intgl.

IP Multicast Server (IPML)

Demo Guide

November 2003

05-1824-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This IP Multicast Server (IPML) Demo Guide as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice,
and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without express written consent of Intel Corporation.

Copyright © 2002-2003 Intel Corporation.

AnyPoint, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, 1960, iCOMP,
InstantIP, Intel, Intel Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, InteDX2, IntelDX4, IntelSX2, Intel InBusiness, Intel Inside,
Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon,
Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium |l Xeon, Pentium Il Xeon,
Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

* Other names and brands may be claimed as the property of others.
Publication Date: November 2003
Document Number: 05-1824-002

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page at:
http://www.intel.com/buy/wtb/wtb1028.htm

IP Multicast Server (IPML) Demo Guide — November 2003

http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/wtb/wtb1028.htm

intel.

Contents

Revision History e e 7
About This Publication 9
PUIDOSE . . oo 9

Intended AUdIENCE. e 9

How to Use This Publication e 9

Related Information 10

1 Demo DescCHiption. e e 11
2 System Requirements e 13
2.1 Hardware Requirements e e e 13

2.2 Software RequUirements i e e 13

3 Preparingto Runthe Demo. e 15
3.1 Editing Configuration Files. 15

3.2 Compiling and LiNKiNgGo ot 17

3.3 Selecting PCD/FCD Filesot e e 17

4 Runningthe Demo e 19
4.1 Startingthe Demo o 19

4.2 DemMO OptiONS . ..ttt e e e 19

4.3 Usingthe Demo. 20

4.3.1 Establishingand Terminatinga Call........... 20

4.32 Keyboard Commands.oiti it 20

4.4 Stoppingthe DemoO e 21

5 Demo Details. e 23
5.1 FilesUsed bythe Demo e 23

5.1.1 Demo Source Code Files e 23

512 Ulility Fileso e 24

5.1.83 PDLFIlEs ..o e 25

5.2 Programming Model Classes.ot e 25

5.2.1 Class Diagramt e e 25

522 CallClassot e e 26

5.2.83 Configuration Class i e 27

524 IPMediaBoard Class. i e 27

5.2.5 [IPMediaDevice Class e 28

52.6 RADeVICe Classttt e e 28

5.2.7 R4LogicalBoard Classt e 29

5.2.8 ResourceManager Class e 29

5.2.9 VoiceBoard Class. e 30

5.2.10 VoiceDevice Classt e 31

5.3 Threadso e 31

5.4 Initialization e 32

5.5 EventHandling e 33

IP Multicast Server (IPML) Demo Guide — November 2003 3

u
Contents
Intel o
551 EventMechanism e 33
5.5.2 Handling Keyboard Input Events. i 33
553 Handling SRLEvVeNts. 33
6 Demo State Machines i e e 35
6.1 CallState Machine e e e e 35
6.1.1 Call State Machine Description 35
6.1.2 CallzcallNull State e 36
6.1.3 CallcallStarted State e 37
6.1.4 Call:callProceeding State 37
6.1.5 Call:callStopped State e 37
6.2 IPMediaDevice State Machine i e e 37
6.2.1 IPMediaDevice State Machine Description 37
6.2.2 IPMediaDevice:mediaNull State. i 38
6.2.3 IPMediaDevice::mediaStarted State L. 38
6.2.4 IPMediaDevice:mediaCall State. 39
6.2.5 IPMediaDevice::mediaStopped State 39
GlOS S Ay 41
INdeX . . . e 45
4 IP Multicast Server (IPML) Demo Guide — November 2003

i nu o Contents

Figures

1 IP Multicast Server (IPML) Demo System e e 11
2 IP Multicast Server (IPML) Class Diagramttt e 26
3 Thread Diagram. e 31
4 IP Multicast Server (IPML) System Initialization 32
5 CallState Machine. e e 36
6 IPMediaDevice State Machine

IP Multicast Server (IPML) Demo Guide — November 2003 5

Contents i nt9| o

Tables

ONO O WDN =

Command Line SWiItChes 19
Runtime Keyboard Commandsttt e e 21
Source Files Used by the IP Multicast Server (IPML)Demo 23
Utility Files Used by the IP Multicast Server (IPML) Demo i, 24
PDL Files Used by the IP Multicast Server (IPML) Demo - Windows OS 25
Call Class Attributes e e e 26
Configuration Class Attributes e 27
IPMediaBoard Class Attributes. 28
IPMediaDevice Class Attributes e 28
R4Device Class Attributes e e 29
R4LogicalBoard Class Attributes e 29
ResourceManager Class Attributes e 30
VoiceBoard Class Aftributes. e e 30
VoiceDevice Class Afributes 31

IP Multicast Server (IPML) Demo Guide — November 2003

intel.

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-1824-002 November 2003 Global changes: Changed file directory path. Removed “_r4” from file names
Figure 1: replaced TRACE with FUNC_TRACE and STATE_TRACE

05-1824-001 October 2002 Initial production version of document.

IP Multicast Server (IPML) Demo Guide — November 2003

Revision History i nt6I ®

8 IP Multicast Server (IPML) Demo Guide — November 2003

intel.

About This Publication

The following topics provide information about this guide:
e Purpose
¢ Intended Audience
* How to Use This Publication

¢ Related Information

Purpose

This guide provides information on the IP Multicast Server (IPML) demo that is available with
your Intel® Dialogic® system release. This guide describes the demo, its requirements, and details
on how it works.

Intended Audience

This guide is intended for application developers who will be developing an IP multicast server
application using the IPML API. Developers should be familiar with the C++ programming
language and the Windows* programming environments.

This information is intended for:

¢ Distributors

¢ Toolkit Developers

Independent Software Vendors (ISVs)
Value Added Resellers (VARs)
Original Equipment Manufacturers (OEMs)

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software.

This publication assumes that you are familiar with the Windows operating system and the C++
programming language.

The information in this guide is organized as follows:

e Chapter 1, “Demo Description” introduces you to the demo and its features

IP Multicast Server (IPML) Demo Guide — November 2003

[]
About This Publication I nt9| o

¢ Chapter 2, “System Requirements” outlines the hardware and software required to run the
demo

¢ Chapter 3, “Preparing to Run the Demo” describes the preparations required before running
the demo

¢ Chapter 4, “Running the Demo” describes how to run the demo
¢ Chapter 5, “Demo Details” provides details on how the demo works

e Chapter 6, “Demo State Machines” describes the demo state machines

Related Information

See the following for more information:

* The online Release Update for your specific system release for information on problems fixed,
known problems and workarounds, and documentation updates.

