tel.

IP Media Library API for Linux
and Windows Operating Systems

Library Reference

November 2003

05-1833-003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This IP Media Library API for Linux and Windows Operating Systems Library Reference as well as the software described in it is furnished under
license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use
only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this
document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without express written consent of Intel Corporation.

Copyright © 2001-2003 Intel Corporation. All Rights Reserved.

AnyPoint, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP,
InstantIP, Intel, Intel Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel InBusiness, Intel Inside,
Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon,
Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon,
Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

* Other names and brands may be claimed as the property of others.
Publication Date: November 2003
Document Number: 05-1833-003

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page at:
http://www.intel.com/buy/wtb/wtb1028.htm

IP Media Library API Library Reference — November 2003

http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/wtb/wtb1028.htm

intel.

Contents

Revision History 6
About This Publication e 9

PUIDOSE . . . 9

Intended AUdIENCE. e 9

How to Use This Publication 9

Related Information e 10
Function Summary by Category 11
1.1 System Control Functions e 11
1.2 /O (Input/Output) FUNCLIONSo e e i e 12
1.3 Media Session FUNCLONS. e e e 12
1.4 Quality of Service (Q0S) Functions 12
1.5 IP Media Function Supportby Platform. 13
Function Information e 15
2.1 Function Syntax Conventions i e 15
ipm_Close() —close an IP channeldevice 16
ipm_DisableEvents() — disable IP notificationevents L. 18
ipm_EnableEvents() — enable IP notificationevents. L. 22
ipm_GetCTINfo() — return information about a voice channel of an IPM device 26
ipm_GetLocalMedialnfo() — retrieve properties for the local media channel 28
ipm_GetParm() — retrieve the current value ofaparameter 32
ipm_GetQoSAlarmStatus() — retrieve ON/OFF state of all QoS alarms 35
ipm_GetQoSThreshold() — retrieve QoS alarm threshold settings 38
ipm_GetSessionlInfo() — retrieve statistics forasession 42
ipm_GetXmitSlot() — return TDM time slot information foran IP channel 46
ipm_Listen() — connect an IP channeltoa TDMtimeslot. 49
ipm_Open() —openan P channeldevice. it 52
ipm_Ping() — generate a “ping” message toaremote IPaddress., 55
ipm_ReceiveDigits() — enable the IP channel to receive digits 58
ipm_ResetQoSAlarmStatus() — reset QoS alarm(s) to the OFF state. 62
ipm_SendDigits() — generate supplied digits in the specified direction 65
ipm_SendRFC2833SignallDTolP() — send the supplied RFC 2833 signal 68
ipm_SetParm() — set value for specified parameter 71
ipm_SetQoSThreshold() — change QoS alarm threshold settings. 74
ipm_SetRemoteMedialnfo() — set media properties and starts the session 77
ipm_StartMedia() — set media properties and starts the session 81
ipm_Stop() — stop operations on the specified IPchannel 85
ipm_UnListen() — stop listening to the TDM time slot 88
EVeNts . . . e e 91
Data Structures. e 95

IP Media Library API Library Reference — November 2003 3

Contents i ntGI o

CT_DEVINFO - information about a Global Call linedevice 96
IPM_CLOSE_INFO —reserved forfuture use.t 99
IPM_CODER_INFO — coder propertiesused inan IPsession.......................... 100
IPM_DIGIT_INFO — used to transfer digits over IP networkand TDMbus. 103
IPM_EVENT_INFO — used for IP event notification 104
IPM_FAX_SIGNAL — detected tone information definition 105
IPM_MEDIA — parent of port and coder info structures. 106
IPM_MEDIA_INFO — parent of IP_MEDIA, contains sessioninfo........................ 107
IPM_OPEN_INFO —reserved forfuture use.o e 108
IPM_PARM_INFO — used to set or retrieve parameters foran IP channel................. 109
IPM_PING_INFO — ping response information 111
IPM_PING_PARM - ping parameter information 112
IPM_PORT_INFO — RTP and RTCP port propertieso, 113
IPM_QOS_ALARM_DATA — data associated with QoS alarms 114
IPM_QOS_ALARM_STATUS - parent of QoS alarm data, contains alarm status........... 115
IPM_QOS_SESSION_INFO — QoS statistics foran IP session 116
IPM_QOS_THRESHOLD_DATA — QoS alarm threshold settings for an IP channel 117
IPM_QOS_THRESHOLD_INFO — parent of threshold data structures. 119
IPM_RFC2833_SIGNALID_INFO — RFC 2833 signal ID and stateinfo.. 120
IPM_RTCP_SESSION_INFO — session information for RTCP. 122
IPM_SESSION_INFO — parent structure containing RTCP and QoSinfo 124
SC_TSINFO — TDM bus (CT Bus) time slot information. 125
5 Error Codes e e 127
GlOSSaNYo 129
o =) 133

4 IP Media Library API Library Reference — November 2003

i ntGI o Contents

Tables

NO O~ WN =

IP Media Function Support by Platform. 13
Supported Coders for Intel® NetStructure™ IPT SeriesBoards 101
Supported Coders for Intel® NetStructure™ DM/IP SeriesBoards 102
Supported Coders for Host Media Processingc. i, 102
elPM_PARM ValUes e e 109
elPM_RFC2833_SIGNAL_ID Values for DM/IP Series Boards 120
elPM_RFC2833_SIGNAL_ID Values for HMP Software 121

IP Media Library API Library Reference — November 2003 5

intel.

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-1833-003 November 2003 IPM_CODER_INFO: Table 2: G.726 coder: corrected VAD to not supported.
ipm_DisableEvents(): removed EVT_T38FAXTONE - not supported
ipm_EnableEvents(): removed EVT_T38FAXTONE - not supported

Error Codes: added EIPM_RESOURCEINUSE

IPM_PARM_INFO data structure reference: added valid values and variable type for
PARMCH_RFC2833EVT_TX_PLT and PARMCH_RFC2833EVT_RX_PLT

IPM_PARM_INFO data structure reference: : deleted
PARMCH_RFC2833TONE_TX_PLT and PARMCH_RFC2833TONE_RX_PLT

IPM_PARM_INFO data structure: : deleted PARMCH_RFC2833MUTE_AUDIO
ipm_StartMedia(): corrected code example

ipm_SetRemoteMedialnfo(): corrected example

ipm_GetCTINfo(): function reference: new function

CT_DEVINFO: added page

05-1833-002 November 2002 Function Summary by Category chapter: New IP Media Function Support by
Platform section with new table

Function Information chapter: New “Platform” item in summary info for every function
ipm_GetLocalMedialnfo() function reference: Minor changes in code example
ipm_GetParm() function reference: Multiple changes in code example

ipm_GetQoSAlarmStatus() function reference: New note regarding the function not
being supported on IPT Series boards
Multiple minor changes in code example

ipm_GetQoSThreshold() function reference: Revised description for
pQoSThresholdInfo parameter
Multiple changes in code example

ipm_GetSessioninfo() function reference: New note regarding function not being
supported on IPT Series boards
New caution regarding function not being supported on IPT Series boards
Minor changes in code example

ipm_GetXmitSlot() function reference: Modified event handler in code example

ipm_Listen() function reference: Multiple minor changes in code example

ipm_Open() function reference: New caution regarding applications running in
separate processes

ipm_Ping() function reference: Revised note about non-supporting platforms to
include Host Media Processing software
Minor changes in code example

IP Media Library API Library Reference — November 2003

I n Revision History
®
Document No. Publication Date Description of Revisions
05-1833-002 ipm_ReceiveDigits() function reference: New caution regarding out-of-band vs.
(continued) DTMF modes

ipm_ResetQoSAlarmStatus() function reference: New note about function not being
supported on IPT Series boards

ipm_SendDigits() function reference: New note about function not being supported
on Host Media Processing software

Minor changes in code example
ipm_SendRFC2833SignallDTolP() function reference: New code example
ipm_SetParm() function reference: Minor changes in code example
ipm_SetRemoteMedialnfo() function reference: Minor changes in code example
ipm_StartMedia() function reference: Minor changes in code example
IPM_RFC2833_SIGNALID_INFO data structure reference: Corrected statement
about default value for eState.
ipm_Stop() function reference: Changed description of IPMEV_STOPPED event
Deleted caution regarding automatic call to ipm_UnListen()

ipm_UnListen() function reference: Softened caution regarding synchronous and
asynchronous modes

IPM_DIGIT_INFO data structure reference: Corrected data type in description of
eDigitType field

IPM_PARM_INFO data structure reference: Revised defines and descriptions for
elPM_PARM values

IPM_PORT_INFO data structure reference: Corrected name of
clPAddress[IP_ADDR_SIZE]

IPM_RFC2833_SIGNALID_INFO data structure reference: New note about structure
not being supported on IPT Series boards

Revised and expanded descriptions of values for eState

05-1833-001 September 2002 Initial version of this document

IP Media Library API Library Reference — November 2003 7

Revision History i nt9I ®

8 IP Media Library API Library Reference — November 2003

intel.

About This Publication

The following topics provide information about this publication:
¢ Purpose
¢ Intended Audience
¢ How to Use This Publication

e Related Information

Purpose

This guide provides details about the IP Media Library API, including function descriptions, event
messages, data structures, and error codes. This is a companion guide to the IP Media Library API
Programming Guide, which provides instructions for developing applications using the IP Media
Library.

Intended Audience

This guide is intended for software developers who will access the IP media software. This may
include any of the following:

¢ Distributors

¢ System Integrators

Toolkit Developers

Independent Software Vendors (ISVs)
Value Added Resellers (VARs)
Original Equipment Manufacturers (OEMs)

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software which
includes the IP media software. This publication assumes that you are familiar with the Linux or
Windows operating system and the C programming language. It is helpful to keep the Voice API
Library Reference handy as you develop your application.

The information in this guide is organized as follows:

¢ Chapter 1, “Function Summary by Category” groups the IP media APIs into categories.

¢ Chapter 2, “Function Information” provides details about each IP media API function,
including parameters, return values, events, and error codes.

IP Media Library API Library Reference — November 2003 9

[]
About This Publication I ntel o

10

Chapter 3, “Events” describes the events returned by the IP media software.

Chapter 4, “Data Structures” provides details about each data structure used by the IP media
software, including fields and descriptions.

Chapter 5, “Error Codes” lists the error codes included in the IP media software.

Related Information

The following guides may also be used to develop IP technology-based applications:

IP Media Library API Programming Guide

Global Call IP over Host-based Stack Technology User’s Guide

Global Call API Programming Guide

Global Call API Library Reference

Standard Runtime Library API for Linux and Windows Operating Systems Library Reference
http://developer.intel.com/design/telecom/support/ (for technical support)
http://www.intel.com/network/csp/ (for product information)

IP Media Library API Library Reference — November 2003

http://developer.intel.com/design/telecom/support/
http://www.intel.com/network/csp

intel.

Function Summary by Category 1

The IP Media library (IPML) contains functions which control and monitor media resources in an
IP environment. This chapter contains an overview of the IP Media library functions, which are
grouped into the categories listed below. This chapter also includes a table listing function support
on various platforms.

e System Control FUnCtions« e 11

e [/O (Input/Output) Functions.t e 12

* Media Session Functions. i 12

e Quality of Service (QoS) Functionsouiiiiriiininnnenan.. 12

e [P Media Function Support by Platform 13
1.1 System Control Functions

The following functions are used to manage channel, parameter, and event operations:

ipm_Close()
closes an IP channel

ipm_DisableEvents()
disables IP notification events

ipm_EnableEvents()
enables IP notification events

ipm_GetParm()
returns IP channel parameters

ipm_GetXmitSlot()
returns TDM time slot information for an IP channel

ipm_Listen()
connects an IP channel to a TDM time slot

ipm_Open()
opens an IP channel and returns a handle

ipm_Ping()
generates a message to a remote IP address

ipm_SetParm()
sets IP channel parameters

ipm_UnListen()
disconnects an IP channel from a TDM time slot

IP Media Library API Library Reference — November 2003 11

u
Function Summary by Category I nt9| o

1.2

1.3

1.4

12

I/0 (Input/Output) Functions

The following functions are used to transfer digits and data:

ipm_ReceiveDigits()
enables the IP channel to receive digits from the specified direction

ipm_SendDigits()
generates supplied digits in the specified direction

ipm_SendRFC2833SignalIDToIP()
sends the supplied RFC 2833 signal

Media Session Functions

The following functions are used to perform session management:

ipm_GetCTINfo()
retrieves information about an IPM device voice channel

ipm_GetLocalMedialnfo()
retrieves properties for the local media channel

ipm_GetSessionInfo()
retrieves statistics for the current session

ipm_SetRemoteMedialnfo()
sets media properties and starts the session

Note: This function is not recommended; use ipm_StartMedia() instead.

ipm_StartMedia()
sets properties for the local and remote media channels and starts the session

ipm_Stop()
stops operations on an IP channel

Quality of Service (QoS) Functions

The following functions are used to control QoS alarms and alarm thresholds:

ipm_GetQoSAlarmStatus()
retrieves the ON/OFF state of QoS alarms

ipm_GetQoSThreshold()
retrieves QoS alarm threshold settings

ipm_ResetQoSAlarmStatus()
resets QoS alarm to OFF state once it has been triggered

ipm_SetQoSThreshold()
changes QoS alarm threshold settings

IP Media Library API Library Reference — November 2003

1.5

Function Summary by Category

IP Media Function Support by Platform

Table 1, “IP Media Function Support by Platform”, on page 13 provides an alphabetical listing of
IP media API functions. The table indicates which platforms are supported for each of the
functions. There are three platforms that use the IP media library:

Intel® NetStructure™ DM/IP Series boards
These boards feature 24—60 ports-per-slot of both public network and Internet connectivity
plus onboard voice, fax, and speech processing. The boards are scalable to support access
gateways, IP-PBXs, and media server applications.

Intel® NetStructure IPT Series boards
These boards provide high-density, standards-based VOIP interface boards for developing
scalable, carrier-grade IP telephony gateways and media servers.

Intel® NetStructure Host Media Processing (HMP) software
The HMP software performs voice, conferencing and IVR processing on general-purpose
servers based on Intel® architecture without the use of specialized hardware.

Although a function may be supported on all the platforms, there may be some restrictions on its
use. For example, some parameters or parameter values may not be supported. For details, see the
function reference descriptions in Chapter 2, “Function Information”.

Table 1. IP Media Function Support by Platform

IP Media Library API Library Reference — November 2003

Function DM/IP Boards IPT Boards HMP Software
ipm_Close() S S S
ipm_DisableEvents() S S S
ipm_EnableEvents() S S S
ipm_GetCTINfo() S NS S
ipm_GetLocalMedialnfo() S S S
ipm_GetParm() S S S
ipm_GetQoSAlarmStatus() S NS S
ipm_GetQoSThreshold() S St S
ipm_GetSessioninfo() S NS S
ipm_GetXmitSlot() S S S
ipm_Listen() S S S
ipm_Open() S S S
ipm_Ping() NS S NS
ipm_ReceiveDigits() S S S
ipm_ResetQoSAlarmStatus() NS
ipm_SendDigits() S S NS
Legend:
NS = Not Supported, S = Supported,
1 = Variance between platforms, refer to Function Description for more information.

13

Function Summary by Category I n

®
Table 1. IP Media Function Support by Platform (Continued)

Function DM/IP Boards IPT Boards HMP Software
ipm_SendRFC2833SignallDTolP() S NS S
ipm_SetParm() S S S
ipm_SetQoSThreshold() S St S
ipm_SetRemoteMedialnfo() S S S
ipm_StartMedia() S S S
ipm_Stop() S S S
ipm_UnListen() S S S

Legend:
NS = Not Supported, S = Supported,
1 = Variance between platforms, refer to Function Description for more information.

14 IP Media Library API Library Reference — November 2003

intel.

Function Information 2

2.1

This chapter contains a detailed description of each IP Media library (IPML) function, presented in
alphabetical order.

Function Syntax Conventions

The IP Media library (IPML) functions use the following format:

ipm Function (DeviceHandle, Parameterl, Parameter2, .., ParameterN, Mode)

where:

ipm_Function
is the name of the function

DeviceHandle
is an input field that directs the function to a specific line device

Parameterl, Parameter2, ..., ParameterN
are input or output fields
Mode

is an input field indicating how the function is executed. This field is applicable to certain
functions only. For example, ipm_Close() can only be called synchronously, so Mode is not
used. Possible Mode values are:

* EV_ASYNC for asynchronous mode execution. When running asynchronously, the
function will return O to indicate it has initiated successfully, and will generate a
termination event to indicate completion.

e EV_SYNC for synchronous mode execution. When running synchronously, the function
will return a 0 to indicate that it has completed successfully.

IP Media Library API Library Reference — November 2003 15

u
ipm_Close() — close an IP channel device I n‘t9|
®

ipm_Close()

Name:
Inputs:

int ipm_Close(nDeviceHandle, *pCloselnfo)
int nDeviceHandle ¢ [P Media device handle

IPM_CLOSE_INFO *pCloselnfo e set to NULL

Returns: 0 on success
-1 on failure
Includes: srllib.h
ipmlib.h
Category: System Control
Mode: synchronous only
Platform: DM/IP, IPT, HMP
B Description
The ipm_Close() function closes an IP channel device and disables the generation of all events.
Parameter Description
nDeviceHandle IP Media device handle returned by ipm_Open()
pCloselnfo set to NULL; reserved for future use
B Termination Events
None - this function operates in synchronous mode only.
B Cautions

* The pCloselnfo pointer is reserved for future use and must be set to NULL.

* Issuing a call to ipm_Open() or ipm_Close() while the device is being used by another
process will not affect the current operation of the device. Other handles for that device that
exist in the same process or other processes will still be valid. The only process affected by
ipm_Close() is the process that called the function.

B Errors

16

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()

to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_CONFIG
Configuration error

IP Media Library API Library Reference — November 2003

I n close an IP channel device — ipm_Close()

EIPM_FWERROR
Firmware error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void main()

{

int nDeviceHandle;

/-k

Main Processing

*/

/*

Application is shutting down.

Need to close IP device handle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .

*/
if (ipm Close(nDeviceHandle, NULL) == -1)
{
printf ("----------- >ipm Close() failed for handle = %d\n", nDeviceHandle) ;

/*
éerform Error Processing
*

/-k

éontinue cleanup

x/

B See Also

e ipm_Open()

IP Media Library API Library Reference — November 2003 17

u
ipm_DisableEvents() — disable IP notification events I n‘t9|
®

ipm_DisableEvents()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:
Platform:

int ipm_DisableEvents(nDeviceHandle, *pEvents, unNumOfEvents, usMode)
int nDeviceHandle ¢ [P Media device handle

elPM_EVENT *pEvents * specifies events to disable

unsigned int unNumOfEvents * number of events to disable

unsigned short usMode ® async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h

System Control
asynchronous or synchronous

DM/IP, IPT, HMP

18

Description

The ipm_DisableEvents() function disables IP notification events. Some events are used for
Quality of Service (QoS) notifications. Other events are used to indicate status, for example, if fax
tone has been detected.

Notification events are different from asynchronous function termination events, such as

IPMEV_OPEN, which cannot be disabled. Once events are successfully disabled, if any events
occur, the application is not notified.

IP Media Library API Library Reference — November 2003

intel.

Parameter

disable IP notification events — ipm_DisableEvents()

Description

nDeviceHandle

pEvents

unNumOfEvents
usMode

B Termination Events

handle of the IP Media device
pointer to enumeration that specifies the events to disable

The eIPM_EVENT data type is an enumeration that defines the following

values:

e EVT_DTMFDISCARDED - number of lost DTMF digits since the
beginning of the call

e EVT_LOSTPACKETS - percent of lost packets since the beginning of
the call

e EVT_JITTER - average jitter since the beginning of the call (in msec)

e EVT_ROUNDTRIPLATENCY — RTP packet latency

e EVT_FAXTONE - fax tone from TDM

e EVT_RFC2833 — RFC 2833 events

e EVT_T38CALLSTATE — T.38 call state events

Note: EVT_DTMFDISCARDED is not supported on Intel®
NetStructure IPT Series boards.
EVT_ROUNDTRIPLATENCY is not supported on Intel® NetStructure
DM/IP Series boards.

number of events to disable
operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

IPMEV_EVENT_DISABLED
Indicates successful completion; that is, specified events were disabled. This event does not

return any data.

IPMEV_ERROR

Indicates that the function failed.

B Cautions

None.

