intgl.

IP Media Gateway (IPML)

Demo Guide

November 2003

I 05-1823-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This IP Media Gateway (IPML) Demo Guide as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice,
and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without express written consent of Intel Corporation.

Copyright © 2002-2003 Intel Corporation. All Rights Reserved.

AnyPoint, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, 486, 1960, iCOMP,
InstantIP, Intel, Intel Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel InBusiness, Intel Inside,
Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon,
Intel XScale, IPLink, ltanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon,
Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

* Other names and brands may be claimed as the property of others.
Publication Date: November 2003
Document Number: 05-1823-002

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page at:
http://www.intel.com/buy/wtb/wtb1028.htm

IP Media Gateway (IPML) Demo Guide— November 2003

http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/wtb/wtb1028.htm

IP Media Gateway (IPML) Demo Guide— November 2003

IP Media Gateway (IPML) Demo Guide— November 2003

intel.

Contents

Revision History e 10
About This Publication e 11
PUIDOSE . . oo e 11

Intended AUdIENCE. e 11

How to Use This Publication e 11

Related Information e 12

1 Demo DescCHiption. e e 13
2 System Requirements 15
2.1 Hardware Requirements e e e 15

2.2 Software RequUirements e e 15

3 Preparingto Runthe Demo. e 17
3.1 Connecting to External Equipment 17

3.2 Editing Configuration Files. 17

3.2.1 FileLocation 17

3.2.2 Editing the ipmedia.cfg Configuration File 17

3.3 Compilingand LiNKiNgG oo 20

3.4 Selecting PCD/FCD Filesot e e 21

4 Runningthe Demo e 23
4.1 Startingthe Demo 23

4.2 Demo OPONSt 23

4.3 Usingthe Demo. e 24

4.4 Stoppingthe Demo 24

5 Demo Details. e 25
5.1 FilesUsedbythe Demo i e e e e e 25

51.1 DemoSource Code Files i 25

5.1.2 Utility Files ... o 27

5.1.3 PDLFIes ... 27

5.2 Programming Model Classes. e 28

5.2.1 Class Diagram it e 28

522 Channel Classt e e e 29

5.2.83 Configuration Classc. i 30

5.2.4 DigitalPSTNBoard Class.o v e e 32

5.2.5 DigitalPSTNDeVice Classo vt e e 32

52,6 GWCall Class oo e 33

5.2.7 IPCallControl Class.o ot e 34

52.8 [IPMediaBoard Class.ottt e 34

5.2.9 IPMediaDevice Classottt e 35

5210 IPMSg Class . .. oottt e 36

5.2.11 IPProtocol Classot e 36

5.2.12 IPProtocoIMgr Class.o ittt e 37

IP Media Gateway (IPML) Demo Guide — November 2003 5

u

Contents I ntGI o
5.2.13 PSTNCallControl Classo it e e e e 37
5214 RA4DeVIiCe Class.ottt e e 38
5.2.15 R4LogicalBoard Class cuit it e e e 38
5.2.16 ResourceManager Class. ittt e 39

5.3 Threads. e 42
5.4 Initialization. e 42
5.5 EventHandling e 44
5.5.1 EventMechanism e 44

5.5.2 Handling Keyboard Input Events. i 44

5.5.3 Handling SRLEvVeENts. 44

5.5.4 Handling Application Exit Events. 45

6 Demo State Machines e e 47
6.1 GWCall State Machine - Inbound Callfrom IP 47
6.1.1 GWCall State Machine Description - Inbound from IP. 47

6.1.2 GWCall:gateNull State o e 48

6.1.3 GWCall::gateOfferingFromIP State i 49

6.1.4 GWCall::gatelPWaitMedialnfo State 49

6.1.5 GWCall::gateWaitPSTNConnectState 49

6.1.6 GWCall::gateSignalingConnected State 50

6.1.7 GW-Call::gateConnected State. 50

6.2 GW Call State Machine - Inbound Call from PSTN 50
6.2.1 GWCall State Machine Description - Inbound from PSTN 51

6.2.2 GWCall:gateNull State o 52

6.2.3 GW-Call::gateDetectedFromPSTN State 53

6.2.4 GWCall::gateOfferingFromPSTN State. 53

6.2.5 GWCall::gatePSTNWaitMedialnfoState 53

6.2.6 GWCall::gateWaitPSTNAnswer State.o ..., 54

6.2.7 GWCall::gatePSTNConnected State. 54

6.2.8 GWCall::gateSignalingConnected State 54

6.2.9 GWCall::gateConnected State. i 54

6.3 GWCall State Machine - Switching Between Voice/Fax. 55
6.3.1 GWCall State Machine Description - Voice/Fax 55

6.3.2 GWCall::gateConnected State. i 56

6.3.3 GW-Call::gateCallPause State 57

6.3.4 GWCall::gateWaitForMedialnfoState 57

6.3.5 GWCall::gateResume State. 57

6.4 IPMediaDevice State Machine i i e 57
6.4.1 IPMediaDevice State Machine Description i, 58

6.4.2 IPMediaDevice:mediaNull State. i 58

6.4.3 IPMediaDevice::mediaOffered State 59

6.4.4 IPMediaDevice::mediaStarted State 59

6.4.5 IPMediaDevice::mediaStopped State 59

6.5 PSTNCallControl State Machine i 59
6.5.1 PSTNCallControl State Machine Description 59

6.5.2 PSTNCallControl::CCNull State. i 60

6.5.3 PSTNCallControl::CCDetected State, 61

6.5.4 PSTNCallControl::CCAnsweringCall State 61

6.5.5 PSTNCallControl::CCMakingCall State. 61

6.5.6 PSTNCallControl::CCConnected State 61

6 IP Media Gateway (IPML) Demo Guide — November 2003

i ntGI o Contents

6.5.7 PSTNCallControl::CCDropping State

.................................. 61

6.5.8 PSTNCallControl::CCReleasing State 61
GlOSSaNY e 63
INAeX . . e 67

IP Media Gateway (IPML) Demo Guide — November 2003

Contents i ntGI o

Figures

© oo ~NOOhA~wWN-=

IP Media Gateway (IPML) TOpOoIlOgy. ottt e e e 13
IP Media Gateway (IPML) Class Diagram i 29
IP Media Gateway (IPML) Demo Threads ottt e e e e e 42
IP Media Gateway (IPML) System Initialization 43
GWoCall State Machine - Inbound Call from IP i i, 48
GWoCall State Machine - Inbound Call from PSTN. 52
GWoCall State Machine - Switching Between Voice/Fax. 56
IPMediaDevice State Machine e 58
PSTNCallControl State Machine i e et e s 60

IP Media Gateway (IPML) Demo Guide — November 2003

i ntGI o Contents

Tables

1 Command Line Switches. 23
2 Runtime Keyboard Commandsttt e 24
3 Source Files Used by the IP Media Gateway (IPML)Demo 25
4 Utility Files Used by the IP Media Gateway (IPML)Demo 27
5 PDL Files Used by the IP Media Gateway (IPML) Demo - Windows OS 27
6 Channel Class Attributes i e e e 29
7 Configuration Class Attributes 30
8 DigitalPSTNBoard Class Attributes 32
9 DigitalPSTNDevice Class Attributes i e 32
10 GWCall Class Attributesot e e e e 33
11 [IPCallControl Class Attributes i e e e e 34
12 [IPMediaBoard Class Attributes e 35
13 IPMediaDevice Class Attributes 35
14 IPMsg Class AHributes e e 36
15 [IPProtocol Class Attributes e e 37
16 IPProtocolMgr Class Attributes 37
17 PSTNCallControl Class Attributes i e e e e 38
18 R4Device Class Attributes. e 38
19 R4LogicalBoard Class Attributes. 39
20 ResourceManager Class Attributes. e 40

IP Media Gateway (IPML) Demo Guide — November 2003 9

intel.

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No.

Publication Date

Description of Revisions

05-1823-002 November 2003 Global changes: Changed file directory path
Removed “_r4” from file names
05-1823-001 September 2002 Initial version of document.

IP Media Gateway (IPML) Demo Guide — November 2003

10

intel.

About This Publication

The following topics provide information about this guide:
¢ Purpose
¢ Intended Audience
¢ How to Use This Publication

e Related Information

Purpose

This guide provides information on the IP Media Gateway (IPML) demo that is available with
Intel® Dialogic® System Release 6.0 PCI for the Windows* Operating System on Intel®
Architecture. This guide describes the demo, its requirements, and details on how it works.

Intended Audience

This information is intended for:

¢ Distributors

¢ Toolkit Developers

¢ Independent Software Vendors (ISVs)
Value Added Resellers (VARSs)

Original Equipment Manufacturers (OEMs)

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software.

This publication assumes that you are familiar with the Windows or Linux operating system and
the C++ programming language.

The information in this guide is organized as follows:

e Chapter 1, “Demo Description” introduces you to the demo and its features

e Chapter 2, “System Requirements” outlines the hardware and software required to run the
demo

¢ Chapter 3, “Preparing to Run the Demo” describes the preparations required before running
the demo

¢ Chapter 4, “Running the Demo” describes how to run the demo

IP Media Gateway (IPML) Demo Guide — November 2003

[]
About This Publication I ntel o

12

Chapter 5, “Demo Details” provides details on how the demo works

Chapter 6, “Demo State Machines” describes the demo state machines

Related Information

See the following for more information:

Intel Dialogic System Release 6.0 on PCI for Windows Release Update for information on
problems fixed, known problems and workarounds, compatibility issues and last minute
updates not documented in the published information.

Intel Dialogic and Intel NetStructure for DM3 Architecture for PCI on Windows
Configuration Guide

Intel® NetStructure™ [PT Series on Windows Configuration Guide
http://developer.intel.com/design/telecom/support/ (for technical support)
http://www.intel.com/network/csp/ (for product information)

IP Media Gateway (IPML) Demo Guide — November 2003

http://developer.intel.com/design/telecom/support/
http://www.intel.com/network/csp

intel.

Demo Description 1

This chapter provides a brief description of the IP Media Gateway (IPML) demonstration program.
The IP Media Gateway (IPML) Demo demonstrates how the IP Media Library (IPML) API may be
used to build a PSTN-IP gateway when using a proprietary host-based protocol stack, i.e., a
protocol stack not supplied with the system release. The demo source code can be used as sample
code for those who want to begin developing an application from a working application.

A basic topology is presented in Figure 1.

Figure 1. IP Media Gateway (IPML) Topology

IPMedia IPMedia
PBX Gateway_/\/ Gateway PBX

I I
B B
Telephone Telephone

Note: This guide does not discuss the proprietary protocol stack design. Review the source code to better
understand how the stack is implemented.

The IP Media Gateway (IPML) demo supports the following features:
¢ Configuration file
¢ Command line options
* Output log files
¢ Printing to the monitor
¢ QoS
* Accepts IP calls
¢ Places IP calls

The following features are not supported by this demo application:
¢ Analog PSTN interface
¢ UII message
* NonStdCmd message
¢ NonStdParm data

IP Media Gateway (IPML) Demo Guide — November 2003 13

Demo Description i nt9I ®

14

* Q.931Facility message

The IP Media Gateway (IPML) demo is a cross-OS demo, running under the Windows and Linux
environments. Most of the differences in the environments are handled directly by the
programming interface and are transparent to the user. Other differences, due to inherent
differences in the operating systems, are handled by the Platform Dependency Library (PDL). For
more information, refer to the source code in the pdl_win or pdl_linux directories.

IP Media Gateway (IPML) Demo Guide — November 2003

intel.

System Requirements 2

2.1

2.2

This chapter discusses the system requirements for running the IP Media Gateway (IPML) demo. It
contains the following topics:.

e Hardware Requirementsttt 15

e Software Requirements i 15

Hardware Requirements

This demo requires two separate gateways in order to create an end-to-end voice path, due to the
nature of the proprietary call control written for the demo.

To run the IP Media Gateway (IPML) demo, you need, for each gateway:

¢ One of the following:
— Intel® NetStructure™ DM/IP Series board
— Intel® NetStructure™ IPT Series board
¢ also requires an Intel® NetStructure™ DM/V-A series board for PSTN connection

e IP network cable

For other hardware requirements, such as memory requirements, see the Release Guide for your
system release.

Software Requirements

To run the IP Media Gateway (IPML) demo, you need the Intel® Dialogic® System Release 6.0
PCI for the Windows Operating System on Intel Architecture. For a list of operating system
requirements see the Release Guide for your system release.

