IP Gateway (Global Call) Object
Oriented

Demo Guide

November 2003

05-1825-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining
applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This IP Gateway (Global Call) Object Oriented Demo Guide as well as the software described in it is furnished under license and may only be used or
copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without express written consent of Intel Corporation.

Copyright © 2002, Intel Corporation

AnyPoint, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP,
InstantIP, Intel, Intel Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel InBusiness, Intel Inside,
Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel
Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium Il
Xeon, Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey
Inside, TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.
Publication Date: November 2003
Document Number: 05-1825-002

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page at:
http://www.intel.com/buy/wtb/wtb1028.htm

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/wtb/wtb1028.htm

intel.

Contents

1 Demo DescCHiptioNn. e e 11
2 System Requirements e 13
2.1 Hardware Requirements e e e 13

2.2 Software RequUirementso 13

3 Preparingto Runthe Demo. e 15
3.1 Connecting to External Equipment 15

3.2 Editing Configuration Files. e 16

3.2.1 FileLocation e 16

3.2.2 Editing the gateway.cfg Configuration File 17

3.3 Compilingand LinKingot e e 20

4 Runningthe Demo e 21
4.1 Startingthe Demo 21

42 Demo OPONSt 21

4.3 Usingthe Demo. e 22

4.4 Stoppingthe Demo 23

5 Demo Details. e 25
5.1 FilesUsedbythe Demo i e e e e 25

51.1 DemoSource Code Files 25

5.1.2 Utility Fileso 27

5.1.8 PDLFIlES ..o e 27

5.2 Programming Model Classes. e e 27

5.2.1 Class Diagramt e 28

522 Channel Class e e e 29

5.2.83 Configuration Class i e 30

5.2.4 GCCallControl Class. v vttt e 31

525 GCDEVICE Class . . .ot i et e e 31

52,6 GWCall Classo v it e 31

5.2.7 IPBoard Class.ot e 32

5.2.8 IPCallControl Class.ot i e e 32

52.9 IPDeVvice Classot e 33

52,10 PSTNBOard Class.o vttt e e e 33

5.2.11 PSTNCallControl Class.ottt e e e 33

52,12 PSTNDeVICE Classo ittt e e e e 33

5.2.13 ResourceManager Classt 34

5214 R4Board Classottt e 35

52,15 RADEVICE Classottt e e 35

5.3 Threads e 36

5.4 Initialization e 36

5.5 EventHandling e e 38

551 EventMechanism e 38

5.5.2 Handling Keyboard Input Events 38

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 3

u

Contents I ntGI o
5.5.3 Handling SRLEvents. 38

5.5.4 Handling Application Exit Events. 39

6 Demo State Machines e 41
6.1 GWCall State Machine - Inbound CallfromIP i, 41
6.1.1 GWOCall State Machine Description - Inbound fromIP...................... 41

6.1.2 GWCall:callNull State 42

6.1.3 GWCall:callGetlPInfo 43

6.1.4 GWECall:calllPOffered 43

6.1.5 GWCall:calllPACCEpPingot 43

6.1.6 GWACall::callPSTNConnectedt e e 44

6.1.7 GWECall:callConnectedot 44

6.1.8 GWCall::callDroppingottt e 44

6.1.9 GWECall::callReleasing.o u it e 44

6.2 GWCall State Machine - Inbound Call from PSTN. 45
6.2.1 GWCall State Machine Description - Inbound from PSTN 45

6.2.2 GWCall:callNull State 46

6.2.3 GWCall::callPSTNDetected. e e e 47

6.2.4 GWCall::callPSTNOffered e e e 47

6.2.5 GWCall::callPSTNACCEPiNG . . .« ot it e e 47

6.2.6 GWCall::calllPConnectedt e e 48

6.2.7 GWCall::callConnected i e e e 48

6.2.8 GWCall::callDroppingvov ittt e 48

6.2.9 GWECall::callReleasing.ottt 49

6.3 PSTNCallControl State Machine e 49
6.3.1 PSTNCallControl State Machine Descriptiono 49

6.3.2 PSTNCallControl::Null State i i 50

6.3.3 PSTNCallControl::Detected State i 51

6.3.4 PSTNCallControl::Offered State e 51

6.3.5 PSTNCallControl::Accepting State 52

6.3.6 PSTNCallControl::Answering State. 52

6.3.7 PSTNCallControl::makingCall State i .. 52

6.3.8 PSTNCallControl::Connected State. 53

6.3.9 PSTNCallControl::Dropping State e 53
6.3.10 PSTNCallControl::Releasing State 53

6.4 IPCallControl State Machine. i e e 53
6.4.1 IPCallControl State Machine Description. 54

6.4.2 IPCallControl::Null State i 55

6.4.3 IPCallControl::getCallinfo State. i 56

6.4.4 IPCallControl::offered State. 56

6.4.5 IPCallControl::accepting State. i 57

6.4.6 IPCallControl::answering State o i 57

6.4.7 IPCallControl::makingCall State 57

6.4.8 IPCallControl::connected State 58

6.4.9 IPCallControl::dropping State 58
6.4.10 IPCallControl::dropped State. 59

6.4.11 IPCallControl:ireleasing State 59
GlOSSaNY . . . oot 61
INdeX . . . e 65
4 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

u
I ntGI Contents
®

Figures
1 Connecting to External Equipment e 16
2 Configuration File Parameters. e 19
3 IP Gateway (Global Call) Object Oriented Class Diagram vun... 29
4 IP Gateway (Global Call) Object Oriented Demo Threads 36
5 IP Gateway (Global Call) Object Oriented System Initialization 37
6 GWOCall State Machine - Inbound Call from IP 42
7 GWOCall State Machine - Inbound Call from PSTN 46
8 PSTNCallControl State Machine e e 50
9 IPCallControl State Machine i e e 55

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 5

Contents i ntGI o

Tables

O~NO O WDN =

Command Line SWitChes 21
Runtime Keyboard Commands ittt e e 22
Source Files Used by the IP Gateway (Global Call) Object Oriented Demo 25
Utility Files Used by the IP Gateway (Global Call) Object Oriented Demo. 27
PDL Files Used by the IP Gateway (Global Call) Object Oriented Demo - Windows OS 27
Channel Class AttribUtES oot e e 29
Configuration Class Attributes e 30
GCCallControl Class Attributes e e 31
GCDevice Class AttribUtes 31
GWCall Class AttribUteSo oo e e 32
IPMediaBoard Class Attributes. e 32
IPCallControl Class Attributes i et 32
IPDevice Class Attributes. e 33
PSTNCallControl Class Attributes i e 33
PSTNDevice Class Attributes. i 34
ResourceManager Class Attributes 34
R4Board Class Attributes 35
R4Device Class Attributes 36

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No.

Publication Date

Description of Revisions

05-1825-002 November 2003 Revised Glossary
Editing Configuration Files: added diagram to map configuration file parameters to
network components
Demo Details: Alphabetized Class Descriptions
05-1825-001 October 2002 Initial version of document.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

Revision History i nt9I ®

8 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

About This Publication

This section describes the purpose of the guide, the intended audience, and references to other
documents that may be useful to the user.

¢ Purpose
e Intended Audience
e How to Use This Publication

e Related Information

Purpose

This guide provides information on the IP Gateway (Global Call) Object Oriented demo that is
available with your Intel® Dialogic® system release. This guide describes the demo, its
requirements, and details on how it works.

Intended Audience

This guide is intended for application developers who will be developing a PSTN-IP gateway
application using the Global Call API. Developers should be familiar with the C++ programming
language and either the Windows™* or Linux* programming environments.

This information is intended for:

¢ Distributors

Toolkit Developers

Independent Software Vendors (ISVs)
Value Added Resellers (VARSs)
Original Equipment Manufacturers (OEMs)

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software.

This publication assumes that you are familiar with the Windows or Linux operating system and
the C++ programming language.

The information in this guide is organized as follows:

e Chapter 1, “Demo Description” introduces you to the demo and its features

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

[]
About This Publication
I ntel o

¢ Chapter 2, “System Requirements” outlines the hardware and software required to run the
demo

* Chapter 3, “Preparing to Run the Demo” describes the preparations required before running
the demo

¢ Chapter 4, “Running the Demo” describes how to run the demo
¢ Chapter 5, “Demo Details” provides details on how the demo works

* Chapter 6, “Demo State Machines” provides details on the demo state machines

Related Information

See the following for more information:

¢ System Release 6.0 Release Update for information on problems fixed, known problems and
workarounds, compatibility issues and last minute updates not documented in the published
information.

e DMS3 for Linux Configuration Guide

o [Intel® NetStructure™ on DM3 Architecture for cPCI on Windows Configuration Guide
¢ Intel® NetStructure™ IPT Series for Linux Configuration Guide

o [Intel® NetStructure™ I[PT Series on Windows Configuration Guide

* hittp://developer.intel.com/design/telecom/support/ (for technical support)

o http://www.intel.com/network/csp/ (for product information)

10 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

http://developer.intel.com/design/telecom/support/
http://www.intel.com/network/csp

intel.

Demo Description 1

The IP Gateway (Global Call) Object Oriented demo is an object-oriented host-based application
that demonstrates using the Global Call API to build a PSTN-IP gateway. The demo source code
can be used as sample code for those who want to begin developing an application from a working
application. The demo is not designed to implement a complete gateway and it lacks features such
as least-cost routing, etc.

The IP Gateway (Global Call) Object Oriented demo supports the following features:

* Accepts IP calls

¢ Places IP calls

¢ Accepts PSTN calls

¢ Places PSTN calls

¢ Configuration file

¢ Command line options
¢ Output log files

* Printing to the monitor
e QoS

The IP Gateway (Global Call) Object Oriented demo is a cross-OS demo, running under the
Windows or Linux environments. Most of the differences in the environments are handled directly
by the programming interface and are transparent to the user. Other differences, due to inherent
differences in the operating systems, are handled by the Platform Dependency Library (PDL). For
more information about the PDL refer to the source code in the pdl_win or pdi_linux directories.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 11

Demo Description i nt9I ®

12 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

System Requirements 2

This chapter discusses the system requirements for running the IP Gateway (Global Call) Object
Oriented demo. It contains the following topics:.

e Hardware Requirementsttt 13
e Software Requirements i 13
2.1 Hardware Requirements

To run the IP Gateway (Global Call) Object Oriented demo, you need:

¢ One of the following:
— Intel® NetStructure™ DM/IP Series board
— Intel® NetStructure™ IPT Series board
¢ also requires an Intel® NetStructure™ DM/V-A series board for PSTN connection

e IP network cable

For other hardware requirements, such as memory requirements, see the Release Guide for the
system release you are using.

2.2 Software Requirements

To run the IP Gateway (Global Call) Object Oriented demo, you need the Intel® Dialogic® System
Software 6.0 for Linux or Windows. For a list of operating system requirements see the Release
Guide for the system release you are using.