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM

Invalid parameter

EIPM_INTERNAL

Internal error

EIPM_INV_EVT
Invalid event

IP Media Library API Library Reference — November 2003 19

ipm_DisableEvents() — disable IP notification events I n

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

EIPM_UNSUPPORTED
Function unsupported

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main ()
{
int nDeviceHandle;
eIPM_EVENT myEvents [3] :{EVT_DTMFDISCARDED, EVT_ LOSTPACKETS, EVT_JITTER};
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV ANYEVT , (HDLR)CheckEvent) ;

/*

Main Processing

*/

/*

Application is shutting down

Need to disable all enabled events for IP device handle, nDeviceHandle.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() and
The events listed in myEvents were enabled sometime earlier.

*/
if (ipm DisableEvents (nDeviceHandle, myEvents, 3, EV_ASYNC) == -1)
{
printf ("ipm DisableEvents failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*
Perform Error Processing
*/
}
/*

Continue shut down
*/

void CheckEvent ()

int nEventType = sr_getevttype();
int nDeviceID = sr getevtdev() ;

20 IP Media Library API Library Reference — November 2003

I n disable IP notification events — ipm_DisableEvents()

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm DisableEvents */
case IPMEV_EVENT DISABLED:
printf ("Received IPMEV_EVENT DISABLED for device = %s\n",

ATDV_NAMEP (nDevicelID)) ;
break;

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID)) ;
break;

B See Also

e ipm_EnableEvents()

IP Media Library API Library Reference — November 2003 21

u
ipm_EnableEvents() — enable IP notification events I n‘t9|
®

ipm_EnableEvents()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:
Platform:

int ipm_EnableEvents(nDeviceHandle, *pEvents, unNumOfEvents, usMode)
int nDeviceHandle ¢ [P Media device handle

elPM_EVENT *pEvents * specifies events to enable

unsigned int unNumOfEvents * number of events to enable

unsigned short usMode ® async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h

System Control
asynchronous or synchronous

DM/IP, IPT, HMP

22

Description

The ipm_EnableEvents() function enables IP notification events. Some events are used to
indicate status, for example, if fax tone has been detected. Other events are used for Quality of
Service (QoS) notifications on a particular media channel.

Notification events (solicited events) are different from asynchronous function termination events,
such as IPMEV_OPEN, which cannot be disabled. Once notification events are successfully
enabled, if any of the specified events occur, the application is notified via SRL event management
functions.

IP Media Library API Library Reference — November 2003

intel.

Parameter

enable IP notification events — ipm_EnableEvents()

Description

nDeviceHandle

pEvents

unNumOfEvents
usMode

B Termination Events

handle of the IP Media device
pointer to enumeration that specifies the events to enable

The eIPM_EVENT data type is an enumeration that defines the following

values:

e EVT_DTMFEDISCARDED - number of lost DTMF digits since the
beginning of the call

e EVT_LOSTPACKETS - percent of lost packets since the beginning of
the call

e EVT_JITTER - average jitter since the beginning of the call (in msec)

e EVT_ROUNDTRIPLATENCY — RTP packet latency

e EVT_FAXTONE - fax tone from TDM

e EVT_RFC2833 — RFC 2833 events

e EVT_T38CALLSTATE — T.38 call state events

Note: EVT_DTMFDISCARDED is not supported on Intel®
NetStructure IPT Series boards.
EVT_ROUNDTRIPLATENCY is not supported on Intel® NetStructure
DM/IP Series boards.

number of events to enable
operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

IPMEV_EVENT_ENABLED
Indicates successful completion; that is, specified events were enabled. This event does not

return any data.

IPMEV_ERROR

Indicates that the function failed.

B Cautions

None.

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM

Invalid parameter

EIPM_EVT_EXIST

Event already enabled
EIPM_EVT_LIST FULL

Too many events

IP Media Library API Library Reference — November 2003 23

ipm_EnableEvents() — enable IP notification events I n

24

EIPM_INTERNAL
Internal error

EIPM_INV_EVT
Invalid event

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

EIPM_UNSUPPORTED
Function unsupported

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main ()

{

int nDeviceHandle;

eIPM_EVENT myEvents [3] :{EVT_DTMFDISCARDED, EVT_ LOSTPACKETS, EVT_JITTER};
// Register event handler function with srl

sr_enbhdlr (EV_ANYDEV ,EV ANYEVT , (HDLR)CheckEvent) ;

/*

Main Processing

*/

/*

Need to enable three events for IP device handle, nDeviceHandle.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

if (ipm EnableEvents (nDeviceHandle, myEvents, 3, EV_ASYNC) == -1)

{

printf ("ipm EnableEvents failed for device name %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

éerform Error Processing
*

/*

: Continue Processing

*/

IP Media Library API Library Reference — November 2003

I n enable IP notification events — ipm_EnableEvents()

void CheckEvent ()

{

int nEventType = sr_getevttype() ;
int nDeviceID = sr getevtdev();

switch (nEventType)

{
/*

. List of expected events

*/
/* Expected reply to ipm EnableEvents() */
case IPMEV_EVENT ENABLED:
printf ("Received IPMEV_EVENT ENABLED for device = %s\n",

ATDV_NAMEP (nDevicelID)) ;
break;

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

e ipm_DisableEvents()

IP Media Library API Library Reference — November 2003 25

u
ipbm_GetCTINfo() — return information about a voice channel of an IPM device I ntel o

ipm_GetCTINfo()

Name: int ipm_GetCTInfo(nDeviceHandle, *pCTInfo, usMode)

Inputs: int nDeviceHandle e valid channel device handle
CT_DEVINFO *pCTInfo * pointer to device information structure
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: ipmlib.h
Category: Media Session

Mode: Asynchronous or synchronous (or both)
Platform: DM/IP, HMP

B Description

The ipm_GetCTInfo() function returns information about a voice channel of an IPM device. This
information is contained in a CT_DEVINFO data structure.

Parameter Description

nDeviceHandle specifies the valid IP channel handle obtained when the channel was
opened using ipm_Open()

pCTInfo specifies a pointer to the CT_DEVINFO structure that contains the IP

channel device information
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Cautions
This function will fail if an invalid IP channel handle is specified.
B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return the following error:

EIPM_BADPARM
Invalid parameter
B Example
#include <srllib.h>

#include <ipmlib.h>
#include <errno.h>

26 IP Media Library API Library Reference — November 2003

I n o return information about a voice channel of an IPM device — ipm_GetCTINfo()

main ()

int chdev; /* Channel device handle */

CT _DEVINFO ct_devinfo; /* Device information structure */
/* Open board 1 channel 1 devices */

if ((chdev = ipm Open("ipmB1C1", 0)) == -1) ({
printf ("Cannot open channel ipmB1Cl. errno = %d", errno);
exit (1) ;

}

/* Get Device Information */

if (ipm GetCTInfo(chdev, &ct_devinfo, EV_SYNC) ==
printf ("Error message = %s", ATDV_ERRMSGP (chdev)) ;
exit (1) ;

}

-1) {

printf ("$s Product Id = 0x%x, Family = %d, Mode = %d, Network = %d, Bus
...mode = %d, Encoding = %d", ATDV_NAMEP(chdev), ct_devinfo.ct_prodid,
...ct_devinfo.ct_devfamily, ct_devinfo.ct_devmode, ct_devinfo.ct_nettype,
...ct_devinfo.ct_busmode, ct_devinfo.ct_busencoding) ;

}
B See Also

e ipm_Open()

IP Media Library API Library Reference — November 2003 27

u
ipm_GetLocalMedialnfo() — retrieve properties for the local media channel I n‘t9|
®

ipm_GetLocalMedialnfo()

Name:
Inputs:

int ipm_GetLocalMedialnfo(nDeviceHandle, *pMedialnfo, usMode)
int nDeviceHandle e |P Media device handle
IPM_MEDIA_INFO *pMedialnfo * pointer to media information structure

unsigned short usMode ® async or sync mode setting

Returns: 0 on success
-1 on failure
Includes: srllib.h
ipmlib.h
Category: Media Session
Mode: asynchronous or synchronous
Platform: DM/IP, IPT, HMP
B Description
The ipm_GetLocalMedialnfo() function retrieves properties for the local media channel. This
function retrieves the local RTP/RTCP port and IP address information or T.38 port and IP address
information associated with the specified IP channel. These properties are assigned during
firmware download.
To run this function asynchronously, set mode to EV_ASYNC. The function returns 0 if successful
and the application must wait for the IPMEV_GET_LOCAL_MEDIA_INFO event. Once the
event has been returned, use SRL functions to retrieve IPM_MEDIA_INFO structure fields.
To run this function synchronously, set mode to EV_SYNC. The function returns O if successful
and the IPM_MEDIA_INFO structure fields will be filled in.
Parameter Description
nDeviceHandle handle of the IP Media device
pMedialnfo pointer to structure that contains local channel RTP / RTCP ports and IP
address information or T.38 port and IP address information
See the IPM_MEDIA_INFO data structure page for details.
usMode operation mode
Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.
B Termination Events

28

IPMEV_GET_LOCAL_MEDIA_INFO
Indicates successful completion, that is, local media information was received. Once the event
has been returned, use SRL functions to retrieve IPM_MEDIA_INFO structure fields.

IP Media Library API Library Reference — November 2003

retrieve properties for the local media channel — ipm_GetLocalMedialnfo()

IPMEV_ERROR
Indicates that the function failed.

Cautions

e To retrieve RTP or T.38 information, set the eMediaType field to MEDIATYPE_RTP_INFO
or MEDIATYPE_T38_INFO and set unCount to 1. See the example for details.

¢ When using Intel® NetStructure IPT Series boards, the following limitations apply:

* For a non-load balancing configuration, if this function is called multiple times, it could
return a different port number for a specified channel.

* Inload-balancing mode, if this function is called multiple times, it could return a different
IP/Port pair each time.

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;
/-k

Main Processing

*/

IP Media Library API Library Reference — November 2003 29

ipm_GetLocalMedialnfo() — retrieve properties for the local media channel I n

30

/*
Get the local IP information for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .

*/
IPM_MEDIA_INFO MedialInfo;
MediaInfo.unCount = 1;

MediaInfo.MediaData[0] .eMediaType = MEDIATYPE_LOCAL_RTP_INFO;
// MedialInfo.MediaData[0] .eMediaType = MEDIATYPE LOCAL T38 INFO;
if (ipm GetLocalMediaInfo (nDeviceHandle, &MedialInfo, EV_ASYNC) == -1)
{
printf ("ipm GetLocalMediaInfo failed for device name %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing

*/

Continue processing
*/

void CheckEvent ()

{
unsigned int 1i;
int nDeviceID = sr getevtdev() ;
int nEventType = sr_getevttype();
void* pvVoid = sr getevtdatap() ;
IPM_MEDIA_INFO* pMediaInfo;

switch (nEventType)

{
/*

Other events
*/
/* Expected reply to ipm GetLocalMediaInfo */
case IPMEV_GET LOCAL MEDIA INFO:
printf ("Received IPMEV_GET_ LOCAL MEDIA_INFO for device name = %s\n",
ATDV_NAMEP (nDevicelID)) ;
pMediaInfo = (IPM_MEDIA_ INFO*)pVoid;
for(i=0; i<pMediaInfo->unCount; i++)
{
if (MEDIATYPE LOCAL_RTP_INFO == pMediaInfo->MediaData[i].eMediaType)
printf ("MediaType = MEDIATYPE_RTP_INFOII\H");

printf ("PortId= %d\n",pMediaInfo->MediaData[i] .mediaInfo.PortInfo.unPortId) ;
printf ("IPAddress=%s\n",pMediaInfo->MediaData[i] .mediaInfo.PortInfo.cIPAddress) ;

}

break;
default:
printf ("Received unknown event = %d for device name = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

IP Media Library API Library Reference — November 2003

u
I ntGI retrieve properties for the local media channel — ipm_GetLocallMedialnfo()
®

B See Also

e ipm_SetRemoteMedialnfo()

IP Media Library API Library Reference — November 2003 31

u
ipbm_GetParm() — retrieve the current value of a parameter I ntel o

ipm_GetParm()

Name: int ipm_GetParm(nDeviceHandle, *pParmInfo, usMode)

Inputs: int nDeviceHandle
IPM_PARM_INFO *pParmInfo
unsigned short usMode

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: System Control
Mode: asynchronous or synchronous

Platform: DM/IP, IPT, HMP

¢ [P Media device handle
* pointer to parameter info structure

* async or sync mode setting

B Description

The ipm_GetParm() function retrieves the current value of a parameter.

To run this function asynchronously, set mode to EV_ASYNC. The function returns 0 if successful
and the application must wait for the IPMEV_GETPARM event. Once the event has been returned,
use SRL functions to retrieve parameter values.

To run this function synchronously, set mode to EV_SYNC. The function returns 0 if successful
and the IPM_PARM_INFO structure fields will be filled in.

Parameter Description
nDeviceHandle handle of the IP media device
*pParmInfo pointer to structure that contains IP channel parameter values

See the IPM_PARM_INFO data structure page for details.

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_GET_PARM

Indicates successful completion, that is, the data structure IPM_PARM_INFO has been filled
in. Use SRL functions to retrieve structure fields.

IPMEV_ERROR

Indicates that the function failed.

32

IP Media Library API Library Reference — November 2003

retrieve the current value of a parameter — ipm_GetParm()

B Cautions

None.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM

Invalid parameter

EIPM_FWERROR

Firmware error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long) ;

void main ()

{

int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*

Main Processing

*/

/*

ASSUMPTION: A valid nDeviceHandle was obtained from prior
call to ipm Open() .

*/

IPM_PARM INFO ParmInfo;

unsigned long ulParmValue = 0;

ParmInfo.eParm = PARMCH ECHOTAIL;

ParmInfo.pvParmvValue = &ulParmValue;
if (ipm GetParm(nDeviceHandle, &ParmInfo, EV_ASYNC)==-1)

{

printf ("ipm GetParm failed for device name %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing

*
)

ulParmvalue = 0;
ParmInfo.eParm = PARMCH ECHOTAIL;

IP Media Library API Library Reference — November 2003

33

ipbm_GetParm() — retrieve the current value of a parameter I n
®
if (ipm_GetParm(nDeviceHandle, &ParmInfo, EV_SYNC)==-1)
{
printf ("$s: ipm GetParm failed..exiting..!!!\n", ATDV_NAMEP (nDeviceHandle)) ;
}
else

34

printf ("$s: ipm GetParm(parm=0x%x,value=0x%x) ok %\n", ATDV_NAMEP (nDeviceHandle),
ParmInfo.eParm, ulParmValue) ;

}
/*

continue
*/

void CheckEvent ()

{
int nEventType = sr_getevttype();
int nDeviceID = sr getevtdev() ;
void* pVoid = sr_getevtdatap() ;
IPM_PARM _ INFO* pParmInfo;

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm GetQoSAlarmStatus */
case IPMEV_GET PARM:
pParmInfo = (IPM_PARM INFO*) pVoid;
printf ("Received IPMEV_GETPARM for device = %s\n",
ATDV_NAMEP (nDevicelID)) ;
printf ("$s: parm=0x%x, ok %\n", ATDV_NAMEP (nDeviceID),
pParmInfo->eParm) ;

break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

e ipm_SetParm()

IP Media Library API Library Reference — November 2003

u
I ntGI retrieve ON/OFF state of all QoS alarms — ipm_GetQoSAlarmStatus()
®

ipm_GetQoSAlarmStatus()

Name: int ipm_GetQoSAlarmStatus(nDeviceHandle, *pQoSAlarmInfo, usMode)

Inputs: int nDeviceHandle ¢ [P Media device handle
IPM_QOS_ALARM_STATUS *pQoSAlarmInfo e pointer to QoS alarm status structure
unsigned short usMode ® async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: QoS
Mode: asynchronous or synchronous

Platform: DM/IP, HMP

B Description

The ipm_GetQoSAlarmStatus() function retrieves the ON/OFF state of all QoS alarms
enumerated in eIPM_QOS_TYPE. Quality of Service (QoS) alarms report the status of a media
channel, they do not report board-level alarms.

Note: This function is not supported on Intel® NetStructure™ IPT Series boards.

Use ipm_ResetQoSAlarmStatus() to reset the QoS alarm state.

Parameter Description

nDeviceHandle handle of the IP Media device

pQoSAlarmInfo pointer to structure that contains alarm identifier and alarm status values
See IPM_QOS_ALARM_STATUS for details.

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_GET_QOS_ALARM_STATUS
Indicates successful completion; that is, alarm status information was filled in. Use SRL
functions to retrieve IPM_QOS_ALARM_STATUS structure fields.

IPMEV_ERROR
Indicates that the function failed.

IP Media Library API Library Reference — November 2003 35

ipm_GetQoSAlarmStatus() — retrieve ON/OFF state of all QoS alarms I n

B Cautions
The function returns the status of all QoS alarms that are enumerated in eIPM_QOS_TYPE.
B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long) ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/-k
Main Processing
*/
/-k
Query the alarm status for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/
if (ipm GetQoSAlarmStatus (nDeviceHandle, NULL, EV_ASYNC) == -1)
printf ("ipm GetQoSAlarmStatus failed for device name %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

36 IP Media Library API Library Reference — November 2003

I n retrieve ON/OFF state of all QoS alarms — ipm_GetQoSAlarmStatus()

Perform Error Processing

*/
}
/*

continue
*/

void CheckEvent ()

{
unsigned int i;
int nEventType = sr getevttype() ;
int nDeviceID = sr_getevtdev();
void* pvVoid = sr getevtdatap();
IPM_QOS_ALARM STATUS* pAlarmStatus;

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm GetQoSAlarmStatus */
case IPMEV_GET QOS ALARM STATUS:
pAlarmStatus = (IPM_QOS_ALARM STATUS*)pVoid;
printf ("Received IPMEV_GET QOS ALARM STATUS for device = %s\n",
ATDV_NAMEP (nDeviceID)) ;
for(i=0; 1 < pAlarmStatus->unAlarmCount; ++1i)
{
switch(pAlarmStatus->QoSDatal[i] .eQoSType)
{
case QOSTYPE DTMFDISCARDED:
printf (" DTMFDISCARDED = %d\n",pAlarmStatus->QoSData[i].eAlarmState) ;
break;
case QOSTYPE_ LOSTPACKETS:
printf (" LOSTPACKETS = %d\n",pAlarmStatus->QoSData[i] .eAlarmState) ;
break;
case QOSTYPE JITTER:
printf (" JITTER = %d\n",pAlarmStatus->QoSData[i] .eAlarmState) ;
break;

}

break;

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

e ipm_ResetQoSAlarmStatus()

IP Media Library API Library Reference — November 2003

37

u
ipm_GetQoSThreshold() — retrieve QoS alarm threshold settings I n‘t9|
®

ipm_GetQoSThreshold()

Name: int ipm_GetQoSThreshold(nDeviceHandle, *pQoSThresholdInfo, usMode)
Inputs: int nDeviceHandle ¢ [P Media device handle
IPM_QOS_THRESHOLD_INFO *pQoSThresholdInfo e pointer to QoS alarm threshold
structure
unsigned short usMode * async or sync mode setting
Returns: 0 on success
-1 on failure
Includes: srllib.h
ipmlib.h
Category: QoS
Mode: asynchronous or synchronous
Platform: DM/IP, IPT, HMP
B Description
The ipm_GetQoSThreshold() function retrieves QoS alarm threshold settings. Quality of Service
(QoS) alarms report the status of a media channel, they do not report alarms for a board.
Parameter Description
nDeviceHandle handle of the IP Media device
pQoSThresholdInfo pointer to IPM_QOS_THRESHOLD_INFO structure which contains
one or more IPM_QOS_THRESHOLD_DATA structures
usMode operation mode
Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.
B Termination Events
IPMEV_GET_QOS_THRESHOLD_INFO
Indicates successful completion; that is, alarm threshold settings were returned. Use SRL
functions to retrieve IPM_QOS_THRESHOLD_INFO structure fields.
IPMEV_ERROR
Indicates that the function failed.
B Cautions

38

e The IPM_QOS_THRESHOLD_INFO structure specifies the QoS Alarm Identifier thresholds.
The application may use this structure to get statistics for only specified QoS types. Use SRL
functions to retrieve IPM_QOS_THRESHOLD_INFO structure fields.

