
IP Media Library API for Linux 
and Windows Operating Systems
Programming Guide

November 2003

05-1834-004



IP Media Library API Programming Guide – November 2003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY 
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN 
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS 
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES 
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER 
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. 

Intel may make changes to specifications and product descriptions at any time, without notice.

This IP Media Library API for Linux and Windows Operating Systems Programming Guide as well as the software described in it is furnished under 
license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use 
only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no 
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this 
document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any 
means without express written consent of Intel Corporation.

Copyright © 2002-2003 Intel Corporation. All Rights Reserved.

AnyPoint, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, 
InstantIP, Intel, Intel Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel InBusiness, Intel Inside, 
Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, 
Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, 
Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, 
TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and 
other countries.

* Other names and brands may be claimed as the property of others. 

Publication Date: November 2003

Document Number: 05-1834-004

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support 

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom 

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page at:
http://www.intel.com/buy/wtb/wtb1028.htm 

http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/wtb/wtb1028.htm


IP Media Library API Programming Guide – November 2003 3

Contents

Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

About This Publication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Intended Audience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
How to Use This Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Related Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Introduction to the IP Media Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Relationship with Global Call Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Standard Runtime Library Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Media Channel Device Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 State Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 SRL Event Management Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 SRL Standard Attribute Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Application Development Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Introduction to DTMF Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Setting DTMF Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 DTMF Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.2 Setting In-Band Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.3 Setting RFC 2833 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.4 Setting Out-of-Band Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3 Notification of DTMF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 Generating DTMF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5 Using T.38 Fax Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Quality of Service (QoS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 QoS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 QoS Alarm Types and Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 Alarm and Recovery Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4 Using QoS Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5 Hints for QoS Alarm Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Building Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.1 Compiling and Linking under Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.1.1 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



4 IP Media Library API Programming Guide – November 2003

Contents

8.1.2 Required Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Compiling and Linking under Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

8.2.1 Include Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.2 Required Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



IP Media Library API Programming Guide – November 2003 5

Contents

Figures

1 IP Media Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 IP Media Channel State Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 In-Band Mode Scenario Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 RFC 2833 Scenario Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Out-of-Band Mode Scenario Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 Using T.38 Fax Scenario Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7 Alarm Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8 Recovery Mechanism  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



IP Media Library API Programming Guide — November 2003 6

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-1834-004 November 2003 Application Development Guidelines: hid section - Using the T.38 Fax Server (for 
HMP 1.1 only, restored and renamed section Using T.38 Fax Gateway (for SR 
6.0 PCI only) 

05-1834-003 September 2003 Application Development Guidelines: Added section - Using the T.38 Fax Server (for 
HMP 1.1 only), hid Using T.38 Fax (no supported in HMP 1.1) (PTR 28331)

DTMF Modes: added range of values (96-127) for 
PARMCH_RFC2833_EVT_TX_PLT and PARMCH_RFC2833_EVT_RX_PLT 

05-1834-002 November 2002 Application Development Guidelines: Added section - Using T.38 Fax

05-1834-001 September 2002 Initial version of this document



IP Media Library API Programming Guide — November 2003 7

About This Publication

The following topics provide information about this publication:

• Purpose 

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This guide provides programming guidelines for the IP media software, which is typically used 
with the Global Call call control application programming interface (API). This is a companion 
guide to the IP Media Library API Library Reference, which provides details on functions and 
parameters in the IP media software.

Intended Audience

This guide is intended for software developers who will access the IP media software. This may 
include any of the following:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software which 
includes the IP media software. This publication assumes that you are familiar with the Linux or 
Windows operating system and the C programming language. It is helpful to keep the Voice 
Software Reference handy as you develop your application.

The information in this guide is organized as follows:

• Chapter 1, “Product Description” introduces the IP media software and its key features.

• Chapter 2, “Programming Models” describes methods of developing IP media-based 
applications.



8 IP Media Library API Programming Guide — November 2003

About This Publication

• Chapter 3, “State Models” describes a simple state-based IP media application.

• Chapter 4, “Event Handling” defines an event and describes how to handle an event.

• Chapter 5, “Error Handling” presents information on how to obtain error codes and handle 
errors.

• Chapter 6, “Application Development Guidelines” provides information on developing IP 
media-based applications.

• Chapter 7, “Quality of Service (QoS)” details how QoS may be used in an application.

• Chapter 8, “Building Applications” describes how to compile and link IP media-based 
applications.

Related Information

The following guides may also be used to develop IP technology-based applications:

• IP Media Library API Library Reference 

• Global Call IP Technology User’s Guide 

• Global Call API Programming Guide 

• Global Call API Library Reference 

• Standard Runtime Library API Library Reference 

• http://developer.intel.com/design/telecom/support/ (for technical support)

• http://www.intel.com/network/csp/ (for product information)

http://developer.intel.com/design/telecom/support/
http://www.intel.com/network/csp


IP Media Library API Programming Guide — November 2003 9

11.Product Description

This chapter provides an overview of the IP media software. It contains the following sections:

• Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

• Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

• Introduction to the IP Media Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

• Relationship with Global Call Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

• Standard Runtime Library Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

• Media Channel Device Naming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Features

Some of the features of the IP media software include: 

• media resource management, such as open, close, and configure tasks 

• media resource operations, such as start, stop, and detect digits 

• Quality of Service (QoS) threshold alarm configuration and status reporting 

• support of standard runtime library event management routines for error retrieval 

• compatibility with Global Call or another call control stack to provide IP call control 
functionality 

1.2 Architecture

Figure 1 shows the IP media library architecture when using an Intel® NetStructure DM/IP board 
or an Intel® NetStructure IPT board and a user-supplied call control stack.