See Chapter 3, “Compiling and Linking” for a list of compilers that may be used with this demo.
Using a non-supported compiler may cause unforeseen problems in running the demo.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 13

u
System Requirements I ntel o

14 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

Preparing to Run the Demo 3

This chapter discusses the preparations necessary to run the IP Gateway (Global Call) Object
Oriented demo. It provides information about the following topics:

e Connecting to External Equipment 15

e Editing Configuration Files e 16

e Compilingand Linking i e 20
3.1 Connecting to External Equipment

There are two possible hardware configurations for the IP Gateway (Global Call) Object Oriented
demo:

¢ Using the NIC and PSTN connection on the front end, as well as the host NIC for signaling -
used with Intel® NetStructure™ DM/IP Series boards

¢ Using the on-board NIC and a PSTN interface board, as well as the host NIC for signaling -
used with Intel® NetStructure™ IPT Series board

Figure 1 illustrates each of the possible configurations.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 15

u
Preparing to Run the Demo I ntel o

Figure 1. Connecting to External Equipment

= 1
Telephone : L1 DDD DDDD :
] EE o050 = |
:><; % : Host Computer NIC :
1 | I
| —_—
I

— O 0m !
ooo To
To Host NIC 0855 PSTN
(signaling) I —

I
I
| Intel® NetStructure™
| DM/IP Series board I

—_— e — — — — —_ — =

To on-board NIC
(media stream)

IP Phone

To Host NIC i_ Host Computer NIC

(signaling)\L ':'I:l] il HHH
I
I
To on-board NIC :
)
I

I
I
I
I
I
I
(media stream Intel® NetStructure™ :
I
I
I
I

\1‘ .:I.PT Series board
2 ol

IP Client

=
Intel® NetStructure™ l
DM/V-A series board

|
| ST 00w e

To
| it HHHH| PSTN
|
|

3.2 Editing Configuration Files

This section discusses how to configure the demo for your system. It contains the following topics:
¢ File Location

¢ Editing the gateway.cfg Configuration File

3.2.1 File Location

Before running the IP Gateway (Global Call) Object Oriented demo, modify the gateway.cfg file to
reflect your system environment. Use a text editor and open the file from:

* Windows: C:\Program Files\dialogic\demos\ipdemo\gateway_ood\release\

16 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

Preparing to Run the Demo

Editing the gateway.cfg Configuration File

Below is an example of the gateway.cfg file. Update the following information:

Source
Source (originator) address

The following prefixes must be used when describing a source or destination address:

Prefix Type Description

NAME: H323-ID H323-ID is an “alias address,” such as “Intel Corp.,” usually resolved by a
gatekeeper.

The H323-ID consists of a string of ISO/IEC 10646-1 characters as
defined in H.225.0. It may be a user name, conference name, email name,
or other identifier.

TEL: e164 A unique numeric phone number
TA: Target Address The IP address of the remote gateway
Destination

IP address of the NIC on the destination Gateway host. See Source (originator) address for a
description of the prefixes that must be used.

RemotePhoneNumber
Destination phone number to call. It is transferred during call establishment to target gateway.

LocalPhoneNumber
The number used for PSTN calls

pstnProtocol
The PSTN protocol supported by the gateway. Possible values are: T1, E1, ISDN (including
NFAS), CAS.

DTMFmode
Specifies how DTMF tones are transmitted. Possible values are: RTPInBand (usually used
with G.711 coders), OutOfBand (usually used with low bandwidth coders, e.g., GSM),
RTPRFC2833.

ipProtocol
The IP Protocol used for opening the IP line devices. Values are: H323, SIP, both.

AudioRxCodecs
Describes the receive voice coder. The parameters are as follows:

¢ CoderType — The type of coder. See the System Release Update for specific information
about coder support in this release.

¢ CoderFramesPerPkt — Specify the number of frames per packet for the selected coder. See
the System Release Update for specific information about coder support in this release.

* CoderVAD - Specify if VAD is active. See the System Release Update for specific
information about coder support in this release.

AudioTxCodecs
Describes the transmit voice coder. See AudioRxCodecs for a description of the parameters.

Data Codecs
Describes the fax coder parameters. See AudioRxCodecs for a description of the parameters.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 17

u
Preparing to Run the Demo I ntel o

Quality of Service
The application can set threshold values to monitor the quality of service during calls. A fault
occurs when the result of a measurement of a QoS parameter crossed a predefined threshold. A
success occurs when the result of a measurement of a QoS parameter did not cross a
predefined threshold. The QoS parameters are measured during time intervals, starting when a
call is established. The following parameters are supported:
e MediaAlarmLostPackets — indicates that the percentage of packets lost during a call
exceeded its threshold value
* MediaAlarmlitter — indicates that the jitter (as defined in RFC 1889) exceeded its
threshold value

QoS Attributes
Each parameter has six attributes:

¢ Threshold — defines when a QoS parameter is in a fault condition. A fault occurs when the
result of a measurement of a QoS parameter crossed the Threshold value.

¢ DebounceOn — the time during which faults are measured (in msec., must be multiple of
Interval)

¢ DebounceOff — the time during which successes are measured (in msec., must be multiple
of Interval)

¢ Interval — the amount of time between two QoS parameter measurements (in multiples of
100 msec)

¢ Percent_Fail — the threshold of failures during the DebounceOn time (expressed as a
percentage of failures)

¢ Percent_Success — the threshold of successes during the DebounceOn time (expressed as
a percentage of successes)

The default values are as follows:

Percent_ Percent_

Threshold | DebounceOn | DebounceOff Interval .
Fail Success

Lost packets | 20 10000 10000 1000 60 40
Jitter 60 20000 60000 5000 60 40

Display
Display information passed to destination gateway during call establishment

IPT_UUI
User to User Information string. The information is sent before the Connected state.

ull
User Input Indication string to send. The maximum string length is 256 characters
(MAX_STRING).

NonStdParm
Non-standard parameter data to send

NonStdCmd
Non-standard command string to send. The maximum string length is 256 characters
(MAX_STRING).

Objld
Object ID

18 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

Figure 2.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

Q931Facility

Preparing to Run the Demo

Facility data to send on the Q.931 channel. The maximum string length is 256 characters
(MAX_STRING).

Figure 2 illustrates how the configuration file parameters relate to the individual network

components.

Configuration File Parameters

PSTN/IP Gateway
(Destirw/v
Telephone

O]

<

IP Client
(Destination)

U%
=

Initiating PSTN Call
(LocalPhoneNumber)

(RemotePhoneNumber)

I

E8)
EE

System running
demo

PSTN/IP Gateway
(Source)

Sample Configuration File

Channel =

{

Source =

Destination
RemotePhoneNumber =
LocalPhoneNumber =
= isdn
inBand
H323

pstnProtocol

DTMFmode =
ipProtocol

AudioRxCodecs

{

CoderType =

CoderFramesPerPkt =

CoderVAD = 0

}

1-120

NAME: Intel Corp.

TA:10.242.214.25
23
26

g71llmulaw

30

AudioTxCodecs

{

CoderType =

CoderFramesPerPkt =

CoderVAD = 0

}

DataCodecs

{

CoderType =

}

t38

g71llmulaw

30

19

Preparing to Run the Demo I n

MediaAlarmLostPackets

{

Threshold = 20 # Threshold value
DebounceOn = 10000 # Threshold debounce ON
DebounceOf £ = 10000 # Threshold debounce OFF
Interval = 1000 # Threshold Time Interval (ms)
PercentSuccess = 60 # Threshold Success Percent
PercentFail = 40 # Threshold Fail Percent

}

MediaAlarmJitter

{
Threshold = 60 # Threshold value
DebounceOn = 20000 # Threshold debounce ON
DebounceOf £ = 60000 # Threshold debounce OFF
Interval = 5000 # Threshold Time Interval (ms)
PercentSuccess = 60 # Threshold Success Percent
PercentFail = 40 # Threshold Fail Percent

}

Display = GATEWAY Chanl
IPT UUI = User to User 1
UII = 12345

NonStdParm = NSP_Chanl
NonStdCmd = NSC Chanl
ObjId = 2 16 840 1 113741
Q931Facility = facility 01

3.3 Compiling and Linking

Compile the project within the following environments:

e Windows
— Visual C++ environment, version 6

If you have added or changed files, to compile the project put the files in
dialogic\samples\ipdemo\gateway_ood.

Set gateway_ood as the active project and build in debug mode.

20 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

Running the Demo 4

This chapter discusses how to run the IP Gateway (Global Call) Object Oriented demo. It contains
the following topics:

e Starting the DemoOot e 21
® Demo OPLIONS . . . vttt ettt e e e 21
e Usingthe Demo. e e e 22
e Stopping the Demoottt 23

4.1 Starting the Demo

Windows

Select Run from the Start Menu. The demo executable file can be found in:

C:A\Program Files\dialogic\demos\ipdemo\gateway_ood\release\

gateway_ood.exe. Click OK to run the IP Gateway (Global Call) Object Oriented demo using the
default settings.

4.2 Demo Options

To specify certain options at run-time, launch the demo from a command line, using any of the
switches listed in Table 1.

Table 1. Command Line Switches

Switch Action Default
-C Configuration file name -c gateway_r4.cfg
<filename>
-d<n> Sets Debug Level (0-4): -dO (Fatal)

* 0-FATAL — used when one or more channels
are deadlocked.

¢ 1-ERROR - used when the application receives
a failure which doesn’t cause the channel to
be deadlocked.

¢ 2-WARNING - used when some problem or
failure occurred without affecting the
channel’s usual action.

¢ 3-TRACE - used at the start of the application
entrance or the start of any function.

* 4-INFO - prints data related to a specific action.

Note: Debug level is inclusive; higher levels
include all lower levels

-hor? Prints the command syntax to the screen Off

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 21

Running the Demo I n

Table 1. Command Line Switches (Continued)

Switch Action Default

-l<n,...> Printouts will be printed into channel log files. Disabled

If ‘all’ follows the -, log files will be created for all
available channels.

If a list of channels in the following format: C1-C2,
C3-C4, C5 follows the —I, log files are created for
the channel ranges or specific channels specified
in the list.

If the "—I" option is not used, prints go to the stdout,
for the first 2 channels only (to keep from
overloading the CPU, and more convenient for
viewing printouts).

-m<n,...> Enables printing channel information to the Disabled
monitor, in addition to printing to the log file. A
maximum of 2 channels may be printed.

