFAILED
Indicates the send data operation failed.

Cautions

• This function will fail if executed when the station is on-hook. Use ms_genringCallerID() to
send caller ID information to the station when the station is on-hook.

• To avoid a situation where the other end of a call can hear the FSK tones being sent, your
application should call ms_unlisten() before calling ms_SendData().

Name: int ms_SendData(devh, dataInfo, mode)

Inputs: int devh • station device handle

MS_DataInfo dataInfo • pointer to information structure

int mode • asynchronous/synchronous

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Station

Mode: asynchronous or synchronous

Dialogic®

Platform:
DI, HDSI

Parameter Description

devHandle device handle of the station

dataInfo pointer to information structure; see MS_DataInfo for details.

mode set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution

104 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_SendData() — send data to station during a call

• To ensure reliable reception of call waiting caller ID, make sure an interval of at least 2
seconds elapses between the reception of an MSEV_RING event with MSMM_RNGOFFHK
event data and a call to the ms_SendData() function. If there is still a problem receiving the
call waiting caller ID, it may be due to the configuration of the phone.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Possible errors for this function include:

EDT_BADDEV
Bad device handle

EDT_BADGLOB
Bad global parameter number

EDT_PARAMERR
Invalid command parameter

EDT_INVTS
Invalid device specified

E_MSINVDATATYPE
Invalid data type specified while sending data to the station

E_MSINVVERSION
Invalid version number specified

E_MSNOCNT
Station not connected

Example - Synchronous

#include <windows.h> /* For Windows application only */
#include <stdio.h>
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Station Device Descriptor */
int rc; /* Return Code */

MS_DataInfo myDataInfo;
/* DataString Caller Name = John Doe
 Date Time = Jan 31, 9 30 am */
char DataString[128] = "T:01310930N:John Doe";

/* Open board 1, Station 1 device */
if ((dev1 = ms_open("msiB1C1", 0)) == -1)
{
 printf("Cannot open msiB1C1, Station 1, Channel 1: system error/n”);
 exit(1);
}

Dialogic® Modular Station Interface API Library Reference — May 2008 105

Dialogic Corporation

send data to station during a call — ms_SendData()

/*
* Continue processing
* make sure the station is already in a call
*/

/* Send data to a station which is already in a call in SYNC mode */
myDataInfo.version=0;
myDataInfo.dataType=eMSFSK;
myDataInfo.uInfo.dataString=DataString;
if((rc=ms_SendData(dev1,myDataInfo,EV_SYNC))==-1)
{
 /* process error */
}

/*
* Continue processing
*/

/* Done processing - close device */
if(ms_close(dev1)==-1)
{
 printf("Cannot close device msiB1C1: system error/n”);
 exit(1);
}

Example - Asynchronous

#include <windows.h> /* For Windows application only */
#include <stdio.h>
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Station Device Descriptor */
int rc; /* Return Code */

long EventHandler (unsigned long temp)
{

 int dev=sr_getevtdev();
 long event=sr_getevttype();
 void* datap = (void*) sr_getevtdatap();
 char *errorMsg;
 long errorCode = 0;

 switch(event)
 {
 case MSEV_DATASENT :
 printf("Received MSEV_DATASENT for device = %s... \n",ATDV_NAMEP(dev));
 /* Continue processing */
 break;

 case MSEV_SENDDATAFAILED :
 ms_ResultValue(dev,event,datap,&errorCode);
 ms_ResultMsg(dev,errorCode,&errorMsg);
 printf("Received MSEV_SENDDATAFAILED for device = %s...ErrorCode =
 0X%X ErrorMessage = %s\n", ATDV_NAMEP(dev),errorCode,errorMsg);
 /* Continue processing */
 break;

 default :
 printf("Unknown event received on %s...Event = 0x%x Device = %d\n",
 ATDV_NAMEP(dev),event,dev);
 /* Continue processing */
 break;

106 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_SendData() — send data to station during a call

 } /* switch event ends */

 /* Continue processing */
 return 0;
} /* EventHandler ends */

MS_DataInfo myDataInfo;
/* DataString Caller Name = John Doe
 Date Time = Jan 31, 9 30 am */
char DataString[128] = "T:01310930N:John Doe";

/* Open board 1, Station 1 device */
if ((dev1 = ms_open("msiB1C1", 0)) == -1)
{
 printf("Cannot open msiB1C1, Station 1, Channel 1: system error/n”);
 exit(1);
}

/* Set up handler function */
if (sr_enbhdlr(dev1, EV_ANYEVT, &EventHandler) == -1)
{
 /* process error */
}

/*
* Continue processing
* make sure the station is already in a call
*/

/* Send data to a station which is already in a call in ASYNC mode */
myDataInfo.version=0;
myDataInfo.dataType=eMSFSK;
myDataInfo.uInfo.dataString=DataString;

if((rc=ms_SendData(dev1,myDataInfo,EV_ASYNC))==-1)
{
 /* process error */
}

/* Use sr_waitevt to wait for the completion of ms_SendData().
 On receiving the completion event, MSEV_DATASENT / MSEV_SENDDATAFAILED
 control is transferred to the handler function (EventHandler)
 previously established using sr_enbhdlr().
*/

/*
* Continue processing
*/

/* Done processing - close device */
if(ms_close(dev1)==-1)
{
 printf("Cannot close device msiB1C1: system error/n”);
 exit(1);
}

See Also

• ms_genringCallerID()

• ms_unlisten()

Dialogic® Modular Station Interface API Library Reference — May 2008 107

Dialogic Corporation

change board parameters — ms_setbrdparm()

ms_setbrdparm()

change board parameters

Description

The ms_setbrdparm() function is used to change board parameters.

Note: Calling this function may cause the available resource count to change as follows:

When parm_id = MSG_ZIPENA and value = MS_ZIPENABLE, one resource will be used.

When parm_id = MSG_ZIPENA and value = MS_ZIPDISABLE, one resource will be freed.

Cautions

• Most parameter values are integers. However, because this routine expects a void pointer to
valuep, the address must be cast as a void*.

• This function fails when:

• The device handle is invalid

• The parameter specified is invalid

Name: int ms_setbrdparm (devh, param, valuep)

Inputs: int devh • Dialogic® MSI board device handle

unsigned long param • device parameter defined name

void * valuep • pointer to parameter value

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh valid board device handle returned by a call to ms_open()

param parameter whose value is to be altered. Table 2 contains a description of
Dialogic® MSI device parameters, listed alphabetically.

Note: On Dialogic® DM3 boards, only MSG_DISTINCTRNG is
supported for the ms_setbrdparm() function.

valuep void pointer to location containing the parameter value

108 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_setbrdparm() — change board parameters

Table 2. Dialogic® MSI Board/Device Parameters

Parameter ID Description

MSG_DBOFFTM Defines the minimum length of time (50 ms units) before an off-hook transition is
detected. Off-hook debounce time range: 0-3CH, where 0 = the value used to
disable the off-hook debounce; default = 3H. A pointer to a short containing this
duration is passed as the valuep parameter.

Note: This parameter is not supported on Dialogic® DM3 boards.

MSG_DBONTM Defines the minimum length of time (50 ms units) before an on-hook transition is
detected. On-hook debounce time range: 5-3CH, default: 1EH. A pointer to a short
containing this duration is passed as the third parameter.

The MSG_DBONTM value must be set to a greater unit than MSG_MAXFLASH. If
set to a lesser unit, the unit will automatically be made equal to or 1 unit greater
than MSG_MAXFLASH.

Note: This parameter is not supported on Dialogic DM3 boards.

MSG_DISTINCTRNG For ms_setbrdparm(), this parameter initializes distinctive ringing and
associates a cadence ID with a user-defined distinctive ring cadence. The
cadence ID can then be used in the ms_genringex() function.

Note: This parameter is supported on Dialogic DM3 boards for the
ms_setbrdparm() function only.

For ms_getbrdparm(), this parameter returns a filled-in MS_CADENCE structure
containing the distinctive ring cadence pattern and length for the cadence ID
specified in the cadid field.

When initializing distinctive ringing using the ms_setbrdparm() function, the
valuep parameter must point to a data structure. For details, see the description
of MS_CADENCE, on page 149.

Note: Distinctive ring and board-level ring cadence are mutually exclusive except
in the case where the cadence lengths are identical. You will get an
E_MSRNGCADCNFLCT error if the MSG_PDRNGCAD or
MSG_UDRNGCAD board-level ring cadence is currently set to a cadence
that does not match the distinctive ring cadence length. For example, if
MSG_UDRNGCAD is set to a cadence length of 4, you cannot initialize
distinctive ring Group A, which uses a length of 6 seconds.

MSG_MAXFLASH Defines a maximum length of time (50 ms units) for a station to be in an on-hook
state before a hook flash signal is detected. Maximum hook flash time range: 5-
3CH, default = 14H. A pointer to a short containing this duration is passed as the
third parameter.

Note: This parameter is not supported on Dialogic DM3 boards.

MSG_MINFLASH Defines a minimum length of time (50 ms units) for a station to be in an on-hook
state before a hook flash signal is detected. Minimum hook flash time range: 2-
14H, default = 6H. A pointer to a short containing this duration is passed as the
third parameter.

Note: This parameter is not supported on Dialogic DM3 boards.

Dialogic® Modular Station Interface API Library Reference — May 2008 109

Dialogic Corporation

change board parameters — ms_setbrdparm()

MSG_PDRNGCAD This parameter is used to select one of the following predefined ring cadence
patterns on the MSI board. The default value (in seconds) is 6.

Note: This parameter is not supported on Dialogic DM3 boards.

Value Cadence Pattern

1 1 on 5 off

2 1 on 2.75 off

3 1.5 on 3 off

4 1 on 4.25 off

5 .5 on, 2.5 off .5 on, 2.5 off

6 2 on 4 off

Note: Board-level ring cadence and distinctive ring are mutually exclusive except
in the case where the cadence lengths are identical. You will get an
E_MSRNGCADCNFLCT error if a distinctive ring is currently initialized
through MSG_DISTINCTRNG and you set a MSG_PDRNGCAD board-
level ring cadence with a length that does not match the distinctive ring
length. For example, when using distinctive ring Group A, which has a
cadence length of 6-seconds, you cannot set MSG_PDRNGCAD to the
predefined cadence patterns that do not have a 6-second cycle.