IP Media Library API Library Reference — November 2003

retrieve QoS alarm threshold settings — ipm_GetQoSThreshold()

e Ifipm_GetQoSThreshold() is called synchronously, the IPM_QOS_THRESHOLD_INFO
structure is both an input and output parameter. If ipm_GetQoSThreshold() is called
asynchronously, the structure is used only as an input parameter. To retrieve all the QoS
threshold settings, in both synchronous and asynchronous modes, set the unCount field in
IPM_QOS_THRESHOLD_INFO structure to 0.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long) ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/ *

Main Processing

*/

/ *

Query the alarm threshold settings for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

IPM_QOS THRESHOLD INFO myThresholdInfo;

myThresholdInfo.unCount = 0;
if (ipm GetQoSThreshold (nDeviceHandle, &myThresholdInfo, EV_ASYNC) == -1)
{
printf ("ipm GetQoSAlarmStatus failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

IP Media Library API Library Reference — November 2003 39

ipm_GetQoSThreshold() — retrieve QoS alarm threshold settings I n

40

Perform Error Processing

*/
/*
continue

*/

void CheckEvent ()

{

unsigned int i;
int nEventType
int nDeviceID =

sr_getevttype () ;
sr_getevtdev () ;

void* pVoid = sr_getevtdatap() ;
IPM_QOS THRESHOLD INFO* pThresholdInfo;

switch (nEventType)

{
/*

Other events

*/

/* Expected reply to ipm GetQoSThreshold */
case IPMEV_GET QOS_THRESHOLD INFO:
pThresholdInfo = (IPM_QOS_THRESHOLD INFO*)pVoid;
printf ("Received IPMEV_GET QOS_THRESHOLD INFO for device = %s\n'",
ATDV_NAMEP (nDevicelID)) ;
for (i=0; i<pThresholdInfo->unCount; ++i)

{

switch (pThresholdInfo->QoSThresholdData [i] .eQoSType)

{

case QOSTYPE_DTMFDISCARDED:

printf ("QOSTYPE DTMFDISCARDED\n") ;

printf ("unTimelInterval = %d\n",
pThresholdInfo->QoSThresholdData[i] .unTimeInterval) ;

printf ("unDebounceOn = %d\n",
pThresholdInfo->QoSThresholdData [i] .unDebounceOn) ;

printf ("unDebounceOff = %d\n",
pThresholdInfo->QoSThresholdData[1i] .unDebounceOff) ;

printf ("unFaultThreshold = %d\n",
pThresholdInfo->QoSThresholdData[i] .unFaultThreshold) ;

printf ("unPercentSuccessThreshold = %d\n",
pThresholdInfo->QoSThresholdData [i] .unPercentSuccessThreshold) ;

printf ("unPercentFailThreshold = %d\n",
pThresholdInfo->QoSThresholdData[i] .unPercentFailThreshold) ;

break;

case QOSTYPE_ LOSTPACKETS:

printf("QOSTYPEiLOSTPACKETS\n");

printf ("unTimelInterval = %d\n",
pThresholdInfo->QoSThresholdData[i] .unTimeInterval) ;

printf ("unDebounceOn = %d\n",
pThresholdInfo->QoSThresholdData [i] .unDebounceOn) ;

printf ("unDebounceOff = %d\n",
pThresholdInfo->QoSThresholdData[1i] .unDebounceOff) ;

IP Media Library API Library Reference — November 2003

I n retrieve QoS alarm threshold settings — ipm_GetQoSThreshold()

printf ("unFaultThreshold = %d\n",
pThresholdInfo->QoSThresholdData [i] .unFaultThreshold) ;

printf ("unPercentSuccessThreshold = %d\n",
pThresholdInfo->QoSThresholdData[i] .unPercentSuccessThreshold) ;

printf ("unPercentFailThreshold = %d\n",
pThresholdInfo->QoSThresholdData[i] .unPercentFailThreshold) ;

break;

case QOSTYPE JITTER:
printf ("QOSTYPE_JITTER\n") ;
printf ("unTimeInterval = %d\n",
pThresholdInfo->QoSThresholdData[i] .unTimeInterval) ;
printf ("unDebounceOn = %d\n",
pThresholdInfo->QoSThresholdData[i] .unDebounceOn) ;
printf ("unDebounceOff = %d\n",
pThresholdInfo->QoSThresholdData [i] .unDebounceOff) ;
printf ("unFaultThreshold = %d\n",
pThresholdInfo->QoSThresholdData [i] .unFaultThreshold) ;
\n",
i] .unPercentSuccessThreshold) ;

printf ("unPercentSuccessThreshold = %d
pThresholdInfo->QoSThresholdData [i
printf ("unPercentFailThreshold = %d\n",
pThresholdInfo->QoSThresholdData[i] .unPercentFailThreshold) ;
break;

}

break;

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

* ipm_SetQoSThreshold()

IP Media Library API Library Reference — November 2003 41

u
ipm_GetSessioninfo() — retrieve statistics for a session I n‘t9|
®

ipm_GetSessioninfo()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:
Platform:

int ipm_GetSessionInfo(nDeviceHandle, *pSessionInfo, usMode)

int nDeviceHandle ¢ [P Media device handle
IPM_SESSION_INFO *pSessionlnfo * pointer to session info structure
unsigned short usMode * async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h

Media Session

asynchronous or synchronous

DM/IP, HMP

Note:

42

Description

The ipm_GetSessionInfo() function retrieves QoS and RTCP statistics for media session, if one is
in progress, otherwise it retrieves statistics for the previous session.

This function is not supported on Intel® NetStructure™ IPT Series boards.

A new firmware session is initiated by calling ipm_StartMedia(). In this scenario, data returned
by ipm_GetSessionInfo() will be for the current session. ipm_Stop() terminates the session.
Between firmware sessions, that is, after ipm_Stop() and before ipm_StartMedia() is called, the
data returned by ipm_GetSessionInfo() is for the previous firmware session.

Parameter Description
nDeviceHandle handle of the IP Media device

pSessionInfo pointer to structure that contains Quality of Service (QoS) information
about the previous IP session

See IPM_SESSION_INFO for details.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Termination Events

IPMEV_GET_SESSION_INFO
Indicates successful completion; that is, the structure containing session statistics was filled in.
Use SRL functions to retrieve IPM_SESSION_INFO structure fields.

IPMEV_ERROR
Indicates that the function failed.

IP Media Library API Library Reference — November 2003

I n retrieve statistics for a session — ipm_GetSessioninfo()

B Cautions

* The application can call ipm_GetQoSAlarmStatus() to retrieve alarm information for the
current session.

* ipm_GetSessionInfo() is not supported on Intel® NetStructure IPT Series boards. If called, it
returns zeroes.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/-k
Main Processing
*/
/-k
Get the current session information for IP device handle, nDeviceHandle.
ASSUMPTION: nDeviceHandle was obtained from a prior call to ipm Open() .
Also, ipm_ StartMedia() was successfully called some time earlier.
*/
if (ipm GetSessionInfo (nDeviceHandle, NULL, EV_ASYNC) == -1)
printf ("ipm GetSessionInfo failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;

IP Media Library API Library Reference — November 2003 43

ipm_GetSessioninfo() — retrieve statistics for a session I n

/*
éerform Error Processing
«
/*
Continue processing
+/

void CheckEvent ()

{
unsigned int i;
IPM_SESSION_INFO* pIPSessionInfo;
int nDeviceID = sr getevtdev() ;
int nEventType = sr_getevttype();
void* pvVoid = sr getevtdatap() ;

switch (nEventType)

{
/*

Other events

*/
/* Expected reply to ipm GetSessionInfo */
case IPMEV_GET SESSION INFO:
pIPSessionInfo = (IPM_SESSION_INFO*)pVoid;
printf ("Received IPMEV_GET SESSION_INFO for device = %s\n",
ATDV_NAMEP (nDevicelID)) ;
printf ("RtcpInfo.unLocalSR_TimeStamp=%d\n",
pIPSessionInfo->RtcpInfo.unLocalSR_TimeStamp) ;
printf ("RtcpInfo.unLocalSR_TxPackets=%d\n",
pIPSessionInfo->RtcpInfo.unLocalSR_TxPackets) ;
printf ("RtcpInfo.unLocalSR_TxOctets=%d\n",
pIPSessionInfo->RtcpInfo.unLocalSR_TxOctets) ;
printf ("RtcpInfo.unLocalSR_SendIndication=%d\n",
pIPSessionInfo->RtcpInfo.unLocalSR_SendIndication) ;
printf ("RtcpInfo.unLocalRR_FractionLost=%d\n",
pIPSessionInfo->RtcpInfo.unLocalRR FractionLost) ;
printf ("RtcpInfo.unLocalRR_CumulativeLost=%d\n",
pIPSessionInfo->RtcpInfo.unLocalRR_CumulativeLost) ;
printf ("RtcpInfo.unLocalRR_SegNumber=%d\n",
pIPSessionInfo->RtcpInfo.unLocalRR_SegNumber) ;
printf ("RtcpInfo.unLocalRR ValidInfo=%d\n",
pIPSessionInfo->RtcpInfo.unLocalRR ValidInfo) ;
printf ("RtcpInfo.unRemoteSR_TimeStamp=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteSR _TimeStamp) ;
printf ("RtcpInfo.unRemoteSR_TxPackets=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteSR_TxPackets) ;
printf ("RtcpInfo.unRemoteSR_TxOctets=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteSR _TxOctets) ;
printf ("RtcpInfo.unRemoteSR_SendIndication=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteSR _SendIndication) ;
printf ("RtcpInfo.unRemoteRR_FractionLost=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteRR FractionLost) ;

44 IP Media Library API Library Reference — November 2003

I n retrieve statistics for a session — ipm_GetSessioninfo()

printf ("RtcpInfo.unRemoteRR_CumulativeLost=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteRR CumulativeLost) ;

printf ("RtcpInfo.unRemoteRR_SegNumber=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteRR_SegNumber) ;

printf ("RtcpInfo.unRemoteRR_ValidInfo=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteRR ValidInfo) ;

for(i = 0; i< pIPSessionInfo->unQoSInfoCount; ++1i)

printf ("Session QOS Type=%d\n", pIPSessionInfo->QoSInfo[i].eQoSType) ;
printf ("Session QOS Data=%d\n", pIPSessionInfo->QoSInfo[i].unData) ;

}

break;
default:
printf ("Received unknown event = %d for device = %s\n",

nEventType, ATDV_NAMEP (nDevicelID)) ;
break;

B See Also

e ipm_GetQoSAlarmStatus()
e ipm_StartMedia()

IP Media Library API Library Reference — November 2003 45

u
ipm_GetXmitSlot() — return TDM time slot information for an IP channel I n‘t9|
®

ipm_GetXmitSlot()

Name: int ipm_GetXmitSlot(nDeviceHandle, *pTimeslotInfo, usMode)
Inputs: int nDeviceHandle * [P Media device handle
SC_TSINFO *pTimeslotInfo * pointer to time slot info structure
unsigned short usMode * async or sync mode setting
Returns: 0 on success
-1 on failure
Includes: srllib.h
ipmlib.h
Category: System Control
Mode: asynchronous or synchronous
Platform: DM/IP, IPT, HMP
B Description
The ipm_GetXmitSlot() function returns TDM time slot information for an IP channel.
Parameter Description
nDeviceHandle handle of the IP Media device
pTimeslotInfo pointer to structure that describes the time slot number, time slot type, and
bus encoding format
See SC_TSINFO for details.
usMode operation mode
Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.
B Termination Events
IPMEV_GET_XMITTS_INFO
Indicates successful completion; that is, the TDM time slot information data structure was
filled in. Use SRL functions to retrieve SC_TSINFO structure fields.
IPMEV_ERROR
Indicates that the function failed.
B Cautions
None.

46

IP Media Library API Library Reference — November 2003

return TDM time slot information for an IP channel — ipm_GetXmitSlot()

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

EIPM_INTERNAL
Internal error

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long) ;

void main ()

{

int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/-k
Main Processing
*/
/-k
Get the timeslot information for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/
if (ipm GetXmitSlot (nDeviceHandle, NULL, EV_ASYNC) == -1)
printf ("ipm GetXmitSlot failed for device name = %$s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing

*/

IP Media Library API Library Reference — November 2003 47

ipm_GetXmitSlot() — return TDM time slot information for an IP channel I n
®
/ *
. continue
*

}

void CheckEvent ()

{
int nEventType = sr_getevttype () ;
int nDeviceID = sr_getevtdev() ;
void* pvVoid = sr getevtdatap() ;
SC_TSINFO* pTimeSlotInfo;

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm GetXmitSlot */
case IPMEV_GET XMITTS INFO:
pTimeSlotInfo = (SC_TSINFO*)pVoid;
printf ("Received IPMEV_GET_XMITTS_INFO for device = %s\n",
ATDV_NAMEP (nDevicelID)) ;
printf ("Timeslot number %d\n", *(pTimeSlotInfo->sc_tsarrayp));
break;

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID)) ;
break;

B See Also

None.

48 IP Media Library API Library Reference — November 2003

u
I ntGI connect an IP channel to a TDM time slot — ipm_Listen()
®

ipm_Listen()

Name: int ipm_Listen(nDeviceHandle, *pTimeslotInfo, usMode)

Inputs: int nDeviceHandle * [P Media device handle
SC_TSINFO *pTimeslotInfo * pointer to time slot info structure
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: System Control
Mode: asynchronous or synchronous

Platform: DM/IP, IPT, HMP

B Description

The ipm_Listen() function connects an IP channel to a TDM time slot, enabling data to flow
between the TDM time slot and the IP network or the host.

If ipm_Listen() is called to connect to a different TDM time slot, the firmware automatically
breaks an existing connection and reconnects it to the new time slot. In this case, the application
does not need to call the ipm_UnListen() function.

ipm_Listen() uses the information stored in the SC_TSINFO structure to connect the receive
channel on the device to an available TDM bus time slot. The time slot number is returned in the
SC_TSINFO structure. The receive channel remains connected to the TDM bus time slot until
ipm_UnListen() is called or ipm_Listen() is called with a different time slot.

Parameter Description
nDeviceHandle handle of the IP Media device
pTimeslotInfo pointer to structure that describes the time slot number, time slot type,

and bus encoding format
See SC_TSINFO for details.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_LISTEN
Indicates successful completion; that is, an IP channel was connected to the specified TDM
time slot. This event does not return any data.

IP Media Library API Library Reference — November 2003 49

ipm_Listen() — connect an IP channel to a TDM time slot I n

50

IPMEV_ERROR
Indicates the function failed.

Cautions

The IP Media library allows ipm_Listen() and ipm_UnListen() to be called either synchronously
or asynchronously. Other Intel® libraries may not support asynchronous execution of the similar
xx_Listen and xx_UnListen functions.

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

EIPM_INTERNAL
Internal error

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main ()

{

int nDeviceHandle;

SC_TSINFO IPTimeSlotInfo;

long 1TimeSlot;

// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/-k

Main Processing

*/

/-k

Tell IP device handle, nDeviceHandle, to listen to timeslot 10.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

1TimeSlot = 10;
IPTimeSlotInfo.sc_tsarrayp = &lTimeSlot;

IP Media Library API Library Reference — November 2003

I n connect an IP channel to a TDM time slot — ipm_Listen()

IPTimeSlotInfo.sc_numts = 1;
if (ipm Listen(nDeviceHandle, &IPTimeSlotInfo, EV_ASYNC) == -1)

{

printf ("ipm Listen failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing
*/
/*
Continue processing
*/
void CheckEvent ()
int nDeviceID = sr_getevtdev();
int nEventType = sr getevttype() ;

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm Listen */
case IPMEV_LISTEN:

printf ("Received IPMEV_LISTEN for device = %s\n", ATDV NAMEP (nDeviceID)) ;
break;

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

e ipm_UnListen()

IP Media Library API Library Reference — November 2003 51

u
ipm_Open() — open an IP channel device I n‘t9|
®

ipm_Open()

Name: int ipm_Open(*szDevName, *pOpenlnfo, usMode)

Inputs: const char *szDeviceName ¢ device name pointer
IPM_OPEN_INFO *pOpenlnfo e set to NULL
unsigned short usMode * async or sync mode setting

Returns: device handle if successful
-1 on failure

Includes: srllib.h
ipmlib.h

Category: System Control
Mode: asynchronous or synchronous

Platform: DM/IP, IPT, HMP

B Description

The ipm_Open() function opens an IP channel device and returns a unique device handle to
identify the physical device that performs the media transfer. All subsequent references to the
opened device must be made using the handle until the device is closed.

The IP Media library allows ipm_Open() to be called either synchronously or asynchronously.

If ipm_Open() is called synchronously and no errors are received, the device handle that is
returned is valid and may be used by the application.

If ipm_Open() is called asynchronously with valid arguments, a device handle is returned
immediately. Before using this device handle in other function calls, the application must wait for
an IPMEV_OPEN event indicating the handle is valid.

If ipm_Open() is called asynchronously and IPMEV_ERROR is returned, a device handle is also
returned. The application must call ipm_Close() using the handle returned by ipm_Open().

Parameter Description

szDeviceName pointer to device name to open

IP Media channel device: ipmBxCy where x is the unique logical board
number and y is the media device channel number.

Board device: ipmBx where x is the unique logical board number.
pOpenlnfo set to NULL; reserved for future use
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

52 IP Media Library API Library Reference — November 2003

In

tel.

open an IP channel device — ipm_Open()

Termination Events

IPMEV_OPEN
Indicates successful completion; that is, an IP channel was opened and the device handle is
valid. This event does not return any data.

IPMEV_ERROR
Indicates that the function failed.

Cautions

* Two different applications (running in separate processes) cannot use the same IP media
device (ipmBxCx). In other words, multiple calls to ipm_Open() on the same IP media
device are not allowed.

¢ The pOpenlnfo pointer is reserved for future use and must be set to NULL.

e If this function is called asynchronously and IPMEV_ERROR is received, the application
must call ipm_Close() using the handle returned by ipm_Open().

* When using Intel® NetStructure DM/IP Series boards, you must call ipm_Open() in
synchronous mode.

¢ When using Intel® NetStructure Host Media Processing (HMP) software, you must call
ipm_Open() in synchronous mode.

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EINVAL
Invalid argument (system-level error)

ENOMEM
Memory allocation failure (system-level error)

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main()

{
char cDevName [10] ;
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*

. Create a Thread that waits on srl events, this
. thread will execute the WorkerThread function

*/

IP Media Library API Library Reference — November 2003 53

ipm_Open() — open an IP channel device I n

/*
Open IP channel ipmB1C1l
*/
sprintf (cDevName, "ipmB1C%d", 1) ;
if ((nDeviceHandle = ipm Open (cDevName, NULL, EV_ASYNC)) == -1)

{
printf ("ipm Open failed for device name = %s\n", cDevName) ;
/*

éerform Error Processing
«/
/-k
continue Main Processing
+/
void CheckEvent ()

{

int nDeviceID = sr getevtdev() ;
int nEventType = sr_getevttype();

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm Open */
case IPMEV_OPEN:

printf ("Received IPMEV_OPEN for device = %s\n", ATDV_NAMEP (nDevicelD)) ;
break;

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID)) ;
break;

B See Also

e ipm_Close()

54 IP Media Library API Library Reference — November 2003

intel.

generate a “ping” message to a remote IP address — ipm_Ping()

ipm_Ping()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:
Platform:

int ipm_Ping(nDeviceHandle, *pPingParameter, *pPinglnfo, usMode)

int nDeviceHandle ¢ board device handle

PIPM_PING_PARM *pPingParameter e pointer to an array of ping parameter structures
IPM_PING_INFO *pPinglnfo e pointer to ping info structure

unsigned short usMode ® async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h

System Control
asynchronous or synchronous
IPT

Note:

Description

The ipm_Ping() function generates a “ping” message to a remote IP address from an Ethernet
interface. Typically used for testing and debugging, applications send a ping message and expect a
response to be returned. The “ping” functionality operates on a per-board basis.

This function is not supported on Intel® NetStructure™ DMY/IP Series boards or on the Host Media
Processing (HMP) software.

Parameter Description

nDeviceHandle handle of the board device ipmBx, where x is the unique logical board
number

*pPingParameter pointer to an array of ping parameter structures
See IPM_PING_PARM for details.

pPingInfo pointer to structure that is filled with ping results upon successful return
See IPM_PING_INFO for details.

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Termination Events

IPMEV_PING
Indicates successful completion; that is, ping response information was returned. Use SRL
functions to retrieve IPM_PING_INFO structure fields.

IP Media Library API Library Reference — November 2003 55

ipm_Ping() — generate a “ping” message to a remote IP address I n

56

IPMEV_ERROR
Indicates that the function failed.

Cautions

You must specify both a remote and a local IP address in the IPM_PING_PARM structure or this
function will fail.