-n<n> Sets the number of gateway channels The lesser of Voice
Devices or IP
devices

-q Activates Quality of Service Disabled

4.3 Using the Demo

The demo always waits for input from the keyboard. While the demo is running, you may enter any
of the commands listed in Table 2:

Table 2. Runtime Keyboard Commands

Command Function

corC Prints channel statistics to file (statistics.log)

d<n> or D<n> Change debug level during runtime, where
<n> is the debug level

f or F followed by <channel number> Send Q.931 facility message from the .cfg
file

m or M followed by <channel number> Print log files for up to 2 channels to the
screen

n or N followed by <channel number> Send H.245 non-standard command from
the .cfg file

g or Q or Ctrl+c Terminates the application

u or U followed by <channel number> Send H.245 User Input Indication message

from the .cfg file

22 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

i ntGI ® Running the Demo

4.4 Stopping the Demo

The IP Gateway (Global Call) Object Oriented demo runs until it is terminated. Press “q” or “Q” or
“Ctrl+c” to terminate the demo application.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 23

Running the Demo

24

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

Demo Details

This chapter discusses the IP Gateway (Global Call) Object Oriented demo in more detail. It
contains the following topics:

¢ Files Used by the Demo

* Programming Model Classes

e Threads

5.1 Files Used by the Demo

Initialization

Event Handling

This section lists the files used by the demo. It contains the following information:

e Demo Source Code Files

¢ Utility Files

e PDL Files

5.1.1

Demo Source Code Files

In Windows the source code files listed in Table 3 are located in:
C:A\Program Files\dialogic\demos\ipdemo\gateway_ood\.

Table 3. Source Files Used by the IP Gateway (Global Call) Object Oriented Demo

Directory File Name Purpose
gateway_ood channel.cpp Implements the operations of the Channel class
gateway_ood channel.h Function prototype for channel.cpp

gateway_ood

configuration.cpp

Implements the operations of the Configuration class

gateway_ood

configuration.h

Function prototype for configuration.cpp

gateway_ood

defs.h

Global definitions

gateway_ood

gateway_r4_ood.ver

Demo version information

gateway_ood

gccallcontrol.cpp

Implements the operations of the GCCallControl class

gateway_ood

gccallcontrol.h

Function prototype for gccallcontrol.cpp

gateway_ood

gcdevice.cpp

Implements the operations of the GCDevice class

gateway_ood gcdevice.h Function prototype for gcdevice.cpp
gateway_ood gwcall.cpp Implements the operations of the GWCall class
gateway_ood gwecall.h Function prototype for gwcall.cpp

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 25

Demo Details

intel.

Table 3. Source Files Used by the IP Gateway (Global Call) Object Oriented Demo (Continued)

26

Directory File Name Purpose
gateway_ood incfile.h Function prototype for Global Call and R4 functions
gateway_ood ipboard.cpp Implements the operations of the IPBoard class
gateway_ood ipboard.h Function prototype for ipboard.cpp

gateway_ood

ipcallcontrol.cpp

Implements the operations of the IPCallControl class

gateway_ood

ipcallcontrol.h

Function prototype for ipcallcontrol.cpp

gateway_ood ipdevice.cpp Implements the operations of the IPDevice class
gateway_ood ipdevice.h Function prototype for ipdevice.cpp
gateway_ood main.cpp Contains the main function and the Wait for Key
gateway_ood main.h Function prototype for main.cpp

gateway_ood

pstnboard.cpp

Implements the operations of the DigitalPstnBoard class

gateway_ood

pstnboard.h

Function prototype for digitalpstnboard.cpp

gateway_ood

pstncallcontrol.cpp

Implements the operations of the PstnCallControl class

gateway_ood

pstncallcontrol.h

Function prototype for pstncallcontrol.cpp

gateway_ood

pstndevice.cpp

Implements the operations of the DigitalPstnDevice class

gateway_ood

pstndevice.h

Function prototype for digitalpstndevice.cpp

gateway_ood

rdboard.cpp

Implements the operations of the R4Board class

gateway_ood

rdboard.h

Function prototype for r4logicalboard.cpp

gateway_ood

rddevice.cpp

Implements the operations of the R4Device class

gateway_ood rddevice.h Function prototype for r4device.cpp
gateway_ood resourcemanager.cpp | Implements the operations of the ResourceManager class
gateway_ood resourcemanager.h Function prototype for resourcemanager.cpp

gateway_ood
(Windows only)

gateway_ood.dsp

Visual C++ project file

gateway_ood
(Windows only)

gateway_ood.dsw

Visual C++ project workspace

gateway_ood
(Windows only)

gateway_ood.rc

Resource file

gateway_ood resource.h Microsoft Developer Studio generated include file used by
(Windows only) gateway_r4_ood.rc
gateway_ood/release | gateway.cfg Demo configuration file

(Windows only)

gateway_ood/release
(Windows only)

gateway_ood.exe

Demo executable

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

5.1.2 Utility Files

In Windows the utility files listed in Table 4 are located in:
C:A\Program Files\dialogic\demos\ipdemo\utilcpp\.

Table 4. Utility Files Used by the IP Gateway (Global Call) Object Oriented Demo

(Windows only)

Directory File Name Purpose
utilcpp utilcpp.ver Utility library version information
utilcpp log.cpp Debugging functions
utilcpp log.h Function prototype for libdbg.c
utilcpp utilcpp.dsw Utility library Visual C++ workspace
(Windows only)
utilcpp utilcpp.dsp Utility library Visual C++ project file
(Windows only)
utilcpp\release utilepp.lib Compiled Utility library

5.1.3 PDL Files

In Windows the PDL files listed in Table 5 are located in:
C:\Program Files\dialogic\demos\ipdemo\pdl_win\.

Table 5. PDL Files Used by the IP Gateway (Global Call) Object Oriented Demo - Windows OS

Directory File Name Purpose
pdl_win iptransport.cpp PDL IP transport functions
pdl_win iptransport.h Function prototype for iptransport.cpp
pdl_win pdl.c Platform dependency functions
pdl_win pdl.h Function prototype for pdl.c
pdl_win pdl.ver PDL version information
pdl_win pdl_win.dsp PDL Visual C project file
pdl_win pdl_win.dsw PDL Visual C workspace
pdl_win\release pdl_win.lib Compiled PDL library

5.2

This section presents basic information about the IP Gateway (Global Call) Object Oriented demo

Programming Model Classes

classes. It contains the following information:

¢ Class Diagram
¢ Channel Class

¢ Configuration Class

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

Demo Details

Demo Details i nt9| o

¢ GCCallControl Class

* GCDevice Class

* GWCall Class

¢ [PBoard Class

¢ [PCallControl Class

¢ [PDevice Class

* PSTNBoard Class

e PSTNCallControl Class
* PSTNDevice Class

¢ ResourceManager Class
* R4Board Class

* R4Device Class

5.2.1 Class Diagram

The following class diagram describes the relationship among the classes.

28 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

i ntGI o Demo Details

Figure 3. IP Gateway (Global Call) Object Oriented Class Diagram

ResourceManager

Configuration 1 1

1 <>1

IPBoard PSTNBoard

*

—< IPDevice —"> R4Device <t+—— PSTNDevice K >——

1 1

* * *

Channel

PSTNCallControl

IPCallControl

1

*

GWCall

5.2.2 Channel Class

The Channel class’ main role is to control all devices related to a call. It contains one IP device, one
PSTN device and all calls related to these devices.

The Channel class attributes are described in Table 6.

Table 6. Channel Class Attributes

Access i
Name Privilege Type Description
m_plPMediaDevice private IPDevice* The channel IP device
m_pPSTNDevice private IPSTNDevice* The channel PSTN device

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 29

Demo Details

Table 6. Channel Class Attributes (Continued)

5.2.3

INlal.

Access i
Name Privilege Type Description

m_channelinfo private Channelinfo Configuration information about the
channel

m_pLog private Log* The channel log object

m_staticsInfo private ChannelStatistics Channel statistical information

m_channelld private unsigned int The channel identifier

m_GWCalls private GWCALL_LIST List of the calls initiated on the
channel

Configuration Class

The Configuration class’ main role is to provide an interface to get the needed configuration data. It
contains all the needed data structures to parse and save the system configuration (the configuration
file and the command line options) and reflects the system configuration to the other classes.

The Configuration class attributes are described in Table 7.

Table 7. Configuration Class Attributes

30

Access .
Name Privilege Type Description

m_userChannels private unsigned int Indicates the number of channels that
the demo will work with.

m_chaninfo private ChannelinfoQueue Queue that contains all the channel
information read from the
configuration file, such as Tx coder
information, the print to log file flag,
and the phone number to call.

m_boardinfo private BoardInfoQueue Queue that contains all the board
information read from the
configuration file.

m_cfgFile private char* The configuration file name

m_alarmQoSFile private FILE* Points to the QoS file

m_QoSFile private char* The name of the QoS log file

m_logLevel private E_LogLevel The log level from the command line

m_stage private unsigned char The stage of parsing the configuration
file

m_line private int The line in the configuration file
currently being parsed

m_firstSession private long Used to fill the channel information
from the configuration file

m_lastSession private long Used to fill the channel information
from the configuration file

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

5.24

Demo Details

GCCallControl Class

The GCCallControl class’ main role is to provide all common functionality of GC call control
devices. It is the base class for all GC call control devices and contains the common attributes and
operations.

The GCCallControl class attributes are described in Table 8.

Table 8. GCCallControl Class Attributes

5.2.5

Access -
Name Privilege Type Description
m_crn protected CRN The call reference number of the
PSTN call control object
m_pLog protected Log* The log object used to control the CC
object printouts
m_stateFunctionArray protected StateFunction[MAX_S | State machine function array
TATE]
m_lineDevice protected LINEDEV The line device of the device that the
call control belongs to
m_currentState protected E_StateMachine The current state in the state machine
m_dnisEnabled public static bool True if DNIS is used

GCDevice Class

The GCDevice class’ main role is to provide all common functionality of all R4 signaling devices.
It is the base class for R4 signaling devices.

The GCDevice inherits the R4Device Class attributes. The GCDeviceclass attributes are described
in Table 9.

Table 9. GCDevice Class Attributes

5.2.6

Access .
Name Privilege Type Description
m_pChannel protected Channel* Points to the channel containing this
device
m_txTimeSlot protected unsigned int The transmit time slot of the device

GWCall Class

The GWCall class’ main role is to control all resources related to a call. It contains all the resources
needed to establish a call. The GWCall class reflects the intersection of call resource status.

The GWCall class attributes are described in Table 10.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 31

Demo Details

Table 10. GWCall Class Attributes

5.2.7

Table 11.

5.2.8

Table 12.

32

Access .
Name Privilege Type Description
m_pPSTNCallControl public PSTNCallControl PSTN call control object of the call,
handling the PSTN call control
m_plPCallControl public IPCallControl* IP call control object of the call,
handling the IP call control
m_currentState private E_StateMachine Current channel state
m_stateFunctionArray[M | private int(stateFunction*)(co | Array of state machine functions
AX_STATE] nst long eventType,
METAEVENT*
eventData)
m_pLog public Log* Log object of the call

IPBoard Class

The IPBoard class’ main role is to manage the IP device database. It contains all the IP devices
available in the system and reflects the IP device repository.

