
Dialogic® Global Call API
Programming Guide

September 2008

05-1867-007

Dialogic® Global Call API Programming Guide – September 2008
Dialogic Corporation

Copyright and Legal Notice
Copyright © 1996-2008 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in part without permission in writing from Dialogic
Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on the part of Dialogic
Corporation or its subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in the document. However, Dialogic does not warrant
the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU
AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus may not function properly
in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such use is suitable. For information on specific products,
contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral produced by or on web pages
maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual property licenses
with the sale of Dialogic products other than a license to use such product in accordance with intellectual property owned or validly licensed by Dialogic and no such licenses
are provided except pursuant to a signed agreement with Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at
9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic encourages all users of its products to procure all necessary intellectual property
licenses required to implement any concepts or applications and does not condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from country to country and it is the responsibility of those who develop the
concepts or applications to be aware of and comply with different national license requirements.

Dialogic, Dialogic Pro, Brooktrout, Cantata, SnowShore, Eicon, Eicon Networks, Eiconcard, Diva, SIPcontrol, Diva ISDN, TruFax, Realblocs, Realcomm 100, NetAccess,
Instant ISDN, TRXStream, Exnet, Exnet Connect, EXS, ExchangePlus VSE, Switchkit, N20, Powering The Service-Ready Network, Vantage, Making Innovation Thrive,
Connecting People to Information, Connecting to Growth and Shiva, among others as well as related logos, are either registered trademarks or trademarks of Dialogic.
Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800 Cavendish Blvd.,
5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic
from time to time and any use of Dialogic’s trademarks requires proper acknowledgement.

Microsoft, Visual C++, Windows, and Win32 are registered trademarks of Microsoft Corporation in the United States and/or other countries. The other names of actual
companies and products mentioned herein are the trademarks of their respective owners.

Publication Date: September 2008

Document Number: 05-1867-007

Dialogic® Global Call API Programming Guide – September 2008 3
Dialogic Corporation

Contents

Revision History . 11

About This Publication . 13

1 Product Description . 17

1.1 Dialogic® Global Call API Software Overview . 17
1.2 Dialogic® Global Call API Feature Categories. 18

1.2.1 Call Control Features . 18
1.2.2 Operation, Administration, and Maintenance Features. 19

1.3 Dialogic® Global Call API Architecture . 19
1.3.1 Overview. 20
1.3.2 Dialogic® Global Call API . 20

1.4 Call Control Libraries . 21
1.4.1 Starting Call Control Libraries . 22
1.4.2 Call Control Library States . 22

1.5 Dialogic® Global Call API Object Identifiers. 23
1.5.1 Line Device Identifier . 24
1.5.2 Call Reference Number . 24
1.5.3 Object Identifiers and Resource Sharing Across Processes 24
1.5.4 Target Objects . 25

1.6 Dialogic® Global Call API versus Dialogic® DTI API . 28
1.7 Dialogic® Global Call API versus Dialogic® ISDN API. 29

2 Programming Models . 31

2.1 Programming Models Overview. 31
2.2 Synchronous Mode Programming for Linux . 31
2.3 Asynchronous Mode Programming for Linux. 31
2.4 Synchronous Mode Programming for Windows®. 32

2.5 Asynchronous Mode Programming for Windows®. 33

2.5.1 Asynchronous Model Overview . 34
2.5.2 Asynchronous Model with Event Handlers . 35
2.5.3 Asynchronous with Windows® Callback Model . 35
2.5.4 Asynchronous with Win32® Synchronization Model . 35
2.5.5 Extended Asynchronous Programming Model . 36

3 Call State Models . 37

3.1 Call State Model Overview . 37
3.2 Basic Call Model . 37

3.2.1 Basic Call States at the Inbound Interface . 38
3.2.2 Basic Call States at the Outbound Interface. 39
3.2.3 Basic Call States for Call Termination . 39

3.3 Basic Call Model Configuration Options . 40
3.3.1 Call State Configuration . 40
3.3.2 Call State Event Configuration . 41
3.3.3 Call Acknowledgment Configuration. 42
3.3.4 Call Proceeding Configuration . 42

4 Dialogic® Global Call API Programming Guide – September 2008
Dialogic Corporation

Contents

3.3.5 Minimum Destination Information Configuration . 43
3.3.6 Maximum Destination Information Configuration. 43

3.4 Basic Call Control in Asynchronous Mode . 43
3.4.1 Inbound Calls in Asynchronous Mode . 44
3.4.2 Outbound Calls in Asynchronous Mode . 58
3.4.3 Call Termination in Asynchronous Mode . 65

3.5 Basic Call Control in Synchronous Mode . 69
3.5.1 Inbound Calls in Synchronous Mode . 69
3.5.2 Outbound Calls in Synchronous Mode . 79
3.5.3 Call Termination in Synchronous Mode. 83
3.5.4 Handling Unsolicited Events . 87

3.6 Advanced Call Control with Call Hold and Transfer . 87
3.6.1 Advanced Call State Model Overview . 87
3.6.2 Advanced Call States for Hold and Transfer . 88
3.6.3 Call Hold . 88
3.6.4 Call Transfer . 89

4 Event Handling . 95

4.1 Overview of Event Handling . 95
4.2 Event Categories . 95
4.3 Blocked and Unblocked Event Handling. 96
4.4 Event Retrieval . 97
4.5 Events Indicating Errors . 98
4.6 Masking Events . 98
4.7 Event Handlers . 98

4.7.1 Event Handlers for Linux . 98
4.7.2 Event Handlers for Windows® .99

5 Error Handling . 101

5.1 Error Handling Overview. 101
5.2 Fatal Error Recovery. 102

6 Application Development Guidelines . 105

6.1 General Programming Tips. 105
6.2 Tips for Programming Drop and Insert Applications . 106
6.3 Using Dialogic® Global Call API with Dialogic® DM3 Boards . 108

6.3.1 Routing Configurations Overview . 108
6.3.2 Working with Flexible Routing Configurations . 109
6.3.3 Working with Fixed Routing Configurations. 115
6.3.4 Handling Multiple Call Objects Per Channel in a Glare Condition 120
6.3.5 TDM Bus Time Slot Considerations. 121

7 Call Control . 123

7.1 Call Analysis when Using Dialogic® Springware Boards . 123
7.2 Call Progress Analysis when Using Dialogic® DM3 Boards . 124

7.2.1 Call Progress Analysis Definition. 124
7.2.2 Configuring Default Call Progress Analysis Parameters 124
7.2.3 Configuring Call Progress Analysis on a Per Call Basis 125
7.2.4 Setting Call Analysis Attributes on a Per Call Basis . 127
7.2.5 Configuring Call Progress Analysis on a Per Channel Basis. 128
7.2.6 Setting Call Analysis Attributes on a Per Channel Basis 129

Dialogic® Global Call API Programming Guide – September 2008 5
Dialogic Corporation

Contents

7.2.7 Customizing Call Progress Tones on a Per Board Basis 129
7.2.8 Customizing Nonstandard Special Information Tones . 130

7.3 Resource Routing . 131
7.4 Feature Transparency and Extension . 132

7.4.1 Feature Transparency and Extension Overview. 132
7.4.2 Technology-Specific Feature Access . 132
7.4.3 Technology-Specific User Information . 134

8 Alarm Handling . 135

8.1 Alarm Handling Overview . 135
8.1.1 Alarm Management System Components . 136

8.2 Operation and Configuration of GCAMS . 137
8.2.1 Generation of Events for Blocking Alarms . 137
8.2.2 Generation of Alarm Events . 138
8.2.3 Configuration of Alarm Properties and Characteristics . 139
8.2.4 Starting and Stopping Alarm Transmission. 142
8.2.5 Retrieving Alarm Data. 142

8.3 Sample Alarm Scenarios . 144
8.3.1 Scenario 1: Application Notified of First and Last Blocking Alarm 144
8.3.2 Scenario 2: Default Behavior for Alarm Notification . 146
8.3.3 Scenario 3: Alarm Transmission. 147

8.4 GCAMS and the DTI API Method of Alarm Handling . 147

9 Real Time Configuration Management . 149

9.1 Real Time Configuration Management Overview . 149
9.2 RTCM Components . 150

9.2.1 Customer Application Using Dialogic® Global Call API RTCM. 151
9.2.2 Dialogic® Global Call RTCM. 151
9.2.3 RTCM Parameters . 152

9.3 Using RTCM Parameters. 152
9.3.1 Parameter Dependencies . 153
9.3.2 Parameter Definitions . 153

9.4 Getting and Setting Parameter Information . 154
9.4.1 GC_PARM_BLK Data Structure . 154
9.4.2 Control Parameters. 155

9.5 Querying Configuration Data . 157
9.6 Handling RTCM Errors . 158
9.7 Configuration Procedure . 158
9.8 Sample Scenarios Using the RTCM API Functions. 159

9.8.1 Getting or Setting GCLib Configuration in Synchronous Mode. 160
9.8.2 Getting or Setting CCLib Configuration in Synchronous Mode. 161
9.8.3 Getting or Setting Protocol Configuration in Synchronous Mode 162
9.8.4 Getting or Setting Line Device Configuration in Synchronous Mode 164
9.8.5 Setting Line Device Configuration in Asynchronous Mode. 165

9.9 Dynamically Retrieving and Modifying Selected Protocol Parameters when Using Dialogic®
DM3 Boards. 167
9.9.1 Prerequisites for Feature Use. 168
9.9.2 Retrieving a Protocol ID . 169
9.9.3 Retrieving or Modifying CAS Signal Definitions . 170
9.9.4 Retrieving or Modifying CDP Variable Values . 172

6 Dialogic® Global Call API Programming Guide – September 2008
Dialogic Corporation

Contents

9.9.5 Sample Code for Getting and Setting CAS Signal Definitions and CDP Variable
Values . 173

9.9.6 Dynamically Configuring a Trunk. 183
9.9.7 Applicable Data Structures, Set IDs, and Parm IDs . 187
9.9.8 Restrictions and Limitations. 189

10 Handling Service Requests . 191

10.1 Service Request Overview . 191
10.2 Service Request Components . 192
10.3 Service Request Data. 193
10.4 General Service Request Scenario . 193
10.5 ISDN BRI-Specific Service Request Scenario . 194

11 Using Dialogic® Global Call API to Implement Call Transfer . 197

11.1 Introduction to Call Transfer . 197
11.1.1 Blind Call Transfer . 197
11.1.2 Supervised Call Transfer . 198

11.2 Call Transfer State Machine . 198

12 Building Applications . 205

12.1 Compiling and Linking in Linux . 205
12.1.1 Include Files. 205
12.1.2 Required Libraries . 205
12.1.3 Variables for Compiling and Linking Commands. 206

12.2 Compiling and Linking in Windows®. .206

12.2.1 Include Files. 206
12.2.2 Required Libraries . 207
12.2.3 Variables for Compiling and Linking Commands. 207
12.2.4 Dynamically Loaded Libraries . 207
12.2.5 Dynamically Loaded Protocol Modules . 208

13 Debugging . 209

Glossary . 211

Index . 219

Dialogic® Global Call API Programming Guide – September 2008 7
Dialogic Corporation

Contents

Figures

1 Dialogic® Global Call API Architecture . 20
2 Call Control Library States. 22
3 Basic Asynchronous Inbound Call State Diagram. 45
4 Basic Asynchronous Inbound Call Scenario . 53
5 Incoming Call Scenario with Call Proceeding . 54
6 Call Acknowledgment and Call Proceeding Done at the Application Layer. 55
7 Call Proceeding Done by the Application Layer with Minimum Information Configured 56
8 Call Acknowledgment and Call Proceeding Done at Technology Call Control Layer 57
9 Call Acknowledgment Done by the Technology Call Control Layer and Call Proceeding Done by

the Application . 58
10 Basic Asynchronous Outbound Call State Diagram . 60
11 Asynchronous Outbound Call Scenario. 64
12 Asynchronous Outbound Call Scenario with Call Acknowledgment . 64
13 Asynchronous Outbound Call Scenario with Overlap Sending . 65
14 Asynchronous Call Tear-Down State Diagram . 66
15 User Initiated Asynchronous Call Termination Scenario . 68
16 Network Initiated Asynchronous Call Termination Scenario . 68
17 Basic Synchronous Inbound Call State Diagram. 70
18 Synchronous Inbound Call Scenario . 77
19 Synchronous Inbound Call Scenario with Call Acknowledgment . 78
20 Synchronous Inbound Call Scenario with Overlap Receiving . 79
21 Outbound Synchronous Call Process . 80
22 Outbound Call Scenario in Synchronous Mode. 82
23 Synchronous Call Tear-Down State Diagram . 84
24 User Initiated Call Termination Scenario in Synchronous Mode . 86
25 Network Initiated Synchronous Call Termination Scenario . 86
26 Call State Transitions for Hold and Retrieve . 89
27 Call State Model for Supervised and Unsupervised Transfers . 91
28 Call Termination by the Network or Application During a Transfer . 92
29 Cluster Configurations for Fixed and Flexible Routing . 109
30 Architectural Diagram of Alarm Management Components . 136
31 Notification of First and Last Blocking Alarm . 145
32 Default Behavior for Alarm Notification . 146
33 Alarm Transmission . 147
34 Relationship of Customer Application, Dialogic® Global Call RTCM, and RTCM Parameters 150
35 Run Time Configuration Procedure . 159
36 Getting or Setting GCLib Configuration in Synchronous Mode . 160
37 Getting or Setting CCLib Configuration in Synchronous Mode . 161
38 Getting or Setting Protocol Configuration in Synchronous Mode . 162
39 Getting or Setting Line Device Configuration in Synchronous Mode. 164
40 Setting Line Device Configuration in Asynchronous Mode . 166
41 Service Request Architecture . 192

8 Dialogic® Global Call API Programming Guide – September 2008
Dialogic Corporation

Contents

42 Generic Service Request Operation. 194
43 ISDN BRI Service Request Operation . 195
44 Blind Call Transfer (Unsupervised Transfer) . 198
45 Supervised Call Transfer . 198
46 Call State Model for Blind Call Transfer at Party A. 200
47 Call State Model for Blind Call Transfer at Party B. 201
48 Call State Model for Supervised Transfer at Party A . 202
49 Call State Model for Supervised Transfer at Party B . 203
50 Call State Model for Supervised Transfer at Party C . 204

Dialogic® Global Call API Programming Guide – September 2008 9
Dialogic Corporation

Contents

Tables

1 Call Control Library States. 22
2 Supported Target Types . 25
3 Target Types and Target IDs. 26
4 Target Object Availability . 27
5 Obtaining Target IDs . 27
6 Asynchronous Inbound Call State Transitions. 46
7 Asynchronous Outbound Call State Transitions . 61
8 Asynchronous Call Termination Call State Transitions . 67
9 Synchronous Inbound Call State Transitions. 71
10 Synchronous Outbound Call State Transitions . 81
11 Synchronous Call Termination Call State Transitions . 85
12 Unsolicited Events Requiring Signal Handlers . 87
13 Dialogic® Global Call Function Restrictions in a Fixed Routing Configuration 116
14 Handling Glare. 120
15 Call Progress Analysis Settings and Possible Results . 126
16 Comparison with Call Progress Analysis Using gc_SetParm(). 129
17 Update Condition Flag and Dialogic® Global Call Process . 157
18 Dialogic® Global Call API Call Transfer States . 199

10 Dialogic® Global Call API Programming Guide – September 2008
Dialogic Corporation

Contents

Dialogic® Global Call API Programming Guide — September 2008 11

Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-1867-007 September 2008 Made global changes to reflect Dialogic brand and changed title to “Dialogic® Global
Call API Programming Guide.”

Merged Linux information into this Programming Guide so that this version supports
both the Linux and Windows® operating systems and supersedes the Linux-only
version, document number 05-1817-003.

Call Control section: Added Customizing Nonstandard Special Information Tones.

Real Time Configuration Management section: Added Dynamically Retrieving and
Modifying Selected Protocol Parameters when Using Dialogic® DM3 Boards.

05-1867-006 May 2006 Call Control Libraries section: Updated the library descriptions to identify the
technologies/protocols that each library supports.

Setting Call Analysis Attributes on a Per Call Basis section: Updated descriptions of
the CCPARM_CA_PAMD_QTEMP and CCPARM_CA_PVD_QTEMP parameter
IDs. Replaced the note that describes PAMD/PVD qualification template defaults
and references the technote for tuning these parameters.

Using Protocols with Dialogic® DM3 Boards (Flexible Routing) section: Fixed
incorrect references to using the Dialogic® DM3 PDK Manager and the
FCDGEN utility.

Debugging chapter : Added reference to the “Runtime Trace Facility (RTF) Reference”
chapter in the Dialogic® System Software Diagnostics Guide.

05-1867-005 September 2005 Starting Call Control Libraries section: Added note about loading only the required
call control libraries to keep the required memory footprint small.

Synchronous Mode Programming section: Added restriction that no more than one
synchronous function can be called on the same device simultaneously from
different threads.

Overlap Sending section: Explicitly mentioned ISDN in the list of technologies that do
not have messages to request more information.

Working with Flexible Routing Configurations section: Added note to check Release
Guide for a system release to determine the routing configuration supported by
a board.

Using Protocols with Dialogic® DM3 Boards (Flexible Routing) section: Updated to
indicate protocols available with system release software or on a separate CD.

Country Dependent Parameter (CDP) Files section: Updated to indicate protocols
available with system release software or on a separate CD.

Supervised Transfers section: Updated the call termination figure and added note to
describe the unsolicited GCEV_CONNECTED event that is generated for a call
when the new call being set up is terminated.

Working with Fixed Routing Configurations section: Added note to check Release
Guide for a system release to determine the routing configuration supported by
a board.

Call Transfer Overview section: Added note to clarify that the generic method of call
transfer described is not supported by all technologies.

12 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Revision History

05-1867-005
(continued)

TDM Bus Time Slot Considerations section: Added to describe when the sharing of
time slots (SOT) algorithm applies.

Real Time Configuration Management chapter : Fixed several references to
gc_util_insert_val() and gc_util_insert_ref() which should be
gc_util_insert_parm_val() and gc_util_insert_parm_ref().

05-1867-004 September 2004 Supervised Transfers and Unsupervised Transfers sections: Changed the captions
and the order of the two figures describing the call state transitions.
(PTR 32481)

Event Retrieval section: Added text to explain that the memory pointed by the
extevtdatap field in the METAEVENT structure is read-only.

GCAMS and the DTI API Method of Alarm Handling section: Added to describe
workaround to continue using DTI API for alarm handling if absolutely
necessary.

05-1867-003 November 2003 General: Removed all references to ANAPI.

Application Development Guidelines chapter : Removed the Programming Tip When
Using a DI/0408-LS-A Board section that provided inaccurate information.
(PTR 31145)

Configuring Default Call Progress Analysis Parameters section: Added section to
point to the appropriate Global Call Technology Guide for information if default
CPA parameter configuration (in the CONFIG file) is supported by the
technology.

Building Applications chapter : Deleted a section on cross-compiler compatibility,
which contained a reference to using the Borland compiler which is not
supported.

05-1867-002 September 2003 Call Progress Analysis when Using Dialogic® DM3 Boards section: Added to
describe a new unified method of implementing call progress analysis (CPA)
when using Analog, E1/T1, and ISDN protocols on Dialogic® DM3 Boards.

05-1867-001 November 2002 Initial version of document. Much of the information contained in this document was
previously published in the Dialogic® GlobalCall Application Developer’s Guide for
UNIX and Windows®, document number 05-1526-002, and the Dialogic® GlobalCall
API Software Reference for Linux and Windows®, document number 05-0387-009.

Document No. Publication Date Description of Revisions

Dialogic® Global Call API Programming Guide — September 2008 13

Dialogic Corporation

About This Publication

The following topics provide information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication provides guidelines for those choosing to use the Dialogic® Global Call API to
build computer telephony applications that require call control functionality. Such applications
include, but are not limited to, call routing, enhanced services, unified messaging, voice messaging,
LAN telephony services, computer telephony services, switching, PBX, interactive voice response,
help desk, and work flow applications.

This publication is a companion guide to the Dialogic® Global Call API Library Reference, which
provides details on the functions, parameters, and data structures in the Global Call library, and the
Dialogic® Global Call Technology Guides, which provide analog-, E1/T1-, IP-, ISDN-, and SS7-
specific information.

Applicability

This document version (05-1867-007) is published for Dialogic® System Release Software for
Linux and Windows® operating systems.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This publication is written for the following audience:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

14 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

About This Publication

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

How to Use This Publication

Refer to this publication after you have installed the hardware and the Dialogic® System Release
Software, which includes the Dialogic® Global Call software.

This publication assumes that you are familiar with the operating system you are using (Linux or
Windows®) and the C programming language.

The information in this guide is organized as follows:

• Chapter 1, “Product Description” provides an overview of the Global Call development
software.

• Chapter 2, “Programming Models” describes the supported programming models in the Linux
and Windows® environments.

• Chapter 3, “Call State Models” describes the call state models used by Global Call.

• Chapter 4, “Event Handling” describes how to handle Global Call events.

• Chapter 5, “Error Handling” describes the error handling facilities provided by Global Call.

• Chapter 6, “Application Development Guidelines” provides guidelines for developing
applications that use Global Call.

• Chapter 7, “Call Control” describes basic call control capabilities, resource routing, and
feature extensions provided by Global Call.

• Chapter 8, “Alarm Handling” describes how Global Call can be used to handle alarms.

• Chapter 9, “Real Time Configuration Management” describes how Global Call can be used for
real time configuration of parameters associated with the interface.

• Chapter 10, “Handling Service Requests” describes the generic service request facility
provided by Global Call.

• Chapter 11, “Using Dialogic® Global Call API to Implement Call Transfer” provides general
information on the implementation of unsupervised (blind) and supervised call transfer.

• Chapter 12, “Building Applications” provides guidelines for those choosing to build
applications that use Global Call software.

• Chapter 13, “Debugging” provides pointers to where technology-specific debugging
information can be obtained.

• The Glossary provides a definition of terms used in this guide.

Related Information

See the following for additional information:

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/
http://www.dialogic.com/support/

Dialogic® Global Call API Programming Guide — September 2008 15

Dialogic Corporation

About This Publication

• http://www.dialogic.com/ (for Dialogic® product information)

http://www.dialogic.com

16 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

About This Publication

Dialogic® Global Call API Programming Guide — September 2008 17
Dialogic Corporation

11.Product Description

This chapter describes the Dialogic® Global Call API software. Topics include:

• Dialogic® Global Call API Software Overview . 17

• Dialogic® Global Call API Feature Categories . 18

• Dialogic® Global Call API Architecture . 19

• Call Control Libraries . 21

• Dialogic® Global Call API Object Identifiers . 23

• Dialogic® Global Call API versus Dialogic® DTI API. 28

• Dialogic® Global Call API versus Dialogic® ISDN API . 29

1.1 Dialogic® Global Call API Software Overview

Dialogic® Global Call API software provides a common signaling interface for network-enabled
applications, regardless of the signaling protocol needed to connect to the local telephone network.
The signaling interface provided by Global Call software facilitates the exchange of call control
messages between the telephone network and any network-enabled applications. Global Call
software enables developers to create applications that can work with signaling systems worldwide,
regardless of the network to which the applications are connected. The Global Call software is well
suited for high-density, network-enabled solutions, such as voice, data, and video applications,
where the supported hardware and signaling technology can vary widely from country to country.

As an example, the signal acknowledgment or information flow required to establish a call may
vary from country to country. Rather than requiring the application to handle low-level details,
Global Call offers a consistent, high-level interface to the user and handles each country's unique
protocol requirements transparently to the application.

The Global Call software comprises three major components:

Global Call Application Programming Interface (API)
A common, extensible API providing network interfaces to higher levels of software.
Application developers use API function calls in their computer telephony applications.

Call Control Libraries
A set of libraries that provide the interface between Global Call and the various network
signaling protocols.

Global Call Protocols
Network signaling protocols, such as T1 Robbed Bit, E1 CAS, ISDN, Analog, QSIG, SS7, and
IP H.323 and SIP can be invoked by Global Call to facilitate call control.

18 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Product Description

1.2 Dialogic® Global Call API Feature Categories

The Dialogic® Global Call API provides many features allowing for the development of flexible
and robust applications. The features fall into one of two main categories:

• Call Control Features

• Operation, Administration, and Maintenance Features

1.2.1 Call Control Features

Global Call software provides the following call control features:

Basic call control
Includes basic call control features such as the ability to make a call, detect a call, answer a
call, release a call, etc. The implementation of these capabilities is based on the basic call state
model, which is a common model for all network technologies. The procedures for
establishing and terminating calls differ for the asynchronous and synchronous call models,
and are therefore discussed in separate sections of this document. See Section 3.2, “Basic Call
Model” for more information on the basic call model.

Advanced call model
Defines the behavior for advanced features, such as hold and transfer. These capabilities are
provided to support technologies and protocols that support such features, for example,
supervised transfer. The implementation of these capabilities is based on a more advanced call
state model. See Section 3.6, “Advanced Call Control with Call Hold and Transfer” for more
information.

Call progress and call analysis
Provides the capabilities for handling pre-connect (call progress) information that reports the
status of the call connection, such as busy, no dial tone, or no ringback, and post connect (call
analysis) information that reports the destination party’s media type, for example, voice,
answering machine, or fax modem. This information is determined by the detection of tones
defined specifically for this purpose. See Section 7.1, “Call Analysis when Using Dialogic®
Springware Boards” and Section 7.2, “Call Progress Analysis when Using Dialogic® DM3
Boards” for more information.

Feature transparency and extension (FTE)
Provides the ability to extend the capabilities of the Global Call software to handle features
that are specific to a particular technology so that those features are accessible via the Global
Call interface. For example, for ISDN applications, Global Call supports supplementary
services such as overlap send, overlap receive, any message, any IE, and user-to-user
messaging. See Section 7.4, “Feature Transparency and Extension” for more information.

Dialogic® Global Call API Programming Guide — September 2008 19
Dialogic Corporation

Product Description

1.2.2 Operation, Administration, and Maintenance Features

Global Call software provides the following features that facilitate the operation, administration,
and maintenance of Global Call applications:

Error handling functionality
When an error occurs, the Global Call API provides functions that enable an application to
retrieve more information about the error. See Chapter 5, “Error Handling” for more
information.

Event handling functionality
Provides the ability to handle and process events, including the ability to disable and enable
events and to retrieve event information. See Chapter 4, “Event Handling” for more
information.

Global Call Alarm Management System (GCAMS)
Provides the ability to manage alarms. GCAMS provides Global Call applications with the
ability to receive extensive alarm information that can be used in conjunction with information
from the Central Office (CO) to troubleshoot line problems. See Chapter 8, “Alarm Handling”
for more information.

Real Time Configuration Management (RTCM)
Allows the modification of call control and protocol elements in real time, providing a single
common user interface for configuration management. See Chapter 9, “Real Time
Configuration Management” for more information.

Global Call Service Request (GCSR)
Enables an application to send a request for a service to a remote device. Examples of the types
of services that this feature supports are device registration, channel setup, call setup,
information requests, or other kinds of requests that need to be made between two devices
across the network. See Chapter 10, “Handling Service Requests” for more information.

Library information functions
Enables an application to get information about the call control libraries being used. See the
Dialogic® Global Call API Library Reference for more information about these functions.

Debugging facilities
The Global Call API provides powerful debugging capabilities for troubleshooting protocol-
related problems, including the ability to generate a detailed log file. See the appropriate
Dialogic® Global Call Technology Guide for information on the debugging facilities available
when using the Global Call API with each technology.