Intel DM3 Architecture PCI Products on Windows Configuration Guide
Global Call IP Technology Guide
http://developer.intel.com/design/telecom/support/ for technical support

http://www.intel.com/design/network/products/telecom/ for product information

10 IP Multicast Server (IPML) Demo Guide — November 2003

http://developer.intel.com/design/telecom/support/
http://www.intel.com/design/network/products/telecom/

intel.

Demo Description

This chapter provides a brief description of the IP Multicast Server (IPML) demonstration

program.

The IP Multicast Server (IPML) demo is an object-oriented host-based application that illustrates

how to build a simple Internet multicast server application using the IPML API. It allows an IP

server to use RTP multicasting to continuously deliver an RTP stream to a multicast IP address. At
the edge of the IP network, IP gateways are used to listen to the RTP streams. Multicasting allows
several callers to access the same information, such as weather forecasts, stock market information,
etc. Any client, such as the IP Multicast Client IPML) demo supplied with this release or a client

such as NetMeeting*, can be used together with this demo to create a complete multicast
server/client application. The client must be able to access standard multicast IP addresses

(224.0.0.0 t0 239.255.255.255) and play a .vox file.
The basic demo system is shown in Figure 1:

Figure 1. IP Multicast Server (IPML) Demo System

| I :

| | User driven RTP start/stop | | 7 TN, I"wtjltrl1cell's1t

| (via keyboard) I ; \\ istene

| | / - ~

I I Multicast ;

| IP Board i \I > address ! n’\gltjét:zsé

| | \ (244 XXX XXX.XXX) /’

|Demosystem ! AN A / Multicast
-7 =7 listener n

The IP Multicast Server (IPML) demo supports the following features:

¢ play a vox file to a multicast address

¢ define system environment via a configuration file

¢ specify run-time options via command line switches
 print output log files to a file

¢ print selected log files to the monitor

change debug levels via keyboard during run-time

The IP Multicast Server (IPML) demo does not have a call control component, and therefore does

not support any call control related features.

The IP Multicast Server (IPML) demo is a cross-OS demo, running under the Windows or Linux
environments. Most of the differences in the environments are handled directly by the

programming interface and are transparent to the user. Other differences, due to inherent

IP Multicast Server (IPML) Demo Guide — November 2003

11

Demo Description i nt6I ®

differences in the operating systems, are handled by the Platform Dependency Library (PDL). For
more information about the PDL refer to the source code in the pdl_win or pdl_linux directories.

12 IP Multicast Server (IPML) Demo Guide — November 2003

intel.

System Requirements 2

This chapter discusses the system requirements for running the IP Multicast Server (IPML) demo.
It contains the following topics:.

e Hardware ReqUir€mentso. ittt 13
e Software Requirementsttt e e 13
2.1 Hardware Requirements

To run the IP Multicast Server (IPML) demo, you need:

¢ Intel® NetStructure™ DM/IP Series board

e IP network cable

For other hardware requirements, such as memory requirements, see the Release Guide for the
system release you are using.

2.2 Software Requirements

To run the IP Multicast Server (IPML) demo, you need the Intel® Dialogic® System Release 6.0
for Windows software. For a list of operating system requirements see the Release Guide for the
system release you are using.

See Section 3.2, “Compiling and Linking”, on page 17 for a list of compilers that may be used with
this demo. Using a non-supported compiler may cause unforeseen problems in running the demo.

IP Multicast Server (IPML) Demo Guide — November 2003 13

u
System Requirements I nt6| o

14 IP Multicast Server (IPML) Demo Guide — November 2003

intel.

Preparing to Run the Demo 3

3.1

This chapter discusses the preparations necessary to run the IP Multicast Server (IPML) demo. It
provides information about the following topics:

e Editing Configuration Files i 15
e Compilingand LinKing i e 17
e Selecting PCD/FCD Filesottt e et 17

Editing Configuration Files

Before running the IP Multicast Server (IPML) demo, modify the multicastserver.cfg file to reflect
your system environment. Use a text editor and open the file from:

e C:A\Program Files\dialogic\demos\ipdemo\multicastserver\release\

Editing the multicastserver.cfg Configuration File

Below is an example of the multicastserver.cfg file. Update the following information:

DestinationIP
The multicast address the audio file is transmitted to (224.0.0.0 to 239.255.255.255). The same
destination IP address may be used for multiple channels if different destination RTP ports are
used.

DestinationRTP
The RTP port the audio file is transmitted to (starts with 2326, even numbers only). The same
RTP port may be used for multiple channels if different destination IP address are used.

TransmitFile
The filename of the audio file to be transmitted. The IP Multicast Server (IPML) demo
currently supports .vox files only.

TxCoderType
The type of coder used to broadcast. See the Global Call IP Technology Guide for specific
information about coder support in this release. The IP Multicast Server IPML) demo
recognizes the following coder name spellings:

e g711Alaw
e g711Mulaw
* gsm

¢ gsmEFR

e g7231_5_3k
e g7231_6_3k
* ¢729a

e 9729ab

IP Multicast Server (IPML) Demo Guide — November 2003 15

Preparing to Run the Demo In

16

TxCoderFramesPerPkt
Specify the number of frames per packet for the selected coder. See the Global Call IP
Technology Guide for specific information about coder support in this release.

TxCoderFrameSize
Specify the frame size for the selected coder. See the Global Call IP Technology Guide for
specific information about coder support in this release.

TxCoderVAD
Specify if VAD is active. See the Global Call IP Technology Guide for specific information
about coder support in this release.

TxPayload
Describes the static payload type values for the PT field of the RTP data header as described in
RFC 1890. See the Global Call IP Technology Guide for specific information about coder
support in this release.

TxRedPayload
Describes the static payload type value for the first redundant frame within the packet. This
parameter must be set in order for the system to identify the redundant packets. See the Global
Call IP Technology Guide for specific information about coder support in this release.

The following example shows the configuration file. Due to the length of the file, the example
shows three channels only.

Each channel represents a specific service.

The data that should be configured includes:

The destinationIP - The multicast address for transmission (224.0.0.0 - 239.255.255.255).
The DestinationRTP - The RTP port for transmission (start with 2326, just the even number) .
TransmitFile - The file that will be transmitted.

Tx Coder values.

The multicast address + RTP port should be DIFFERENT for each channel.

e.g: if the multicast address is the same in channel 1 and channel 2

then the RTP port should be different.