The IPBoard inherits the R4Board Class attributes. The IPBoard class attributes are described in
Table 11.

IPMediaBoard Class Attributes

Access i
Name Privilege Type Description
m_rasinfo private RASInfo Includes the information for RAS, read

from the configuration file during
initialization

IPCaliControl Class

The IPCallControl class’ main role is to provide the IP protocol functionality interface. It controls
one IP call and reflects the call status to the other classes.

The IPCallControl class inherits the GCCallControl Class attributes. The IPCallControl attributes
are described in Table 12.

IPCallControl Class Attributes

Access .
Name Privilege Type Description
m_calllnfo private IPCallinfo Information connected to the IP call

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

5.2.9

Table 13.

5.2.10

5.2.11

Table 14.

5.2.12

Demo Details

IPDevice Class

The IPDevice class’ main role is to provide Global Call functionality for IP devices. It represents
the IP devices and reflects the device status and manages all calls related to it.

The IPDevice inherits the GCDevice class attributes. The IPDevice class attributes are described in
Table 13.

IPDevice Class Attributes

Access -
Name Privilege Type Description
m_callControls private IPCallControl{MAX_C | Contains the call control objects
ALL_CONTROLS] connected to this device

PSTNBoard Class

The PSTNBoard class’ main role is to provide all common functionality of all R4 PSTN boards.
The PSTNBoard class is the base class for the PSTN boards, containing the common attributes and
operations.

The PSTNBoard class inherits all its attributes from the R4Board Class.

PSTNCallControl Class

The PSTNCallControl class’ main role is to provide a Global Call functionality interface to manage
a call. It reflects the PSTN call status to the other classes.

The PSTNCallControl class inherits the GCCallControl Class attributes. The PSTNCallControl
attributes are described in Table 14.

PSTNCallControl Class Attributes

Access -
Name Privilege Type Description
m_calllnfo private PSTNCalllnfo Contains information connected to the
PSTN call

PSTNDevice Class

The PSTNDevice class’ main role is to provide all common functionality of all R4 devices. It is the
base class for PSTN R4 devices.

The PSTNDevice inherits the GCDevice Class attributes. The PSTNDeviceclass attributes are
described in Table 15.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 33

Demo Details

Table 15. PSTNDevice Class Attributes

Access i
Name Privilege Type Description
m_callControls private PSTNCallControl[MA | Contains the call control objects

X_CALL_CONTROLS
]

connected to this device

5.2.13 ResourceManager Class

The ResourceManager class’ main role is to initialize the R4 resources. It handles the R4
mechanism and reflects the resource status. It contains the following data:

¢ all system channels

* configuration object for initialization
* maps R4 device handles to channels
¢ all detected R4 boards

The ResourceManager class attributes are described in Table 16.

Table 16. ResourceManager Class Attributes

Access .
Name Privilege Type Description
m_devicesQueue private R4DeviceQueue Array of device pointer queues. The
[MAX_DEVICE_TYP array index is defined as board type
E] (IP, PSTN). It includes all the devices
in the system.
m_channelsQueue private ChannelQueue A queue of all the channels created in
the system.
configuration private Configuration An instance of the Configuration class
used to determine the configuration of
the system during initialization.
m_channelNum private int The number of channels that the
demo will work with (this number is
the minimum of devices of each type
and the user requested
-n option).
m_printToMonitor private IntfMAX_PRINT_TO_ | The channels that are printing to the
MONITOR] monitor
m_numOfPSTNBoards private int The number of PSTN boards detected
in the system.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

Demo Details

Table 16. ResourceManager Class Attributes (Continued)

5.2.14

Access

Name Privilege Type Description
m_numOfIPBoards private int The number of IP boards detected in
the system.
m_initLog private static Log A log instance used during

initialization. All the printouts are sent
to the monitor, after which it is
destructed. This instance is
necessary because during the
initialization, there are no channel
instances and therefore no log
instances. In order to see logs during
initialization, the application creates a
global log instance for all the devices
during initialization and kills it after
creating the channel objects and

attributing the devices to channels.

R4Board Class

The R4Board class’ main role is to provide all common functionality for all R4 logical boards. It
opens the boards and gets all the information about the devices. The R4BoardClass is the base class
for all R4 logical boards containing the common attributes and operations. It represents any R4
logical board.

The R4Board class attributes are described in Table 17.

Table 17. R4Board Class Attributes

5.2.15

Access i
Name Privilege Type Description
m_boardNumber protected int The board number - used in setting
the device names found on the board
m_numOfDevices protected int Number of devices available on the
board

R4Device Class
The R4Device class’ main role is to provide all common functionality for all R4 devices. It is the
base class for all R4 line devices that can be opened using gc_OpenEx(). It contains all the

common attributes and operations for all R4 devices.

The R4Device class attributes are described in Table 18.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 35

Demo Details

Table 18. R4Device Class Attributes

intel.

Name PI': ?v(;fes:e Type Description
m_name protected char The device name, e.g. ipmB1C1
m_inService protecte bool True when the device is available
m_lineDevice protected LINEDEV The device handle (valid after

opening)
m_pLog protected Log* The device log instance

5.3 Threads

The IP Gateway (Global Call) Object Oriented demo operates with two threads, as shown in

Figure 4.

Figure 4. IP Gateway (Global Call) Object Oriented Demo Threads

Keyboard

Main Thread

R4/GC IP
SRL
A
Sub-Thread

The threads are created as follows:

* The first (main) thread is created by the demo application to get the keyboard input.

* The second thread is an SRL thread, created as a result of the demo application calling
sr_enblhdlr() in Windows. In Linux, the thread must be explicitly created. All Global Call
events are received through the SRL.

5.4 Initialization

This section describes the demo initialization as shown in Figure 5.

36

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

i ntGI o Demo Details

Figure 5. IP Gateway (Global Call) Object Oriented System Initialization

Application Resource Configuration 1P PSTN Channel lE PSTN
PP Manager 9 Board Board Device Device
init()
readCommandLine().
—_

readConfiguration()

open()

register()

setNumOfChannels()

open()

setNumOfChannels()

findMinimum()
getFreelPDevice()
getFreePSTNDevice()
1

initDevices(IPDev|ce, PSTNDevice|

open()

open()

The application main() function calls the init() function, which does the following:
1. Calls resourceManager.configure() to read the configuration file and command line options
and prints the configuration

2. Calls resourceManager.getChannelsNum() to get the number of channels defined by the
user in the configuration file or command line -n switch.

3. Calls ge_Start() to open all configured, call control libraries
4. Calls printAllLibs() to print library status (open or failed).

5. Sets-up the callback handler, PDLsr_enbhdlr(). The callback handler handles events that it
receives from the SRL library. For more details see Section 5.5.3, “Handling SRL Events”, on
page 38.

6. Calls resourceManager.init() to get the resources available in the system:
a. Gets the number of IP channels in the system

b. Gets the number of PSTN channels in the system

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 37

Demo Details i ntel o

c. Finds the minimum between the system channels and the user request
7. Looks for a free IP device and returns a pointer to it
8. Opens the IP device and if the open succeeds returns a pointer to it
9. Looks for a free PSTN device and returns a pointer to it
10. Opens the PSTN device and if the open success returns a pointer to it
11. Initializes the devices on the channel

12. The application main() function calls waitForKey(), to receive keyboard input.

5.5 Event Handling

This section describes how the IP Gateway (Global Call) Object Oriented demo handles events. It
contains the following topics:

* Event Mechanism

¢ Handling Keyboard Input Events
¢ Handling SRL Events

* Handling Application Exit Events

5.5.1 Event Mechanism
The IP Gateway (Global Call) Object Oriented demo uses the SRL mechanism to retrieve events.
When an event occurs, SRL calls event handlers automatically. All events are received by the SRL

and then passed to the callback_hdlr() function for handling.

In the initialization phase of the demo the init() function sets up the call-back handler, by calling
PDLsr_enbhdlr().

Refer to Chapter 6, “Demo State Machines” for more detailed event handling information.

5.5.2 Handling Keyboard Input Events
There is an endless loop {while(1)} in the main() function in the Main.cpp file. In that loop, the
application waits forever for a keyboard event by calling the waitForKey() function. The event
must be handled immediately and event-specific information should be retrieved before the next

call to waitForKey().

When the next event occurs or when a time-out is reached, the waitForKey() returns and the call-
back handler function is called automatically.

5.5.3 Handling SRL Events

When the R4/Global Call event is received, the application performs the following:

1. Gets the event device handle, by calling PDLsr_getevtdev()

38 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

i ntGI o Demo Details

2. Gets the channel number related to the event, from the global array (HandleToChannell])
3. Updates the METAEVENT structure by calling gc_GetMetaEvent()
4. Gets the event type, by calling PDLsr_getevttype()

5.5.4 Handling Application Exit Events

Normal application exit events don’t enter the SRL. The main() function calls
PDLSetApplicationExitPath() before initialization. In Linux, this function sets the signals
(SIGINT, SIGTERM, SIGABRT) for making the appropriate exit from the application. In

Windows, this function enables the detection of CTRL_CLOSE_EVENT (closing the window).

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

39

Demo Details

40

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

Demo State Machines 6

6.1

6.1.1

This chapter discusses the IP Gateway (Global Call) Object Oriented state machines. It contains the
following topics:

¢ GWCall State Machine - Inbound Call fromIP 41
¢ GWCall State Machine - Inbound Call from PSTN 45
¢ PSTNCallControl State Machine. 49
¢ [PCallControl State Machine.ottt 53

GWCall State Machine - Inbound Call from IP

This section describes the state machine for an inbound call from the IP. It contains the following
topics:

e GWCall State Machine Description - Inbound from IP
e GWCall::callNull State

e GWCall::callGetIPInfo

¢ GWCall::calllPOffered

¢ GWCall::calllPAccepting

e GWCall::callPSTNConnected

¢ GWCall::callConnected

¢ GWCall::callDropping

* GWoCall::callReleasing

GWCall State Machine Description - Inbound from IP

All channels are initialized to the NULL state upon application start.

As soon as an event is received, the event type, the channel number, and the reason for the event (if
there is one), are analyzed and the appropriate state machine function is called.

After all the operations are performed within the channel's event state, the state machine function is
updated.