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long) ;

void main ()

{

int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/-k

Main Processing

*/

/-k

ASSUMPTION: A valid nDeviceHandle was obtained from prior

call to ipm Open() for a board device.

*/

IPM _PING PARM PingParameter;

strcpy (PingParameter.cRemoteIPAddress, "192.168.1.16");

strcpy (PingParameter.cLocalIPAddress, "192.168.1.16");

if (ipm Ping (nDeviceHandle, &PingParameter, NULL, EV_ASYNC)==-1)
printf ("ipm Ping failed for device name %s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

. Perform Error Processing

*/

IP Media Library API Library Reference — November 2003

I n generate a “ping” message to a remote IP address — ipm_Ping()

/*
. continue

*/
}

void CheckEvent ()

{

int nEventType = sr getevttype() ;
int nDeviceID = sr_getevtdev();
void* pvVoid = sr getevtdatap();
IPM_PING_INFO* pPingInfo;

switch (nEventType)

{
/*

. Other events
*/

/* Expected reply to ipm GetQoSAlarmStatus */
case IPMEV_PING:

pPingInfo = (IPM_PING INFO*)pVoid;
printf ("Received IPMEV_PING for device = %s\n", ATDV_NAMEP (nDevicelID)) ;
break;

default:

printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID)) ;
break;

B See Also

None.

IP Media Library API Library Reference — November 2003 57

ipm_ReceiveDigits() — enable the IP channel to receive digits

ipm_ReceiveDigits()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:
Platform:

int ipm_ReceiveDigits(nDeviceHandle, *pDigitInfo, usMode)

int nDeviceHandle ¢ [P Media device handle
IPM_DIGIT_INFO *pDigitInfo e pointer to digit info structure
unsigned short usMode * async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h

/0
asynchronous or synchronous

DM/IP, IPT, HMP

Note:

58

Description

The ipm_ReceiveDigits() function enables the IP channel to receive digits from the IP network or

the TDM bus. The receive operation continues until ipm_Stop() is called with the

eSTOP_RECEIVE_DIGITS flag set.

Digits are always received asynchronously, even though this function may be called in either
asynchronous or synchronous mode. If this function is called synchronously and returns 0, it does
not indicate that the digits have been received but that the function was successfully processed by

the firmware. The application must enable event reporting and check for the

IPMEV_DIGITS_RECEIVED event.

Parameter Description

nDeviceHandle handle of the IP Media device

pDigitInfo pointer to structure that contains digit type, direction, and digits

See IPM_DIGIT_INFO for details.

Note that all fields are filled in upon successful function return.

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for

synchronous execution.

Termination Events

IPMEV_RECEIVE_DIGITS

Indicates function was successfully processed but does not indicate that digits were received.

This event does not return data.

IP Media Library API Library Reference — November 2003

In

tel.

Note:

enable the IP channel to receive digits — ipm_ReceiveDigits()

IPMEV_ERROR
Indicates that the function failed.

IPMEV_DIGITS_RECEIVED is an unsolicited event that may be reported after the
ipm_ReceiveDigits() function is called either synchronously or asynchronously. An event is
reported for each digit that was received. The event data indicates the digit origin via the
e]PM_DIGIT_DIRECTION enumeration.

Cautions

e The only supported value for eIPM_DIGIT_DIRECTION is to receive digits from the TDM
bus.

e The IPM_DIGIT_INFO struct must have the unNumberOfDigits set to 1.

e The ipm_ReceiveDigits() function returns valid data only if the digits are being transmitted in
out-of-band mode. For more information on setting DTMF mode, see the IP Media Library
API Programming Guide.

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <ipmlib.h>
#include <srllib.h>
#include <stdio.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main()

{

int nDeviceHandle;

IPM DIGIT INFO myDigitInfo;

// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;
/-k

Main Processing

*/

IP Media Library API Library Reference — November 2003 59

ipm_ReceiveDigits() — enable the IP channel to receive digits I n

60

/*
Enable an IP device handle, nDeviceHandle, to receive a specified set of digits.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .

*/

myDigitInfo.eDigitType = DIGIT ALPHA NUMERIC;
myDigitInfo.eDigitDirection = DIGIT_TDM;

if (ipm ReceiveDigits (nDeviceHandle, &myDigitInfo, EV_ASYNC) == -1)

{

printf ("ipm ReceiveDigits failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle) , ATDV_LASTERR (nDeviceHandle)) ;
/*

éerform Error Processing
*
/*
Continue processing
+/
void CheckEvent ()

{

IPM_DIGIT_INFO *pDigitInfo;

int nDeviceID = sr_getevtdev();
int nEventType = sr_getevttype();
void* pvVoid = sr_getevtdatap();

switch (nEventType)

{
/*

Other events

*/
//Successful reply to ipm ReceiveDigits()
case IPMEV_RECEIVE DIGITS:
printf ("Received IPMEV_RECEIVE DIGITS for device = %s\n",

ATDV_NAMEP (nDevicelID)) ;
break;

//Unsolicited event, retrieve digits
case IPMEV_DIGITS_RECEIVED:
printf ("Received IPM DIGITS_RECEIVED for device = %s\n",
ATDV_NAMEP (nDevicelID)) ;
pDigitInfo = (IPM DIGIT INFO*)pVoid;
printf ("Number of digits = %d, digit=%s on device %s\n",
pDigitInfo->unNumberOfDigits, pDigitInfo->cDigits,
ATDV_NAMEP (nDevicelID)) ;
break;

IP Media Library API Library Reference — November 2003

u
I ntGI enable the IP channel to receive digits — ipm_ReceiveDigits()
®

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

}
B See Also

e ipm_SendDigits()

IP Media Library API Library Reference — November 2003 61

u
ipm_ResetQoSAlarmStatus() — reset QoS alarm(s) to the OFF state I n‘t9|
®

ipm_ResetQoSAlarmStatus()

Name: int ipm_ResetQoSAlarmStatus(nDeviceHandle, *pQoSAlarmInfo, usMode)

Inputs: int nDeviceHandle ¢ [P Media device handle
IPM_QOS_ALARM_STATUS *pQoSAlarmInfo e pointer to QoS alarm structure
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: QoS
Mode: asynchronous or synchronous

Platform: DM/IP, HMP

B Description
The ipm_ResetQoSAlarmStatus() function resets QoS alarm(s) to the OFF state. Quality of
Service (QoS) alarms report the status of a media channel, they do not report board-level alarms.

Note: This function is not supported on Intel® NetStructure™ IPT Series boards.

Parameter Description
nDeviceHandle handle of the IP Media device

pQoSAlarmlInfo pointer to IPM_QOS_ALARM_STATUS structure which contains one or
more IPM_QOS_ALARM_DATA structures

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_RESET_QOS_ALARM_STATUS
Indicates successful completion; that is, specified QoS alarm(s) have been reset to OFF. This
event does not return data.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

None.

62 IP Media Library API Library Reference — November 2003

reset QoS alarm(s) to the OFF state — ipm_ResetQoSAlarmStatus()

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main ()

{

int nDeviceHandle;

IPM_QOS_ALARM STATUS myAlarmStatus;

// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

«

/*

Reset the QOSTYPE JITTER alarm for IP device handle, nDeviceHandle.
NOTE: nDeviceHandle was obtained from prior call to ipm Open()

*/

myAlarmStatus.unAlarmCount = 1;

myAlarmStatus.QoSData [0] .eQoSType = QOSTYPE JITTER;
if (ipm ResetQoSAlarmStatus (nDeviceHandle, &myAlarmStatus, EV_ASYNC) == -1)

{

printf ("ipm ResetQoSAlarmStatus failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing

*/

IP Media Library API Library Reference — November 2003 63

ipm_ResetQoSAlarmStatus() — reset QoS alarm(s) to the OFF state I n

/*
. Continue Processing

*/
}

void CheckEvent ()

{

int nEventType = sr_getevttype () ;
int nDeviceID = sr_getevtdev() ;

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm ResetQoSAlarmStatus */
case IPMEV RESET QOS ALARM STATUS:

printf ("Received IPMEV_RESET QOS ALARM STATUS for device = %s\n",
ATDV_NAMEP (nDevicelID)) ;

break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID)) ;
break;

B See Also

e ipm_GetQoSAlarmStatus()

64 IP Media Library API Library Reference — November 2003

u
I ntGI generate supplied digits in the specified direction — ipm_SendDigits()
@

ipm_SendDigits()

Name: int ipm_SendDigits(nDeviceHandle, *pDigitInfo, usMode)

Inputs: int nDeviceHandle ¢ [P Media device handle
IPM_DIGIT_INFO *pDigitInfo * pointer to digit info structure
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: 1/0
Mode: asynchronous or synchronous

Platform: DM/IP, IPT

B Description

The ipm_SendDigits() function generates the supplied digits in the specified direction.

Note: This function is not supported on Intel® NetStructure™ Host Media Processing (HMP) software.

Parameter Description
nDeviceHandle handle of the IP Media device

pDigitInfo pointer to structure that contains digit type, direction, and digits
See IPM_DIGIT_INFO for details.

Note that the application must fill in the digit type, direction, number of
digits, and the actual digits to be sent.

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_SEND_DIGITS
Indicates successful completion; that is, the supplied digits were sent. This event does not
return data.

IPMEV_ERROR
Indicates that the function failed.

IP Media Library API Library Reference — November 2003 65

ipm_SendDigits() — generate supplied digits in the specified direction I n

66

B Cautions

e If this function is called synchronously and returns 0, it does not indicate that the digits have
been sent, but that the function was successfully processed by the firmware. The application
must enable event reporting and check for the IPMEV_SEND_DIGITS event.

¢ The only supported value for elPM_DIGIT_DIRECTION is to send digits toward the TDM
bus.

Hm Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <stdio.h>

#include <string.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main()

{

int nDeviceHandle;

IPM DIGIT INFO myDigitInfo;

// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/-k

Main Processing

*/

/-k

Generate a set of digits using IP device handle, nDeviceHandle.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

myDigitInfo.eDigitType = DIGIT ALPHA NUMERIC;

myDigitInfo.eDigitDirection = DIGIT_TDM;

strcpy (myDigitInfo.cDigits, "12345678901234567890") ;
myDigitInfo.unNumberOfDigits = 20;

IP Media Library API Library Reference — November 2003

I n generate supplied digits in the specified direction — ipm_SendDigits()

if (ipm SendDigits(nDeviceHandle, &myDigitInfo, EV_ASYNC) == -1)
{

printf ("ipm SendDigits failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

éerform Error Processing
*
/*
: Continue Main processing
+/
}

void CheckEvent ()

{

int nDeviceID = sr getevtdev();
int nEventType = sr_getevttype() ;
void* pvVoid = sr getevtdatap();

switch (nEventType)

{
/*

. Other events

*/
//Successful reply to ipm SendDigits (
case IPMEV_SEND DIGITS:

printf ("Received IPMEV_SEND DIGITS for device = %s\n", ATDV_NAMEP (nDevicelID)) ;
break;

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

e ipm_ReceiveDigits()

IP Media Library API Library Reference — November 2003 67

n
ipm_SendRFC2833SignallDTolP() — send the supplied RFC 2833 signal | n‘tel .

ipm_SendRFC2833SignallDTolP()

Name: int ipm_SendRFC2833SignallDToIP(nDeviceHandle, * pSignallnfo, usMode)

Inputs: int nDeviceHandle * [P Media device handle
IPM_RFC2833_SIGNALID_INFO *pSignallnfo e pointer to digit info structure
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: 1/0
Mode: asynchronous or synchronous

Platform: DM/IP, HMP

B Description

The ipm_SendRFC2833SignalIDToIP() function sends the supplied RFC 2833 signal to IP.

Note: This function is not supported on Intel® NetStructure™ IPT Series boards.

Parameter Description

nDeviceHandle handle of the IP Media device

pSignallnfo pointer to structure that contains RFC 2833 signal ID and state
information

See IPM_RFC2833_SIGNALID_INFO for details.
Note that the application must fill in the RFC 2833 signal to be sent.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_SEND_SIGNAL_TO_IP
Indicates successful completion; that is, the supplied RFC 2833 signal was sent. This event
does not return data.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

None.

68 IP Media Library API Library Reference — November 2003

B Errors

send the supplied RFC 2833 signal — ipm_SendRFC2833SignallDTolP()

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE

Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include
#include
#include
#include

<stdio.h>

<string.h>
<srllib.h>
<ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main()

{

int nDeviceHandle;
IPM RFC2833 SIGNALID INFO SignalInfo;
// Register event handler function with srl

sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*

Main Processing

*/

/*

Generate the start of an RFC2833 ringback packet to IP.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

SignalInfo.eSignalID = SIGNAL ID EVENT LINE RINGING_ TONE;

SignalInfo.eState = SIGNAL_STATE_ON;

if (ipm SendRFC2833SignalIDToIP (nDeviceHandle, &SignalInfo, EV_ASYNC) == -1)
{
printf ("ipm SendRFC2833SignallDToIP failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

IP Media Library API Library Reference — November 2003 69

ipm_SendRFC2833SignallDTolP() — send the supplied RFC 2833 signal I n

Perform Error Processing
*/
/*
Continue Main processing
*/
/*
Generate the end of an RFC2833 ringback packet to IP.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/
SignalInfo.eSignalID = SIGNAL ID EVENT LINE RINGING_TONE;

SignalInfo.eState = SIGNAL_STATE_OFF;
if (ipm SendRFC2833SignalIDToIP (nDeviceHandle, &SignalInfo, EV_ASYNC) == -1)

{

printf ("ipm SendRFC2833SignalIDToIP failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing
*/

void CheckEvent ()

{

int nDeviceID = sr getevtdev() ;
int nEventType = sr_getevttype();
void* pvVoid = sr _getevtdatap() ;

switch (nEventType)

{
/*

Other events

*/
//Successful reply to ipm SendDigits()

case IPMEV_SEND SIGNAL TO IP:
printf ("Received IPMEV_SEND SIGNAL TO_IP for device = %s\n", ATDV_NAMEP (nDevicelD)) ;

break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

None.

70 IP Media Library API Library Reference — November 2003

u
I ntGI o set value for specified parameter — ipm_SetParm()

ipm_SetParm()

Name: int ipm_SetParm(nDeviceHandle, *pParmlInfo, usMode)

Inputs: int nDeviceHandle * [P Media device handle
IPM_PARM_INFO *pParmInfo e pointer to parameter info structure
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: System Control
Mode: asynchronous or synchronous

Platform: DM/IP, IPT, HMP

B Description

The ipm_SetParm() function sets values for the specified parameter.

Parameter Description
nDeviceHandle handle of the IP media device
pParmlInfo pointer to structure that contains IP channel parameter values

See the IPM_PARM_INFO data structure page for details.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_SET_PARM
Indicates successful completion; that is, the supplied IP channel parameter was modified.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

None.

IP Media Library API Library Reference — November 2003 71

ipbm_SetParm() — set value for specified parameter I n

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long) ;

void main ()

{

int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*

Main Processing

*/

/*

ASSUMPTION: A valid nDeviceHandle was obtained from prior
call to ipm Open() .

*/

IPM_PARM_ INFO ParmInfo;

unsigned long ulParmValue = ECHO_TAIL_16;

ParmInfo.eParm = PARMCH ECHOTAIL;

ParmInfo.pvParmvValue = &ulParmValue;
if (ipm SetParm(nDeviceHandle, &ParmInfo, EV_ASYNC)==-1)

{

printf ("ipm SetParm failed for device name %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing
*/
/*

. continue

*/

72 IP Media Library API Library Reference — November 2003

I n o set value for specified parameter — ipm_SetParm()

void CheckEvent ()

{
int nEventType = sr_getevttype();
int nDeviceID = sr getevtdev();
void* pVoid = sr_getevtdatap();

switch (nEventType)

{
/*

. Other events
*/
/* Expected reply to ipm GetQoSAlarmStatus */
case IPMEV_SET PARM:
printf ("Received IPMEV_SETPARM for device = %s\n",
ATDV_NAMEP (nDevicelID)) ;
break;
default:
printf ("Received unknown event = %d for device = %s\n",

nEventType, ATDV_NAMEP (nDevicelID)) ;
break;

B See Also

e ipm_GetParm()

IP Media Library API Library Reference — November 2003 73

u
ipm_SetQoSThreshold() — change QoS alarm threshold settings I n‘t9|
®

ipm_SetQoSThreshold()

Name: int ipm_SetQoSThreshold(nDeviceHandle, *pInfo, usMode)
Inputs: int nDeviceHandle ¢ [P Media device handle
IPM_QOS_THRESHOLD_INFO *pQoSThresholdInfo e pointer to QoS alarm threshold
structure
unsigned short usMode * async or sync mode setting
Returns: 0 on success
-1 on failure
Includes: srllib.h
ipmlib.h
Category: QoS
Mode: asynchronous or synchronous
Platform: DM/IP, IPT, HMP
B Description
The ipm_SetQoSThreshold() function changes QoS alarm threshold settings. Quality of Service
(QoS) alarms report the status of a media channel, they do not report board-level alarms. Use this
function to set the trigger levels for QoS alarms. This function can be called at any time, including
when a session is in progress.
If mode is EV_SYNC, the function returns O if successful; otherwise —1 is returned. The current
QoS alarm identifier’s settings are returned via the pointer to IPM_QOS_THRESHOLD_INFO.
Parameter Description
nDeviceHandle handle of the IP Media device
pQoSThresholdInfo pointer to IPM_QOS_THRESHOLD_INFO structure which contains
one or more IPM_QOS_THRESHOLD_DATA structures
usMode operation mode
Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.
B Termination Events

74

IPMEV_SET_QOS_THRESHOLD_INFO
Indicates successful completion; that is, alarm QoS threshold levels were modified. Use SRL
functions to retrieve IPM_QOS_THRESHOLD_INFO structure fields.

IPMEV_ERROR
Indicates that the function failed.

IP Media Library API Library Reference — November 2003

I n change QoS alarm threshold settings — ipm_SetQoSThreshold()

B Cautions
None.
B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long) ;

void main ()
{
int nDeviceHandle;
IPM_QOS_THRESHOLD_ INFO mySetQosThresholdInfo;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/

/*

Change two alarm threshold settings for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

mySetQosThresholdInfo.unCount = 2;
mySetQosThresholdInfo.QoSThresholdData[0] .eQoSType = QOSTYPE_ LOSTPACKETS;
mySetQosThresholdInfo.QoSThresholdData [0] .unTimeInterval = 10;
mySetQosThresholdInfo.QoSThresholdData[0] .unDebounceOn = 100;
mySetQosThresholdInfo.QoSThresholdData [0] .unDebounceOff = 100;
mySetQosThresholdInfo.QoSThresholdData [0] .unFaultThreshold = 20;
mySetQosThresholdInfo.QoSThresholdData [0] .unPercentSuccessThreshold = 60;
mySetQosThresholdInfo.QoSThresholdData[0] .unPercentFailThreshold = 40;
mySetQosThresholdInfo.QoSThresholdData[l] .eQoSType = QOSTYPE_JITTER;
mySetQosThresholdInfo.QoSThresholdData[l] .unTimeInterval = 50;

IP Media Library API Library Reference — November 2003 75

ipm_SetQoSThreshold() — change QoS alarm threshold settings I n

mySetQosThresholdInfo.QoSThresholdData [1] .unDebounceOn = 200;
mySetQosThresholdInfo.QoSThresholdData[1l] .unDebounceOff = 600;
mySetQosThresholdInfo.QoSThresholdData [1] .unFaultThreshold = 60;
mySetQosThresholdInfo.QoSThresholdData [1] .unPercentSuccessThreshold = 60;
mySetQosThresholdInfo.QoSThresholdData[1l] .unPercentFailThreshold = 40;

if (ipm SetQoSThreshold (nDeviceHandle, &mySetQosThresholdInfo, EV_ASYNC) == -1)

printf ("ipm SetQoSThreshold failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing
*/
/*

continue
*/

void CheckEvent ()

{

//Get event type and associated data
int nEventType = sr_getevttype();
int nDeviceID = sr getevtdev() ;

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm SetQoSThreshold */
case IPMEV_SET QOS_THRESHOLD INFO:
printf ("Received IPMEV_SET QOS_THRESHOLD INFO for device = %s\n",

ATDV_NAMEP (nDevicelID)) ;
break;

default:
printf ("Received unknown event = %d for device = %s\n",

nEventType, ATDV_NAMEP (nDevicelID)) ;
break;

B See Also

e ipm_GetQoSThreshold()

76 IP Media Library API Library Reference — November 2003

u
I ntGI set media properties and starts the session — ipm_SetRemoteMedialnfo()
®

ipm_SetRemoteMedialnfo()

Name: int ipm_SetRemoteMedialnfo(nDeviceHandle, *pMedialnfo, eDirection, usMode)
Inputs: int nDeviceHandle * [P Media device handle
IPM_MEDIA_INFO *pMedialnfo * pointer to media information structure
e]PM_DATA_DIRECTION eDirection e data flow direction
unsigned short usMode ® async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: Media Session
Mode: asynchronous or synchronous

Platform: DM/IP, IPT, HMP

B Description

Note: 1t is strongly recommended that you use the ipm_StartMedia() function instead of
ipm_SetRemoteMedialnfo(). Support for the ipm_SetRemoteMedialnfo() function may be
removed from future versions of the IP Media APL.