10 IP Media Library API Programming Guide — November 2003

Product Description

Figure 1. IP Media Architecture

1.3 Introduction to the IP Media Library

The IP media library (IPML) provides an application programming interface to control the starting 
and stopping of RTP sessions, transmit and receive DTMF or signals, QoS alarms and their 
thresholds, and general-purpose device control functions. The library is only used to control media 
functions. It is not used to control the signaling stack. The application developer may choose to 
integrate any third party IP signaling stack (H.323, SIP, MGCP, etc.), or implement a proprietary 
signaling stack solution. The application developer uses the IP signaling stack to initiate or answer 
calls, and negotiate media characteristics such as coder, frames per packet, destination IP address, 
etc. Once media characteristics have been negotiated, the application uses IPML functions to start 
RTP streaming using the desired media characteristics.

1.4 Relationship with Global Call Library 

The Global Call library provides a common call control interface that is independent of the 
underlying network interface technology. While the Global Call library is primarily used for call 
establishment and teardown, it also provides capabilities to support applications that use IP 
technology, such as:

• call control capabilities for establishing calls over an IP network, via the RADVISION H.323 
and SIP signaling stacks

• support for IP media control by providing the ability to open and close IP media channels for 
streaming, using the IP media software internally (under the hood)

Note: Applications should not mix Global Call and IP media library usage of the same ipm_ devices.

Refer to the following Global Call manuals for more details:

• Global Call IP Technology User’s Guide 

Host Application

IP Media 
Resource

Signaling
IP Network

DTI Network
Device

Media
IP Network

TDMRTP/RTCP

Call Control Media

IP Media
Library

User-Supplied
IP Call Control

stack

Host

Board

Host
NIC

TDM
PSTN



IP Media Library API Programming Guide — November 2003 11

Product Description

• Global Call API Programming Guide 

• Global Call API Library Reference 

1.5 Standard Runtime Library Support 

The IP media library performs event management using the Standard Run-time Library (SRL), 
which provides a set of common system functions that are applicable to all devices. SRL functions, 
parameters, and data structures are described in the Standard Runtime Library API Library 
Reference. Use the SRL functions to simplify application development by writing common event 
handlers to be used by all devices.

1.6 Media Channel Device Naming 

To determine available resources, call ipm_Open( ) on a board device, then call 
ATDV_SUBDEVS to get the available resources. (SRL operations are described in the Standard 
Runtime Library API Library Reference.)

To determine available resources in the Windows environment, use the sr_getboardcnt( ) 
function, which returns the number of boards of a particular type. (SRL operations are described in 
the Standard Runtime Library API Library Reference.) 

Each IP media channel device follows the naming convention ipmBxCy; where: 

• B is followed by the unique logical board number

• C is followed by the number of the media device channel

You may also use the ipm_Open( ) function to open a board device, ipmBx, where B is followed 
by the unique logical board number.

Before you can use any of the other IP media library functions on a device, that device must be 
opened. When the device is opened using ipm_Open( ), the function returns a unique device 
handle. The handle is the only way the device can be identified once it has been opened. The 
ipm_Close( ) function closes a device.



12 IP Media Library API Programming Guide — November 2003

Product Description



IP Media Library API Programming Guide — November 2003 13

22.Programming Models

This chapter describes the programming models supported by the IP media software.

The Standard Runtime Library API Programming Guide describes different programming models 
which can be used by applications. The IP media library supports all the programming models 
described therein.

Note: The synchronous programming model is recommended for low density systems only. For high 
density systems, asynchronous programming models provide increased throughput for the 
application.



14 IP Media Library API Programming Guide — November 2003

Programming Models



IP Media Library API Programming Guide — November 2003 15

33.State Models

This chapter describes a very simple IP media state-based application. 

Figure 2 shows a simple IP media application using two channel device states, IDLE and 
STREAMING. 

Figure 2. IP Media Channel State Diagram

 

ipm_Open

ipm_Close
STREAMING

IDLE

ipm_StartMediaipm_Stop

See NOTE

See NOTE

NOTE:  The other functions in the IP
         Media library can be called 

from any state. They do not 
cause a state change.



16 IP Media Library API Programming Guide — November 2003

State Models



IP Media Library API Programming Guide — November 2003 17

44.Event Handling

All IP media events are retrieved using standard runtime library (SRL) event retrieval mechanisms, 
including event handlers. The SRL is a device-independent library containing Event Management 
functions and Standard Attribute functions. This chapter lists SRL functions that are typically used 
by IP media-based applications. 

• SRL Event Management Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

• SRL Standard Attribute Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 SRL Event Management Functions

SRL Event Management functions retrieve and handle device termination events for certain library 
functions. Applications typically use the following functions:

sr_enbhdlr( ) 
enables event handler

sr_dishdlr( ) 
disables event handler

sr_getevtdev( ) 
gets device handle

sr_getevttype( ) 
gets event type

sr_waitevt( ) 
wait for next event

sr_waitevtEx( ) 
wait for events on certain devices

Note: See the Standard Runtime Library API Library Reference for function details. 

4.2 SRL Standard Attribute Functions

SRL Standard Attribute functions return general device information, such as the device name or the 
last error that occurred on the device. Applications typically use the following functions:

ATDV_ERRMSGP( ) 
pointer to string describing the error that occurred during the last function call on the specified 
device

ATDV_LASTERR( ) 
error that occurred during the last function call on a specified device. See the function 
description for possible errors for the function.



18 IP Media Library API Programming Guide — November 2003

Event Handling

ATDV_NAMEP( ) 
pointer to device name, for example, ipmBxCy

ATDV_SUBDEVS( ) 
number of subdevices

Note: See the Standard Runtime Library API Library Reference for function details. 



IP Media Library API Programming Guide — November 2003 19

55.Error Handling

This chapter describes error handling for the IP media software.

All IP media library functions return a value that indicates the success or failure of the function 
call. Success is indicated by a return value of zero or a non-negative number. Failure is indicated 
by a value of -1.

If a function fails, call the Standard Attribute functions ATDV_LASTERR( ) and 
ATDV_ERRMSGP( ) for the reason for failure. These functions are described in the Standard 
Runtime Library API Library Reference.