MSG_RING This parameter is used to find out whether the board supports ringing capabilities.
For a ringing board, the parameter value returned is MS_RNGBRD and for a non-
ringing board, the parameter value is MS_NORNGBRD.

Note: This parameter is supported on Dialogic DM3 boards for the
ms_getbrdparm() function only.

MSG_RNGCAD This parameter is used to get the ring cadence pattern. The length of this
parameter, in bytes, is variable and is determined by the number of bits of the
active period cadence information specified. The first byte of this parameter,
specifies the total number (count) of cadence bits being specified. A zero value for
this first byte indicates the default number of bits (currently 8) is being specified.
The next byte(s) correspond to the bit pattern(s).

Note: This parameter is not supported on Dialogic DM3 boards.

Table 2. Dialogic® MSI Board/Device Parameters (Continued)

Parameter ID Description

110 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_setbrdparm() — change board parameters

MSG_UDRNGCAD User defined ring cadence: This parameter is used to set the default board-level
ring cadence (the repeating pattern of ringing ON/OFF durations to a user-defined
value for all stations attached to an MSI board).

Note: This parameter is not supported on Dialogic DM3 boards.

The ring cadence is 1/3 active and 2/3 inactive. The active pattern defines an
ON/OFF sequence of ringing in units of 250 ms and is specified in the value
pointed to by valuep. The value can be from 2 to 7 bytes, depending upon the
duration of the active cycle and subject to the active cycle length, which can be
modified through the downloadable parameter file, RING.PRM (Dialogic® MSI
boards only).

Byte 1 specifies the total number of bits in the active period, ranging from 04H to
18H (4 - 24 bits). Since each bit represents a 250 ms duration, the active period
can range from 1 second to 6 seconds.

Bytes 2 - 7 (the number of bytes depends upon the value specified in byte 1)
specifies the active period ringing pattern, with each bit representing the state of
the ring current (1=ON, 0=OFF) for a 250 ms duration in a sequence from left to
right (high-order bits before low-order bits).

The inactive cycle is a mandatory period of no ringing that is twice the active cycle
duration. It is not specified by the user but is created implicitly from the active
cycle duration.

The default active ring cycle is specified by the RING.PRM download parameter
file (MSI boards only). If no download parameter file is used, the default active
cycle is 2 seconds. Also see Table 3, “MSI Ring Cadence Examples”, on page 111
and Figure 1, “Ring Cadence Examples”, on page 112.

Note: When you want to implement a given cadence pattern, you can use the
following formula to determine how much to pad the active period with a
trailing off-time period so that the total off time is correct. (For multiple ring
cadence patterns, calculate the on-time as the entire period from the
beginning of the first on-time to the end of the last on-time.)
trailing-off-time = 1/3 total-off-time – 2/3 on-time
or
trailing-off-time = (total-off-time – (2 * on-time))/3

For the Dialogic® MSI/SC-R boards only: Even though the ring cadence may be
defined as beginning with a ring ON, the ms_genringex() or ms_genring()
function may ring a station beginning at any point in the ring cycle.

Board-level ring cadence and distinctive ring are mutually exclusive except in the
case where the cadence lengths are identical.

You will get an E_MSRNGCADCNFLCT error if a distinctive ring is currently
initialized through MSG_DISTINCTRNG and you set a MSG_UDRNGCAD board-
level ring cadence with a length that does not match the distinctive ring length. For
example, when using distinctive ring Group A, which has a cadence length of 6
seconds, you cannot set MSG_UDRNGCAD to a cadence length other than 6
seconds.

If a user defines a new cadence with a greater active cycle length during run time,
the current system wide total cycle length is increased to match it. When this
occurs, all other defined cadences are padded with silence.

System wide total cycle lengths cannot be reduced during run time. The active
cycle length may be reduced during system initialization via the RING.PRM file
which, in turn, will reduce the total cycle length (MSI boards only).

MSG_ZIPENA The zip tone setting. MS_ZIPENABLE enables zip tone generation.
MS_ZIPDISABLE disables zip tone generation. Default = MS_ZIPENABLE.

Note: This parameter is not supported on Dialogic DM3 boards.

Table 2. Dialogic® MSI Board/Device Parameters (Continued)

Parameter ID Description

Dialogic® Modular Station Interface API Library Reference — May 2008 111

Dialogic Corporation

change board parameters — ms_setbrdparm()

[1] – [6] These show the predefined cadences for the MSG_PDRNGCAD parameter.
[A] – [C] These examples are shown in Figure 1.

MSCB_ND Defines the notify-on-add tone generated to notify conference parties that a party
has joined or left the conference. valuep must be set to point to an MS_NCB
structure that specifies tone characteristics. Note that the pulse repetition field is
ignored by the function. See MS_NCB, on page 155 for structure details.

Note: This parameter is not supported on Dialogic DM3 boards.

MSCB_ZIP Zip tone controls the characteristics of the tone generated to notify a party that
they are about to be connected with a call. The volume, tone frequency, and
duration fields of the MS_NCB structure are set but the pulse repetition field is
ignored by the function.

Note: This parameter is not supported on Dialogic DM3 boards.

Table 3. MSI Ring Cadence Examples

Desired Cadence
(seconds)

Parameter Value
(hexadecimal)

Example
Number

Ring ON Time
(embedded off time)

Ring OFF
Time

Total Bits
(byte 1)

Active Pattern
(bytes 2-n)

Single Ring Patterns:

1 .75 7.5 0B E000

2 [A] 1 2 04 F0

3 [2] 1 2.75 05 F0

4 [4] 1 4.25 07 F0

5 [1] [B] 1 5 08 F0

6 1.25 4.75 08 F8

7 [3] 1.5 3 06 FC

8 1.5 3.75 07 FC

9 [6] 2 4 08 FF

Double Ring Patterns:

10 [5] .5, (.25), .5 2.5 05 D8

11 .5, (.25), .5 4 07 D8

12 1, (.75), 1 5.5 0B F1E0

Triple Ring Patterns:

13 1, (.5), .25, (.25), .25 4.5 09 F280

14 [C] 1, (.5), .25, (.25), .25 5.25 0A F280

15 1, (1), .25, (.25), .25 5.5 0B F-A-

16 .5, (.25), .5, (.25), 1 5 0A DBC0

Table 2. Dialogic® MSI Board/Device Parameters (Continued)

Parameter ID Description

112 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_setbrdparm() — change board parameters

Figure 1. Ring Cadence Examples

on, 2 off. 04F0 (hex)
Example A: Single Ring

0 0 0 0

0F

1 1 1 1

4 bits
04F0h

1 s 2 s

active

1 s ON 2 s OFF

ontime

Pattern (seconds): 1 on, 5 off. 8F0 (hex)
Example B: Single Ring (with trailing offtime)

0 0 0 0

0F

1 1 1 1

8 bits
08F0h

2 s 4 s

1 s ON 5 s OFF

1 s

1 on, .5 off, .25 on, .25 off, .25 on, 5.25 off
0AF280 (hex)

Example C: Asymmetrical Triple Ring (with trailing offtime)

0 0 1 0 0 01 0 0 0 0 0

2 08F

1 1 1 1

10 bits
0AF280h

2.5 s 5 s

1, (.5), .25, (.25), .25 s 5.25 s OFF

.25 s

MSI Ring Cadence Examples
ms_setbrdparm() MSG_UDRNGCAD Parameter

UNITS
1 bit = 250

milliseconds

length of active period

active period ring pattern

Pattern (seconds):

Pattern (seconds): Value:

Value:

Value:

ignored

inactive period (2x active period)

ontime

total offtime

total offtime

active period inactive period (2x active period)

(active period trailing offtime)

ignored

ontime
(embedded offtimes)

total offtime

active period inactive period (2x active period)

(active period trailing offtime)

length of active period

active period ring pattern

length of active period

active period ring pattern

Dialogic® Modular Station Interface API Library Reference — May 2008 113

Dialogic Corporation

change board parameters — ms_setbrdparm()

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

main()
{
 int devh; /* Board device descriptor variable */
 char cadence[7]; /* Cadence parameter array */

 if ((devh = ms_open("msiB1", 0)) == -1) {
 printf("Error opening msiB1: system error/n”);
 exit(1);
 }

 /*
 * Set cadence bit pattern
 * (Active cadence : 1 sec on, 0.75 secs off, 1 sec on)
 * (Inactive period : 5.5 secs off)
 */
 cadence[0] = 0x0b; /* Bit pattern 11 bits wide */
 cadence[1] = 0xf1; /* Pattern : 11110001 */
 cadence[2] = 0xeo; /* Pattern : 11100000 */

 /* Set ring cadence to the user-defined pattern */
 if (ms_setbrdparm(devh,MSG_UDRNGCAD,(void *)&cadence[0])) == -1){
 printf("Error setting board parameter : %s\n", ATDV_ERRMSGP(devh));
 exit(1);
 }

 /* Predefined selection 3 from Table 1 */
 cadence[0] = 3;

 /* Set ring-cadence to predefined pattern 3 */
 if (ms_setbrdparm(devh,MSG_PDRNGCAD,(void *)&cadence[0])) == -1){
 printf("Error setting board parameter : %s\n", ATDV_ERRMSGP(devh));
 exit(1);
 }

 if (ms_close(devh) == -1) {
 printf("Error Closing msiB1: system error/n”);
 exit(1);
 }
}

See Also

• ms_getbrdparm()

114 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_setcde() — change the attributes of a party

ms_setcde()

change the attributes of a party

Description

The ms_setcde() function changes the attributes of a party in an existing conference.

Note: If the party attributes of more than one party are to be set, this function must be called multiple
times.

Cautions

This function fails when:

• The device handle specified is invalid

• The device is not connected to the TDM bus

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: int ms_setcde (devh, confID, cdt)

Inputs: int devh • Dialogic® MSI device handle

int confID • conference identifier

MS_CDT *cdt • pointer to an MS_CDT structure

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management

Mode: synchronous

Dialogic®

Platform:
DI, Springware

Parameter Description

devh the Dialogic MSI device handle

confID the conference identifier number

cdt pointer to the conference descriptor table. See the MS_CDT data structure
page for details.