The ipm_SetRemoteMedialnfo() function sets media properties and starts the session. This
function allows the application to set the remote and local connectivity selections.
ipm_SetRemoteMedialnfo() also starts RTP streaming. The remote RTP/ RTCP port information
and coder information is provided in the IPM_MEDIA_INFO structure.

Parameter Description
nDeviceHandle handle of the IP Media device
pMedialnfo media information data structure

See IPM_MEDIA_INFO for details.
Applications can define the following:

¢ Jocal transmit coder and remote transmit coder
¢ local and remote RTP/RTCP protocol

¢]Jocal and remote IP address

IP Media Library API Library Reference — November 2003 77

u
ipm_SetRemoteMedialnfo() — set media properties and starts the session I n‘t9|
®

Parameter Description

eDirection media operation enumeration

The eIPM_DATA_DIRECTION data type is an enumeration which

defines the following values:

e DATA_IP_RECEIVEONLY - receives data from the IP network but
no data is sent.

DATA_IP_SENDONLY - sends data to the IP network but no data is
received.

DATA_IP_TDM_BIDIRECTIONAL - full duplex data path
(streaming media) between IP network and TDM. Used for gateway
functionality.

DATA_MULTICAST_SERVER — multicast server mode

e DATA_MULTICAST_CLIENT — multicast client mode

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_SET_REMOTE_MEDIA_INFO
Indicates successful completion; that is, media information was set and the session has been
started. Use SRL functions to retrieve IPM_MEDIA_INFO structure fields.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

* The application must wait until this function completes before calling ipm_Listen().

* See IPM_CODER_INFO, on page 100 for limitations on coder type, frame size, and frames
per packet settings.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_BUSY
Channel is busy

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

78 IP Media Library API Library Reference — November 2003

set media properties and starts the session — ipm_SetRemoteMedialnfo()

EIPM_SYSTEM

System error

Example

#include <stdio.h>
#include <string>

#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main()

{

int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing
*/

/*

Set the media properties for a remote party using IP device handle, nDeviceHandle.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

IPM_MEDIA_ INFO MediaInfo;

MediaInfo.unCount = 4;

MediaInfo.MediaData[0] .eMediaType = MEDIATYPE_REMOTE_RTP_ INFO;
MediaInfo.MediaData[0] .mediaInfo.PortInfo.unPortId = 2328;

strcpy (MediaInfo.MediaData [0] .mediaInfo.PortInfo.cIPAddress,"111.21.0.9\n");

MediaInfo.MediaDatal[l] .eMediaType = MEDIATYPE_REMOTE_RTCP_INFO;
MediaInfo.MediaData[l] .mediaInfo.PortInfo.unPortId = 2329;

strcpy (MediaInfo.MediaData[1l] .mediaInfo.PortInfo.cIPAddress,"111.41.0.9\n");
MediaInfo.MediaData[2] .eMediaType = MEDIATYPE REMOTE_ CODER_INFO;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.eCoderType = CODER_TYPE G711ULAW64K;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER_FRAMESIZE)
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.eVadEnable = CODER _VAD DISABLE;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData [2] .mediaInfo.CoderInfo.unRedPayloadType = 0;
MediaInfo.MediaData[3] .eMediaType = MEDIATYPE LOCAL CODER_INFO;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.eCoderType = CODER_TYPE G711ULAW64K;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER_FRAMESIZE)
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.eVadEnable =CODER_VAD DISABLE;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData [3] .mediaInfo.CoderInfo.unRedPayloadType = 0;

if (ipm SetRemoteMediaInfo (nDeviceHandle, &MediaInfo, DATA_IP_TDM BIDIRECTIONAL,
EV_ASYNC) == -1)

printf ("ipm SetRemoteMedialInfo failed for device name = %$s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing

IP Media Library API Library Reference — November 2003

79

ipm_SetRemoteMedialnfo() — set media properties and starts the session I n

*
}
/*

. Continue processing

*/
}

void CheckEvent ()

{

int nDeviceID = sr getevtdev() ;
int nEventType = sr_getevttype () ;

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm SetRemoteMediaInfo */
case IPMEV_SET REMOTE MEDIA INFO:
printf ("Received IPMEV_SET REMOTE MEDIA INFO for device = %s\n",

ATDV_NAMEP (nDevicelID)) ;
break;

default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID)) ;
break;

B See Also

e ipm_GetLocalMedialnfo()

80 IP Media Library API Library Reference — November 2003

intel.

set media properties and starts the session — ipm_StartMedia()

ipm_StartMedia()

Name: int ipm_StartMedia(nDeviceHandle, *pMedialnfo, eDirection, usMode)
Inputs: int nDeviceHandle * [P Media device handle
IPM_MEDIA_INFO * pointer to media information structure
*pMedialnfo
e]PM_DATA_DIRECTION e data flow direction
eDirection
unsigned short usMode ® async or sync mode setting
Returns: 0 on success
-1 on failure
Includes: srllib.h
ipmlib.h
Category: Media Session
Mode: asynchronous or synchronous
Platform: DM/IP, IPT, HMP
B Description

The ipm_StartMedia() function sets media properties and starts the session. This function allows
the application to set the remote and local connectivity selections. ipm_StartMedia() also starts
RTP streaming. The remote RTP/ RTCP port information and coder information is provided in the
IPM_MEDIA_INFO structure.

Parameter Description
nDeviceHandle handle of the IP Media device
pMedialnfo media information data structure

See IPM_MEDIA_INFO for details.
Applications can define the following:

e local transmit coder and remote transmit coder
* local and remote RTP/RTCP protocol

e Jocal and remote IP address

IP Media Library API Library Reference — November 2003 81

u
ipm_StartMedia() — set media properties and starts the session I ntel o

Parameter Description

eDirection media operation enumeration

The eIPM_DATA_DIRECTION data type is an enumeration which

defines the following values:

e DATA_IP_RECEIVEONLY - receives data from the IP network but
no data is sent.

DATA_IP_SENDONLY - sends data to the IP network but no data is
received.

DATA_IP_TDM_BIDIRECTIONAL - full duplex data path
(streaming media) between IP network and TDM. Used for gateway
functionality.

DATA_MULTICAST_SERVER — multicast server mode

e DATA_MULTICAST_CLIENT — multicast client mode

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_START_MEDIA
Indicates successful completion; that is, media information was set and the session has been
started. Use the SRL function to retrieve the IPM_MEDIA_INFO structure fields.

IPMEV_ERROR
Indicates that the function failed.

B Cautions
The application must wait until this function completes before calling ipm_Listen().
B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_BUSY
Channel is busy

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

82 IP Media Library API Library Reference — November 2003

set media properties and starts the session — ipm_StartMedia()

B Example

#include <stdio.h>
#include <string>

#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main()

{

int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/

/*

Set the media properties for a remote party using IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .

*/

IPM_MEDIA_ INFO MediaInfo;

MediaInfo.unCount = 4;

MediaInfo.MediaData[0] .eMediaType = MEDIATYPE REMOTE RTP_INFO;
MediaInfo.MediaData[0] .mediaInfo.PortInfo.unPortId = 2328;

strcpy (MediaInfo.MediaData [0] .mediaInfo.PortInfo.cIPAddress,"111.21.0.9\n");

MediaInfo.MediaDatal[l] .eMediaType = MEDIATYPE_REMOTE_RTCP_INFO;
MediaInfo.MediaData[1l] .mediaInfo.PortInfo.unPortId = 2329;

strcpy (MediaInfo.MediaData[1l] .mediaInfo.PortInfo.cIPAddress,"111.41.0.9\n");
MediaInfo.MediaData[2] .eMediaType = MEDIATYPE REMOTE_ CODER_INFO;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.eCoderType = CODER_TYPE G711ULAW64K;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER_FRAMESIZE) 30;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.eVadEnable = CODER _VAD DISABLE;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unRedPayloadType = 0;
MediaInfo.MediaData[3] .eMediaType = MEDIATYPE LOCAL CODER_INFO;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.eCoderType = CODER_TYPE G711ULAW64K;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER_FRAMESIZE) 30;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.eVadEnable =CODER_VAD DISABLE;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData [3] .mediaInfo.CoderInfo.unRedPayloadType = 0;

if (ipm StartMedia(nDeviceHandle, &MediaInfo,DATA IP TDM BIDIRECTIONAL, EV_ASYNC) ==

{

printf ("ipm StartMedialInfo failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing

*/

IP Media Library API Library Reference — November 2003

83

ipm_StartMedia() — set media properties and starts the session I n o

/*
. Continue processing

*/
}

void CheckEvent ()

{

int nDeviceID = sr getevtdev() ;
int nEventType = sr_getevttype();

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm StartMedia */

case IPMEV_STARTMEDIA:
printf ("Received IPMEV_START MEDIA for device = %$s\n", ATDV_NAMEP (nDevicelID)) ;

break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

e ipm_GetLocalMedialnfo()
e ipm_Stop()

84 IP Media Library API Library Reference — November 2003

intel.

ipm_Stop()

stop operations on the specified IP channel — ipm_Stop()

Name: int ipm_Stop(nDeviceHandle, eOperation, usMode)

Inputs: int nDeviceHandle

e |P Media device handle

elPM_STOP_OPERATION eOperation * operation to be stopped

unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: Media Session

Mode: asynchronous or synchronous

Platform: DM/IP, IPT, HMP

B Description

The ipm_Stop() function stops operations on the specified IP channel.

To run this function asynchronously, set mode to EV_ASYNC. The function returns O if successful
and the application must wait for the IPMEV_STOPPED event.

Parameter Description
nDeviceHandle handle of the IP Media device
eOperation media operation enumeration
Only one value can be set at a time.
The eIPM_STOP_OPERATION data type is an enumeration that defines
the following values:
e STOP_SEND_DIGITS - operation of sending digits
e STOP_RECEIVE_DIGITS - operation of receiving digits
e STOP_RECEIVE_DIGITS_RFC2833 — operation of receiving RFC
2833 digits
e STOP_MEDIA - operation of media session.This enumeration
disconnects the session. The application must call
ipm_StartMedia() to start a new session.
e STOP_ALL - stop all operations
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

IP Media Library API Library Reference — November 2003 85

ipm_Stop() — stop operations on the specified IP channel I n

B Termination Events

IPMEV_STOPPED
Indicates that activity of the type specified in elPM_STOP_OPERATION has terminated on
this channel. This event does not return data.

IPMEV_ERROR
Indicates that the function failed.

B Cautions
None.
B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main()

{

int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*

. Main Processing

*/

/*

Application needs to stop a current session on IP device handle, nDeviceHandle
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm_Open ()
and a session has been started by calling ipm StartMedia() some time earlier.
*/

if (ipm Stop (nDeviceHandle, STOP_ALL, EV_ASYNC) == -1)

{
printf ("ipm Stop failed for device name = %$s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

86 IP Media Library API Library Reference — November 2003

I n stop operations on the specified IP channel — ipm_Stop()

Perform Error Processing

*/
}

/*
. Continue Processing

*/
}

void CheckEvent ()

{

int nEventType = sr_getevttype() ;
int nDeviceID = sr getevtdev();

switch (nEventType)

{
/*

. List of expected events

*/

/* Expected reply from ipm Stop() */

case IPMEV_STOPPED:
printf ("Received IPMEV_STOPPED for device = %s\n", ATDV_NAMEP (nDeviceID)) ;
break;

default:
printf ("Received unknown event = %d for device = %s\n",

nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

e ipm_UnListen()

IP Media Library API Library Reference — November 2003 87

u
ipm_UnListen() — stop listening to the TDM time slot I n‘t9|
®

ipm_UnListen()

Name: int ipm_UnListen(nDeviceHandle, usMode)
Inputs: int nDeviceHandle ¢ [P Media device handle
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: System Control
Mode: asynchronous or synchronous

Platform: DM/IP, IPT, HMP

B Description

The ipm_UnListen() function stops listening to the TDM time slot specified in a previous call to
ipm_Listen(). When ipm_Stop() is called to stop a media session on DM3 hardware,
ipm_UnListen() is called automatically.

If ipm_Listen() is called to connect to a different TDM time slot, the firmware automatically
breaks an existing connection and reconnects it to the new time slot. In this case, the application
does not need to call the ipm_UnListen() function.

Parameter Description
nDeviceHandle handle of the IP Media device
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_UNLISTEN
Indicates successful completion; that is, the IP channel was disconnected from the specified
TDM time slot. This event does not return data.

IPMEV_ERROR
Indicates that the function failed.

B Cautions
The IP Media library allows ipm_Listen() and ipm_UnListen() to be called either synchronously

or asynchronously. Other Intel® libraries may not support asynchronous execution of the similar
xx_Listen and xx_UnListen functions.

88 IP Media Library API Library Reference — November 2003

stop listening to the TDM time slot — ipm_UnListen()

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

EIPM_INTERNAL
Internal error

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main ()

{

int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*

Main Processing

*/

/*

Stop an IP device handle, nDeviceHandle, from listening to a time slot.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

if (ipm UnListen (nDeviceHandle, EV_ASYNC) == -1)

{

printf ("ipm UnListen failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing

*/

IP Media Library API Library Reference — November 2003 89

ipm_UnListen() — stop listening to the TDM time slot I n

/*
. Continue processing

*/
}

void CheckEvent ()

{

int nEventType = sr_getevttype () ;
int nDeviceID = sr_getevtdev() ;

switch (nEventType)

{
/*

. Other events

*/
/*Expected reply from ipm UnListen*/

case IPMEV_UNLISTEN:
printf ("Received IPMEV_UNLISTEN for device = %s\n", ATDV_NAMEP (nDeviceID)) ;

break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDeviceID)) ;
break;

B See Also

e ipm_Listen()
e ipm_Stop()

90 IP Media Library API Library Reference — November 2003

intel.

Events 3

This chapter describes the events that are returned by the IP Media software functions. The
function descriptions in Chapter 2, “Function Information” lists the function’s termination events
for asynchronous operations.

There are three types of events returned by the IP Media software functions:

e events returned after the termination of a function call, called termination events
¢ unsolicited events triggered by external events

¢ notification events requested (solicited) by the application

Applications can enable or disable certain notification events for Quality of Service (QoS)
information. The notification events supported by the IP Media library are enabled and disabled via
the function calls ipm_EnableEvents() and ipm_DisableEvents(), respectively.

The following events, listed in alphabetical order, may be returned by the IP Media software. Use
sr_waitevt(), sr_enbhdlr() or other SRL functions to collect an event code, depending on the
programming model in use. For more information, see the Standard Runtime Library API Library
Reference.

IPMEV_DIGITS_RECEIVED
Unsolicited event for ipm_ReceiveDigits() in either synchronous or asynchronous mode.
IPM_DIGIT_INFO contains data. One event is returned for each digit that is received.

IPMEV_ERROR
Termination event. No data is returned. Event generated on any handle when there is an error.

IPMEV_EVENT_DISABLED
Termination event for ipm_DisableEvents(). No data is returned. Indicates specified IP
notification events have been disabled.

IPMEV_EVENT_ENABLED
Termination event for ipm_EnableEvents(). No data is returned. Indicates specified IP
notification events have been enabled.

IPMEV_FAXTONE
Unsolicited event for ipm_EnableEvents(). IPM_FAX_SIGNAL contains data. Event is
returned when fax tone is detected on TDM.

IPMEV_GET_LOCAL_MEDIA_INFO
Termination event for ipm_GetLocalMedialnfo(). IPM_MEDIA_INFO contains data.
Indicates local media information has been returned.

IPMEV_GET_PARM
Termination event for ipm_GetParm(). IPM_PARM_INFO contains data. Indicates IP
channel parameters have been returned.

IPMEV_GET_QOS_ALARM_STATUS
Termination event for ipm_GetQoSAlarmStatus(). IPM_QOS_ALARM_STATUS contains
data. Indicates alarm status information was filled in.

IP Media Library API Library Reference — November 2003 91

Events

92

u
I ntel o
IPMEV_GET_QOS_THRESHOLD_INFO

Termination event for ipm_GetQoSThreshold(). IPM_QOS_THRESHOLD_INFO contains
data. Indicates alarm threshold settings have been returned.

IPMEV_GET_SESSION_INFO
Termination event for ipm_GetSessionInfo(). [IPM_SESSION_INFO contains data. Indicates
statistics for previous session have been returned.

IPMEV_GET_XMITTS_INFO
Termination event for ipm_GetXmitSlot(). SC_TSINFO contains data. Indicates TDM time
slot information has been returned.

IPMEV_LISTEN
Termination event for ipm_Listen(). No data is returned. Indicates time slot routing was
successfully completed.

IPMEV_OPEN
Termination event for ipm_Open(). No data is returned. Indicates IP channel was successfully
opened and device handle is valid.

IPMEV_PING
Termination event for ipm_Ping(). IPM_PING_INFO contains data. Indicates ping response
has been returned.

IPMEV_QOS_ALARM
Unsolicited event for ipm_EnableEvents(). No data is returned. Event is returned when
desired QoS alarm triggers.

IPMEV_RECEIVE_DIGITS
Termination event for ipm_ReceiveDigits(). No data is returned. Indicates channel has been
enabled to receive digits.

Note: IPMEV_DIGITS_RECEIVED indicates digit transfer has occurred.

IPMEV_RESET_QOS_ALARM_STATUS
Termination event for ipm_ResetQoSAlarmStatus(). No data is returned. Indicates specified
QoS alarms have been reset to OFF state.

IPMEV_RFC2833SIGNALRECEIVED
Unsolicited event for ipm_EnableEvents(). [IPM_RFC2833_SIGNALID_INFO contains
data. Event is returned when RFC 2833 signal is detected on IP.

IPMEV_SEND_DIGITS
Termination event for ipm_SendDigits(). No data is returned. Indicates supplied digits were
sent successfully.

IPMEV_SEND_SIGNAL_TO_IP
Termination event for ipm_SendRFC2833SignallDTolIP(). No data is returned. Indicates
RFC2833 message has been sent to IP.

IPMEV_SET_PARM
Termination event for ipm_SetParm(). No data is returned. Indicates IP channel parameters
have been modified.

IPMEV_SET_QOS_THRESHOLD_INFO
Termination event for ipm_SetQoSThreshold(). IPM_QOS_THRESHOLD_INFO contains
data. Indicates modified QoS alarm threshold levels have been returned.

IP Media Library API Library Reference — November 2003

Events

IPMEV_SET REMOTE_MEDIA_INFO
Termination event for ipm_SetRemoteMedialnfo(). IPM_MEDIA_INFO contains data.
Indicates media channel information has been set and session has been started.

IPMEV_STARTMEDIA
Termination event for ipm_StartMedia(). No data is returned. Indicates media channel
information has been set and session has been started.

IPMEV_STOPPED
Termination event for ipm_Stop(). No data is returned. Indicates all on-going activity on the
IP channel has terminated.

IPMEV_T38CALLSTATE
Unsolicited event for ipm_EnableEvents(). eIPM_T38CALLSTATE contains data. Event is
returned when T.38 call state changes.

IPMEV_UNLISTEN
Termination event for ipm_UnListen(). No data is returned. Indicates IP channel was
disconnected from TDM time slot.

IP Media Library API Library Reference — November 2003 93

Events

94

IP Media Library API Library Reference — November 2003

intel.

Data Structures

4

This chapter alphabetically lists the data structures used by IP Media library (IPML) functions.

These structures are used to control the operation of functions and to return information. In this

chapter, the data structure definition is followed by a table providing a detailed description of the
fields in the data structure. These fields are listed in the sequence in which they are defined in the
data structure.