If an error occurs during execution of an asynchronous function, the IPMEV_ERROR event is sent 
to the application. No change of state is triggered by this event. Upon receiving the 
IPMEV_ERROR event, the application can retrieve the reason for the failure using the standard 
runtime library functions ATDV_LASTERR( ) and ATDV_ERRMSGP( ).



20 IP Media Library API Programming Guide — November 2003

Error Handling



IP Media Library API Programming Guide — November 2003 21

66.Application Development 
Guidelines

This chapter contains guidelines for developing applications which use the IP media library. The 
following topics are discussed:

• Introduction to DTMF Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

• Setting DTMF Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

• Notification of DTMF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

• Generating DTMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

• Using T.38 Fax Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Introduction to DTMF Handling

When a session is started on an IPM device, the IPM device receives data from its IP interface and 
transmits data towards the TDM bus. A DTI device receives data from its PSTN interface and 
transmits towards the TDM bus as well. In a gateway configuration, the DTI and IPM devices will 
be configured, via gc_Listen( ) and ipm_Listen( ) respectively, to listen to each other and thus 
create a full duplex communication path. The IPM device will forward DTMF that it receives on 
one interface to the other interface. Figure 1, “IP Media Architecture”, on page 10 shows the data 
flow between the IP media library, the IP network, and the PSTN network.

When an IPM device receives DTMF from the TDM bus, there are several ways to forward it 
towards the IP interface. These include: forwarding it in the RTP stream (also called in-band), 
sending via RFC 2833, and using an application-controlled/defined method (also called out-of-
band).

The IPM device can automatically forward the DTMF when either the in-band or RFC 2833 
DTMF transfer mode has been selected. DTMF is not automatically forwarded when the 
application controlled/defined method, also known as out-of-band mode, has been selected. In the 
out-of-band case, the application must call ipm_ReceiveDigits( ) and have an 
IPM_DIGITS_RECEIVED event handler in place. Upon receiving the IPM_DIGITS_RECEIVED 
event, the DTMF information is contained in the IPM_DIGIT_INFO structure delivered with the 
event. The application has the responsibility to forward the DTMF via whatever mechanism, open 
or proprietary, it desires. 

When using RFC 2833 mode, the DTMF could optionally be sent in both RFC 2833 packets and 
in-band. The default is that the DTMF is only sent in the RFC 2833 packet and the audio is muted. 
Setting the mute audio parameter (IPM_RFC2833MUTE_AUDIO) to 
RFC2833MUTE_AUDIO_OFF will cause the DTMF to be sent in-band as well as via RFC 2833. 

Note: Use caution when using both RFC 2833 and in-band DTMF, because an endpoint device may 
recognize two separate digits instead of one. 



22 IP Media Library API Programming Guide — November 2003

Application Development Guidelines

When using out-of-band mode, the DTMF is never transmitted in-band. As mentioned earlier, the 
application has the responsibility to forward the digits. 

The setting for DTMF transfer mode also affects the handling of DTMF that is received from the IP 
interface. When the mode is set to in-band, the DTMF is automatically forwarded to the TDM bus. 

If out-of-band mode has been selected, then the application will use its own mechanism to be 
notified that a DTMF digit has been received. Then, ipm_SendDigits( ) is used when necessary to 
transmit a DTMF digit towards the TDM bus. 

When the mode is set to RFC 2833, DTMF is automatically forwarded to the TDM bus as PCM 
data. 

Note: For Intel® NetStructure™ DM/IP Series boards only: if you wish to be notified of RFC 2833 
packets as they arrive at the IP port, the application must enable the EVT_RFC2833 event via a call 
to ipm_EnableEvents( ). Upon receiving the IPMEV_RFC2833SIGNALRECEIVED event, the 
DTMF information is contained in the IPM_RFC2833_SIGNALID_INFO structure. The 
application must use ipm_SendDigits( ) to forward the digit towards the TDM bus. 

6.2 Setting DTMF Parameters

This section contains the following topics:

• DTMF Modes

• Setting In-Band Mode

• Setting RFC 2833 Mode

• Setting Out-of-Band Mode

6.2.1 DTMF Modes 

The IP media library can be used to configure which DTMF mode (in-band, RFC 2833, or out-of-
band) is used by the application. The DTMF mode is set on a per-channel basis using 
ipm_SetParm( ) and the IPM_PARM_INFO data structure.

The eIPM_DTMFXFERMODE enumeration identifies which DTMF mode to use. The following 
values are supported:

• DTMFXFERMODE_INBAND - DTMF digits are sent and received in-band via standard 
RTP transcoding. This is the default mode when a channel is opened.

• DTMFXFERMODE_RFC2833 - DTMF digits are sent and received in the RTP stream as 
defined in RFC 2833.

• DTMFXFERMODE_OUTOFBAND - DTMF digits are sent and received outside the 
RTP stream.

Depending on the mode being used, the digit information transferred in the RTP stream. 



IP Media Library API Programming Guide — November 2003 23

Application Development Guidelines

When using RFC2833, the payload type is specified by using the following parameter/value setting 
in a call to ipm_SetParm( ):

• PARMCH_RFC2833_EVT_TX_PLT - Identifies the transmit payload type. The value for 
this field is in the range 96-127.

• PARMCH_RFC2833_EVT_RX_PLT - Identifies the receive payload type. The value for 
this field is in the range 96-127.

6.2.2 Setting In-Band Mode 

In in-band mode, the DTMF audio is not clamped (not muted) and DTMF digits are sent in the RTP 
packets.

Note: When a channel is opened, the DTMF transfer mode is in-band by default. 

To set up a channel for in-band mode:

1. Open a channel using ipm_Open("ipmB1C1",NULL,EV_SYNC)

2. Set up the IPM_PARM_INFO structure and call ipm_SetParm( ) as shown below:

IPM _PARM _INFO parmInfo;
unsignedlongulParmValue= DTM FXFERM ODE_INBAND;
parmInfo.eParm = PARM CH_DTM FXFERM ODE;
parmInfo.pvParmValue= &ulParmValue
ipm_SetParm(chdev,&parmInfo,EV_ASYNC)

Figure 3 shows a scenario diagram for setting in-band mode.