See Section 3.3, “Compiling and Linking”, on page 20 for a list of compilers that may be used with
this demo. Using a non-supported compiler may cause unforeseen problems in running the demo.

IP Media Gateway (IPML) Demo Guide — November 2003 15

u
System Requirements I ntel o

16 IP Media Gateway (IPML) Demo Guide — November 2003

intel.

Preparing to Run the Demo

3

This chapter discusses the preparations necessary to run the IP Media Gateway (IPML) demo. It

provides information about the following topics:

e Connecting to External Equipment i 17

e Editing Configuration Files 17

e Compilingand Linking 20

e Selecting PCD/FCD Filest e 21
3.1 Connecting to External Equipment

The IP Media Gateway (IPML) demo uses a proprietary call control stack that is not compatible

with other stacks or IP clients (such as Windows* NetMeeting*). The gateway must be connected

to a second gateway also running the IP Media Gateway (IPML) application in order to open an

end-to-end voice path.

3.2 Editing Configuration Files

This section discusses how to configure the demo for your system. It contains the following topics:

¢ File Location

¢ Editing the ipmedia.cfg Configuration File

3.2.1 File Location

Before running the IP Media Gateway (IPML) demo, modify the ipmedia.cfg file to reflect your

system environment. Use a text editor and open the file from:

* Windows: C:\Program Files\dialogic\demos\ipdemo\ipmedia\release\

3.2.2 Editing the ipmedia.cfg Configuration File

Below is an example of the ipmedia.cfg file. Update the following information:

Destination host IP
IP address of the NIC on the destination GW host

Destination host port
IP port of the destination GW host

Local host port
IP port of the local host

IP Media Gateway (IPML) Demo Guide — November 2003

17

u
Preparing to Run the Demo I ntel o

18

first call id
Demo proprietary call ID. Each gateway must have a unique set of call IDs. This information
is transmitted during call negotiation. This value is the first value in the range of call IDs for
the gateway.

last call id
The last value in the range of call IDs for the gateway.

PSTN protocol
The PSTN protocol supported by the gateway. Possible values are: T1, E1, ISDN (including
NFAS), CAS.

DTMF mode
Specifies how DTMF tones are transmitted. Possible values are: RTPInBand (usually used
with G.711 coders), OutOfBand (usually used with low bandwidth coders, e.g., GSM),
RTPRFC2833.

VoiceRxCodecs
Describes the receive voice coder. The parameters are as follows:

¢ CoderType — The type of coder. See the System Release Update for specific information
about coder support in this release.

¢ CoderFramesPerPkt — Specify the number of frames per packet for the selected coder. See
the System Release Update for specific information about coder support in this release.

¢ CoderFrameSize — Specify the frame size for the selected coder. See the System Release
Update for specific information about coder support in this release.

* CoderVAD - Specify if VAD is active. See the System Release Update for specific
information about coder support in this release.

¢ Payload — Describes the static payload type values for the PT field of the RTP data header
as described in RFC 1890.

¢ RedPayload — Describes the static payload type value for the first redundant frame within
the packet. This parameter must be set in order for the system to identify the redundant

packets.
¢ RFC2833Payload — Describes the static payload type values when sending DTMF
according to RFC2833.
VoiceTxCodecs

Describes the transmit voice coder. See VoiceRxCodecs for a description of the parameters.

Data Codecs
Describes the fax coder parameters. See VoiceRxCodecs for a description of the parameters.

Quality of Service
The application can set threshold values to monitor the quality of service during calls. A fault
occurs when the result of a measurement of a QoS parameter crossed a predefined threshold. A
success occurs when the result of a measurement of a QoS parameter did not cross a
predefined threshold. The QoS parameters are measured during time intervals, starting when a
call is established. The following parameters are supported:
e MediaAlarmLostPackets — indicates that the percentage of packets lost during a call
exceeded its threshold value
* MediaAlarmlitter — indicates that the jitter (as defined in RFC 1889) exceeded its
threshold value

QoS Attributes
Each parameter has six attributes:

IP Media Gateway (IPML) Demo Guide — November 2003

Preparing to Run the Demo

¢ Threshold — defines when a QoS parameter is in a fault condition. A fault occurs when the

result of a measurement of a QoS parameter crossed the Threshold value.

¢ DebounceOn — the time during which faults are measured (in msec., must be multiple of

Interval)

¢ DebounceOff — the time during which successes are measured (in msec., must be multiple

of Interval)

¢ Interval — the amount of time between two QoS parameter measurements (in multiples of

100 msec)

¢ Percent_Fail — the threshold of failures during the DebounceOn time (expressed as a

percentage of failures)

¢ Percent_Success — the threshold of successes during the DebounceOn time (expressed as

a percentage of successes)

The default values are as follows:

Threshold | DebounceOn | DebounceOff Interval Percgnt_ Percent_
Fail Success
Lost packets | 20 10000 10000 1000 60 40
Jitter 60 20000 60000 5000 60 40
DigitMap
Sets the number of digits to be transmitted when sending DTMF
Sample Configuration File
Destination host IP = 10.242.214.20
Destination host port = 3000
Local host port = 3000
first call id = 1
last call id = 999
PSTN protocol - possible values: Tl / El, ISDN (including NFAS), CAS.

PSTN protocol = T1 isdn

Channel = 1 - 30
{

DTMF modes
DTMF mode = rtpinband
VoiceRxCodecs

{

CoderType = g7l1llmulaw
CoderFramesPerPkt = 1
CoderFrameSize = 30
CoderVAD = 0

Payload = 0
RedPayload = 0
RFC2833Payload = 100

}

VoiceTxCodecs

{

CoderType = g7llmulaw
CoderFramesPerPkt = 1
CoderFrameSize = 30
CoderVAD = 0

Payload = 0
RedPayload = 0
RFC2833Payload = 100

}

IP Media Gateway (IPML) Demo Guide — November 2003

- possible values: RTPInBand, OutOfBand, RTPRFC2833.

19

Preparing to Run the Demo

3.3

20

DataCodecs

{

CoderType = g7l1llmulaw

CoderFramesPerPkt = 1

CoderFrameSize = 30

CoderVAD = 0

Payload = 0

RedPayload = 0

}

#QoS
LostPackets_Threshold
LostPackets_DebounceOn
LostPackets_DebounceOff
LostPackets_Interval
LostPackets_PercentSuccess
LostPackets_ PercentFail
Jitter Threshold
Jitter_ DebounceOn
Jitter DebounceOff
Jitter_ Interval
Jitter PercentSuccess
Jitter PercentFail
ResetAlarmState =0

#DigitMap = 1

#{

#NumOfDigits = 1
#}

#DigitMap = 2

#{

#NumOfDigits = 5
#}

#DigitMap = 3

#{

#NumOfDigits = 5
#}

#DigitMap = 4

#{

#NumOfDigits = 3
#}

#DigitMap = 5

#{

#NumOfDigits = 1
#}

#DigitMap = 6

#{

#NumOfDigits = 3
#}

20

= 10000
= 10000
= 1000
= 60

= 40

= 60

= 20000
= 60000
= 5000
= 60

40

H HE H HHHHHEHHEHHE

Threshold
Threshold
Threshold
Threshold
Threshold
Threshold
Threshold
Threshold
Threshold
Threshold
Threshold
Threshold

Compiling and Linking

value

debounce ON
debounce OFF

Time Interval (ms)
Success Percent
Fail Percent
value

debounce ON
debounce OFF

Time Interval (ms)
Success Percent
Fail Percent

Compile the project within the following environments:

e Windows

— Visual C++ environment, version 6

IP Media Gateway (IPML) Demo Guide — November 2003

u
I ntGI o Preparing to Run the Demo

If you have added or changed files, to compile the project put the files in
Dialogic\demos\ipdemo\ipmedia.

Set ipmedia as the active project and build in debug mode.

3.4 Selecting PCD/FCD Files

Choose a PCD and matching FCD file according to the PSTN protocol used.

IP Media Gateway (IPML) Demo Guide — November 2003 21

Preparing to Run the Demo

22

IP Media Gateway (IPML) Demo Guide — November 2003

intel.

Running the Demo 4

This chapter discusses how to run the IP Media Gateway (IPML) demo. It contains the following

topics:
e Startingthe Demo 23
® Demo OPLONS . . . oottt e 23
o Usingthe Demo.ottt 24
e Stoppingthe Demo 24

4.1 Starting the Demo

Windows
Select Run from the Start Menu. The demo executable file can be found in:

C:\Program Files\dialogic\demos\ipdemo\ipmedia\release\ipmedia.exe. Click OK to run the IP
Media Gateway (IPML) demo using the default settings.

4.2 Demo Options

To specify certain options at run-time, launch the demo from a command line, using any of the
switches listed in Table 1.

Table 1. Command Line Switches

Switch Action Default
-n<n> Sets the number of gateway channels The lesser of Voice
Devices or IP devices
-l<n,...> Printouts will be printed into channel log files. Disabled
If ‘all’ follows the —I, log files will be created for all available
channels.

If a list of channels in the following format: C1-C2, C3-C4, C5
follows the —, log files are created for the channel ranges or
specific channels specified in the list.

If the "—I" option is not used, prints go to the stdout, for the first
2 channels only (to keep from overloading the CPU, and more
convenient for viewing printouts).

-m<n,...> Enables printing channel specific information to the monitor, in | Disabled
addition to printing the log file. A maximum of 2 channels may
be printed.

IP Media Gateway (IPML) Demo Guide — November 2003 23

Running the Demo I n

Table 1. Command Line Switches (Continued)

Switch Action Default
-d<n> Sets Debug Level (0-4): -dO (Fatal)
¢ 0-FATAL — used when one or more channels are
deadlocked.

¢ 1-ERROR - used when the application receives a failure
which doesn’t cause the channel to be deadlocked.

¢ 2-WARNING — used when some problem or failure occurred
without affecting the channel’'s usual action.

* 3-TRACE — used at the start of the application entrance or
the start of any function.

¢ 4-INFO - prints data related to a specific action.

Note: Debug level is inclusive; higher levels include all lower

levels
-q Activates Quality of Service Disabled
-C Configuration file name -c ipmedia_r4.exe
<filename>
-h/? Prints the command syntax to the screen Off

4.3 Using the Demo

The demo always waits for input from the keyboard. While the demo is running, you may enter any
of the commands listed in Table 2:

Table 2. Runtime Keyboard Commands

Command Function
corC Prints channel statistics to file (statistics.log)
d<n> or D<n> Changes debug level during runtime, where <n> is the
debug level
f<value> or F<value> Changes fax mode. Possible values are:

e torT for T.38
e gor Gfor G.711

m or M Prints log files for up to 2 channels to the screen
g or Q or Ctrl+c Terminates the application
rorR Sends RFC2833 messages

4.4 Stopping the Demo

@ 99

The IP Media Gateway (IPML) demo runs until it is terminated. Press “q” or “Q” or “Ctrl+c” to
terminate the demo application.

24 IP Media Gateway (IPML) Demo Guide — November 2003

intel.

Demo Details 5

This chapter discusses the IP Media Gateway (IPML) demo in more detail. It contains the
following topics:

e FilesUsedbythe Demo. i e 25
e Programming Model Classes.ttt 28
o Threads i 42
o Initialization. 42
e EventHandling e 44

5.1 Files Used by the Demo

This section lists the files used by the demo. It contains the following information:
¢ Demo Source Code Files
¢ Utility Files
e PDL Files

5.1.1 Demo Source Code Files

In Windows the source code files listed in Table 3 are located in:
C:A\Program Files\dialogic\demos\ipdemo\ipmedia\.