CT_DEVINFO. e 96

IPM_CLOSE_INFO e 99

IPM_CODER_INFO. e 100
IPM_DIGIT_INFO e 103
IPM_EVENT_INFO e 104
IPM_FAX _SIGNAL . ..o 105
IPM_MEDIA . .. 106
IPM_MEDIA_INFO 107
IPM_OPEN_INFO e 108
IPM_PARM_INFO e 109
IPM_PING_INFO e 111
IPM_PING_PARM 112
IPM_PORT_INFO. e 113
IPM_QOS_ALARM_DATA e 114
IPM_QOS_ALARM_STATUS e 115
IPM_QOS_SESSION_INFO. e 116
IPM_QOS_THRESHOLD_DATA i 117
IPM_QOS_THRESHOLD_INFO. i 119
IPM_RFC2833_SIGNALID_INFO. i 120
IPM_RTCP_SESSION_INFO. e 122
IPM_SESSION_INFO.o e 124
SC_TSINFO . .. 125

IP Media Library API Library Reference — November 2003

95

[]
CT DEVINFO — information about a Global Call line device I n‘t9|
®

CT_DEVINFO

typedef struct ct_devinfo {

unsigned long ct prodid; /* product ID */
unsigned char ct_devfamily; /* device family */
unsigned char ct_devmode; /* device mode */
unsigned char ct_nettype; /* network interface */
unsigned char ct_busmode; /* bus architecture */
unsigned char ct_busencoding; /* bus encoding */
union {

unsigned char ct_RFU[7]; /* reserved */

struct {

unsigned char ct_prottype;
} ct_net devinfo;
} ct_ext devinfo;
} CT_DEVINFO;

B Description
The CT_DEVINFO structure contains information about a specified Global Call line device.

Valid values for each member of the structure are defined in ctinfo.h, which is referenced by
gclib.h.

B Field Descriptions

On DM3 boards, the fields of the CT_DEVINFO data structure are described as follows:

ct_prodid
Contains a valid product identification number for the device [length: 4 (unsigned long)].

ct_devfamily
Specifies the device family [length: 1 (unsigned char)]. Possible values are:
¢ CT_DFDM3 — DM3 device
e CT_DFHMPDM3 — HMP device (Host Media Processing)

ct_devmode
Specifies the device mode [length: 1 (unsigned char)] that is valid only for a D/xx or VFX/xx
board. Possible values are:
e CT_DMRESOURCE - DM3 voice device in flexible routing configuration
e CT_DMNETWORK - DM3 network device or DM3 voice device in fixed routing
configuration

For information about flexible routing and fixed routing, see the Voice API Programming
Guide.

ct_nettype
Specifies the type of network interface for the device [length: 1 (unsigned char)]. Possible
values are:
e CT_IPT —IP connectivity
e CT_NTANALOG - analog interface. Analog and voice devices on board are handling
call processing
e CT_NTTI1 - T1 digital network interface
e CT_NTEI1 - E1 digital network interface
e CT_NTMSI — MSI/SC station interface

96 IP Media Library API Library Reference — November 2003

intel.

information about a Global Call line device — CT_DEVINFO

e CT_NTHIZ - high impedance (HiZ) interface. This value is bitwise-ORed with the type
of network interface. A digital HiZ T1 board would return CT_NTHIZ | CT_NTT1. A
digital HiZ E1 board would return CT_NTHIZ | CT_NTEI. An analog HiZ board would
return CT_NTHIZ | CT_NTTXZSWITCHABLE | CT_NTANALOG.

e CT_NTTXZSWITCHABLE - The network interface can be switched to the transmit
impedance state. This value is bitwise-ORed with the type of network interface. An
analog HiZ board would return CT_NTHIZ | CT_NTTXZSWITCHABLE |
CT_NTANALOG. This is used to transmit the record notification beep tone.

ct_busmode
Specifies the bus architecture used to communicate with other devices in the system [length: 1
(unsigned char)]. Possible values are:
e CT_BMSCBUS - TDM bus architecture
e CT_HI100 - H.100 bus
e CT_H110-H.110 bus

ct_busencoding
Describes the PCM encoding used on the bus [length: 1 (unsigned char)]. Possible values are:
¢ CT_BEULAW - mu-law encoding
e CT_BEALAW - A-law encoding
e CT_BELLAW - linear encoding
¢ CT_BEBYPASS - encoding is being bypassed

ct_rfu
Returned by ms_getctinfo() for DM3 MSI devices. This field returns a character string
containing the board and channel of the voice channel resource associated with the station
interface. This data is returned in BxxCy format, where xx is the voice board and y is the voice
channel. For example, dxxxB1C1 would be returned as B1C1. To subsequently use this
information in a dx_open() function, you must add the dxxx prefix to the returned character
string.

ct_ext_devinfo.ct_net_devinfo.ct_prottype
Contains information about the protocol used on the specified digital network interface device.
Possible values are:
* CT_CAS - channel associated signaling
¢ CT_CLEAR - clear channel signaling
¢ CT_ISDN - ISDN
e CT_R2MF - R2MF

On Intel® NetStructure® IPT Series boards, the ct_devfamily field is described as follows:

ct_devfamily
Specifies the device family [length: 1 (unsigned char)]. Possible values are:
¢ CT_NETSTRUCTIP - IPT series board

On Springware boards, the fields of the CT_DEVINFO data structure are described as follows:

ct_prodid
Contains a valid product identification number for the device [length: 4 (unsigned long)].

ct_devfamily
Specifies the device family [length: 1 (unsigned char)]. Possible values are:
e CT_DFD41D - D/41D board family

IP Media Library API Library Reference — November 2003 97

[]
CT DEVINFO — information about a Global Call line device I n‘t9|
®

e CT_DFD4IE - analog or voice channel of a D/xx or VFX/xx board such as D/41ESC or
VEX/40ESC

e CT_DFSPAN - analog channel such as of a D/160SC-LS board; a voice channel such as
of a D/240SC, D/320SC, D/240SC-T1, D/300SC-E1, or D/160SC-LS board; or a digital
channel such as of a D/240SC-T1 or D/300SC-E1 board

e CT_DFMSI - a station on an MSI board

¢ CT_DFSCX - SCX160 SCxbus adapter family

ct_devmode
Specifies the device mode field [length: 1 (unsigned char)] that is valid only for a D/xx or
VEFX/xx board. Possible values are:
e CT_DMRESOURCE - analog channel not in use
e CT_DMNETWORK - analog channel available to process calls from the telephone
network

ct_nettype
Specifies the type of network interface for the device [length: 1 (unsigned char)]. Possible
values are:
e CT_NTNONE - D/xx or VFEX/xx board configured as a resource device; voice channels
are available for call processing; analog channels are disabled.
¢ CT_NTANALOG - analog and voice devices on board are handling call processing
e CT_NTTI1 —T1 digital network interface
e CT_NTEI - El1 digital network interface
e CT_NTMSI — MSI/SC station interface

ct_busmode
Specifies the bus architecture used to communicate with other devices in the system [length: 1
(unsigned char)]. Possible values are:
e CT_BMSCBUS - TDM bus architecture

ct_busencoding
Describes the PCM encoding used on the bus [length: 1 (unsigned char)]. Possible values are:
e CT_BEULAW - mu-law encoding
e CT_BEALAW - A-law encoding

ct_rfu
Reserved for future use.

ct_ext_devinfo.ct_net_devinfo.ct_prottype
Contains information about the protocol used on the specified digital network interface device.
Possible values are:
* CT_CAS - channel associated signaling
¢ CT_CLEAR - clear channel signaling
e CT_ISDN - ISDN
¢ CT_R2MF - R2/MF signaling

98 IP Media Library API Library Reference — November 2003

[]
I ntGI reserved for future use — IPM_CLOSE INFO
®

IPM_CLOSE_INFO

B Description

This structure is used by the ipm_Close() function.

Note: This structure is reserved for future use. NULL must be passed.

IP Media Library API Library Reference — November 2003 99

u
IPM_CODER_INFO — coder properties used in an IP session I nU
®

IPM_CODER_INFO

typedef struct ipm coder_info_ tag

{

eIPM CODER_TYPE eCoderType; /* The coder Type */
eIPM _CODER FRAMESIZE eFrameSize; /* Frame size supported */
unsigned int unFramesPerPkt ; /* No. of Frames per packet */
eIPM _CODER VAD eVadEnable; /* Flag indicating if VAD is */

/* enabled/disabled */
unsigned int unCoderPayloadType; /* Type of coder payload supported */
unsigned int unRedPayloadType; /* Type of Redundancy Payload */

} IPM_CODER_INFO, *PIPM CODER_INFO;
B Description

This structure contains the coder properties that will be used in an IP session. IPM_CODER_INFO
is a child of IPM_MEDIA, which is a child of the IPM_MEDIA_INFO structure. The structure is
used by the ipm_GetLocalMedialnfo() and ipm_SetRemoteMedialnfo() functions.

Appropriate values for IPM_CODER_INFO fields depend on the board that is being used. Table 2
and Table 3 list supported coders for Intel® NetStructure™ IPT Series boards and Intel®
NetStructure™ DM/IP Series boards.

Intel® NetStructure™ Host Media Processing (HMP) software performs voice, conferencing and
IVR processing on general-purpose servers based on Intel® architecture without the use of
specialized hardware. Table 4 shows the coders that are supported when using the IP media API
with HMP.

B Field Descriptions

The fields of the IPM_CODER_INFO data structure are described as follows. Refer to Table 2,
Table 3, and Table 4 for platform-specific guidelines for filling in these fields.

eCoderType
type of coder to be used for streaming media operations. Coder-specific values for this field are
listed in Table 2, Table 3, and Table 4.

The following values are supported:
e CODER_TYPE_G711ALAW64K — G.711, A-law, 64 kbps
e CODER_TYPE_G711ULAW64K — G.711, mu-law, 64 kbps
e CODER_TYPE_G7231_5_3K -G.723.1, 5.3 kbps
e CODER_TYPE_G7231_6_3K - G.723.1, 6.3 kbps
e CODER_TYPE_G726_32K — G.726.3, 32 kbps
¢ CODER_TYPE_G729 - G.729
e CODER_TYPE_G729ANNEXA - G.729 Annex A
* CODER_TYPE_G729ANNEXB - G.729 Annex B
e CODER_TYPE_G729ANNEXAWANNEXB — G.729 Annex A with Annex B
e CODER_TYPE_GSMFULLRATE — GSM (TIPHON)), full rate (Intel® NetStructure™
DM/IP Series boards only)

eFrameSize
size of frame (G.711 coders only). When packets are sent in both directions, (that is, when the
call to ipm_StartMedia() or ipm_SetRemoteMedialnfo() specifies

100 IP Media Library API Library Reference — November 2003

u
I ntGI coder properties used in an IP session — IPM_CODER_INFO
@

eDirection = DATA_IP_TDM_BIDIRECTIONAL), the application must know the frame size
of incoming packets and use elPM_CODER_FRAMESIZE to specify that value.

The eIPM_CODER_FRAMESIZE data type is an enumeration which specifies the frame size
for G.711 coders only. All other coders have a predefined, standard value for the frame size
and have a user-programmable frames per packet field in the IPM_CODER_INFO data
structure. The following values for elPM_CODER_FRAMESIZE are supported:

e CODER_FRAMESIZE_5 — frame size = 5 ms (Intel® NetStructure™ IPT Series boards

only)

e CODER_FRAMESIZE_10 — frame size = 10 ms

e CODER_FRAMESIZE_20 — frame size = 20 ms

e CODER_FRAMESIZE_30 — frame size = 30 ms

unFramesPerPkt
number of frames per packet. Coder-specific values for this field are listed in Table 2, Table 3,
and Table 4. This field cannot be modified for G.711 coders.

eVadEnable
flag for enabling/disabling VAD (Voice Activity Detection)

The eIPM_CODER_VAD data type is an enumeration which defines the following values:
e CODER_VAD_DISABLE - VAD is OFF
* CODER_VAD_ENABLE - VAD is ON

unCoderPayloadType
RTP header payload type using RFC 1890 standard definitions. The application is responsible
for negotiating this value between the two endpoints. This may be set to any value for non-
standard coders or if the application does not require interoperability with third-party
applications. Values: 0-127. 96-127 is the dynamic range.

unRedPayloadType
RTP header redundancy payload type using RFC 2198 definitions for redundant packets. The
application is responsible for negotiating this value between the two endpoints. This may be
set to any value. Value: 96-127

Table 2. Supported Coders for Intel® NetStructure™ IPT Series Boards

Coder Frame Size (ms) Frames per Packet VAD
(fpp) Support
CODER_TYPE_G711ALAW64K 5, 10, 20, 30 fixed at 1 N/A
CODER_TYPE_G711ULAW64K 5, 10, 20, 30 fixed at 1 N/A
CODER_TYPE_G7231_5_3K fixed at 30 1,2,3,4 Supported
CODER_TYPE_G7231_6_3K fixed at 30 1,2,3,4 Supported
CODER_TYPE_G726_32K (see Note) 10 1,2,0r3 N/A
20 1 or 2 (transmit)
1, 2, or 3 (receive)
30 1 (transmit)
1 or 2 (receive)
NOTE: G.726 coders have the following limitations:
(Frames per Packet) x (Frame size) cannot be > 40 for the transmit (remote) side
(Frames per Packet) x (Frame size) cannot be > 60 for the receive (local) side

IP Media Library API Library Reference — November 2003 101

IPM_CODER_INFO — coder properties used in an IP session

102

intel.

Table 2. Supported Coders for Intel® NetStructure™ IPT Series Boards (Continued)

Coder Frame Size (ms) Frames(f.:;r) Packet SLYPAPDOI‘t
CODER_TYPE_G729 fixed at 30 1,2,3,0r4 N/A
CODER_TYPE_G729ANNEXA fixed at 30 1,2,3,0r4 N/A
CODER_TYPE_G729ANNEXB fixed at 30 1,2,8,0r4 Supported
CODER_TYPE_G729ANNEXAWANNEXB | fixed at 30 1,2,3,0r4 Supported
NOTE: G.726 coders have the following limitations:

(Frames per Packet) x (Frame size) cannot be > 40 for the transmit (remote) side
(Frames per Packet) x (Frame size) cannot be > 60 for the receive (local) side
Table 3. Supported Coders for Intel® NetStructure™ DM/IP Series Boards

Coder Frame Size (ms) Frames(fzt:r) Packet SLY:p[c))rt
CODER_TYPE_G711ALAW64K 10, 20, or 30 fixed at 1 N/A
CODER_TYPE_G711ULAW64K 10, 20, or 30 fixed at 1 N/A
CODER_TYPE_G7231_5_3K fixed at 30 1,2,0r3 Supported
CODER_TYPE_G7231_6_3K fixed at 30 1,2,0r3 Supported
CODER_TYPE_G726_32K' N/A N/A N/A
CODER_TYPE_G729 fixed at 10 1,2,3,0r4 N/A
CODER_TYPE_G729ANNEXA fixed at 10 1,2,3,0r4 N/A
CODER_TYPE_G729ANNEXB fixed at 10 1,2,3,0r4 N/A
CODER_TYPE_G729ANNEXAWANNEXB | fixed at 10 1,2,3,0r4 N/A
CODER_TYPE_GSMFULLRATE? fixed at 20 1,2,0r3 Supported

NOTES:

1. G.726 support is limited to play and record functionality only; transcoding is not supported on this coder.
2. GSM Telecommunications and Internet Protocol Harmonization over Networks (TIPHON) is a sub-group of the European
Telecommunications Standards Institute (ETSI) GSM specification.

Table 4. Supported Coders for Host Media Processing

Coder Frame Size (ms) Frames per Packet VAD
(fpp) Support
CODER_TYPE_G711ALAWG64K 10, 20, or 30 fixed at 1 N/A
CODER_TYPE_G711ULAW64K 10, 20, or 30 fixed at 1 N/A

IP Media Library API Library Reference — November 2003

u
I ntGI used to transfer digits over IP network and TDM bus — IPM_DIGIT_INFO
@

IPM_DIGIT_INFO

typedef struct ipm digit_info_ tag

{

eIPM DIGIT TYPE eDigitType; /* Type of digits - DIMF, ALPHA-NUMERIC */
eIPM DIGIT DIRECTION eDigitDirection; /* The direction of flow of digits */

char cDigits [MAX IPM DIGITS]; /* the digits */

unsigned int unNumberOfDigits; /* Number of digits */

unsigned int unTimeStamp;
unsigned int unExpirationTime;
unsigned int unDuration;

} IPM DIGIT INFO, *PIPM DIGIT INFO;
B Description

This structure is used to send and receive digits over the IP network and TDM bus using the
ipm_SendDigits() and ipm_ReceiveDigits() functions. If your application makes a
ipm_SendDigits() call, it must fill in the digit type, direction, number of digits, and the actual
digits to be sent. If your application makes a ipm_ReceiveDigits() call, all fields are filled in upon
successful return.

B Field Descriptions

The fields of the IPM_DIGIT_INFO data structure are described as follows:
eDigitType
set to DIGIT_ALPHA_NUMERIC

The eIPM_DIGIT_TYPE data type is an enumeration which identifies the type of digit. The
enumeration defines the following value:
e DIGIT_ALPHA_NUMERIC - alphanumeric digits

eDigitDirection
set to DIGIT_TDM

The eIPM_DIGIT_DIRECTION data type is an enumeration which identifies the direction of
digit flow. The enumeration defines the following value:
e DIGIT_TDM - digits are sent to or received from the TDM bus

cDigitstMAX_IPM_DIGITS]
actual digits to be sent or received; maximum number of digits = 32

unNumberOfDigits
number of digits; must be set to 1.

unTimeStamp
set to 0; reserved for future use

unExpirationTime
set to 0; reserved for future use

unDuration
set to 0; reserved for future use

IP Media Library API Library Reference — November 2003 103

IPM_EVENT _INFO — used for IP event notification I n

IPM_EVENT_INFO

typedef struct ipm event_info tag

{

unsigned int unCount; /* number of following structures */
void *pEventData; /* Data associated with the event */
} IPM_EVENT INFO, *PIPM_EVENT INFO;

B Description
This structure is used for IP event notification. See Chapter 3, “Events” for more information.
B Field Descriptions

The fields of the IPM_EVENT_INFO data structure are described as follows:

unCount
number of data structures pointed to

*pEventData
pointer to structure containing event-specific data

104 IP Media Library API Library Reference — November 2003

intel.

detected tone information definition — IPM_FAX_SIGNAL

IPM_FAX_SIGNAL

typedef struct sc_tsinfo {
eIPM TONE eToneType;
unsigned int unToneDuration;

} IPM _FAX SIGNAL, *PIPM FAX SIGNAL;
Description

This structure defines the tone information detected by the gateway. IPM_FAX_SIGNAL is a child
of IPM_MEDIA, which is a child of the IPM_MEDIA_INFO structure. The structure is used by the
ipm_GetLocalMedialnfo() and ipm_SetRemoteMedialnfo() functions.

Field Descriptions

The fields of the IPM_FAX_SIGNAL data structure are described as follows:

eToneType
The eIPM_TONE data type is an enumeration which defines the following tone types:
e TONE_NONE - no tone
* TONE_CNG - calling (CNG) tone. Tone produced by fax machines when calling another
fax machine.
* TONE_CED - called terminal identification (CED) tone. Tone produced by fax machine
when answering a call.

unToneDuration
duration of tone to generate

IP Media Library API Library Reference — November 2003 105

u
IPM_MEDIA — parent of port and coder info structures I nU
®

IPM_MEDIA

struct IPM MEDIA tag

{

eIPM_MEDIA TYPE eMediaType;

union

{

IPM PORT INFO PortInfo; /* RTP Port Information */
IPM_CODER_INFO CoderInfo; /* Coder Information */
IPM FAX SIGNAL FaxSignal; /* Fax Signal Information */

}

} IPM MEDIA, *PIPM MEDIA;

B Description

This structure contains information about RTP / RTCP ports, coders, and fax signals. It is a parent
structure of IPM_PORT_INFO, IPM_CODER_INFO, and IPM_FAX_SIGNAL. This structure is a
child of the IPM_MEDIA_INFO structure which is used by the ipm_SetRemoteMedialnfo() and
ipm_GetLocalMedialnfo() functions.