Figure 3. In-Band Mode Scenario Diagram

Application IPML Interface

ipm_Open("ipmB1C1",NULL, EV_SYNC)

This will not clamp the DTMF audio.
The system comes up in inband mode.

ipm_SetParm(dtmfXfermode = Inband)



24 IP Media Library API Programming Guide — November 2003

Application Development Guidelines

6.2.3 Setting RFC 2833 Mode 

To set up a channel for RFC 2833 mode, do the following:

1. Open a channel using ipm_Open("ipmB1C1",NULL,EV_SYNC)

2. Set the mode via the IPM_PARM_INFO structure and ipm_SetParm( ) as shown below:

IPM _PARM _INFO parmInfo;
unsignedlongulParmValue= DTM FXFERM ODE_RFC2833;
parmInfo.eParm = PARM CH_DTM FXFERM ODE;
parmInfo.pvParmValue= &ulParmValue
ipm_SetParm(chdev,&parmInfo,EV_ASYNC)

3. Set up the RFC 2833 event payload on the transmit side as shown below:

IPM _PARM _INFO parmInfo;
unsignedlongulParmValue= 101;
parmInfo.eParm = PARM CH_RFC2833EVT_TX_PLT;
parmInfo.pvParmValue= &ulParmValue
ipm_SetParm(chdev,&parmInfo,EV_ASYNC)

4. Set up the RFC 2833 event payload on the receive side as shown below:

IPM _PARM _INFO parmInfo;
unsignedlongulParmValue= 101;
parmInfo.eParm = PARM CH_RFC2833EVT_RX_PLT;
parmInfo.pvParmValue= &ulParmValue
ipm_SetParm(chdev,&parmInfo,EV_ASYNC)

5. Optionally, you can mute or un-mute the audio data in the RTP stream using the 
eIPM_RFC2833MUTE_AUDIO enumeration. The default state is for muting to be ON. 

Figure 4 shows a scenario diagram for setting RFC 2833 mode.



IP Media Library API Programming Guide — November 2003 25

Application Development Guidelines

Figure 4. RFC 2833 Scenario Diagram

6.2.4 Setting Out-of-Band Mode 

In out-of-band mode, the DTMF audio is automatically clamped (muted) and DTMF digits are not 
sent in the RTP packets. To set up a channel for out-of-band mode, do the following:

1. Open a channel using ipm_Open("ipmB1C1",NULL,EV_SYNC)

2. Set the mode via the IPM_PARM_INFO structure and ipm_SetParm( ) as shown below:

IPM _PARM _INFO parmInfo;
unsignedlongulParmValue= DTM FXFERM ODE_OUTOFBAND;
parmInfo.eParm = PARM CH_DTM FXFERM ODE;
parmInfo.pvParmValue= &ulParmValue
ipm_SetParm(chdev,&parmInfo,EV_ASYNC)

3. Call ipm_ReceiveDigits(chdev) to have digits reported to the application and clamped from 
the RTP packets.

To change back to in-band mode, set the PARMCH_DTMFXFERMODE parameter to 
DTMFXFERMODE_INBAND.

Figure 5 shows a scenario diagram for setting out-of-band mode.

Application IPML Interface

ipm_SetParm(chdev, PARMCH_DTMFXFERMODE = DTMFXFERMODE_RFC2833)

ipm_SetParm(chdev,PARMCH_RFC2833EVT_TX_PLT = 101)

ipm_SetParm(chdev,PARMCH_RFC2833EVT_RX_PLT = 101)

Set named event payload on
both send and receive sides.
Only named event is supported.

chdev = ipm_Open("ipmB1C1",NULL, EV_SYNC)



26 IP Media Library API Programming Guide — November 2003

Application Development Guidelines

Figure 5. Out-of-Band Mode Scenario Diagram

6.3 Notification of DTMF Detection

Notification of DTMF detection depends on the DTMF mode being used. For out-of-band mode, 
when an incoming DTMF digit is detected (received from the TDM bus), the application receives 
an unsolicited IPMEV_DIGITS_RECEIVED event. The event data is contained in 
IPM_DIGIT_INFO. One event is returned for each digit that is received.

For applications using Intel® NetStructure™ DM/IP Series boards and RFC 2833 mode, the 
application can request notification when DTMF digits are detected by using 
ipm_EnableEvents( ) with the EVT_RFC2833 parameter. Once the events are enabled, when an 
incoming DTMF digit is detected, the application receives an unsolicited 
IPMEV_RFC2833SIGNALRECEIVED event. The event data is contained in 
IPM_RFC2833_SIGNALID_INFO. 

Application IPML Interface

ipm_SetParm(chdev, PARMCH_DTMFXFERMODE = DTMFXFERMODE_OUTOFBAND)

ipm_ReceiveDigits(chdev)

Digits will be reported to the application
and clamped from the RTP packets.

ipm_SetParm(chdev, PARMCH_DTMFXFERMODE = InBand)

The application can change back to in-band
by calling ipm_SetParm and setting the DTMF
transfer mode to inband.

chdev = ipm_Open("ipmB1C1",NULL, EV_SYNC)



IP Media Library API Programming Guide — November 2003 27

Application Development Guidelines

6.4 Generating DTMF

Once DTMF mode has been configured, the application can generate DTMF digits using the 
ipm_SendDigits( ) function. 

Note: The only supported direction for DTMF digit generation is towards the TDM bus.

Alternatively, the ipm_SendRFC2833SignalIDToIP( ) function can be used to send RFC 2833 
data to the IP network.

Note: The ipm_SendRFC2833SignalIDToIP( ) function is not supported on Intel® NetStructure™ IPT 
Series boards. In this case, once you set the mode to RFC 2833, the only way to send an RFC 2833 
digit is to have the ipmBxCy device listening to a TDM time slot. If the ipmBxCy device detects a 
digit from the TDM time slot, it will convert it to RFC 2833 and transmit the digit over RTP. 