Dialogic® Modular Station Interface API Library Reference — May 2008 115

Dialogic Corporation

change the attributes of a party — ms_setcde()

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

#define NUM_PARTIES 2

int dev1; /* Board dev descriptor variables */
int chdev2; /* Channel dev descriptor */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: system error/n”);
 exit(1);
}

/* Open board 1, channel 2 device */
if ((chdev2 = ms_open("msiB1C2",0) == -1) {
 printf("Cannot open MSI B1, C2: system error/n”);
 exit(1);
}

/*
 *
 * Continue processing
 *
 */

/* Set up CDT structure */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_COACH;

cdt[1].chan_num = 1;
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_PUPIL;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) != 0) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 *
 * Continue processing
 *
 */

/* Now change the attribute of MSI Station 2 */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

if((ms_setcde(dev1, confID, cdt)) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue Processing
 *
 */

116 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_setcde() — change the attributes of a party

See Also

• ms_addtoconf()

• ms_estconf()

• ms_getcde()

Dialogic® Modular Station Interface API Library Reference — May 2008 117

Dialogic Corporation

change transition event masks — ms_setevtmsk()

ms_setevtmsk()

change transition event masks

Description

The ms_setevtmsk() function changes transition event masks and enables and disables messages
from a station.

Name: ms_setevtmsk (devh, event, bitmask, action)

Inputs: int devh • Dialogic® MSI station device handle

int event • event to be enabled/disabled

unsigned short bitmask • bitmask for events

int action • set, add, or subtract bitmask

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the valid station device handle returned by a call to ms_open()

event type of transition event to be enabled or disabled:
• MSEV_CHANSTATE – station interface alarms (disabled by default)

(Dialogic® DI and HDSI boards only)
• MSEV_SIGMSK – hook switch transition event

Notification of specific signaling events is enabled or disabled by setting
the bitmask parameter.

118 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_setevtmsk() — change transition event masks

For example, to enable notification of the events specified in the bitmask parameter and disable
notification of previously set events:

• Specify the events to enable in the bitmask field

• Specify DTA_SETMSK in the action field

To enable an additional event specified in bitmask without disabling the currently enabled events:

• Specify the events in bitmask

• Specify DTA_ADDMSK in the action field

To disable events in bitmask without disabling any other events:

• Specify the events in bitmask

• Specify DTA_SUBMSK in the action field

To disable all currently enabled events:

• Specify 0 in bitmask

• Specify DTA_SETMSK in the action field

bitmask the event to be enabled or disabled by setting the bitmask for that event.
Multiple transition events may be enabled or disabled with one function
call if the bitmasks are ORed together. The possible values for the bitmask
parameter are:

For MSEV_CHANSTATE event (Dialogic® DI and HDSI boards only):
• MSMM_CS_ALARM – station interface failure, e.g., communication

link disconnected
• MSMM_CS_IDLE – station interface online; sent when cable is

reconnected, alarm is cleared, or station is powered up
• MSMM_CS_OUT_OF_SERVICE – loop current to station interface

disabled, e.g., for maintenance purposes

Note: For information on how to use station interface alarms, see the
Dialogic® Modular Station Interface API Programming Guide.

For MSEV_SIGMSK event:
• MSMM_OFFHOOK – off-hook detection
• MSMM_ONHOOK – on-hook detection
• MSMM_HOOKFLASH – hook flash detection

action specifies how the transition event mask is changed. Events can be added to
or subtracted from those specified in bitmask. The possible values for the
action parameter are:
• DTA_SETMSK – enables notification of events specified in bitmask

and disables notification of previously set events
• DTA_ADDMSK – enables messages from the channel specified in

bitmask, in addition to previously set events
• DTA_SUBMSK – disables messages from the channel specified in

bitmask

Parameter Description

Dialogic® Modular Station Interface API Library Reference — May 2008 119

Dialogic Corporation

change transition event masks — ms_setevtmsk()

Processing an Event

When a hook switch transition event occurs, the application receives an MSEV_SIGEVT event as
the event type. When a station interface alarm event occurs, the application receives an
MSEV_CHANSTATE event. The associated event data contains the bitmask of the specific
transition that caused the event. To enable an event handler for a specified event, follow these steps:

• Call sr_enbhdlr(). This function specifies the event and the application defined event handler
that is called from a signal handler.

• Call ms_setevtmsk(). This function specifies the list of events the application should be
notified of.

• For an event to be handled, it must be specified in both sr_enbhdlr() and ms_setevtmsk().

• The event data is retrieved using the sr_getevtdatap() function. Refer to “Event Handling” in
the Dialogic® Modular Station Interface API Programming Guide for more information.

Cautions

This function fails when:

• The device handle is invalid

• The event specified is invalid

• The action specified is invalid

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);

 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int tsdev; /* Channel device descriptor variable */

120 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_setevtmsk() — change transition event masks

 /* Open board 1 time slot 1 device */
 if ((tsdev = ms_open("msiB1C1", 0)) == -1) {
 printf("Cannot open device msiB1C1: system error/n”);
 exit(1);
 }

 /* Enable signaling transition events (off-hook event) */
 if (ms_setevtmsk(tsdev, MSEV_SIGMSK, MSMM_OFFHOOK, DTA_SETMSK) == -1){
 do_error(tsdev, "ms_setevtmsk()");
 exit(1);
 }

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(tsdev) == -1) {
 printf("Cannot close board msiB1C1: system error/n”);
 }
}

See Also

• ms_getevtmsk()

Dialogic® Modular Station Interface API Library Reference — May 2008 121

Dialogic Corporation

toggle message waiting indicator lamp — ms_SetMsgWaitInd()

ms_SetMsgWaitInd()

toggle message waiting indicator lamp

Description

The ms_SetMsgWaitInd() function generates an FSK signal to illuminate the message waiting
LED.

Cautions

This function can only be issued when the station is on-hook.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: ms_SetMsgWaitInd (devh, IndicatorState, rfu1, rfu2)

Inputs: int devh • station device handle

unsigned short IndicatorState • indicator ON/OFF state

void* rfu • reserved for future use

void* rfu • reserved for future use

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Station

Mode: synchronous

Dialogic®

Platform:
DI, HDSI

Parameter Description

devh device handle

IndicatorState toggles FSK message waiting indicator (MWI) on a phone set
• MS_MSGINDON – turns the MWI on
• MS_MSGINDOFF – turns the MWI off

rfu reserved for future use

rfu reserved for future use

122 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_SetMsgWaitInd() — toggle message waiting indicator lamp

Example

#include <windows.h> /* For Windows application only */
#include <stdio.h>
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int dev1; /* Station Device Descriptor */
int rc; /* Return Code */

unsigned short IndicatorState= MS_MSGINDON;
void *RFU1=0,*RFU2=0;

/* Open board 1, Station 1 device */
if ((dev1 = ms_open("msiB1C1", 0)) == -1)
{
 printf("Cannot open msiB1C1, Station 1, Channel 1: system error/n”);
 exit(1);
}

/*
* Continue processing
*/

/* Set the Message Wait Indicator to ON */
IndicatorState= MS_MSGINDON;
if((rc=ms_SetMsgWaitInd(dev1,IndicatorState,RFU1,RFU2))==-1)
{
 /* process error */
}

/*
* Continue processing
*/

/* Set the Message Wait Indicator to OFF */
IndicatorState= MS_MSGINDOFF;
if((rc=ms_SetMsgWaitInd(dev1,IndicatorState,RFU1,RFU2))==-1)
{
 /* process error */
}

/*
* Continue processing
*/

/* Done processing - close device */
if(ms_close(dev1)==-1)
{
printf("Cannot close device msiB1C1: system error/n”);
 exit(1);
}

See Also

• ms_genringCallerID()

Dialogic® Modular Station Interface API Library Reference — May 2008 123

Dialogic Corporation

change the MSI station level parameters — ms_setstparm()

ms_setstparm()

change the MSI station level parameters

Description

The ms_setstparm() function changes the Dialogic® MSI station level parameters. Specifically,
the MSSP_STPWR parameter can be used to turn station power (loop current) on or off.

Cautions

This function fails when:

• The station device handle is invalid

• The parameter specified is invalid

• The parameter value specified is invalid

Name: ms_setstparm (devh, param, valuep)

Inputs: int devh • Dialogic® MSI station device handle

unsigned char param • parameter name

void *valuep • pointer to parameter value

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the valid station device handle returned by a call to ms_open()

param specifies the station level parameter
• MSSP_STPWR – station power status

valuep specifies the address of the parameter value. Possible values are:
• MS_PWROFF – power down station. Selecting this value turns off the

loop current to the specified station.
• MS_PWRON – power up station. Selecting this value turns on the loop

current to the specified station.

The station power is ON by default.

124 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_setstparm() — change the MSI station level parameters

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

main()
{
 int devh; /* MSI/SC station device descriptor */
 int value; /* Parameter value */

 if ((devh = ms_open("msiB1C1", 0)) == -1) {
 printf("Error opening msiB1C1: system error/n”);
 exit(1);
 }

 /* Power off the station */
 value = MS_PWROFF;
 if (ms_setstparm(devh, MSSP_STPWR, (void *)&value)) == -1) {
 printf("Error setting board parameter : %s\n", ATDV_ERRMSGP(devh));
 exit(1);
 }

 if (ms_close(devh) == -1) {
 printf("Error Closing msiB1C1: system error/n”);
 exit(1);
 }
}

See Also

• ms_getbrdparm()

• ms_setbrdparm()

Dialogic® Modular Station Interface API Library Reference — May 2008 125

Dialogic Corporation

change or reset the station volume — ms_setvol()

ms_setvol()

change or reset the station volume

Description

The ms_setvol() function changes or resets the station volume.

The type parameter dictates whether the volume will be adjusted from its current level or reset to
the default value. The type parameter must be set to one of the following values:

VOLADJ
Adjusts station volume

VOLRES
Resets station volume back to the default

If the type parameter is VOLRES, the volume is returned to the default setting of -3 dB and the
third parameter, steps, is ignored. For VOLADJ, steps increases or decreases from the current
volume by multiples of 1 dB. A positive steps value increases the volume, and a negative steps
value decreases the volume. The volume ranges from -9 dB to +3 dB, with a default value of -3 dB.
Hence, the volume can be changed 6 dB higher or lower from the default value. However,
depending on the current volume setting, the number of steps in either direction will be limited.