1.3 Dialogic® Global Call API Architecture

The Dialogic® Global Call API development software architecture is based on the Dialogic®
architecture that supports Dialogic® Springware and Dialogic® DM3 Boards. The architecture is
described in the following topics:

• Overview

• Dialogic® Global Call API

20 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Product Description

1.3.1 Overview

Figure 1 shows a system-level view of the Global Call architecture.

Figure 1. Dialogic® Global Call API Architecture

1.3.2 Dialogic® Global Call API

The Dialogic® Global Call API is a call control API. Similar to other Dialogic® APIs (such as the
Dialogic® Voice API), the Global Call API uses the Dialogic® Standard Runtime Library (SRL)
API to deliver response events to its API commands. The Global Call API and other Dialogic®
APIs form a family of APIs that use the underlying services provided by the Dialogic® SRL API.

User Application

Other
Dialogic
Libraries

Global Call API

Call Control Libraries

ICAPI PDKRT ISDN DM3CC SS7 IP

Device Driver Operating Systems

Firmware

Network Interface

Firmware

Network Interface

PSTN

Dialogic® Global Call API Programming Guide — September 2008 21
Dialogic Corporation

Product Description

The Global Call API provides a collection of functions supporting call control operations as well as
functions to support operation, administration, and maintenance tasks. See the Dialogic® Global
Call API Library Reference for detailed information about each function.

1.4 Call Control Libraries

Each supported network technology requires a call control library to provide the interface between
the network and the Dialogic® Global Call API library. The call control libraries currently
supported by Global Call are as follows:

GC_CUSTOM1_LIB
The first of two call control library place holders for custom call control libraries. Any third-
party Global Call compatible call control library can be used as a custom library. The Global
Call library supports up to two custom libraries.

GC_CUSTOM2_LIB
The second of two call control library place holders for custom call control libraries. Any
third-party Global Call compatible call control library can be used as a custom library. The
Global Call library supports up to two custom libraries.

GC_DM3CC_LIB
The call control library that controls access to network interfaces on Dialogic® DM3 Boards.
This library is used for call control using ISDN and CAS/R2MF (PDK protocols) signaling on
Dialogic® DM3 Boards.

GC_H3R_LIB
The call control library that controls access to IP network interfaces. This call control library
supports IP H.323 and SIP protocols and is used in conjunction with GC_IPM_LIB.

GC_ICAPI_LIB
The Interface Control Application Programming Interface (ICAPI) call control library that
controls access to network interfaces that use T1 robbed bit signaling or E1 CAS and ICAPI
protocols. This library is used for call control using CAS/R2MF (ICAPI protocols) signaling
on Dialogic® Springware Boards only.

GC_IPM_LIB
The call control library that provides access to IP media resources. This library is used for
H.323/SIP call control signaling and is used in conjunction with GC_H3R_LIB.

GC_ISDN_LIB
The Integrated Services Digital Network (ISDN) call control library that controls network
interfaces connected to an ISDN network. This library is used for ISDN call control signaling
on Dialogic® Springware Boards only.

GC_PDKRT_LIB
The Protocol Development Kit Run Time (PDKRT) call control library that controls access to
network interfaces that use T1 robbed bit signaling or E1 CAS and PDK protocols. The
PDKRT is a flexible engine and can be used to add features to protocols. This library is used
for call control using CAS/R2MF (PDK protocols) signaling on Dialogic® Springware Boards
only.

22 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Product Description

GC_SS7_LIB
The call control library that controls SS7 network interfaces on Dialogic® SS7 Boards. This
library is used for SS7 call control signaling only.

1.4.1 Starting Call Control Libraries

Call control libraries must be started before they can be used by Global Call functions. The call
control libraries are started when a gc_Start() function is issued. The gc_Start() function allows
the selective starting of call control libraries where the application can specify if all the call control
libraries are to be started or only specified libraries are to be started. The application can also start
a custom call control library that is not supported by Global Call. See the Dialogic® Global Call
API Library Reference for more information about the gc_Start() function.

Note: Invoking gc_Start(NULL) loads all call control libraries and consequently the memory footprint
includes memory that is allocated for all call control libraries. To reduce the memory footprint,
selective loading of call control libraries should be done. For example, if only the ISDN and
PDKRT call control libraries are required, load GC_ISDN_LIB and GC_PDKRT_LIB only. For
more information and an example, see the gc_Start() function in the Dialogic® Global Call API
Library Reference.

1.4.2 Call Control Library States

The initial state of all the call control libraries is the Configured state. When a call control library is
successfully started, the library will be in the Available state. If the call control library fails to start,
the library will be in the Failed state as shown in the diagram below. If the call control library is not
started, it remains in the Configured state.

Figure 2. Call Control Library States

Table 1 describes the different states of a call control library.

gc_Start()

Start
Failed

Start
Successful

CONFIGURED

AVAILABLE FAILED

Table 1. Call Control Library States

State Description

Configured A library that is supported by Global Call is considered a configured library.

Dialogic® Global Call API Programming Guide — September 2008 23
Dialogic Corporation

Product Description

Each configured call control library is assigned an ID number by Global Call. Each library also has
a name in an ASCII string format. Library functions perform tasks such as converting a call control
library ID to an ASCII name and vice-versa, determining the configured libraries, determining the
available libraries, determining the libraries that started and the libraries that failed to start, and
other library functions.

The following functions are the call control library information functions. All the library functions
are synchronous, thus they return without a termination event.

• gc_CCLibIDToName()

• gc_CCLibNameToID()

• gc_CCLibStatusEx()

• gc_GetVer()

See the Dialogic® Global Call API Library Reference for detailed information about these
functions.

1.5 Dialogic® Global Call API Object Identifiers

The Dialogic® Global Call API is call-oriented, that is, each call initiated by the application or
network is assigned a call reference number (CRN) for call control and tracking purposes. Call
handling is independent of the line device over which the call is routed. Each line device or device
group is assigned a line device identifier (LDID) that enables the application to address any
resource or group of resources using a single device identifier. Certain features, such as Feature
Transparency and Extension (FTE), Real Time Configuration Management (RTCM), and Global
Call Service Request (GCSR) operate on a basic entity called a Global Call target object. Target
objects are identified by a target type and a target ID.

The following topics provide more detailed information:

• Line Device Identifier

• Call Reference Number

• Object Identifiers and Resource Sharing Across Processes

• Target Objects

Available A library that has been successfully started is considered to be available for use by a
Global Call application.

Failed A library that has failed to start is considered to be unavailable for use by a Global Call
application.

Table 1. Call Control Library States (Continued)

State Description

24 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Product Description

1.5.1 Line Device Identifier

A line device identifier (LDID) is a unique logical number assigned to a specific resource (for
example, a time slot) or a group of resources within a process by the Global Call library. Minimally,
the LDID number will represent a network resource. For example, both a network resource and a
voice resource are needed to process an R2 MFC dialing function. Using Global Call, a single
LDID number is used by the application (or thread) to represent this combination of resources for
call control.

An LDID number is assigned to represent a physical device(s) or logical device(s) that will handle
a call, such as a network interface resource, when the gc_OpenEx() function is called. This
identification number assignment remains valid until the gc_Close() function is called to close the
line device.

When an event arrives, the application (or thread) can retrieve the LDID number associated with
the event by using the linedev field of the associated METAEVENT structure. The LDID is
retrieved using the gc_GetMetaEvent() or the gc_GetMetaEventEx() function.

1.5.2 Call Reference Number

A call reference number (CRN) is a means of identifying a call on a specific line device. A CRN is
created by the Global Call library when a call is requested by the application, thread, or network.

With the CRN approach, the application (or thread) can access and control the call without any
reference to a specific physical port or line device. CRNs are assigned to both inbound and
outbound calls:

Inbound calls
The CRN is assigned via the gc_WaitCall() function. For more information on
gc_WaitCall(), see the Dialogic® Global Call API Library Reference.

Outbound calls
The CRN is assigned via either the gc_MakeCall() or gc_SetupTransfer() function. For
more information on these functions, see the Dialogic® Global Call API Library Reference.

This CRN has a single LDID associated with it, for example, the line device on which the call was
made. However, a single line device may have multiple CRNs associated with it (that is, more than
one call may exist on a given line). A line device can have a maximum of 20 CRNs associated with
it. At any given instant, each CRN is a unique number within a process. After a call is terminated
and the gc_ReleaseCallEx() function is called to release the resources used for the call, the CRN
is no longer valid.

1.5.3 Object Identifiers and Resource Sharing Across Processes

The CRNs and LDIDs assigned by the Global Call library can not be shared among multiple
processes. These assigned CRNs and LDIDs remain valid only within the process invoked. That is,
for call control purposes, you should not open the same physical device from more than one
process, nor from multiple threads in a Windows® environment. Unpredictable results may occur if
these guidelines are not followed.

Dialogic® Global Call API Programming Guide — September 2008 25
Dialogic Corporation

Product Description

1.5.4 Target Objects

A target object provides a way of identifying a particular entity that is maintained by a specific
software module. In API function calls, the target object is specified by a pair of parameters, the
target_type and target_ID:

target_type
Identifies the kind of software module and the entity that it maintains. For example, the target
type GCTGT_GCLIB_CHAN represents the Global Call Library and a channel entity that it
maintains.

target_ID
Identifies the specific target object, such as a line device ID (LDID), which is generated by
Global Call at run time.

Table 2 shows the combinations of physical or logical entities and software module entities that can
make up a target type (target_type).

The possible software modules include:

• GCLib

• CCLib

• Protocol

• Firmware

The possible entities include:

System
all physical boards

Network interface
logical board or virtual board

Channel
time slot

CRN
call reference number

Table 2. Supported Target Types

Software Module
Entity

System Network Interface Channel CRN

GCLib S S S S

CCLib S S S S

Protocol SV SV SV

Firmware SV SV

S = Supported
SV = Supported with variances, see the appropriate Dialogic® Global Call Technology Guide for more information.

26 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Product Description

A target type (target_type) name is composed of the prefix, GCTGT, which stands for Global Call
Target, a software module name, such as GCLIB, and an entity name, such as NETIF. For example,
the target type GCTGT_GCLIB_NETIF indicates that the desired target type is a network interface
maintained by the Global Call library.

A target ID (target_ID) identifies the specific object that is located within the category defined by
the target type (target_type). A target ID can be any of the following:

• line device ID (LDID)

• call reference number (CRN)

• Global Call library ID (GCGV_LIB)

• call control library ID (CCLib ID)

• protocol ID

The types and IDs for target objects are defined at the Global Call level. Table 3 shows the target
types, as described in Table 2, with various target IDs to represent valid target objects.

Table 3. Target Types and Target IDs

Target Type Target ID Description

GCTGT_GCLIB_SYSTEM ‡ GCGV_LIB Global Call library module target object.

GCTGT_CCLIB_SYSTEM ‡ CCLib ID Call control library module target object.

GCTGT_PROTOCOL_SYSTEM ‡ Protocol ID Protocol module target object.

GCTGT_GCLIB_NETIF Global Call line device ID Network interface target object in Global
Call library module.

GCTGT_CCLIB_NETIF Global Call line device ID Network interface target object in call
control library module.

GCTGT_PROTOCOL_NETIF ‡ Global Call line device ID Network interface target object in protocol
module.

GCTGT_FIRMWARE_NETIF Global Call line device ID Network interface target object in firmware
module.

GCTGT_GCLIB_CHAN Global Call line device ID Channel target object in Global Call library
module.

GCTGT_CCLIB_CHAN Global Call line device ID Channel target object in call control library
module.

GCTGT_PROTOCOL_CHAN Global Call line device ID Channel of protocol module target object.

GCTGT_FIRMWARE_CHAN Global Call line device ID Channel target object in firmware module.

GCTGT_GCLIB_CRN Global Call CRN CRN target object in Global Call library
module.

GCTGT_CCLIB_CRN Global Call CRN CRN target object in call control library
module.

‡ Target types that can only be used by functions issued in synchronous mode. If a function uses one of these target types in
asynchronous mode, an error will be generated. The functions that can use these target types are gc_GetConfigData(),
gc_QueryConfigData(), gc_SetConfigData(), gc_ReqService(), and gc_RespService().

Dialogic® Global Call API Programming Guide — September 2008 27
Dialogic Corporation

Product Description

Target Object Availability

Except for the GCTGT_GCLIB_SYSTEM target object, all target IDs are generated or assigned by
Global Call when the target object is created (for physical targets) or loaded (for software targets).
Table 4 shows when a target object becomes available and when it becomes unavailable, depending
on the target type.

Retrieving Target IDs

Before the Global Call application can retrieve, update, or query the configuration data of a target
object, it should obtain the target ID as shown in Table 5.

Table 4. Target Object Availability

Target Type Target Object Available Target Object Unavailable

GCTGT_GCLIB_SYSTEM

GCTGT_CCLIB_SYSTEM

After gc_Start() After gc_Stop()

GCTGT_PROTOCOL_SYSTEM After first successful call to
gc_OpenEx()

After call to gc_Close() using the
protocol specified in target_type

GCTGT_GCLIB_CRN

GCTGT_CCLIB_CRN

After a call is created
(gc_MakeCall() returns or
GCEV_OFFERED is received)

After gc_ReleaseCallEx()

GCTGT_GCLIB_NETIF

GCTGT_CCLIB_NETIF

GCTGT_PROTOCOL_NETIF

GCTGT_FIRMWARE_NETIF

GCTGT_GCLIB_CHAN

GCTGT_CCLIB_CHAN

GCTGT_PROTOCOL_CHAN

GCTGT_FIRMWARE_CHAN

After gc_OpenEx() After gc_Close()

Table 5. Obtaining Target IDs

Target ID Procedure for Obtaining Target ID

GCGV_LIB After the call control library has been successfully started (that is, after the
gc_Start() function is called), the target object’s CCLib ID can be obtained by
calling the gc_CCLibNameToID() function.

Protocol ID After the first successful call to gc_OpenEx(), the protocol ID can be obtained
by calling gc_QueryConfigData() in which:

• Query ID is GCQUERY_PROTOCOL_NAME_TO_ID

• Source data is the protocol name

• Destination data is the protocol ID

28 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Product Description

1.6 Dialogic® Global Call API versus Dialogic® DTI API

The Dialogic® R4 Digital Network Interface (DTI) API presents several functions, for example,
time-division multiplexing (TDM) bus routing, network interface alarms, and time slot signaling
control. The Dialogic® Global Call API presents a higher level of call control abstraction than the
DTI API.

There are numerous digital interface telephony protocols in use worldwide. To name some, there
are robbed-bit T1, CAS E1, ISDN, SS7, IP, and ATM. They all have one thing in common: they all
try to solve the problem of connecting two or more people or machines anywhere in the world in
direct conversation. Once the connection has been established, various data and voice streaming
mechanisms can be used, such as digitized human voice, IP packets, or any other digital data.

Those protocols mentioned above all use a similar high level layer 3 protocol. The end result is that
one end can initiate a call (make call), be informed of an incoming call, or drop the call. Global
Call presents the developer with a similar level of abstraction at the API level, hiding the internals
of the specific protocol. That is, in order to make a call under a T1 robbed-bit trunk, the protocol
indicates that one must flip the A & B signaling bits, while to do the same under an ISDN PRI
protocol, one must send a specific HDLC packet over the ISDN data channel. All of these
operations are hidden from developers using Global Call.

It is technically possible to design a Global Call application in such a way that the same application
can run with an E1 CAS trunk or an E1 ISDN trunk without requiring changes.

Global Call is the API of choice over the DTI API for a number of reasons, including the following:

• Global Call presents the right level of abstraction for rapid digital interface telephony
application deployment.

• The Dialogic® DM3 architecture with the TSC resource does not provide access to low-level
channel associated signaling (CAS, robbed-bit), so most of the DTI API cannot be provided.

• Global Call also enables easier digital network interface to analog network interface
portability, where analog network interface is supported.

One of the challenges of migrating an application that used Dialogic® Springware Boards and the
DTI API is the lack of support for much of the DTI API functionality when using Dialogic® DM3
Boards. However, Global Call more than makes up for this shortcoming and simplifies the life of
the CTI application developer by providing a level of abstraction that allows seamless support for

Global Call line device ID After a line device is opened, the CCLib ID and protocol ID (if applicable)
associated with this line device can be obtained by the gc_GetConfigData()
function with the set ID and parameter ID as (GCSET_CCLIB_INFO,
GCPARM_CCLIB_ID) and (GCSET_PROTOCOL,
GCPARM_PROTOCOL_ID).

Global Call CRN After a call target object is created, its target object ID (that is, the Global Call
CRN) will be an output of the gc_MakeCall() function or provided by the
metaevent associated with the GCEV_OFFERED event.

Table 5. Obtaining Target IDs (Continued)

Target ID Procedure for Obtaining Target ID

Dialogic® Global Call API Programming Guide — September 2008 29
Dialogic Corporation

Product Description

any telephony interface, including T1, E1, ISDN, or even analog. Once an application has been
designed to use Global Call, minimum changes (if any) are required for the same application to run
on various Dialogic® hardware, including Dialogic® Springware and Dialogic® DM3 Boards.

It is a good architectural decision to use Global Call because of the greater flexibility and
portability provided by Global Call. This is true, not just for applications that use Dialogic® DM3
Boards, but for any CTI application that uses Dialogic® hardware.

1.7 Dialogic® Global Call API versus Dialogic® ISDN API

Many existing R4 applications make use of the Dialogic® ISDN API. This API has been evolving
over time, and provides access to two levels of abstraction, known as layer 3 and layer 2. When
using Dialogic® DM3 Boards, the ISDN API is not supported; however, much of its layer 3
functionality can be accomplished directly and at a similar level of abstraction using the Dialogic®
Global Call API.

If you wish to port an existing ISDN application that uses Dialogic® Springware Boards to an
ISDN application that uses Dialogic® DM3 Boards, you must replace the ISDN functions with
equivalent Global Call functions. Most of the ISDN API functions have the cc_ function name
prefix.

30 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Product Description

Dialogic® Global Call API Programming Guide — September 2008 31
Dialogic Corporation

22.Programming Models

This chapter describes the programming models supported by the Dialogic® Global Call API.
Topics include:

• Programming Models Overview . 31

• Synchronous Mode Programming for Linux. 31

• Asynchronous Mode Programming for Linux. 31

• Synchronous Mode Programming for Windows®. 32

• Asynchronous Mode Programming for Windows®. 33

2.1 Programming Models Overview

The Dialogic® Global Call API supports application development using both asynchronous and
synchronous programming models. By usage, the asynchronous and synchronous models are often
said to use asynchronous and synchronous modes. The programming modes are introduced briefly
in this chapter and described in more detail in the Dialogic® Standard Runtime Library API
Programming Guide:

2.2 Synchronous Mode Programming for Linux

Synchronous mode programming is characterized by functions that run uninterrupted to
completion. Synchronous functions block an application or process until the required task is
successfully completed or a failed or error message is returned. Thus, a synchronous function
blocks the application and waits for a completion indication from the firmware, driver, or network
before returning control to the application. Since further execution is blocked, a separate process is
needed for each channel or task managed by the application. A termination event is not generated
for a synchronous function.

The synchronous mode can handle multiple calls in a multiline application by structuring the
application as a single-line application and then spawning a process for each line required.

Note: Restriction – No more than one synchronous function can be called on the same device
simultaneously from different threads. The Global Call library disables a second synchronous
function call immediately if the first synchronous function call has not been completed.

2.3 Asynchronous Mode Programming for Linux

Asynchronous mode programming is characterized by allowing other processing to take place
while a function executes. In asynchronous mode programming, multiple channels are handled in a
single process rather than in separate processes as required in synchronous mode programming.

32 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Programming Models

An asynchronous mode function typically receives an event from the Dialogic® Standard Runtime
Library (SRL) indicating completion (termination) of the function in order for the application to
continue processing a call on a particular channel. A function called in the asynchronous mode
returns control to the application after the request is passed to the device driver. A termination event
is returned when the requested operation completes.

Caution: In general, when a function is called in asynchronous mode, and an associated termination event
exists, the gc_Close() function should not be called until the termination event has been received.
In order to disable gc_WaitCall(), the gc_ResetLineDev() function should be called. If this is not
done, there are potential race conditions under which the application may crash with a
segmentation fault.

For Linux environments, the asynchronous models provided for application development include:

Asynchronous (polled)
In this model, the application polls for or waits for events using the sr_waitevt() function.
When an event is available, event information may be retrieved using the gc_GetMetaEvent()
function. Retrieved event information is valid until the sr_waitevt() function is called again.
Typically, the polled model is used for applications that do not need to use event handlers to
process events.

Asynchronous with event handlers
The asynchronous with event handlers model may be run in non-signal mode only. Event
handlers can be enabled or disabled for specific events on specific devices; see Chapter 4,
“Event Handling” for details.

2.4 Synchronous Mode Programming for Windows®

Synchronous mode programming is characterized by functions that block thread execution until the
function completes or a failed or error message is returned. The operating system can put
individual device threads to sleep while allowing other device threads to continue their actions
unabated. Thus, a synchronous function waits for a completion indication from the firmware or
driver before returning control to the thread. Since further execution is blocked by a synchronous
function, a separate thread is needed for each channel or task. When a Dialogic® function
completes, the operating system wakes up the function’s thread so that processing continues. A
termination event is not generated for a synchronous function.

The Windows® synchronous programming model should be used for less complex applications
where only a limited number of channels and calls will be handled and processor loading remains
light. The synchronous model should be used only for simple and straight flow control applications
with only one action per device occurring at any time.

Note: Restriction – No more than one synchronous function can be called on the same device
simultaneously from different threads. The Global Call library disables a second synchronous
function call immediately if the first synchronous function call has not been completed.

A synchronous model application can handle multiple channels by structuring the application as a
single-channel application and then creating a separate synchronous thread for each channel. For
example, for a 60-channel application, the application creates 60 synchronous threads, one thread
to handle each of the 60 channels. The application would not need event-driven state machine

Dialogic® Global Call API Programming Guide — September 2008 33
Dialogic Corporation

Programming Models

processing because each Dialogic® function runs uninterrupted to completion. Since this model
calls functions synchronously, it is less complex than a corresponding asynchronous model
application. However, since synchronous applications imply the creation of a thread or a process
for each channel used, these applications tend to slow down the response of the system and to
require a high level of system resources (that is, they increase processor loading) to handle each
channel. This can limit maximum device density, providing limited scalability for growing
systems.

When using the synchronous model, unsolicited events are not processed until the thread calls a
Dialogic® function such as gc_GetMetaEvent(), dx_getevt(), or dt_getevt(). Unsolicited events
can be handled as follows:

• By creating a separate asynchronous thread with event handlers; see Section 2.5.2,
“Asynchronous Model with Event Handlers”, on page 35. For example, the synchronous
application would first create an asynchronous thread to handle all unsolicited events and then
the application could create synchronous threads, one for each channel, to process the calls on
each channel. The asynchronous thread uses the sr_waitevt() function to do a blocking call.
When an unsolicited event occurs, the asynchronous unsolicited event-processing thread
identifies the event to a device, services the event, and notifies the synchronous thread
controlling the device of the action taken. When the application runs an unsolicited events
asynchronous thread, the event processing thread internal to the SRL should be disabled by
setting the SR_MODELTYPE value of the sr_setparm() function’s parmno parameter to
SR_STASYNC.

• By enabling event handler(s) within the application before creating the synchronous threads
that handle each channel. For example, the synchronous application would first enable the
unsolicited event handler(s) for the device(s) and event(s) and/or for any device, any event.
Then the application would create synchronous threads, one for each channel, to process the
calls on each channel. When an unsolicited event specified by an enabled event handler occurs,
the SRL passes the unsolicited event information to the application. When the application uses
the unsolicited event handler(s) approach, the event processing thread internal to the SRL must
be enabled (default). The SRL event processing thread can also be enabled by setting the
SR_MODELTYPE value of the sr_setparm() function’s parmno parameter to
SR_MTASYNC.

2.5 Asynchronous Mode Programming for Windows®

Programming in asynchronous mode in Windows® is described in the following topics:

• Asynchronous Model Overview

• Asynchronous Model with Event Handlers

• Asynchronous with Windows® Callback Model

• Asynchronous with Win32® Synchronization Model

• Extended Asynchronous Programming Model

34 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Programming Models

2.5.1 Asynchronous Model Overview

Asynchronous mode programming is characterized by the calling thread performing other
processing while a function executes. At completion, the application receives event notification
from the SRL and then the thread continues processing the call on a particular channel.

A function called in the asynchronous mode returns control immediately after the request is passed
to the device driver and allows thread processing to continue. A termination event is returned when
the requested operation completes, thus allowing the Dialogic operation (state machine processing)
to continue.

Caution: In general, when a function is called in asynchronous mode, and an associated termination event
exists, the gc_Close() function should not be called until the termination event has been received.
In order to disable gc_WaitCall(), gc_ResetLineDev() should be called. If this is not done, there
are potential race conditions under which the application may crash with a segmentation fault.

Functions may be initiated asynchronously from a single thread and/or the completion
(termination) event can be picked up by the same or a different thread that calls the sr_waitevt()
and gc_GetMetaEvent() functions. When these functions return with an event, the event
information is stored in the METAEVENT data structure. The event information retrieved
determines the exact event that occurred and is valid until the sr_waitevt() and
gc_GetMetaEvent() functions are called again.

For Windows® environments, the asynchronous models provided for application development also
include:

• Combined synchronous and asynchronous programming; see Section 2.4, “Synchronous Mode
Programming for Windows®”, on page 32

• Asynchronous model with event handlers

• Asynchronous with Windows® callback model

• Asynchronous with Win32® synchronization model

• Extended asynchronous programming model

The asynchronous programming models should be used for more complex applications that require
coordinating multiple tasks. Asynchronous model applications typically run faster than
synchronous models and require lower levels of system resources. Asynchronous models reduce
processor loading because of the reduced number of threads inherent in asynchronous models and
the elimination of scheduling overhead. Asynchronous models use processor resources more
efficiently because multiple channels are handled in a single thread or in a few threads. See
Section 6.1, “General Programming Tips”, on page 105 for details. Of the asynchronous models,
the asynchronous with SRL callback model and the asynchronous with Windows® callback model
provide the tightest integration with the Windows® message/event mechanism. Asynchronous
model applications are typically more complex than corresponding synchronous model
applications due to a higher level of resource management (that is, the number of channels
managed by a thread and the tracking of completion events) and the development of a state
machine.

After the application issues an asynchronous function, the application uses the sr_waitevt()
function to wait for events on Dialogic® devices. All event coding can be accomplished using

Dialogic® Global Call API Programming Guide — September 2008 35
Dialogic Corporation

Programming Models

switch statements in the main thread. When an event is available, event information may be
retrieved using the gc_GetMetaEvent() function. Retrieved event information is valid until the
sr_waitevt() function is called again. The asynchronous model does not use event handlers to
process events.

In this model, the SRL handler thread must be initiated by the application by setting the
SR_MODELTYPE value to SR_STASYNC.

2.5.2 Asynchronous Model with Event Handlers

The asynchronous with event handlers model uses the sr_enbhdlr() function to automatically
create the SRL handler thread. The application does not need to call the sr_waitevt() function
since the thread created by the sr_enbhdlr() already calls the sr_waitevt() function to get events.
Each call to the sr_enbhdlr() function allows the Dialogic® events to be serviced when the
operating system schedules the SRL handler thread for execution.

Note: The SR_MODELTYPE value must not be set to SR_STASYNC because the SRL handler thread
must be created by the sr_enbhdlr() call. The event handler must not call the sr_waitevt()
function or any synchronous Dialogic® function.