A typical use of the ipm_SendRFC2833SignalIDToIP( ) function is to:

• fill in the IPM_RFC2833_SIGNALID_INFO structure with the signal (tone) to send and the 
signal state set to SIGNAL_STATE_ON to start generating DTMF.

• call ipm_SendRFC2833SignalIDToIP( ) to indicate the start of the data

• wait an appropriate amount of time (for example, 50 msec)

• fill in the IPM_RFC2833_SIGNALID_INFO structure with the signal (tone) to stop and the 
signal state set to SIGNAL_STATE_OFF to stop generating DTMF.

• call ipm_SendRFC2833SignalIDToIP( ) to indicate the end of the data

This scenario is useful in situations when the application receives ringback from the PSTN and 
needs to send the tone data to the IP network. The application uses voice library functions to detect 
ringback. (See the Voice API Library Reference for more details.) Then the application sets the 
RFC2833 signal on and leave it on until the ringback stops.

6.5 Using T.38 Fax Gateway

The IP media software supports sending fax information during a session using the T.38 protocol, 
as shown in Figure 6.

Note: Another method of transferring fax information is to use the G.711 protocol. In this case, the fax 
data is sent from a fax-capable board in the system across the TDM bus. The IP media software can 
then send the data outside the system using IP. However, this method uses more bandwidth than 
the T.38 method.

To set up a channel to handle T.38 fax, do the following:

1. Open a channel using ipm_Open("ipmB1C1",NULL,EV_SYNC)

2. Enable event reporting using ipm_EnableEvents(chDev, *pEvents) and the 
IPMEV_T38CALLSTATE and IPMEV_FAXTONE events.

3. Get local RTP information using ipm_GetLocalMediaInfo(chDev,&MediaInfo) and setting 
the eMediaType field to MEDIATYPE_LOCAL_RTP_INFO

4. Start an RTP call using ipm_StartMedia(chDev)



28 IP Media Library API Programming Guide — November 2003

Application Development Guidelines

5. When the fax event IPMEV_FAXTONE is received, the application should first stop the call 
in progress using ipm_Stop(chDev,STOP_MEDIA), then retrieve the local T.38 fax 
information using ipm_GetLocalMediaInfo(chDev,&MediaInfo) and the eMediaType field 
MEDIATYPE_LOCAL_UDPTL_T38_INFO

Note: It is the responsibility of the application to respond promptly when the fax event is 
received or latency errors may occur. Refer to the T.38 Fax specification and ITU-T 
T.30 specification for latency guidelines. (Details on fax timing are in the T.30 
specification.)

Note: CED and CNG tones must be exchanged before switching to T.38 mode. Also, CED 
and CNG tones will not transmit reliably over coders other than G.711 and G.726.

6. Once the remote fax information is available, the application then starts a fax session by 
calling ipm_StartMedia(chDev)

7. When the fax event IPMEV_T38CALLSTATE is received, with the reason code 
T38CALLSTATE_DISCONNECT, the application can stop the fax session using 
ipm_Stop(chDev,STOP_MEDIA)



IP Media Library API Programming Guide — November 2003 29

Application Development Guidelines

Figure 6. Using T.38 Fax Scenario Diagram

Application IPML Interface

chdev = ipm_Open("ipmB1C1",NULL, EV_SYNC)

ipm_EnableEvents(chDev, *pEvents)

Enable T.38 Fax
notification events,
*pEvents =
IPMEV_T38CALLSTATE,
IPMEV_FAXTONE

ipm_GetLocalMediaInfo(chDev,&MediaInfo)

Get the local RTP information,
MediaInfo.MediaData[0].eMediaType
 = MEDIATYPE_LOCAL_RTP_INFO

ipm_StartMedia(chDev)

Start an RTP call
when the APP has
the remote IP
information.

IPMEV_FAXTONE

SRL

APP receives a
 FAX tone Event
and decides to
switch to FAX

ipm_Stop(chDev,STOP_MEDIA)

ipm_GetLocalMediaInfo(chDev,&MediaInfo)

Get the local T.38 information,
MediaInfo.MediaData[0].eMediaType
= MEDIATYPE_LOCAL_UDPTL_T38_INFO

ipm_StartMedia(chDev)

Start a T.38 FAX session
when the APP has
the remote T.38 IP
information.

FAX SESSION STARTED

IPMEV_T38CALLSTATE

APP receives a FAX completion
Event, reason code
=  T38CALLSTATE_DISCONNECT,
and stops the FAX session

ipm_Stop(chDev,STOP_MEDIA)



30 IP Media Library API Programming Guide — November 2003

Application Development Guidelines



IP Media Library API Programming Guide — November 2003 31

77.Quality of Service (QoS)

This chapter describes the QoS alarms that are supported by the IP media software, including the 
following sections:

• QoS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

• QoS Alarm Types and Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

• Alarm and Recovery Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

• Using QoS Alarms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

• Hints for QoS Alarm Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1 QoS Overview 

The public switched telephone network (PSTN) defines quality of service as a particular level of 
service, for example “toll-like” service. However, quality of service for voice or other media over 
the Internet Protocol is defined as a continuum of levels, which are affected by packet delay or loss, 
line congestion, and hardware quality such as microphone quality. The IP media software is 
designed to operate along the entire range of quality of service, enabling the application to retrieve 
information necessary for correct billing. 

All QoS parameters supported by the IP media software are disabled by default. That is, QoS 
monitoring must be enabled by the application. If desired, the application can set threshold values 
to monitor the quality of service during sessions. The QoS parameters are measured during time 
intervals, starting when a session is established. A fault occurs when the measurement of a QoS 
parameter crosses a predefined threshold. A success occurs when the measurement of a QoS 
parameter does not exceed a predefined threshold value. 