I oHE I I I I I I I

Channel = 1

{
DestinationIP = 224.0.0.1
DestinationRTP = 2370
TransmitFile = MC_filel.vox
TxCoderType = g7llmulaw
TxCoderFramesPerPkt = 1
TxCoderFrameSize = 30
TxCoderVAD = 0
TxPayload = 0
TxRedPayload = 0

}

Channel = 2

{
DestinationIP = 224.0.0.2
DestinationRTP = 2370
TransmitFile = MC_file2.vox
TxCoderType = g7llmulaw
TxCoderFramesPerPkt = 1
TxCoderFrameSize = 30
TxCoderVAD = 0
TxPayload = 0
TxRedPayload = 0

IP Multicast Server (IPML) Demo Guide — November 2003

Channel = 3

{
DestinationIP = 224.0.0.3
DestinationRTP = 2370
TransmitFile = MC_file3.vox
TxCoderType = g7llmulaw
TxCoderFramesPerPkt = 1
TxCoderFrameSize = 30
TxCoderVAD = 0
TxPayload = 0
TxRedPayload = 0

3.2 Compiling and Linking

Compile the project within the following environments:

e Visual C++ environment, version 6

Preparing to Run the Demo

To compile the project, put the files in the Dialogic directory under

dialogic\demos\ipdemo\multicastserver.

Set multicastserver as the active project and build in debug mode.

3.3 Selecting PCD/FCD Files

Note: This section refers to Intel® NetStructure™ DM/IP series boards only.

Choose a PCD and matching FCD file that begins with the ipvs_evr prefix. Refer to the Intel DM3
Architecture PCI Products on Windows Configuration Guide for complete configuration

information.

IP Multicast Server (IPML) Demo Guide — November 2003

17

u
Preparing to Run the Demo Int6I o

18 IP Multicast Server (IPML) Demo Guide — November 2003

intel.

Running the Demo

This chapter discusses how to run the IP Multicast Server (IPML) demo. It contains the following

topics:
e Startingthe Demo e 19
® Demo OPtioNSottt 19
e Usingthe Demo.ot 20
e Stoppingthe Demo 21

4.1 Starting the Demo

Select Run from the Start Menu. The demo executable file can be found in:

C:\Program Files\Dialogic\demos\ipdemo\multicastserver\release\multicastserver.exe. Click OK

to run the IP Multicast Server (IPML) demo using the default settings.

4.2 Demo Options

To specify certain options at run-time, launch the demo from a command line, using any of the
switches listed in Table 1, “Command Line Switches”, on page 19.

Table 1. Command Line Switches

Switch Action Default
-c <filename> | Configuration file name -c multicastserver_r4.exe
-d<n> Sets Debug Level (0-4): -d0 (Fatal)
¢ 0-FATAL — used when one or more channels are
deadlocked.

¢ 1-ERROR - used when the application receives a failure
which doesn’t cause the channel to be deadlocked.

e 2-WARNING — used when some problem or failure
occurred without affecting the channel’s usual action.

* 3-STATE_TRACE — used to monitor state transitions for
Devices

¢ 4-INFO - prints data related to a specific action.

¢ 5-FUNC_TRACE — used at the start of the application
entrance or the start of any function.

Note: Debug level is inclusive; higher levels include all

lower levels
-e/E The encoding format in which the .vox files were recorded: -em (mu-law)
* m = mu-law
* a=A-law
-h/? Prints the command syntax to the screen Off

IP Multicast Server (IPML) Demo Guide — November 2003

Running the Demo

Table 1. Command Line Switches (Continued)

In

Switch Action Default
-l<n,...> Printouts will be printed into channel log files. Disabled
If ‘all’ follows the —, log files will be created for all available
channels.
If a list of channels in the following format: C1-C2, C3-C4,
C5 follows the I, log files are created for the channel
ranges or specific channels specified in the list.
If the "—I" option is not used, prints go to the stdout, for the
first 2 channels only (to keep from overloading the CPU,
and more convenient for viewing printouts).
-m<n,...> Enables printing channel specific information to the monitor, | Disabled
in addition to printing the log file. A maximum of 2 channels
may be printed.
-n<n> Sets the number of server channels The lesser of Voice Devices
or IP devices

4.3 Using the Demo

This section discusses how to use the demo. It contains the following topics:

¢ Establishing and Terminating a Call

* Keyboard Commands

4.3.1 Establishing and Terminating a Call

The demo waits for input from the keyboard. Press “e” or “E” to establish a call on each of the
configured IP channels. The demo starts the Player and plays the audio file specified in the
configuration file in an endless loop for each channel. Each channel plays the specified audio file
toward the multicast address defined in the configuration file.

Press “t” or “T” to terminate the call on all the channels. A new call can be established by pressing

TP

Notes: 1. The voice files start with 3 seconds of silence to enable load testing.

e” or “E” again.

2. The demo does not allow terminating a call on a single channel. All channels are terminated by
pressing “t” or “T.”

4.3.2 Keyboard Commands

The demo always waits for input from the keyboard. While the demo is running, you may enter any
of the following commands:

20

IP Multicast Server (IPML) Demo Guide — November 2003

Table 2. Runtime Keyboard Commands

Running the Demo

Command Function
d<n> or D<n> Change debug level during runtime
eorE Establish a call
mor M Print log files for up to 2 channels to the screen

g or Qor CTRL+C

Terminate the application

torT

Terminate a call

4.4 Stopping the Demo

The IP Multicast Server (IPML) demo runs until it is terminated. To terminate the demo press “t”
or “T” to close all the channels or press “q” or “Q” or “Ctrl+c” to terminate the demo application.

IP Multicast Server (IPML) Demo Guide — November 2003

21

Running the Demo

22

IP Multicast Server (IPML) Demo Guide — November 2003

intel.