Individual handlers can be written to handle events for each channel. The SRL handler thread can
be used when porting applications developed for other operating systems.

2.5.3 Asynchronous with Windows® Callback Model

The asynchronous with Windows® callback model allows an asynchronous application to receive
SRL event notification through the standard Windows® message handling scheme. This model is
used to achieve tight integration with the Windows® messaging scheme. Using this model, the
entire Dialogic portion of the application could be run on a single thread. This model calls the
sr_NotifyEvt() function once to define a user-specified application window handle and a user-
specified message type. When an event is detected, a message is sent to the application window.
The application responds by calling the sr_waitevt() function with a 0 timeout value. For Global
Call events and optionally for non-Global Call events, the application must then call the
gc_GetMetaEvent() function before servicing the event.

In this model, the SRL event handler thread must be initiated by the application by setting the
SR_MODELTYPE value to SR_STASYNC. For detailed information on this programming model,
see the Dialogic® Standard Runtime Library API Programming Guide.

2.5.4 Asynchronous with Win32® Synchronization Model

The asynchronous with Win32® synchronization model allows an asynchronous application to
receive SRL event notification through standard Windows® synchronization mechanisms. This
model uses one thread to run all Dialogic® devices and thus requires a lower level of system
resources than the synchronous model. This model allows for greater scalability in growing
systems. For detailed information on this programming model, see the Dialogic® Standard
Runtime Library API Programming Guide.

36 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Programming Models

2.5.5 Extended Asynchronous Programming Model

The extended asynchronous programming model is basically the same as the asynchronous model
except that the application uses multiple asynchronous threads, each of which controls multiple
devices. In this model, each thread has its own specific state machine for the devices that it
controls. Thus, a single thread can look for separate events for more than one group of channels.
This model may be useful, for example, when you have one group of devices that provides fax
services and another group that provides interactive voice response (IVR) services, while both
groups share the same process space and database resources. The extended asynchronous model
can be used when an application needs to wait for events from more than one group of devices and
requires a state machine.

Because the extended asynchronous model uses only a few threads for all Dialogic® devices, it
requires a lower level of system resources than the synchronous model. This model also enables
using only a few threads to run the entire Dialogic portion of the application.

Whereas default asynchronous programming uses the sr_waitevt() function to wait for events
specific to one device, extended asynchronous programming uses the sr_waitevtEx() function to
wait for events specific to a number of devices (channels).

Note: Do not use the sr_waitevtEx() function in combination with either the sr_waitevt() function or
event handlers.

This model can run an entire application using only a few threads. When an event is available, the
gc_GetMetaEventEx() function must be used to retrieve event-specific information. The values
returned are valid until the sr_waitevtEx() function is called again. Event commands can be
executed from the main thread through switch statements; the events are processed immediately.

The extended asynchronous model calls the sr_waitevtEx() function for a group of devices
(channels) and polls for (waits for) events specific to that group of devices. In this model, the SRL
event handler thread is not created (the SR_MODELTYPE value is set to SR_STASYNC) and the
sr_enbhdlr() function in not used.

In the extended asynchronous model, functions are initiated asynchronously from different threads.
A thread waits for events using the sr_waitevtEx() function. The event information can be
retrieved using the gc_GetMetaEventEx() function. When this function returns, the event
information is stored in the METAEVENT data structure.

Caution: When calling the gc_GetMetaEventEx() function from multiple threads, make sure that your
application uses unique thread-related METAEVENT data structures (thread local variables or
local variables), or make sure that the METAEVENT data structure is not overwritten until all
processing of the current event has completed.

The event information retrieved determines the exact event that occurred and is valid until the
sr_waitevtEx() function returns with another event.

Dialogic® Global Call API Programming Guide — September 2008 37
Dialogic Corporation

33.Call State Models

This chapter describes the call state models provided by the Dialogic® Global Call API. Topics
include the following:

• Call State Model Overview . 37

• Basic Call Model . 37

• Basic Call Model Configuration Options . 40

• Basic Call Control in Asynchronous Mode. 43

• Basic Call Control in Synchronous Mode . 69

• Advanced Call Control with Call Hold and Transfer . 87

3.1 Call State Model Overview

The Dialogic® Global Call API maintains a generic call model from which technology-specific call
models can be derived. Some technologies support only a subset of the complete call model. The
call establishment and termination procedures are based on this call model. The following sections
describe the call states associated with the basic call model and configuration options.

3.2 Basic Call Model

Each call received or generated by the Dialogic® Global Call API is processed through a series of
states, where each state represents the completion of certain tasks or the current status of the call.
Some states in the basic call model are optional and can be enabled or disabled selectively. Only the
optional states can be enabled or disabled. Every technology or call control library has a default
call state model consisting of all the states it can possibly support from the basic call model. If a
state is disabled, all corresponding events are disabled. If a state is enabled, all corresponding
events are enabled.

The call states change in accordance with the sequence of functions called by the application and
the events that originate in the network and system hardware. The current state of a call can be
changed by:

• Function call returns

• Termination events (indications of function completion)

• Unsolicited events

The states of the basic call model are described in the following sections:

• Basic Call States at the Inbound Interface

• Basic Call States at the Outbound Interface

38 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

• Basic Call States for Call Termination

3.2.1 Basic Call States at the Inbound Interface

The basic inbound call states are as follows:

Null state (GCST_NULL)
This state indicates that no call is assigned to the channel (time slot or line). This is the initial
state of a channel when it is first opened. This state is also reached when a call is released or
after the channel is reset. A channel in this state is available for inbound calls after being
initialized to receive incoming calls.

Call Detected (GCST_DETECTED)
An incoming call has been received but not yet offered to the application. In this state, the call
is being processed, which typically involves waiting for more information or allocating a
resource. Although the call is not yet offered to the application, this state is for informational
purposes to reduce glare conditions since the application is aware of the presence of a call on
the channel.

Call Offered (GCST_OFFERED)
This state exists for an incoming call when the user application has received a call
establishment request but has not yet responded. The newly arrived inbound call is offered to
the user application to be accepted, answered, rejected, etc. Call information is typically
available at this time to be examined so that the application can determine the appropriate
action to take with regards to the call.

Get More Information (GCST_GETMOREINFO)
This state exists for an incoming call when the network has received an acknowledgment of
the call establishment request, which permits the network to send additional call information
(if any) in the overlap mode. The application is waiting for more information, typically called
party number digits. (This state is optional and may not be supported in all technologies. See
the appropriate Dialogic® Global Call Technology Guide for information.)

Call Routing (GCST_CALLROUTING)
This state exists for an incoming call when the user has sent an acknowledgment that all call
information necessary to effect call establishment has been received. The acknowledgment can
be sent from the Offered or the GetMoreInfo state if all the information has been received. This
transition typically involves the sending of Call Routing tones or technology specific
messages; for example, in the case of ISDN, a CALL_PROCEEDING message is sent. The
application can now accept or answer the call. (This state is optional and may not be supported
in all technologies. See the appropriate Dialogic® Global Call Technology Guide for
information.)

Call Accepted (GCST_ACCEPTED)
This state indicates that the incoming call was offered and accepted by the application. The
user on the inbound side has indicated to the calling party that the destination user is alerting or
ringing but has not yet answered.

Call Connected (GCST_CONNECTED)
This is a common state that exists for an incoming call when the user has answered the call.

Dialogic® Global Call API Programming Guide — September 2008 39
Dialogic Corporation

Call State Models

3.2.2 Basic Call States at the Outbound Interface

The basic outbound call states are as follows:

Null state (GCST_NULL)
This state indicates that no call is assigned to the channel (time slot or line). This is the initial
state of a channel when it is first opened. This state is also reached when a call is released or
after the channel is reset. The channel in this state is available for making outbound calls.

Call Dialing (GCST_DIALING)
This state exists for an outgoing call when an outbound call request is made. The call signaling
or message is in the process of being prepared for transfer or being transferred across the
telephony network (overlap sending or partial dialing). In response, the remote side may
request more information, acknowledge the call, accept the call, or answer the call.

Send More Information (GCST_SENDMOREINFO)
This state exists for an outgoing call when the user has received an acknowledgment of the call
establishment request that permits or requests the user to send additional call information to
the network in overlap mode. The information, typically digits, is in the process of being
prepared for transfer or being transferred across the telephony network (overlap sending or
partial dialing). (This state is optional and may not be supported in all technologies. See the
appropriate Dialogic® Global Call Technology Guide for information.)

Call Proceeding (GCST_PROCEEDING)
This state exists for an outgoing call when the user has received an acknowledgment that all
call information necessary to effect call establishment has been received and the call is
proceeding. The remote side can now accept or answer the call. (This state is optional and may
not be supported in all technologies. See the appropriate Dialogic® Global Call Technology
Guide for information.)

Call Alerting (GCST_ALERTING)
This state exists for an outgoing call when the calling user has received an indication that
remote user alerting has been initiated, typically ringing. The outbound call has been delivered
to the remote party, which has not yet answered the call.

Call Connected (GCST_CONNECTED)
This is a common state that exists for an outgoing call when the user has received an indication
that the remote user has answered the call. The calling and called parties are connected and the
call is therefore active on the related call channel.

3.2.3 Basic Call States for Call Termination

The basic call termination states are as follows:

Call Disconnected (GCST_DISCONNECTED)
This state indicates that the remote party has disconnected the call. The remote party can
disconnect the call prior to establishing a connection, that is, while the call setup is in progress.
Thus, the call does not have to be in the connected state before it can be disconnected. The user
must respond by dropping the call and releasing the internal resources allocated for the call.

Call Idle (GCST_IDLE)
This state indicates that the local user has dropped the call. This may be a termination initiated
by the local user or a response to the remote side disconnecting the call. While the call no

40 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

longer exists, internal system resources committed to servicing the call are still present. The
user must release these resources, as they are no longer required.

3.3 Basic Call Model Configuration Options

Depending on the specific technology, the following options are available for configuring the
technology call control layer or the application:

Call State
If a state is disabled, the corresponding call state event is also disabled.

Call State Event
Call state transition events are masked so that the events are not generated.

Call Acknowledgment
An acknowledgment is sent to indicate to the remote side that the call has been received, but
more information is required to proceed with the call.

Call Proceeding
Call proceeding information is sent to the remote side when an incoming call is received and
all the information required to proceed with the call is available.

Minimum Information
A minimum amount of destination address information, such as DNIS, is collected before the
call is offered to the application.

Maximum Information
A maximum amount of destination information is collected, after which no more information
is accepted or stored.

3.3.1 Call State Configuration

Some states in the basic call model are optional and can be enabled or disabled selectively. Every
technology or call control library has a default call state model consisting of all the states it can
support from the basic call model. If a state is disabled, the corresponding call state event will also
be disabled. If a state is enabled, the event mask setting still determines which call state events are
sent to the application.

This configuration can be done by issuing the gc_SetConfigData() function with a target_type of
GCTGT_GCLIB_CHAN and a target_ID of a line device, and passing the appropriate set ID and
parameter IDs. The set ID used in this context is GCSET_CALLSTATE_MSK and the relevant
parameter IDs are:

GCACT_ADDMSK
Enable the call states specified in the value in addition to other states already enabled.

GCACT_SUBMSK
Disable all the call states specified in the value.

GCACT_SETMSK
Enable the call states specified in the value and disable other optional states that are already
enabled.

Dialogic® Global Call API Programming Guide — September 2008 41
Dialogic Corporation

Call State Models

The GCACT_ADDMSK, GCACT_SUBMSK, and GCACT_SETMSK parameter IDs can be
assigned one of the following values (of type GC_VALUE_LONG), or an ORed combination of
the values:

• GCMSK_ALERTING_STATE

• GCMSK_CALLROUTING_STATE

• GCMSK_DETECTED_STATE

• GCMSK_GETMOREINFO_STATE

• GCMSK_PROCEEDING_STATE

• GCMSK_SENDMOREINFO_STATE

See the Dialogic® Global Call API Library Reference for more information on the
gc_SetConfigData() function.

3.3.2 Call State Event Configuration

Some call state transition events can be masked so that the events are not generated. Although an
event may be masked, the corresponding call state transition can still take place. This configuration
can be done by issuing the gc_SetConfigData() function with a target_type of
GCTGT_GCLIB_CHAN and a target_ID of a line device, and passing the appropriate set ID and
parm IDs.

The set ID used in this context is GCSET_CALLEVENT_MSK and the relevant parm IDs are:

GCACT_ADDMSK
Enable the notification of events specified in the value in addition to previously enabled
events.

GCACT_SUBMSK
Disable notification of the events specified in the value.

GCACT_SETMSK
Enable the notification of events specified in the value and disable notification of any event not
specified.

The GCACT_ADDMSK, GCACT_SUBMSK, and GCACT_SETMSK parm IDs can be assigned
one of the following values (of type GC_VALUE_LONG), or an ORed combination of the values:

• GCMSK_ALERTING

• GCMSK_DETECTED

• GCMSK_DIALING

• GCMSK_PROCEEDING

• GCMSK_REQMOREINFO

Note: Using the gc_SetConfigData() function with a target_ID of a board device to mask events for all
devices associated with a board is not supported. Call state events can be masked on a per line
device basis only.

42 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

See the Dialogic® Global Call API Library Reference for more information on the
gc_SetConfigData() function.

3.3.3 Call Acknowledgment Configuration

When an incoming call is received, an acknowledgment is typically sent to the remote side to
indicate that the call was received. In some technologies, if the incoming call does not have
sufficient information, this acknowledgment also indicates to the remote side that more information
is required to proceed with the call (see Section 3.4.1.8, “Overlap Receiving” for more
information). Either the technology call control layer or the application can be configured to send
the acknowledgment. This configuration can be set by the application issuing the
gc_SetConfigData() function. The set ID used in this context is GCSET_CALL_CONFIG and the
relevant parm ID is:

GCPARM_CALLACK
Specify whether call acknowledgment is provided by the application or the technology call
control layer.

The GCPARM_CALLACK parm ID can be assigned one of the following values (of type
GC_VALUE_INT):

• GCCONTROL_APP (application controlled)

• GCCONTROL_TCCL (technology call control layer controlled)

See the Dialogic® Global Call API Library Reference for more information on the
gc_SetConfigData() function.

3.3.4 Call Proceeding Configuration

When an incoming call is received and all the information required to proceed with the call is
available, an indication that the call is proceeding is usually sent to the remote side for
informational purposes. Either the technology call control layer or the application can be
configured to send a call proceeding indication to the remote side. This can be done by issuing the
gc_SetConfigData() function. The set ID used in this context is GCSET_CALL_CONFIG and the
relevant parm ID is:

GCPARM_CALLPROC
Specify whether call proceeding indication is provided by the application or the technology
call control layer.

The GCPARM_CALLPROC parm ID can be assigned one of the following values (of type
GC_VALUE_INT):

• GCCONTROL_APP (application controlled)

• GCCONTROL_TCCL (technology call control layer controlled)

See the Dialogic® Global Call API Library Reference for more information on the
gc_SetConfigData() function.

Dialogic® Global Call API Programming Guide — September 2008 43
Dialogic Corporation

Call State Models

3.3.5 Minimum Destination Information Configuration

In some technologies, the technology call control layer can be configured to collect a minimum
amount of destination information before the call is offered to the application. This configuration is
set by issuing the gc_SetConfigData() function to pass the GCPARM_MIN_INFO parameter,
which is set to the minimum amount of information required. After the minimum amount of
information is received, an acknowledgment is sent to the remote side to indicate that the call was
received but more information is required to proceed with the call. Either the technology call
control layer or the application can send this acknowledgment. See Section 3.3.3, “Call
Acknowledgment Configuration” for more details.

The set ID used in this context is GCSET_CALL_CONFIG and the relevant parm ID is:

GCPARM_MIN_INFO
Send an acknowledgment to the remote side when the minimum amount of information has
been received. The value of this parameter is of type GC_VALUE_INT (integer).

See the Dialogic® Global Call API Library Reference for more information on the
gc_SetConfigData() function.

3.3.6 Maximum Destination Information Configuration

In some technologies, the technology call control layer can be configured to collect a maximum
amount of destination information after which no more information is accepted or stored. Any
additional incoming information will be ignored. This configuration is set by issuing the
gc_SetConfigData() function to pass the GCPARM_MAX_INFO parameter, which is set to the
maximum amount of information required. After the maximum amount of information is received,
a call proceeding indication is sent to the remote side to indicate that the call was received and all
address information required has been received. Either the technology call control layer or the
application can send this indication. See Section 3.3.4, “Call Proceeding Configuration” for more
details.

The set ID used in this context is GCSET_CALL_CONFIG and the relevant parm ID is:

GCPARM_MAX_INFO
Set a maximum amount of information after which no more information is accepted or stored.
The value of this parameter is of type GC_VALUE_INT (integer).

See the Dialogic® Global Call API Library Reference for more information on the
gc_SetConfigData() function.

3.4 Basic Call Control in Asynchronous Mode

This section describes and illustrates the basic call model and state transitions for call control in
asynchronous mode. This section also describes the process for call establishment for both inbound
and outbound calls and call termination in the asynchronous mode.

44 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

The procedures for establishing and terminating calls in the asynchronous mode are described in
the following sections:

• Inbound Calls in Asynchronous Mode

• Outbound Calls in Asynchronous Mode

• Call Termination in Asynchronous Mode

Note: The Advanced Call Model includes call states associated with holding, retrieving, and transferring
calls. See Section 3.6, “Advanced Call Control with Call Hold and Transfer” for more information.

Caution: In general, when a function is called in asynchronous mode, and an associated termination event
exists, the gc_Close() function should not be called until the termination event has been received.
Otherwise, the behavior is undefined.

3.4.1 Inbound Calls in Asynchronous Mode

This section describes how calls are established and shows call scenarios for asynchronous inbound
calls. The following topics describe the processing of inbound calls in asynchronous mode:

• Inbound Calls in Asynchronous Mode Overview

• Channel Initialization

• Call Detection

• Call Offered

• Call Routing

• Call Acceptance

• Call Establishment

• Overlap Receiving

• Call Failure

• Abandoned Calls

• Inbound Call Scenarios in Asynchronous Mode

3.4.1.1 Inbound Calls in Asynchronous Mode Overview

Figure 3 illustrates a Basic Inbound Call Model, which shows the call states associated with
establishing a call in asynchronous mode. All calls start from a Null state. The call establishment
process for inbound calls is shown. See Table 6, “Asynchronous Inbound Call State Transitions”,
on page 46 for a summary of the call state transitions.

Dialogic® Global Call API Programming Guide — September 2008 45
Dialogic Corporation

Call State Models

Figure 3. Basic Asynchronous Inbound Call State Diagram

GCEV_DETECTED
(maskable)

gc_AcceptCall()
GCEV_ACCEPT

gc_AcceptCall()
GCEV_ACCEPT

gc_AcceptCall()
GCEV_ACCEPT

gc_AnswerCall()
GCEV_ANSWERED

Required

Optional

gc_AnswerCall()
GCEV_ANSWERED

gc_AnswerCall()
GCEV_ANSWERED

gc_CallAck(MORE_INFO)
GCEV_MOREINFO

GCEV_OFFERED

GCEV_OFFERED

gc_WaitCall()
(called only once)

gc_CallAck(CALL_PROC)
GCEV_CALLPROC

gc_CallAck(CALL_PROC)
GCEV_CALLPROC

gc_ReqMoreInfo()
GCEV_MOREINFO

DETECTED

OFFERED

NULL

ACCEPTED

CallRoutingGetMoreInfo

CONNECTED

Legend:

46 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Table 6. Asynchronous Inbound Call State Transitions

State Previous/Next State
Valid Call State

Transition
Functions

Call Transition Events

Accepted
(GCST_ACCEPTED)
Maskable

Previous: Offered,
GetMoreInfo,
CallRouting
Next:
GCEV_ANSWERED ->
Connected state
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROP CALL -> Idle
state

gc_AnswerCall(),
gc_DropCall()

GCEV_DISCONNECTED,
GCEV_DROPCALL, or
GCEV_ANSWERED

Call Routing
(GCST_CALLROUTING)
Maskable

Previous: Offered,
GetMoreInfo
Next:
GCEV_ANSWERED ->
Connected state
GCEV_ACCEPT ->
Accepted state
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROPCALL ->
Idle state

gc_AnswerCall(),
gc_AcceptCall(),
gc_DropCall()

GCEV_DISCONNECTED,
GCEV_DROPCALL,
GCEV_ACCEPT, or
GCEV_ANSWERED

Connected
(GCST_CONNECTED)
Not Maskable

Previous: Accept, Offered,
GetMoreInfo, CallRouting,
Dialing, SendMoreInfo,
Proceeding, Alerting
Next:
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROPCALL -> Idle
state

gc_DropCall() GCEV_DISCONNECTED,
GCEV_DROPCALL

Detected
(GCST_DETECTED)
Maskable

Previous: Null
Next:
GCEV_OFFERED -> Offered
state
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROPCALL -> Idle
state

gc_DropCall() GCEV_DISCONNECTED,
GCEV_DROPCALL,
GCEV_OFFERED

GetMoreInfo
(GCST_GETMOREINFO)
Maskable

Previous: Offered
Next:
GCEV_ANSWERED ->
Connected state
GCEV_MOREINFO ->
GetMoreInfo state
GCEV_ACCEPT ->
Accepted state
GCEV_CALLPROC ->
CallRouting state
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROPCALL ->
Idle state

gc_ReqMoreInfo(),
gc_CallAck(),
gc_AnswerCall(),
gc_AcceptCall(),
gc_DropCall()

GCEV_DISCONNECTED,
GCEV_DROPCALL,
GCEV_ACCEPT,
GCEV_ANSWERED,
GCEV_MOREINFO, or
GCEV_CALLPROC

Dialogic® Global Call API Programming Guide — September 2008 47
Dialogic Corporation

Call State Models

The following sections describe the asynchronous inbound call processes.

3.4.1.2 Channel Initialization

To establish calls, the following conditions must be met:

• The condition of the line device must be unblocked. When a channel is initially opened, the
initial condition of a line device is blocked. A “blocking” condition on a line device is
indicated by the reception of a GCEV_BLOCKED event, and an “unblocking” condition on a
line device is indicated by the reception of a GCEV_UNBLOCKED event. The
GCEV_BLOCKED and GCEV_UNBLOCKED events are sent as unsolicited events to the
application in response to blocking alarms. GCEV_BLOCKED and GCEV_UNBLOCKED
events are related to layer 1 alarms, as well as to channel states (service status in T1 ISDN, bit
states in CAS). GCEV_BLOCKED and GCEV_UNBLOCKED are used as what might be
termed flow-control events within the application. For more information on blocking alarms
and the GCEV_BLOCKED and GCEV_UNBLOCKED events, see Section 4.3, “Blocked and
Unblocked Event Handling”. When the condition of the line device is unblocked, the line
device is ready for establishing calls.

• The call state of the channel must be in the Null state. This is the initial call state of a line
device when it is first opened. This state is also reached when a call is released or after the
channel is reset.

If the above conditions are met, the application or thread must issue a gc_WaitCall() function in
the Null state to indicate readiness to accept an inbound call request on the specified line device. In
the asynchronous mode, the gc_WaitCall() function must be called only once after the line device
is opened using the gc_OpenEx() function. However, if the gc_ResetLineDev() function was

Null (GCST_NULL)
Not Maskable

Previous: Idle
Next: gc_WaitCall() ->
Null state
gc_ResetLineDev() ->
Null state
GCEV_OFFERED ->
Offered state
GCEV_DETECTED ->
Detected state

gc_WaitCall() GCEV_DETECTED,
GCEV_OFFERED

Offered (GCST_OFFERED)
Not Maskable

Previous: Null, Detected
Next:
GCEV_ANSWERED ->
Connected state
GCEV_ACCEPT ->
Accepted state
GCEV_CALLPROC ->
CallRouting state
GCEV_MOREINFO ->
GetMoreInfo state
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROPCALL ->
Idle state

gc_CallAck(),
gc_AnswerCall(),
gc_AcceptCall(),
gc_DropCall()

GCEV_DISCONNECTED,
GCEV_DROPCALL,
GCEV_ACCEPT,
GCEV_ANSWERED,
GCEV_MOREINFO,
GCEV_CALLPROC

Table 6. Asynchronous Inbound Call State Transitions (Continued)

State Previous/Next State
Valid Call State

Transition
Functions

Call Transition Events

48 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

issued, gc_WaitCall() must be reissued. In asynchronous mode, it is not necessary to issue
gc_WaitCall() again after a call is released.

Note: After gc_WaitCall() is issued to wait for incoming calls on a line device, it is possible to use
gc_makeCall() to make an outbound calls on that line device.

3.4.1.3 Call Detection

The inbound call from the network is received on the line device specified in the gc_WaitCall()
function, but the call has not been offered to the application. The technology call control layer
typically sends an acknowledgment to the remote side. In some configurations, this
acknowledgment can also be sent by the application when the call is offered. At this stage, the call
is being processed, which typically involves allocating resources or waiting for more information.
The GCEV_DETECTED event is generated, if enabled. If the GCEV_DETECTED event is
generated, a new CRN is assigned to the incoming call. This event is for informational purposes to
reduce glare conditions as the application is now aware of the presence of a call on the channel.

Notes: 1. For applications that use PDK protocols, if the application enables the generation of the
GCEV_DETECTED event and a call disconnects while in the Detected state, a
GCEV_DISCONNECTED event is received. If the application did not enable the generation of
the GCEV_DETECTED event and a call disconnects while it is in the Detected state (that is,
before the call enters the Offered state), the application receives a GCEV_OFFERED event with
a result value of GCRV_CALLABANDONED, then a GCEV_DISCONNECTED event.

2. When developing applications that use Dialogic® DM3 Boards, the GCEV_DETECTED event is
not supported. A GCEV_DISCONNECTED event is only received if the host application already
received the GCEV_OFFERED event before the remote side disconnects.

3.4.1.4 Call Offered

When an incoming call is received in en-bloc mode, where all the information required is available,
the call is offered to the application by generating an unsolicited GCEV_OFFERED event
(equivalent to a “ring detected” notification). This GCEV_OFFERED event causes the call to
change to the Offered state. In the Offered state, a CRN is assigned as a means of identifying the
call on a specific line device. If a GCEV_DETECTED event was generated before the
GCEV_OFFERED event, the same CRN is assigned as the one assigned when the
GCEV_DETECTED event was generated.

If the incoming call does not have sufficient information, the call is offered to the application when
all the required information is received. If the technology is configured to accept minimum
information, the call is offered to the application when the specified minimum amount of
information is received. In this case, the application must request additional information if
required. See Section 3.4.1.8, “Overlap Receiving” for more information.

A call proceeding indication can be sent by the technology call control layer, or by the application
by issuing the gc_CallAck(GCACK_SERVICE_PROC) function. Otherwise, the application can
accept or answer the call by issuing the gc_AcceptCall() or gc_AnswerCall() functions,
respectively.

Notes: 1. For applications that use PDK protocols, if the application enables the generation of the
GCEV_DETECTED event and a call disconnects while in the Detected state, a

Dialogic® Global Call API Programming Guide — September 2008 49
Dialogic Corporation

Call State Models

GCEV_DISCONNECTED event is received. If the application did not enable the generation of
the GCEV_DETECTED event and a call disconnects while it is in the Detected state (that is,
before the call enters the Offered state), the application receives a GCEV_OFFERED event with
a result value of GCRV_CALLABANDONED, then a GCEV_DISCONNECTED event.