Note: An error will not be returned if the saturation point is reached in either direction.

Name: int ms_setvol (devh, type, steps)

Inputs: int devh • Dialogic® MSI station device handle

int type • volume adjust or reset

int steps • number of steps to increase or decrease volume

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Station

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the station handle

type specifies whether to adjust or to reset current mode

steps the number of steps to increase or decrease volume

126 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_setvol() — change or reset the station volume

Cautions

This function fails when:

• An invalid device handle is specified

• The device is not connected to the Dialogic® MSI board

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

int chdev2; /* Station dev descriptor */

/* Open board 1, station 2 device */
if ((chdev2 = ms_open("msiB1C2",0) == -1) {
 printf("Cannot open MSI B1, C2: system error/n”);
 exit(1);
}

/*
 *
 * Continue processing
 *
 */

/* Increase volume by 2 dB from current level */
if (ms_setvol(chdev2,VOLADJ,2)==-1) {
 printf("Error setting volume: %s", ATDV_ERRMSGP(chdev2));
 exit(1);
}

/*
 * Continue Processing
 *
 */

See Also

None.

Dialogic® Modular Station Interface API Library Reference — May 2008 127

Dialogic Corporation

stop a multitasking function — ms_stopfn()

ms_stopfn()

stop a multitasking function

Description

The ms_stopfn() function stops a multitasking function in progress for a station. Currently,
ringing is the only type of multitasking function that can be stopped. However, ringing may be
started by one of the three following functions: ms_genring(), ms_genringCallerID(), and
ms_genringex().

Cautions

This function fails when:

• The device specified is not a Dialogic® Modular Station Interface (MSI) station

• The parameter specified is invalid

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: int ms_stopfn (devh, funcid)

Inputs: unsigned int devh • Dialogic® MSI station device handle

unsigned int funcid • ID of multitasking function

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Device Management

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the Dialogic MSI station device handle

funcid the identification of the multitasking function that must be stopped. The
valid value is:
• MTF_RING – Stops ringing on a station, if in progress.

128 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_stopfn() — stop a multitasking function

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

 int chdev1 ;

/* Open board 1, station 2 device */
if ((chdev1 = ms_open("msiB1C2",0) == -1) {
 printf("Cannot open MSI B1, C2: system error/n”);
 exit(1);
}

/* ring the station 2 five times */
if (ms_genring(chdev1, 5, EV_ASYNC)== -1){
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

/* 2 seconds later, ringing has not completed and station 2
 * has not gone off-hook. However, there is a need to abort the
 * ringing on station 2. Issue the abort command
 */

if (ms_stopfn(chdev1,MTF_RING)== -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

See Also

• ms_genring()

• ms_genringCallerID()

• ms_genringex()

Dialogic® Modular Station Interface API Library Reference — May 2008 129

Dialogic Corporation

test the communication ability of a board — ms_tstcom()

ms_tstcom()

test the communication ability of a board

Description

The ms_tstcom() function tests the ability of a board to communicate with the system. This
function can operate in either blocking or non-blocking mode.

To run this function in synchronous (blocking) mode, set tmo to the length of time, in seconds, to
await a return. If a response is not returned within tmo seconds, an error is returned.

To operate this function in asynchronous (non-blocking) mode, specify 0 for tmo. This allows the
application to continue processing while awaiting a completion event. If event handling is properly
set up for your application, DTEV_COMRSP will be returned by the sr_getevttype() function
included in the SRL when the test completes successfully. See the Dialogic® Modular Station
Interface API Programming Guide for information about event handling.

Cautions

• This is a board-level function only.

• This function fails when:

• The device handle is invalid

• There is a hardware problem on the board

• There is a configuration problem (IRQ conflict)

Name: int ms_tstcom (devh, tmo)

Inputs: int devh • Dialogic® MSI device handle

int tmo • time-out value

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Diagnostic

Mode: asynchronous or synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the valid board device handle returned by a call to ms_open()

tmo the maximum amount of time that the function will block while waiting
for a response from the board. If a response is not returned within tmo
seconds, an error will be returned.

130 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_tstcom() — test the communication ability of a board

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);
 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int bddev; /* Board device descriptor variable */

 /* Open board 1 device */
 if ((bddev = ms_open("msiB1", 0)) == -1) {
 printf("Cannot open board msiB1: system error/n”);
 exit(1);
 }

 /*
 * Test the board's ability to communicate with the system.
 */
 if (ms_tstcom(bddev, 60) == -1) {
 do_error(bddev, "ms_tstcom()");
 exit(1);
 }

 printf("Communications test completed successfully\n");

 /*
 * Continue processing
 */

 /* Done processing - close device */
 if (ms_close(bddev) == -1) {
 printf("Cannot close board msiB1: system error/n”);
 }
}

See Also

• ms_tstdat()

Dialogic® Modular Station Interface API Library Reference — May 2008 131

Dialogic Corporation

perform a data test on the MSI board — ms_tstdat()

ms_tstdat()

perform a data test on the MSI board

Description

The ms_tstdat() function performs a data test on the Dialogic® Modular Station Interface (MSI)
board and verifies the integrity of the Dialogic® MSI interface to the PC. The data test is performed
by sending a series of bytes to the Dialogic® MSI board and by checking the integrity of the bytes
returned. The function can operate synchronously or asynchronously.

To run this function in synchronous (blocking) mode, set tmo to the length of time (in seconds) to
await a return. If a response is not returned within tmo seconds, an error is returned.

To operate this function in asynchronous (non-blocking) mode, specify 0 for tmo. This allows the
application to continue processing while awaiting a completion event. If event handling is properly
set up for your application, DTEV_DATRSP will be returned by the sr_getevttype() function
included in the SRL when the test completes successfully. See the Dialogic® Modular Station
Interface API Programming Guide for information about event handling.

Cautions

• This is a board-level function only.

• This function fails when:

• The test data is corrupted

• The device handle is invalid

Name: int ms_tstdat (devh, tmo)

Inputs: int devh • Dialogic® MSI device handle

int tmo • time-out value

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Diagnostic

Mode: asynchronous or synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the valid board device handle returned by a call to ms_open()

tmo the maximum amount of time that the function will block while waiting
for a response from the board. If a response is not returned within tmo
seconds, an error will be returned.

132 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_tstdat() — perform a data test on the MSI board

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

The following code example demonstrates the use of ms_tstdat() in the synchronous mode.

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);
 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int bddev; /* Board device descriptor variable */

 /* Open board 1 device */
 if ((bddev = ms_open("msiB1", 0)) == -1) {
 printf("Cannot open board msiB1: system error/n”);
 exit(1);
 }

 /* Perform a data integrity test between the board and PC. */
 if (ms_tstdat(bddev, 60) == -1) {
 do_error(bddev, "ms_tstdat()");
 exit(1);
 }

 printf("Data integrity test completed successfully\n");

/*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(bddev) == -1) {
 printf("Cannot close board msiB1: system error/n”);
 }
}

Dialogic® Modular Station Interface API Library Reference — May 2008 133

Dialogic Corporation

perform a data test on the MSI board — ms_tstdat()

See Also

• ms_tstcom()

134 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_unlisten() — disconnect receive channel of a station device

ms_unlisten()

disconnect receive channel of a station device

Description

The ms_unlisten() function disconnects the receive (listen) channel of a station device from a
TDM bus time slot.

Cautions

This function fails when an invalid station device handle is specified.

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dxxxlib.h"
#include "dtilib.h"

int chdev /* Station device handle */

Name: int ms_unlisten (devh)

Inputs: int devh • Dialogic® MSI station device handle

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: TDM Bus Routing

Mode: synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the station device handle

Dialogic® Modular Station Interface API Library Reference — May 2008 135

Dialogic Corporation

disconnect receive channel of a station device — ms_unlisten()

/* Open board 1, channel 1 */
if ((chdev = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open channel msiB1C1: system error/n”);
 exit(1);
}

/* Disconnect receive of board 1, station 1 from all SCbus time slots */
if (ms_unlisten(chdev) == -1) {
 printf("Error message = %s",ATDV_ERRMSGP(chdev));
 exit(1);
}

See Also

• ms_listen()

• ms_listenEx()

• ms_unlistenEx()

136 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_unlistenEx() — disconnect receive channel of a station device

ms_unlistenEx()

disconnect receive channel of a station device

Description

The ms_unlistenEx() function disconnects the receive (listen) channel of a station interface device
from a TDM bus time slot to which it was connected by a previous call to ms_listenEx() or
ms_listen().

Note: The ms_unlistenEx() function extends and enhances the ms_unlisten() function by adding
support for the asynchronous mode of operation and providing event notification upon successful
completion or failure of the disconnection.

Termination Events

MSEV_UNLISTEN
indicates that the time slot routing has been successfully disconnected

MSEV_UNLISTEN_FAIL
indicates that the time slot disconnection has failed

Cautions

• This function fails when an invalid station device handle is specified.