Demo Details 5

This chapter discusses the IP Multicast Server IPML) demo in more detail. It contains the
following topics:

e FilesUsedbythe Demo. e 23
* Programming Model Classes.t 25
o Threads i 31
o Initialization. 32
e EventHandling o 33

5.1 Files Used by the Demo

5.1.1

This section lists the files used by the demo. It contains the following information:

¢ Demo Source Code Files

e Utility Files

e PDL Files

Demo Source Code Files

The source code files listed in Table 3 are located in:

¢ For Windows: C:\Program Files\dialogic\demos\ipdemo\multicastserver

Table 3. Source Files Used by the IP Multicast Server (IPML) Demo

IP Multicast Server (IPML) Demo Guide — November 2003

Directory File Name Purpose
multicastserver call.cpp Implements the operations of the Call class
multicastserver call.h Function prototype for call.cpp

multicastserver

configuration.cpp

Implements the operations of the Configuration class

multicastserver

configuration.h

Function prototype for configuration.cpp

multicastserver

incfile.h

Function prototype for Global Call and R4 functions

multicastserver

ipmediaboard.cpp

Implements the operations of the IPMediaBoard class

multicastserver

ipmeadiaboard.h

Function prototype for ipmediaboard.cpp

multicastserver

ipmediadevice.cpp

Implements the operations of the IPMediaDevice class

multicastserver

ipmediadevice.h

Function prototype for ipmediadevice.cpp

multicastserver

main.cpp

Contains the main function and the Wait for Key

multicastserver

main.h

Function prototype for main.cpp

Demo Details

In

Table 3. Source Files Used by the IP Multicast Server (IPML) Demo (Continued)

5.1.2

Directory

File Name

Purpose

multicastserver

multicastserver.ver

Demo version information

multicastserver

r4device.cpp

Implements the operations of the R4Device class

multicastserver

r4debice.h

Function prototype for r4device.cpp

multicastserver

r4logicalboard.cpp

Implements the operations of the R4LogicalBoard class

multicastserver

r4logicalboard.h

Function prototype for r4logicalboard.cpp

multicastserver

resourcemanager.cpp

Implements the operations of the ResourceManager
class

multicastserver

resourcemanager.h

Function prototype for resourcemanager.cpp

multicastserver

voiceboard.cpp

Implements the operations of the VoiceBoard class

multicastserver

voiceboard.h

Function prototype for voiceboard.cpp

multicastserver

voicedevice.cpp

Implements the operations of the VoiceDevice class

multicastserver

voicedevice.h

Function prototype for voicedevice.cpp

multicastserver

multicastserver.dsp

Visual C++ project file

multicastserver

multicastserver.dsw

Visual C++ project workspace

multicastserver\release
(Windows only)

multicastserver.cfg

Demo configuration file

multicastserver\release
(Windows only)

multicastserver.exe

Demo executable

Utility Files

The utility files listed in Table 4 are located in:

e For Windows: C:\Program Files\dialogic\demos\ipdemo\utilcpp\

Table 4. Utility Files Used by the IP Multicast Server (IPML) Demo

24

Directory File Name Purpose
utilcpp utilcpp.ver Utility library version information
utilcpp log.cpp Debugging functions
utilcpp log.h Function prototype for libdbg.c
utilcpp utilcpp.dsw Utility library Visual C++ workspace
(Windows only)
utilcpp utilcpp.dsp Utility library Visual C++ project file
(Windows only)
utilcpp\release utilepp.lib Compiled Utility library
(Windows only)

IP Multicast Server (IPML) Demo Guide — November 2003

i nt6| o Demo Details

5.1.3 PDL Files

The Windows PDL files listed in Table 5 are located in:
C:\Program Files\dialogic\demos\ipdemo\pdl_win\.

Table 5. PDL Files Used by the IP Multicast Server (IPML) Demo - Windows OS

Directory File Name Purpose

pdl_win iptransport.cpp PDL IP transport functions
pdl_win iptransport.h Function prototype for iptransport.cpp
pdl_win pdl.c Platform dependency functions
pdl_win pdl.h Function prototype for pdl.c
pdl_win pdl.ver PDL version information
pdl_win pdl_win.dsp PDL Visual C project file
pdl_win pdI_win.dsw PDL Visual C workspace
pdl_win\release pdl_win.lib Compiled PDL library

5.2 Programming Model Classes

This section presents basic information about the IP Multicast Server (IPML) demo classes. It
contains the following information:

¢ Class Diagram

¢ Call Class

¢ Configuration Class

¢ [PMediaBoard Class

¢ [PMediaDevice Class
* R4Device Class

¢ R4lLogicalBoard Class
¢ ResourceManager Class
* VoiceBoard Class

¢ VoiceDevice Class

5.2.1 Class Diagram

The following class diagram describes the relationship among the classes.

IP Multicast Server (IPML) Demo Guide — November 2003 25

Demo Details

Figure 2. IP Multicast Server (IPML) Class Diagram

ResourceManager

N
N

IPMediaBoard ——>{ R4LogicalBoard <}—— VoiceBoard
1 1
1 IPMediaDevice ——> R4Device |<J}—— VoiceDevice
Configuration 1 1
1 1
- Call
5.2.2 Call Class

The main role of the Call class is to control all the resources related to a call. It contains all the
resources related to a call and reflects the intersection of the call resource status.

The Call class attributes are described in Table 6. Refer to the source code for method information.

Table 6. Call Class Attributes

26

Name PAr ;‘;ﬁ::e Type Description
m_plPMediaDevice public IPMediaDevice* The IPMedia device of the channel
m_pLog public Log* A log instance
m_ptheConfiguration public Configuration* Pointer to the configuration instance

of the ResourceManager
m_pVoiceDevice public VoiceDevice* The voice device of the channel
m_channelld private unsigned int The channel identifier
m_currentState private E_StateMachine The current state of the call

IP Multicast Server (IPML) Demo Guide — November 2003

I n o Demo Details

5.2.3 Configuration Class

The main role of the Configuration class is to provide an interface to get the needed configuration
data. It contains all the needed data structures to parse and save the system configuration (the
configuration file and the command line options) and reflects the system configuration to the other
classes.

The Configuration class attributes are described in Table 7. Refer to the source code for method
information.

Table 7. Configuration Class Attributes

Access .
Name Privilege Type Description

m_chaninfo public Channelinfo Array that contains all the channel
information from the configuration file,
such as Tx coder information, the
print to log file flag, and the phone
number to call.

m_logFArr public char Array to get the string entered by the
user after the -I option

m_logLevel public E_LogLevel The log level

m_userChannels public unsigned int Indicates the number of channels that
the demo will work with

m_cfgFile private char* The configuration file name

m_EncodingType private int The encoding type (Mulaw/Alaw)

m_firstSession private long Used to fill the channel information
from the configuration file

m_lastSession private long Used to fill the channel information
from the configuration file

m_line private int The line currently being parsed in the
configuration file

m_logFileFlag private int Flag for using log files, one for each
channel (by the - command line
option)

m_stage private unsigned char The stage of parsing the configuration
file

5.2.4 IPMediaBoard Class

The main role of the [IPMediaBoard class is to manage the IP Media device database. It contains all
the IP Media devices available to the system and reflects the IP Media device repository.