2. When developing applications that use Dialogic® DM3 Boards, the GCEV_DETECTED event is
not supported. A GCEV_DISCONNECTED event is only received if the host application already
received the GCEV_OFFERED event before the remote side disconnects.

3.4.1.5 Call Routing

After the call has been offered, a call proceeding indication can be sent to the remote party to
indicate that all the information has been received and the call is now proceeding. This indication
can be sent by the technology call control layer or by the application by issuing the
gc_CallAck(GCACK_SERVICE_PROC) function. This stage typically involves routing the call
to the destination exchange or party. An information call routing tone can be played at this point to
inform the remote party that the call is routing.

3.4.1.6 Call Acceptance

If the application or thread is not ready to answer the call, a gc_AcceptCall() function is issued to
indicate to the remote end that the call was received but not yet answered. This provides an interval
during which the system can verify parameters, determine routing, and perform other tasks before
connecting the call. A GCEV_ACCEPT event is generated when the gc_AcceptCall() function is
successfully completed and the call changes to the Accepted state. The application can then answer
the call by issuing the gc_AnswerCall() function.

3.4.1.7 Call Establishment

When the call is to be directly connected, such as to a voice messaging system, or if the application
or thread is ready to answer the call, a gc_AnswerCall() function is issued to make the final
connection. Upon answering the call, a GCEV_ANSWERED event is generated and the call
changes to the Connected state. At this point, the call is connected to the called party and call
charges begin.

3.4.1.8 Overlap Receiving

After an incoming call has been received, the call is offered to the application based on the call
acknowledgment configuration and the availability of information required for proceeding with the
call. If the incoming call is in en-bloc mode where all the information required for processing the
call is present, the call is offered to the application. Otherwise, the call is offered to the application
based on the following configurations:

Call acknowledgment
If the application is configured to send the call acknowledgment, the call is immediately
offered to the application regardless of the amount of information available. The application
can then request and collect more information as required. If the technology call control layer
is configured to send the call acknowledgment, then the call is offered to the application based
on the minimum amount of information specified.

50 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Minimum information specified
If the incoming call does not have sufficient information, the call is offered to the application
based on the amount of information required. If the technology is configured to accept
minimum information, the call is offered to the application only after the specified minimum
amount of information is received. Thereafter, the application can request and collect more
information as required. If the technology is not configured to accept minimum information,
then the call is offered to the application regardless of the amount of information available.
The application can then request and collect more information as required.

The following sections describe various configurations operating in overlap receiving mode.

Scenario 1

In this scenario, the application is configured to acknowledge the incoming call and send a call
proceeding indication after sufficient information has been received. When an incoming call is
detected, the call is immediately offered to the application regardless of the amount of information
available to proceed with the call.

When the call is in the Offered state (after the generation of the unsolicited GCEV_OFFERED
event), the application sends an acknowledgment for the incoming call by issuing a
gc_CallAck(GCACK_SERVICE_INFO) function. The application may selectively retrieve call
information, such as destination address and origination address (caller ID), by issuing the
gc_GetCallInfo() function. If more information is still required, the gc_ReqMoreInfo() function
is issued to request more information. When the information is received, the GCEV_MOREINFO
event is generated again. When all the required information is received, the application may send a
call proceeding indication to the remote side by issuing the gc_CallAck() function. Otherwise, the
application can choose to accept or answer the call.

Scenario 2

In this scenario, the technology call control layer is configured to acknowledge the incoming call
and send a call proceeding indication after sufficient information has been received. When an
incoming call is detected, the technology call control layer immediately sends an acknowledgment.
If the minimum amount of information required is specified, then the call is offered to the
application only after the minimum amount of information required is received. After the call is
offered to the application, the address information can be retrieved to determine if more
information is required. If more information is required, a
gc_CallAck(GCACK_SERVICE_INFO) function must be issued. Since an acknowledgment
was already sent out, nothing is sent to the remote side at this time. However, if the minimum
amount of information is not specified, then the technology control layer requests and collects
more information. After the expected information is received, the technology control layer sends a
call proceeding indication to the remote side. The call is then offered to the application, which can
then accept or answer the call.

Scenario 3

In this scenario, the technology call control layer is configured to acknowledge the incoming call,
and the application is configured to send a call proceeding indication after sufficient information
has been received. When an incoming call is detected, the technology call control layer

Dialogic® Global Call API Programming Guide — September 2008 51
Dialogic Corporation

Call State Models

immediately sends an acknowledgment. If the minimum amount of information required is
specified, then the call is offered to the application only after the minimum amount of information
required is received. Otherwise the call is immediately offered to the application.

When the call is in the Offered state (after generation of the unsolicited GCEV_OFFERED event),
the application may selectively retrieve call information, such as the destination and origination
address (caller ID), by issuing the gc_GetCallInfo() function. If more information is required, the
application may also request more address information using the
gc_CallAck(GCACK_SERVICE_INFO) function. Since an acknowledgment was already sent
out, no acknowledgment is sent to the remote side at this time. When the additional information is
received, the GCEV_MOREINFO event is generated. If more information is still required, the
gc_ReqMoreInfo() function is issued to request more information. When the additional
information is received, the GCEV_MOREINFO event is generated again. When all the required
information is received, the application may send a call proceeding indication to the remote side by
issuing the gc_CallAck(GCACK_SERVICE_PROC) function. Otherwise, the application can
choose to accept or answer the call.

Scenario 4

In this scenario, the application is configured to acknowledge the incoming call, and the technology
call control layer is configured to send a call proceeding indication after sufficient information has
been received. When an incoming call is detected, the call is offered to the application regardless of
the amount of information available.

When the call is in the Offered state (after generation of the unsolicited GCEV_OFFERED event),
the application sends an acknowledgment for the incoming call by issuing a
gc_CallAck(GCACK_SERVICE_INFO). The application may selectively retrieve call
information, such as destination address and origination address (caller ID), by issuing the
gc_GetCallInfo() function. If more information is still required, the gc_ReqMoreInfo() function
is issued to request more information. When the information is received, the GCEV_MOREINFO
event is generated again. When all the required information is received, the technology call control
layer sends a call proceeding indication to the remote side. The application may also attempt to
send a call proceeding indication to the remote side in case the technology call control layer hasn’t
done so. The application can then choose to accept or answer the call.

3.4.1.9 Call Failure

The following are various causes of call failures:

Call rejection
From the Offered state, the application or thread may reject the call by issuing the
gc_DropCall() function followed by a gc_ReleaseCallEx() function (see the Dialogic®
Global Call API Library Reference).

Forced release
From the Accepted state, not all protocols support a forced release of the line, that is, issuing a
gc_DropCall() function after a gc_AcceptCall() function. If a forced release is not supported
and is attempted, the function will fail and an error will be returned. To recover, the application
should issue the gc_AnswerCall() function followed by gc_DropCall() and

52 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

gc_ReleaseCallEx() functions. However, any time a GCEV_DISCONNECTED event is
received in the Accepted state, the gc_DropCall() function can be issued.

Task failure
If a call fails at any point in the call establishment process, that is, if a GCEV_TASKFAIL
event is received by the application, the call stays in its current state. In most cases, the
application needs to drop and release the call to return the line device to the Null state.
However, in some cases, such as call failure due to a trunk error, the application needs to use
the gc_ResetLineDev() function to reset the line device to the Null state. For more
information, see the gc_DropCall(), gc_ReleaseCallEx(), and gc_ResetLineDev() function
descriptions in the Dialogic® Global Call API Library Reference.

3.4.1.10 Abandoned Calls

During call establishment, the remote side may choose to hang up before call setup has been
completed. The application must be capable of handling error conditions and the lack of complete
information when requesting call information.

One such scenario, when using PDK protocols, is the case where the remote side chooses to
disconnect a call while it is between the Detected and Offered states. The resulting behavior when
the call disconnects depends on whether the application has enabled the generation of the
GCEV_DETECTED event:

• If GCEV_DETECTED event generation is enabled, the application will receive a
GCEV_DISCONNECTED event.

• If GCEV_DETECTED event generation is not enabled, the application will receive a
GCEV_OFFERED event with a result value of GCRV_CALLABANDONED, then a
GCEV_DISCONNECTED event.

Global Call uses this mechanism to can keep the application informed of the incoming, but
abandoned, call.

Note: When developing applications that use Dialogic® DM3 Boards, the GCEV_DETECTED event is
not supported. If the host application has not received a GCEV_OFFERED event when the call is
disconnected by the remote side, the host application will not receive any event. If the host
application has already received a GCEV_OFFERED event, it receives a
GCEV_DISCONNECTED event when the call is disconnected.

3.4.1.11 Inbound Call Scenarios in Asynchronous Mode

This section shows various asynchronous inbound call scenarios. For call scenarios used by a
specific signaling protocol, check the Dialogic® Global Call Technology Guide for that technology.

Figure 4 shows a basic asynchronous call scenario for an incoming call.

Dialogic® Global Call API Programming Guide — September 2008 53
Dialogic Corporation

Call State Models

Figure 4. Basic Asynchronous Inbound Call Scenario

Application
Global Call

Library/
Technology

Network

GCEV_ACCEPTED

GCEV_OFFERED

GCEV_ANSWERED

Incoming Call

(All Information
Received)

gc_GetCallInfo(DESTINATION_ADDRESS)
gc_GetCallInfo(ORIGINATION_ADDRESS)

(Sufficient Information Received)

gc_AcceptCall()

gc_AnswerCall()

Alerting

Call Answered

54 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Figure 5 shows an asynchronous call scenario for an incoming call with call proceeding.

Figure 5. Incoming Call Scenario with Call Proceeding

Application
Global Call

Library/
Technology

Network

GCEV_CALLPROC

GCEV_OFFERED

GCEV_ACCEPTED

Incoming Call

(All Information
Received)

gc_GetCallInfo(DESTINATION_ADDRESS)
gc_GetCallInfo(ORIGINATION_ADDRESS)

(Sufficient Information Received)

gc_CallAck(GCACK_SERVICE_PROC)

Alerting

Call Answered

gc_AcceptCall()

gc_AnswerCall()

GCEV_ANSWERED

Call Proceeding

Dialogic® Global Call API Programming Guide — September 2008 55
Dialogic Corporation

Call State Models

Figure 6 shows an asynchronous call scenario for an incoming call with call acknowledgment and
call proceeding controlled by the application.

Figure 6. Call Acknowledgment and Call Proceeding Done at the Application Layer

Application
Global Call

Library/
Technology

Network

GCEV_MOREINFO

GCEV_OFFERED

Incoming Call

gc_GetCallInfo(DESTINATION_ADDRESS)
gc_GetCallInfo(ORIGINATION_ADDRESS)

gc_CallAck(GCACK_SERVICE_INFO)

gc_AcceptCall()

Acknowledgement
and Request for
More Address

Information

More Information

More Information

gc_ReqMoreInfo(DESTINATION_ADDRESS)

(New Information
Buffered)

GCEV_MOREINFO

gc_GetCallInfo(DESTINATION_ADDRESS)
(Sufficient Information Received)

gc_GetCallInfo(DESTINATION_ADDRESS)

GCEV_CALLPROC

GCEV_ACCEPTED

GCEV_ANSWERED

gc_AnswerCall()

Call Proceeding

Alerting

Call Answered

gc_CallAck(GCACK_SERVICE_PROC)

56 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Figure 7 shows an asynchronous call scenario for an incoming call with call proceeding controlled
by the application with the minimum information configuration.

Figure 7. Call Proceeding Done by the Application Layer with Minimum Information
Configured

Application
Global Call

Library/
Technology

Network

GCEV_OFFERED

GCEV_DETECTED
Incoming Call

gc_GetCallInfo(DESTINATION_ADDRESS)
gc_GetCallInfo(ORIGINATION_ADDRESS)

gc_AcceptCall()

Acknowledgement
and Request for
More Address

Information

More Information

More Information

gc_CallAck(GCACK_SERVICE_INFO)

(New Information
Buffered)

GCEV_MOREINFO

gc_CallAck(GCACK_SERVICE_PROC)

GCEV_CALLPROC

GCEV_ACCEPTED

GCEV_ANSWERED

gc_AnswerCall()

Call Proceeding

Alerting

Call Answered

(Minimum
Information
Received)

Dialogic® Global Call API Programming Guide — September 2008 57
Dialogic Corporation

Call State Models

Figure 8 shows an asynchronous call scenario for an incoming call with call acknowledgment and
call proceeding controlled by the call control layer.

Figure 8. Call Acknowledgment and Call Proceeding Done at Technology Call Control Layer

Application
Global Call

Library/
Technology

Network

GCEV_OFFERED

GCEV_DETECTED

Incoming Call

gc_GetCallInfo(DESTINATION_ADDRESS) /
gc_GetCallInfo(ORIGINATION_ADDRESS)

Acknowledgement
and Request for
More Address

Information

More Information

(All Information
Received)

GCEV_ACCEPTED

GCEV_ANSWERED

gc_AnswerCall()

Call Proceeding

Alerting

Call Answered

(Not Enough
Information
Received)

gc_AcceptCall()

58 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Figure 9 shows an asynchronous call scenario for an incoming call with call acknowledgment
controlled by the call control layer and call proceeding controlled by the application.

Figure 9. Call Acknowledgment Done by the Technology Call Control Layer and Call
Proceeding Done by the Application

3.4.2 Outbound Calls in Asynchronous Mode

This section describes how calls are established and shows call scenarios for asynchronous
outbound calls. The following topics describe the processing of outbound calls in asynchronous
mode:

• Outbound Calls in Asynchronous Mode Overview

• Channel Initialization

• Call Dialing

• Call Proceeding

Application
Global Call

Library/
Technology

Network

GCEV_OFFERED

GCEV_DETECTED

Incoming Call

gc_GetCallInfo(DESTINATION_ADDRESS) /
gc_GetCallInfo(ORIGINATION_ADDRESS)

Acknowledgement
and Request for
More Address

Information

More Information

(All Information
Received)

GCEV_ACCEPTED

GCEV_ANSWERED

gc_AnswerCall()

Call Proceeding

Alerting

Call Answered

(Not Enough
Information
Received)

gc_AcceptCall()

gc_CallAck(GCACK_SERVICE_PROC)

GCEV_CALLPROC

Dialogic® Global Call API Programming Guide — September 2008 59
Dialogic Corporation

Call State Models

• Call Alerting

• Call Connected

• Overlap Sending

• Call Failure

• Outbound Call Scenarios in Asynchronous Mode

3.4.2.1 Outbound Calls in Asynchronous Mode Overview

Figure 10 illustrates a basic Outbound Call Model, which shows the call states associated with
establishing a call in the asynchronous mode. All calls start from a Null state. The call
establishment process for outbound calls is shown. Table 7 presents a summary of the outbound
call state transitions.

60 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Figure 10. Basic Asynchronous Outbound Call State Diagram

GCEV_ALERTING
GCEV_ALERTING

GCEV_ALERTING

GCEV_CONNECTED

Required

Optional

GCEV_CONNECTED

GCEV_CONNECTED

GCEV_PROCEEDING

gc_MakeCall()
GCEV_DIALING

(maskable)
GCEV_REQMOREINFO

or
gc_SendMoreInfo()

GCEV_SENDMOREINFO

GCEV_PROCEEDING

gc_SendMoreInfo()
GCEV_SENDMOREINFO
GCEV_REQMOREINFO

Dialing

Null

Alerting

SendMoreInfoProceeding

Connected

Legend:

Dialogic® Global Call API Programming Guide — September 2008 61
Dialogic Corporation

Call State Models

The following sections describe the asynchronous outbound call processes, as shown in Figure 10,
“Basic Asynchronous Outbound Call State Diagram”, on page 60.

Table 7. Asynchronous Outbound Call State Transitions

State Previous/Next State
Valid Call State

Transition
Functions

Call Transition Events

Alerting (GCST_ALERTING)
Maskable

Previous: Proceeding,
Dialing,
SendMoreInfo
Next:
GCEV_CONNECTED ->
Connected state
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROPCALL ->
Idle state

gc_DropCall() GCEV_DISCONNECTED,
GCEV_DROPCALL,
GCEV_CONNECTED

Dialing
(GCST_DIALING)
Not Maskable

Previous: Null
Next:
GCEV_CONNECTED ->
Connected state
GCEV_ALERTING ->
Alerting (Delivered) state
GCEV_PROCEEDING ->
Proceeding state
GCEV_REQMOREINFO ->
SendMoreInfo state
GCEV_SENDMOREINFO ->
SendMoreInfo state
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROPCALL -> Idle
state

gc_SendMoreInfo()
gc_DropCall()

GCEV_CONNECTED,
GCEV_ALERTING,
GCEV_REQMOREINFO,
GCEV_PROCEEDING,
GCEV_DISCONNECTED,
GCEV_DROPCALL

Null
(GCST_NULL)
Not Maskable

Previous: Idle
Next:
gc_ResetLineDev() -> Null
GCEV_DIALING ->
Dialing state
GCEV_DETECTED ->
Detected state

gc_MakeCall() GCEV_DIALING

Proceeding
(GCST_PROCEEDING)
Maskable

Previous: Dialing,
SendMoreInfo
Next:
GCEV_ALERTING ->
Alerting (Delivered) state
GCEV_CONNECTED ->
Connected state
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROPCALL ->
Idle state

gc_DropCall() GCEV_DISCONNECTED,
GCEV_DROPCALL,
GCEV_CONNECTED,
GCEV_ALERTING

SendMoreInfo
(GCST_SENDMOREINFO)
Maskable

Previous: Dialing
Next:
GCEV_CONNECTED ->
Connected state
GCEV_PROCEEDING ->
Proceeding state
GCEV_DISCONNECTED ->
Disconnected state
GCEV_DROPCALL ->
Idle state

gc_SendMoreInfo()
gc_DropCall()

GCEV_DISCONNECTED,
GCEV_DROPCALL,
GCEV_PROCEEDING,
GCEV_CONNECTED

62 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

3.4.2.2 Channel Initialization

To establish calls, the following conditions must be met:

• The condition of the line device must be unblocked. When a channel is initially opened, the
initial condition of a line device is blocked. A “blocking” condition on a line device is
indicated by the reception of a GCEV_BLOCKED event, and an “unblocking” condition on a
line device is indicated by the reception of a GCEV_UNBLOCKED event. The
GCEV_BLOCKED and GCEV_UNBLOCKED events are sent as unsolicited events to the
application in response to blocking alarms. (For more information on blocking alarms and the
GCEV_BLOCKED and GCEV_UNBLOCKED events, see Section 4.3, “Blocked and
Unblocked Event Handling”). When the condition of the line device is unblocked, the line
device is ready for establishing calls.

• The call state of the channel must be in the Null state. This is the initial call state of a line
device when it is first opened. This state is also reached when a call is released or after the
channel is reset by issuing the gc_ResetLineDev() function.

If the above conditions are met, the application is ready to make outbound calls.

3.4.2.3 Call Dialing

To initiate an outbound call using the asynchronous mode, the application issues a gc_MakeCall()
function that requests an outgoing call to be made on a specific line device. The gc_MakeCall()
function returns immediately. and the call state transitions to the Dialing state. The
GCEV_DIALING event is generated (if enabled) to indicate that the call has transitioned to the
Dialing state. A CRN is assigned to the call being established on that line device. If the
gc_MakeCall() function fails, the line device remains in the Null state. In this state, dialing
information is sent to the remote side.

3.4.2.4 Call Proceeding

In the Dialing state, the remote side may indicate that all the information was received and the call
is proceeding. In this case, the GCEV_PROCEEDING event is generated and the call transitions to
the Proceeding state. The remote side may either accept or answer the call.

3.4.2.5 Call Alerting

If the remote end is not ready to answer the call, a GCEV_ALERTING event is generated. This
event indicates that the called party has accepted but not answered the call and that the network is
waiting for the called party to complete the connection. At this stage, the remote side is typically
ringing. This GCEV_ALERTING event changes the call state to the Alerting state.

3.4.2.6 Call Connected

When the called party immediately accepts the call, such as a call directed to a fax or voice
messaging system, a GCEV_CONNECTED event is generated to indicate that the connection was
established. This event changes the call to the Connected state. In the Connected state, the call is
connected to the called party and call charges begin.

Dialogic® Global Call API Programming Guide — September 2008 63
Dialogic Corporation

Call State Models

When the call is answered (the remote end makes the connection), a GCEV_CONNECTED event
changes the call to the Connected state. In the Connected state, the call is connected to the called
party and call charges begin. The GCEV_CONNECTED event indicates successful completion of
the gc_MakeCall() function.

3.4.2.7 Overlap Sending

In the Dialing state, if the remote side requests more information such as the destination address,
the GCEV_REQMOREINFO event is generated and the call transitions to the SendMoreInfo state.
The gc_SendMoreInfo() function is issued to send more information. If the remote side still
requests more information, the GCEV_REQMOREINFO event is generated again. Once the
remote side has received sufficient information, it indicates that the call is proceeding, and accepts
or answers the call. Some technologies, such as ISDN and SS7, do not have any messages or
signals to request more information. For such protocols, the application never gets the unsolicited
GCEV_REQMOREINFO event. In this case, the application may call the gc_SendMoreInfo()
function to send more information as it becomes available.

3.4.2.8 Call Failure

The following are two causes of call failures:

Call rejection
When the remote end does not answer the call, a GCEV_DISCONNECTED event is
generated. This event is also generated when an inbound call arrives while the application is
setting up an outbound call, causing a “glare” condition. Unless the protocol specifies
otherwise, the incoming call takes precedence over the outbound call. When an asynchronous
gc_MakeCall() function conflicts with the arrival of an inbound call, all the resources need to
be released for the outbound call. Subsequently, the GCEV_DISCONNECTED event is
generated with a result value indicating that an inbound call took precedence. The
gc_DropCall() function must be issued after the GCEV_DISCONNECTED event is received.

If a gc_MakeCall() function is issued while the inbound call is being set up, the
gc_MakeCall() function fails. The inbound call event is held in the driver until the CRN of
the outbound call is released using the gc_ReleaseCallEx() function. After release of the
outbound CRN, the pending inbound call event is sent to the application. This behavior may be
modified by the individual protocol specification.

Task failure
If the gc_MakeCall() cannot be completed successfully, a GCEV_TASKFAIL event or a
GCEV_DISCONNECTED event is sent to the application. The result value associated with the
event indicates the reason for the event. If the GCEV_TASKFAIL event is sent, then a problem
occurred when placing the call from the local end.

3.4.2.9 Outbound Call Scenarios in Asynchronous Mode

This section shows various asynchronous outbound call scenarios. For call scenarios used for a
specific signaling protocol, check the appropriate Dialogic® Global Call Technology Guide for that
technology.

Figure 11 shows a basic asynchronous call scenario for outgoing calls.

64 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Figure 11. Asynchronous Outbound Call Scenario

Figure 12 shows an asynchronous call scenario for outgoing calls with call acknowledgment.

Figure 12. Asynchronous Outbound Call Scenario with Call Acknowledgment

Application
Global Call

Library/
Technology

Network

GCEV_DIALING

Outbound Call

Alerting

Call Answered

gc_MakeCall ()

GCEV_ALERTING

GCEV_CONNECTED

Application
Global Call

Library/
Technology

Network

GCEV_PROCEEDING

Outbound Call

Alerting

Call Answered

gc_MakeCall ()

GCEV_ALERTING

GCEV_CONNECTED

GCEV_DIALING

Call Proceeding

Dialogic® Global Call API Programming Guide — September 2008 65
Dialogic Corporation

Call State Models

Figure 13 shows an asynchronous call scenario for outgoing calls with overlap sending.

Figure 13. Asynchronous Outbound Call Scenario with Overlap Sending

3.4.3 Call Termination in Asynchronous Mode

This section describes how calls are terminated and shows call scenarios for asynchronous call
termination. The following topics describe call termination in asynchronous mode:

• Call Termination in Asynchronous Mode Overview

• User Initiated Termination

• Network Initiated Termination

• Call Release

• Call Termination Call Control Scenarios in Asynchronous Mode

3.4.3.1 Call Termination in Asynchronous Mode Overview

Figure 14 illustrates the call states associated with call termination or call teardown in the
asynchronous mode initiated by either a call disconnection or failure. See Table 8 for a summary of

Application
Global Call

Library/
Technology

Network

GCEV_SENDMOREINFO

Outbound Call

Alerting

Call Answered

gc_MakeCall ()

GCEV_ALERTING

GCEV_CONNECTED

GCEV_DIALING

Request More
Address Information

GCEV_REQMOREINFO

gc_SendMoreInfo (DESTINATION_ADDRESS)

Call Proceeding

GCEV_PROCEEDING

More Address
Information

66 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

the call state transitions. A call can be terminated by the application or by the detection of a call
disconnect from the network. Either of these terminations can occur at any point in the process of
setting up a call and during any call state.

Figure 14. Asynchronous Call Tear-Down State Diagram

gc_DropCall()
GCEV_DROPCALL

GCEV_DISCONNECTED

From Any State
Shown Below

From Any State
Shown Below

TERMINATED
BY NETWORK

TERMINATED
BY APPLICATION

gc_DropCall()
GCEV_DROPCALL

Disconnected

Idle

Null

Dialing

Offered

Accepted

Connected

GetMoreInfo

SendMoreInfo

CallRouting

Proceeding

Alerting

Dialing

Offered

Accepted

Connected

GetMoreInfo

SendMoreInfo

CallRouting

Proceeding

Alerting

gc_ReleaseCall()gc_ReleaseCallEx()
GCEV_RELEASECALL

Detected * Detected *

Note: * applies if the application requested to be notified of GCEV_DETECTED events.

Dialogic® Global Call API Programming Guide — September 2008 67
Dialogic Corporation

Call State Models

3.4.3.2 User Initiated Termination

The application terminates a call by issuing a gc_DropCall() function that initiates disconnection
of the call specified by the CRN. When the remote side responds by disconnecting the call, a
GCEV_DROPCALL event is generated and causes a transition from the current call state to the
Idle state. The user must then issue the gc_ReleaseCallEx() function to release all internal
resources allocated for the call.

3.4.3.3 Network Initiated Termination

When a network call termination is initiated, an unsolicited GCEV_DISCONNECTED event is
generated. This event indicates the call was disconnected at the remote end or an error was
detected, which prevented further call processing. The GCEV_DISCONNECTED event causes the
call state to change from the current call state to the Disconnected state. This event may be received
during call setup or after a connection is requested. In the Disconnected state, the user issues the
gc_DropCall() function to disconnect the call. The gc_DropCall() function is equivalent to set
hook ON. After the remote side is notified about the call being dropped, a GCEV_DROPCALL
event is generated causing the call state to change to the Idle state. In the Idle state, the
gc_ReleaseCallEx() function must be issued to release all internal resources committed to
servicing the call.

3.4.3.4 Call Release

Once in the Idle state, the call has been disconnected and the application must issue a
gc_ReleaseCallEx() function to free the line device for another call. The gc_ReleaseCallEx()
function releases all internal system resources committed to servicing the call. A
GCEV_RELEASECALL event is generated and the call state transitions to the Null state.