The following state diagram describes the call states for the GWCall class for an inbound call from
the IP.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 41

Demo State Machines

Figure 6. GWCall State Machine - Inbound Call from IP

GCEV_OFFERED from IP

NULL

Send event to
IPCallControl, which calls
gc_Extension()

GCEVCALLPRg GET_IP_INFO

/

GCEV_EXTENSIONCMPLT

m_plPCallControl->getDestAddr()

m_pPSTNCallControl->processEvent
(USR_MAKECALL)

route the call

GCEV_CALLPROC

GCEV_PROCEEDING IP_OFFERED

GCEV_ALERTING from PSTN
m_plPCallControl->processEvent
(USR_ACCEPT)

GCEV_CONNECTED from PSTN
m_plPCallControl->processEvent
(USR_ANSWER)

—

GCEV_ACCEPT IP_ACCEPTING

GCEV_CONNECTED from PSTN
m_plPCallControl->processEvent
(USR_ANSWER)

PSTN_CONNECTED

from IP

6.1.2 GWCall::callNull State

GCEV_ALARM
GCEV_EXTENSIONCMPLT
GCEV_TASKFAIL

GCEV_ANSWERED

S

GCEV_RELEASECALL

m_plPCallControl->isReleased()

m_pPSTNCallControl->isReleased()
if both TRUE, updateState

GCEV_ALARM RELEASING

ol

GCEV_DROPCALL
m_plPCallControl->isDropped()
m_pPSTNCallControl->isDropped()

if both TRUE, updateState
unroute the call

DROPPING

j\

GCEV_DISCONNECTED

GCEV_TASKFAIL

m_pPSTNCallControl->processEvent
(USR_DISCONNECT) if from IP

or

m_plPCallControl->processEvent
(USR_DISCONNECT) if from PSTN

GCEV_ALARM CONNECTED
\
USR_SEND_UII

USR_SEND_FACILITY
USR_SEND_NS_COMMAND
m_plPCallControl->processEvent()

The application waits in the gateNull state for a GCEV_OFFERED event from the IP. Upon receipt
of the event it transfers the event to the IPCallControl module which calls getIncomingCallInfo(),

42 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

6.1.3

6.1.4

6.1.5

Demo State Machines

which in turn calls gc_Extension(). See Section 6.4.2, “IPCallControl::Null State”, on page 55 for
additional information. The call state transitions to callGetIPInfo.

If the application receives a GCEV_DISCONNECTED event, it sets the drop reason by calling
getResultValue() from the GCCallControl module. The application then calls
processEvent(USR_DISCONNECT) from the IPCallControl module if the PSTN was the event
source, or from the PSTNCallControl module if the IP was the event source. The call state
transitions to callDropping.

GWCall::callGetIPInfo

The application waits for a GCEV_EXTENSIONCMPLT event. Upon receipt of the event, it calls
getDestAddr() from the IPCallControl module and calls processEvent(USR_MAKECALL)
from the PSTNCallControl module. See Section 6.3, “PSTNCallControl State Machine”, on

page 49 for a description of the PSTNCallControl state machine. The application then routes the
call. The state transitions to calllPOffered.

If the application receives a GCEV_CALLPROC event, it ignores the event and remains in the
callGetIPInfo state.

GWCall::calllPOffered

The application waits for either a GCEV_ALERTING or a GCEV_CONNECTED event from the
PSTN.

In the case of GCEV_ALERTING, the application calls processEvent(USR_ACCEPT) from the
IPCallControl module and the call state transitions to calllPAccepting.

In the case of GCEV_CONNECTED, the application calls processEvent(USR_ANSWER) from
the IPCallControl module and the call state transitions to callPSTNConnected.

If the application receives a GCEV_CALLPROC or a GCEV_PROCEEDING event, it ignores the
event and remains in the callGetIPOffered state.

If the application receives a GCEV_DISCONNECTED or a GCEV_TASKFAIL event, it sets the
drop reason by calling getResultValue() from the GCCallControl module. The application then
calls processEvent(USR_DISCONNECT) from the IPCallControl module if the PSTN was the
event source, or from the PSTNCallControl module if the IP was the event source. The call state
transitions to callDropping.

GWCall::calllPAccepting

The application waits for a GCEV_CONNECTED event from the PSTN. Upon receipt of the event
it calls processEvent(USR_ANSWER) from the IPCallControl module and the call state
transitions to callPSTNConnected.

If the application receives a GCEV_ACCEPT event, it ignores the event and remains in the
calllPAccepting state.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 43

[]
Demo State Machines I nt9I ®

6.1.6

6.1.7

6.1.8

6.1.9

44

If the application receives a GCEV_DISCONNECTED or a GCEV_TASKFAIL event, it sets the
drop reason by calling getResultValue() from the GCCallControl module. The application then
calls processEvent(USR_DISCONNECT) from the IPCallControl module if the PSTN was the
event source, or from the PSTNCallControl module if the IP was the event source. The call state
transitions to callDropping.

GWCall::callPSTNConnected

The application waits for a GCEV_ANSWERED event from the IP. Upon receipt of the event, the
call state transitions to callConnected.

If the application receives a GCEV_DISCONNECTED or a GCEV_TASKFAIL event, it sets the
drop reason by calling getResultValue() from the GCCallControl module. The application then
calls processEvent(USR_DISCONNECT) from the IPCallControl module if the PSTN was the
event source, or from the PSTNCallControl module if the IP was the event source. The call state
transitions to callDropping.

GWCall::callConnected

The application waits for a GCEV_DISCONNECTED or GCEV_TASKFAIL event. Upon receipt
of either event, it sets the drop reason by calling getResultValue() from the GCCallControl
module. The application then calls processEvent(USR_DISCONNECT) from the IPCallControl
module if the PSTN was the event source, or from the PSTNCallControl module if the IP was the
event source. The call state transitions to callDropping.

The caller may also use the keyboard to send a User Input Indication, Facility Message, or a Non-
standard Command. The application receives the appropriate event (USR_SEND_UII,
USR_SEND_FACILITY, USR_SEND_NS_COMMAND) and calls processEvent() from the
IPCallControl module. The call state remains in the callConnected state.

GWoCall::callDropping
The application waits for a GCEV_DROPCALL event. Upon receipt of the event, it calls
isDropped() from both the IPCallControl and PSTNCallControl modules. If both sides return

TRUE, the call state transitions to callReleasing and the application unroutes the call.

If the application receives a GCEV_ALARM, GCEV_EXTENSIONCMPLT, or
GCEV_TASKFAIL event, it ignores the event and remains in the callDropping state.

GWCall::callReleasing

The application waits for a GCEV_RELEASECALL event. Upon receipt of the event, it calls
isReleased() from both the IPCallControl and PSTNCallControl modules. If both sides return
TRUE, the call state transitions to callNull.

If the application receives a GCEV_ALARM event, it ignores the event and remains in the
callReleasing state.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

u
I ntGI ® Demo State Machines

6.2 GWCall State Machine - Inbound Call from PSTN

This section describes the state machine for an inbound call from the PSTN. It contains the
following topics:

¢ GWoCall State Machine Description - Inbound from PSTN
¢ GWCall::callNull State

e GWCall::callPSTNDetected

e GWCall::callPSTNOffered

e GWCall::callPSTNAccepting

¢ GWCall::calllPConnected

e GWCall::callConnected

e GWCall::callDropping

e GWoCall::callReleasing

6.2.1 GWCall State Machine Description - Inbound from PSTN

All channels are initialized to the NULL state upon application start.

As soon as an event is received, the event type, the channel number, and the reason for the event (if
there is one), are analyzed and the appropriate state machine function is called.

After all the operations are performed within the channel's event state, the state machine function is
updated.

The following state diagram describes the call states for the GWCall class for an inbound call from
the PSTN.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 45

Demo State Machines

Figure 7. GWCall State Machine - Inbound Call from PSTN

GCE\/RELEASECALL/_{

NULL

m_plPCallControl->isReleased()
m_pPSTNCallControl->isReleased()

RELEASING GCEV_ALARM

GCEV_DROPCALL
m_plPCallControl->isDropped()
m_pPSTNCallControl->isDropped()
unroute the call

DROPPING
GCEV_ALARM

GCEV_TASKFAIL

[

GCEV_DETECTED
from PSTN

GCEV_OFFERED from PSTN

m_pPSTNCallControl->getDestAddr()

m_plPCallControl->processEvent
(USR_MAKECALL)

route the call

PSTN_DETECTED j

N\
GCEV_OFFERED from PSTN
m_pPSTNCallControl->processEvent()
m_pPSTNCallControl->getDestAddr()
m_plPCallControl->processEvent
(USR_MAKECALL)
route the call

GCEV_CALLPROC

PSTN _OFFERED GCEV_PROCEEDING

GCEV_ALERTING from IP
m_pPSTNCallControl->processEvent
(USR_ACCEPT)

GCEV_EXTENSIONCMPLT

GCEV_CONNECTED from IP
m_pPSTNCallControl->processEvent

[PSTN_ACCEPTING

(USR_ANSWER)

GCEV_DISCONNECTED

GCEV_TASKFAIL

m_pPSTNCallControl->processEvent
(USR_DISCONNECT) if from IP

or

m_plPCallControl->processEvent
(USR_DISCONNECT) if from PSTN

CONNECTED

N

USR_SEND_UII
USR_SEND_FACILITY
USR_SEND_NS_COMMAND
m_plPCallControl->processEvent()

GCEV_ALARM

GCEV_ACCEPT
GCEV_CALLPROC

GCEV_CONNECTED from IP
m_pPSTNCallControl->processEvent
(USR_ANSWER)

[IP_CONNECTED]

GCEV_ANSWERED from IP

6.2.2

46

GWCall::callNull State

The application waits in the gateNull state for an GCEV_OFFERED event from the PSTN. Upon
receipt of the event, the application sets the remote phone number for making the call by calling
getDestAddr() from the PSTNCallControl module. It then calls

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

6.2.3

6.2.4

6.2.5

Demo State Machines

processEvent(USR_MAKECALL) from the [PCallControl module. The application routes the
call and the call state transitions to callPSTNOffered.

If the application receives a GCEV_DETECTED event, the call state transitions to
callPSTNDetected.

If the application receives a GCEV_DISCONNECTED event, it sets the drop reason by calling
getResultValue() from the GCCallControl module. The application then calls
processEvent(USR_DISCONNECT) from the IPCallControl module if the PSTN was the event
source, or from the PSTNCallControl module if the IP was the event source. The call state
transitions to callDropping.

GWCall::callPSTNDetected

The application waits for a GCEV_OFFERED event from the PSTN. Upon receipt of the event, the
application calls processEvent() from the PSTNCallControl module. The application then sets the
remote phone number for making the call by calling getDestAddr() from the PSTNCallControl
module. It then calls processEvent(USR_MAKECALL) from the IPCallControl module. The
application routes the call and the call state transitions to callPSTNOffered.

GWCall::callPSTNOffered

The application waits for either a GCEV_CONNECTED or a GCEV_ALERTING event from the
IP.

In the case of a GCEV_CONNECTED event, the application calls
processEvent(USR_ANSWER) from the PSTNCallControl module and the call state transitions
to calllPConnected.