The IPMediaBoard class attributes are described in Table 8. Refer to the source code for method
information.

IP Multicast Server (IPML) Demo Guide — November 2003 27

Demo Details

Table 8. IPMediaBoard Class Attributes

Access .
Name Privilege Type Description
m_ipMediaDevices public IPMediaDevice Array of the IPMedia devices found on
the IP board

5.2.5 IPMediaDevice Class

The main role of the IPMediaDevice class is to provide IPML functionality for the IP Media
device. It represents the IP Media devices and reflects the session state to the other classes.

The IPMediaDevice class attributes are described in Table 9. Refer to the source code for method
information.

Table 9. IPMediaDevice Class Attributes

5.2.6

28

Access .

Name Privilege Type Description
m_currentState private E_StateMachine The current state of the channel
m_localMedialnfo private IPM_MEDIA_INFO The local media information
m_medialnfo private IPM_MEDIA_INFO Used in the startMedia() function

when calling the function
ipm_SetRemoteMedialnfo(). The
m_medialnfo contains:

e the local RTP and RTCP
information and the local coder
information

e the remote RTP and RTCP
information and the remote coder
information

m_mediaStartedFlag private bool Flag to indicate if the media has
started
m_remoteMedialnfo private IPM_MEDIA_INFO The remote GW media information

R4Device Class

The main role of the R4Device class is to provide all common functionality for all R4 devices. It is
the base class for all R4 line devices that can be opened using gc_OpenEx(). It contains all the
common attributes and operations for all R4 devices.

The R4Device class attributes are described in Table 10.

IP Multicast Server (IPML) Demo Guide — November 2003

Table 10. R4Device Class Attributes

5.2.7

Demo Details

Name Access Privilege Type Description

m_channelld protected unsigned int The identifier of the
channel that the device
belongs to

m_handle protected unsigned int The device handle (valid
after opening)

m_name protected char The device name, e.g.
ipmB1C1

m_pLog protected Log* The device log instance

m_txTimeSlot protected unsigned long The device time slot

R4LogicalBoard Class

The main role of the R4LogicalBoard class is to provide all common functionality for all R4
logical boards. It opens the boards and gets all the information about the devices. The
R4LogicalBoardClass is the base class for all R4 logical boards containing the common attributes.

The R4LogicalBoard class attributes are described in Table 11. Refer to the source code for method

information.

Table 11. R4LogicalBoard Class Attributes

5.2.8

Access .
Name Privilege Type Description

m_boardHandle protected int Returned when opening the board by
dx_Open() or dt_Open() and used
to get the devices found on it by
calling the function
ATDV_SUBDEVS(), and to close the
board.

m_boardName protected char The board name, e.g., ipmB1

m_boardNumber protected int The board number - used in setting
the device names found on the board

m_numOfChannelsOnB | protected int Number of devices available on the

oard board

ResourceManager Class

The main role of the ResourceManager class is to initialize the R4 resources. It manages the system
resources and contains the following data:

¢ all system channels

¢ configuration object for initialization

* maps R4 device handles to channels

IP Multicast Server (IPML) Demo Guide — November 2003

29

Demo Details

e all detected R4 boards

The ResourceManager class attributes are described in Table 12.

Table 12. ResourceManager Class Attributes

5.2.9

Name

Access
Privilege

Type

Description

DeviceHandleToChannel

public

static unsigned int

Maps the devices to channels to
enable handling the SRL events. The
table is filled in when opening each
device.

m_Calls

public

static Call*

Array that contains all the calls used
by the application

m_IPBoards

public

IPMediaBoard*

Array that includes the IP boards
available in the system

m_maxChannelsToOpen

public

int

The maximum number of channels
that the demo will work with (this
number is the minimum of devices of
each type and the user requested -n
option).

m_numOfIPBoards

public

int

The number of the IP boards found in
the system

m_numOfVoiceBoards

public

int

The number of the voice boards found
in the system

m_pLog

public

static Lot*

A log instance used during
initialization. All the printouts are to
the monitor - after that it is killed.

m_ptheConfiguration

public

static Configuration*

An instance of the Configuration
Class that is used to determine the
configuration of the system during
initialization

m_\VoiceBoards

public

VoiceBoard*

Array that includes the voice boards
available in the system

VoiceBoard Class

The main role of the VoiceBoard class is to manage the voice device database. It contains all the
voice devices available to the system and reflects the voice device repository.

The VoiceBoard class attributes are described in Table 13. Refer to the source code for method

information.

Table 13. VoiceBoard Class Attributes

30

Access _—
Name Privilege Type Description
m_voiceDevices public VoiceDevice Array of the voice devices found on

the voice board

IP Multicast Server (IPML) Demo Guide — November 2003

intel.

5.2.10 VoiceDevice Class

Demo Details

The main role of the VoiceDevice class is to provide R4 functionality to the voice devices. It
represents a real voice resource channel and always reflects its status. It manages all calls related to

itself.

The VoiceDevice class attributes are described in Table 14.

Table 14. VoiceDevice Class Attributes

Name Access Privilege Type Description
m_PlayerStopped public int Flag that indicates if the
player is stopped
prompt public DX_IOTT Structure that identifies a

source or destination for
voice data. It is used with

dx_play().

5.3 Threads

The IP Multicast Server (IPML) demo operates with two threads:

¢ The first thread (main) is created by the demo application to get the keyboard input

¢ The second thread is an SRL thread, created as a result of the demo application calling
sr_enblhdlr() in Windows. In Linux, the thread must be explicitly created.

Figure 3. Thread Diagram

Keyboard

'

Thread 1
Main Thread

IP Multicast Server (IPML) Demo Guide — November 2003

GC IPML
A A
SRL
A
Thread 2
SRL Thread

31

Demo Details I n

54

Initialization

Figure 4. IP Multicast Server (IPML) System Initialization

32

- Resource . IPMedia Voice
Application Manager Configuration Call Device Device
init()
readCommandLine()

readConfiguration()

printConfiguration()

getIPChannels()

B

getVoiceChannels()

I

min()

initSystemChannels()

getFreelPDevice()

I

setChannellD()

getFreeVRDevice()

I

setChannellD()

initDevices(IPMedia*, VoiceResource*)

This section describes the demo initialization as shown in Figure 4.

1. The application main() function sets up the callback handler, PDLsr_enbhdlr(). The
callback handler handles events that it receives from the SRL library. For more details see
Section 5.5.3, “Handling SRL Events”, on page 33.