Table 8. Asynchronous Call Termination Call State Transitions

State Previous/Next State
Valid Call State

Transition Functions
Call Transition Events

Disconnected
(GCEV_DISCONNECTED)
Not maskable

Previous: Offered, Accepted,
Connected, Dialing,
SendMoreInfo, Proceeding,
Alerting, GetMoreInfo,
CallRouting
Next:
GCEV_DROPCALL -> Idle
state

gc_DropCall() GCEV_DROPCALL

Idle (GCST_IDLE)
Not Maskable

Previous: Offered, Accepted,
Connected, Dialing,
SendMoreInfo, Proceeding,
Alerting, GetMoreInfo,
CallRouting, Disconnected
Next:
GCEV_RELEASECALL ->
Null

gc_ReleaseCallEx() GCEV_RELEASECALL

68 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

3.4.3.5 Call Termination Call Control Scenarios in Asynchronous Mode

This section shows various asynchronous call termination call scenarios. For call scenarios used for
a specific signaling protocol, check the appropriate Dialogic® Global Call Technology Guide for
that technology.

Figure 15 shows an asynchronous user initiated call termination scenario.

Figure 15. User Initiated Asynchronous Call Termination Scenario

Figure 16 shows an asynchronous network initiated call termination scenario.

Figure 16. Network Initiated Asynchronous Call Termination Scenario

Application
Global Call

Library/
Technology

Network

Disconnect
gc_DropCall ()

GCEV_RELEASECALL

GCEV_DROPCALL

Call Disconnected
gc_ReleaseCallEx()

Application
Global Call

Library/
Technology

Network

Call Disconnected

GCEV_DROPCALL

GCEV_RELEASECALL

GCEV_DISCONNECTED

Disconnected

gc_DropCall()

gc_ReleaseCallEx ()

Dialogic® Global Call API Programming Guide — September 2008 69
Dialogic Corporation

Call State Models

3.5 Basic Call Control in Synchronous Mode

This section describes and illustrates the basic call model and state transitions for call control in the
synchronous mode. This section also describes the process for call establishment for both inbound
and outbound calls and call termination in the synchronous mode.

The procedures for establishing and terminating calls in the synchronous mode are described in the
following sections:

• Inbound Calls in Synchronous Mode

• Outbound Calls in Synchronous Mode

• Call Termination in Synchronous Mode

The application must handle unsolicited events in the synchronous mode, unless these events are
masked or disabled. Procedures for handling unsolicited events are described in Section 3.5.4,
“Handling Unsolicited Events”.

3.5.1 Inbound Calls in Synchronous Mode

This section describes how calls are established and shows call scenarios for synchronous inbound
calls. The following topics describe the processing of inbound calls in synchronous mode:

• Inbound Calls in Synchronous Mode Overview

• Channel Initialization

• Call Offered

• Call Routing

• Call Acceptance

• Call Establishment

• Overlap Receiving

• Call Failure

• Inbound Call Scenarios in Synchronous Mode

3.5.1.1 Inbound Calls in Synchronous Mode Overview

Figure 17 illustrates a Basic Call Model, and indicates the call states associated with establishing or
setting up a call in the synchronous mode. The call establishment process for inbound calls is
shown. All calls start from a Null state. See Table 9 for a summary of the call state transitions.

Some features, such as overlap sending/receiving, are not supported in the synchronous mode.
Typically, synchronous calls are made when the application does not care about the intermediate
function calls or events required for establishing a call. However, the overlap feature requires
intermediate state transitions where additional function calls need to be made. Previously, functions
returned upon successful completion; but in the overlap mode, they may return before successful
completion, possibly due to an intermediate request for more information.

Note: The Advanced Call Model includes call states associated with holding, retrieving, and transferring
calls. See Section 3.6, “Advanced Call Control with Call Hold and Transfer” for more information.

70 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Figure 17. Basic Synchronous Inbound Call State Diagram

gc_WaitCall()
(maskable)

gc_AcceptCall()

gc_AcceptCall()

gc_AcceptCall()

gc_AnswerCall()

Required

Optional

gc_AnswerCall()

gc_AnswerCall()

gc_CallAck(MORE_INFO)

gc_WaitCall()

gc_CallAck(CALL_PROC)

gc_CallAck(CALL_PROC)

gc_ReqMoreInfo()

Detected

Offered

Null

Accepted

CallRoutingGetMoreInfo

Connected

Legend:

Dialogic® Global Call API Programming Guide — September 2008 71
Dialogic Corporation

Call State Models

Table 9. Synchronous Inbound Call State Transitions

State Previous/Next State
Valid Call State

Transition
Functions

Call Transition Events

Accepted
(GCST_ACCEPTED)

Maskable

Previous: Offered,
GetMoreInfo, CallRouting

Next:

gc_AnswerCall() ->
Connected state

GCEV_DISCONNECTED
-> Disconnected state

gc_DropCall() -> Idle
state

gc_AnswerCall(),
gc_DropCall()

GCEV_DISCONNECTED

Call Routing
(GCST_CALLROUTING)

Maskable

Previous: Offered,
GetMoreInfo

Next:

gc_AnswerCall() ->
Connected state

gc_AcceptCall() ->
Accepted state

GCEV_DISCONNECTED
-> Disconnected state

gc_DropCall() -> Idle
state

gc_AnswerCall(),
gc_AcceptCall(),
gc_DropCall()

GCEV_DISCONNECTED

Connected
(GCST_CONNECTED)

Not Maskable

Previous: Accept,
Offered, GetMoreInfo,
CallRouting, Dialing,
SendMoreInfo,
Proceeding, Alerting

Next:

GCEV_DISCONNECTED
-> Disconnected state

gc_DropCall() -> Idle
state

gc_DropCall() GCEV_DISCONNECTED

GetMoreInfo
(GCST_GETMOREINFO)

Maskable

Previous: Offered

Next:

gc_AnswerCall() ->
Connected state

gc_AcceptCall() ->
Accepted state

gc_CallAck() sends
CallProceeding ->
CallRouting state

gc_ReqMoreInfo() ->
GetMoreInfo state

GCEV_DISCONNECTED
-> Disconnected state

gc_DropCall() -> Idle
state

gc_ReqMoreInfo(),
gc_CallAck(),
gc_AnswerCall(),
gc_AcceptCall(),
gc_DropCall()

GCEV_DISCONNECTED

72 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

3.5.1.2 Channel Initialization

To establish calls, the following conditions must be met:

• The condition of the line device must be unblocked. When a channel is initially opened, the
initial condition of a line device is blocked. A “blocking” condition on a line device is
indicated by the reception of a GCEV_BLOCKED event, and an “unblocking” condition on a
line device is indicated by the reception of a GCEV_UNBLOCKED event. The
GCEV_BLOCKED and GCEV_UNBLOCKED events are sent as unsolicited events to the
application in response to blocking alarms. For more information on blocking alarms and the
GCEV_BLOCKED and GCEV_UNBLOCKED events, see Section 4.3, “Blocked and
Unblocked Event Handling”. When the condition of the line device is unblocked, the line
device is ready for establishing calls.

• The call state of the channel must be in the Null state. This is the initial call state of a line
device when it is first opened. This state is also reached when a call is released or after the
channel is reset.

If the above conditions are met, the application must issue a gc_WaitCall() function in the Null
state to indicate readiness to accept an inbound call request on the specified line device. In the
synchronous mode, the gc_WaitCall() function waits for an inbound call for the length of time
specified by the timeout parameter. When the timeout expires, the function fails with an error code,
EGC_TIMEOUT, and must be reissued. If the time specified is 0, the function fails unless a call is
already pending on the specified line device.

Null (GCST_NULL)

Not Maskable

Previous: Idle

Next:

gc_WaitCall() -> Offered
state

gc_WaitCall() GCEV_DETECTED

Offered
(GCST_OFFERED)

Not Maskable

Previous: Null, Detected

Next:

gc_AnswerCall() ->
Connected state

gc_AcceptCall()
->Accepted state

gc_CallAck() sends
CallProceeding ->
CallRouting state

gc_CallAck() requests
more info -> GetMoreInfo
state

GCEV_DISCONNECTED
-> Disconnected state

gc_DropCall() -> Idle
state

gc_CallAck(),
gc_AnswerCall(),
gc_AcceptCall(),
gc_DropCall()

GCEV_DISCONNECTED

Table 9. Synchronous Inbound Call State Transitions (Continued)

State Previous/Next State
Valid Call State

Transition
Functions

Call Transition Events

Dialogic® Global Call API Programming Guide — September 2008 73
Dialogic Corporation

Call State Models

A gc_WaitCall() function waiting for a call to arrive can be stopped (terminated) by issuing the
gc_ResetLineDev() function. When the gc_WaitCall() function fails or is stopped, all system
resources including the CRN assigned to the call are released. To accept inbound calls, another
gc_WaitCall() function must be issued each time the application wishes to receive an inbound
call. The application blocks to wait for an incoming call by issuing the gc_WaitCall() function.
The application must repeat the poll for incoming calls by issuing the gc_WaitCall() function
each time it polls for a call.

3.5.1.3 Call Offered

The inbound call from the network is received on the specified line device but is not yet offered to
the application, which causes the call state to change to the Detected state, if supported. At this
stage, the call is being processed, which typically involves allocating resources or waiting for more
information. If the call does change to the Detected state, no GCEV_DETECTED event is
generated and the gc_WaitCall() function does not return until the call is offered to the
application. After all the required processing is done, the call is offered to the application and the
call state changes to the Offered state. The application may selectively retrieve call information,
such as destination address and origination address (caller ID). If more information is required
(overlap receiving) or the call needs to be acknowledged, the gc_CallAck() function must be
issued. (See Section 3.5.1.7, “Overlap Receiving”.) Otherwise, the user can accept or answer the
call by issuing gc_AcceptCall() or gc_AnswerCall() respectively.

3.5.1.4 Call Routing

After the call has been offered, the gc_CallAck(GCACK_SERVICE_PROC) function can be
issued to indicate to the other side that all the information has been received and the call is now
proceeding. This stage typically involves routing the call to the destination exchange or party. An
information call routing tone can be played at this point to inform the remote party that the call is
routing.

3.5.1.5 Call Acceptance

If the application is not ready to answer the call, a gc_AcceptCall() function is issued to indicate
to the remote end that the call was received but not yet answered. This provides an interval during
which the system can verify parameters, determine routing, and perform other tasks before
connecting the call. When the gc_AcceptCall() function is successfully completed, the call
changes to the Accepted state. The application may selectively retrieve call information, such as the
destination address and origination address (caller ID). The application can then answer the call by
issuing the gc_AnswerCall() function.

3.5.1.6 Call Establishment

When the call is to be directly connected, such as to a voice messaging system, the
gc_AnswerCall() function is issued to make the final connection. When the gc_AnswerCall()
function is successfully completed, the call changes to the Connected state. At this time, the call is
connected to the called party and call charges begin.

74 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

3.5.1.7 Overlap Receiving

After an incoming call has been received, the call is offered to the application based on the call
acknowledgment configuration and the availability of information required for proceeding with the
call. If the incoming call is in en-bloc mode where all the information required for processing the
call is present, the call is offered to the application. Otherwise, the call is offered to the application
based on the following:

Call acknowledgment
If the application is configured to send the call acknowledgment, the call is immediately
offered to the application regardless of the amount of information available. The application
can then request and collect more information as required. If the technology call control layer
is configured to send the call acknowledgment, then the call is offered to the application based
on the minimum amount of information specified.

Minimum information specified
If the incoming call does not have sufficient information, the call is offered to the application
based on the amount of information required. If the technology is configured to accept
minimum information, the call is offered to the application only after the specified minimum
amount of information is received. Thereafter, the application can request and collect more
information as required. If the technology is not configured to accept minimum information,
then the call is offered to the application regardless of the amount of information available.
The application can then request and collect more information as required.

The following sections describe various configurations operating in overlap receiving mode.

Scenario 1

In this scenario, the application is configured to acknowledge the incoming call and send a call
proceeding indication after sufficient information has been received. When an incoming call is
detected, the call is immediately offered to the application regardless of the amount of information
available to proceed with the call.

When the call is in the Offered state, the application sends an acknowledgment for the incoming
call by issuing a gc_CallAck(GCACK_SERVICE_INFO). The application may selectively
retrieve call information, such as destination address and origination address (caller ID), by issuing
gc_GetCallInfo(). If more information is still required, the gc_ReqMoreInfo() function is issued
to request more information. The function returns when the requested information is received. The
application may then send a call proceeding indication to the remote side by issuing the
gc_CallAck(GCACK_SERVICE_PROC) function. Otherwise, the application can choose to
accept or answer the call.

Scenario 2

In this scenario, the technology call control layer is configured to acknowledge the incoming call
and send a call proceeding indication after sufficient information has been received. When an
incoming call is detected, the technology call control layer immediately sends an acknowledgment.

If the minimum amount of information required is specified, then the call is offered to the
application only after the minimum amount of information required is received. When the call is

Dialogic® Global Call API Programming Guide — September 2008 75
Dialogic Corporation

Call State Models

offered to the application and more information is required, the
gc_CallAck(GCACK_SERVICE_INFO) must be issued. Since an acknowledgment was already
sent out, no acknowledgment is sent to the remote side at this time. However, if the minimum
amount of information is not specified, then the technology control layer requests and collects
more information. After all the information is received, the technology control layer sends a call
proceeding indication to the remote side. The call is then offered to the application, which can then
accept or answer the call.

Scenario 3

In this scenario, the technology call control layer is configured to acknowledge the incoming call
and the application is configured to send a call proceeding indication after sufficient information
has been received. When an incoming call is detected, the technology call control layer
immediately sends an acknowledgment.

If the minimum amount of information required is specified, then the call is offered to the
application only after the minimum amount of information required is received. Otherwise the call
is immediately offered to the application.

When the call is in the Offered state, the application may selectively retrieve call information, such
as destination address and origination address (caller ID), by issuing the gc_GetCallInfo()
function. If more information is required, the application may also request more address
information using the gc_CallAck(GCACK_SERVICE_INFO) function. This function returns
when the requested information is received. If more information is still required, the
gc_ReqMoreInfo() function is issued to request more information. When all the required
information is received, the application may send a call proceeding indication to the remote side by
issuing the gc_CallAck(GCACK_SERVICE_PROC) function. Otherwise, the application can
choose to accept or answer the call.

Scenario 4

In this scenario, the application is configured to acknowledge the incoming call and the technology
call control layer is configured to send a call proceeding indication after sufficient information has
been received. When an incoming call is detected, the call is offered to the application regardless of
the amount of information available.

When the call is in the Offered state (after generation of the unsolicited GCEV_OFFERED event),
the application sends an acknowledgment for the incoming call by issuing a
gc_CallAck(GCACK_SERVICE_INFO). The application may selectively retrieve call
information, such as the destination address and origination address (caller ID), by issuing the
gc_GetCallInfo() function. If more information is still required, the gc_ReqMoreInfo() function
is issued to request more information. This function returns when the requested information is
received. When all the required information is received, the technology call control layer sends a
call proceeding indication to the remote side. The application may also attempt to send a call
proceeding indication to the remote side in case the technology call control layer hasn’t done so.
The application can then choose to accept or answer the call.

76 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

3.5.1.8 Call Failure

The following are various causes of call failures:

Call rejection
From the Offered state, the application may reject the call by issuing the gc_DropCall()
function followed by the gc_ReleaseCallEx() function.

Forced release
From the Accepted state, not all E1 CAS protocols support a forced release of the line. that is,
issuing the gc_DropCall() function after the gc_AcceptCall() function. If a forced release is
attempted, the function fails, and an error is returned. To recover, the application should issue
the gc_AnswerCall() function followed by the gc_DropCall() and gc_ReleaseCallEx()
functions. However, anytime a GCEV_DISCONNECTED event is received in the Accepted
state, the gc_DropCall() function can be issued.

Task failure
If a call fails at any point in the call establishment process, the call stays in its current state. In
most cases, the application needs to drop and release the call to return the line device to the
Null state. However, in some cases, such as call failure due to a trunk error, the application
needs to use the gc_ResetLineDev() function to reset the line device to the Null state. For
more information, see the gc_DropCall(), gc_ReleaseCallEx(), and gc_ResetLineDev()
function descriptions in the Dialogic® Global Call API Library Reference.

3.5.1.9 Inbound Call Scenarios in Synchronous Mode

The following shows the various synchronous inbound call scenarios. For call scenarios used for a
specific signaling protocol, check the Dialogic® Global Call Technology Guide for that technology.

Figure 18 shows a basic synchronous call scenario for an incoming call.

Dialogic® Global Call API Programming Guide — September 2008 77
Dialogic Corporation

Call State Models

Figure 18. Synchronous Inbound Call Scenario

Application
Global Call

Library/
Technology

Network

Alerting

GCEV_OFFERED

Incoming Call
Incoming Call

gc_WaitCall()

(All information
received)

gc_GetCallInfo (DESTINATION_ADDRESS)
gc_GetCallInfo (ORIGINATION_ADDRESS)

 (Sufficent information received)

gc_WaitCall () Returns

Call Answered

gc_AcceptCall ()

gc_AnswerCall ()

78 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Figure 19 shows a basic synchronous call scenario for an incoming call with call acknowledgment.

Figure 19. Synchronous Inbound Call Scenario with Call Acknowledgment

Application
Global Call

Library/
Technology

Network

Alerting

GCEV_OFFERED

Incoming Call

gc_WaitCall()

(All information
received)

gc_GetCallInfo (DESTINATION_ADDRESS)/
gc_GetCallInfo (ORIGINATION_ADDRESS)

 (Sufficent information received)

gc_WaitCall () Returns

Call Answered

gc_CallAck (GCACK_SERVICE_PROC)

gc_AnswerCall ()

gc_AcceptCall ()

Call Proceeding

Dialogic® Global Call API Programming Guide — September 2008 79
Dialogic Corporation

Call State Models

Figure 20 shows a basic synchronous call scenario for an incoming call with overlap receiving.

Figure 20. Synchronous Inbound Call Scenario with Overlap Receiving

3.5.2 Outbound Calls in Synchronous Mode

This section describes how calls are established and shows a call scenario for synchronous
outbound calls. The following topics describe the processing of outbound calls in synchronous
mode:

• Outbound Calls in Synchronous Mode Overview

• Channel Initialization

• Call Dialing

• Call Proceeding

• Call Alerting

• Call Connected

• Outbound Call Scenario in Synchronous Mode

Application
Global Call

Library/
Technology

Network

Alerting

GCEV_OFFERED

Incoming Call

gc_WaitCall()

(New Information
Buffered)

gc_GetCallInfo (DESTINATION_ADDRESS)/
gc_GetCallInfo (ORIGINATION_ADDRESS)

gc_WaitCall () Returns

Call Answered

gc_CallAck (GCACK_SERVICE_PROC)

gc_AnswerCall ()

gc_AcceptCall ()
Call Proceeding

gc_CallAck (GCACK_SERVICE_INFO) returns

gc_GetCallInfo (DESTINATION_ADDRESS)
(Sufficient information received)

gc_CallAck (GCACK_SERVICE_PROC)

More Information

More Information

Request More
Adddress Information

gc_ReqMoreInfo (DESTINATION ADDRESS)

80 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

3.5.2.1 Outbound Calls in Synchronous Mode Overview

Figure 21 shows the outbound synchronous call model states. Table 10 shows a summary of call
state transitions.

The overlap sending/receiving feature is not supported in the outbound synchronous call model.
Typically, synchronous calls are made when the application does not need the intermediate
function calls or events for establishing a call. However, the overlap feature requires intermediate
state transitions where additional function calls need to be made. In addition, synchronous
functions always return upon successful completion. But in the overlap mode, functions must
return before successful completion due to an intermediate request for more information. Handling
all the possible cases can complicate the synchronous model.

Figure 21. Outbound Synchronous Call Process

gc_MakeCall()

Call is Answered

Null

GCEV_PROCEEDING

GCEV_ALERTING

GCEV_ALERTING

Dialing

Call is Answered

Alerting

Connected

Proceeding

Dialogic® Global Call API Programming Guide — September 2008 81
Dialogic Corporation

Call State Models

3.5.2.2 Channel Initialization

In order to establish calls, the following conditions must be met:

• The condition of the line device must be unblocked. When a channel is initially opened, the
initial condition of a line device is blocked. A “blocking” condition on a line device is
indicated by the reception of a GCEV_BLOCKED event, and an “unblocking” condition on a
line device is indicated by the reception of a GCEV_UNBLOCKED event. The
GCEV_BLOCKED and GCEV_UNBLOCKED events are sent as unsolicited events to the
application in response to blocking alarms. For more information on blocking alarms and the
GCEV_BLOCKED and GCEV_UNBLOCKED events, see Section 4.3, “Blocked and
Unblocked Event Handling”. When the condition of the line device is unblocked, the line
device is ready for establishing calls.

• The call state of the channel must be in the Null state. This is the initial call state of a line
device when it is first opened. This state is also reached when a call is released or after the
channel is reset by issuing gc_ResetLineDev().

If the above conditions are met, the application is ready to receive inbound calls.

3.5.2.3 Call Dialing

To initiate an outbound call (see Figure 21 and Table 10) using the synchronous mode, the
application issues the gc_MakeCall() function, which requests an outgoing call to be made on a
specific line device. A CRN is assigned to the call being made on the specific line device. Dialing
information is then sent to and acknowledged by the network. When the gc_MakeCall() function
is issued in the synchronous mode, the function returns successfully when the call reaches the

Table 10. Synchronous Outbound Call State Transitions

State Previous/Next State
Valid Call State

Transition
Functions

Call Transition Events

Alerting
(GCST_ALERTING)

Maskable

Previous: Proceeding,
Dialing, SendMoreInfo

Next:

gc_DropCall() -> Idle state

gc_DropCall() GCEV_DISCONNECTED

Dialing
(GCST_DIALING)

Maskable

Previous: Null

Next:

gc_DropCall() -> Idle state

gc_DropCall() GCEV_ALERTING,
GCEV_DISCONNECTED

Null (GCST_NULL)

Not Maskable

Previous: Idle

Next:

gc_MakeCall() -> Dialing
state

gcDropCall() -> Idle state

gc_MakeCall()

Proceeding
(GCST_PROCEEDING)

Not Maskable

Previous: Dialing,
SendMoreInfo

Next:

gc_DropCall() -> Idle state

gc_DropCall() GCEV_DISCONNECTED,
GCEV_ALERTING

82 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Connected state. See the Dialogic® Global Call Technology Guide for your technology for valid
completion points for the gc_MakeCall() function.

Some call related events indicating the status of the call may be generated, if enabled, while the
gc_MakeCall() function is in progress.

3.5.2.4 Call Proceeding

The remote side may indicate that all the information was received and that the call is proceeding.
In this case, the GCEV_PROCEEDING event is generated, if enabled, and the call transitions to
the Proceeding state. The remote side may either accept or answer the call.

3.5.2.5 Call Alerting

If the remote end is not ready to answer the call, the GCEV_ALERTING event is generated, if
enabled. This event indicates that the called party has accepted but not answered the call, and that
the network is waiting for the called party to complete the connection. At this stage, the remote side
is typically ringing. This GCEV_ALERTING event changes the call state to the Alerting state.

3.5.2.6 Call Connected

When the call is answered (the remote end makes the connection), the gc_MakeCall() function
completes successfully and the call changes to the Connected state.

3.5.2.7 Outbound Call Scenario in Synchronous Mode

Figure 22 shows a synchronous outbound call scenario. For call scenarios used for a specific
signaling protocol, check the Dialogic® Global Call Technology Guide for that technology.

Figure 22. Outbound Call Scenario in Synchronous Mode

Application
Global Call

Library/
Technology

Network

Alerting

GCEV_RPOCEEDING

gc_MakeCall()

Call Answered

Call Proceeding

Outbound Call

GCEV_ALERTING

GCEV_CONNECTED

Dialogic® Global Call API Programming Guide — September 2008 83
Dialogic Corporation

Call State Models

3.5.3 Call Termination in Synchronous Mode

This section describes how calls are terminated and shows call scenarios for synchronous call
terminations. The following topics describe the processing of call termination in synchronous
mode:

• Call Termination in Synchronous Mode Overview

• User Initiated Termination

• Network Initiated Termination

• Call Release

• Call Termination Call Control Scenarios in Synchronous Mode

3.5.3.1 Call Termination in Synchronous Mode Overview

Figure 23 illustrates the call states associated with call termination or call tear-down in the
synchronous mode, initialized by either call disconnection or failure. Table 11 summarizes the call
state transitions. A call can be terminated by the application or by detection of a call disconnect
from the network. Either of these terminations can occur at any point in the process of setting up a
call and during any call state.

84 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Figure 23. Synchronous Call Tear-Down State Diagram

gc_ReleaseCallEx()

gc_DropCall()

GCEV_DISCONNECTED

From Any State
Shown Below

From Any State
Shown Below

See the Global Call CDP Configuration
Guide for the protocols that support a
forced release of the line.

*

TERMINATED
BY NETWORK

TERMINATED
BY APPLICATION

gc_DropCall()

Disconnected

Idle

Null

Offered

Accepted

Connected

Alerting

GetMoreInfo

CallRouting

Offered

Accepted*

Connected

Alerting

GetMoreInfo

CallRouting

Dialogic® Global Call API Programming Guide — September 2008 85
Dialogic Corporation

Call State Models

3.5.3.2 User Initiated Termination

The application terminates a call by issuing a gc_DropCall() function that initiates disconnection
of the call specified by the CRN. This gc_DropCall() function causes the call to change from the
current call state to the Idle state. In the Idle state, the call has been disconnected and the
application must issue a gc_ReleaseCallEx() function to free the line device for another call. This
gc_ReleaseCallEx() function instructs the driver and firmware to release all system resources
committed to servicing the call, and causes the call state to change to the Null state.

3.5.3.3 Network Initiated Termination

When a network call termination is initiated, an unsolicited GCEV_DISCONNECTED event is
generated. This event indicates the call was disconnected at the remote end or an error was
detected, which prevented further call processing. The GCEV_DISCONNECTED event causes the
call state to change from the current call state to the Disconnected state. In the Disconnected state,
the user issues the gc_DropCall() function to disconnect the call. The gc_DropCall() function is
equivalent to set hook ON. This gc_DropCall() function causes the call state to change to the Idle
state. In the Idle state, the gc_ReleaseCallEx() function must be issued to release all internal
resources allocated for the call.

3.5.3.4 Call Release

Once in the Idle state, the call has been disconnected and the application must issue a
gc_ReleaseCallEx() function to free the line device for another call. The gc_ReleaseCallEx()
function releases all internal system resources committed to servicing the call, and the call state
transitions to the Null state.

Table 11. Synchronous Call Termination Call State Transitions

State Previous/Next State
Valid Call State

Transition
Functions

Call Transition
Events

Disconnected
(GCEV_DISCONNECTED)

Not maskable

Previous: Offered,
Accepted, Connected,
Alerting, GetMoreInfo,
CallRouting

Next:

gc_DropCall() -> Idle
state

gc_DropCall()

Idle (GCST_IDLE)

Not Maskable

Previous: Offered,
Accepted, Connected,
Alerting, GetMoreInfo,
CallRouting, Disconnected

Next:

gc_ReleaseCallEx() ->
Null

gc_ReleaseCallEx()

86 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

3.5.3.5 Call Termination Call Control Scenarios in Synchronous Mode

This section shows synchronous call termination scenarios. For call scenarios used for a specific
signaling protocol, check the Dialogic® Global Call Technology Guide for that technology.

Figure 24 shows a synchronous user-initiated call termination scenario.

Figure 24. User Initiated Call Termination Scenario in Synchronous Mode

Figure 25 shows a synchronous network-initiated call termination scenario.