Table 3. Source Files Used by the IP Media Gateway (IPML) Demo

IP Media Gateway (IPML) Demo Guide — November 2003

Directory File Name Purpose
ipmedia channel.cpp Implements the operations of the Channel class
ipmedia channel.h Function prototype for channel.cpp
ipmedia configuration.cpp Implements the operations of the Configuration class
ipmedia configuration.h Function prototype for configuration.cpp
ipmedia pstnboard.cpp Implements the operations of the DigitalPstnBoard class
ipmedia pstnboard.h Function prototype for digitalpstnboard.cpp
ipmedia pstndevice.cpp Implements the operations of the DigitalPstnDevice class
ipmedia pstndevice.h Function prototype for digitalpstndevice.cpp
ipmedia gwcall.cpp Implements the operations of the GWCall class
ipmedia gwecall.h Function prototype for gwcall.cpp
ipmedia incfile.h Function prototype for Global Call and R4 functions

25

Demo Details

26

Table 3. Source Files Used by the IP Media Gateway (IPML) Demo (Continued)

Directory File Name Purpose
ipmedia ipmedia.dsp Visual C++ project file
(Windows only)
ipmedia ipmedia.dsw Visual C++ project workspace
(Windows only)
ipmedia ipmedia.rc Resource file
(Windows only)
ipmedia ipmedia.ver Demo version information
ipmedia main.cpp Contains the main function and the Wait for Key
ipmedia main.h Function prototype for main.cpp
ipmedia pstncallcontrol.cpp Implements the operations of the PstnCallControl class
ipmedia psntcallcontrol.h Function prototype for pstncallcontrol.cpp
ipmedia resource.h Microsoft Developer Studio generated include file used by
(Windows only) ipmedia_r4.rc
ipmedia resourcemanager.cpp | Implements the operations of the ResourceManager class
ipmedia resourcemanager.h Function prototype for resourcemanager.cpp
ipmedia/release ipmedia.cfg Demo configuration file
(Windows only)
ipmedia/release ipmedia.exe Demo executable
(Windows only)
ipmediamodule ipmediaboard.cpp Implements the operations of the IPMediaBoard class

ipmediamodule

ipmeadiaboard.h

Function prototype for ipmediaboard.cpp

ipmediamodule

ipmediadevice.cpp

Implements the operations of the IPMediaDevice class

ipmediamodule

ipmediadevice.h

Function prototype for ipmediadevice.cpp

basemodules

rddevice.cpp

Implements the operations of the R4Device class

basemodules

rddevice.h

Function prototype for r4device.cpp

basemodules

r4logicalboard.cpp

Implements the operations of the R4LogicalBoard class

basemodules

r4logicalboard.h

Function prototype for r4logicalboard.cpp

ipproprietary client.cpp Implementation of the client socket for sending messages
over the IP

ipproprietary client.h Function prototype for client.cpp

ipproprietary ipcallcontrol.cpp Implements operations of the IPCallControl class

ipproprietary ipcallcontrol.h Function prototype for ipcallcontrol.cpp

ipproprietary ipmsg.cpp Implements operations of the IPMsg class

ipproprietary ipmsg.h Function prototype for ipmsg.cpp

ipproprietary ipprotocol.cpp Implements operations of the IPProtocol class

ipproprietary ipprotocol.h Function prototype for ipprotocol.cpp

ipproprietary ipprotocolmgr.cpp Implements operations of the IPProtocolMgr class

IP Media Gateway (IPML) Demo Guide — November 2003

I n Demo Details

Table 3. Source Files Used by the IP Media Gateway (IPML) Demo (Continued)

Directory File Name Purpose
ipproprietary ipprotocolmgr.h Function prototype for ipprotocolmgr.cpp
ipproprietary server.cpp Implementation of the server socket for receiving
messages over IP
ipproprietary server.h Function prototype for server.cpp
ipproprietary ipprotocoldefs.h Global definitions
ipproprietary ipproprietary.ver Module library version information
ipproprietary ipproprietary.dsp Visual C++ project file

(Windows only)

ipproprietary ipproprietary.dsw Visual C++ project workspace
(Windows only)

ipproprietary\release | ipproprietary.lib Compiled module library
(Windows only)

5.1.2 Utility Files

In Windows the utility files listed in Table 4 are located in:
C:A\Program Files\dialogic\demos\ipdemo\ipmedia\.

Table 4. Utility Files Used by the IP Media Gateway (IPML) Demo

Directory File Name Purpose
utilcpp utilcpp.ver Utility library version information
utilcpp log.cpp Debugging functions
utilcpp log.h Function prototype for libdbg.c
utilcpp utilcpp.dsw Utility library Visual C++ workspace

(Windows only)

utilcpp utilcpp.dsp Utility library Visual C++ project file
(Windows only)

utilcpp\release utilcpp.lib Compiled Utility library
(Windows only)

5.1.3 PDL Files

In Windows the PDL files listed in Table 5 are located in:
C:\Program Files\dialogic\demos\ipdemo\pdl_win.

Table 5. PDL Files Used by the IP Media Gateway (IPML) Demo - Windows OS

Directory File Name Purpose
pdl_win iptransport.cpp PDL IP transport functions
pdl_win iptransport.h Function prototype for iptransport.cpp

IP Media Gateway (IPML) Demo Guide — November 2003 27

Demo Details

5.2

5.2.1

28

intel.

Table 5. PDL Files Used by the IP Media Gateway (IPML) Demo - Windows OS (Continued)

Directory File Name Purpose
pdl_win pdl.c Platform dependency functions
pdl_win pdl.h Function prototype for pdl.c
pdl_win pdl.ver PDL version information
pdl_win pdl_win.dsp PDL Visual C project file
pdl_win pdl_win.dsw PDL Visual C workspace
pdl_win\release pdl_win.lib Compiled PDL library

Programming Model Classes

This section presents basic information about the IP Media Gateway (IPML) demo classes. It

contains the following information:

Class Diagram

Channel Class
Configuration Class
DigitalPSTNBoard Class
DigitalPSTNDevice Class
GWCall Class
IPCallControl Class
[PMediaBoard Class
[PMediaDevice Class
IPMsg Class

[PProtocol Class
[PProtocolMgr Class
PSTNCallControl Class
R4Device Class
R4LogicalBoard Class

ResourceManager Class

Class Diagram

The following class diagram describes the relationship among the classes.

IP Media Gateway (IPML) Demo Guide — November 2003

Figure 2. IP Media Gateway (IPML) Class Diagram

5.2.2

Table 6. Channel Class Attributes

IP Media Gateway (IPML) Demo Guide — November 2003

1

1

ResourceManager

Demo Details

1

IPMediaBoard > R4lLogicalBoard <J}—

PSTNBoard

IPProtocolMgr

Configuration

10

*

*

IPMediaDevice —{>

R4Device

PSTNDevice

—> IPProtocol

\\
\1

Channel Class

1

IPCallControl

1

Channel

?

<
1
/PSTNCaContro
1
/
1

GWCall

The Channel class’ main role is to control all resources related to a call. It contains all the resources
related to a call and manages all gateway calls and its resources.

The Channel class attributes are described in Table 6. Refer to the source code for method

information.

Access -
Name Privilege Type Description
m_plPMediaDevice public IPMediaDevice* IPMedia device of the channel
m_pdigPSTNDevice public DigitalPSTNDevice* PSTN device of the channel

29

Demo Details

Table 6. Channel Class Attributes (Continued)

INlal.

Access .
Name Privilege Type Description
m_pIPP public IPProtocol* Proprietary protocol object to control
the calls with the remote gateway
m_pLog public Log* The log object of the channel
m_channelld private unsigned int The channel identifier
m_GWCalls private GWCALL_LIST List of the calls initiated on the
(an STL list of channel
GWCall*)
m_inService private bool Indicates if the channel is in or out of
service

5.2.3

Configuration Class

The Configuration class’ main role is to provide an interface to get the needed configuration data. It
contains all the needed data structures to parse and save the system configuration (the
configuration file and the command line options) and reflects the system configuration to the other

classes.

The Configuration class attributes are described in Table 7. Refer to the source code for method
information.

Table 7. Configuration Class Attributes

Name

Access
Privilege

Type

Description

m_pstnProtocol

public

char

PSTN protocol to be used, read from
the configuration file and updated
during initialization. It is not changed
until demo termination. It is accessed
while opening the PSTN Board and
Digital PSTN devices.

m_remoteHostPortinfo

public

IPM_PORT_INFO

while sending IP messages to the

Structure that contains the remote
host IP address and port, read from
the configuration file and updated
during initialization. It is not changed
until demo termination. It is accessed

remote gateway.

m_localHostPortinfo

public

IPM_PORT_INFO

Structure that contains the local host
port, read from the configuration file
and updated during initialization. It is
not changed until demo termination. It
is accessed while initializing the
server.

30

IP Media Gateway (IPML) Demo Guide — November 2003

Table 7. Configuration Class Attributes (Continued)

Demo Details

Name

Access
Privilege

Type

Description

m_logFArr

public

char

Log level that the logs will be printed
with, read whenever something is
printed to the log. It is updated by
command line option during
initialization or by the user request
when pressing the d or D key during
run time. The log level is the same for
all log objects.

m_firstCallld

public

long

The lowest Callld (IP call control
identifier) number allowed, read from
the configuration file during
initialization. It is not changed until
demo termination. The Call IDs range
must be different at the two gateways.

m_lastCallld

public

long

The highest Callld (IP call control
identifier) number allowed.

m_QoSFlag

public

int

If the QoS feature is enabled by the -q
command line option, it is read from
the configuration file during
initialization and not changed until
demo termination. It is accessed
before calling any QoS function to
check if that function should be called.

m_stage

private

unsigned char

The stage of parsing the configuration
file

m_line

private

int

The line in the configuration file
currently being parsed

m_firstSession

private

long

Used to fill the channel information
from the configuration file

m_lastSession

private

long

Used to fill the channel information
from the configuration file

m_cfgFile

private

char*

The configuration file name

m_logFileFlag

private

int

Flag for using log files, one for each
channel (by the - command line
option)

m_userChannels

public

unsigned int

Indicates the number of channels that
the demo will work with. Updated after
reading the -n command line option
and remains unchanged until demo
termination.

m_DigitMaps

private

int
[MAX_DIGIT_MAPS]

Array of “digit maps” to collect DTMFs
in order to send them over the IP. The
digit map includes only number of
digits for each loop.

IP Media Gateway (IPML) Demo Guide — November 2003

31

Demo Details i nt9| o

Table 7. Configuration Class Attributes (Continued)

Access i
Name Privilege Type Description
m_DigitMapNum private int Current digit map read
m_chanlinfo public Channelinfol[] Array that contains all the channel

information from the configuration file,
such as Tx coder information, the
print to log file flag, and the phone
number to call. It is updated while
getting data from the configuration
file.

5.2.4 DigitalPSTNBoard Class

The DigitalPSTNBoard class’ main role is to initiate the digital PSTN boards and manage the
digital PSTN device database. The DigitalPSTNBoard class contains all the digital PSTN devices
available in the system.

The DigitalPSTNBoard class attributes are described in Table 8. Refer to the source code for
method information.

Table 8. DigitalPSTNBoard Class Attributes

Access .
Name Privilege Type Description
m_pstnDevices public DigitalPSTNDevice Array of PSTN devices found on the
(MAX_BOARD_DEVI | PSTN board. Accessed while looking
CES) for a free DigitalPSTNDevice in order
to allocate it to a Channel.

5.2.5 DigitalPSTNDevice Class

The DigitalPSTNDevice class’ main role is to provide R4 functionality to a digital PSTN device. It
reflects the device status and manages all calls related to that device. The DigitalPSTNDevice class

represents any digital PSTN R4 device.

The DigitalPSTNDevice class attributes are described in Table 9. Refer to the source code for
method information.

Table 9. DigitalPSTNDevice Class Attributes

Access i
Name Privilege Type Description
m_lineDevice public LINEDEV Line device of the PSTN device - valid
after opening the PSTN device

32 IP Media Gateway (IPML) Demo Guide — November 2003

Table 9. DigitalPSTNDevice Class Attributes (Continued)

Demo Details

Access

Name Privilege Type Description
m_PSTNCCs public PSTNCallControl[] Array that holds the PSTN device call
control
m_localPhoneNumber public char Local phone number used by the

makecCall() function. Read from the
configuration file.

5.2.6

GWCall Class

The GWCall class’ main role is to control all resources related to a call. It contains all the resources

needed to establish a call:

e PSTNCallControl
e [PMediaDevice

e JPCallControl

The GWCall class reflects the call state to the other classes.

The GWCall class attributes are described in Table 10. Refer to the source code for method

information.

Table 10. GWCall Class Attributes

Access -

Name Privilege Type Description
m_plPMediaDevice public IPMediaDevice* The IPMedia device of the call
m_pPSTNCC public PSTNCallControl* PSTN call control object of the call,

handling the PSTN call control
m_plPCC public IPCallControl* IP call control object of the call,
handling the IP proprietary call control
m_pLog public Log* Log object of the call
m_currentState private E_StateMachine Current channel state
m_LastDigit private int Points to the last index reached in
m_DTMFBuffer
m_DTMFBuffer private char[MAX_DIGITS] Used to store DTMFs to send over the

IP. This DTMF “digit map” is used to
avoid sending the DTMFs received
from the PSTN one by one, which
leads to many unnecessary
messages sent over the IP. The
received DTMFs are stored according
to a digit map defined in the CFG file
and sent only when the expected digit
count is reached. The digit map only
defines how many digits should be
stored before being sent.