2. The application main() function then calls resourceManager.init(), which does the
following:

a. Reads the command line options
b. Reads and parse the configuration file and prints the configuration
c. Gets the resources available in the system:
— Gets the number of IP channels in the system
— Gets the number of Voice channels in the system
— Finds the minimum between the system channels and the user request

IP Multicast Server (IPML) Demo Guide — November 2003

5.5

5.5.1

5.5.2

5.5.3

Demo Details

d. Looks for a free ipmedia device and returns a pointer to it

e. Opens the ipmedia device and if the open succeeds returns a pointer to it
f. Looks for a free voice device and returns a pointer to it

g. Opens the voice device and if the open success returns a pointer to it

h. Initializes the devices on the channel

3. The application main() function calls waitForKey(), to receive keyboard input

Event Handling

This section contains the following topics:
¢ Event Mechanism
¢ Handling Keyboard Input Events
¢ Handling SRL Events

Event Mechanism

The IP Multicast Server (IPML) demo uses the SRL mechanism to retrieve events. When an event
occurs, SRL calls event handlers automatically. All events are received by the SRL and then passed
to the callback_hdlr() function for handling.

In the initialization phase of the demo the init() function sets up the call-back handler, by calling
PDLsr_enbhdlr().

Handling Keyboard Input Events

There is an endless loop {while(1)} in the main() function in the main.cpp file. In that loop, the
application waits forever for a keyboard event by calling the waitForKey() function. The event
must be handled immediately and event-specific information should be retrieved before the next
call to waitForKey().

When the next event occurs or when a time-out is reached, the waitForKey() returns and the call-
back handler function is called automatically.

Handling SRL Events

When the R4/Global Call event is received, the application performs the following:
1. Get the event device handle, by calling PDLsr_getevtdev()
2. Get the channel number related to the event, from the global array (HandleToChannel[])
3. Update the METAEVENT structure by calling gc_GetMetaEvent()
4. Get the event type, by calling PDLsr_getevttype()

IP Multicast Server (IPML) Demo Guide — November 2003 33

Demo Details

34

IP Multicast Server (IPML) Demo Guide — November 2003

intel.

Demo State Machines 6

6.1

6.1.1

This chapter discusses the IP Multicast Server (IPML) state machines. It contains the following
topics:

e Call State MacChine. oot e e e 35
e [PMediaDevice State Machine 37

Call State Machine

This section describes the Call class state machine. It contains the following topics:
e (all State Machine Description

Call::callNull State

Call::callStarted State

Call::callProceeding State

Call::callStopped State

Call State Machine Description
All channels are initialized to the NULL state upon application start.

As soon as an event is received, the event type, the channel number, and the reason for the event (if
there is one), are analyzed and the appropriate state machine function is called.

After all the operations are performed within the channel’s event state, the state machine function is
updated.

The following state diagram describes the call states for the call class.

IP Multicast Server (IPML) Demo Guide — November 2003 35

[]
Demo State Machines I nt9I ®

Figure 5. Call State Machine

6.1.2

36

CCAL L_NU LL_STATE]

IPMEDIAEV_OFFERED
IPMEV_STOPPED or IPMEV_ERROR m_plPMediaDeViCe'>|iSten()

m_plPMediaDevice->processEvent() m_plPMediaDevice->processEvent()

IPMEDIAEV_DROPCALL or
IPMEV_ERROR
m_plPMediaDevice->processEvent()

E}ALL_STOPPED_STATE] IPMEDIAEV_DROPCALL or—[CALL_STARTED_STATE]

IPMEV_ERROR
m_plPMediaDevice->
processEvent()
IPMEDIAEV_DROPCALL IPMEV_STARTMEDIA
m_pVoiceDevice->stopPlay() m_plPMediaDevice->processEvent()
m_plPMediaDevice->processEvent() m_pVoiceDevice->play()

TDX_PLAY
m_pVoiceDevice->processEvent ()

GALL_PROCEEDING_STAT@

TDX_PLAY
(If TM_EOD, m_pVoiceDevice->play()

Call::callNull State

The application waits for a IPMEDIAEV_OFFERED event in the CALL_NULL_STATE. Upon
receiving this event, the application calls listen() from the [PMediaDevice to listen to the media
stream. It then calls processEvent() from the [IPMediaDevice to process the incoming event. The
call state transitions to callStarted.

If, for any reason, the function should fail, the application receives an IPMEDIAEV_DROPCALL
or IPMEV_ERROR event. The application calls processEvent() from the IPMediaDevice and the
call state transitions to callStopped.

IP Multicast Server (IPML) Demo Guide — November 2003

INlal.

6.1.3

6.1.4

6.1.5

6.2

6.2.1

Demo State Machines

Call::callStarted State

The application waits for an IPMEV_STARTMEDIA event, following the IPMediaDevice call to
startMedia() (see Section 6.2, “IPMediaDevice State Machine”, on page 37 for more information
about the IPMediaDevice state machine). Upon receiving this event, the application calls
processEvent() from the [PMediaDevice and then calls play() from the VoiceDevice to begin
broadcasting. The call state transitions to callProceeding.

If, for any reason, the function should fail, the application receives a IPMEDIAEV_DROPCALL or
IPMEV_ERROR event. The application calls processEvent() from the IPMediaDevice and the
call state transitions to callStopped.

Call::callProceeding State

The application waits for an IPMEDIAEV_DROPCALL event. Upon receiving this event, it calls
stopPlay() from the VoiceDevice and processEvent() from the IPMediaDevice. The call state
transitions to callStopped.

If the application receives a TDX_PLAY event, it determines if the Player was stopped because it
reached the end of data or it the call has completed. In the case of end of data, the Player replays the
file. In the case of call completion, the application calls processEvent() from the VoiceDevice.

Call::callStopped State

The application waits for an IPMEV_STOPPED or IPMEV_ERROR event. In the case of
IPMEV_STOPPED, the application calls processEvent() from the IPMediaDevice and the call
state transitions to callNull. In the case of IPMEV_ERROR, the application calls
processEvent(IPMEDIAEV_DROPCALL) from the IPMediaDevice and the call state
transitions to callNull.

IPMediaDevice State Machine

This section describes the IPMediaDevice state machine. It contains the following topics:
¢ [PMediaDevice State Machine Description
¢ [PMediaDevice::mediaNull State

[PMediaDevice::mediaStarted State

IPMediaDevice::mediaCall State

[PMediaDevice::mediaStopped State

IPMediaDevice State Machine Description

The following state diagram describes the states for the IPMediaDevice class.