Figure 25. Network Initiated Synchronous Call Termination Scenario

Application
Global Call

Library/
Technology

Network

gc_DropCall()

Call Disconnected

gc_DropCall () returns

gc_ReleaseCallEx()

gc_ReleaseCallEx() returns

Disconnect

Application
Global Call

Library/
Technology

Network

gc_DropCall()
Call Disconnected

gc_DropCall () returns

gc_ReleaseCallEx()

gc_ReleaseCallEx() returns

Disconnect
GCEV_DISCONNECTED

Dialogic® Global Call API Programming Guide — September 2008 87
Dialogic Corporation

Call State Models

3.5.4 Handling Unsolicited Events

The application must handle unsolicited events in the synchronous mode, unless these events are
masked or disabled. The gc_SetConfigData() function specifies the events that are enabled or
disabled for a specified line device. This function sets the event mask associated with the specified
line device. If an event bit in the mask is cleared, the event is disabled and not sent to the
application.

The unsolicited events listed in Table 12 require a signal handler if they are enabled. Unsolicited
events that cannot be masked must use a signal handler. All technology-specific unsolicited events
also require a signal handler (see the appropriate Dialogic® Global Call Technology Guide for
details). If any of these unsolicited events are not masked by the application and signal handlers are
not defined, they are queued without being retrievable and memory problems are likely to occur.

3.6 Advanced Call Control with Call Hold and Transfer

Note: The advanced call model does not apply to IP technology, which uses a different scheme for
features such as call transfer. See the Dialogic®Global Call IP Technology Guide for more
information.

This section describes the advanced call state model. Topics include:

• Advanced Call State Model Overview

• Advanced Call States for Hold and Transfer

• Call Hold

• Call Transfer

3.6.1 Advanced Call State Model Overview

The advanced call model provides additional call control functionality over the basic call model,
adding the ability to transfer calls, place calls on hold, and retrieve calls on hold. This section
provides brief descriptions of the Dialogic® Global Call API functions used to hold, retrieve, and
transfer calls, and describes the call state transitions that occur when the functions are used. This

Table 12. Unsolicited Events Requiring Signal Handlers

Event Default Setting Maskable

GCEV_ALERTING enabled yes

GCEV_PROCEEDING disabled yes

GCEV_DETECTED disabled yes

GCEV_BLOCKED enabled yes

GCEV_UNBLOCKED enabled yes

GCEV_DISCONNECTED enabled no

GCEV_TASKFAIL enabled no

88 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

section also provides figures that illustrate the call state transitions for advanced call model
functions.

Note: The hold, retrieve, and transfer functions are supported by particular protocols for the ISDN, E1
(PDKRT only), and T1 (PDKRT only) technologies. For more information, see the function
descriptions in the Dialogic® Global Call API Library Reference and the appropriate Dialogic®
Global Call Technology Guide.

3.6.2 Advanced Call States for Hold and Transfer

Two advanced call states are appended to the basic call model to support call hold and transfer.
These advanced call states are as follows:

On-hold State (GCST_ONHOLD)
A call must be in the Connected call state to be put on hold. When a call is put on hold, the
remote party is often routed via the local switch or network to receive background music while
temporarily suspended from conversing with the local party. The call remains on hold until the
application retrieves the call, effectively re-transitioning it into the Connected,
“conversational” state. The application may not issue a gc_MakeCall() or receive another call
while a call is in the On-hold state.

There is no limit to the number of times a call may be placed in and retrieved from the On-hold
state. In addition, either the called party or the calling party can put the call in the On-hold
state.

The On-hold call state applies only to call scenarios where a single call is present on the
specified channel. The On-hold call state does not apply to call transfer scenarios that use the
On-hold Pending Transfer call state instead.

On-hold Pending Transfer State (GCST_ONHOLDPENDINGTRANSFER)
During a supervised call transfer, two calls are made accessible to the local channel. Both calls
must be in the Connected call state. The call that is temporarily suspended from conversing is
considered to be in the On-hold Pending Transfer call state. This call is often routed via the
local switch or network to receive background music while awaiting completion of the call
transfer.

Both the suspended call and the currently active call may be swapped at any time so that the
call that was in the On-hold Pending Transfer state is now actively connected, while the former
active call is placed in the On-hold Pending Transfer state. There is no limit to the number of
times two calls may be swapped between the On-hold Pending Transfer and “Connected”
states. The completion of the call transfer is independent of which call is active or on hold.

3.6.3 Call Hold

The advanced call model allows the application to place a call on hold. Global Call provides the
following functions to place a call on hold and, subsequently, to retrieve the call on hold:

gc_HoldCall()
place a call on hold

gc_RetrieveCall()
retrieve a call from hold

Dialogic® Global Call API Programming Guide — September 2008 89
Dialogic Corporation

Call State Models

The gc_HoldCall() function places an active call in the On-hold (GCST_ONHOLD) state. The
gc_RetrieveCall() function retrieves the call from the GCST_ONHOLD state and returns it to the
Connected (GCST_CONNECTED) state.

Figure 26 illustrates the transition between call states when a call is put on hold and then retrieved.

Figure 26. Call State Transitions for Hold and Retrieve

Calls in the On-hold state must be returned to the Connected state before they can be dropped.
Calls are dropped following the Basic Call scenario. See Section 3.4, “Basic Call Control in
Asynchronous Mode” and Section 3.5, “Basic Call Control in Synchronous Mode” for more
information.

3.6.4 Call Transfer

This section describes the different types of call transfer. Topics include:

• Call Transfer Overview

• Supervised Transfers

• Unsupervised Transfers

3.6.4.1 Call Transfer Overview

There are two types of call transfers:

Supervised transfers
The person transferring the call stays on the line, announces the call, and consults with the
party to whom the call is being transferred before the transfer is completed.

Unsupervised transfers
The call is sent without any consultation or announcement by the person transferring the call.
Unsupervised transfers are also known as one-step transfers or blind transfers.

Note: The call transfer implementations described in this section are common to a number of different
technologies. However, not all technologies support these implementations and some technologies
have technology-specific implementations for call transfer. See the appropriate Dialogic® Global
Call Technology Guide for technology-specific information on call transfer.

gc_RetrieveCall()

state(ch1) = Connected

gc_HoldCall()

state(ch1) = Onhold

90 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Supervised transfers use the following Global Call functions:

gc_SetupTransfer()
initiates a supervised transfer

gc_CompleteTransfer()
completes a supervised transfer

gc_SwapHold()
switches between the consultation call and the call pending transfer

Unsupervised transfers use the following Global Call function:

gc_BlindTransfer()
initiates and completes an unsupervised (one-step) transfer

3.6.4.2 Supervised Transfers

A supervised transfer begins with a successful call to the gc_SetupTransfer() function. The
following steps describe how the transfer is completed:

1. Successful call to the gc_SetupTransfer() function changes the state of the original call to the
GCST_ONHOLDPENDINGTRANSFER state.

2. A consultation CRN is allocated with the initial state of GCST_DIALTONE and is returned by
the gc_SetupTransfer() function.

3. The gc_MakeCall() function is called to establish a connection on the consultation call. The
CRN returned by gc_MakeCall() is the same CRN as was returned by gc_SetupTransfer().

4. The consultation call proceeds similarly to a singular outbound call proceeding through the
GCST_DIALING and GCST_ALERTING (if enabled) call states. (See Section 3.4, “Basic
Call Control in Asynchronous Mode” and Section 3.5, “Basic Call Control in Synchronous
Mode” for more information.)

5. If the consultation call is successfully established, the state of the consultation call changes to
the GCST_CONNECTED state, and the state of the original call remains unchanged.

6. While the consultation call is in the GCST_CONNECTED state, the gc_SwapHold() function
may be used to switch between the call pending transfer and the consultation call.

7. A call to the gc_CompleteTransfer() function transfers the original call to the consultation
call and internally drops both channels.

8. The states of the original and the consultation call both change to the GCST_IDLE state upon
receipt of the GCEV_COMPLETETRANSFER event.

9. The application must call gc_ReleaseCallEx() for both of the calls to release the resources
allocated for both channels.

Note: The consultation call may be terminated at any point in the process by the application or by the
detection of a call disconnect from the network.

The call state transitions that occur during a supervised transfer are shown in Figure 27 (which also
shows the call state transitions for an unsupervised transfer).

Dialogic® Global Call API Programming Guide — September 2008 91
Dialogic Corporation

Call State Models

Figure 27. Call State Model for Supervised and Unsupervised Transfers

If the network or application terminates a call during a transfer, the call state transitions are as
shown in Figure 28.

gc_SwapHold()
GCEV_SWAPHOLD

Idle (Call 1)
Idle (Call 2)*

Connected (Call 1)

OnHoldPendingTransfer (Call 1)
Connected (Call 2)

Connected (Call 1)
OnHoldPendingTransfer (Call 2)

gc_MakeCall()

gc_CompleteTransfer()
GCEV_COMPLETETRANSFER)

gc_SetupTransfer()
sr_waitevt()

GCEV_SETUPTRANSFER)

Completion of
gc_MakeCall()gc_AnswerCall()gc_AnswerCall()

gc_ReleaseCallEx() (Call 1)
gc_ReleaseCallEx() (Call 2)

gc_CompleteTransfer()
gc_CompleteTransfer()

gc_CompleteTransfer()

gc_SwapHold()

gc_CompleteTransfer()

Indicates that Call 2 does
not apply in a blind transfer.

Note:
*

OnHoldPendingTransfer (Call 1)
Dialtone (Call 2)

OnHoldPendingTransfer (Call 1)
Dialtone (Call 2)

GCEV_ALERTING
(maskable)

OnHoldPendingTransfer (Call 1)
Alerting (Call 2)

Dialing (Call 1)

GCEV_ALERTING
(maskalbe)

Alerting (Call 1)

Offered (Call 1)

gc_AcceptCall()

gc_MakeCall()

GCEV_CONNECTED

Accepted (Call 1)

Null (Call 1)

INBOUND CALL OUTBOUND CALL

Detected (Call 1)

GCEV_OFFERED

gc_WaitCall()
GCEV_DETECTED

(maskable)
gc_WaitCall()

GCEV_OFFERED

GCEV_CONNECTED

GCEV_CONNECTED

Idle (Call 1)

gc_ReleaseCallEx() (Call 1)

gc_BlindTransfer()

92 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Figure 28. Call Termination by the Network or Application During a Transfer

Note: In Figure 28, when gc_DropCall() is issued, an unsolicited GCEV_CONNECTED event is
received for call 1, transitioning it back to the Connected state.

3.6.4.3 Unsupervised Transfers

In an unsupervised transfer, a successful call to the gc_BlindTransfer() function transfers the call
in a single step, without any consultation or announcement by the person transferring the call.
Internally, the currently connected call is placed on hold, the new party is dialed, and, finally, the
connection to both parties is relinquished. When the application receives the
GCEV_BLINDTRANSFER event, the original call enters the GCST_IDLE state. At this point, the
application must call gc_ReleaseCallEx() for the call to release the allocated resources.

Once the new party is dialed, the control and responsibility for the results of the transfer, whether
successfully connected or not, lie totally with the remote party once the transfer is relinquished.
Only one call is controlled by the application, as the transfer is initiated internally via the protocol.

Unsupervised transfers do not provide call progress results for the transfer, nor do they support
terminating the transfer at any point via the gc_DropCall() function.

gc_DropCall (Call 2)*
GCEV_DROPCALL (Call 2)

GCEV_CONNECTED (Call 1)

gc_ReleaseCallEx (Call 2)

gc_DropCall (Call 2)*
GCEV_DROPCALL (Call 2)

GCEV_CONNECTED (Call 1)

OnHoldPendingtransfer (Call 1)
Dialing (Call 2)

OnHoldPendingtransfer (Call 1)
Alerting (maskable) (Call 2)

OnHoldPendingtransfer (Call 1)
Connected (Call 2)

OnHoldPendingtransfer (Call 1)
Dialing (Call 2)

state unchanged (Call 1)
Disconnected (Call 2)

Connected (Call 1)
Idle (Call 2)

Connected (Call 1)
Null (Call 2)

OnHoldPendingtransfer (Call 1)
Alerting (maskable) (Call 2)

OnHoldPendingtransfer (Call 1)
Connected (Call 2)

Disconnected (Call 1)
state unchanged (Call 2)

TERMINATED
BY

NETWORK
(from any of the states

shown in the box below)

TERMINATED
BY

APPLICATION
(from any of the states

shown in the box below)

This can be Call 1 or Call 2
depending on which call is
currenly active, that is, not in an
OnHoldPendingTransfer state.

*
Note:

Connected (Call 1)
OnHoldPendingtransfer (Call 2)

Connected (Call 1)
OnHoldPendingtransfer (Call 2)

Dialogic® Global Call API Programming Guide — September 2008 93
Dialogic Corporation

Call State Models

Figure 27 illustrates the call state transitions that occur in an unsupervised transfer, which basically
includes only:

• The transition of Call 1 from the Connected to the Idle state (invoked by the
gc_BlindTransfer() function)

• The transition of Call 1 from the Idle to the Null state (invoked by the gc_ReleaseCallEx()
function)

94 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call State Models

Dialogic® Global Call API Programming Guide — September 2008 95
Dialogic Corporation

44.Event Handling

This chapter describes how the Dialogic® Global Call API handles events generated in the call
state model. Topics include:

• Overview of Event Handling . 95

• Event Categories . 95

• Blocked and Unblocked Event Handling. 96

• Event Retrieval. 97

• Events Indicating Errors . 98

• Masking Events . 98

• Event Handlers. 98

4.1 Overview of Event Handling

The Dialogic® Global Call API protocol handler continuously monitors the line device for events
from the network. As each call is processed through its various states, corresponding events are
generated and passed to the application. An overview of Global Call event categories is provided in
this chapter. Specific event definitions are described in the Dialogic® Global Call API Library
Reference. See the appropriate Dialogic® Global Call Technology Guide for technology-specific
event information.

4.2 Event Categories

The events that can occur when using the Dialogic® Global Call API are divided into the following
categories:

Termination
Events returned after the termination of a function. Termination events apply to asynchronous
programming only.

Notification
Events that are requested by the application and provide information about a function call.
Notification events apply to synchronous and asynchronous programming.

Unsolicited
Events triggered by, and providing more information about, external events. Unsolicited events
apply to synchronous and asynchronous programming.

See the Dialogic® Global Call API Library Reference for detailed information about each event,
and see the appropriate Dialogic® Global Call Technology Guide for any technology-specific event
information.

96 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Event Handling

4.3 Blocked and Unblocked Event Handling

The Dialogic® Global Call API uses the concept of blocked and unblocked conditions for line
devices. By default, when the gc_OpenEx() function is used to open a line device, the line device
is in a blocked condition, meaning that the application cannot perform call related functions on the
line device, such as waiting for a call or making a call. The application must wait for the
GCEV_UNBLOCKED event before waiting for a call or making a call.

Note: Since, by default, the line device is initially in the blocked condition, the application does not
receive an initial GCEV_BLOCKED event.

Circumstances can occur, such as a blocking layer 1 (physical) alarm or the remote side going out
of service, that cause a line device to move to a blocked condition. When this happens, the
application receives a GCEV_BLOCKED event. When the line device is in the blocked condition,
the application can only perform a small subset of the valid functions for line devices. The
functions common to all interface technologies and that can be used while a line device is in the
blocked condition are:

• gc_DropCall()

• gc_ReleaseCall()

• gc_ReleaseCallEx()

• gc_Close()

• Functions related to alarm processing and retrieving alarm information, for example,
gc_AlarmName()

• Functions related to error processing, for example, gc_ErrorInfo()

• Functions related to event processing, for example, gc_ResultInfo(), gc_GetMetaEvent(),
and gc_GetMetaEventEx()

• Functions related to retrieving information about the call control libraries, for example,
gc_CCLibIDToName()

• gc_AttachResource() and gc_Detach()

As indicated in the list above, the application may drop and release calls while a line device is in
the blocked condition, but it should not do so in response to the GCEV_BLOCKED event. If a call
is active, typically a GCEV_DISCONNECTED event arrives either just before or just after the
GCEV_BLOCKED event, at which point the application should drop and release the call indicated
by the GCEV_DISCONNECTED event.

Note: The Global Call term blocked does not refer to the signaling bits indicating a blocked condition as
defined in some network interface technologies, although the line device may move to a blocked
condition as a consequence of the signaling bits indicating a blocked condition.

At some point, the application may receives a GCEV_UNBLOCKED event, indicating that the
conditions blocking a line device have been removed and the line device has now returned to the
unblocked condition. The application can once again use any valid function on the line device.

The reception of the GCEV_BLOCKED and GCEV_UNBLOCKED events may be disabled using
the gc_SetConfigData() function. The default is that these events are enabled. However, disabling
the reception of these events is not recommended since the application will not be notified of these

Dialogic® Global Call API Programming Guide — September 2008 97
Dialogic Corporation

Event Handling

critical events. In addition, if the GCEV_BLOCKED event is disabled, some functions will fail
with a reason of EGC_INVALIDSTATE, which may cause confusion. For more information on
blocking alarms and the GCEV_BLOCKED and GCEV_UNBLOCKED events, see Section 8.2.1,
“Generation of Events for Blocking Alarms”, on page 137.

Note: A GCEV_UNBLOCKED event will be generated when opening a board device. A
GCEV_BLOCKED event will also be generated if there are blocking alarms on the board, and the
corresponding GCEV_UNBLOCKED event will be generated when the blocking alarms clear. The
application must be prepared to handle these events.

4.4 Event Retrieval

All events are retrieved using the Dialogic® Standard Runtime Library (SRL) event retrieval
mechanisms, including event handlers. (See the Dialogic® Standard Runtime Library API
Programming Guide for details.) The gc_GetMetaEvent() function, or the
gc_GetMetaEventEx() function for Windows® extended asynchronous models, maps the current
SRL event into a metaevent. A metaevent is a data structure that explicitly contains the information
describing the event. This data structure provides uniform information retrieval among all call
control libraries.

For Dialogic® Global Call API events, the structure contains Global Call related information (CRN
and line device) used by the application. For events that are not Global Call events, the device
descriptor, the event type, a pointer to variable length event data, and the length of the event data
are available through the METAEVENT structure. Since all the data associated with an event is
accessible via the METAEVENT structure, no additional SRL calls are required to access the event
data.

The LDID associated with an event is available from the linedev field of the METAEVENT. If the
event is related to a CRN, that CRN is available from the crn field of the METAEVENT; if the crn
field of the METAEVENT is 0, then the event is not a call-related event.

The METAEVENT structure also includes an extevtdatap field that contains a pointer to more
information about the event. The memory pointed to by the extevtdatap field should be treated as
read-only and should not be altered and/or freed.

Late events are events that arrive for a released CRN. Late events can occur if the
gc_ReleaseCallEx() function is issued before the application has retrieved all of the termination
events. To avoid late events, the application should issue a gc_DropCall() function before issuing
the gc_ReleaseCallEx() function. Failure to issue this function could result in one or more of the
following problems:

• memory problems due to memory being allocated and not being released

• a blocking condition

• events sent to the previous user of a CRN that could be processed by a later user of the CRN
with unexpected results

The reason for an event can be retrieved using the gc_ResultInfo() function. The information
returned uniquely identifies the cause of the event.

98 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Event Handling

4.5 Events Indicating Errors

Events that explicitly provide error indications are as follows:

GCEV_TASKFAIL
Received when an API function call fails

GCEV_ERROR
Received in an unsolicited manner when an internal component fails

When either of these events is received, the application should call gc_ResultInfo() immediately
after the event arrives to determine the reason for the event. The data structure associated with
gc_ResultInfo() can contain reason information provided by the Dialogic® Global Call API and
additional reason information provided by the underlying call control library. See the Dialogic®
Global Call API Library Reference for more information.

4.6 Masking Events

Some events are maskable. See the gc_SetConfigData() function description in the Dialogic®
Global Call API Library Reference for specific information regarding enabling and disabling
events.

4.7 Event Handlers

An event handler is a user-defined function called by the Dialogic® Standard Runtime Library
(SRL) API to handle a specific event that occurs on a specified device. Event handlers are
described in the following topics:

• Event Handlers for Linux

• Event Handlers for Windows®

4.7.1 Event Handlers for Linux

The following guidelines apply to event handlers (for detailed information, see the Dialogic®
Standard Runtime Library API Programming Guide):

• More than one handler can be enabled for an event.

• General handlers can be enabled that handle any event on a specified device.

• Handlers can be enabled to handle any event on any device.

• Synchronous functions cannot be called in a handler.

• Handlers must return a 1 to advise the SRL to keep the event in the SRL queue, and a 0 to
advise the SRL to remove the event from the SRL queue.

When using the asynchronous with event handlers model, after initiation of the asynchronous
function, the process cannot receive termination (solicited) or unsolicited events until the
sr_waitevt() function is called. When using this model, the main process typically issues a single

Dialogic® Global Call API Programming Guide — September 2008 99
Dialogic Corporation

Event Handling

call for the sr_waitevt() function. If a handler returns a non-zero value, the sr_waitevt() function
returns to the main process.

4.7.2 Event Handlers for Windows®

Typically, in a Windows® environment, processing events within a thread or using a separate thread
to process events tends to be more efficient than using event handlers. However, if event handlers
are used, such as when an application is being ported from Linux, then you must use the
asynchronous with SRL callback model.

The following guidelines apply to using event handlers:

• More than one handler can be enabled for an event. The SRL calls all specified handlers when
the event is detected.

• Handlers can be enabled or disabled from any thread.

• General handlers can be enabled to handle all events on a specific device.

• A handler can be enabled to handle any event on any device.

• Synchronous functions cannot be called from a handler.

By default, when the sr_enbhdlr() function is first called, a thread internal to the SRL is created to
service the application-enabled event handlers. This SRL handler thread exists as long as one
handler is still enabled. The creation of this internal SRL event handler thread is controlled by the
SR_MODELTYPE value of the SRL sr_setparm() function. The SRL handler thread should be:

• enabled when using the asynchronous with SRL callback model. Enable the SRL event
handler thread by not specifying the SR_MODELTYPE value (default is to enable) or by
setting this value to SR_MTASYNC (do not specify SR_STASYNC).

• disabled when using an application-handler thread wherein a separate event handler thread is
created within the application that calls the sr_waitevt() and gc_GetMetaEvent() functions.
For an application-handler model, use the asynchronous with SRL callback model but set the
SR_MODELTYPE value to SR_STASYNC to disable the creation of the internal SRL event
handler thread.

Note: An application-handler thread must not call any synchronous functions.

See the Dialogic® Standard Runtime Library API Programming Guide for the hierarchy (priority)
order in which event handlers are called.

100 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Event Handling

Dialogic® Global Call API Programming Guide — September 2008 101
Dialogic Corporation

55.Error Handling

The chapter describes the error handling capabilities provided by the Dialogic® Global Call API.
Topics include the following:

• Error Handling Overview . 101

• Fatal Error Recovery . 102

5.1 Error Handling Overview

When an error occurs during execution of a function, one of the following occurs:

• The function returns with a value < 0.

• The unsolicited error event, GCEV_TASKFAIL, is sent to the application.

Call control libraries supported by the Dialogic® Global Call API may have a larger set of error
codes than those defined in the gcerr.h header file. The call control library error values are
available using the gc_ErrorInfo() function, which retrieves Global Call and call control library
information. To retrieve the information, this function must be called immediately after the Global
Call function failed. This function returns a result value associated directly with the Global Call
and call control library.

The gc_ResultInfo() function retrieves information about solicited and unsolicited events when a
Global Call application gets an expected or unexpected event. To retrieve the information, the
gc_ResultInfo() function must be called immediately after a Global Call event arrives, and before
the next event returns Global Call and call control library information related to the last Global Call
function call. To process an error, this function must be called immediately after an event is
returned to the application. For example, if an alarm occurs while making an outbound call, a
GCEV_DISCONNECTED event is sent to the application with a result value indicating an alarm
on the line. The GCEV_BLOCKED event is also generated with a result value that also indicates
an alarm on the line. See the appropriate Dialogic® Global Call Technology Guide for information
on specific protocol errors.

If an error occurs during execution of an asynchronous function, a termination event, such as the
GCEV_GETCONFIGDATA_FAIL or GCEV_SETCONFIGDATA_FAIL event, is sent to the
application. No change of state is triggered by this event. If events on the line require a state
change, this state change occurs as described in Section 3.4.3, “Call Termination in Asynchronous
Mode”, on page 65. When an error occurs during a protocol operation, the error event is placed in
the event queue with the error value that identifies the error. Upon receiving a GCEV_TASKFAIL
event, the application can retrieve the reason for the failure using the gc_ResultInfo() function.

An unsolicited GCEV_ERROR event can be received if an internal component fails. The
gc_ResultInfo() function can be used to determine the reason for the event. Valid reasons are any
of the Global Call reasons (error code or result values) or a call control library-specific reason (see
the appropriate Dialogic® Global Call Technology Guide).

102 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Error Handling

5.2 Fatal Error Recovery

A fatal error can be defined as any error that will cause a channel to hang. There are several types
of fatal errors:

• Fatal errors where a recovery attempt is possible via sending the protocol a protocol reset
command.

• Fatal errors where no recovery attempt is possible except by closing the channel and re-
opening it.

• Fatal errors where no recovery attempt is possible; the application must be shut down and
restarted. An example of this is an internal error in a call control library. Normally, this should
not occur.

The following fatal error recovery scenario is only possible when using PDKRT protocols.

When a fatal error where an internal recovery attempt is possible is caught, the application is
notified by the GCEV_FATALERROR event, with a result value of
GCRV_RESETABLE_FATALERROR, that a recovery from a fatal error is in progress. The
application then assumes a gc_ResetLineDev() has been done and waits for the
gc_ResetLineDev() completion event (GCEV_RESETLINEDEV). The application does not need
to drop any active calls; dropping of calls occurs automatically.

When a fatal error where an internal recovery attempt is not possible, but an error that is non-fatal
is caught, the application is notified by the GCEV_FATALERROR event, with a result value of
GCRV_RECOVERABLE_FATALERROR, indicating that the application needs to issue a
gc_Close() followed by a gc_OpenEx().

When a fatal, non-recoverable error is caught, the application is notified by the
GCEV_FATALERROR event with a result value of
GCRV_NONRECOVERABLE_FATALERROR. The application must then shut down. The
firmware should then be reloaded, and the application restarted.

If the application makes any requests while the recovery process is in progress, the request will fail.
In asynchronous mode, the application is notified by a GCEV_TASKFAIL event with a reason of
GCRV_FATALERROR_OCCURRED. In synchronous mode, the application receives a -1
indicating that an error has occurred. The error value for the failure is
EGC_FATALERROR_OCCURRED. Similarly, if any requests are in the queue, a check is
performed to see if fatal error recovery is in progress. If it is in progress, then the request will fail
with a reason of GCRV_FATALERROR_OCCURRED.

The following errors are not handled automatically:

• errors during open

• errors during close

• errors during start

• errors during stop

• lack of dynamic memory

• recursive errors (errors that occurred while recovering)

Dialogic® Global Call API Programming Guide — September 2008 103
Dialogic Corporation

Error Handling

For a listing of the error codes and result values used in fatal error recovery, see the Dialogic®
Global Call API Library Reference.

104 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Error Handling

Dialogic® Global Call API Programming Guide — September 2008 105
Dialogic Corporation

66.Application Development
Guidelines

This chapter provides some tips for developing programs using the Dialogic® Global Call API.
Topics include:

• General Programming Tips . 105

• Tips for Programming Drop and Insert Applications . 106

• Using Dialogic® Global Call API with Dialogic® DM3 Boards 108

6.1 General Programming Tips

The following tips apply when programming with the Dialogic® Global Call API:

• When using Global Call functions, the application must use the Global Call handles, that is,
the line device ID and call reference number (CRN), to access Global Call functions. Do not
substitute a network, voice, or media device handle for the Global Call line device ID or CRN.
If the application needs to use a network, voice, or media device handle for a specific network
or voice library call, for example dx_play(), you must use the gc_GetResourceH() function
to retrieve the network, voice, or media device handle associated with the specified Global Call
line device. The gc_GetResourceH() function is only needed if the voice or media resource is
associated with a Global Call line device. If a voice resource is not part of the Global Call line
device, the device handle returned from the dx_open() call should be used.