Name: int ms_unlisten (devh, mode)

Inputs: int devh • Dialogic® MSI station device handle

int mode • async or sync

Returns: 0 on success
-1 on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: TDM Bus Routing

Mode: asynchronous or synchronous

Dialogic®

Platform:
DI, HDSI, Springware

Parameter Description

devh the station device handle

mode specifies the mode of operation:

• EV_SYNC – synchronous mode (default)

• EV_ASYNC – asynchronous mode

Dialogic® Modular Station Interface API Library Reference — May 2008 137

Dialogic Corporation

disconnect receive channel of a station device — ms_unlistenEx()

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Example A - Asynchronous

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "msilib.h"

int chdev1; /* Channel dev descriptor */

/* Open board 1, channel 1 device */
if ((chdev1 = ms_open("msiB1C1",0) == -1)
{
 printf("Cannot open MSIB1C1. System error.");
 exit(1);
}

/* Un-route chdev1 */
if (ms_unlistenEx(chdev1, EV_ASYNC) == -1)
{
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

While (1)
{
 // Poll for events
 rc = sr_waitevt(-1);
 dev = sr_getevtdev(0);

 if (iRet == -1)
 {
 printf("Error Device %s %s\n", ATDV_NAMEP(iDev), ATDV_ERRMSGP(iDev));
 break;
 }

 EvtType = sr_getevttype(0);

 // Check for UNLISTEN event
 if (EvtType == MSEV_UNLISTEN)
 {
 printf("MSEV_UNLISTEN event received\n");
 break;
 }

 // Check for un-listen failure event
 if (EvtType == MSEV_UNLISTEN_FAIL)
 {
 printf("MSEV_UNLISTEN_FAIL event received\n");
 break;
 }
}

138 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_unlistenEx() — disconnect receive channel of a station device

if (ms_close(chdev1) == -1)
{
 printf("Could not Close msiB1C1. System error.");
 exit(1);
}

Example B - Synchronous

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dxxxlib.h"
#include "dtilib.h"

int chdev /* Station device handle */

/* Open board 1, channel 1 */
if ((chdev = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open channel msiB1C1: system error/n”);
 exit(1);
}

/* Disconnect receive of board 1, station 1 from all SCbus time slots */
if (ms_unlisten(chdev) == -1) {
 printf("Error message = %s",ATDV_ERRMSGP(chdev));
 exit(1);
}

See Also

• ms_listenEx()

• ms_listen()

• ms_unlisten()

Dialogic® Modular Station Interface API Library Reference — May 2008 139

Dialogic Corporation

remove a monitor from a conference — ms_unmonconf()

ms_unmonconf()

remove a monitor from a conference

Description

Note: This function is not supported on Dialogic® High Density Station Interface (HDSI) boards,
however, it is supported on Dialogic® Integrated Series boards.

The ms_unmonconf() function removes a monitor from a conference. Calling this function frees
one resource.

Cautions

This function fails when:

• The device handle specified is invalid

• It is called for a non-MSI board

• An invalid conference is specified

• A monitor does not exist in the conference

Errors

If this function returns -1 to indicate failure, obtain the reason for the error by calling the SRL
standard attribute function ATDV_LASTERR() or ATDV_ERRMSGP() to retrieve either the
error code or a pointer to the error description, respectively.

For information about error codes, refer to Chapter 5, “Error Codes”. Error defines can be found in
dtilib.h or msilib.h.

Name: int ms_unmonconf (devh, confID)

Inputs: int devh • Dialogic® MSI board device handle

int confID • conference ID

Returns: 0 on success
-1 on failure (if the board is not a Dialogic MSI board)

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management

Mode: synchronous

Dialogic®

Platform:
DI, Springware

Parameter Description

devh the Dialogic MSI board device handle

confID the conference identifier

140 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_unmonconf() — remove a monitor from a conference

Example

#include <windows.h> /* For Windows applications only */
#include "srllib.h"
#include "dtilib.h"
#include "msilib.h"

#define NUM_PARTIES 2

int dev1; /* Board dev descriptor variables */
int tsdev1; /* DTI time slot device handle */
MS_CDT cdt[NUM_PARTIES]; /* conference descriptor table */
int confID; /* conference ID */
long lts; /* listen time slot */
SC_TSINFO tsinfo; /* time slot information structure */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: system error/n”);
 exit(1);
}

/* Assume that there is a DTI in the system.
 * Assume the device handle for a time slot on the DTI
 * is tsdev1 and time slot it is assigned to is ts1
*/

/* Set up CDT structure */
cdt[0].chan_num = station ; /* Valid MSI Station */
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

cdt[1].chan_num = ts1 ; /* ts1 is the DTI time slot */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_RO;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue Processing
 */

/* Now monitor the conference */
if (ms_monconf(devh,confID,<s)== -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Assume that a DTI time slot tsdev1 is the available */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = <s;

if (dt_listen(tsdev1,&tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}
/*
 * Continue processing
 */

Dialogic® Modular Station Interface API Library Reference — May 2008 141

Dialogic Corporation

remove a monitor from a conference — ms_unmonconf()

/* Unlisten to the monitor's time slot first */
if (dt_unlisten(tsdev1) == -1) {
 printf("Error message = %s\n", ATDV_ERRMSGP(tsdev1);
 exit(1);
}

/* Now unmonitor the conference */
if (ms_unmonconf(devh, confID) == -1) {
 printf("Error message = %s\n", ATDV_ERRMSGP(devh));
 exit(1);
}

/* Continue processing */

See Also

• ms_estconf()

• ms_monconf()

142 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_unmonconf() — remove a monitor from a conference

Dialogic® Modular Station Interface API Library Reference — May 2008 143

Dialogic Corporation

33.Events

This chapter contains an alphabetical list of the events returned by the Dialogic® Modular Station
Interface (MSI) software functions.

MSEV_CHANSTATE
Station interface alarms event. Possible event data for MSEV_CHANSTATE include:

• MSMM_CS_ALARM – station interface failure, e.g., communication link disconnected
• MSMM_CS_IDLE – station interface online; sent when cable is reconnected, alarm is

cleared, or station is powered up
• MSMM_CS_OUT_OF_SERVICE – loop current to station interface disabled, e.g., for

maintenance purposes

Note: For information on how to use station interface alarms, see the ms_setevtmsk()
function and the Dialogic® Modular Station Interface API Programming Guide.

MSEV_DATASENT
Termination event. Indicates data was successfully sent by ms_SendData() when the function
is called in asynchronous mode.

MSEV_ERREVT
Error event.

MSEV_LISTEN
Termination event. Indicates that the time slot has been routed successfully.

MSEV_LISTEN_FAIL
Termination event. Indicates that the time slot routing has failed.

MSEV_NORING
Termination event. Indicates failure of ms_genring(), ms_genringCallerID(), or
ms_genringex() in asynchronous mode.

MSEV_RING
Termination event. Indicates successful completion of ms_genring(),
ms_genringCallerID(), or ms_genringex() in asynchronous mode. The event data for
MSEV_RING is:

• MSMM_RNGOFFHK – Solicited off-hook was detected.
• MSMM_RNGSTOP – Ringing was stopped by ms_stopfn().
• MSMM_TERM – Ringing was terminated.

MSEV_SENDDATAFAILED
Termination event. Indicates failure of send data operation when ms_SendData() is called in
asynchronous mode.

MSEV_SIGEVT
Signaling transition event. Possible event data for MSEV_SIGEVT include:

• MSMM_HOOKFLASH – Line device detected hook flash.
• MSMM_OFFHOOK – Line device has gone off-hook.
• MSMM_ONHOOK – Line device has gone on-hook.

MSEV_UNLISTEN
Termination event. Indicates that the time slot routing has been successfully disconnected.

144 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

Events

MSEV_UNLISTEN_FAIL
Termination event. Indicates that the time slot disconnection has failed.

Dialogic® Modular Station Interface API Library Reference — May 2008 145

Dialogic Corporation

44.Data Structures

This chapter alphabetically lists the data structures used by the Dialogic® Modular Station
Interface (MSI) library functions. These structures are used to control the operation of functions
and to return information. In this chapter, the data structure definition is followed by a detailed
description of the fields in the data structure. The fields are listed in the sequence in which they are
defined in the data structure.

• CT_DEVINFO. 146

• MS_CADENCE. 149

• MS_CDT . 151

• MS_DataInfo . 153

• MS_NCB . 155

• SC_TSINFO . 156

146 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

CT_DEVINFO — channel/station information

CT_DEVINFO

channel/station information
typedef struct ct_devinfo {
 unsigned long ct_prodid; /* product ID */
 unsigned char ct_devfamily; /* device family */
 unsigned char ct_devmode; /* device mode */
 unsigned char ct_nettype; /* network interface */
 unsigned char ct_busmode; /* bus architecture */
 unsigned char ct_busencoding; /* bus encoding */
 union {
 unsigned char ct_RFU[7]; /* reserved */
 struct {
 unsigned char ct_prottype;
 } ct_net_devinfo;
 } ct_ext_devinfo;
} CT_DEVINFO;

Description

This is a channel/station information structure for Dialogic® Modular Station Interface (MSI)
boards.

Valid values for each member of the structure are defined in ctinfo.h, which is referenced by
dtilib.h.

Field Descriptions

On Dialogic® DM3 boards, the fields of the CT_DEVINFO data structure are described as follows:

ct_prodid
Contains a valid product identification number for the device [length: 4 (unsigned long)].

ct_devfamily
Specifies the device family [length: 1 (unsigned char)]. Possible values are:

• CT_DFDM3 – Dialogic® DM3 device
• CT_DFHMPDM3 – Dialogic® Host Media Processing (HMP) device

ct_devmode
Specifies the device mode [length: 1 (unsigned char)] that is valid only for a Dialogic® D/xx or
VFX/xx board. Possible values are:

• CT_DMRESOURCE – Dialogic DM3 voice device in flexible routing configuration
• CT_DMNETWORK – Dialogic DM3 network device or Dialogic DM3 voice device in

fixed routing configuration

For information about flexible routing and fixed routing, see the Dialogic® Voice API
Programming Guide.

ct_nettype
Specifies the type of network interface for the device [length: 1 (unsigned char)]. Possible
values are:

• CT_IPT – IP connectivity
• CT_NTANALOG – analog interface. Analog and voice devices on board are handling

call processing
• CT_NTT1 – T1 digital network interface
• CT_NTE1 – E1 digital network interface

Dialogic® Modular Station Interface API Library Reference — May 2008 147

Dialogic Corporation

channel/station information — CT_DEVINFO

• CT_NTMSI – MSI/SC station interface
• CT_NTHIZ – high impedance (HiZ) interface. This value is bitwise-ORed with the type

of network interface. A Dialogic® digital HiZ T1 board would return CT_NTHIZ |
CT_NTT1. A Dialogic® digital HiZ E1 board would return CT_NTHIZ | CT_NTE1. A
Dialogic® analog HiZ board would return CT_NTHIZ | CT_NTTXZSWITCHABLE |
CT_NTANALOG.