IP Media Gateway (IPML) Demo Guide — November 2003

33

Demo Details

Table 10. GWCall Class Attributes (Continued)

5.2.7

Table 11.

5.2.8

34

INlal.

Name

Access
Privilege

Type

Description

m_NumOfDigits

private

int

Number of digits expected from the
PSTN this loop

m_DigitMapNum

private

int

Current digit map to be matched to
the digits from the PSTN

m_ChangeCodecFlag

private

int

Binary flag. First bit is “1” if, and only
if, IPMEDIA_STOP arrived when
changing the codec while in a call.
The second bit is set to “1” when the
remote side sends
IPEV_CODEC_CHANGED.

m_DropFlag

private

int

Binary Flag. First bit is “1” if, and only
if, the gc_dropCall() function was
called to drop the PSTN call. The
second but is the same, but for the IP
side.

IPCaliControl Class

The IPCallControl class’ main role is to provide the IP proprietary protocol functionality interface.
It controls one IP call on a specific IPProtocol and reflects the call status to the other classes.

The IPCallControl class attributes are described in Table 11. Refer to the source code for method

information.

IPCallControl Class Attributes

Name PAr ?v(;resgse Type Description
m_Callld private long Call ID of this object
m_plpp private IPProtocol* IPProtocol object containing this
object
m_State private E_IPState The current state
m_pLog private Log* Log object for printing

IPMediaBoard Class

The IPMediaBoard class’ main role is to initiate the IP Media board. It manages the IP Media
device database and contains all the IP Media devices available in the system.

The IPMediaBoard class attributes are described in Table 12. Refer to the source code for method

information.

IP Media Gateway (IPML) Demo Guide — November 2003

5.2.9

Table 12. IPMediaBoard Class Attributes

Demo Details

(MAX_BOARD_DEVI

CES)

Access i
Name Privilege Type Description
m_ipMediaDevices public IPMediaDevice Array of the IPMedia devices found

on the IP board. Accessed while
looking for a free IPMedia device in
order to allocate it to a Channel.

IPMediaDevice Class

The IPMediaDevice class’ main role is to provide IPML functionality for IP Media device. It
represents the I[P Media devices and reflects the session state to the other classes.

The IPMediaDevice class attributes are described in Table 13. Refer to the source code for method

information.

Table 13. IPMediaDevice Class Attributes

Name

Access
Privilege

Type

Description

m_currentState

private

E_StateMachine

The current state of the channel

m_medialnfo

private

IPM_MEDIA_INFO
(see ipmlib.h)

Used in the startMedia() function
when calling the function
ipm_SetRemoteMedialnfo(). The
m_medialnfo contains:
¢ the local RTP and RTCP
information and the local coder
information
¢ the remote RTP and RTCP
information and the remote coder
information

m_QoSStatus

public

bool

True if, and only if, the QoS feature is
enabled. It is updated after reading
the “q” command line option and
never changed.

m_QoSAlarmFile

public

FILE*

Pointer to the QoS statistics file

m_WoSAlarmFileName

public

Char*

The QoS statistics file name - used
when opening the file

m_LocalVoiceMedialnfo

private

IPM_MEDIA_INFO

The local media information for voice
- updated after getting the local media
information (using the IPML API).

m_RemoteVoiceMedialn
fo

private

IPM_MEDIA_INFO

The voice media information of the
remote gateway - updated when
getting an offering or answering from
the remote gateway.

m_LocalFaxMedialnfo

private

IPM_MEDIA_INFO

The local media information for fax

m_RemoteFaxMedialnfo

private

IPM_MEDIA_INFO

The fax media information of the
remote gateway

IP Media Gateway (IPML) Demo Guide — November 2003

35

Demo Details

Table 13. IPMediaDevice Class Attributes (Continued)

5.2.10

INlal.

Access

Name Privilege Type Description

m_DTMEMode private E_DTMFMode The mode that should be used for
sending DTMFs - inband, out of band,
or RFC2833

m_FaxMode private E_FaxMode The fax codec: T38, G711, or no fax
(voice codec)

m_FaxTone private IPM_FAX_SIGNAL The detected fax event

m_isFree public bool Indicates if the IPMedia device is free.

IPMsg Class

The IPMsg class is part of the proprietary call control. It describes a message that can be sent over
the IP and provides an interface to prepare any message needed by the demo to be sent over IP.

The IPMsg class attributes are described in Table 14. Refer to the source code for method

information.

Table 14. IPMsg Class Attributes

5.2.11

36

Name PAr ?v(;?es:e Type Description

m_MsgType private E_IPMsg Type of message to be sent over the
IP

m_Callld private long CalllD this message is connected to

m_DigitInfo private IPM_DIGIT_INFO Digit information for sending DTMF
over IP

m_Medialnfo IPM_MEDIA_INFO RTP, RTCP, and codec information

m_MediaMode private E_MediaMode Voice or data

m_Codeclnfo private IPM_CODER_INFO Codec information

m_DropReason private E_DropReason Reason for dropping the call

IPProtocol Class

The IPProtocol class’ main role is to provide the IP proprietary protocol interface. It implements
the IP proprietary protocol unit and manages all calls related to this class.

The IPProtocol class attributes are described in Table 15. Refer to the source code for method

information.

IP Media Gateway (IPML) Demo Guide — November 2003

Table 15. IPProtocol Class Attributes

5.2.12

Demo Details

Access .
Name Privilege Type Description
m_Handle private unsigned int The Call ID of this object
m_IPCallControl private IPCallControlMap Map connecting IPCallControl to a
CalllD

m_State private static IPProtocolMgr* Manager object of all IPProtocol
objects

m_pLog private Log* A Log object for printing

IPProtocolMgr Class

The IPProtocolMgr class’ main role is to:

e initiate and manage the IPCallControl objects

e initialize the client and server to communicate between gateways

¢ generate the call ID

The IPProtocolMgr class contains all the IPProtocol instances and reflects the connection status to

the other classes.

The IPProtocolMgr class attributes are described in Table 16. Refer to the source code for method

information.

Table 16. IPProtocolMgr Class Attributes

5.2.13

Access -
Name Privilege Type Description
m_IPProtocols private IPProtocolQueue List of all IPProtocol objects in the
system
m_lppToCallld private IPProtocolMap Binds an IPProtocol object to a Callld
number
m_CallldPool private char Marks which Callld numbers are
[CALL_ID_POOL_SIZ | available
El
m_FirstCallld private long The lowest Callld number allowed
m_LastCallld private long The highest Callld number allowed
m_pLog private Log* A Log object for printing

PSTNCallControl Class

The PSTNCallControl class’ main role is to provide a Global Call functionality interface to

manage a call. It reflects the call status to the other classes.

IP Media Gateway (IPML) Demo Guide — November 2003

37

Demo Details i nt9| o

The PSTNCallControl class attributes are described in Table 17. Refer to the source code for
method information.

Table 17. PSTNCallControl Class Attributes

Access i
Name Privilege Type Description

m_isAllocated public int TRUE if the CC object is allocated to
a call

m_pLog public Log* The log object used to control the CC
object printouts

m_localPhoneNumber public char Local Phone number to use with
gc_MakecCall()

m_lineDevice public LINEDEV Line device of the PSTN device that
the PSTNCC belongs to

m_currentState private E_StateMachine Current state that the PSTN call
control object found in the state
machine

m_crn private CRN The call reference number of the
PSTN call control object

5.2.14 R4Device Class

The R4Device class’ main role is to provide all common functionality for all R4 devices. It is a
base class that contains all the common attributes for all R4 devices.

The R4Device class attributes are described in Table 18. Refer to the source code for method
information.

Table 18. R4Device Class Attributes

Access .
Name Privilege Type Description

m_name protected char The device name, e.g. ipmB1C1

m_txTimeSlot protected unsigned long The device time slot

m_handle protected unsigned int The device handle (valid after
opening)

m_channelld protected unsigned int The identifier of the channel that the
device belongs to

m_pLog protected Log* The device log instance

5.2.15 R4LogicalBoard Class

The R4LogicalBoard class’ main role is to provide all common functionality for all R4 logical
boards. It opens the boards and gets all the information about the devices. The
R4LogicalBoardClass is the base class for all R4 logical boards containing the common attributes.

38 IP Media Gateway (IPML) Demo Guide — November 2003

INtal.

Demo Details

The R4LogicalBoard class attributes are described in Table 19. Refer to the source code for method
information.

Table 19. R4LogicalBoard Class Attributes

Access i
Name Privilege Type Description

m_boardNumber protected int The board number - used in setting

the device names found on the board

m_numOfChannelsOnB | protected int Number of devices available on the
oard board

m_boardDevice protected LINEDEV Returned when opening the board by

gc_Open() and used to get the
devices found on it by calling the
function ATDV_SUBDEVS() and to
close the board.

m_boardHandleS protected int Returned when opening the board by

dx_Open() or dt_Open() and used
to get the devices found on it by
calling the function
ATDV_SUBDEVS(), and to close the
board.

m_boardName protected char The board name, e.g., ipmB1

5.2.16 ResourceManager Class

The ResourceManager class’ main role is to initiate R4 and IPM resources. It manages the system
resources and contains the following data:

all system channels

configuration object

maps R4 device handles to channels
maps IP protocol handles to channels

boards from all types

The ResourceManager class attributes are described in Table 20. Refer to the source code for
method information.

IP Media Gateway (IPML) Demo Guide — November 2003 39

Demo Details

40

Table 20. ResourceManager Class Attributes

Name

Access
Privilege

Type

Description

m_PSTNBoards

public

DigitalPSTNBoard

Array that includes the PSTN boards
available in the system, filled while
initializing the PSTN boards that had
been previously found. Not changed
until the demo termination. This array
is read whenever the system wants to
get a free PSTN device

m_IPBoards

public

IPMediaBoard*

Array that includes the IP boards
available in the system

m_plPProtocolMgr

public

static IPProtocolMgr*

Manages the IPProtocol instances. It
allocates them, creates call IDs for
them, initializes the transport module:
client and server for send and receive
messages over IP. This instance is
created at the demo initialization and
is accessed whenever the systems
needs to allocate a new IPProtocol or
call id object, or to map a call ID to an
IPProtocol. There is one instance of
this object in the system.

m_ptheConfiguration

public

static Configuration*®

An instance of the Configuration class
used to determine the configuration of
the system during initialization. This
object is constructed before the
initialization and is changed during
the initialization while getting data
from the configuration file and
command line options. There is one
instance of this object in the system
because there is only one
configuration file. This object is
accessed during the initialization only,
and after that all data related to the
different objects is passed to them
and the configuration object is
destructed.

m_maxChannelsToOpen

public

int

The maximum number of channels
that the demo will work with (this
number is the minimum of devices of
each type and the user requested

-n option). This integer is determined
after detecting the system devices
and getting the number of channels
that the user wants and is not
changed until the demo termination.

DeviceHandleToChannel

public

static unsigned int

Maps the devices to channels through
their handles (gotten after opening
each channel) to enable handling the
SRL events. The table is filled in when
opening each device.

IP Media Gateway (IPML) Demo Guide — November 2003

Table 20. ResourceManager Class Attributes (Continued)

Demo Details

Name

Access
Privilege

Type

Description

IPPHandleToChannel

public

static unsigned int

Maps IPProtocol handle (this handle
is actually the IP call ID) to channel.

m_systemChannels

public

static Channel*

Array that contains all the channels
used by the application. This array is
filled during the initialization, after the
minimum number of channels is
known. The array is accessed
whenever the application wants to
perform an action on a channel.

m_numOfPSTNBoards

public

int

The number of PSTN boards in the
system. This integer is updated after
detecting the PSTN boards and does
not change until demo termination.

m_numOflPBoards

public

int

The number of IP boards in the
system. This integer is updated after
detecting the IP boards and does not
change until demo termination.

m_pLog

public

static Log*

A log instance used during
initialization. All the printouts are sent
to the monitor, after which it is
destructed. This instance is
necessary because during the
initialization, there are no channel
instances and therefore no log
instances. In order to see logs during
initialization, the application creates a
global log instance for all the devices
during initialization and kills it after
creating the channel objects and
attributing the devices to channels.

IP Media Gateway (IPML) Demo Guide — November 2003

41

Demo Details i ntel o

5.3 Threads

The IP Media Gateway (IPML) demo operates with three threads, as shown in Figure 3.

Figure 3. IP Media Gateway (IPML) Demo Threads

Keyboard R4 IPML

' | !