• Do not access the underlying call control libraries directly. All access must be done using the
Global Call library, that is, using Global Call (gc_) functions.

• Do not call any network library (dt_) function directly from your application that may affect
the state of the line or the reporting of events, for example, dt_settssig(), dt_setevtmsk(), or
others.

• The GCEV_BLOCKED and GCEV_UNBLOCKED events are line related events, not call
related events. These events do not cause the state of a call to change.

• Before exiting an application:

– Drop and release all active calls, using the gc_DropCall() and gc_ReleaseCallEx()
functions.

– Close all open line devices, using the gc_Close() function.

– Stop the application, using the gc_Stop() function

• Before issuing gc_DropCall(), you must use the dx_stopch() function to terminate any
application-initiated voice functions, such as dx_play() or dx_record().

• In Windows® environments, although asynchronous models are more complex than the
synchronous model, asynchronous programming is recommended for more complex
applications that require coordinating multiple tasks. Asynchronous programming can handle
multiple channels in a single thread. In contrast, synchronous programming requires separate

106 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Application Development Guidelines

threads. Asynchronous programming uses system resources more efficiently because it
handles multiple channels in a single thread. Asynchronous models let you program complex
applications and achieve a high level of resource management in your application by
combining multiple voice channels in a single thread. This streamlined code reduces the
system overhead required for inter process communication and simplifies the coordination of
events from many devices.

• In Windows® environments, when calling the gc_GetMetaEventEx() function from multiple
threads, make sure that your application uses unique thread-related METAEVENT data
structures, or make sure that the METAEVENT data structure is not written to simultaneously.

• In Linux environments, when programming in synchronous mode, performance may
deteriorate as the number of synchronous processes increases due to the increased Linux
overhead needed to handle these processes. When programming multichannel applications,
asynchronous mode programming may provide better performance.

• The following tips apply to Dialogic® Standard Runtime Library (SRL)-related programming
in a Linux environment:

– When the SRL is in signaling mode (SIGMODE), do not call any synchronous mode
Global Call function (that is, any function whose mode=EV_SYNC) from within a
handler registered to the SRL.

– When the SRL is in signaling mode (SIGMODE) and a Global Call function is issued
synchronously (that is, the function mode=EV_SYNC), make sure that the application
only enables handlers with the SRL to catch the exceptions, that is, unsolicited events like
GCEV_BLOCKED, GCEV_UNBLOCKED, or GCEV_DISCONNECTED. Do not
enable wildcard handlers to catch all events. If you enable wildcard handlers, the
application may receive unexpected events that should not be consumed.

6.2 Tips for Programming Drop and Insert Applications

For Dialogic® Global Call API applications, signaling is made available to the application as
follows:

• Signaling information is passed to the Global Call application in the form of call control
events; for example, line answer is passed as a GCEV_ANSWERED event.

• Signaling, such as line busy, is available to the application as an EGC_BUSY error code or a
GCRV_BUSY result value; line no answer is available as an EGC_NOANSWER error code or
GCRV_NOANSWER result value.

• Signaling such as a protocol error, an alerting event, a fast busy, an undefined telephone
number, or network congestion are all returned to the application as an EGC_BUSY error code
or a GCRV_BUSY result value.

• Protocols without acknowledgment, for example, non-backward CAS signaling protocols,
generate a GCEV_DISCONNECTED event with an EGC_BUSY error code or a
GCRV_BUSY result value when time-out or protocol errors occur during dialing.

For a drop and insert application in which the calling party needs to be notified of the exact status
of the called party’s line, the following approach may be used:

• Upon receipt of an incoming call from a calling party, issue a gc_MakeCall() function on the
outbound line to the called party.

Dialogic® Global Call API Programming Guide — September 2008 107
Dialogic Corporation

Application Development Guidelines

• After dialing completes on the outbound line, the application should drop the dialing resource,
turn off call progress, and connect the inbound line to the outbound line so that the calling
party can hear the tones returned on the outbound line. These tones provide positive feedback
to the calling party as to the status of the called party’s line.

• If the status of the called party’s line is such that the call cannot be completed, the calling party
hangs up and the application can then drop the call and release the resources used. Otherwise,
when the call is answered, a GCEV_CONNECTED event will be received.

When call progress is being used, after dialing completes, the call progress software looks for
ringback or voice on the outbound line. When ringback is detected, a GCEV_ALERTING event is
generated. When voice is detected, a GCEV_ANSWERED event is generated. An unacceptable
amount of time may lapse before either of these events is generated while the calling party is
waiting for a response that indicates the status of the call. Thus, for drop and insert applications,
call progress should be disabled as soon as dialing completes and the inbound and outbound lines
connected so as to provide the calling party with immediate outbound line status and voice cut-
through.

For a drop and insert application in which a call cannot be completed, the application can simulate
and return a busy tone or a fast busy (redial) tone to the calling party. Typically, this condition
occurs when a GCEV_DISCONNECTED event is generated due to a time-out or a protocol error
during dialing, or due to R2 backward signaling indicating a busy called party’s line, equipment
failure, network congestion, or an invalid telephone number.

When a call cannot be completed because the called party’s line is busy:

1. Use a tone or voice resource to generate a busy tone (60 ipm [impulses per minute]) or to
record a busy tone.

2. Connect the busy tone to the calling party’s line or play back the recorded busy tone file.

3. Drop and release the calling party’s line when a GCEV_DISCONNECTED event is received.

When a call cannot be completed because of equipment failure, network congestion, or an invalid
telephone number:

1. Use a tone or voice resource to generate a fast busy tone (120 ipm) or to record a fast busy
tone.

2. Connect the fast busy tone to the calling party’s line or play back the recorded fast busy tone
file.

3. Drop and release the calling party’s line when a GCEV_DISCONNECTED event is received.

For voice function information, see the Dialogic® Voice API Library Reference.

108 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Application Development Guidelines

6.3 Using Dialogic® Global Call API with Dialogic® DM3
Boards

The Dialogic® DM3 architecture is a powerful DSP architecture that provides you with greater
channel density and performance for building CTI solutions on PCI and CompactPCI bus
architectures. Global Call supports the development of applications that use Dialogic® DM3
Boards. The following topics provide guidelines for using Global Call with DM3 Boards:

• Routing Configurations Overview

• Working with Flexible Routing Configurations

• Working with Fixed Routing Configurations

• Handling Multiple Call Objects Per Channel in a Glare Condition

• TDM Bus Time Slot Considerations

6.3.1 Routing Configurations Overview

When using Dialogic® DM3 Boards, two types of routing configuration are supported:

flexible routing configuration
This configuration is compatible with Dialogic® R4 API routing on Dialogic® Springware
Boards; that is, Springware Boards use flexible routing. Flexible routing for DM3 Boards
became available in Dialogic® System Release 5.01. With flexible routing, the resource
devices (voice/fax) and network interface devices are independent, which allows exporting and
sharing of the resources. All resources have access to the TDM bus. For example, on a
Dialogic® DM/V960A-4T1 Board, each voice resource channel device and each network
interface time slot device can be independently routed on the TDM bus.

fixed routing configuration
This configuration is primarily for backward compatibility with R4 on DM3 in DNA 3.3 and
Dialogic® System Release 5.0. The fixed routing configuration applies only to DM3 Boards.
With fixed routing, the resource devices (voice/fax) and network interface devices are
permanently coupled together in a fixed configuration. Only the network interface time slot
device has access to the TDM bus. For example, on a Dialogic® DM/V960A-4T1 Board, each
voice resource channel device is permanently routed to a corresponding network interface time
slot device on the same physical board. The routing of these resource and network interface
devices is predefined and static. The resource device also does not have access to the TDM bus
and so cannot be routed independently on the TDM bus. No off-board sharing or exporting of
voice/fax resources is allowed.

The fixed routing configuration is one that uses permanently coupled resources, while the flexible
routing configuration uses independent resources. From a DM3 perspective, the fixed routing
cluster is restricted by its coupled resources and the flexible routing cluster allows more freedom
by nature of its independent resources, as shown in Figure 29.

Dialogic® Global Call API Programming Guide — September 2008 109
Dialogic Corporation

Application Development Guidelines

Figure 29. Cluster Configurations for Fixed and Flexible Routing

You select the routing configuration (fixed or flexible) when you assign a firmware file (PCD file)
to each DM3 Board. The routing configuration takes effect at board initialization.

The availability of flexible routing for a specific Dialogic® product depends upon the software
release in which the product is supported. Some products support fixed routing only while others
support flexible routing only. In other cases, a choice of fixed or flexible routing is available.

You can only select the routing configuration at the product level. You cannot select the routing
configuration at a resource level or configure a board to use fixed routing for some of its resources
and flexible routing for other resources.

6.3.2 Working with Flexible Routing Configurations

Note: The routing configuration supported for a board depends on the software release in which the board
is used. Some boards support flexible routing only while others support fixed routing only. Check
the Release Guide for the Dialogic® System Release Software you are using to determine the
routing configuration supported for your board.

The following topics provide more information about using the Dialogic® Global Call API with
Dialogic® DM3 Boards that use the flexible routing configuration:

• Determining Channel Capabilities (Flexible Routing)

• Using Device Handles (Flexible Routing)

Voice Fax

Network
Interface

TDM bus

The R4 Voice Resource includes the DM3 Player,
Recorder, Tone Generator, and Signal Detector resources.

The Fax Resource is an optional component.

The Network Interface is referred to in DM3 terms as the
Telephony Service Channel (TSC).

Notes:
1.

2.

3.

Fixed Routing
(Coupled Resources)

Flexible Routing
(Independent Resources)

Voice

TDM bus

Network
Interface

TDM bus

Fax

TDM bus

110 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Application Development Guidelines

• Multi-Threading and Multi-Processing (Flexible Routing)

• Initializing an Application that Uses Dialogic® DM3 Boards (Flexible Routing)

• Initializing Global Call when Using Dialogic® DM3 Boards (Flexible Routing)

• Device Discovery for Dialogic® DM3 Boards and Dialogic® Springware Boards (Flexible
Routing)

• Method for Device Initialization (Flexible Routing)

• Using Protocols with Dialogic® DM3 Boards (Flexible Routing)

6.3.2.1 Determining Channel Capabilities (Flexible Routing)

Dialogic® DM3 Boards support three different types of voice devices:

• E1 CAS compatible

• T1 CAS compatible

• ISDN compatible

The E1 CAS compatible is a superset of T1 CAS compatible, and the T1 CAS compatible is a
superset of ISDN compatible.

When using the Dialogic® Global Call API, only certain Dialogic® DM3 network interface devices
can be associated with certain other Dialogic® DM3 voice devices using gc_OpenEx() or
gc_AttachResource(). Attaching DM3 devices together depends on the network protocol used
and voice device capabilities. Specifically:

• A DM3 ISDN network device can be attached to any DM3 voice device.

• A DM3 T1 CAS network device must be attached to a T1 CAS compatible DM3 voice device.

• A DM3 E1 CAS network device must be attached to an E1 CAS compatible DM3 voice
device.

Caution: When using gc_OpenEx() to open devices, or gc_AttachResource() to associate a network
device with a resource device, you cannot mix Dialogic® DM3 and Dialogic® Springware devices.
For example, you cannot attach a DM3 network interface device with a Springware voice device.

An application can query the capabilities of a device using the dx_getfeaturelist() function, which
includes information about the front end supported, meaning ISDN, TI CAS, or R2/MF. See the
Dialogic® Voice API Library Reference for more information about the dx_getfeaturelist()
function.

When using Global Call, if a voice device is not CAS or R2/MF capable, it cannot be attached
(either in the gc_OpenEx() function or when using the gc_AttachResource() function) to a
network interface device that has CAS or R2/MF loaded. Likewise, if a voice device is not routable,
it cannot be used in a gc_AttachResource() call.

While a network interface protocol cannot be determined programmatically, the
dx_getfeaturelist() function provides a programmatic way of determining voice capability so that
the application can make decisions.

Dialogic® Global Call API Programming Guide — September 2008 111
Dialogic Corporation

Application Development Guidelines

6.3.2.2 Using Device Handles (Flexible Routing)

For Dialogic® DM3 Boards using a flexible routing configuration, you can use the same Global
Call device initialization, handling, and routing procedures for Dialogic® DM3 devices as you use
for Dialogic® Springware devices.

In general, when using DM3 or Springware Boards, an application must use a device discovery
procedure to become hardware-aware. To perform device discovery and identify whether a logical
device belongs to a Springware Board or a DM3 Board, use the gc_GetCTInfo() function and
check the ct_devfamily field in the CT_DEVINFO structure for a value of CT_DFDM3. See the
Dialogic® Voice API Library Reference for more information on the CT_DEVINFO structure.

When using DM3 Boards, application performance may be a consideration when opening and
closing devices using Global Call. If an application must use Global Call to dynamically open and
close devices as needed, it can impact the application’s performance. One way to avoid this is to
open all DM3 devices during application initialization and keep them open for the duration of the
application, closing them only at the end.

6.3.2.3 Multi-Threading and Multi-Processing (Flexible Routing)

When using Dialogic® DM3 Boards, the Dialogic® R4 APIs support multi-threading and multi-
processing with some restrictions on multi-processing as follows:

• One specific channel can only be opened in one process at a time. There can, however, be
multiple processes accessing different sets of channels. In other words, make sure that each
process is provided with a unique set of devices to manipulate.

• If a channel was opened in process A and then closed, process B is then allowed to open the
same channel. However, since closing a channel is an asynchronous operation when using R4
with DM3 Boards, there is a small gap between the time when the xx_close() function returns
in process A and the time when process B is allowed to open the same channel. If process B
opens the channel too early, things could go wrong. For this reason, this type of sequence
should be avoided.

6.3.2.4 Initializing an Application that Uses Dialogic® DM3 Boards (Flexible
Routing)

Dialogic® DM3 devices have similar characteristics to Dialogic® Springware devices. The device
must first be opened in order to obtain its handle, which can then be used to access the device
functionality. Since applications use Global Call for call control (that is, for call setup and tear-
down), all Dialogic® network interface devices must be opened using the gc_OpenEx() function.

Note: When call control is not required, such as with ISDN NFAS, dt_open() can be used to open DM3
network interface devices.

Once the call has been established, voice and or data streaming should be done using the Dialogic®
Voice API. Functions such as dx_playiottdata(), dx_reciottdata(), and dx_dial() can be used.
Of course, in order to do so, the voice device handle must be obtained.

Application initialization differs depending on the types of hardware and the APIs used. The
simplest hardware and API scenario is that where the system contains only one type of board, so

112 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Application Development Guidelines

that the application uses either Dialogic® Springware Boards or Dialogic® DM3 Boards but not
both. In these cases, the initialization routine is the simplest in that it does not need to discover the
board family type. See Section 6.3.2.5, “Initializing Global Call when Using Dialogic® DM3
Boards (Flexible Routing)”, on page 112 for more information.

Applications that want to make use of both Springware and DM3 devices must have a way of
differentiating what type of device is to be opened. The Global Call routing function
gc_GetCTInfo() provides a programming solution to this problem. DM3 hardware is identified by
the CT_DFDM3 value in the ct_devfamily field of the CT_DEVINFO structure. Only DM3
devices will have this field set to CT_DFDM3. See Section 6.3.2.6, “Device Discovery for
Dialogic® DM3 Boards and Dialogic® Springware Boards (Flexible Routing)”, on page 114 for
more information.

6.3.2.5 Initializing Global Call when Using Dialogic® DM3 Boards (Flexible
Routing)

This scenario is one where an application uses only Dialogic® DM3 Boards in a flexible routing
configuration. When initializing an application to use boards based on the Dialogic® DM3
architecture, you must use Global Call to handle the call control. Initializing Global Call in a
system with only DM3 Boards is no different than initializing Global Call in a system with only
Dialogic® Springware Boards. This is because R4 is flexible enough to support the different
methods of Global Call initialization for both ISDN and CAS protocols.

Take note of the following flexibility that exists for the gc_OpenEx() function when opening a
Global Call line device on DM3 Boards:

• Due to the nature of the DM3 architecture, the protocol name is irrelevant at the time of
opening the Global Call line device; that is, the protocol name is ignored. Although it is not
necessary to specify a protocol name, you can retain a protocol name in this field to support
Springware Boards and so as to retain compatibility with code for Springware Boards. Also,
when using R4 with boards based on the DM3 architecture, all protocols are bi-directional.
You do not need to dynamically open and close devices to change the direction of the protocol.

• It is not necessary to specify a voice device name when opening a Global Call line device. If
you specify the voice device name, the network interface device is automatically associated
with the voice device (they are attached and routed on the TDM bus). If you do not specify the
voice device name when you open the Global Call line device, you can separately open a voice
device, and then attach and route it to the network interface device. This flexibility allows you
to port a Global Call application that uses Springware Boards to an application that uses DM3
Boards with little change and regardless of whether the application uses an ISDN or CAS
protocol.

Note that when opening a Global Call line device for CAS protocols on Springware Boards,
the voice device name, network interface device name, and protocol name are required;
otherwise the function fails. For ISDN protocols on Springware Boards, it is invalid to specify
a voice device name; otherwise the function fails. For boards that use the DM3 architecture in
a flexible routing configuration, only the network device name is required.

The following procedure shows how to initialize Global Call when using DM3 Boards. For some
steps, two alternatives are described, depending upon whether you want your application to retain
the greatest degree of compatibility with Global Call using an ISDN protocol or a CAS protocol on
Springware Boards. Since this procedure is oriented toward retaining compatibility with two

Dialogic® Global Call API Programming Guide — September 2008 113
Dialogic Corporation

Application Development Guidelines

common ways of initializing Global Call on Springware Boards, it is not intended as a
recommendation of a preferred way to initialize Global Call on DM3 Boards. Global Call allows
design flexibility. The procedure for Global Call initialization for a given application would depend
on things such as whether Springware Boards and DM3 Boards are used in the same system, what
protocol is used, the purpose of the application program, and its design.

Note: In Windows®, use the sr_getboardcnt() function with the class name set to DEV_CLASS_DTI
and DEV_CLASS_VOICE to determine the number of network and voice boards in the system,
respectively. In Linux, use SRL device mapper functions to return information about the structure
of the system. For information on these functions, see the Dialogic® Standard Runtime Library API
Library Reference.

1. Start/initialize Global Call using gc_Start().

2. Use gc_OpenEx() to open a Global Call line device.

• Specify the network interface device name and the protocol name in the devicename
parameter, as in the following example:
":N_dtiB1T1:P_ISDN"

• Alternatively, specify the network interface device name, the voice device name, and the
protocol name in the devicename parameter, as in the following example:
":N_dtiB1T1:V_dxxxB1C1:P_ar_r2_io"

3. Obtain the voice channel device handle.

• Open a voice channel device (for example, dxxxB1C1) with dx_open() to get its handle.

• Alternatively, if you specified the voice device name in the devicename parameter in
step 2, use gc_GetResourceH(), with a resourcetype of GC_VOICEDEVICE, to get the
handle.

4. Attach the voice and network interface devices.

• Use gc_AttachResource() to attach the voice resource and the network interface line
device.

• Alternatively, if you specified the voice device name in the devicename parameter in
step 2, the voice and network interface devices are attached by nature of the
gc_OpenEx(), so no action is necessary for this step.

5. Use gc_GetResourceH(), with a resourcetype of GC_NETWORKDEVICE, to obtain the
network interface time slot device handle that is associated with the line device.

6. Set up TDM bus full duplex routing between the network interface device and voice device.

• Use nr_scroute(FULL DUPLEX).

• Alternatively, if you specified the voice device name in the devicename parameter in
step 2, the network interface device and voice device are automatically routed on the
TDM bus by nature of the gc_OpenEx().

Repeat steps 2 to 6 for all Global Call device line devices.

114 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Application Development Guidelines

6.3.2.6 Device Discovery for Dialogic® DM3 Boards and Dialogic®
Springware Boards (Flexible Routing)

The following procedure shows how to initialize an application and perform device discovery when
the application supports Dialogic® DM3 and Dialogic® Springware Boards.

Note: In Windows®, use the sr_getboardcnt() function with the class name set to DEV_CLASS_DTI
and DEV_CLASS_VOICE to determine the number of network and voice boards in the system,
respectively. In Linux, use SRL device mapper functions to return information about the structure
of the system. For information on these functions, see the Dialogic® Standard Runtime Library API
Library Reference.

1. Open the first network interface time slot device (for example, dtiB1T1) on the first trunk with
dt_open().

2. Call dt_getctinfo() and check the CT_DEVINFO.ct_devfamily value.

3. If ct_devfamily is CT_DFDM3, then flag all the network interface time slot devices associated
with the trunk as DM3 type.

4. Close the DTI device with dt_close().

5. Repeat steps 1 to 4 for each trunk.

6. Open the first voice channel device on the first voice board in the system with dx_open().

7. Call dx_getctinfo() and check the CT_DEVINFO.ct_devfamily value.

8. If ct_devfamily is CT_DFDM3, then flag all the voice channel devices associated with the
board as DM3 type.

9. Close the voice channel with dx_close().

10. Repeat steps 6 to 9 for each voice board.

11. For those voice and network interface devices that are not DM3 devices, proceed with the
standard initialization process for Springware Boards as performed in the original application.

12. For those voice and network interface devices that are DM3 devices, proceed with the
initialization as described in Section 6.3.2.5, “Initializing Global Call when Using Dialogic®
DM3 Boards (Flexible Routing)”, on page 112.

6.3.2.7 Method for Device Initialization (Flexible Routing)

In some applications, when xx_open() functions (Global Call, Voice, Fax) are issued
asynchronously, it may cause slow device-initialization performance. You can avoid this particular
problem by reorganizing the way the application opens and then configures devices: do all
xx_open() functions for all channels before proceeding with the next function. For example, you
would have one loop through the system devices to do all the xx_open() functions first, and then
start a second loop through the devices to configure them, instead of doing one single loop where
an xx_open() is immediately followed by other API functions on the same device. With this
method, by the time all xx_open() commands are completed, the first channel will be initialized,
so you shouldn’t experience problems.

This change is not needed for all applications, but if you experience poor initialization
performance, you can gain back speed by using this method.

Dialogic® Global Call API Programming Guide — September 2008 115
Dialogic Corporation

Application Development Guidelines

6.3.2.8 Using Protocols with Dialogic® DM3 Boards (Flexible Routing)

For ISDN protocols, the protocol to use is determined at board initialization time and not when
opening a Global Call device. Protocol parameters are configured in the CONFIG file before the
firmware is downloaded to the board. If a protocol is specified in the devicename parameter of the
gc_OpenEx() function when opening a device, it is ignored.

For T1/E1 CAS/R2MF protocols, the protocol to use for a trunk is selected using the “Trunk
Configurator” feature of the Dialogic® Configuration Manager (DCM) in Windows®; in Linux, use
the appropriate screen of the Configuration Utility. Protocol files are provided with the Dialogic®
System Release Software in the \data directory under the Dialogic® home directory. A protocol can
be configured by changing the parameter values in the corresponding Country Dependent
Parameter (CDP) file located in the \data directory. See the Dialogic® Global Call Country
Dependent Parameters (CDP) for PDK Protocols Configuration Guide for details on the
parameters that can be changed for each protocol. If a protocol is specified in the devicename
parameter of the gc_OpenEx() function when opening a device, it is ignored.

Caution: For configurations that use both Dialogic® DM3 and Dialogic® Springware Boards, CDP files for
protocols used with DM3 Boards have the same names as CDP files for protocols used with
Springware Boards. The DM3 CDP files are located in the \data directory; while the Springware
CDP files are located in the \cfg directory. When editing a CDP file, be careful that you are editing
the correct CDP file.

6.3.3 Working with Fixed Routing Configurations

Note: The routing configuration supported for a board depends on the software release in which the board
is used. Some boards support fixed routing only, while others support flexible routing only. Check
the Release Guide for the Dialogic® System Release Software you are using to determine the
routing configuration supported for your board.

The following topics provide more information about using the Dialogic® Global Call API with
Dialogic® DM3 Boards that use the fixed routing configuration:

• Fixed Routing Configuration Restrictions

• gc_OpenEx() Restrictions (Fixed Routing)

• Associating Network and Voice Devices (Fixed Routing)

• ISDN Direct Layer 2 Access (Fixed Routing)

• Using Device Handles (Fixed Routing)

• Device Handling Guidelines for the Dialogic® Global Call API (Fixed Routing)

• Initializing Applications with Dialogic® DM3 Boards Only (Fixed Routing)

• Initializing Applications with Dialogic® DM3 and Dialogic® Springware Boards (Fixed
Routing)

116 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Application Development Guidelines

6.3.3.1 Fixed Routing Configuration Restrictions

The following restrictions apply to Dialogic® DM3 fixed routing configurations only.

Note: Except where explicitly stated, these restrictions are in addition to those described for the DM3
flexible routing configuration. See Section 6.3.2, “Working with Flexible Routing Configurations”,
on page 109 for more information.

Table 13 shows the Dialogic® Global Call API restrictions when using a Dialogic® DM3 Board
with a fixed routing configuration.

6.3.3.2 gc_OpenEx() Restrictions (Fixed Routing)

For details on the Global Call functions discussed in this section, see the Dialogic® Global Call
API Library Reference.

In Dialogic® R4 applications that use a Dialogic® DM3 Board with a fixed routing configuration, it
is not possible to specify the protocol and voice device in the devicename parameter in
gc_OpenEx() commands.

The devicename can be as simple as:
:N_dtiB1T1

where N_ denotes a network time slot device, in this example, dtiB1T1.

The following restrictions apply:

• The network time slot device field (N_) is required.

• The protocol identifier field (P_), if specified, is ignored. The protocol name is unnecessary
here because it is selected when using the Dialogic® Configuration Manager (DCM) in
Windows®, or Configuration Utility in Linux, for PCD/FCD file selection. Also, for R4 on
DM3 products, all protocols are bi-directional. You do not need to dynamically open and close
devices to change the direction of the protocol. For R4 on earlier-generation devices, most
protocols are unidirectional.

• The voice channel device field (V_), if set to a value other than the voice device automatically
assigned during download, causes the gc_Open() command to fail. Voice devices are

Table 13. Dialogic® Global Call Function Restrictions in a Fixed Routing Configuration

Function Name Notes

gc_AttachResource() Not supported. See Section 6.3.3.3, “Associating Network and Voice Devices
(Fixed Routing)”, on page 117 for more information.

gc_Detach() Not supported. See Section 6.3.3.3, “Associating Network and Voice Devices
(Fixed Routing)”, on page 117 for more information.

gc_OpenEx() Limitations: See Section 6.3.3.2, “gc_OpenEx() Restrictions (Fixed Routing)”,
on page 116, Section 6.3.3.3, “Associating Network and Voice Devices (Fixed
Routing)”, on page 117, and Section 6.3.3.5, “Using Device Handles (Fixed
Routing)”, on page 117 for more information.

Dialogic® Global Call API Programming Guide — September 2008 117
Dialogic Corporation

Application Development Guidelines

automatically associated with network devices as part of the cluster configuration during
firmware download.