• CT_NTTXZSWITCHABLE – The network interface can be switched to the transmit
impedance state. This value is bitwise-ORed with the type of network interface. An
analog HiZ board would return CT_NTHIZ | CT_NTTXZSWITCHABLE |
CT_NTANALOG. This is used to transmit the record notification beep tone.

ct_busmode
Specifies the bus architecture used to communicate with other devices in the system [length: 1
(unsigned char)]. Possible values are:

• CT_BMSCBUS – TDM bus architecture
• CT_H100 – H.100 bus
• CT_H110 – H.110 bus

ct_busencoding
Describes the PCM encoding used on the bus [length: 1 (unsigned char)]. Possible values are:

• CT_BEULAW – mu-law encoding
• CT_BEALAW – A-law encoding
• CT_BELLAW – linear encoding
• CT_BEBYPASS – encoding is being bypassed

ct_rfu
Returned by ms_getctinfo() for Dialogic® DM3 MSI devices. This field returns a character
string containing the board and channel of the voice channel resource associated with the
station interface. This data is returned in BxxCy format, where xx is the voice board and y is
the voice channel. For example, dxxxB1C1 would be returned as B1C1. To subsequently use
this information in a dx_open() function, you must add the dxxx prefix to the returned
character string.

ct_ext_devinfo.ct_net_devinfo.ct_prottype
Contains information about the protocol used on the specified digital network interface device.
Possible values are:

• CT_CAS – channel associated signaling
• CT_CLEAR – clear channel signaling
• CT_ISDN – ISDN
• CT_R2MF – R2MF

On Dialogic® Springware boards, the fields of the CT_DEVINFO data structure are described as
follows:

ct_prodid
Contains a valid product identification number for the device [length: 4 (unsigned long)].

ct_devfamily
Specifies the device family [length: 1 (unsigned char)]. Possible values are:

• CT_DFD41D – D/41D board family
• CT_DFD41E – analog or voice channel of a Dialogic® D/xx or VFX/xx board such as

D/41ESC or VFX/40ESC

148 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

CT_DEVINFO — channel/station information

• CT_DFSPAN – analog channel of a Dialogic® D/160SC-LS board; a voice channel of a
Dialogic® D/240SC, D/320SC, D/240SC-T1, D/300SC-E1, or D/160SC-LS board; or a
digital channel of a Dialogic® D/240SC-T1 or D/300SC-E1 board

• CT_DFMSI – a station on a Dialogic® MSI board
• CT_DFSCX – Dialogic® SCX160 SCxbus adapter family

ct_devmode
Specifies the device mode field [length: 1 (unsigned char)] that is valid only for a Dialogic®
D/xx or VFX/xx board. Possible values are:

• CT_DMRESOURCE – analog channel not in use
• CT_DMNETWORK – analog channel available to process calls from the telephone

network

ct_nettype
Specifies the type of network interface for the device [length: 1 (unsigned char)]. Possible
values are:

• CT_NTNONE – Dialogic® D/xx or VFX/xx board configured as a resource device; voice
channels are available for call processing; analog channels are disabled.

• CT_NTANALOG – analog and voice devices on board are handling call processing
• CT_NTT1 – T1 digital network interface
• CT_NTE1 – E1 digital network interface
• CT_NTMSI – Dialogic® MSI/SC station interface

ct_busmode
Specifies the bus architecture used to communicate with other devices in the system [length: 1
(unsigned char)]. Possible values are:

• CT_BMSCBUS – TDM bus architecture

ct_busencoding
Describes the PCM encoding used on the bus [length: 1 (unsigned char)]. Possible values are:

• CT_BEULAW – mu-law encoding
• CT_BEALAW – A-law encoding

ct_rfu
Reserved for future use.

ct_ext_devinfo.ct_net_devinfo.ct_prottype
Contains information about the protocol used on the specified digital network interface device.
Possible values are:

• CT_CAS – channel associated signaling
• CT_CLEAR – clear channel signaling
• CT_ISDN – ISDN
• CT_R2MF – R2/MF signaling

Dialogic® Modular Station Interface API Library Reference — May 2008 149

Dialogic Corporation

cadence information for distinctive ringing — MS_CADENCE

MS_CADENCE

cadence information for distinctive ringing
typedef struct ms_cadence {
 BYTE cadid; // Cadence ID, 1-MS_MAX_CADID
 BYTE cadlength; // Cadence Length
 BYTE *cadpattern; // Pointer to Cadence Pattern
} MS_CADENCE;

Description

MS_CADENCE is used by the ms_getbrdparm() and ms_setbrdparm() functions when
manipulating the MSG_DISTINCTRNG parameter. The structure contains cadence setting
information used for initializing a distinctive ring cadence.

Notes: 1. Distinctive ring and board-level ring cadence are mutually exclusive except in the case where the
cadence lengths are identical. You will get an E_MSRNGCADCNFLCT error if the
MSG_PDRNGCAD or MSG_UDRNGCAD board-level ring cadence is currently set to a
cadence that does not match the distinctive ring cadence length. For example, if
MSG_UDRNGCAD is set to a cadence length of 4, you cannot initialize distinctive ring Group
A, which uses a length of 6 seconds.

2. You cannot remove, change, or overwrite the distinctive ring definition once a pattern has been
assigned to a cadence ID.

For Dialogic® Modular Station Interface (MSI) boards only: when a ring cycle shorter than the
default cycle of 6 seconds (2 seconds ON, 4 seconds OFF) is desired, the RING.PRM parameter file
must be downloaded and edited to define a new default active cycle length. A valid range of active
cycle lengths is from 1 - 6 seconds. For more information, see the Dialogic® Configuration
Manager (DCM) on-line help.

Field Descriptions

The fields of the MS_CADENCE data structure are described as follows:

cadid
Assigns a cadence ID to the pattern. Range: 1 - 8. Returns an E_MSBADRNGCAD error if
outside the range.

cadlength
This must be set to MS_RNGA_CADLEN, which is a cadence length of 6-seconds, to
initialize a cadence pattern from Table 4, “Ring Cadence Group A”, on page 150.

cadpattern
The user may specify any cadence pattern, subject to the same restrictions as detailed under
MSG_UDRNGCAD. However, if the board-wide cadence length has the default value of 6
seconds, the user may specify one of the predefined patterns in Table 4, or a cadence pattern
may be defined by the user.

150 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

MS_CADENCE — cadence information for distinctive ringing

Table 4. Ring Cadence Group A

Cadence Pattern Name Ring Cadence Pattern (in seconds)

MS_RNGA_TWOSEC 2 on, 4 off

MS_RNGA_ONESEC 1 on, 5 off

MS_RNGA_SPLASH1 .5 on, 5.5 off

MS_RNGA_SPLASH2 .5 on, .25 off, .5 on, 4.75 off

MS_RNGA_SPLASH3 .5 on, .25 off, .5 on, .25 off, .5 on, 4 off

MS_RNGA_SPLASH4 .25 on, .25 off, .25 on, .25 off, .25 on, .25 off, .25 on, 4.25 off

MS_RNGA_LONGSHORT 1.25 on, .25 off, .5 on, 4 off

MS_RNGA_SHORTLONG .5 on, .25 off, 1.25 on, 4 off

Notes: MS_RNGA_SPLASH3 and MS_RNGA_SPLASH4 are not supported on Dialogic® DM3 boards.
The splash ring cycles apply to Dialogic® MSI/SC boards. They do not apply to the PCI version.

Dialogic® Modular Station Interface API Library Reference — May 2008 151

Dialogic Corporation

conference properties — MS_CDT

MS_CDT

conference properties
typedef struct {
 int chan_num; /* channel/time slot number */
 int chan_sel; /* meaning of channel/time slot number */
 int chan_attr; /* channel attribute description */
} MS_CDT;

Description

The conference descriptor table is an array of MS_CDT structures.

An extended connection can also be described by the descriptor table. For an extended connection,
there are two entries in the table. The order of the entries in the table is significant. The first entry
must be the connection identifier, the second must be the connection extender.

Field Descriptions

The fields of the MS_CDT data structure are described as follows:

chan_num
denotes the station number or TDM bus time slot number of the device to be included in the
conference.

chan_sel
defines the meaning of chan_num. Valid choices are as follows:

• MSPN_STATION – MSI station number (supported on Dialogic® Springware boards
only)

• MSPN_TS – TDM bus time slot number (supported on Dialogic® DI, HDSI, and
Springware boards)

chan_attr
bitmask describing the party’s properties within the conference. Valid choices are:

• MSPA_NULL – No special attributes for party (default)
• MSPA_RO – Party participates in conference in receive-only mode
• MSPA_TARIFF – Party receives periodic tone for duration of call
• MSPA_DIG – Digital front end (applicable to Dialogic® Springware boards only)
• MSPA_COACH – Party is a coach. Coach heard by pupil only.
• MSPA_PUPIL – Party is a pupil. Pupil hears everyone including coach.
• MSPA_NOAGC – Disables automatic gain control (AGC)

The following values are applicable to Dialogic® DM3 and DI/SI boards only:
• MSPA_ECHOXCLEN – Echo cancel enable
• MSPA_BROADCASTEN – Broadcast enable
• MSPA_MODENULL – Null party
• MSPA_MODERECVONLY – Receive only party
• MSPA_MODEXMITONLY – Transmit only party
• MSPA_MODEFULLDUPLX – Full duplex (same as a party with no specific attributes in

Springware)

152 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

MS_CDT — conference properties

• MSPA_PARTYTONECLAMP – Tone clamping per conferee

Note: If the first party (connection identifier) is in a pupil-coach situation, the party must be
defined with the MSPA_PUPIL attribute when the extended connection is
established. There is no way of changing the attribute of the first party once an
extended connection has been established.

Table 5 shows the allowable combinations of attributes within a conference, where each row
represents an allowable combination.

Notes: 1. Only one coach and one pupil are allowed in a conference at any time.

2. The default MSPA_NULL must be used if channel attributes are not set.

3. The MSPA_NOAGC option should only be used when the connection identifier is a pupil. This
ensures that the client will not hear a change in the pupil’s volume when the connection is
extended.

4. If the coach speaks before any conversation has taken place between the client and the pupil, the
client will hear some background noise for a fraction of a second. Under most circumstances,
this will not be an issue since the coach generally does not need to speak before some
conversation has taken place between the client and the pupil.