Thread 1
Main Thread >

I
Generates

SRL

P

¢ sr_putevt

Thread 3 Thread 2
Server Thread SRL Thread

The threads are created as follows:

* The first (main) thread is created by the demo application to get the keyboard input.

* The second thread is an SRL thread, created as a result of the demo application calling
sr_enblhdlr() in Windows. In Linux, the thread must be explicitly created.

* The third thread is the server thread that waits for messages from the IP and puts events on the
SRL queue. This thread is created at the initialization of the IP Protocol Manager and closed at
its destruction.

5.4 Initialization

This section describes the demo initialization as shown in Figure 4.

42 IP Media Gateway (IPML) Demo Guide — November 2003

I n Demo Details

Figure 4. IP Media Gateway (IPML) System Initialization

IPMedia pjgitalPSTN

Resource IPMedia DigitalPSTN IPProtocol IPProtocol Channel Dovice jalbs

Application Manager Configuration Board Board Mgr

init()

readCommandLine().

readConfiguration()

getlPChannels()
1

open()

getPSTNChannels()
1

open()

findMinimum()

clearlppToCalllD()

initSystemChannels()
getFreelPDevice()
getFreePSTNDevice()
1

GetIPPAL()

initDevices(IPMedia?, pstn*, IpProtocol*)

open()

open()

The Resource Manager calls the init() function, which does the following:

1. Reads the command line options
2. Reads and parse the configuration file and prints the configuration
3. Gets the resources available in the system:
a. Gets the number of IP channels in the system
b. Gets the number of PSTN channels in the system
c. Finds the minimum between the system channels and the user request
4. Initializes the IP Protocol Manager
5. Looks for a free Ipmedia device and returns a pointer to it

6. Opens the Ipmedia device and if the open succeeds returns a pointer to it

IP Media Gateway (IPML) Demo Guide — November 2003 43

Demo Details

5.5

5.5.1

5.5.2

5.5.3

44

7. Looks for a free PSTN device and returns a pointer to it

8. Opens the PSTN device and if the open success returns a pointer to it

9. Looks for a free IP Protocol (IPP) device and returns a pointer to it
10. Opens the IPP device and if the open success returns a pointer to it

11. Initializes the devices on the channel

Event Handling

This section describes how the IP Media Gateway (IPML) demo handles events. It contains the
following topics:

¢ Event Mechanism

¢ Handling Keyboard Input Events
¢ Handling SRL Events

¢ Handling Application Exit Events

Event Mechanism

The IP Media Gateway (IPML) demo uses the SRL mechanism to retrieve events. When an event
occurs, SRL calls event handlers automatically. All events are received by the SRL and then passed
to the callback_hdlr() function for handling.

In the initialization phase of the demo the init() function sets up the call-back handler, by calling
PDLsr_enbhdlr().

Refer to Chapter 6, “Demo State Machines” for more detailed event handling information.

Handling Keyboard Input Events

There is an endless loop {while(1)} in the main() function in the Main.cpp file. In that loop, the
application waits forever for a keyboard event by calling the waitForKey() function. The event
must be handled immediately and event-specific information should be retrieved before the next
call to waitForKey().

When the next event occurs or when a time-out is reached, the waitForKey() returns and the call-
back handler function is called automatically.

Handling SRL Events

When the R4/Global Call event is received, the application performs the following:

1. Gets the event device handle, by calling PDLsr_getevtdev()
2. Gets the channel number related to the event, from the global array (HandleToChannel[])
3. Updates the METAEVENT structure by calling gc_GetMetaEvent()

IP Media Gateway (IPML) Demo Guide — November 2003

i ntGI o Demo Details

4. Gets the event type, by calling PDLsr_getevttype()

5.5.4 Handling Application Exit Events

Normal application exit events don’t enter the SRL. The main() function calls
PDLSetApplicationExitPath() before initialization. In Linux, this function sets the signals
(SIGINT, SIGTERM, SIGABRT) for making the appropriate exit from the application. In

Windows, this function enables the detection of CTRL_CLOSE_EVENT (closing the window).

IP Media Gateway (IPML) Demo Guide — November 2003

45

Demo Details

46

IP Media Gateway (IPML) Demo Guide — November 2003

intel.

Demo State Machines 6

6.1

6.1.1

This chapter discusses the IP Media Gateway (IPML) state machines. It contains the following
topics:

¢ GWCall State Machine - Inbound Call fromIP 47
¢ GW Call State Machine - Inbound Call from PSTN........................... 50
e GWoCall State Machine - Switching Between Voice/Fax 55
¢ [PMediaDevice State Machine 57
¢ PSTNCallControl State Machine. 59

GWCall State Machine - Inbound Call from IP

This section describes the state machine for an inbound call from the IP. It contains the following
topics:

e GWCall State Machine Description - Inbound from IP
¢ GWCall::gateNull State

¢ GWCall::gateOfferingFromIP State

e GWCall::gate[PWaitMedialnfo State

¢ GWCall::gateWaitPSTNConnect State

¢ GWoCall::gateSignalingConnected State

e GWoCall::gateConnected State

GWCall State Machine Description - Inbound from IP

All channels are initialized to the NULL state upon application start.

As soon as an event is received, the event type, the channel number, and the reason for the event (if
there is one), are analyzed and the appropriate state machine function is called.

After all the operations are performed within the channel's event state, the state machine function is
updated.

The following state diagram describes the call states for the GWCall class for an inbound call from
the IP.

IP Media Gateway (IPML) Demo Guide — November 2003 47

Demo State Machines I n

Figure 5. GWCall State Machine - Inbound Call from IP

6.1.2

48

IPEV_DROPPED

NULL

GCEV_RELEASECALL

IPEV_OFFERED m_pPSTNCC->processEvent()

m_pPSTNCC->processEvent(CCEV_OFFERED)
m_plPMediaDevice->getLocalMedialnfo()

RELEASING
[OFFERING_FROM_IP]

GVEV_CONNECTED
m_pPSTNCC->processEvent()

IPMEV_GET_LOCAL_MEDIA_INFO
m_plPCC->sendAnswerCall()
m_pChannel->route the call

IPMEV_STOPPED and
GCEV_DROPCALL
m_plPMediaDevice->processEvent(
IPMEV_STOPPED)
m_pPSTNCC->processEvent(
GCEV_DROPCALL)

WAIT_PSTN_

IP_WAIT_MEDIA_
INFO

CONNECT
DROPPING
A
GCEV_CONNECTED IPMEV_GET_LOCAL_MEDIA_INFO
m_pPSTNCC->processEvent() m_plPCC->sendAnswerCall()
m_plPMediaDevice->processEvent(m_pChannel->gateRoute()
IPMEDIAEV_OFFERED) m_plPMediaDevice->processEvent(

IPMEDIAEV_OFFERED)

IPEV_DROPPED

m_plPMediaDevice->processEvent(
IPMEDIAEV_DROPCALL)

m_pPSTNCC->processEvent(CCEV_DROPCALL)

GCEV_DISCONNECTED
sendDropCall()
m_plPMediaDevice->processEvent(
IPMEDIAEV_DROPCALL)
m_pPSTNCC->processEvent()

SIGNALING_CONNECTED

IPMEV_SET_REMOTE_MEDIA_INFO
m_plPMediaDevice->processEvent()

CONNECTED

GWCall::gateNull State

The application waits in the gateNull state for an IPEV_OFFERED event (from IPCallControl).
Upon receipt of the event, the application calls processEvent(CCEV_OFFERED) from the
PSTNCallControl module. See Section 6.5, “PSTNCallControl State Machine”, on page 59 for a
description of the PSTNCallControl state machine. The application then calls the function

IP Media Gateway (IPML) Demo Guide — November 2003

6.1.3

6.1.4

6.1.5

Demo State Machines

getLocalMedialnfo() from the IPMediaDevice module. See Section 6.4, “IPMediaDevice State
Machine”, on page 57 for a description of the IPMediaDevice state machine.

The state transitions to gateOfferingFromIP.

The application may also receive a GCEV_DETECTED or GCEV_OFFERED event. See
Section 6.2, “GW Call State Machine - Inbound Call from PSTN”, on page 50 for a description of
how the application deals with these events.

If either the PSTNCallControl module or the IPMediaDevice module return NULL, the application
calls the function sendDropCall(BUSY), which sends a drop call message to the remote side
through the IP call control stack.

GWCall::gateOfferingFromIP State

The application waits for either a GCEV_CONNECTED or an
IPMEV_GET_LOCAL_MEDIA_INFO event.

If it receives a GCEV_CONNECTED event, the application calls
processEvent(GCEV_CONNECTED) from the PSTNCallControl module. The call state
transitions to gate[PWaitMedialnfo and the application routes the call.

If the application receives an IPMEV_SET_LOCAL_MEDIA_INFO event, it calls
sendAnswerCall() from the IPCallControl module. The call state transitions to
gateWaitPSTNConnect and the application routes the call.

If the application receives an IPEV_DROPPED or a GC_TASKFAIL event, it calls
processEvent(CCEV_DROPCALL) from the PSTNCallControl module, and the state transitions
to gateDropping.

GWCall::gatelPWaitMedialnfo State

The application waits for an IPMEV_GET_LOCAL_MEDIA_INFO event. Upon receipt of the
event, it gets the local media information and calls sendAnswerCall() from the IPCallControl
module. The application then calls gateRoute() from the Channel module and calls
processEvent(IPMEDIAEV_OFFERED) from the IPMediaDevice module. The state transitions
to gateSignalingConnected.

If the application receives an IPEV_DROPPED event, it calls
processEvent(IPMEDIAEV_DROPCALL) from the IPMediaDevice module and calls
processEvent(CCEV_DROPCALL) from the PSTNCallControl module. The call state
transitions to gateDropping.

GWCall::gateWaitPSTNConnect State

The application waits for a GCEV_CONNECTED event. Upon receipt of the event, it calls
processEvent(GCEV_CONNECTED) from the PSTNCallControl module to and calls

IP Media Gateway (IPML) Demo Guide — November 2003 49

[]
Demo State Machines I nt9I ®

6.1.6

6.1.7

6.2

50

processEvent(IPMEDIAEV_OFFERED) from the [IPMediaDevice module. The call state
transitions to gateSignalingConnected.

If the application receives an IPEV_DROPPED event, it calls
processEventIPMEDIAEV_DROPCALL) from the IPMediaDevice module and calls
processEvent(CCEV_DROPCALL) from the PSTNCallControl module. The call state
transitions to gateDropping.

GWCall::gateSignalingConnected State

The application waits for an IPMEV_START_MEDIA event. Upon receipt of the event, it calls
processEvent(IPMEV_START_MEDIA) from the IPMediaDevice and the call state transitions
to gateConnected.

If the application receives an IPMEV_ERROR or a GCEV_DISCONNECTED event, it calls the
function sendDropCall(PSTN_DISCONNECT), calls processEvent(CCEV_DROPCALL)
from the PSTNCallControl module, and calls processEventIPMEDIAEV_DROPCALL) from
the [IPMediaDevice module. The call state transitions to gateDropping.

If the application receives an IPEV_DROPPED event, it calls
processEvent(IPMEDIAEV_DROPCALL) from the IPMediaDevice module and calls
processEvent(CCEV_DROPCALL) from the PSTNCallControl module. The call state
transitions to gateDropping.

GWCall::gateConnected State

The application waits for a IPEV_DROPPED or a GCEV_DISCONNECTED event. In the case of
IPEV_DROPPED, the application calls processEvent(IPMEDIAEV_DROPCALL) from the
IPMediaDevice module, and calls processEvent(CCEV_DROPCALL) from the
PSTNCallControl module. The call state transitions to gateDropping.

In the case of GCEV_DISCONNECTED, the application calls
processEventIPMEDIAEV_DROPCALL) from the IPMediaDevice module and calls
processEvent(GCEV_DISCONNECTED) from the PSTNCallControl. The call state transitions
to gateDropping.

The application may also receive an event requesting that it switch from voice to fax. Refer to
Section 6.3, “GWCall State Machine - Switching Between Voice/Fax”, on page 55 for more
detailed information.

GW Call State Machine - Inbound Call from PSTN

This section describes the state machine for an inbound call from the PSTN. It contains the
following topics:

¢ GWHCall State Machine Description - Inbound from PSTN
e GWCall::gateNull State

IP Media Gateway (IPML) Demo Guide — November 2003

e GWCall:
e GWCall:
e GWCall:
e GWCall:
e GWCall:
e GWCall:
e GWCall:

Demo State Machines

:gateDetectedFromPSTN State
:gateOfferingFromPSTN State
:gatePSTNWaitMedialnfo State
:gateWaitPSTNAnswer State
:gatePSTNConnected State
:gateSignalingConnected State
:gateConnected State

6.2.1 GWCall State Machine Description - Inbound from PSTN

All channels are initialized to the NULL state upon application start.