In the case of a GCEV_ALERTING event, the application calls processEvent(USR_ACCEPT)
from the PSTNCallControl module and the call state transitions to callPSTNAccepting.

If the application receives a GCEV_CALLPROC or a GCEV_PROCEEDING event, it ignores the
event and remains in the callPSTNOffered state.

If the application receives a GCEV_DISCONNECTED or a GCEV_TASKFAIL event, it sets the
drop reason by calling getResultValue() from the GCCallControl module. The application then
calls processEvent(USR_DISCONNECT) from the IPCallControl module if the PSTN was the
event source, or from the PSTNCallControl module if the IP was the event source. The call state
transitions to callDropping.

GWCall::callPSTNAccepting

The application waits for a GCEV_CONNECTED event from the IP. Upon receiving the event it
calls processEvent(USR_ANSWER) from the PSTNCallControl module and the call state
transitions to calllPConnected.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 47

[]
Demo State Machines I nt9I ®

6.2.6

6.2.7

6.2.8

48

If the application receives a GCEV_CALLPROC or a GCEV_ACCEPT event, it ignores the event
and remains in the callPSTNAccepting state.

If the application receives a GCEV_DISCONNECTED or a GCEV_TASKFAIL event, it sets the
drop reason by calling getResultValue() from the GCCallControl module. The application then
calls processEvent(USR_DISCONNECT) from the IPCallControl module if the PSTN was the
event source, or from the PSTNCallControl module if the IP was the event source. The call state
transitions to callDropping.

GWCall::calllPConnected

The application waits for a GCEV_ANSWERED from the PSTN. Upon receipt of the event the call
state transitions to callConnected.

If the application receives a GCEV_EXTENSION event, it ignores the event and remains in the
calllPConnected state.

The caller may also use the keyboard to send a User Input Indication, Facility Message, or a Non-
standard Command. The application receives the appropriate event (USR_SEND_UII,
USR_SEND_FACILITY, USR_SEND_NS_COMMAND) and calls processEvent() from the
[PCallControl module. The call state remains in the calllPConnected state.

If the application receives a GCEV_DISCONNECTED or a GCEV_TASKFAIL event, it sets the
drop reason by calling getResultValue() from the GCCallControl module. The application then
calls processEvent(USR_DISCONNECT) from the IPCallControl module if the PSTN was the
event source, or from the PSTNCallControl module if the IP was the event source. The call state
transitions to callDropping.

GWCall::callConnected

The application waits for a GCEV_DISCONNECTED or GCEV_TASKFAIL event. Upon receipt
of either event, it sets the drop reason by calling getResultValue() from the GCCallControl
module. The application then calls processEvent(USR_DISCONNECT) from the IPCallControl
module if the PSTN was the event source, or from the PSTNCallControl module if the IP was the
event source. The call state transitions to callDropping.

The caller may also use the keyboard to send a User Input Indication, Facility Message, or a Non-
standard Command. The application receives the appropriate event (USR_SEND_UII,
USR_SEND_FACILITY, USR_SEND_NS_COMMAND) and calls processEvent() from the
IPCallControl module. The call state remains in the callConnected state.

GWoCall::callDropping

The application waits for a GCEV_DROPCALL event. Upon receipt of the event, it calls
isDropped() from both the IPCallControl and PSTNCallControl modules. If both sides return
TRUE, the call state transitions to callReleasing and the application unroutes the call.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

6.2.9

6.3

6.3.1

Demo State Machines

If the application receives a GCEV_ALARM, GCEV_EXTENSIONCMPLT, or
GCEV_TASKFAIL event, it ignores the event and remains in the callDropping state.

GWCall::callReleasing

The application waits for a GCEV_RELEASECALL event. Upon receipt of the event, it calls
isReleased() from both the IPCallControl and PSTNCallControl modules. If both sides return
TRUE, the call state transitions to callNull.

If the application receives a GCEV_ALARM event, it ignores the event and remains in the
callReleasing state.

PSTNCallControl State Machine

This section describes the PSTNCallControl state machine. It contains the following topics:
e PSTNCallControl State Machine Description
¢ PSTNCallControl::Null State
¢ PSTNCallControl::Detected State
¢ PSTNCallControl::Offered State
e PSTNCallControl::Accepting State
¢ PSTNCallControl:: Answering State
e PSTNCallControl::makingCall State
¢ PSTNCallControl::Connected State
e PSTNCallControl::Dropping State
e PSTNCallControl::Releasing State

PSTNCallControl State Machine Description

All channels are initialized to the NULL state upon application start.

As soon as an event is received, the event type, the channel number, and the reason for the event (if
there is one), are analyzed and the appropriate state machine function is called.

After all the operations are performed within the channel's event state, the state machine function is
updated.

The following state diagram describes the call states for the PSTNCallControl class.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 49

Demo State Machines

Figure 8. PSTNCallControl State Machine

USR_MAKECALL
makeCall()

MAKING_CALL

GCEV_CONNECTED

6.3.2

GCEV_CALLPROC

GCEV_RELEASECALL

GCEV_DROPCALL
releaseCall()

DROPPING

GCEV_DISCONNECTED
USR_DISCONNECT
dropCall()

CONNECTED

PSTNCallControl::Null State

GCEV_DETECTED

GCEV_OFFERED
getCallAddrinfo()
acceptCall()

DETECTED

GCEV_OFFERED
getCallAddrinfo()

get and set DNIS and AN/
callAck()

OFFERED

USR_ACCEPT
acceptCall()

ACCEPTING

USR_ANSWER

answerCall() USR_ANSWER

answerCall()

ANSWERING

GCEV_ANSWERED

The application waits for a GCEV_DETECTED, GCEV_OFFERED, or USR_MAKECALL event.

In the case of a GCEV_DETECTED event, the state transitions to the Detected state.

50 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

6.3.3

6.3.4

Demo State Machines

In the case of a GCEV_OFFERED event, the application calls getCallAddrInfo() to get and set
DNIS and ANI and then calls acceptCall(). The state transitions to the Accepting state.

In the case of a USR_MAKECALL event, the application calls makeCall() and the state
transitions to makingCall.

If the application receives a GCEV_DISCONNECTED event, it calls getResultValue() to get the
disconnect reason and then calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

PSTNCallControl::Detected State

The application waits for a GCEV_OFFERED event. Upon receipt of the event, it calls
getCallAddrInfo() to get and set DNIS and ANI and then calls callAck(). The state transitions to
the Offered state.

If the application receives a GCEV_DISCONNECTED event, it calls getResultValue() to get the
disconnect reason and then calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the call state transitions to Init. Otherwise, the state
transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

PSTNCallControl::Offered State
The application waits for a USR_ACCEPT or USR_ANSWER event.

In the case of USR_ACCEPT, the application calls acceptCall() and the state transitions to
Accepting.

In the case of USR_ANSWER, the application calls answerCall() and the state transitions to
Answering.

If the application receives a GCEV_DISCONNECTED event, it calls getResultValue() to get the
disconnect reason and then calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 51

[]
Demo State Machines I nt9I ®

6.3.5

6.3.6

6.3.7

52

resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

PSTNCallControl::Accepting State

The application waits for a USR_ANSWER event. Upon receipt of the event, it calls answerCall()
and the state transitions to Answering.

If the application receives a GCEV_ACCEPT event, it ignores the event and remains in the
Accepting state.

If the application receives a GCEV_DISCONNECTED or GCEV_TASKFAIL event, it calls
getResultValue() to get the disconnect reason and then calls dropCall(). If the dropCall()
function fails, the application calls resetLineDevice() to reset the line device and the state
transitions to Init. Otherwise, the state transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

PSTNCallControl::Answering State

The application waits for a GCEV_ANSWERED event. Upon receipt of the event, the state
transitions to Connected.

If the application receives a GCEV_DISCONNECTED or GCEV_TASKFAIL event, it calls
getResultValue() to get the disconnect reason and then calls dropCall(). If the dropCall()
function fails, the application calls resetLineDevice() to reset the line device and the state
transitions to Init. Otherwise, the state transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

PSTNCallControl::makingCall State

The application waits for a GCEV_CONNECTED event. Upon receipt of the event, the state
transitions to Connected.

If the application receives a GCEV_ALERTING or GCEV_PROCEEDING event, it ignores the
event and remains in the makingCall state.

If the application receives a GCEV_DISCONNECTED event, it calls getResultValue() to get the
disconnect reason and then calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

Demo State Machines

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

6.3.8 PSTNCallControl::Connected State

The application waits for a GCEV_DISCONNECTED or USR_DISCONNECT event. In the case
of GCEV_DISCONNECTED, the application calls getResultValue() to get the disconnect reason
and then calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

In the case of USR_DISCONNECT, the application retrieves the DropReason from the EventData
and calls dropCall(). If the dropCall() function fails, the application calls resetLineDevice() to
reset the line device and the state transitions to Init. Otherwise, the state transitions to Dropping.

6.3.9 PSTNCallControl::Dropping State

The application waits for a GCEV_DROPCALL event. Upon receipt of the event, it calls
releaseCall() and the state transitions to Releasing.

6.3.10 PSTNCallControl::Releasing State

The application waits for a GCEV_RELEASECALL event. Upon receipt of the event, the state
transitions to Null.

6.4 IPCallControl State Machine

This section describes the PSTNCallControl state machine. It contains the following topics:

[PCallControl State Machine Description

[PCallControl:
[PCallControl:
[PCallControl:
[PCallControl:
[PCallControl:
[PCallControl:
IPCallControl:
IPCallControl:
[PCallControl:
IPCallControl:

:Null State
:getCalllnfo State
:offered State
:accepting State
:answering State
:makingCall State
:connected State
:dropping State
:dropped State

:releasing State

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

53

[]
Demo State Machines
I ntel o

6.4.1 IPCallControl State Machine Description
All channels are initialized to the NULL state upon application start.

As soon as an event is received, the event type, the channel number, and the reason for the event (if
there is one), are analyzed and the appropriate state machine function is called.

After all the operations are performed within the channel's event state, the state machine function is
updated.

The following state diagram describes the call states for the [PCallControl class.