IP Multicast Server (IPML) Demo Guide — November 2003 37

[]
Demo State Machines I ntel ®

Figure 6. IPMediaDevice State Machine

IPMEV_STOPPED
IPMEDIAEV_DROPCALL

v\

MEDIA_NULL_STATE

IPMEV_STOPPED IPMEDIAEV_OFFERED
[m_mediaStartedFlag==false] [m_mediaStartedFlag==false]
startMedia()

IPMEDIAEV_DROPCALL

IPMEDIAEV_DROPCALL
G/IEDIA_STOPPED_STATE]% stopMedia() {MEDIA_STARTED_STATE]

IPMEDIAEV_DROPCALL IPMEV_STARTMEDIA
stopMedia() [m-mediaStartedFlag==true]

[MEDIA_CALL_STATE]

6.2.2 IPMediaDevice::mediaNull State

The application waits for a IPMEDIAEV_OFFERED event in the mediaNull state. Upon receiving
this event it calls startMedia() from the IPMediaDevice. The state transitions to mediaStarted.

If the application receives IPMEV_STOPPED or IPMEDEV_DROPCALL, it ignores these events
and continues to wait for IPMEDIAEV_OFFERED.

6.2.3 IPMediaDevice::mediaStarted State

The application waits for an IPMEV_STARTMEDIA event. Upon receipt of this event, it sets the
m_mediaStartedFlag to true and the state transitions to the mediaCall state.

If the application receives IPMEDIAEV_DROPCALL, it calls stopMedia() from the
IPMediaDevice and the state transitions to mediaStopped.

38 IP Multicast Server (IPML) Demo Guide — November 2003

I n ® Demo State Machines

6.2.4 IPMediaDevice::mediaCall State

The application waits for an IPMEDIAEV_DROPCALL event. Upon receipt of this event, it calls
stopMedia() from the IPMediaDevice and the state transitions to mediaStopped.

6.2.5 IPMediaDevice::mediaStopped State

The application waits for an IPMEV_STOPPED event. Upon receipt of this event, it sets the
m_mediaStartedFlag to false and the state transitions to mediaNull.

If the application receives an IPMEDIAEV_DROPCALL event, the state transitions to mediaNull.

IP Multicast Server (IPML) Demo Guide — November 2003 39

Demo State Machines

40

IP Multicast Server (IPML) Demo Guide — November 2003

intel.

Glossary

Codec: see COder/DECoder
COder/DECoder: A circuit used to convert analog voice data to digital and digital voice data to analog audio.

Computer Telephony (CT): Adding computer intelligence to the making, receiving, and managing of
telephone calls.

DTMF: Dual-Tone Multi-Frequency
Dual-Tone Multi-Frequency: A way of signaling consisting of a push-button or touch-tone dial that sends out a
sound consisting of two discrete tones that are picked up and interpreted by telephone switches (either PBXs or

central offices).

Emitting Gateway: called by a G3FE. It initiates IFT service for the calling G3FE and connects to a Receiving
Gateway.

E1: The 2.048 Mbps digital carrier system common in Europe.
FCD file: An ASCII file that lists any non-default parameter settings that are necessary to configure a DM3
hardware/firmware product for a particular feature set. The downloader utility reads this file, and for each

parameter listed generates and sends the DM3 message necessary to set that parameter value.

Frame: A set of SCbus/CT Bus timeslots which are grouped together for synchronization purposes. The period of
a frame is fixed (at 125 psec) so that the number of time slots per frame depends on the SCbus/CT Bus data rate.

G3FE: Group 3 Fax Equipment. A traditional fax machine with analog PSTN interface.
Gatekeeper: An H.323 entity on the Internet that provides address translation and control access to the network
for H.323 Terminals and Gateways. The Gatekeeper may also provide other services to the H.323 terminals and

Gateways, such as bandwidth management and locating Gateways.

Gateway: A device that converts data into the IP protocol. It often refers to a voice-to-IP device that converts an
analog voice stream, or a digitized version of the voice, into IP packets.

H.323: A set of International Telecommunication Union (ITU) standards that define a framework for the
transmission of real-time voice communications through Internet protocol (IP)-based packet-switched networks.
The H.323 standards define a gateway and a gatekeeper for customers who need their existing IP networks to
support voice communications.

IAF: Internet Aware Fax. The combination of a G3FE and a T.38 gateway.

IFP: Internet Facsimile Protocol

IFT: Internet Facsimile Transfer

IP Media Server (Global Call) Demo Guide — November 2003 4

intel.

International Telecommunications Union (ITU): An organization established by the United Nations to set
telecommunications standards, allocate frequencies to various uses, and hold trade shows every four years.

Internet: An inter-network of networks interconnected by bridges or routers. LANs described in H.323 may be
considered part of such inter-networks.

Internet Protocol (IP): The network layer protocol of the transmission control protocol/Internet protocol
(TCP/IP) suite. Defined in STD 5, Request for Comments (RFC) 791. It is a connectionless, best-effort packet
switching protocol.

Internet Service Provider (ISP): A vendor who provides direct access to the Internet.

Internet Telephony: The transmission of voice over an Internet Protocol (IP) network. Also called Voice over IP
(VoIP), IP telephony enables users to make telephone calls over the Internet, intranets, or private Local Area
Networks (LANs) and Wide Area Networks (WANs) that use the Transmission Control Protocol/Internet Protocol
(TCP/TP).

ITU: See International Telecommunications Union.

Jitter: The deviation of a transmission signal in time or phase. It can introduce errors and loss of synchronization
in high-speed synchronous communications.

NIC (Network Interface Card): Adapter card inserted into computer that contains necessary software and
electronics to enable a station to communicate over network.

PCD file: An ASCII text file that contains product or platform configuration description information that is used
by the DM3 downloader utility program. Each of these files identifies the hardware configuration and firmware
modules that make up a specific hardware/firmware product. Each type of DM3-based product used in a system
requires a product-specific PCD file.

PSTN: see Public Switched Telephone Network

Public Switched Telephone Network: The telecommunications network commonly accessed by standard
telephones, key systems, Private Branch Exchange (PBX) trunks and data equipment.

Reliable Channel: A transport connection used for reliable transmission of an information stream from its
source to one or more destinations.

Reliable Transmission: Transmission of messages from a sender to a receiver using connection-mode data
transmission. The transmission service guarantees sequenced, error-free, flow-controlled transmission of messages
to the receiver for the duration of the transport connection.