As soon as an event is received, the event type, the channel number, and the reason for the event (if
there is one), are analyzed and the appropriate state machine function is called.

After all the operations are performed within the channel's event state, the state machine function is

updated.

The following state diagram describes the call states for the GWCall class for an inbound call from

the PSTN.

IP Media Gateway (IPML) Demo Guide — November 2003 51

Demo State Machines I n

Figure 6. GWCall State Machine - Inbound Call from PSTN

/(NULL

GCEV_RELEASECALL
m_pPSTNCC->processEvent()

GCEV_DETECTED
m_pPSTNCC->processEvent()

RELEASING
GCEV_OFFERED

m-PPSTNCC->processEvent()
m_plPMediaDevice->getLocalMedialnfo()
DETECTED_FROM_PSTN

GCEV_OFFERED
m_pPSTNCC->processEvent()
IPMEV_STOPPED and m_plPMediaDevice->getlocalMedialnfo()

GCEV_DROPCALL
m_plPMediaDevice->processEvent(

IPMEV_STOPPED) >
m_pPSTNCC->processEvent(
GCEV_DROPCALL) [OFFERING_FROM_PSTN]

() IPMEV_GET_LOCAL_MEDIA_INFO
DROPPING m_plPMediaDevice->setlLocalMedialnfo() gcfggﬁgggsgggessEvent()
route the call / - X
[WAIT_PSTN_ANSWER] G’STN_WAIT_MEDIA_INF@
I

IPMEV_GET_LOCAL_MEDIA_INFO
m_plPMediaDevice->setLocalMedialnfo()
route the call

IPEV_DROPPED

m_plPMediaDevice->processEvent(
IPMEDIAEV_DROPCALL)

m_pPSTNCC->processEvent(CCEV_DROPCALL)

GCEV_ANSWERED
GCEV_DISCONNECTED m_pPSTNCC->processEvent()
sendDropCall() m_plPCC->sendMakeCall()
m_plPMediaDevice->processEvent(
IPMEDIAEV_DROPCALL)

m_pPSTNCC->processEvent() PSTN CONNECTED

CONNECTED \
IPEV_CONNECTED

m_plPMediaDevice->processEvent(IPMEDIAEV_OFFERED)

IPMEV_SET_REMOTE_MEDIA_INFO
m_plPMediaDevice->processEvent()

SIGNALING_CONNECTED

6.2.2 GWCall::gateNull State

The application waits for a GCEV_OFFERED or GCEV_DETECTED event. In the case of
GCEV_DETECTED, the application calls processEvent(GCEV_DETECTED) from the

52 IP Media Gateway (IPML) Demo Guide — November 2003

6.2.3

6.2.4

6.2.5

Demo State Machines

PSTNCallControl module and the call state transitions to gateDetectedFromPSTN. See
Section 6.5, “PSTNCallControl State Machine”, on page 59 for a description of the
PSTNCallControl state machine.

In the case of GCEV_OFFERED, the application calls processEvent(GCEV_OFFERED) from
the PSTNCallControl module and calls getLocalMedialnfo() from the IPMediaDevice to get the
local media information. The call state transitions to gateOfferingFromPSTN.

The application may also receive an IPEV_OFFERED event. See Section 6.1, “GWCall State
Machine - Inbound Call from IP”, on page 47 for a description of how the application deals with
these events.

If either the PSTNCallControl module or the IPMediaDevice module return NULL, the application
calls the function sendDropCall(BUSY), which sends a dropCall message to the remote side
through the IP call control stack.

GWCall::gateDetectedFromPSTN State

The application waits for a GCEV_OFFERED event. It calls processEvent(GCEV_OFFERED)
from the PSTNCallControl module and calls getL.ocalMedialnfo() from the IPMediaDevice
module. The call state transitions to gateOfferingFromPSTN.

GWCall::gateOfferingFromPSTN State

The application waits for either a GCEV_ANSWERED or IPMEV_GET_LOCAL_MEDIA_INFO
event. In the case it receives a GCEV_ANSWERED event, the application calls
processEvent(GCEV_ANSWERED) from the PSTNCallControl module. The call state
transitions to gatePSTNWaitMedialnfo.

In the case it receives IPMEV_GET_LOCAL_MEDIA_INFO, the application tells the
IPMediaDevice module to get the local media information and update the media device, by calling
setLocalMedialnfo(). The call state transitions to gateWaitPSTNAnswer, and the call is routed.

If the application receives either GCEV_DISCONNECTED or GCEV_TASKFAIL, it calls
processEvent(CCEV_DROPCALL) from the PSTNCallControl module and the call state
transitions to gateDropping.

GWCall::gatePSTNWaitMedialnfo State

The application waits for an IPMEV_GET_LOCAL_MEDIA_INFO event. Upon receipt of the
event, the application calls setLocalMediaInfo() from the IPMediaDevice module and then calls
sendMakeCall() from the IPCallControl module. The call state transitions to
gatePSTNConnected, and the call is routed.

If the application receives either GCEV_DISCONNECTED or IPMEV_ERROR, it calls
processEvent(GCEV_DISCONNECTED) from the PSTNCallControl module and the call state
transitions to gateDropping.

IP Media Gateway (IPML) Demo Guide — November 2003 53

[]
Demo State Machines I nt9I ®

6.2.6

6.2.7

6.2.8

6.2.9

54

If the application receives an IPEV_DROPPED event, it calls
processEvent(CCEV_DROPCALL) from the PSTNCallControl module and the call state
transitions to gateDropping.

GWCall::gateWaitPSTNAnswer State

The application waits for a GCEV_ANSWERED event. Upon receipt of the event, the application
calls processEvent(GCEV_ANSWERED) from the PSTNCallControl module. The application
sets the information needed for the makeCall message and calls sendMakeCall() from the
[PCallControl module. The call state transitions to gatePSTNConnected.

GWCall::gatePSTNConnected State

The application waits for an IPEV_CONNECTED event. Upon receipt of the event, the application
calls processEvent(IPMEDIAEV_OFFERED) from the [IPMediaDevice module. The call state
transitions to gateSignalingConnected.

If the application receives GCEV_DISCONNECTED, it calls
processEvent(GCEV_DISCONNECTED) from the PSTNCallControl module and the call state
transitions to gateDropping.

If the application receives an IPEV_DROPPED event, it calls
processEvent(CCEV_DROPCALL) from the PSTNCallControl module and the call state
transitions to gateDropping.

GWCall::gateSignalingConnected State

The application waits for an IPMEV_START_MEDIA event. Upon receipt of the event, it calls
processEvent(IPMEV_START_MEDIA) from the IPMediaDevice and the call state transitions
to gateConnected.

If the application receives an IPMEV_ERROR or a GCEV_DISCONNECTED event, it calls the
function sendDropCall(PSTN_DISCONNECT), calls processEvent(CCEV_DROPCALL)
from the PSTNCallControl module, and calls processEventIPMEDIAEV_DROPCALL) from
the [IPMediaDevice module. The call state transitions to gateDropping.

If the application receives an IPEV_DROPPED event, it calls
processEvent(IPMEDIAEV_DROPCALL) from the IPMediaDevice module and
processEvent(CCEV_DROPCALL) from the PSTNCallControl module. The call state
transitions to gateDropping.

GWCall::gateConnected State

The application waits for a IPEV_DROPPED or a GCEV_DISCONNECTED event. In the case of
IPEV_DROPPED, the application calls processEvent(IPMEDIAEV_DROPCALL) from the
IPMediaDevice module, and calls processEvent(CCEV_DROPCALL) from the
PSTNCallControl module. The call state transitions to gateDropping.

IP Media Gateway (IPML) Demo Guide — November 2003

u
I ntGI ® Demo State Machines

In the case of GCEV_DISCONNECTED, the application calls
processEvent(IPMEDIAEV_DROPCALL) from the IPMediaDevice module and
processEvent(GCEV_DISCONNECTED) from the PSTNCallControl. The call state transitions
to gateDropping.

The application may also receive an event requesting that it switch from voice to fax. Refer to
Section 6.3, “GWCall State Machine - Switching Between Voice/Fax”, on page 55 for more
detailed information.

6.3 GWCall State Machine - Switching Between
Voice/Fax

This section describes the state machine for switching between voice and fax during a call. It
contains the following topics:

e GWHCall State Machine Description - Voice/Fax
GWCall::gateConnected State
GWCall::gateCallPause State
GWCall::gateWaitForMedialnfo State
GWCall::gateResume State

6.3.1 GWCall State Machine Description - Voice/Fax

The following state diagram describes the call states for the GWCall class for switching between
voice and fax.

IP Media Gateway (IPML) Demo Guide — November 2003 55

[]
Demo State Machines
I ntel o

Figure 7. GWCall State Machine - Switching Between Voice/Fax

6.3.2

56

CONNECTED j\

IPMEV_SET_REMOTE_MEDIA_INFO
IPMEV_FAXTONE m_plPMediaDevice->processEvent()
or
T38CALLSTATE_SWITCH_TO_VOICE
stop media
set message to send
set fax mode

SIGNALING CONNECTE[D
IPEV_CHANGE_CODEC -

stop media

set local codec

set message to send IPEV_CODEC_CHANGED
set fax mode change codec

m_plPMediaDevice->processEvent(
IPMEDIAEV_OFFERED)

[CALL_PAUSE]
/ [CALL_RESUME]
IPMEV_STOPPED

m_plPMediaDevice->processEvent(T
”:l’l';"'\';\’fsgo'f’PED) LocalModialn. IPMEV_GET_LOCAL_MEDIA_INFO
m_plPMediaDevice->getlocalMedialnfo() m_plPMediaDevice->setLocalMedialnfo(&l_Medialnfo)

send message IPP_CHANGE_CODEC
m_plPCC->sendChangeCodec()
route the call

IPMEV_GET_LOCAL_MEDIA_INFO

send message IPP_CODEC_CHANGED

m_plPMediaDevice->processEvent(
IPMEDIAEV_OFFERED)

WAIT_FOR_MEDIA_INFO m_pChannel->gateRoute()

GWCall::gateConnected State

The application waits for a fax event or a change codec event. If it receives IPMEV_FAXTONE (in
voice mode) or T38CALLSTATE_SWITCH_TO_VOICE (in fax mode), it stops the media, sets
the message to send to the remote gateway via the IPProtocol, and sets the media mode. If it
receives IPEV_CHANGE_CODEQ, it stops the media, sets the local codec, sets the message to
send to the remote gateway via the [PProtocol, and sets the media mode.

In the case of IPMEV_FAXTONE, the application calls
processEventIPMEDIAEV_DROPCALL) from the IPMediaDevice to stop the media, and then
calls getDefaultFaxCodec() to get the fax codec as defined in the ipmedia_r4.cfg file. It calls
setFaxCodec(true) to pass the CED tone to the remote gateway. The application sends an
IPP_CHANGE_CODEC message to the remote gateway. The call state transitions to
gateCallPause.

In the case of IPMEV_T38CALLSTATE_SWITCH_TO_VOICE, the application calls

processEventIPMEDIAEV_DROPCALL) from the IPMediaDevice to stop the media, and then
to calls setFaxMode(FAX_NONE), getDefaultVoiceCodec() to get the voice codec as defined in

IP Media Gateway (IPML) Demo Guide — November 2003

u
I ntGI ® Demo State Machines

the ipmedia_r4.cfg file, and setVoiceCodec(). The application sends an IPP_CHANGE_CODEC
message to the remote gateway. The call state transitions to gateCallPause.

In the case of IPEV_CHANGE_CODEC, the application calls
processEvent(IPMEDIAEV_DROPCALL) from the IPMediaDevice to stop the media, and then
retrieves the codec and remote media information from the message. If the media mode is fax, the
application gets the fax mode (G.711 over UDP or T.38 over RTP). If the fax mode is T.38, the
application calls setRemoteFaxMedialnfo() from the IPMediaDevice. If the fax mode is G.711,
the application calls setRemoteVoiceMedialnfo() from the [IPMediaDevice. If the media mode is
voice, the application calls setFaxMode(FAX_NONE), setVoiceCodec(), and
setRemoteVoiceMediaInfo(). The application sends an IPP_CODEC_CHANGED message to
the remote gateway. The call state transitions to gateCallPause.