54 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

I n Demo State Machines

Figure 9. IPCallControl State Machine

GCEV_OFFERED

GCEV_RELEASECALL getCallAddrinfo()
- getincomingCallinfo()
IlACk
callack(GCEV_OFFERED

getCallAddrinfo()

getincomingCallinfo() fails
USR_MAKECALL
makeCall() RELEASING GCEV_CALLPROC

GET_CALL_INFO
GCEV_EXTENSIONCMPLT

releaseCall()

GCEV_EXTENSIONCMPLT
getExtensionlInfo()

GCEV_ALERTING GCEV_ALARM
MAKING_CALL GCEV_PROCEEDING DROPPED printQoS ()

USR_ACCEPT
acceptCall()

alx

OFFERED

GCEV_CALLPROC

GCEV_DROPCALL
getDropCallinfo()

ACCEPTING | GCEV__ USR ANSWER
ACCEPT answerCall()

GCEV_EXTENSION

GCEV_ALARM DROPPING
printQoS() USR_ANSWER
answerCall()
GCEV_DISCONNEGTED ANSWERING
GCEV_CONNECTED getResultValue()

dropCall()
or

USR_DISCONNECT
dropCall()

GCEV_ANSWERED

CONNECTED

USR_SEND_UII GCEV_EXTENSION
sendUlI() getExtensionInfo()

USR_SEND_FACILITY
sendFacilityMessage()
USR_SEND_NS_COMMAND
sendNonstandardCommand()
GCEV_ALARM
printQoS()

6.4.2 IPCallControl::Null State

The application waits for a GCEV_OFFERED or USR_MAKECALL event. In the case of
GCEV_OFFERED, the application calls getCallAddrInfo() to get the destination and originator

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 55

[]
Demo State Machines I nt9I ®

from the IP message and set the member variables. The application then calls
getIncomingCallInfo() which calls gc_Extension() to request extension information from the IP.
If the function fails, the application does not wait for the complete message and the state transitions
to Connected. Otherwise, the application calls callAck() and the state transitions to getCalllnfo.

In the case of USR_MAKECALL, the application calls makeCall() and the state transitions to
makingCall.

If the application receives a GCEV_DISCONNECTED event, it calls getResultValue() to get the
disconnect reason and then calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

6.4.3 IPCallControl::getCallinfo State

The application waits for a GCEV_EXTENSIONCMPLT event. The application calls
getExtensionInfo() and the state transitions to Offered.

If the application receives a GCEV_CALLPROC event, acknowledging the callAck() function, it
ignores the event and remains in the getCalllnfo state.

If the application receives a GCEV_DISCONNECTED or GCEV_TASKFAIL event, it calls
getResultValue() to get the disconnect reason and then calls dropCall(). If the dropCall()
function fails, the application calls resetLineDevice() to reset the line device and the state
transitions to Init. Otherwise, the state transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

6.4.4 IPCallControl::offered State

The application waits for a USR_ACCEPT or USR_ANSWER event. In the case of
USR_ACCEPT, the application calls acceptCall() and the state transitions to Accepting.

In the case of USR_ANSWER, the application calls answerCall() and the state transitions to
Answering.

If the application receives a GCEV_CALLPROC event, acknowledging the callAck() function, it
ignores the event and remains in the Offered state.

If the application receives a GCEV_DISCONNECTED or GCEV_TASKFAIL event, it calls
getResultValue() to get the disconnect reason and then calls dropCall(). If the dropCall()

56 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

6.4.5

6.4.6

6.4.7

Demo State Machines

function fails, the application calls resetLineDevice() to reset the line device and the state
transitions to Init. Otherwise, the state transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

IPCallControl::accepting State

The application waits for a USR_ANSWER event. Upon receipt of the event, it calls answerCall()
and the state transitions to Answering.

If the application receives a GCEV_ACCEPT event, it ignores the event and remains in the
Accepting state.

If the application receives a GCEV_DISCONNECTED or GCEV_TASKFAIL event, it calls
getResultValue() to get the disconnect reason and then calls dropCall(). If the dropCall()
function fails, the application calls resetLineDevice() to reset the line device and the state
transitions to Init. Otherwise, the state transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

IPCallControl::answering State

The application waits for a GCEV_ANSWERED event. Upon receipt of the event the state
transitions to Connected.

If the application receives a GCEV_DISCONNECTED or GCEV_TASKFAIL event, it calls
getResultValue() to get the disconnect reason and then calls dropCall(). If the dropCall()
function fails, the application calls resetLineDevice() to reset the line device and the state
transitions to Init. Otherwise, the state transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

IPCallControl::makingCall State

The application waits for a GCEV_CONNECTED event. Upon receipt of the event, the state
transitions to Connected.

If the application receives a GCEV_ALERTING or GCEV_PROCEEDING event, it ignores the
event and remains in the makingCall state.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 57

[]
Demo State Machines I nt9I ®

6.4.8

6.4.9

58

If the application receives a GCEV_DISCONNECTED or GCEV_TASKFAIL event, it calls
getResultValue() to get the disconnect reason and then calls dropCall(). If the dropCall()
function fails, the application calls resetLineDevice() to reset the line device and the state
transitions to Init. Otherwise, the state transitions to Dropping.

If the application receives a USR_DISCONNECT event it retrieves the DropReason from the
EventData and calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

IPCallControl::connected State

The application waits for a GCEV_DISCONNECTED or USR_DISCONNECT event. In the case
of GCEV_DISCONNECTED, the application calls getResultValue() to get the disconnect reason
and then calls dropCall(). If the dropCall() function fails, the application calls
resetLineDevice() to reset the line device and the state transitions to Init. Otherwise, the state
transitions to Dropping.

In the case of USR_DISCONNECT, the application retrieves the DropReason from the EventData
and calls dropCall(). If the dropCall() function fails, the application calls resetLineDevice() to
reset the line device and the state transitions to Init. Otherwise, the state transitions to Dropping.

If the application receives a GCEV_EXTENSION event, it calls getExtensionInfo() and remains
in the Connected state.

If the application receives a USR_SEND_UII event, it calls sendUII() and remains in the
Connected state.

If the application receives a USR_SEND_FACILITY event, it calls sendFacilityMessage() and
remains in the Connected state.

If the application receives a USR_SEND_NS_COMMAND event, it calls
sendNonstandardCommand() and remains in the Connected state.

If the application receives a GCEV_ALARM event, it calls printQoS() and remains in the
Connected state.

IPCallControl::dropping State

The application waits for a GCEV_DROPCALL event. Upon receipt of the event, it calls
getDropCalllnfo(), which calls gc_Extension() and the state transitions to Dropped.

If the application receives a GCEV_EXTENSION event, it ignores the event and remains in the
Dropping state.

If the application receives a GCEV_ALARM event, it calls printQoS() and remains in the
Dropping state.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

I n ® Demo State Machines
6.4.10 IPCallControl::dropped State

The application waits for a GCEV_EXTENSIONCMPLT event. Upon receipt of the event it calls
releaseCall() and the state transitions to Releasing.

If the application receives a GCEV_ALARM event, it calls printQoS() and remains in the
Dropped state.

6.4.11 IPCallControl::releasing State

The application waits for a GCEV_RELEASECALL event. Upon receipt of the event the state
transitions to Null.

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 59

Demo State Machines

60

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

Glossary

Codec: see COder/DECoder

COder/DECoder: A circuit used on Dialogic boards to convert analog voice data to digital and digital voice data
to analog audio.

Computer Telephony (CT): Adding computer intelligence to the making, receiving, and managing of
telephone calls.

DTMF: See Dual-Tone Multi-Frequency

Dual-Tone Multi-Frequency: A way of signaling consisting of a push-button or touch-tone dial that sends out a
sound consisting of two discrete tones that are picked up and interpreted by telephone switches (either PBXs or
central offices).

Emitting Gateway: called by a G3FE. It initiates IFT service for the calling G3FE and connects to a Receiving
Gateway.

E1: The 2.048 Mbps digital carrier system common in Europe.

FCD file: An ASCII file that lists any non-default parameter settings that are necessary to configure a DM3
hardware/firmware product for a particular feature set. The downloader utility reads this file, and for each
parameter listed generates and sends the DM3 message necessary to set that parameter value.

Frame: A set of SCbus/CT bus timeslots which are grouped together for synchronization purposes. The period of
a frame is fixed (at 125 psec) so that the number of time slots per frame depends on the SCbus/CT bus data rate. In
the context of DSP programming (e.g. DM3 component development), the period defined by the sample rate of the
signal data.

G3FE: Group 3 Fax Equipment. A traditional fax machine with analog PSTN interface.
Gatekeeper: An H.323 entity on the Internet that provides address translation and control access to the network
for H.323 Terminals and Gateways. The Gatekeeper may also provide other services to the H.323 terminals and

Gateways, such as bandwidth management and locating Gateways.

Gateway: A device that converts data into the IP protocol. It often refers to a voice-to-IP device that converts an
analog voice stream, or a digitized version of the voice, into IP packets.

H.323: A set of International Telecommunication Union (ITU) standards that define a framework for the
transmission of real-time voice communications through Internet protocol (IP)-based packet-switched networks.
The H.323 standards define a gateway and a gatekeeper for customers who need their existing IP networks to
support voice communications.

IAF: Internet Aware Fax. The combination of a G3FE and a T.38 gateway.

IFP: Internet Facsimile Protocol

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 61

intel.

International Telecommunications Union (ITU): An organization established by the United Nations to set
telecommunications standards, allocate frequencies to various uses, and hold trade shows every four years.

IFT: Internet Facsimile Transfer

Internet: An inter-network of networks interconnected by bridges or routers. LANs described in H.323 may be
considered part of such inter-networks.

Internet Protocol (IP): The network layer protocol of the transmission control protocol/Internet protocol
(TCP/IP) suite. Defined in STD 5, Request for Comments (RFC) 791. It is a connectionless, best-effort packet
switching protocol.

Internet Service Provider (ISP): A vendor who provides direct access to the Internet.

Internet Telephony: The transmission of voice over an Internet Protocol (IP) network. Also called Voice over IP
(VoIP), IP telephony enables users to make telephone calls over the Internet, intranets, or private Local Area
Networks (LANs) and Wide Area Networks (WANSs) that use the Transmission Control Protocol/Internet Protocol
(TCP/TP).

ITU: See International Telecommunications Union.

Jitter: The deviation of a transmission signal in time or phase. It can introduce errors and loss of synchronization
in high-speed synchronous communications.

NIC (Network Interface Card): Adapter card inserted into computer that contains necessary software and
electronics to enable a station to communicate over network.

PCD file: An ASCII text file that contains product or platform configuration description information that is used
by the DM3 downloader utility program. Each of these files identifies the hardware configuration and firmware
modules that make up a specific hardware/firmware product. Each type of DM3-based product used in a system
requires a product-specific PCD file.

PSTN: see Public Switched Telephone Network

Public Switched Telephone Network: The telecommunications network commonly accessed by standard
telephones, key systems, Private Branch Exchange (PBX) trunks and data equipment.

Reliable Channel: A transport connection used for reliable transmission of an information stream from its
source to one or more destinations.

Reliable Transmission: Transmission of messages from a sender to a receiver using connection-mode data
transmission. The transmission service guarantees sequenced, error-free, flow-controlled transmission of messages
to the receiver for the duration of the transport connection.