7.2 QoS Alarm Types and Thresholds 

All QoS alarms operate on a per-channel basis. That is, a QoS alarm indicates the status of 
particular channel during a particular session, not the status of an entire IP media resource board. 
The QoS alarms and thresholds described in this section are defined in the 
IPM_QOS_THRESHOLD_DATA data structure.

The following QoS alarms are identified by the enumeration eIPM_QOS_TYPE: 

EVT_DTMFDISCARDED
number of lost DTMF digits since the beginning of the call; indicates the system could not 
process the digits that were sent (Intel® NetStructure™ DM/IP Series boards only)

EVT_LOSTPACKETS
percent of lost packets per second since the beginning of the call



32 IP Media Library API Programming Guide — November 2003

Quality of Service (QoS)

EVT_JITTER
average jitter since the beginning of the call (in msec)

EVT_ROUNDTRIPLATENCY
RTP packet latency (Intel® NetStructure™ IPT Series boards only)

Each QoS alarm has the following threshold attributes: 

Note: Only the unFaultThreshold field is supported on Intel® NetStructure™ IPT Series boards.

unTime_Interval 
amount of time between two QoS parameter measurements (in multiples of 100 msec) 

unDebounceOn 
time interval for measuring potential alarm set condition (in msec., must be multiple of 
unTime_Interval). 

unDebounceOff 
time interval for measuring potential alarm clear condition (in msec., must be multiple of 
unTime_Interval) 

unFaultThreshold 
alarm threshold value. When this value is exceeded, the unDebounceOn timer is triggered. 
The units for unFaultThreshold are dependent on what alarm is being measured. In the case 
of the Lost Packets alarm, unFaultThreshold is measured in lost packets per second. 

unPercentSuccessThreshold 
number of poll instances that the error threshold must be exceeded in a unDebounce_On time 
interval before declaring alarm (expressed as a percentage of successes) 

unPercentFailThreshold 
number of poll instances that the error threshold was not exceeded in unDebounce_Off time 
interval before clearing alarm (expressed as a percentage of failures)

7.3 Alarm and Recovery Mechanisms

Figure 7 shows how a QoS alarm is triggered and an event is sent to an application. The time line 
shows that QoS parameters are measured every unTime_Interval. The QoS parameter in this 
example transitions from Success to Failure which starts the unDebounceOn timer. The QoS 
parameter transitions to Success and the unDebounceOn timer stops timing and is reset. At this 
time, the percentage failure rate is less than unPercentFailThreshold so no alarm event is sent. 
Later, the QoS parameter transitions from Success to Failure and the unDebounceOn timer begins 
timing again. In this scenario, the unDebounceOn timer expires while the QoS parameter is in 
Failure period and the percentage failure rate is equal to or greater than unPercentFailThreshold. 
Both of these situations cause an alarm event to be sent and the unDebounceOn timer to be reset. 



IP Media Library API Programming Guide — November 2003 33

Quality of Service (QoS)

Figure 7. Alarm Mechanism 

Figure 8 shows how an application recovers from a QoS alarm. The time line shows that QoS 
parameters are measured every unTime_Interval. The QoS parameter in this example transitions 
from Failure to Success which starts the unDebounceOff timer. The QoS parameter transitions to 
Failure and the unDebounceOff timer stops timing and is reset. At this time, the percentage 
success rate is less than unPercentSuccessThreshold so no alarm recovery event is sent. Later, the 
QoS parameter transitions from Failure to Success and the unDebounceOff timer begins timing 
again. In this scenario, the unDebounceOff timer expires while the QoS parameter is in Success 
period and the percentage success rate is equal to or greater than unPercentSuccessThreshold. 
Both of these situations cause an alarm recovery event to be sent and the unDebounceOff timer to 
be reset. 

Figure 8. Recovery Mechanism 

SUCCESS

FAILURE

unDebounceOn
timer starts

unPercentFailThreshold not exceeded
unDebounceOn timer is reset

unDebounceOn timer expires
unPercentFailThreshold is exceeded
alarm event is sent
unDebounceOn timer is reset

unDebounceOn
timer starts

TIME

unTime_Interval = interval between QoS measurements, in 100 msec units. 

{

SUCCESS

FAILURE

unDebounceOff
timer starts

unPercentSuccessThreshold not exceeded
unDebounceOff timer is reset

unDebounceOff timer expires
unPercentSuccessThreshold is exceeded
alarm event is sent
unDebounceOff timer is reset

unDebounceOff
timer starts

TIME

unTime_Interval = interval between QoS measurements, in 100 msec units. 

{



34 IP Media Library API Programming Guide — November 2003

Quality of Service (QoS)

7.4 Using QoS Alarms 

The following steps are an overview of how to use QoS alarms in your application. For details, 
refer to the specific API and data structure descriptions: 

1. Call ipm_GetQoSThreshold( ) to retrieve the current settings of QoS parameters. 

2. Set up the IPM_QOS_THRESHOLD_INFO structure with desired values for QoS parameter 
settings. 

3. Call ipm_SetQoSThreshold( ) to set the desired QoS parameters. This function may be called 
at any time by an application, including while a session is in progress. 

4. Call ipm_EnableEvents( ) to start QoS parameter monitoring. 

5. When a QoS alarm has been triggered, an IPMEV_QOS_ALARM event is sent by the system.

6. Use standard runtime library API functions to query the IPMEV_QOS_ALARM_DATA 
structure to retrieve more details about the alarms which have been triggered.

7. Call ipm_DisableEvents( ) to stop QoS parameter monitoring. 

The following pseudocode illustrates how you might use QoS alarms in an application.