6.3.3 GWCall::gateCallPause State

The application waits for an IPMEV_STOPPED event. Upon receipt of the event, the application
calls processEvent(IPMEV_STOPPED) from the [IPMediaDevice and then calls
getLocalMedialnfo(). The call state transitions to gateWaitForMedialnfo.

6.3.4 GWCall::gateWaitForMedialnfo State

The application waits for an IPMEV_GET_LOCAL_MEDIA_INFO event. Upon receipt of the
event, the application calls setLocalMedialnfo() from the IPMediaDevice.

6.3.5 GWCall::gateResume State

The application waits for an IPEV_CODEC_CHANGED event. Upon receipt of the event, the
application updates the remote codec according to the media mode (fax or voice). If the media
mode is fax, the application calls setRemoteFaxMedialnfo() from the IPMediaDevice. If the
media mode is voice, the application calls setRemoteVoiceMedialnfo() from the IPMediaDevice.
It then calls processEvent(IPMEDIAEV_OFFERED) from the IPMediaDevice and the call state
transitions to gateSignalingConnected.

6.4 IPMediaDevice State Machine

This section describes the IPMediaDevice state machine. It contains the following topics:
e [PMediaDevice State Machine Description
e [PMediaDevice::mediaNull State
e [PMediaDevice::mediaOffered State
¢ [PMediaDevice::mediaStarted State
¢ [PMediaDevice::mediaStopped State

IP Media Gateway (IPML) Demo Guide — November 2003 57

[]
Demo State Machines I nt9I ®

6.4.1 IPMediaDevice State Machine Description

All channels are initialized to the NULL state upon application start.

As soon as an event is received, the event type, the channel number, and the reason for the event (if
there is one), are analyzed and the appropriate state machine function is called.

After all the operations are performed within the channel's event state, the state machine function is
updated.

The following state diagram describes the call states for the IPMediaDevice class.

Figure 8. IPMediaDevice State Machine

MEDIA_NULL

IPMEDIAEV_OFFERED

startMedia() IPMEV_STOPPED

IPMEDIAEV_DROPCALL
stopMedia()

IPMEV_QOS_ALARM
getQoSAlarmStatus()

MEDIA_OFFERED MEDIA_STOPPED

IPMEV_START_MEDIA IPMEDIAEV_DROPCALL
stopMedia()

MEDIA_STARTED

IPMEV_QOS_ALARM
getQoSAlarmStatus()

6.4.2 IPMediaDevice::mediaNull State

The application waits for an IPMEDIAV_OFFERED event. Upon receipt of the event, it calls
startMedia(), which gets the media information from the local and remote media structures and
calls ipm_StartMedia() using the information from these structures. The state transitions to
mediaOffered.

58 IP Media Gateway (IPML) Demo Guide — November 2003

INtal.

6.4.3

6.4.4

6.4.5

6.5

6.5.1

Demo State Machines

IPMediaDevice::mediaOffered State

The application waits for an IPMEV_START_MEDIA event. Upon receipt of the event, the call
state transitions to mediaStarted.

If the application should receive an IPMEDIAEV_DROPCALL event, it calls stopMedia(), which
unroutes the call and calls ipm_Stop(). The state transitions to mediaStopped.

IPMediaDevice::mediaStarted State

The application waits for an IPMEDIAEV_DROPCALL event. Upon receipt of the event, if
Quality of Service was enabled the application calls getSessionInfo() to gather the Quality of
Service statistics. The application calls stopMedia() and the state transitions to mediaStopped.

The application can also receive an IPMEV_QOS_ALARM event. It calls getQoSAlarmStatus()
to get the alarm type. The state remains unchanged.

IPMediaDevice::mediaStopped State

The application waits for an IPMEV_STOPPED event. Upon receipt of the event, the state
transitions to mediaNull. If the application receives an IPMEDIAEV_DROPCALL event, it does
nothing and continues to wait in the current state.

The application can also receive an IPMEV_QOS_ALARM event. It calls getQoSAlarmStatus()
to get the alarm type. The state remains unchanged.

PSTNCallControl State Machine

This section describes the PSTNCallControl state machine. It contains the following topics:
e PSTNCallControl State Machine Description
e PSTNCallControl::CCNull State
e PSTNCallControl::CCDetected State
e PSTNCallControl::CCAnsweringCall State
¢ PSTNCallControl::CCMakingCall State
¢ PSTNCallControl::CCConnected State
e PSTNCallControl::CCDropping State
¢ PSTNCallControl::CCReleasing State

PSTNCallControl State Machine Description

All channels are initialized to the NULL state upon application start.

IP Media Gateway (IPML) Demo Guide — November 2003 59

[]
Demo State Machines
I ntel o

As soon as an event is received, the event type, the channel number, and the reason for the event (if
there is one), are analyzed and the appropriate state machine function is called.

After all the operations are performed within the channel's event state, the state machine function is
updated.

The following state diagram describes the call states for the PSTNCallControl class.

Figure 9. PSTNCallControl State Machine

6.5.2

60

CC_NULL

GCEV_DETECTED

CCEV_OFFERED GCEV_OFFERED

makeCall() GCEV_RELEASECALL answerCall()
CC_DETECTED
CC_RELEASING

GCEV_OFFERED
answerCall()

CCEV_DROPCALL

dropCall()

GCEV_DROPCALL

releaseCall()

CC MAKING_ CALL CC ANSWERING CALL

CCEV_DROPCALL CC_DROPPING
dropCall() GCEV_DISCONNECTED
dropCall()

GCEV_CONNECTED GCEV_DISCONNECTED
or GCEV_ANSWERED

CCEV_DROPCALL
dropCall()

CC_CONNECTED

PSTNCallControl::CCNull State

The application waits for an offered event. If it receives GCEV_OFFERED, the application calls
answerCall() and the call state transitions to CCAnsweringCall. If it receives CCEV_OFFERED,
the application calls makeCall() and the call state transitions to CCMakingCall.

IP Media Gateway (IPML) Demo Guide — November 2003

u
I ntGI ® Demo State Machines

The application can also receive a GCEV_DETECTED event. In this case, the call state transitions
to CCDetected.

If the application receives a CCEV_DROPCALL, it calls dropCall() and the call state transitions
to CCDropping.

6.5.3 PSTNCallControl::CCDetected State

The application waits for a GCEV_OFFERED event. Upon receipt of the event, the application
calls answerCall() and the call state transitions to CCAnsweringCall.

6.5.4 PSTNCallControl::CCAnsweringCall State

The application waits for a GCEV_ANSWERED event. Upon receipt of the event, the call state
transitions to CCConnected.

If the application receives a GCEV_DISCONNECTED event, it calls dropCall() and the call state
transitions to CCDropping.

6.5.5 PSTNCallControl::CCMakingCall State

The application waits for a GCEV_CONNECTED event. Upon receipt of the event, the call state
transitions to CCConnected.

If the application receives a CCEV_DROPCALL event, it calls dropCall() and the call state
transitions to CCDropping.

6.5.6 PSTNCallControl::CCConnected State

The application waits for either a GCEV_CONNECTED or a CCEV_DROPCALL event. Upon
receipt of one of these events, it calls dropCall() and the call state transitions to CCDropping.

6.5.7 PSTNCallControl::CCDropping State

The application waits for a GCEV_DROPCALL event. Upon receipt of the event, it calls
releaseCall() and the call state transitions to CCReleasing.

6.5.8 PSTNCallControl::CCReleasing State

The application waits for a GCEV_RELEASECALL event. Upon receipt of the event, the channel
is deallocated and the call state transitions to CCNull.

IP Media Gateway (IPML) Demo Guide — November 2003 61

Demo State Machines

62

IP Media Gateway (IPML) Demo Guide — November 2003

intel.

Glossary

Codec: see COder/DECoder

COder/DECoder: A circuit used on Dialogic boards to convert analog voice data to digital and digital voice data
to analog audio.

Computer Telephony (CT): Adding computer intelligence to the making, receiving, and managing of
telephone calls.

DTMF: See Dual-Tone Multi-Frequency

Dual-Tone Multi-Frequency: A way of signaling consisting of a push-button or touch-tone dial that sends out a
sound consisting of two discrete tones that are picked up and interpreted by telephone switches (either PBXs or
central offices).

Emitting Gateway: called by a G3FE. It initiates IFT service for the calling G3FE and connects to a Receiving
Gateway.

E1: The 2.048 Mbps digital carrier system common in Europe.

FCD file: An ASCII file that lists any non-default parameter settings that are necessary to configure a DM3
hardware/firmware product for a particular feature set. The downloader utility reads this file, and for each
parameter listed generates and sends the DM3 message necessary to set that parameter value.

Frame: A set of SCbus/CT bus timeslots which are grouped together for synchronization purposes. The period of
a frame is fixed (at 125 psec) so that the number of time slots per frame depends on the SCbus/CT bus data rate. In
the context of DSP programming (e.g. DM3 component development), the period defined by the sample rate of the
signal data.

G3FE: Group 3 Fax Equipment. A traditional fax machine with analog PSTN interface.
Gatekeeper: An H.323 entity on the Internet that provides address translation and control access to the network
for H.323 Terminals and Gateways. The Gatekeeper may also provide other services to the H.323 terminals and

Gateways, such as bandwidth management and locating Gateways.

Gateway: A device that converts data into the IP protocol. It often refers to a voice-to-IP device that converts an
analog voice stream, or a digitized version of the voice, into IP packets.

H.323: A set of International Telecommunication Union (ITU) standards that define a framework for the
transmission of real-time voice communications through Internet protocol (IP)-based packet-switched networks.
The H.323 standards define a gateway and a gatekeeper for customers who need their existing IP networks to
support voice communications.

IAF: Internet Aware Fax. The combination of a G3FE and a T.38 gateway.

IFP: Internet Facsimile Protocol

IP Media Gateway (IPML) Demo Guide — November 2003 63

intel.

International Telecommunications Union (ITU): An organization established by the United Nations to set
telecommunications standards, allocate frequencies to various uses, and hold trade shows every four years.

IFT: Internet Facsimile Transfer

Internet: An inter-network of networks interconnected by bridges or routers. LANs described in H.323 may be
considered part of such inter-networks.

Internet Protocol (IP): The network layer protocol of the transmission control protocol/Internet protocol
(TCP/IP) suite. Defined in STD 5, Request for Comments (RFC) 791. It is a connectionless, best-effort packet
switching protocol.

Internet Service Provider (ISP): A vendor who provides direct access to the Internet.

Internet Telephony: The transmission of voice over an Internet Protocol (IP) network. Also called Voice over
IP (VoIP), IP telephony enables users to make telephone calls over the Internet, intranets, or private Local Area
Networks (LANs) and Wide Area Networks (WANSs) that use the Transmission Control Protocol/Internet Protocol
(TCP/TP).

ITU: See International Telecommunications Union.

Jitter: The deviation of a transmission signal in time or phase. It can introduce errors and loss of synchronization
in high-speed synchronous communications.

NIC (Network Interface Card): Adapter card inserted into computer that contains necessary software and
electronics to enable a station to communicate over network.

PCD file: An ASCII text file that contains product or platform configuration description information that is used
by the DM3 downloader utility program. Each of these files identifies the hardware configuration and firmware
modules that make up a specific hardware/firmware product. Each type of DM3-based product used in a system
requires a product-specific PCD file.

PSTN: see Public Switched Telephone Network

Public Switched Telephone Network: The telecommunications network commonly accessed by standard
telephones, key systems, Private Branch Exchange (PBX) trunks and data equipment.

Reliable Channel: A transport connection used for reliable transmission of an information stream from its
source to one or more destinations.

Reliable Transmission: Transmission of messages from a sender to a receiver using connection-mode data
transmission. The transmission service guarantees sequenced, error-free, flow-controlled transmission of messages
to the receiver for the duration of the transport connection.

RTCP: Real Time Control Protocol

RTP: Real Time Protocol

SCbus: The standard bus for communication within a SCSA node. The architecture of the SCbus includes a 16-
wire TDM data bus that operates at 2, 4 or 8 Mbps and a serial message bus for control and signaling. DM3

64 IP Media Gateway (IPML) Demo Guide — November 2003

intel.

platforms provide an SCbus interface for interconnection of multiple DM3 platforms, or connection to other SCSA-
compatible hardware. The DM3 platform supports timeslot bundling for high bandwidth, and can access up to 256
of the 2048 SCbus timeslots via two SC4000 ASICs.