RTCP: Real Time Control Protocol

RTP: Real Time Protocol

SCbus: The standard bus for communication within a SCSA node. The architecture of the SCbus includes a 16-
wire TDM data bus that operates at 2, 4 or 8 Mbps and a serial message bus for control and signaling. DM3

62 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

platforms provide an SCbus interface for interconnection of multiple DM3 platforms, or connection to other SCSA-
compatible hardware. The DM3 platform supports timeslot bundling for high bandwidth, and can access up to 256
of the 2048 SCbus timeslots via two SC4000 ASICs.

SIP: Session Initiation Protocol: an Internet standard specified by the Internet Engineering Task Force (IETF) in
RFC 2543. SIP is used to initiate, manage, and terminate interactive sessions between one or more users on the
Internet.

T1: A digital transmission link with a capacity of 1.544 Mbps used in North America. Typically channeled into 24
digital subscriber level zeros (DSO0s), each capable of carrying a single voice conversation or data stream. T1 uses
two pairs of twisted pair wires.

TCP: see Transmission Control Protocol

Terminal: An H.323 Terminal is an endpoint on the local area network which provides for real-time, two-way
communications with another H.323 terminal, Gateway, or Multipoint Control Unit. This communication consists
of control, indications, audio, moving color video pictures, and/or data between the two terminals. A terminal may
provide speech only, speech and data, speech and video, or speech, data, and video.

Transmission Control Protocol: The TCP/IP standard transport level protocol that provides the reliable, full
duplex, stream service on which many application protocols depend. TCP allows a process on one machine to send
a stream of data to a process on another. It is connection-oriented in the sense that before transmitting data,
participants must establish a connection.

UDP: see User Datagram Protocol

UDPTL: Facsimile UDP Transport Layer protocol

User Datagram Protocol: The TCP/IP standard protocol that allows an application program on one machine to
send a datagram to an application program on another machine. Conceptually, the important difference between
UDP datagrams and IP datagrams is that UDP includes a protocol port number, allowing the sender to distinguish

among multiple destinations on the remote machine.

VAD: Voice Activity Detection

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 63

64

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

intel.

Index

Symbols G
16 gc_Extension() 56, 58
{while(1)} 38 gc_GetMetaEvent() 39
gc_OpenEx() 35
A gc_Start() 37

getCallAddrInfo() 51, 55
getDestAddr() 43, 46, 47
getDropCalllnfo() 58

getExtensionInfo() 56, 58

acceptCall() 51, 56
answerCall() 51, 52, 56, 57

C getlncomingCalllnfo() 56
callAck() 51, 56 getResultValue() 43, 44, 47, 48, 51, 52, 53, 56, 57, 58
callback_hdlr() 38 GWCall

Channel Class 29

) gateNull State 42, 46, 50, 51, 52, 53, 55, 56
Class Diagram 28

GWCall Class 31

GWCall State Machine - Inbound Call from IP 41, 45
GWCall State Machine - Inbound Call from PSTN 45
GWCall State Machine Description - Inbound from IP 41, 45

Compiling and Linking 20
Configuration Class 30

Connecting to External Equipment 15

D

Demo Description 11 H
Demo Details 25

Demo Options 21

Demo Source Code Files 25
Demo State Machines 41
DigitalPSTNBoard Class 33

Handling Application Exit Events 39
Handling Keyboard Input Events 38
Handling SRL Events 38

Hardware Requirements 13

dropCall() 51, 52, 53, 56, 57, 58 I
init() 37, 38
E Initialization 36

IPCallControl Class 32
IPCallControl State Machine 53
IPMediaBoard Class 32
IPMediaDevice Class 33
isDropped() 44, 48
isReleased() 44, 49

Editing Configuration Files 16

Editing the ipmedia_r4.cfg Configuration File 17
Event Handling 38

Event Mechanism 38

F

File Location 16 M

Fil d by the D 2
iles Used by the Demo 25 main() 37, 38, 39

makeCall() 51, 56

IP Gateway (Global Call) Object Oriented Demo Guide — November 2003 65

P U

PDL Files 27 Using the Demo 22
PDLSetApplicationExitPath() 39 Utility Files 27
PDLsr_enbhdIr() 37, 38

PDLsr_getevtdev() 38 W

PDLsr_getevttype() 39

Preparing to Run the Demo 15
printAllLibs() 37

printQoS() 58, 59

processEvent() 44, 47, 48
processEvent(CCEV_OFFERED) 43
processEvent(USR_ACCEPT) 43, 47
processEvent(USR_ANSWER) 43, 47
processEvent(USR_DISCONNECT) 43, 44, 47, 48
processEvent(USR_MAKECALL) 43, 47
Programming Model Classes 27
PSTNCallControl Class 33
PSTNCallControl State Machine 49

waitForKey() 38

R

R4Device Class 35

R4LogicalBoard Class 35

releaseCall() 53, 59

resetLineDevice() 51, 52, 53, 56, 57, 58
ResourceManager Class 33
resourceManager.configure() 37
resourceManager.getChannelsNum() 37
resourceManager.init() 37

Running the Demo 21

S

sendFacilityMessage() 58
sendNonstandardCommand() 58
sendUII() 58

Software Requirements 13
sr_enblhdlr() 36

Starting the Demo 21

Stopping the Demo 23

System Requirements 13

T

Threads 36

66 IP Gateway (Global Call) Object Oriented Demo Guide — November 2003

	Contents
	Figures
	Tables
	Revision History
	Editing Configuration Files
	Demo Details

	About This Publication
	Purpose
	Intended Audience
	How to Use This Publication
	Related Information

	1. Demo Description
	2. System Requirements
	2.1 Hardware Requirements
	2.2 Software Requirements

	3. Preparing to Run the Demo
	3.1 Connecting to External Equipment
	Figure�1.� Connecting to External Equipment

	3.2 Editing Configuration Files
	3.2.1 File Location
	3.2.2 Editing the gateway.cfg Configuration File
	Figure�2.� Configuration File Parameters

	3.3 Compiling and Linking

	4. Running the Demo
	4.1 Starting the Demo
	4.2 Demo Options
	Table�1.� Command Line Switches�

	4.3 Using the Demo
	Table�2.� Runtime Keyboard Commands�

	4.4 Stopping the Demo

	5. Demo Details
	5.1 Files Used by the Demo
	5.1.1 Demo Source Code Files
	Table�3.� Source Files Used by the IP Gateway (Global Call) Object Oriented Demo�

	5.1.2 Utility Files
	Table�4.� Utility Files Used by the IP Gateway (Global Call) Object Oriented Demo�

	5.1.3 PDL Files
	Table�5.� PDL Files Used by the IP Gateway (Global Call) Object Oriented Demo - Windows OS�

	5.2 Programming Model Classes
	5.2.1 Class Diagram
	Figure�3.� IP Gateway (Global Call) Object Oriented Class Diagram

	5.2.2 Channel Class
	Table�6.� Channel Class Attributes�

	5.2.3 Configuration Class
	Table�7.� Configuration Class Attributes�

	5.2.4 GCCallControl Class
	Table�8.� GCCallControl Class Attributes�

	5.2.5 GCDevice Class
	Table�9.� GCDevice Class Attributes�

	5.2.6 GWCall Class
	Table�10.� GWCall Class Attributes�

	5.2.7 IPBoard Class
	Table�11.� IPMediaBoard Class Attributes�

	5.2.8 IPCallControl Class
	Table�12.� IPCallControl Class Attributes�

	5.2.9 IPDevice Class
	Table�13.� IPDevice Class Attributes�

	5.2.10 PSTNBoard Class
	5.2.11 PSTNCallControl Class
	Table�14.� PSTNCallControl Class Attributes�

	5.2.12 PSTNDevice Class
	Table�15.� PSTNDevice Class Attributes�

	5.2.13 ResourceManager Class
	Table�16.� ResourceManager Class Attributes�

	5.2.14 R4Board Class
	Table�17.� R4Board Class Attributes�

	5.2.15 R4Device Class
	Table�18.� R4Device Class Attributes�

	5.3 Threads
	Figure�4.� IP Gateway (Global Call) Object Oriented Demo Threads

	5.4 Initialization
	Figure�5.� IP Gateway (Global Call) Object Oriented System Initialization

	5.5 Event Handling
	5.5.1 Event Mechanism
	5.5.2 Handling Keyboard Input Events
	5.5.3 Handling SRL Events
	5.5.4 Handling Application Exit Events

	6. Demo State Machines
	6.1 GWCall State Machine - Inbound Call from IP
	6.1.1 GWCall State Machine Description - Inbound from IP
	Figure�6.� GWCall State Machine - Inbound Call from IP

	6.1.2 GWCall::callNull State
	6.1.3 GWCall::callGetIPInfo
	6.1.4 GWCall::callIPOffered
	6.1.5 GWCall::callIPAccepting
	6.1.6 GWCall::callPSTNConnected
	6.1.7 GWCall::callConnected
	6.1.8 GWCall::callDropping
	6.1.9 GWCall::callReleasing

	6.2 GWCall State Machine - Inbound Call from PSTN
	6.2.1 GWCall State Machine Description - Inbound from PSTN
	Figure�7.� GWCall State Machine - Inbound Call from PSTN

	6.2.2 GWCall::callNull State
	6.2.3 GWCall::callPSTNDetected
	6.2.4 GWCall::callPSTNOffered
	6.2.5 GWCall::callPSTNAccepting
	6.2.6 GWCall::callIPConnected
	6.2.7 GWCall::callConnected
	6.2.8 GWCall::callDropping
	6.2.9 GWCall::callReleasing

	6.3 PSTNCallControl State Machine
	6.3.1 PSTNCallControl State Machine Description
	Figure�8.� PSTNCallControl State Machine

	6.3.2 PSTNCallControl::Null State
	6.3.3 PSTNCallControl::Detected State
	6.3.4 PSTNCallControl::Offered State
	6.3.5 PSTNCallControl::Accepting State
	6.3.6 PSTNCallControl::Answering State
	6.3.7 PSTNCallControl::makingCall State
	6.3.8 PSTNCallControl::Connected State
	6.3.9 PSTNCallControl::Dropping State
	6.3.10 PSTNCallControl::Releasing State

	6.4 IPCallControl State Machine
	6.4.1 IPCallControl State Machine Description
	Figure�9.� IPCallControl State Machine

	6.4.2 IPCallControl::Null State
	6.4.3 IPCallControl::getCallInfo State
	6.4.4 IPCallControl::offered State
	6.4.5 IPCallControl::accepting State
	6.4.6 IPCallControl::answering State
	6.4.7 IPCallControl::makingCall State
	6.4.8 IPCallControl::connected State
	6.4.9 IPCallControl::dropping State
	6.4.10 IPCallControl::dropped State
	6.4.11 IPCallControl::releasing State

	Glossary
	Index