#include<stdio.h>
#include<srllib.h>
#include<ipmlib.h>
typedeflongint(*HDLR)(unsignedlong);
voidCheckEvent();

/*% PacketLoss*/
Time_Interval= 1000; /*1second */
Debounce_On = 20000; /*20seconds */
Debounce_Off= 45000; /*45seconds */
Fault_Threshold= 6; /*2lost30msecpacketspersecond.*/
Percent_Success_Threshold= 10;/*10seconds(in 20seconds) */
Percent_Fail_Threshold= 30; /*30seconds(in45seconds) */

/*Jitter*/
Time_Interval= 100; /*100msec */
Debounce_On = 20000; /*20seconds */
Debounce_Off= 45000; /*45seconds */
Fault_Threshold= 360; /*1.530msecG711packetjitterpersecond.(unscaled)*/
Percent_Success_Threshold= 100;/*10seconds(in 20seconds) */
Percent_Fail_Threshold= 300; /*30seconds(in 45seconds) */

voidmain()
{
intnDeviceHandle;
eIPM _EVENT myEvents[3]={EVT_ROUNDTRIPLATENCY,EVT_LOSTPACKETS,EVT_JITTER};
//Registereventhandlerfunction with srl
sr_enbhdlr(EV_ANYDEV ,EV_ANYEVT ,(HDLR)CheckEvent);
/*
.
M ain Processing
.
*/

/*
NeedtoenablethreeeventsforIP devicehandle,nDeviceHandle.
ASSUM PTION:A validnDeviceHandlewasobtainedfrom priorcalltoipm_Open().
*/
if(ipm_EnableEvents(nDeviceHandle,myEvents,3,EV_SYNC)== -1)
{



IP Media Library API Programming Guide — November 2003 35

Quality of Service (QoS)

printf("ipm_EnableEventsfailedfordevicename% swith error= % d\n",
ATDV_NAM EP(nDeviceHandle),ATDV_LASTERR(nDeviceHandle));
/*
.
Perform ErrorProcessing
.
*/

}
/*
.
ContinueProcessing
.
*/

}

voidCheckEvent()
{
intnEventType= sr_getevttype();
intnDeviceID = sr_getevtdev();
switch(nEventType)
{
/*
.
.Listofexpectedevents
.
*/
/*W hen alarm occursyou getthisevent.*/

caseIPM EV_QOS_ALARM :
{
printf("ReceivedIPM EV_QOS_ALARM fordevice= % s\n",
ATDV_NAM EP(nDeviceID));

IPM _QOS_ALARM _DATA *l_pAlarm = (IPM _QOS_ALARM _DATA*)l_pVoid;
switch(l_pAlarm->eQoSType)
{
caseQOSTYPE_ROUNDTRIPLATENCY:
printf("QOSTYPE_ROUNDTRIPLATENCY=% d\n",l_pAlarm->eAlarmState);
break;

caseQOSTYPE_JITTER:
printf("QOSTYPE_JITTER=% d\n",l_pAlarm->eAlarmState);
break;

caseQOSTYPE_LOSTPACKETS:
printf("QOSTYPE_LOSTPACKETS=% d\n",l_pAlarm->eAlarmState);
break;

}
break;

}

default:
printf("Receivedunknown event= % dfordevice= % s\n",
nEventType,ATDV_NAM EP(nDeviceID));

break;

}
}

7.5 Hints for QoS Alarm Handling

The following hints may be useful in designing your application to handle QoS alarms:



36 IP Media Library API Programming Guide — November 2003

Quality of Service (QoS)

If a QoS alarm occurs in the middle of a call and you wish to change coders, you must stop the 
particular media stream before you can change to a different coder. Note that stopping and 
restarting the media stream tears down the call, therefore, a brief interruption in the audio stream 
will likely be experienced.

For Intel® NetStructure™ IPT Series boards, the system software sends a QoS alarm event when a 
threshold is exceeded (ALARM_STATE_ON). 

For Intel® NetStructure™ DM/IP Series boards and for HMP software, the system software sends 
a QoS alarm event when a threshold is exceeded (ALARM_STATE_ON) and when the threshold 
returns to the programmed level (ALARM_STATE_OFF).



IP Media Library API Programming Guide — November 2003 37

88.Building Applications

This chapter contains the following sections:

• Compiling and Linking under Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

• Compiling and Linking under Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.1 Compiling and Linking under Linux

The following topics discuss compiling and linking requirements:

• Include Files

• Required Libraries

8.1.1 Include Files

To use IP media API functions in your Linux application, certain include files (also known as 
header files) and library files are required. You must add statements for these include files in your 
application. The following header files contain equates that are required for each Linux application 
that uses the IP media library:

ipmerror.h 
IP media library error header file

ipmlib.h 
IP media library header file

8.1.2 Required Libraries

The following library files must be linked to the application in the following order:

libipm.so 
Linking this file is mandatory. Specify -lipm  in makefile.

libgc.so 
Required only if the application uses R4 Global Call library functions directly, for example, 
gc_OpenEx( ). Specify -lgc in makefile.

libdxxx.so 
Required only if the application uses R4 voice library functions directly, for example, 
dx_play( ). Specify -ldxxx in makefile.

libsrl.so 
Standard Runtime Library (SRL) is mandatory. Specify -lsrl in makefile.

libpthread.so 
POSIX threads system library. Specify -lpthread in makefile.



38 IP Media Library API Programming Guide — November 2003

Building Applications

libdl.so 
Dynamic Loader system library. Specify -ldl in makefile.

8.2 Compiling and Linking under Windows

The following topics discuss compiling and linking requirements:

• Include Files

• Required Libraries

8.2.1 Include Files

To use IP media library API functions in your Windows application, certain include files (also 
known as header files) and library files are required. You must add statements for these include 
files in your application. The following header files contain equates that are required for each 
Windows application that uses the IP media library:

ipmerror.h 
IP media library error header file

ipmlib.h 
IP media library header file

8.2.2 Required Libraries

The following library files must be linked to the application:

libipm.lib 
Linking this file is mandatory. 

libgc.lib 
Required only if the application uses R4 Global Call library functions directly, for example, 
gc_OpenEx( ). Use the -lgc argument to the system linker.

libdxxxmt.lib 
Required only if the application uses R4 voice library functions directly, for example, 
dx_play( ).

libsrlmt.lib 
Standard Runtime Library (SRL) is mandatory.