Table 5. Valid Attribute Combinations

Row No. AGC Disabled Pupil Coach Periodic Tone Receive-only mode

1 X

2 X

3 X X

4 X

5 X

6 X X

7 X X

8 X X X

Dialogic® Modular Station Interface API Library Reference — May 2008 153

Dialogic Corporation

call waiting caller ID information — MS_DataInfo

MS_DataInfo

call waiting caller ID information
typedef struct ms_DataInfo
{
 unsigned int version;
 eMSSendDataType dataType; /* Data Type - FSK */
 union
 {
 char* dataString;
 }uInfo;
} MS_DataInfo, *MS_DataInfoPtr;

Description

This structure is used by the ms_SendData() function. It contains call information and is used to
transmit data about an incoming call to a station that is already in a call. This operation is
commonly called call waiting caller ID.

Field Descriptions

The fields of the MS_DataInfo data structure are described as follows:

version
reserved for future use. Set to 0.

dataType
type of data to be sent. Values include:

• eMSInvalidDataType – RFU
• eMSFSK – FSK (frequency shift keyed) data
• eMSMaxDataType – RFU

DataString
ASCII character string that holds information about the origination party. The maximum
length is 127 characters. The following sub-fields are supported when sending an FSK caller
ID string:

• Caller Name – identifies the name of the call originator if available.
• Caller Name Absence Reason – identifies why call originator's name is not available.

Possible reasons are Private (P) or Out of Area (O).
• Caller Number – identifies the number of the call originator if available.
• Caller Number Absence Reason – identifies why call originator's number is not available.

Possible reasons are Private (P) or Out of Area (O).
• Date Time – identifies the date and time at which the call is sent.

Sub-group identifiers with format X: are used to specify sub-fields for caller ID transmission.
Note that the user strings embed this character as part of sub-field identifiers. Thus this sub-
group identifier is implicit by nature.

• A: – Identifies beginning of Caller Number Absence Reason sub-field.
• B: – Identifies beginning of Caller Name Absence Reason sub-field.
• I: – Identifies beginning of Caller Number sub-field.
• N: – Identifies beginning of Caller Name sub-field.
• T: – Identifies beginning of Time and Date sub-field.

154 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

MS_DataInfo — call waiting caller ID information

Notes: 1. Use the character ‘/’ as an escape character to indicate that ‘:’ is part of the string. For example,
Next string “N:J/:NamathI:993-3000” uses the escape character / to embed the name J:Namath.

2. The end of a sub-field is recognized by the character “:” or the end of string when a sub-field is
located at the end of the string.

Dialogic® Modular Station Interface API Library Reference — May 2008 155

Dialogic Corporation

notification tone characteristics — MS_NCB

MS_NCB

notification tone characteristicstypedef struct ms_ncb{
 unsigned char volume; /* volume */
 unsigned char tone; /* tone frequency */
 short duration; /* tone duration */
 short pulse; /* pulse repetition
 interval */
} MS_NCB

Description

The MS_NCB structure is used by the ms_setbrdparm() function when setting certain
parameters. The structure contains tone information for the MSCB_ND parameter (notify-on-add
tone) and MSCB_ZIP parameter (zip tone).

Field Descriptions

The fields of the MS_NCB data structure are described as follows:

volume
tone volume

default for MSCB_ND and MSCB_ZIP = 7

tone
frequency of tone

default for MSCB_ND = 0x24H (1125 Hz); default for MSCB_ZIP = 0x18H

duration
duration of tone

default for MSCB_ND = 0x14H (200 ms); default for MSCB_ZIP = 0x64H (1 sec)

pulse
reserved for future use

156 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

SC_TSINFO — TDM bus time slot information

SC_TSINFO

TDM bus time slot information
typedef struct {
 unsigned long sc_numts;
 long *sc_tsarrayp;
} SC_TSINFO;

Description

This structure defines the TDM bus time slot information. It is used by ms_getxmitslot() and
ms_listen().

Field Descriptions

The fields of the SC_TSINFO data structure are described as follows:

sc_numts
specifies the total number of TDM bus time slots to which the connection is to be made

sc_tsarrayp
pointer to an array which contains the TDM bus time slots (between 0 and 1023) to be
connected to the receive of the station device

Dialogic® Modular Station Interface API Library Reference — May 2008 157

Dialogic Corporation

55.Error Codes

This chapter describes the error/cause codes supported by the Dialogic® Modular Station Interface
(MSI) library, msilib.h.

All MSI library functions return a value that indicates the success or failure of the function call.
Success is indicated by a return value of zero or a non-negative number. Failure is indicated by a
value of -1. If a function fails, call the Standard Attribute functions ATDV_LASTERR() and
ATDV_ERRMSGP() for the reason for failure. These functions are described in the Dialogic®
Standard Runtime Library API Library Reference.

The MSI library contains the following error codes, listed in alphabetical order.

E_MS1PTY
Cannot remove party from one-party conference

E_MSBADCHPARM
Invalid channel parameter number

E_MSBADRNGCAD
Invalid ring cadence identifier

E_MSBADRNGSTA
Cannot ring station - station already off-hook

E_MSBADVAL
Invalid parameter value

E_MSCHASNCNF
Channel is assigned to conference

E_MSCNFFUL
Conference system is full

E_MSCNFLMT
Exceeds conference limit

E_MSCNTXTD
Station is in extended connection

E_MSERRCHANSTATE
Error returned while setting a channel state; this error also received for repeated PWRON or
PWROF set chan state

E_MSGLOBREAD
Cannot read parameter globally

E_MSINVCATTR
Invalid conference attribute selector

E_MSINVCB
Invalid control block ID

158 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

Error Codes

E_MSINVCNF
Invalid conference number

E_MSINVDATATYPE
Invalid data type specified when sending data to the station

E_MSINVDSP
Invalid DSP specified

E_MSINVFEMID
Invalid identifier read from FEM ID PAL

E_MSINVMT
Invalid multitasking function

E_MSINVPATTR
Invalid party attribute

E_MSINVPEB
Invalid PEB rate for present clock rate

E_MSINVPTYCNT
Invalid number of parties specified

E_MSINVPTYNUM
Invalid party number specified

E_MSINVPTYTYPE
Invalid conference member type

E_MSINVRNGCNT
Invalid number of ring counts

E_MSINVST
Invalid station

E_MSINVTS
Invalid time slot number

E_MSINVVAL
Bad global parameter value

E_MSINVVERSION
Invalid version number specified

E_MSINVXTD
Invalid extended connection number

E_MSINVXTDM
Invalid extended connection member

E_MSMONEXT
Monitor already exists for this conference

E_MSNOCNF
No conferencing available on device

E_MSNOCNT
Station not connected

Dialogic® Modular Station Interface API Library Reference — May 2008 159

Dialogic Corporation

Error Codes

E_MSNODSPTS
All time slots going to the DSP are busy

E_MSNOFEMCH
No MSI daughterboard to support this channel

E_MSNOMON
No monitor exists for this conference

E_MSNONCNFCH
Channel not assigned to specified conference

E_MSNONRNGBRD
Error ringing a non-ringing board

E_MSNOTS
No time slot assigned to channel

E_MSNOTSALLOC
No time slots allocated to the board

E_MSPTYASN
Party already assigned

E_MSRNGCADCNFLCT
Conflict between board-level and distinctive ring cadence lengths

E_MSSNDZIP
Sending a zip tone to this station

E_MSSTASN
Time slot already assigned to station

E_MSSYSTEM
Operating system error

E_MSTSASN
Time slot already assigned to a station

E_MSTSASNCNF
Time slot already assigned to a conference

E_MSTSNOTEQ
Time slots not equal for zip tones

E_MSZIPEN
Zip tones disabled - message not allowed

E_MSZIPON
Station is currently “zipping”

160 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

Error Codes

Dialogic® Modular Station Interface API Library Reference — May 2008 161
Dialogic Corporation

Glossary

ACD: Automatic call distributor. An automated (usually software-driven) system that connects incoming calls to
agents based on a distribution algorithm. The system also gathers traffic analysis statistics, such as number of calls
per hour, average time holding, and call length.

agent: An operator, transcriber, telemarketing or sales representative, or other employee. In this guide, agent
refers to any person using an analog station device who can be connected to a caller or recorded message through
the Dialogic® Modular Station Interface (MSI) board.

A-Law: A pulse code modulation (PCM) algorithm used in digitizing telephone audio signals in E1 areas.

analog: In this guide, analog refers to agent communications between a headset and the MSI or to the loop-start
type of network interface.

asynchronous function: Allows program execution to continue without waiting for a task to complete.
Contrast with synchronous function.

automatic call distributor: See ACD.

baseboard: A term used in voice processing to mean a printed circuit board without any daughterboards
attached.

blocking mode: When a telephone call cannot be completed, it is said that the call is “blocked”. In blocking
mode, it is said that the caller is “receiving a busy”.

channel: 1. When used in reference to a Dialogic® digital expansion board, a data path, or the activity happening
on that data path. 2. When used in reference to the CEPT telephony standard, one of 32 digital data streams (30
voice, 1 framing, 1 signaling) carried on the 2.048 MHz/sec E1 frame. (See time slot.) 3. When used in reference to
a bus, an electrical circuit carrying control information and data.

CT Bus: Computer Telephony bus. A time division multiplexing communications bus that provides 4096 time
slots for transmission of digital information between CT Bus products. See TDM bus.

data structure: C programming term for a data element consisting of fields, where each field may have a
different type definition and length. The elements of a data structure usually share a common purpose or
functionality, rather than being similar in size, type, etc.

daughterboard: In the context of this guide, the MSI daughterboard assembly. The daughterboard enables the
Dialogic® MSI hardware to interface to analog station devices.

device: Any computer peripheral or component that is controlled through a software device driver.

digital: Information represented as binary code.

DIP switch: A switch usually attached to a printed circuit board with two settings: on or off. DIP switches are
used to configure the board in a semi-permanent way.

162 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

DM3: Refers to the Dialogic® mediastream processing architecture, which is open, layered, and flexible,
encompassing hardware as well as software components. A whole set of products from Dialogic are built on DM3
architecture. Contrast with Springware, which is earlier-generation architecture.

driver: A software module that provides a defined interface between a program and the hardware.

DTMF: Dual Tone Multi-Frequency. DTMF refers to the combination of two tones which represents a number on
a telephone key pad. Each push button has its own unique combination of tones.