B Field Descriptions

The fields of the IPM_MEDIA data structure are described as follows:

eMediaType
type of media used to start an IP session

The eIPM_MEDIA_TYPE data type is an enumeration which defines the following values:

PortInfo

MEDIATYPE_REMOTE_RTP_INFO - remote RTP port information
MEDIATYPE_LOCAL_RTP_INFO - local RTP port information
MEDIATYPE_REMOTE_RTCP_INFO - remote RTCP port information
MEDIATYPE_LOCAL_RTCP_INFO - local RTCP port information
MEDIATYPE_REMOTE_CODER_INFO — remote receive coder information
MEDIATYPE_LOCAL_CODER_INFO - local receive coder information
MEDIATYPE_FAX_SIGNAL_INFO - fax signal information to be transmitted towards
IP during fax transmissions

MEDIATYPE_LOCAL_UDPTL_T38_INFO - local UDP packet T.38 information
MEDIATYPE_REMOTE_UDPTL_T38_INFO — remote UDP packet T.38 information

reference to RTP port information structure [IPM_PORT_INFO

Coderlnfo
reference to coder information structure IPM_CODER_INFO

FaxSignal
reference to fax signal structure IPM_FAX_SIGNAL

106

IP Media Library API Library Reference — November 2003

n
I ntGI parent of IP_MEDIA, contains session info — IPM_MEDIA_INFO
®

IPM_MEDIA_INFO

typedef struct ipm media_info_tag

{

unsigned int unCount;
IPM MEDIA MediaData [MAX MEDIA INFO] ;

} IPM MEDIA INFO, *PIPM MEDIA INFO;
B Description

This structure contains IP Media session information for various kinds of media information
elements, for example, RTP, RTCP, and TDM. This structure is the parent of the [IPM_MEDIA
structure and is used by ipm_SetRemoteMedialnfo() and ipm_GetLocalMedialnfo().

B Field Descriptions

The fields of the IPM_MEDIA_INFO data structure are described as follows:

unCount
number of media data structures to follow
maximum number of structures = MAX_MEDIA_INFO

MediaData
reference to IPM_MEDIA structures

IP Media Library API Library Reference — November 2003 107

[]
IPM_OPEN_INFO — reserved for future use I n‘t9|
®

IPM_OPEN_INFO

B Description

This structure is used by the ipm_Open() function.

Note: This structure is reserved for future use. NULL must be passed.

108 IP Media Library API Library Reference — November 2003

u
I ntGI o used to set or retrieve parameters for an IP channel — IPM_PARM_INFO

IPM_PARM_INFO

typedef struct ipm param_ info_ tag

eIPM_PARM eParm; /* the parameter to set or get */
void *pvParmValue; /* pointer to value of parameter */
} IPM_PARM INFO, *PIPM PARM INFO;

B Description

This structure is used to set or retrieve parameters for an IP channel. The structure is used by the
ipm_GetParm() and ipm_SetParm() functions.

B Field Descriptions

The fields of the IPM_PARM_INFO data structure are described as follows:

e]lPM_PARM
type of parameter to set or get. See Table 5 for values.

*pvParmValue
pointer to the value of the parameter

Table 5. elPM_PARM Values

Define Description
PARMCH_AGCACTIVE automatic gain control active (Intel® NetStructure™ DM/IP Series
boards only). Values are: AGCACTIVE_OFF, AGCACTIVE_ON
PARMCH_DTMFXFERMODE DTMF transfer mode; values include:

DTMFXFERMODE_INBAND in-band (default)
DTMFXFERMODE_OUTOFBAND out-of-band
DTMFXFERMODE_RFC2833 RFC 2833

Note: In order for DTMF event reporting to occur, you must set
elPM_DTMFXFERMODE to out-of-band signaling on the
receive side.

PARMCH_ECACTIVE echo cancellation active. Values are:
ECACTIVE_OFF, ECACTIVE_ON

PARMCH_ECHOTAIL echo tail length value. Supported values for Intel® NetStructure™
DM/IP Series boards include: ECHO_TAIL_NONE,
ECHO_TAIL_8, ECHO_TAIL_16, ECHO_TAIL_32

Supported values for Intel® NetStructure™ IPT Series boards
include: ECHO_TAIL_NONE, ECHO_TAIL_8, ECHO_TAIL_16,
ECHO_TAIL_32, ECHO_TAIL_48, ECHO_TAIL_64,
ECHO_TAIL_96, ECHO_TAIL_128

PARMCH_RFC2833EVT_RX_PLT RFC2833 event receive payload. Valid values are from 96-127
and the variable type should be an unsigned char.

PARMCH_RFC2833EVT_TX_PLT RFC2833 event transmit payload. Valid values are from 96-127
and the variable type should be an unsigned char.

IP Media Library API Library Reference — November 2003 109

IPM_PARM_INFO — used to set or retrieve parameters for an IP channel I n

110

Table 5. elPM_PARM Values (Continued)

Define

Description

PARMCH_RFC2833GEN_TO_IP

send RFC2833 to IP (OFF / ON) (Intel® NetStructure™ DM/IP
Series boards only)

Values are: RFC2833GEN_TO_IP_OFF,
RFC2833GEN_TO_IP_ON

PARMCH_RFC2833GEN_TO_TDM

convert RFC2833 to signal (Intel® NetStructure™ DM/IP Series
boards only)

Values are: RFC2833GEN_TO_TDM_OFF,
RFC2833GEN_TO_TDM_ON

PARMCH_RFC2833REDLEVEL

redundancy level; (supported on Intel® NetStructure™ DM/IP
Series boards only) values include: RFC2833REDLEVEL_1,
RFC2833REDLEVEL_2, RFC2833REDLEVEL_3,
RFC2833REDLEVEL_4, RFC2833REDLEVEL_5

PARMCH_TOS

type of service, range = 0-255

IP Media Library API Library Reference — November 2003

intel.

IPM_PING_INFO

typedef struct ipm ping info_ tag
unsigned int unPacketsSent;
unsigned int unPacketsReceived;
unsigned int unPacketsLost;

ping response information — IPM_PING_INFO

float fRoundTripMin; /* Time values in mSec */

float fRoundTripAvg;
float fRoundTripMax;
}IPM_PING INFO, * PIPM PING INFO ;

Description

This structure contains ping response information. The structure is used by the ipm_Ping()

function.

Field Descriptions

The fields of the IPM_PING_INFO data structure are described as follows:

unPacketsSent
number of packets sent

unPacketsReceived
number of packets received

unPacketsLost
number of packets lost

fRoundTripMin
minimum round trip time in msec

fRoundTripAvg
average round trip time in msec

fRoundTripMax
maximum round trip time in msec

IP Media Library API Library Reference — November 2003 111

u
IPM_PING_PARM — ping parameter information I ntel o

IPM_PING_PARM

112

Note:

typedef struct ipm ping parameter_ tag

{

char cRemoteIPAddress[IP_ADDR_SIZE]; /* Destination IP Address */

char cLocalIPAddress[IP _ADDR SIZE]; /* Local PMAC/IP Address */

unsigned long ulNumOfPings; /* RFU - Number of Echo Requests to send */
unsigned long ulPacketSize; /* RFU - Number of data bytes to be sent */
unsigned long ulTimeout; /* RFU - mSec Timeout to wait for each reply */

}IPM_PING PARM, * PIPM PING PARM;
Description
This structure contains ping parameter information. The structure is used by the ipm_Ping()

function.

For a board device, the value for cLocallPAddress can be obtained by calling ipm_GetParm().
For a channel device, ipm_GetLocalMedialnfo() should be used. However, the IP addresses
returned from ipm_GetParm() will work for channel devices.

Field Descriptions

The fields of the IPM_PING_PARM data structure are described as follows:

cRemotelPAddress[IP_ADDR_SIZE]
destination IP address; null-terminated string formatted as standard dotted-decimal IP address

cLocallPAddress[IP_ADDR_SIZE]
local board IP address; null-terminated string formatted as standard dotted-decimal IP address

ulNumOfPings
reserved for future use (RFU)

ulPacketSize
reserved for future use (RFU)

ulTimeout
reserved for future use (RFU)

IP Media Library API Library Reference — November 2003

u
I ntGI RTP and RTCP port properties — IPM_PORT_INFO
®

IPM_PORT_INFO

typedef struct ipm port_info_tag

{

unsigned int unPortId; /* The Port ID */
char cIPAddress [IP_ADDR SIZE]; /* IP Address */

} IPM _PORT INFO, *PIPM PORT INFO;
B Description

This structure contains RTP and RTCP port properties. It is a child of IPM_MEDIA, which is a
child of the IPM_MEDIA_INFO structure. The structure is used by the
ipm_GetLocalMedialnfo() and ipm_StartMedia() functions.

B Field Descriptions

The fields of the IPM_PORT_INFO data structure are described as follows:

unPortld
port identifier

cIPAddress[IP_ADDR_SIZE]
IP address of the port in standard dotted decimal string format; must be null-terminated.
For example, 192.168.0.1

IP Media Library API Library Reference — November 2003 113

[]
IPM_QOS _ALARM_DATA — data associated with QoS alarms I n‘t9|
®

IPM_QOS_ALARM_DATA

typedef struct ipm gos_alarm_data_tag

{
eIPM QOS_TYPE eQoSType; /* The QOS parameter type */
eIPM ALARM STATE eAlarmState; /* indicate if On/Off */

} IPM_QOS ALARM DATA, *PIPM QOS ALARM DATA;
B Description

This structure is used to retrieve data associated with QoS alarms. It is a child of the
IPM_QOS_ALARM_STATUS structure which is used by ipm_GetQoSAlarmStatus() and
ipm_ResetQoSAlarmStatus().

B Field Descriptions

The fields of the IPM_QOS_ALARM_DATA data structure are described as follows:

eQoSType
identifies the QoS alarm that is to be set or reset
The eIPM_QOS_TYPE data type is an enumeration which defines the following values:
e EVT_DTMFDISCARDED - number of lost DTMF digits since the beginning of the call
(Intel® NetStructure™ DM/IP Series boards only)
e EVT_LOSTPACKETS - percent of lost packets since the beginning of the call
e EVT_JITTER - average jitter since the beginning of the call (in msec)
e EVT_ROUNDTRIPLATENCY - RTP packet latency (Intel® NetStructure™ IPT Series
boards only)

eAlarmState
alarm on / off flag

The eIPM_ALARM_STATE data type is an enumeration which defines the following values:
e ALARM_STATE_OFF - QoS alarm is OFF
e ALARM_STATE_ON - QoS alarm is ON

Notes: 1. For Intel® NetStructure™ IPT Series boards, the system software sends a QoS alarm event when
a threshold is exceeded (ALARM_STATE_ON).

2. For Intel® NetStructure™ DM/IP Series boards, the system software sends a QoS alarm event
when a threshold is exceeded (ALARM_STATE_ON) and when the threshold returns to the
programmed level (ALARM_STATE_OFF).

114 IP Media Library API Library Reference — November 2003

n
I ntGI parent of QoS alarm data, contains alarm status — IPM_QOS_ALARM_STATUS
®

IPM_QOS_ALARM_STATUS

typedef struct ipm gos_alarm status_tag

{

unsigned int unAlarmCount;
IPM_QOS_ALARM DATA QoSData [MAX ALARM] ;

} IPM QOS ALARM STATUS, *PIPM QOS ALARM STATUS;
B Description

This structure contains the status of QoS alarms for an IP channel. It is the parent of
IPM_QOS_ALARM_DATA and is used by ipm_GetQoSAlarmStatus() and
ipm_ResetQoSAlarmStatus().

B Field Descriptions

The fields of the IPM_QOS_ALARM_STATUS data structure are described as follows:

unAlarmCount
number of QoSData structures to follow
maximum number of alarms = MAX_ ALARM

QoSData
reference to alarm data information structure IPM_QOS_ALARM_DATA

IP Media Library API Library Reference — November 2003 115

[]
IPM_QOS_SESSION_INFO — QoS statistics for an IP session I n‘t9|
®

IPM_QOS_SESSION_INFO

typedef struct ipm gos_session_info_tag

eIPM QOS_TYPE eQoSType;
unsigned int unData;

} IPM _QOS SESSION INFO, *PIPM QOS SESSION INFO;
B Description

This structure reports statistical Quality of Service information for an IP session. It is a child of the
IPM_SESSION_INFO structure which is filled in when ipm_GetSessionInfo() returns
successfully.

B Field Descriptions

The fields of the IPM_QOS_SESSION_INFO data structure are described as follows:

eQoSType
identifies the QoS alarm to retrieve statistics for
The eIPM_QOS_TYPE data type is an enumeration which defines the following values:
e EVT_DTMFDISCARDED - number of lost DTMF digits since the beginning of the call
e EVT_LOSTPACKETS - percent of lost packets since the beginning of the call
e EVT_JITTER - average jitter since the beginning of the call (in msec)
e EVT_ROUNDTRIPLATENCY - RTP packet latency
Note: EVT_DTMFDISCARDED is not supported on Intel® NetStructure IPT Series
boards.
EVT_ROUNDTRIPLATENCY is not supported on Intel® NetStructure DM/IP
Series boards.

unData
value of the QoS parameter

116 IP Media Library API Library Reference — November 2003

u
I ntGI QoS alarm threshold settings for an IP channel — IPM_QOS_THRESHOLD_DATA
®

IPM_QOS_THRESHOLD_DATA

typedef struct ipm gos_threshold data_tag

{
eIPM QOS_TYPE eQoSType;
unsigned int unTimeInterval;
unsigned int unDebounceOn;
unsigned int unDebounceOff;
unsigned int unFaultThreshold;
unsigned int unPercentSuccessThreshold;
unsigned int unPercentFailThreshold;

} IPM_QOS_THRESHOLD DATA, *PIPM_QOS_THRESHOLD DATA;

B Description

This structure contains the threshold values for QoS alarms for an IP channel. It is a child of the
IPM_QOS_THRESHOLD_INFO structure which is used by ipm_GetQoSThreshold() and
ipm_SetQoSThreshold().

B Field Descriptions

The fields of the IPM_QOS_THRESHOLD_DATA data structure are described as follows:
eQoSType
QoS parameter type
The eIPM_QOS_TYPE data type is an enumeration which defines the following values:
e EVT_DTMFDISCARDED - number of lost DTMF digits since the beginning of the call
(Intel® NetStructure DM/IP Series boards only)
e EVT_LOSTPACKETS - percent of lost packets since the beginning of the call
e EVT_JITTER - average jitter since the beginning of the call (in msec)
e EVT_ROUNDTRIPLATENCY - RTP packet latency (Intel® NetStructure IPT Series
boards only)

unTimelnterval
time interval (in 100 ms units)

Note: This field is not supported on Intel® NetStructure IPT Series boards.

unDebounceOn
debounce on time (in 100 ms units); multiple of unTimeInterval

Note: This field is not supported on Intel® NetStructure IPT Series boards.

unDebounceOff
debounce off time (in 100 ms units); multiple of unTimelnterval

Note: This field is not supported on Intel® NetStructure IPT Series boards.

unFaultThreshold
fault threshold parameter

unPercentSuccessThreshold
threshold of successes during unDebounceOff time (expressed as a percentage of successes)

Note: This field is not supported on Intel® NetStructure IPT Series boards.

IP Media Library API Library Reference — November 2003 117

u
IPM_QOS_THRESHOLD DATA — QoS alarm threshold settings for an IP channel I n‘t9|
®

unPercentFail Threshold
threshold of failures during unDebounceOn time (expressed as a percentage of failures)

Note: This field is not supported on Intel® NetStructure IPT Series boards.

118 IP Media Library API Library Reference — November 2003

u
I ntGI parent of threshold data structures — IPM_QOS_THRESHOLD_INFO
®

IPM_QOS_THRESHOLD_INFO

typedef struct ipm gos_threshold_info_tag

{

unsigned int unCount;
IPM_QOS_THRESHOLD DATA QoSThresholdData[MAX QOS THRESHOLD] ;

} IPM QOS THRESHOLD INFO, *PIPM QOS THRESHOLD INFO;
B Description

This structure is used to set and get the threshold values for QoS alarms for a single IP channel. It is
the parent of IPM_QOS_THRESHOLD_DATA and is used by ipm_GetQoSThreshold() and
ipm_SetQoSThreshold().

B Field Descriptions

The fields of the IPM_QOS_THRESHOLD_INFO data structure are described as follows:

unCount
number of IPM_QOS_THRESHOLD_DATA structures to follow;
maximum = MAX_QOS_THRESHOLD

QosThresholdData
array containing alarm trigger settings

IP Media Library API Library Reference — November 2003 119

n
IPM_RFC2833_SIGNALID_INFO — RFC 2833 signal ID and state info | n‘tel .

IPM_RFC2833_SIGNALID_INFO

Note:

typedef struct ipm rfc2833_signalid_info_tag

eIPM_RFC2833_SIGNAL ID eSignallID;
eIPM_SIGNAL STATE eState;

} IPM RFC2833 SIGNALID INFO;
Description

This structure sends RFC 2833-compliant signal IDs and states. It is used by the
ipm_SendRFC2833SignalIDToIP() function.

This structure is not supported on Intel® NetStructure IPT Series boards.
Field Descriptions

The fields of the IPM_RFC2833_SIGNALID_INFO data structure are described as follows:

eSignallD
signal ID to send
The eIPM_RFC2833_SIGNAL_ID data type enumeration defines values listed in Table 6 and
Table 7 for Intel® NetStructure DM/IP Series Boards and Host Media Processing (HMP)
software respectively.

eState
indicates whether the signal (tone) is on or off.

The eIPM_SIGNAL_STATE data type is an enumeration which defines the following values:
e SIGNAL_STATE_OFF - Signal is OFF, no tone is sent.
e SIGNAL_STATE_ON - Signal is ON, and tone is sent. There is no default state for
eState, a value must be set.

Table 6. elPM_RFC2833_SIGNAL_ID Values for DM/IP Series Boards

120

Name Value (H)
SIGNAL_ID_EVENT_DTMF_1 0x1
SIGNAL_ID_EVENT_DTMF_2 0x2
SIGNAL_ID_EVENT_DTMF_3 0x3
SIGNAL_ID_EVENT_DTMF_4 0x4
SIGNAL_ID_EVENT_DTMF_5 0x5
SIGNAL_ID_EVENT_DTMF_6 0x6
SIGNAL_ID_EVENT_DTMF_7 0x7
SIGNAL_ID_EVENT_DTMF_8 0x8
SIGNAL_ID_EVENT_DTMF_9 0x9
SIGNAL_ID_EVENT_DTMF_STAR Oxa
SIGNAL_ID_EVENT_DTMF_POUND Oxb
SIGNAL_ID_EVENT_DTMF_A Oxc

IP Media Library API Library Reference — November 2003

I n RFC 2833 signal ID and state info — IPM_RFC2833_SIGNALID_INFO

Table 6. elPM_RFC2833_SIGNAL_ID Values for DM/IP Series Boards (Continued)

Name Value (H)
SIGNAL_ID_EVENT_DTMF_B Oxd
SIGNAL_ID_EVENT_DTMF_C Oxe
SIGNAL_ID_EVENT_DTMF_D Oxf
SIGNAL_ID_EVENT_LINE_RINGING_TONE 0x46

Table 7. elPM_RFC2833_SIGNAL_ID Values for HMP Software

Name Value (H)
SIGNAL_ID_EVENT_DTMF_1 Ox1
SIGNAL_ID_EVENT_DTMF_2 0x2
SIGNAL_ID_EVENT_DTMF_3 0x3
SIGNAL_ID_EVENT_DTMF_4 Ox4
SIGNAL_ID_EVENT_DTMF_5 0x5
SIGNAL_ID_EVENT_DTMF_6 0x6
SIGNAL_ID_EVENT_DTMF_7 0x7
SIGNAL_ID_EVENT_DTMF_8 0x8
SIGNAL_ID_EVENT_DTMF_9 0x9
SIGNAL_ID_EVENT_DTMF_STAR Oxa
SIGNAL_ID_EVENT_DTMF_POUND 0Oxb
SIGNAL_ID_EVENT_DTMF_A 0xc
SIGNAL_ID_EVENT_DTMF_B Oxd
SIGNAL_ID_EVENT_DTMF_C Oxe
SIGNAL_ID_EVENT_DTMF_D Oxf

IP Media Library API Library Reference — November 2003 121

IPM_RTCP_SESSION_INFO — session information for RTCP

IPM_RTCP_SESSION_INFO

122

Note:

typedef struct ipm rtcp_session_ info_tag

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

unLocalSR_TimeStamp;
unLocalSR_TxPackets;
unLocalSR_TxOctets;
unLocalSR_SendIndication;
unLocalRR_FractionLost;
unLocalRR_CumulativeLost;
unLocalRR_SegNumber ;
unLocalRR ValidInfo;
unRemoteSR_TimeStamp;
unRemoteSR_TxPackets;
unRemoteSR_TxOctets;
unRemoteSR_SendIndication;
unRemoteRR_FractionLost;
unRemoteRR_CumulativeLost;
unRemoteRR_SegNumber ;
unRemoteRR_ValidInfo;

} IPM_RTCP_SESSION_INFO, *PIPM_RTCP_SESSION_INFO;

Description

This structure contains RTCP information for the session. It is a child of the IPM_SESSION_INFO
structure which is filled in when ipm_GetSessionInfo() returns successfully.