IP Media Library API Programming Guide — November 2003 39

Index

A
Alarm and Recovery Mechanisms 32

Alarm Mechanism 33

alarm mechanism 32

alarm thresholds 31

alarm types 31

Application Development Guidelines 21

Architecture 9

ATDV_ERRMSGP( ) 17, 19

ATDV_LASTERR( ) 17, 19

ATDV_NAMEP( ) 18

ATDV_SUBDEVS( ) 18

B
Building Applications 37

C
Compiling and Linking under Linux 37

Compiling and Linking under Windows 38

D
dev_Disconnect( ) 29

DTMF
detection

notification of 26
generation 27

DTMF mode 22
in-band 23
out-of-band 25
RFC 2833 24

DTMF Modes 22

dx_play( ) 37, 38

E
eIPM_QOS_TYPE 31

Error Handling 19

Event Handling 17

F
Features 9

figures
alarm mechanism 33
recovery mechanism 33

G
gc_Listen( ) 21

gc_OpenEx( ) 37, 38

Generating DTMF 27

Global Call library
relationship with IP media 10

H
Hints for QoS Alarm Handling 35

I
in-band mode 23

In-Band Mode Scenario Diagram 23

Include Files 37, 38

Introduction to DTMF Handling 21

Introduction to the IP Media Library 10

IP Media Architecture 10

IP Media Channel State Diagram 15

IP media software
Global Call relationship 10
media device naming 11
standard runtime library support 11

ipm_Close( ) 11

IPM_DIGIT_INFO 26

ipm_DisableEvents( ) 34

ipm_EnableEvents( ) 22, 26, 34

ipm_GetQoSThreshold( ) 34

ipm_Listen( ) 21

ipm_Open 23, 24, 25

ipm_Open( ) 11

IPM_PARM_INFO 22

IPM_QOS_THRESHOLD_DATA 31

IPM_QOS_THRESHOLD_INFO 34

ipm_ReceiveDigits 25



40 IP Media Library API Programming Guide  — November 2003

ipm_ReceiveDigits( ) 21

IPM_RFC2833_SIGNALID_INFO 26, 27

ipm_SendDigits( ) 22, 27

ipm_SendRFC2833SignalIDToIP( ) 27

ipm_SetParm( ) 22, 23, 24, 25

ipm_SetQoSThreshold( ) 34

IPMEV_QOS_ALARM_DATA 34

M
mechanisms for alarm and recovery 32

Media Channel Device Naming 11

media channel device naming 11

mode
DTMF 22

N
Notification of DTMF Detection 26

notification of DTMF detection 26

O
out-of-band mode 25

Out-of-Band Mode Scenario Diagram 26

P
Product Description 9

Programming Models 13

Q
QoS

alarm and recovery mechanisms 32
alarm thresholds 31
alarm types 31
overview 31
using alarms 34

QoS Alarm Types and Thresholds 31

QoS Overview 31

quality of service 31

Quality of Service (QoS) 31

R
Recovery Mechanism 33

recovery mechanism 32

Relationship with Global Call Library 10

Required Libraries 37, 38

RFC 2833 mode 24

RFC 2833 Scenario Diagram 25

S
Setting DTMF Parameters 22

Setting In-Band Mode 23

Setting Out-of-Band Mode 25

Setting RFC 2833 Mode 24

sr_dishdlr( ) 17

sr_enbhdlr( ) 17

sr_getboardcnt( ) 11

sr_getevtdev( ) 17

sr_getevttype( ) 17

sr_waitevt( ) 17

sr_waitevtEx( ) 17

SRL Event Management Functions 17

SRL Standard Attribute Functions 17

Standard Runtime Library Support 11

State Models 15

T
T.38 Fax Server Scenario 29

thresholds for QoS alarms 31

types of QoS alarms 31

U
Using QoS Alarms 34

using QoS alarms 34

Using the T.38 Fax Server 27


	Contents
	Figures
	Revision History
	About This Publication
	Purpose
	Intended Audience
	How to Use This Publication
	Related Information

	1. Product Description
	1.1 Features
	1.2 Architecture
	Figure�1.� IP Media Architecture

	1.3 Introduction to the IP Media Library
	1.4 Relationship with Global Call Library
	1.5 Standard Runtime Library Support
	1.6 Media Channel Device Naming

	2. Programming Models
	3. State Models
	Figure�2.� IP Media Channel State Diagram

	4. Event Handling
	4.1 SRL Event Management Functions
	4.2 SRL Standard Attribute Functions

	5. Error Handling
	6. Application Development Guidelines
	6.1 Introduction to DTMF Handling
	6.2 Setting DTMF Parameters
	6.2.1 DTMF Modes
	6.2.2 Setting In-Band Mode
	Figure�3.� In-Band Mode Scenario Diagram

	6.2.3 Setting RFC 2833 Mode
	Figure�4.� RFC 2833 Scenario Diagram

	6.2.4 Setting Out-of-Band Mode
	Figure�5.� Out-of-Band Mode Scenario Diagram


	6.3 Notification of DTMF Detection
	6.4 Generating DTMF
	6.5 Using T.38 Fax Gateway
	Figure�6.� Using T.38 Fax Scenario Diagram


	7. Quality of Service (QoS)
	7.1 QoS Overview
	7.2 QoS Alarm Types and Thresholds
	7.3 Alarm and Recovery Mechanisms
	Figure�7.� Alarm Mechanism
	Figure�8.� Recovery Mechanism

	7.4 Using QoS Alarms
	7.5 Hints for QoS Alarm Handling

	8. Building Applications
	8.1 Compiling and Linking under Linux
	8.1.1 Include Files
	8.1.2 Required Libraries

	8.2 Compiling and Linking under Windows
	8.2.1 Include Files
	8.2.2 Required Libraries


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U