E1: Another name given to the CEPT digital telephony format devised by the CCITT that carries data at the rate of
2.048 Mbps (DS-1 level). This service is available in Europe and some parts of Asia.

event: An unsolicited communication from a hardware device to an operating system, application, or driver.
Events are generally attention-getting messages, allowing a process to know when a task is complete or when an
external event occurs.

Extended Attribute functions: Class of functions that take one input parameter (a valid device handle) and
return device-specific information.

flash: A signal generated by a momentary on-hook condition. This signal is used by the voice hardware to alert a
telephone switch that special instructions will follow. It usually initiates a call transfer. See also hook state.

frequency shift keying (FSK): A frequency modulation technique used to send digital data over voice band
telephone lines.

full-duplex: Transmission in two directions simultaneously, or more technically, bi-directional, simultaneous
two-way communications.

hook flash: See flash.

hook state: A general term for the current line status of the channel: either on-hook or off-hook. A telephone
station is said to be on-hook when the conductor loop between the station and the switch is open and no current is
flowing. When the loop is closed and current is flowing, the station is off-hook. These terms are derived from the
position of the old fashioned telephone set receiver in relation to the mounting hook provided for it.

host PC: The system PC in which Dialogic® hardware and software are installed and applications are run and/or
developed.

IRQ: Interrupt request. A signal sent to the central processing unit (CPU) to temporarily suspend normal
processing and transfer control to an interrupt handling routine. Interrupts may be generated by conditions such as
completion of an I/O process, detection of hardware failure, power failures, etc.

loop start interfaces: Devices, such as analog telephones, that receive an analog electric current. For example,
taking the receiver off hook closes the current loop and initiates the calling process.

MSI/SC: Modular Station Interface. An SCbus-based expansion board that interfaces SCbus time slots to analog
station devices.

Mu-Law: The PCM coding and companding standard used in Japan and North America (T1 areas).

Dialogic® Modular Station Interface API Library Reference — May 2008 163
Dialogic Corporation

off-hook: The state of a telephone station when the conductor loop between the station and the switch is closed
and current is flowing. When a telephone handset is lifted from its cradle (or an equivalent condition occurs), the
telephone line state is said to be off-hook. See also hook state.

on-hook: Condition or state of a telephone line when a handset on the line is returned to its cradle (or an
equivalent condition occurs). See also hook state.

PCM: Pulse Code Modulation. The most common method of encoding an analog voice signal into a digital bit
stream. PCM refers to one technique of digitization. It does not refer to a universally accepted standard of digitizing
voice.

rfu: Reserved for future use.

SCbus (Signal Computing Bus): A hard-wired connection between switch handlers on SCbus-based
products. SCbus is a third generation TDM (time division multiplexed) resource sharing bus that allows information
to be transmitted and received among resources over 1024 time slots. See TDM Bus.

SCSA: Signal Computing System Architecture. A generalized open-standard architecture describing the
components and specifying the interfaces for a signal processing system for the PC-based voice processing, call
processing, and telecom switching industry.

Signal Computing System Architecture: See SCSA.

Springware: Software algorithms built into the downloadable firmware that provides the voice processing
features available on all Dialogic® voice boards. The term “Springware” is also used to refer to a whole set of
boards from Dialogic built using this architecture. Contrast with DM3, which is newer-generation architecture.

SRL: Standard Runtime Library containing Event Management functions, Standard Attribute functions, and data
structures that are used by all Dialogic® devices.

Standard Attribute functions: Class of functions that take one input parameter (a valid device handle) and
return generic information about the device. The SRL contains Standard Attribute functions for all Dialogic
devices. Standard Attribute function names are case-sensitive and must be in capital letters. See Extended Attribute
functions.

synchronous function: Blocks program execution until a value is returned by the device. Also called a
blocking function. Contrast with asynchronous function.

T1: The digital telephony format used in North America and Japan that carries data at the rate of 1.544 Mbps
(DS-1 level).

TDM bus: Time division multiplexing bus. A resource sharing bus such as the SCbus or CT Bus that allows
information to be transmitted and received among resources over multiple data lines.

TDM bus routing functions: Used to set up communications between devices connected to the TDM bus.
These functions enable an application to connect or disconnect (make or break) the receive (listen) channel of a
device to or from a TDM bus time slot.

time slot: In a digital telephony environment, a normally continuous and individual communication (for example,
someone speaking on a telephone) is (1) digitized, (2) broken up into pieces consisting of a fixed number of bits, (3)

164 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

combined with pieces of other individual communications in a regularly repeating, timed sequence (multiplexed),
and (4) transmitted serially over a single telephone line. The process happens at such a fast rate that, once the pieces
are sorted out and put back together again at the receiving end, the speech is normal and continuous. Each
individual pieced-together communication is called a time slot.

zip tone: Short burst of a specified tone to an ACD agent headset usually indicating a call is being connected to
the agent console.

Dialogic® Modular Station Interface API Library Reference — May 2008 165
Dialogic Corporation

Index

A
ATMS_STATINFO(_) 20

ATMS_TSSGBIT(_) 22

attribute functions 11
ms_dsprescount(_) 37
ms_getctinfo(_) 71

C
cadence information structure 149

cadence, distinctive ringing 56

call waiting caller ID information structure 153

channel/station information structure 146

conference management functions 11
ms_addtoconf(_) 25
ms_delconf(_) 33
ms_estconf(_) 40
ms_getcde(_) 66
ms_getcnflist(_) 69
ms_monconf(_) 89
ms_remfromconf(_) 94
ms_setcde(_) 114
ms_unmonconf(_) 139

conference properties structure 151

configuration functions 12
ms_getbrdparm(_) 64
ms_getevt(_) 73
ms_getevtmsk(_) 76
ms_ResultMsg() 97
ms_ResultValue() 100
ms_setbrdparm(_) 107
ms_setevtmsk(_) 117
ms_setstparm(_) 123

connection extender 44

connection identifier 44

CT_DEVINFO data structure 146

D
data structures

CT_DEVINFO 146
MS_CADENCE 149
MS_CDT 151
MS_DataInfo 153
MS_NCB 155
SC_TSINFO 156

device management functions 12
ms_close(_) 31
ms_open(_) 92
ms_stopfn(_) 127

diagnostic functions 13
ms_tstcom(_) 129
ms_tstdat(_) 131

distinctive ring 56

DM3 boards 15

E
events 143

extended attribute functions 15
ATMS_STATINFO(_) 20
ATMS_TSSGBIT(_) 22

extended connection functions 13
ms_chgxtder(_) 28
ms_delxtdcon(_) 35
ms_estxtdcon(_) 44

H
HDSI boards 15

M
ms_addtoconf(_) 25

MS_CADENCE data structure 149

MS_CDT data structure 151

ms_chgxtder(_) 28

ms_close 31

MS_DataInfo data structure 153

ms_delconf(_) 33

ms_delxtdcon(_) 35

ms_dsprescount(_) 37

ms_estconf(_) 40

ms_estxtdcon(_) 44

ms_genring(_) 47

ms_genringCallerID() 52

ms_genringex(_) 56

ms_genziptone 62

ms_getbrdparm(_) 64

ms_getcde(_) 66

166 Dialogic® Modular Station Interface API Library Reference — May 2008
Dialogic Corporation

ms_getcnflist(_) 69

ms_getctinfo(_) 71

ms_getevt(_) 73

ms_getevtmsk(_) 76

ms_getxmitslot() 79

ms_listen() 81, 84

ms_monconf(_) 89

MS_NCB data structure 155

ms_open(_) 92

ms_remfromconf(_) 94

ms_ResultMsg() 97

ms_ResultValue() 100

ms_SendData() 103

ms_setbrdparm(_) 107

ms_setcde(_) 114

ms_setevtmsk(_) 117

ms_SetMsgWaitInd() 121

ms_setstparm(_) 123

ms_setvol(_) 125

ms_stopfn(_) 127

ms_tstcom(_) 129

ms_tstdat(_) 131

ms_unlisten() 134, 136

ms_unmonconf(_) 139

N
notification tone characteristics structure 155

P
platform

support 15

R
ring cadence, distinctive 56

S
SC_TSINFO data structure 156

Springware boards 15

station functions 14
ms_genring(_) 47
ms_genringCallerID() 52
ms_genringex(_) 56
ms_genziptone(_) 62
ms_SendData() 103
ms_SetMsgWaitInd() 121
ms_setvol(_) 125

supported boards 15

supported platform 15

T
TDM bus routing functions 13

ms_getxmitslot() 79
ms_listen() 81, 84
ms_unlisten() 134, 136

TDM bus time slot information structure 156

	Dialogic® Modular Station Interface API
	Contents
	Figures
	Tables
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Function Summary by Category
	1.1 Attribute Functions
	1.2 Conference Management Functions
	1.3 Configuration Functions
	1.4 Device Management Functions
	1.5 Diagnostic Functions
	1.6 Extended Connection Functions
	1.7 TDM Routing Functions
	1.8 Station Functions
	1.9 Extended Attribute Functions
	1.10 MSI Function Support by Platform

	2. Function Information
	2.1 Function Syntax Conventions
	ATMS_STATINFO()
	ATMS_TSSGBIT()
	ms_addtoconf()
	ms_chgxtder()
	ms_close()
	ms_delconf()
	ms_delxtdcon()
	ms_dsprescount()
	ms_estconf()
	ms_estxtdcon()
	ms_genring()
	ms_genringCallerID()
	ms_genringex()
	ms_genziptone()
	ms_getbrdparm()
	ms_getcde()
	ms_getcnflist()
	ms_getctinfo()
	ms_getevt()
	ms_getevtmsk()
	ms_getxmitslot()
	ms_listen()
	ms_listenEx()
	ms_monconf()
	ms_open()
	ms_remfromconf()
	ms_ResultMsg()
	ms_ResultValue()
	ms_SendData()
	ms_setbrdparm()
	ms_setcde()
	ms_setevtmsk()
	ms_SetMsgWaitInd()
	ms_setstparm()
	ms_setvol()
	ms_stopfn()
	ms_tstcom()
	ms_tstdat()
	ms_unlisten()
	ms_unlistenEx()
	ms_unmonconf()

	3. Events
	4. Data Structures
	CT_DEVINFO
	MS_CADENCE
	MS_CDT
	MS_DataInfo
	MS_NCB
	SC_TSINFO

	5. Error Codes
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