RTCP: Real Time Control Protocol

RTP: Real Time Protocol

SIP: Session Initiation Protocol: an Internet standard specified by the Internet Engineering Task Force (IETF) in

RFC 2543. SIP is used to initiate, manage, and terminate interactive sessions between one or more users on the
Internet.

42 IP Media Server (Global Call) Demo Guide — November 2003

intel.

T1: A digital transmission link with a capacity of 1.544 Mbps used in North America. Typically channeled into 24
digital subscriber level zeros (DS0s), each capable of carrying a single voice conversation or data stream. T1 uses
two pairs of twisted pair wires.

TCP: see Transmission Control Protocol

Terminal: An H.323 Terminal is an endpoint on the local area network which provides for real-time, two-way
communications with another H.323 terminal, Gateway, or Multipoint Control Unit. This communication consists
of control, indications, audio, moving color video pictures, and/or data between the two terminals. A terminal may
provide speech only, speech and data, speech and video, or speech, data, and video.

Transmission Control Protocol: The TCP/IP standard transport level protocol that provides the reliable, full
duplex, stream service on which many application protocols depend. TCP allows a process on one machine to send
a stream of data to a process on another. It is connection-oriented in the sense that before transmitting data,
participants must establish a connection.

UDP: see User Datagram Protocol

UDPTL: Facsimile UDP Transport Layer protocol

User Datagram Protocol: The TCP/IP standard protocol that allows an application program on one machine to
send a datagram to an application program on another machine. Conceptually, the important difference between
UDP datagrams and IP datagrams is that UDP includes a protocol port number, allowing the sender to distinguish

among multiple destinations on the remote machine.

VAD: Voice Activity Detection

IP Media Server (Global Call) Demo Guide — November 2003 43

44

IP Media Server (Global Call) Demo Guide — November 2003

intel.

Index

Symbols

{while(1)} 33

A

ATDV_SUBDEVS() 29

C

Call class 26

Call state machine 35
Call::callNull State 36
Call::callProceeding State 37
Call::callStarted State 37
Call::callStopped State 37
callback_hdlr() 33

class diagram 25

classes
Call class 26
Configuration class 27
IPMediaBoard class 27
IPMediaDevice class 28
R4Device class 28
R4LogicalDevice class 29
ResourceManager class 29
VoiceBoard class 30
VoiceDevice class 31

compiling and linking 17
Configuration class 27
configuration files, editing 15

D

demo options 19

demo source code files 23
dt_Open() 29
dx_Open() 29
dx_play() 31

E

editing configuration files 15
establishing a call 20
event handling 33

event mechanism 33

F

files used by the demo 23

G

gc_GetMetaEvent() 33
gc_OpenEx() 28

H

handling keyboard input events 33
handling SRL events 33
hardware requirements 13

init() 33

initialization 32
ipm_SetRemoteMedialnfo() 28
IPMediaBoard class 27
IPMediaDevice class 28
IPMediaDevice state machine 37
IPMediaDevice::mediaCall State 39
IPMediaDevice::mediaNull State 38
IPMediaDevice::mediaStarted State 38
IPMediaDevice::mediaStopped State 39

K

keyboard commands 20
keyboard events, handling 33

L

listen() 36

M

m_mediaStartedFlag 38, 39
main() 32, 33
METAEVENT 33

IP Multicast Server (IPML) Demo Guide — November 2003 45

P

PCD/FCD files, selecting 17

PDL files 25

PDLsr_enbhdlr() 32, 33

PDLsr_getevtdev() 33

PDLsr_getevttype() 33

play() 37

preparing to run the demo 15

processEvent() 36, 37
processEvent(IPMEDIAEV_DROPCALL) 37

programming model classes 25

R

R4Device class 28
R4LogicalBoard class 29
requirements, hardware 13
ResourceManager class 29
resourceManager.init() 32
running the demo 19

S

selecting PCD/FCD files 17
software requirements 13
source code files 23
sr_enblhdlr() 31

SRL events, handling 33
starting the demo 19
startMedia() 28, 38

state machines
Call state machine 35
IPMediaDevice state machine 37

stopMedia() 38, 39
stopping the demo 21
stopPlay() 37

system requirements 13

—~

terminating a call 20
threads 31

U

using the demo 20
utility files 24

46

\'

VoiceBoard class 30
VoiceDevice class 31

W

waitForKey() 33

IP Multicast Server (IPML) Demo Guide — November 2003

	Contents
	Figures
	Tables
	Revision History
	About This Publication
	Purpose
	Intended Audience
	How to Use This Publication
	Related Information

	1. Demo Description
	2. System Requirements
	2.1 Hardware Requirements
	2.2 Software Requirements

	3. Preparing to Run the Demo
	3.1 Editing Configuration Files
	3.2 Compiling and Linking
	3.3 Selecting PCD/FCD Files

	4. Running the Demo
	4.1 Starting the Demo
	4.2 Demo Options
	4.3 Using the Demo
	4.3.1 Establishing and Terminating a Call
	4.3.2 Keyboard Commands

	4.4 Stopping the Demo

	5. Demo Details
	5.1 Files Used by the Demo
	5.1.1 Demo Source Code Files
	5.1.2 Utility Files
	5.1.3 PDL Files

	5.2 Programming Model Classes
	5.2.1 Class Diagram
	5.2.2 Call Class
	5.2.3 Configuration Class
	5.2.4 IPMediaBoard Class
	5.2.5 IPMediaDevice Class
	5.2.6 R4Device Class
	5.2.7 R4LogicalBoard Class
	5.2.8 ResourceManager Class
	5.2.9 VoiceBoard Class
	5.2.10 VoiceDevice Class

	5.3 Threads
	5.4 Initialization
	5.5 Event Handling
	5.5.1 Event Mechanism
	5.5.2 Handling Keyboard Input Events
	5.5.3 Handling SRL Events

	6. Demo State Machines
	6.1 Call State Machine
	6.1.1 Call State Machine Description
	6.1.2 Call::callNull State
	6.1.3 Call::callStarted State
	6.1.4 Call::callProceeding State
	6.1.5 Call::callStopped State

	6.2 IPMediaDevice State Machine
	6.2.1 IPMediaDevice State Machine Description
	6.2.2 IPMediaDevice::mediaNull State
	6.2.3 IPMediaDevice::mediaStarted State
	6.2.4 IPMediaDevice::mediaCall State
	6.2.5 IPMediaDevice::mediaStopped State

	Glossary
	Index