SIP: Session Initiation Protocol: an Internet standard specified by the Internet Engineering Task Force (IETF) in
RFC 2543. SIP is used to initiate, manage, and terminate interactive sessions between one or more users on the
Internet.

T1: A digital transmission link with a capacity of 1.544 Mbps used in North America. Typically channeled into 24
digital subscriber level zeros (DSO0s), each capable of carrying a single voice conversation or data stream. T1 uses
two pairs of twisted pair wires.

TCP: see Transmission Control Protocol

Terminal: An H.323 Terminal is an endpoint on the local area network which provides for real-time, two-way
communications with another H.323 terminal, Gateway, or Multipoint Control Unit. This communication consists
of control, indications, audio, moving color video pictures, and/or data between the two terminals. A terminal may
provide speech only, speech and data, speech and video, or speech, data, and video.

Transmission Control Protocol: The TCP/IP standard transport level protocol that provides the reliable, full
duplex, stream service on which many application protocols depend. TCP allows a process on one machine to send
a stream of data to a process on another. It is connection-oriented in the sense that before transmitting data,
participants must establish a connection.

UDP: see User Datagram Protocol

UDPTL: Facsimile UDP Transport Layer protocol

User Datagram Protocol: The TCP/IP standard protocol that allows an application program on one machine to
send a datagram to an application program on another machine. Conceptually, the important difference between
UDP datagrams and IP datagrams is that UDP includes a protocol port number, allowing the sender to distinguish

among multiple destinations on the remote machine.

VAD: Voice Activity Detection

IP Media Gateway (IPML) Demo Guide — November 2003 65

66

IP Media Gateway (IPML) Demo Guide — November 2003

intel.

Index

Symbols G

{while(1)} 44 gateRoute() 49
gc_dropCall() 34
A gc_GetMetaEvent() 44

gc_MakeCall() 38

gc_Open() 39
getDefaultFaxCodec() 56
getDefaultVoiceCodec() 56
getLocalMedialnfo() 49, 53, 57

answerCall() 60, 61
ATDV_SUBDEVS() 39
ATDV_SUBDEVS() 39

C getQoSAlarmStatus() 59

callback_hdlr() 44 getSessionInfo() 59

Channel Class 29 GW Call State Machine - Inbound Call from PSTN 50
GWCall

Class Diagram 28

C ili d Linking 20
OMPpriNg and Lining gateCallPause State 57

Configuration Class 30 gateConnected State 50, 54, 56
Connecting to External Equipment 17 gateDetectedFromPSTN State 53
gate]PWaitMedialnfo State 49
D gateNull State 48, 52
gateOfferingFromIP State 49
Demo Description 13 gateOfferingFromPSTN State 53
Demo Details 25 gatePSTNConnected State 54

gatePSTNWaitMedialnfo State 53
gateResume State 57
gateSignalingConnected State 50, 54

Demo Options 23
Demo Source Code Files 25

Demo State Machines 47 gateWaitForMedialnfo State 57

DigitalPSTNBoard Class 37 gateWaitPSTNAnswer State 54

DigitalPSTNDevice Class 32 gateWaitPSTNConnect State 49

dropCall() 61 GWCall Class 33

dt_Open() 39 GWCall State Machine - Inbound Call from IP 47

dx_Open() 39 GWCall State Machine - Switching Between Voice/Fax 55
GWCall State Machine Description - Inbound from IP 47

E GWCall State Machine Description - Inbound from PSTN 51

GWCall State Machine Description - Voice/Fax 55
Editing Configuration Files 17

Editing the ipmedia_r4.cfg Configuration File 17 H
Event Handling 44
Event Mechanism 44 Handling Application Exit Events 45

Handling Keyboard Input Events 44
F Handling SRL Events 44

Hardware Requirements 15
File Location 17

Files Used by the Demo 25

IP Media Gateway (IPML) Demo Guide — November 2003 67

I CCAnsweringCall State 61
init() 43, 44 CCConnected State 61
Initialization 42 CCDetected State 61
IPCallControl Class 34 CCDropping State 61
ipm_SetRemoteMedialnfo() 35 CCMakingCall State 61

CCNull State 60
CCReleasing State 61

PSTNCallControl Class 37
PSTNCallControl State Machine 59
PSTNCallControl State Machine Description 59

ipm_StartMedia() 58
ipm_Stop() 59
IPMediaBoard Class 34
IPMediaDevice

mediaNull State 58

mediaOffered State 59 R
mediaStarted State 59
mediaStopped State 59 R4Device Class 32
IPMediaDevice Class 35 R4LogicalBoard Class 37
IPMediaDevice State Machine 57 releaseCall() 61
[PMediaDevice State Machine Description 58 ResourceManager Class 37
IPMsg Class 36 Running the Demo 23
IPProtocol Class 36
IPProtocolMgr Class 37 S
Selecting PCD/FCD Files 21
M sendAnswerCall() 49
main() 44, 45 sendDropCall(BUSY) 49, 53
makeCall() 33, 60 sendDropCall(PSTN_DISCONNECT) 50, 54
sendMakeCall() 53, 54
P setFaxCodec(true) 56
setFaxMode(FAX_NONE) 56, 57
PDL Files 27 setLocalMedialnfo() 53, 57
PDLSetApplicationExitPath() 45 setRemoteFaxMedialnfo() 57
PDLsr_enbhdlr() 44 setRemoteVoiceMedialnfo() 57
PDLsr_getevtdev() 44 setVoiceCodec() 57
PDLsr_getevttype() 45 Software Requirements 15
Preparing to Run the Demo 17 st_enblhdlr() 42
processEvent(CCEV_DROPCALL) 49, 50, 53, 54 Starting the Demo 23
processEvent(CCEV_OFFERED) 48 startMedia() 35, 58
processEvent(GCEV_ANSWERED) 53, 54 stopMedia() 59
processEvent(GCEV_CONNECTED) 49 stopMedia(), 59

processEvent(GCEV_DETECTED) 52
processEvent(GCEV_DISCONNECTED) 50, 53, 54, 55
processEvent(GCEV_OFFERED) 53

Stopping the Demo 24

System Requirements 15

processEvent(IPMEDIAEV_DROPCALL) 49, 50, 54, 55, T

56, 57
processEvent(IPMEDIAEV_OFFERED) 49, 50, 54, 57 Threads 42
processEvent(IPMEV_START_MEDIA) 50, 54
processEvent(IPMEV_STOPPED) 57 U
Programming Model Classes 28

PSTNCallControl Using the Demo 24

68 IP Media Gateway (IPML) Demo Guide — November 2003

intel.

Utility Files 27

w

waitForKey() 44

IP Media Gateway (IPML) Demo Guide — November 2003

69

70

IP Media Gateway (IPML) Demo Guide — November 2003

	Contents
	Figures
	Tables
	Revision History
	Global changes

	About This Publication
	Purpose
	Intended Audience
	How to Use This Publication
	Related Information

	1. Demo Description
	Figure�1.� IP Media Gateway (IPML) Topology

	2. System Requirements
	2.1 Hardware Requirements
	2.2 Software Requirements

	3. Preparing to Run the Demo
	3.1 Connecting to External Equipment
	3.2 Editing Configuration Files
	3.2.1 File Location
	3.2.2 Editing the ipmedia.cfg Configuration File

	3.3 Compiling and Linking
	3.4 Selecting PCD/FCD Files

	4. Running the Demo
	4.1 Starting the Demo
	4.2 Demo Options
	Table�1.� Command Line Switches�

	4.3 Using the Demo
	Table�2.� Runtime Keyboard Commands�

	4.4 Stopping the Demo

	5. Demo Details
	5.1 Files Used by the Demo
	5.1.1 Demo Source Code Files
	Table�3.� Source Files Used by the IP Media Gateway (IPML) Demo�

	5.1.2 Utility Files
	Table�4.� Utility Files Used by the IP Media Gateway (IPML) Demo�

	5.1.3 PDL Files
	Table�5.� PDL Files Used by the IP Media Gateway (IPML) Demo - Windows OS�

	5.2 Programming Model Classes
	5.2.1 Class Diagram
	Figure�2.� IP Media Gateway (IPML) Class Diagram

	5.2.2 Channel Class
	Table�6.� Channel Class Attributes�

	5.2.3 Configuration Class
	Table�7.� Configuration Class Attributes�

	5.2.4 DigitalPSTNBoard Class
	Table�8.� DigitalPSTNBoard Class Attributes�

	5.2.5 DigitalPSTNDevice Class
	Table�9.� DigitalPSTNDevice Class Attributes�

	5.2.6 GWCall Class
	Table�10.� GWCall Class Attributes�

	5.2.7 IPCallControl Class
	Table�11.� IPCallControl Class Attributes�

	5.2.8 IPMediaBoard Class
	Table�12.� IPMediaBoard Class Attributes�

	5.2.9 IPMediaDevice Class
	Table�13.� IPMediaDevice Class Attributes�

	5.2.10 IPMsg Class
	Table�14.� IPMsg Class Attributes�

	5.2.11 IPProtocol Class
	Table�15.� IPProtocol Class Attributes�

	5.2.12 IPProtocolMgr Class
	Table�16.� IPProtocolMgr Class Attributes�

	5.2.13 PSTNCallControl Class
	Table�17.� PSTNCallControl Class Attributes�

	5.2.14 R4Device Class
	Table�18.� R4Device Class Attributes�

	5.2.15 R4LogicalBoard Class
	Table�19.� R4LogicalBoard Class Attributes�

	5.2.16 ResourceManager Class
	Table�20.� ResourceManager Class Attributes�

	5.3 Threads
	Figure�3.� IP Media Gateway (IPML) Demo Threads

	5.4 Initialization
	Figure�4.� IP Media Gateway (IPML) System Initialization

	5.5 Event Handling
	5.5.1 Event Mechanism
	5.5.2 Handling Keyboard Input Events
	5.5.3 Handling SRL Events
	5.5.4 Handling Application Exit Events

	6. Demo State Machines
	6.1 GWCall State Machine - Inbound Call from IP
	6.1.1 GWCall State Machine Description - Inbound from IP
	Figure�5.� GWCall State Machine - Inbound Call from IP

	6.1.2 GWCall::gateNull State
	6.1.3 GWCall::gateOfferingFromIP State
	6.1.4 GWCall::gateIPWaitMediaInfo State
	6.1.5 GWCall::gateWaitPSTNConnect State
	6.1.6 GWCall::gateSignalingConnected State
	6.1.7 GWCall::gateConnected State

	6.2 GW Call State Machine - Inbound Call from PSTN
	6.2.1 GWCall State Machine Description - Inbound from PSTN
	Figure�6.� GWCall State Machine - Inbound Call from PSTN

	6.2.2 GWCall::gateNull State
	6.2.3 GWCall::gateDetectedFromPSTN State
	6.2.4 GWCall::gateOfferingFromPSTN State
	6.2.5 GWCall::gatePSTNWaitMediaInfo State
	6.2.6 GWCall::gateWaitPSTNAnswer State
	6.2.7 GWCall::gatePSTNConnected State
	6.2.8 GWCall::gateSignalingConnected State
	6.2.9 GWCall::gateConnected State

	6.3 GWCall State Machine - Switching Between Voice/Fax
	6.3.1 GWCall State Machine Description - Voice/Fax
	Figure�7.� GWCall State Machine - Switching Between Voice/Fax

	6.3.2 GWCall::gateConnected State
	6.3.3 GWCall::gateCallPause State
	6.3.4 GWCall::gateWaitForMediaInfo State
	6.3.5 GWCall::gateResume State

	6.4 IPMediaDevice State Machine
	6.4.1 IPMediaDevice State Machine Description
	Figure�8.� IPMediaDevice State Machine

	6.4.2 IPMediaDevice::mediaNull State
	6.4.3 IPMediaDevice::mediaOffered State
	6.4.4 IPMediaDevice::mediaStarted State
	6.4.5 IPMediaDevice::mediaStopped State

	6.5 PSTNCallControl State Machine
	6.5.1 PSTNCallControl State Machine Description
	Figure�9.� PSTNCallControl State Machine

	6.5.2 PSTNCallControl::CCNull State
	6.5.3 PSTNCallControl::CCDetected State
	6.5.4 PSTNCallControl::CCAnsweringCall State
	6.5.5 PSTNCallControl::CCMakingCall State
	6.5.6 PSTNCallControl::CCConnected State
	6.5.7 PSTNCallControl::CCDropping State
	6.5.8 PSTNCallControl::CCReleasing State

	Glossary
	Index