The structure is not supported for Intel® NetStructure IPT Series boards.

Field Descriptions

The fields of the IPM_RTCP_SESSION_INFO data structure are described as follows:

unLocalSR_TimeStamp

time stamp of the RTCP packet transmission from the local sender

unLocalSR_TxPackets

number of packets sent by the local sender

unLocalSR_TxOctets

number of bytes sent by the local sender

unLocalSR_SendIndication

local sender report has changed since the last transmission. Values may be either:

¢ FALSE
e TRUE

unlLocalRR_FractionLost

percentage of packets lost, as computed by the local receiver

unLocalRR_CumulativeLost

number of packets lost, as computed by the local receiver

unLocalRR_SeqNumber

last sequence number received from the local receiver

IP Media Library API Library Reference — November 2003

session information for RTCP — IPM_RTCP_SESSION_INFO

unlLocalRR_ValidInfo
reserved for future use

unRemoteSR_TimeStamp
time stamp of the RTCP packet transmission from the remote sender

unRemoteSR_TxPackets
number of packets sent by the remote sender

unRemoteSR_TxOctets
number of bytes sent by the remote sender

unRemoteSR_SendIndication
remote sender report has changed since the last transmission. Values may be either:
¢ FALSE
e TRUE

unRemoteRR_FractionLost
percentage of packets lost, as computed by the remote receiver

unRemoteRR_CumulativeLost
number of packets lost, as computed by the remote receiver

unRemoteRR_SeqNumber
last sequence number received from the remote receiver

unRemoteRR_ValidInfo
reserved for future use

IP Media Library API Library Reference — November 2003

123

u
IPM_SESSION_INFO — parent structure containing RTCP and QoS info I nU
®

IPM_SESSION_INFO

typedef struct ipm session_info_ tag

{

IPM_RTCP_SESSION_INFO RtcpInfo;
unsigned int unQoSInfoCount ;
IPM QOS_SESSION_INFO QoSInfo [MAX QOS_SESSION] ;

} IPM_SESSION_INFO, *PIPM SESSION_INFO;
B Description

This structure is a parent structure of the IPM_RTCP_SESSION_INFO and
IPM_QOS_SESSION_INFO structures, and it is used by the ipm_GetSessionInfo() function. It
reports QoS statistics during the last IP session, including RTCP information. Note that it does not
contain statistics for the current IP session.

Note: This structure is not supported on Intel® NetStructure IPT Series boards.
B Field Descriptions

The fields of the IPM_SESSION_INFO data structure are described as follows:

Rtcplnfo

reference to RTCP session information structure IPM_RTCP_SESSION_INFO
unQoSInfoCount

number of structures to follow; maximum sessions = MAX_QOS_SESSION
QoSInfo

reference to QoS session information structure IPM_QOS_SESSION_INFO

124 IP Media Library API Library Reference — November 2003

u
I ntGI TDM bus (CT Bus) time slot information — SC_TSINFO
®

SC_TSINFO

typedef struct sc_tsinfo {
unsigned long sc_numts;
long *sc_tsarrayp;
} SC_TSINFO;

B Description

This structure defines the TDM bus (CT Bus) time slot information. It is used by
ipm_GetXmitSlot(), ipm_Listen(), ipm_StartMedia(), and ipm_GetLocalMedialnfo().

B Field Descriptions

The fields of the SC_TSINFO data structure are described as follows:

sc_numts
must be set to 1 for this release; number of time slots to follow.

Sc_tsarrayp
time slot ID number

IP Media Library API Library Reference — November 2003 125

u
SC_TSINFO — TDM bus (CT Bus) time slot information I n‘t9|
®

126 IP Media Library API Library Reference — November 2003

intel.

Error Codes 5

This chapter describes the error/cause codes supported by the IP Media software error library,
ipmerror.h. All IP Media library functions return a value that indicates the success or failure of the
function call. Success is indicated by a return value of zero or a non-negative number. Failure is
indicated by a value of -1.

If a function fails, call the Standard Attribute functions ATDV_LASTERR() and
ATDV_ERRMSGP() for the reason for failure. These functions are described in the Standard
Runtime Library API Library Reference.

If an error occurs during execution of an asynchronous function, the IPMEV_ERROR event is sent
to the application. No change of state is triggered by this event. Upon receiving the
IPMEV_ERROR event, the application can retrieve the reason for the failure using the SRL
functions ATDV_LASTERR() and ATDV_ERRMSGP().

The IP Media software error library contains the following error codes, listed in alphabetical order.
The list also identifies the functions that may return the particular error code.

EIPM_BADPARM
Bad argument or parameter. All IP Media library functions except ipm_Open().

EIPM_BUSY
Device busy. ipm_SetRemoteMedialnfo(), ipm_StartMedia()

EIPM_CONFIG
Configuration error. ipm_Close()

EIPM_EVT_EXIST
Event already enabled. ipm_EnableEvents()

EIPM_EVT_LIST_FULL
Too many events. ipm_EnableEvents()

EIPM_FWERROR
Firmware error. ipm_Close(), ipm_GetParm(), ipm_GetXmitSlot(), ipm_Listen(),
ipm_Ping(), ipm_SetParm(), ipm_Stop(), ipm_UnListen()

EIPM_INTERNAL
Internal error. ipm_DisableEvents(), ipm_EnableEvents(), ipm_GetLocalMedialnfo(),
ipm_GetQoSAlarmStatus(), ipm_GetQoSThreshold(), ipm_GetSessionInfo(),
ipm_GetXmitSlot(), ipm_Listen(), ipm_ReceiveDigits(), ipm_ResetQoSAlarmStatus(),
ipm_SendDigits(), ipm_SetQoSThreshold(), ipm_SetRemoteMedialnfo(),
ipm_StartMedia(), ipm_UnListen()

EIPM_INTERNAL_INIT
Internal initialization error.

EIPM_INV_DEVNAME
Invalid device name.

IP Media Library API Library Reference — November 2003 127

Error Codes

128

intel.

EIPM_INV_EVT
Invalid event. ipm_DisableEvents(), ipm_EnableEvents()

EIPM_INV_MODE
Invalid mode. ipm_GetLocalMedialnfo(), ipm_GetQoSAlarmStatus(),
ipm_GetQoSThreshold(), ipm_GetSessionInfo(), ipm_ResetQoSAlarmStatus(),
ipm_SendDigits(), ipm_SetQoSThreshold(), ipm_SetRemoteMedialnfo(),
ipm_StartMedia()

EIPM_INV_STATE
Invalid state. Error indicates that initial command did not complete before another function
call was made. ipm_DisableEvents(), ipm_EnableEvents(), ipm_GetLocalMedialnfo(),
ipm_GetQoSAlarmStatus(), ipm_GetQoSThreshold(), ipm_GetSessionInfo(),
ipm_GetXmitSlot(), ipm_Listen(), ipm_ReceiveDigits(), ipm_ResetQoSAlarmStatus(),
ipm_SendDigits(), ipm_SetQoSThreshold(), ipm_SetRemoteMedialnfo(),
ipm_StartMedia(), ipm_UnListen()

EIPM_NOERROR
No error.

EIPM_NOMEMORY
Memory allocation error.

EIPM_RESOURCEINUSE
Resource in use or not available.

EIPM_SRL
SRL error.

EIPM_SRL_SYNC_TIMEOUT
SRL timeout.

EIPM_SYSTEM
System error. ipm_DisableEvents(), ipm_EnableEvents(), ipm_GetLocalMediaInfo(),
ipm_GetQoSAlarmStatus(), ipm_GetQoSThreshold(), ipm_GetSessionInfo(),
ipm_GetXmitSlot(), ipm_Listen(), ipm_ReceiveDigits(), ipm_ResetQoSAlarmStatus(),
ipm_SendDigits(), ipm_SetQoSThreshold(), ipm_SetRemoteMedialnfo(),
ipm_StartMedia(), ipm_UnListen()

EIPM_TIMEOUT
Timeout.

EIPM_UNSUPPORTED
Function unsupported. ipm_DisableEvents(), ipm_EnableEvents()

IP Media Library API Library Reference — November 2003

intel.

Glossary

Codec: see COder/DECoder

COder/DECoder: A circuit used on Dialogic boards to convert analog voice data to digital and digital voice data
to analog audio.

Computer Telephony (CT): Adding computer intelligence to the making, receiving, and managing of
telephone calls.

DTMF: See Dual-Tone Multi-Frequency

Dual-Tone Multi-Frequency: A way of signaling consisting of a push-button or touch-tone dial that sends out a
sound consisting of two discrete tones that are picked up and interpreted by telephone switches (either PBXs or
central offices).

Emitting Gateway: called by a G3FE. It initiates IFT service for the calling G3FE and connects to a Receiving
Gateway.

E1: The 2.048 Mbps digital carrier system common in Europe.

FCD file: An ASCII file that lists any non-default parameter settings that are necessary to configure a DM3
hardware/firmware product for a particular feature set. The downloader utility reads this file, and for each
parameter listed generates and sends the DM3 message necessary to set that parameter value.

Frame: A set of SCbus/CT bus timeslots which are grouped together for synchronization purposes. The period of
a frame is fixed (at 125 psec) so that the number of time slots per frame depends on the SCbus/CT bus data rate. In
the context of DSP programming (e.g. DM3 component development), the period defined by the sample rate of the
signal data.

G3FE: Group 3 Fax Equipment. A traditional fax machine with analog PSTN interface.
Gatekeeper: An H.323 entity on the Internet that provides address translation and control access to the network
for H.323 Terminals and Gateways. The Gatekeeper may also provide other services to the H.323 terminals and

Gateways, such as bandwidth management and locating Gateways.

Gateway: A device that converts data into the IP protocol. It often refers to a voice-to-IP device that converts an
analog voice stream, or a digitized version of the voice, into IP packets.

H.323: A set of International Telecommunication Union (ITU) standards that define a framework for the
transmission of real-time voice communications through Internet protocol (IP)-based packet-switched networks.
The H.323 standards define a gateway and a gatekeeper for customers who need their existing IP networks to
support voice communications.

IAF: Internet Aware Fax. The combination of a G3FE and a T.38 gateway.

IFP: Internet Facsimile Protocol

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 129

intel.

International Telecommunications Union (ITU): An organization established by the United Nations to set
telecommunications standards, allocate frequencies to various uses, and hold trade shows every four years.

IFT: Internet Facsimile Transfer

Internet: An inter-network of networks interconnected by bridges or routers. LANs described in H.323 may be
considered part of such inter-networks.

Internet Protocol (IP): The network layer protocol of the transmission control protocol/Internet protocol
(TCP/IP) suite. Defined in STD 5, Request for Comments (RFC) 791. It is a connectionless, best-effort packet
switching protocol.

Internet Service Provider (ISP): A vendor who provides direct access to the Internet.

Internet Telephony: The transmission of voice over an Internet Protocol (IP) network. Also called Voice over
IP (VoIP), IP telephony enables users to make telephone calls over the Internet, intranets, or private Local Area
Networks (LANs) and Wide Area Networks (WANSs) that use the Transmission Control Protocol/Internet Protocol
(TCP/TP).

ITU: See International Telecommunications Union.

Jitter: The deviation of a transmission signal in time or phase. It can introduce errors and loss of synchronization
in high-speed synchronous communications.

NIC (Network Interface Card): Adapter card inserted into computer that contains necessary software and
electronics to enable a station to communicate over network.

PCD file: An ASCII text file that contains product or platform configuration description information that is used
by the DM3 downloader utility program. Each of these files identifies the hardware configuration and firmware
modules that make up a specific hardware/firmware product. Each type of DM3-based product used in a system
requires a product-specific PCD file.

PSTN: see Public Switched Telephone Network

Public Switched Telephone Network: The telecommunications network commonly accessed by standard
telephones, key systems, Private Branch Exchange (PBX) trunks and data equipment.

Reliable Channel: A transport connection used for reliable transmission of an information stream from its
source to one or more destinations.

Reliable Transmission: Transmission of messages from a sender to a receiver using connection-mode data
transmission. The transmission service guarantees sequenced, error-free, flow-controlled transmission of messages
to the receiver for the duration of the transport connection.

RTCP: Real Time Control Protocol

RTP: Real Time Protocol

SCbus: The standard bus for communication within a SCSA node. The architecture of the SCbus includes a 16-
wire TDM data bus that operates at 2, 4 or 8 Mbps and a serial message bus for control and signaling. DM3

130 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

platforms provide an SCbus interface for interconnection of multiple DM3 platforms, or connection to other SCSA-
compatible hardware. The DM3 platform supports timeslot bundling for high bandwidth, and can access up to 256
of the 2048 SCbus timeslots via two SC4000 ASICs.

SIP: Session Initiation Protocol: an Internet standard specified by the Internet Engineering Task Force (IETF) in
RFC 2543. SIP is used to initiate, manage, and terminate interactive sessions between one or more users on the
Internet.

T1: A digital transmission link with a capacity of 1.544 Mbps used in North America. Typically channeled into 24
digital subscriber level zeros (DSO0s), each capable of carrying a single voice conversation or data stream. T1 uses
two pairs of twisted pair wires.

TCP: see Transmission Control Protocol

Terminal: An H.323 Terminal is an endpoint on the local area network which provides for real-time, two-way
communications with another H.323 terminal, Gateway, or Multipoint Control Unit. This communication consists
of control, indications, audio, moving color video pictures, and/or data between the two terminals. A terminal may
provide speech only, speech and data, speech and video, or speech, data, and video.

Transmission Control Protocol: The TCP/IP standard transport level protocol that provides the reliable, full
duplex, stream service on which many application protocols depend. TCP allows a process on one machine to send
a stream of data to a process on another. It is connection-oriented in the sense that before transmitting data,
participants must establish a connection.

UDP: see User Datagram Protocol

UDPTL: Facsimile UDP Transport Layer protocol

User Datagram Protocol: The TCP/IP standard protocol that allows an application program on one machine to
send a datagram to an application program on another machine. Conceptually, the important difference between
UDP datagrams and IP datagrams is that UDP includes a protocol port number, allowing the sender to distinguish

among multiple destinations on the remote machine.

VAD: Voice Activity Detection

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 131

132 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

Index

C

coder support
DM/IP Series boards 102
HMP software 102, 120, 121
IPT Series boards 101
coder type 100
convention
device name 52
CT_DEVINFO data structure 96

D

data structures
CT_DEVINFO 96
IPM_CLOSE_INFO 99
IPM_CODER_INFO 100
IPM_DIGIT_INFO 103
IPM_EVENT_INFO 104
IPM_MEDIA 106
IPM_MEDIA_INFO 107
IPM_OPEN_INFO 108
IPM_PORT_INFO 113
IPM_QOS_ALARM_DATA 114
IPM_QOS_ALARM_STATUS 115
IPM_QOS_SESSION_INFO 116
IPM_QOS_THRESHOLD_DATA 117
IPM_QOS_THRESHOLD_INFO 119
IPM_RTCP_SESSION_INFO 122
IPM_SESSION_INFO 124
IPM_TIMESLOT_INFO 125

I/O functions 12
ipm_Close(_) 11, 16
IPM_CLOSE_INFO 99
IPM_CODER_INFO 100
IPM_DIGIT_INFO 103
ipm_DisableEvents(_) 11, 18
ipm_EnableEvents(_) 11, 22
IPM_EVENT_INFO 104
IPM_FAX_SIGNAL 105
ipm_GetCTINfo() 26
ipm_GetLocalMedialnfo(_) 12, 28
ipm_GetParm(_) 32

ipm_GetQoSAlarmStatus(_) 12, 35
ipm_GetQoSThreshold(_) 12, 38
ipm_GetSessionInfo(_) 12, 42
ipm_GetTimeslotInfo(_) 11, 46
ipm_Listen(_) 11, 49

IPM_MEDIA 106
IPM_MEDIA_INFO 107
ipm_Open(_) 11,52
IPM_OPEN_INFO 108
IPM_PORT_INFO 113
IPM_QOS_ALARM_DATA 114
IPM_QOS_ALARM_STATUS 115
IPM_QOS_SESSION_INFO 116
IPM_QOS_THRESHOLD_DATA 117
IPM_QOS_THRESHOLD_INFO 119
ipm_ReceiveDigits(_) 12, 58
ipm_ResetQoSAlarmStatus(_) 12, 62
IPM_RTCP_SESSION_INFO 122
ipm_SendDigits(_) 12, 65
ipm_SendRFC2833SignallDToIP() 12
IPM_SESSION_INFO 124
ipm_SetQoSThreshold(_) 12, 74
ipm_SetRemoteMedialnfo(_) 12, 77, 81
ipm_StartMedia() 12

ipm_Stop(_) 12, 85
IPM_TIMESLOT_INFO 125
ipm_UnListen(_) 11, 88
IPMEV_DIGITS_RECEIVED 59

M

media session functions 12

N

naming convention
device 52

Q

QoS

functions 12

IP Media Library API Library Reference — November 2003

S

system control functions 11

T

type of coder 100

134 IP Media Library API Library Reference — November 2003

	Contents
	Tables
	Revision History
	About This Publication
	Purpose
	Intended Audience
	How to Use This Publication
	Related Information

	1. Function Summary by Category
	1.1 System Control Functions
	1.2 I/O (Input/Output) Functions
	1.3 Media Session Functions
	1.4 Quality of Service (QoS) Functions
	1.5 IP Media Function Support by Platform
	Table�1.� IP Media Function Support by Platform�

	2. Function Information
	2.1 Function Syntax Conventions

	ipm_Close(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_DisableEvents(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_EnableEvents(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_GetCTINfo(�)
	Description
	Cautions
	Errors
	Example
	See Also

	ipm_GetLocalMediaInfo(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_GetParm(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_GetQoSAlarmStatus(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_GetQoSThreshold(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_GetSessionInfo(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_GetXmitSlot(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_Listen(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_Open(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_Ping(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_ReceiveDigits(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_ResetQoSAlarmStatus(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_SendDigits(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_SendRFC2833SignalIDToIP(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_SetParm(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_SetQoSThreshold(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_SetRemoteMediaInfo(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_StartMedia(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_Stop(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	ipm_UnListen(�)
	Description
	Termination Events
	Cautions
	Errors
	Example
	See Also

	3. Events
	4. Data Structures
	CT_DEVINFO
	Description
	Field Descriptions

	IPM_CLOSE_INFO
	Description

	IPM_CODER_INFO
	Description
	Field Descriptions
	Table�2.� Supported Coders for Intel® NetStructure™ IPT Series Boards�
	Table�3.� Supported Coders for Intel® NetStructure™ DM/IP Series Boards
	Table�4.� Supported Coders for Host Media Processing

	IPM_DIGIT_INFO
	Description
	Field Descriptions

	IPM_EVENT_INFO
	Description
	Field Descriptions

	IPM_FAX_SIGNAL
	Description
	Field Descriptions

	IPM_MEDIA
	Description
	Field Descriptions

	IPM_MEDIA_INFO
	Description
	Field Descriptions

	IPM_OPEN_INFO
	Description

	IPM_PARM_INFO
	Description
	Field Descriptions
	Table�5.� eIPM_PARM Values�

	IPM_PING_INFO
	Description
	Field Descriptions

	IPM_PING_PARM
	Description
	Field Descriptions

	IPM_PORT_INFO
	Description
	Field Descriptions

	IPM_QOS_ALARM_DATA
	Description
	Field Descriptions

	IPM_QOS_ALARM_STATUS
	Description
	Field Descriptions

	IPM_QOS_SESSION_INFO
	Description
	Field Descriptions

	IPM_QOS_THRESHOLD_DATA
	Description
	Field Descriptions

	IPM_QOS_THRESHOLD_INFO
	Description
	Field Descriptions

	IPM_RFC2833_SIGNALID_INFO
	Description
	Field Descriptions
	Table�6.� eIPM_RFC2833_SIGNAL_ID Values for DM/IP Series Boards�
	Table�7.� eIPM_RFC2833_SIGNAL_ID Values for HMP Software�

	IPM_RTCP_SESSION_INFO
	Description
	Field Descriptions

	IPM_SESSION_INFO
	Description
	Field Descriptions

	SC_TSINFO
	Description
	Field Descriptions

	5. Error Codes
	Glossary
	Index
	C
	D
	I
	M
	N
	Q
	S
	T