6.3.3.3 Associating Network and Voice Devices (Fixed Routing)

For applications that use Dialogic® Springware Boards, it is possible to open a line device using the
gc_OpenEx() function, open a voice device using the dx_open() function, then use the
gc_AttachResource() function to associate the voice device with the line device, using the line
device ID and the voice device handle.

For Dialogic® R4 applications that use Dialogic® DM3 Boards and a fixed routing configuration,
this is neither necessary nor possible. A voice device is automatically associated with a line device
as part of a DM3 cluster configuration during DM3 initialization. Therefore, the
gc_AttachResource() and gc_Detach() functions are not supported.

Note: Including a voice device name that is different than the voice device automatically associated with
the line device, in the devicename parameter of the gc_Open() function, returns an error.

6.3.3.4 ISDN Direct Layer 2 Access (Fixed Routing)

For applications that use a Dialogic® DM3 Board and a fixed routing configuration, the
gc_GetFrame() and gc_SndFrame() functions are supported. The DM3 firmware supports direct
layer 2 access in DM3 fixed routing configurations.

6.3.3.5 Using Device Handles (Fixed Routing)

Since a Dialogic® R4 for DM3 application must use Global Call for call control on Dialogic® DM3
Boards, the DM3 network interface devices must be opened with the gc_OpenEx() function.

Note: Where call control is not required, such as with ISDN NFAS, dt_open() may be used to open DM3
network interface devices.

Also, since the voice device and network interface time slot in a DM3 fixed routing configuration
are permanently routed and attached to each other, TDM bus routing and attaching of the devices is
unnecessary with DM3 Boards. The same is true of a fax device and its network interface time slot
in the DM3 fixed routing configuration. The resource device (voice/fax) and its associated DTI
network interface time slot on the same physical port are tied together in a DM3 cluster. The
resource channel is explicitly tied to the network interface time slot; and the voice resource cannot
be shared or separately routed to another network interface device. Thus, the resource device and
associated network interface device are bound together in a static link, and there is no support for
routing the resource independently to the TDM bus. However, the DTI network interface can be
routed to the TDM bus, allowing access to other TDM bus resources.

With the DM3 fixed routing configuration, the voice or fax resource device has no direct access to
the TDM bus time slots, and it is neither necessary nor possible to attach the resource and network
interface devices together from the host. Therefore, in most cases, an application does not need to
open the voice channel device and/or the network interface time slot device directly using the
dx_open() and dt_open() functions, respectively. However, the fax device must explicitly be
opened using fx_open(). Although the fax device also has no direct access to the TDM bus time

118 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Application Development Guidelines

slots and therefore cannot be routed over the TDM bus, it is necessary to retrieve the fax device
handle to do fax operations.

6.3.3.6 Device Handling Guidelines for the Dialogic® Global Call API (Fixed
Routing)

The following summary applies only to a Dialogic® DM3 fixed routing configuration and presents
some guidelines for DM3 device-handling using the Dialogic® Global Call API.

• Use gc_Start() to initialize Global Call prior to using any devices.

• Use gc_OpenEx() to open the voice resource and network interface devices. Then use
gc_GetResourceH(), with a resourcetype of GC_VOICEDEVICE, to retrieve the voice
device handle and gc_GetResourceH(), with a resourcetype of GC_NETWORKDEVICE, to
retrieve the network interface device handle.

The gc_OpenEx() function internally opens the associated voice channel on Dialogic® DM3
Boards. Do not specify the name of the voice device channel in the gc_OpenEx() device
string. The devicename string for the gc_OpenEx() function should look similar to the
following:
 ":N_dtiB1T1:P_ISDN"

See Section 6.3.3.2, “gc_OpenEx() Restrictions (Fixed Routing)”, on page 116 for more
information.

• Since the Dialogic® Fax Library does not support the use of a voice handle for fax commands,
you cannot use the device handle from dx_open() to call Fax API functions. You must use
fx_open() to open a channel device for fax processing and use that fax device handle. Do the
following to retrieve and use the fax device handle:

– Use ATDV_NAMEP() to retrieve the voice device name for the voice device handle
returned by gc_GetResourceH() with a resourcetype of GC_VOICEDEVICE.

– Use fx_open() on this voice device name to open the associated fax device and retrieve
the fax device handle.

• The voice device is automatically and permanently associated with and connected to the
network interface line device, so the gc_AttachResource() and gc_Detach() functions
cannot be used and are not supported for DM3 Boards.

• In general, when using Dialogic® DM3 and Dialogic® Springware Boards, the application
must use a device-discovery procedure to become hardware-aware. To perform device
discovery and identify whether a logical device belongs to a DM3 Board, use the
gc_GetCTInfo() function and in the CT_DEVINFO structure check the ct_devfamily field
for a value of CT_DFDM3. For details, see the CT_DEVINFO data structure description in the
Dialogic® Voice API Programming Guide.

• Application performance may be a consideration when opening and closing devices with
Global Call. If the application uses Global Call to dynamically open and close devices as
needed, it can impact the application’s performance. One way to avoid this is to open all DM3
devices during application initialization and keep them open for the duration of the
application, closing them only at the end.

Dialogic® Global Call API Programming Guide — September 2008 119
Dialogic Corporation

Application Development Guidelines

6.3.3.7 Initializing Applications with Dialogic® DM3 Boards Only (Fixed
Routing)

This scenario is one where the application uses only Dialogic® DM3 Boards.

SCbus routing and attaching of the devices is not necessary with Dialogic® DM3 hardware and the
DM3 clustering scheme. The voice device and network interface time slot that share the same DM3
cluster are permanently routed and attached to each other, and the voice device has no direct access
to the CT Bus time slots.

In most cases, applications do not need to open the voice channel device and/or the network
interface time slot device directly using the Dialogic® Voice and DTI APIs respectively, since it is
neither necessary nor possible to attach both devices together from the host.

Furthermore, for the same reasons mentioned above, the gc_OpenEx() device string should not
indicate the name of the voice device channel. For example, the device name string for the
gc_OpenEx() function should look similar to the following:

 ":N_dtiB1T1:P_ISDN"

Although it is not necessary to specify the ISDN protocol for R4 on Dialogic® DM3 Boards, it is
specified in this example to retain compatibility with R4 on Dialogic® Springware Boards. The
gc_OpenEx() function will internally open the associated voice channel.

An R4 for DM3 digital interface application would typically perform the following initialization
routine:

Note: In Windows®, use the sr_getboardcnt() function with the class name set to DEV_CLASS_DTI
and DEV_CLASS_VOICE to determine the number of network and voice boards in the system,
respectively. Use SRL device mapper functions to return information about the structure of the
system. For information on these functions, see the Dialogic® Standard Runtime Library API
Library Reference.

1. Start/initialize Global Call with gc_Start().

2. Open a Global Call time slot device using gc_OpenEx().

3. Obtain an associated DTI time slot device handle using gc_GetResourceH() with a
resourcetype of GC_NETWORKDEVICE.

4. Obtain an associated voice channel device handle using gc_GetResourceH() with a
resourcetype of GC_VOICEDEVICE.

5. Repeat steps 2 to 4 for each Global Call time slot device.

120 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Application Development Guidelines

6.3.3.8 Initializing Applications with Dialogic® DM3 and Dialogic®
Springware Boards (Fixed Routing)

The following procedure shows how to use the Dialogic® Global Call API to initialize an
application and perform device discovery when the application supports both Dialogic® DM3 and
Dialogic® Springware Boards.

Note: In Windows®, use the sr_getboardcnt() function with the class name set to DEV_CLASS_DTI
and DEV_CLASS_VOICE to determine the number of network and voice boards in the system,
respectively. Use SRL device mapper functions to return information about the structure of the
system. For information on these functions, see the Dialogic® Standard Runtime Library API
Library Reference.

1. Start/initialize Global Call using gc_Start().

2. Open a Global Call time slot device using gc_OpenEx().

3. Obtain an associated DTI time slot device handle using gc_GetResourceH() with a
resourcetype of GC_NETWORKDEVICE.

4. Call gc_GetCTInfo() and check CT_DEVINFO.ct_devfamily value:

• If ct_devfamily value is CT_DFDM3, then obtain associated voice channel device handle
using gc_GetResourceH() with a resourcetype of GC_VOICEDEVICE, and flag all the
Global Call time slot devices associated with the trunk as DM3 type.

• Otherwise, open the standard R4 voice device and obtain a device handle. Attach the
standard R4 voice channel device to the Global Call time slot device using
gc_AttachResource().

5. Repeat steps 2 to 4 for all Global Call time slot devices.

6.3.4 Handling Multiple Call Objects Per Channel in a Glare
Condition

When using Dialogic® DM3 Boards, the Dialogic® Global Call API supports the handling of
multiple call objects per channel in a glare condition. An application running on bi-directional
circuits is capable of handling two call reference numbers (CRNs) on a single line device, where
one call can be in an Idle state, while the other call is in Active state. For example, a glare condition
occurs when a call has been dropped but not released and an inbound call is detected as indicated in
Table 14. In order to avoid a long delay in processing the inbound call, the Global Call library does
not wait for the outbound call to be released before notifying the application of the inbound call.

Table 14. Handling Glare

Application Global Call Library

gc_MakeCall(CRN1) -->

<-- GCEV_DISCONNECTED(CRN1)

gc_DropCall(CRN1) -->

<-- GCEV_OFFERED(CRN2)

gc_AcceptCall(CRN2) -->

Dialogic® Global Call API Programming Guide — September 2008 121
Dialogic Corporation

Application Development Guidelines

Alternatively, the application can just respond to events using their associated CRN, performing a
gc_ReleaseCallEx() upon reception of any GCEV_DROPCALL event whether the CRN is the
active one or not. Using this procedure, the application only needs to store one CRN per line
device.

6.3.5 TDM Bus Time Slot Considerations

In a configuration where a network interface device listens to the same TDM bus time slot device
as a local, on board voice device (or other media device such as fax, IP, conferencing, and
continuous speech processing), the sharing of time slot (SOT) algorithm applies. This algorithm
imposes limitations on the order and sequence of “listens” and “unlistens” between network and
media devices. This section gives general guidelines. For details on application development rules
and guidelines regarding SOT, see the technical note posted on the Dialogic Support web site:
http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/2000/tn043.htm

Note: These considerations apply to Dialogic® DM/V, DM/V-A, DM/IP, and DM/VF boards. They do not
apply to Dialogic® DM/V-B, DISI, and DM/V160-LP Boards.

• If you call a listen function (gc_Listen() or dt_listen()) on a network interface device to
listen to an external TDM bus time slot device, followed by one or more listen functions
(dx_listen(), ec_listen(), fx_listen(), or other related functions), to a local, on-board voice
device in order to listen to the same external TDM bus time slot device, then you must break
(unlisten) the TDM bus voice connection(s) first, using an unlisten function (dx_unlisten(),
ec_unlisten(), fx_unlisten(), etc.), prior to breaking the local network interface connection
(gc_UnListen() or dt_unlisten()). Failure to do so will cause the latter call or subsequent
voice calls to fail. This scenario can arise during recording (or transaction recording) of an
external source, during a two-party tromboning (call bridging) connection.

• If more than one local, on-board network interface device is listening to the same external
TDM bus time slot device, the network interface devices must undo the TDM bus connections
(unlisten) in such a way that the first network interface to listen to the TDM bus time slot
device is the last one to unlisten. This scenario can arise during broadcasting of an external
source to several local network interface channels.

These considerations can be avoided by routing media devices before network interface devices,
which forces all time slots to be routed externally; however, density limitations for transaction
record and Continuous Speech Processing (CSP) with external reference signals apply. For more
information about how to program using external reference signals, see the technical notes posted
on the Dialogic Support web site. For transaction record, see
http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/dlsoft/tn253.htm. For CSP, see
http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/dlsoft/tn254.htm.

<-- GCEV_DROPCALL(CRN1)

gc_ReleaseCallEx(CRN1) -->

Table 14. Handling Glare (Continued)

Application Global Call Library

http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/2000/tn043.htm
http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/dlsoft/tn254.htm
http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/dlsoft/tn253.htm

122 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Application Development Guidelines

Dialogic® Global Call API Programming Guide — September 2008 123
Dialogic Corporation

77.Call Control

This chapter describes the Dialogic® Global Call API capabilities relating to call control. Topics
include:

• Call Analysis when Using Dialogic® Springware Boards . 123

• Call Progress Analysis when Using Dialogic® DM3 Boards . 124

• Resource Routing . 131

• Feature Transparency and Extension . 132

7.1 Call Analysis when Using Dialogic® Springware
Boards

Analog, E1, and T1 telephony protocols may transmit in-channel call analysis information through
the network via tones. Other protocols such as IP, ISDN, and SS7 utilize packetized messages to
convey call analysis information, and others use CAS line signaling. For the purposes of this
discussion, call analysis refers to the detection and notification of these tones.

Call analysis consists of both pre-connect and post-connect information about the status of the call:

• Pre-connect information (call progress) determines the status of the call connection, that is,
busy, no dial tone, no ring back, etc.

• Post-connect information (media type detection) determines the destination party's media type,
for example, voice, answering machine, or fax modem. The gc_GetCallInfo() function is
used immediately following the receipt of a GCEV_CONNECTED event to retrieve this post-
connect information notifying of the media type of the answering party. See the Dialogic®
Global Call API Library Reference for more information.

Call analysis tones such as dial tone, ringback, busy, and fax are defined either in the firmware
(global tone detection and global tone generation), or in the .cdp file (for Analog and E1/T1
technologies), or a combination of both. Tones defined in the firmware can be enabled or disabled
by configuring parameters in the DX_CAP (call analysis parameter) data structure. Similarly, the
DX_CAP data structure can be used to configure the voice detection algorithm, which
distinguishes answering machine or human speech. The default parameter values defined in the
DX_CAP data structure can be changed by the gc_LoadDxParm() function to fit the needs of
your application. For a detailed description of enhanced call analysis (Perfect Call) and how to use
call analysis, see the Call Analysis topic in the Dialogic® Voice API Programming Guide. For a
detailed description of the gc_LoadDxParm() function, see the Dialogic® Global Call API
Library Reference.

124 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call Control

Some example uses of call progress tones are as follows:

• By detecting the ringback tone, the Dialogic® Global Call API can count the rings and report a
GCEV_DISCONNECTED event when the call is not answered within the specified number of
rings.

• For telephone circuits that include analog links, the local line may not have access to all of the
digital signaling information. If so, the user must modify the country dependent parameters
(.cdp) file accordingly to detect or generate the busy, ringback, or dial tone of the native
country.

Call analysis configuration and behavior is unique to each technology and protocol type. See the
following for more information:

• For Analog PDK protocols, see the Dialogic® Global Call Analog Technology Guide.

• For ICAPI and E1/T1 PDK protocols, see the Dialogic® Global Call E1/T1 CAS/R2
Technology Guide.

7.2 Call Progress Analysis when Using Dialogic® DM3
Boards

When using Dialogic® DM3 Boards, the Dialogic® Global Call API provides a consistent method
of pre-connect call progress and post-connect call analysis across Analog, E1/T1 CAS, and ISDN
protocols. The level of support that Global Call provides is described in the following topics:

• Call Progress Analysis Definition

• Configuring Default Call Progress Analysis Parameters

• Configuring Call Progress Analysis on a Per Call Basis

• Setting Call Analysis Attributes on a Per Call Basis

• Configuring Call Progress Analysis on a Per Channel Basis

• Setting Call Analysis Attributes on a Per Channel Basis

• Customizing Call Progress Tones on a Per Board Basis

• Customizing Nonstandard Special Information Tones

7.2.1 Call Progress Analysis Definition

Pre-connect call progress determines the status of a call connection, that is, busy, no dial tone, no
ringback, etc., and can also include the frequency detection of special information tones (SIT), such
as an operator intercept. Post-connect call analysis determines the destination party’s media type,
that is, voice, fax, or answering machine. The term call progress analysis (CPA) is used to refer to
call progress and call analysis collectively.

7.2.2 Configuring Default Call Progress Analysis Parameters

Call progress analysis (CPA) is characterized by parameters such as CaSignalTimeout (the
maximum time to wait to detect a call progress tone), CaAnswerTimeout (the maximum time that

Dialogic® Global Call API Programming Guide — September 2008 125
Dialogic Corporation

Call Control

call analysis will wait for ringback to stop), and others that define CPA behavior. Depending on the
technology you are using, the default values of CPA parameters may be configurable in the
CONFIG file corresponding to the board. If this is the case, the required information is documented
in the corresponding Dialogic® Global Call Technology Guide.

Note: When a voice resource has been attached (using either gc_OpenEx() or gc_AttachResource()),
by default, the Dialogic® DM3 host runtime library enables the detection of BUSY, RINGING, and
SIT tone (that is, pre-connect call progress), even if CPA is disabled in the CONFIG file. A user
who does not want pre-connect call progress must explicitly use the gc_SetConfigData() function
to disable CPA on that line device. Alternatively, the user can attach the voice resource after the call
is connected.

7.2.3 Configuring Call Progress Analysis on a Per Call Basis

To specify call progress analysis behavior, use the gc_MakeCall() function with an associated
GC_PARM_BLK (accessible via the GC_MAKECALL_BLK and GCLIB_MAKECALL_BLK
structures) containing the CCSET_CALLANALYSIS parameter set ID and the
CCPARM_CA_MODE parameter ID with one or more of the following bitmask values ORed
together:

GC_CA_BUSY
Pre-connect busy tone detection

GC_CA_RINGING
Pre-connect ringback tone detection

GC_CA_SIT
Pre-connect special information tone (SIT) detection

GC_CA_FAX
Post-connect fax detection

GC_CA_PVD
Post-connect positive voice detection (PVD)

GC_CA_PAMD
Post-connect positive answering machine detection (PAMD)

While the CCPARM_CA_MODE bitmask offers flexibility in terms of the selected options, not all
option combinations make sense. For this reason, the following defines, which can also be used as
values to the CCPARM_CA_MODE parameter ID, identify the most logical and traditionally used
option combinations:

GC_CA_DISABLE
Call progress and call analysis disabled

GC_CA_PREONLY
Busy and Ringing enabled

GC_CA_PREONLY_SIT
Busy, Ringing, and SIT enabled

GC_CA_POSTONLY_PVD
Fax and PVD enabled

126 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call Control

GC_CA_POSTONLY_PVD_PAMD
Fax, PVD, and PAMD enabled

GC_CA_ENABLE_PVD
Busy, Ringing, and SIT enabled; fax and PVD enabled

GC_CA_ENABLE_ALL
Busy, Ringing, and SIT enabled; fax, PVD, and PAMD enabled

These options correspond closely to call progress and call analysis options available when using
the Dialogic® Voice API as indicated in Table 15. See the “Call Progress Analysis” chapter in the
Dialogic® Voice API Programming Guide.

When an option that enables call progress is selected, a GCEV_DISCONNECTED event can be
received. The gc_ResultInfo() function can be used to get more information about the event. The
possible cause values (the gcValue field in the associated GC_INFO structure) that can be retrieved
are:

GCRV_BUSY
Busy

GCRV_NOANSWER
No Answer

GCRV_CEPT
SIT, Operator Intercept

GCRV_UNALLOCATED
SIT, Vacant Circuit, non-registered number

GCRV_CONGESTION
SIT, No Circuit Found
or
SIT, Reorder, system busy

See the Dialogic® Global Call API Library Reference for more information about the
gc_ResultInfo() function.

Table 15. Call Progress Analysis Settings and Possible Results

CCPARM_CA_MODE Setting
Equivalent ca_intflg Setting in DX_CAP Structure

When Using Dialogic® Voice API

GC_CA_DISABLE DISABLE

GC_CA_PREONLY DX_OPTDIS

GC_CA_PREONLY_SIT DX_OPTNOCON or DX_OPTEN

GC_CA_POSTONLY_PVD DX_PVDENABLE

GC_CA_POSTONLY_PVD_PAMD DX_PAMDENABLE

GC_CA_ENABLE_PVD DX_PVDOPTNOCON or DX_PVDOPTEN

GC_CA_ENABLE_ALL DX_PAMDOPTEN

Dialogic® Global Call API Programming Guide — September 2008 127
Dialogic Corporation

Call Control

When an option that enables call analysis is selected, a GCEV_MEDIADETECTED event can be
received. The gc_GetCallInfo() function can be used to determine the type of detection (by setting
the info_id function parameter to CONNECT_TYPE). The valuep function parameter indicates
the connect type when the function completes. Typical values in this context are:

GCCT_FAX
Fax detection

GCCT_PVD
Positive voice detection (PVD)

GCCT_PAMD
Positive answering machine detection (PAMD)

See the Dialogic® Global Call API Library Reference for more information about the
gc_GetCallInfo() function.

7.2.4 Setting Call Analysis Attributes on a Per Call Basis

Certain call analysis attributes can be configured on a per call basis using the gc_MakeCall()
function with an associated GC_PARM_BLK (accessible via the GC_MAKECALL_BLK and
GCLIB_MAKECALL_BLK structures) that contains the CCSET_CALLANALYSIS parameter
set ID and one of the following parameter IDs:

CCPARM_CA_PAMDSPDVAL
Positive answering machine detection (PAMD) speed value. Quick or full evaluation of
answering machine detection. Possible values are:

• PAMD_FULL – Full evaluation of response.
• PAMD_QUICK – Quick look at connection characteristics.
• PAMD_ACCU – Recommended setting. Does the most accurate evaluation detecting live

voice as accurately as PAMD_FULL, but is more accurate than PAMD_FULL (although
slightly slower) in detecting an answering machine. Use PAMD_ACCU when accuracy is
more important than speed. This is the default value.

CCPARM_CA_NOANSR
No Answer. The length of time (in 10 ms units) to wait after the first ringback before deciding
that the call is not answered. Possible values are in the range 0 to 65535. The default value is
3000.

CCPARM_CA_NOSIG
Continuous No Signal. The maximum amount of silence (in 10 ms units) allowed immediately
after cadence detection begins. If exceeded, a no ringback is returned. Possible values are in
the range 0 to 65535. The default value is 4000.

CCPARM_CA_PAMDFAILURE
PAMD Fail Time. The maximum time (in 10 ms units) to wait for positive answering machine
detection (PAMD) or positive voice detection (PVD) after a cadence break. Possible values are
in the range 0 to 65535. The default value is 800.

CCPARM_CA_PAMD_QTEMP
PAMD Qualification Template. Specifies which PAMD template to use. Possible values are:

• PAMD_QUAL1TMP – First predefined qualification template. This is the default value.

128 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call Control

• -1 – No qualification template

Setting CCPARM_CA_PAMD_QTEMP to a value of PAMD_QUAL2TMP is not supported.

Note: The CCPARM_CA_PAMD_QTEMP parameter can also be set to a qualification template ID that
is defined in the CONFIG file.

CCPARM_CA_PVD_QTEMP
PVD Qualification Template. Specifies which PVD template to use. Possible values are:

• PAMD_QUAL1TMP – First predefined qualification template. This is the default value.
• -1 – No qualification template

Setting CCPARM_CA_PVD_QTEMP to a value of PAMD_QUAL2TMP is not supported.

Note: The CCPARM_CA_PVD_QTEMP parameter can also be set to a qualification template ID that is
defined in the CONFIG file.

To support earlier Dialogic® System Release Software releases, a tech note provides instructions
for modifying the PAMD and PVD qualification template parameters on Dialogic® DM3 Boards to
accomplish higher successful PAMD and PVD rates. For further information about these
parameters, see the tech note at
http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/2000/tn030.htm. The modified
parameters are now the defaults in the firmware, so it is no longer necessary to tune the PAMD and
PVD parameters as explained in the tech note. Operating with these new default values should
result in improved accuracy of call progress analysis on Dialogic® boards. However, although these
values are the most commonly used, they may not be suitable for every application environment. If
needed, the PAMD and PVD templates are still tunable, as explained in the tech note, to achieve
better results based on the individual application environment.

Note: Dialogic® DM/IP Boards use a slightly different version of the PVD/PAMD qualification
templates; the values are adjusted for gain loss. CONFIG files for DM/IP Boards do include
PVD/PAMD qualification templates.

7.2.5 Configuring Call Progress Analysis on a Per Channel Basis

The Dialogic® Global Call API also supports the setting of call progress analysis parameters on a
per channel basis. When call progress analysis parameters are set on a per channel basis, the
parameter settings apply to all calls made on that channel (line device).

To specify call progress analysis behavior on a per channel basis, use the gc_SetConfigData()
function. The relevant function parameters and values in this context are:

target_type
GCTGT_CCLIB_CHAN

target_id
the line device

target_datap
a pointer to a GC_PARM_BLK structure that contains the following parameter set ID and
parameter IDs:

• SetId – CCSET_CALLANALYSIS
• ParmId – CCPARM_CA_MODE that can take any of the values described in

Section 7.2.3, “Configuring Call Progress Analysis on a Per Call Basis”, on page 125.

http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/2000/tn030.htm

Dialogic® Global Call API Programming Guide — September 2008 129
Dialogic Corporation

Call Control

In earlier Dialogic® System Release Software releases, when using CAS PDK protocols, it was
possible to specify call progress and call analysis on a per channel basis using the gc_SetParm()
function to enable or disable the GCPR_CALLPROGRESS and GCPR_MEDIADETECT
parameters. See the Dialogic® Global Call E1/T1 CAS/R2 Technology Guide for more information.

Table 16 shows how the CCPARM_CA_MODE values correspond to the
GCPR_CALLPROGRESS and GCPR_MEDIADETECT parameters. This table is provided as a
convenience for users that have previously used the gc_SetParm() method and now wish to use
the greater flexibility provided by gc_MakeCall() with the CCPARM_CA_MODE parameter.

Note: The gc_SetConfigData() method of setting call progress analysis on a per channel basis is an
enhancement over using the gc_SetParm() with the GCPR_MEDIADETECT and/or
GCPR_CALLPROGRESS parameters. Applications should not use both the gc_SetConfigData()
method and the gc_SetParm() method on the same line device. If both methods are used, the
gc_SetConfigData() method takes precedence.

7.2.6 Setting Call Analysis Attributes on a Per Channel Basis

In addition to enabling and disabling call progress analysis on a per channel basis, certain call
analysis attributes can be configured on a per channel basis using the gc_SetConfigData()
function. The relevant function parameter values in this context are:

target_type
GCTGT_CCLIB_CHAN

target_id
the line device

target_datap
a pointer to a GC_PARM_BLK structure that contains the following parameter set ID and
parameter IDs:

• SetId – CCSET_CALLANALYSIS
• ParmId – Any of the values described in Section 7.2.4, “Setting Call Analysis Attributes

on a Per Call Basis”, on page 127.

7.2.7 Customizing Call Progress Tones on a Per Board Basis

When using Dialogic® Boards, an application can create, delete, and query call progress tones on a
per board device basis using the dx_createtone(), dx_deletetone(), and dx_querytone()
functions and the associated TONE_DATA structure in the Dialogic® Voice API. See the
Dialogic® Voice API Programming Guide for more information.

Table 16. Comparison with Call Progress Analysis Using gc_SetParm()

GCPR_CALLPROGRESS GCPR_MEDIADETECT Equivalent CCPARM_CA_MODE Value

GCPV_DISABLE GCPV_DISABLE GC_CA_DISABLE

GCPV_DISABLE GCPV_ENABLE GC_CA_POSTONLY_PVD_PAMD

GCPV_ENABLE GCPV_DISABLE GC_CA_PREONLY_SIT

GCPV_ENABLE GCPV_ENABLE GC_CA_ENABLE_ALL

130 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call Control

7.2.8 Customizing Nonstandard Special Information Tones

Predictive dialing applications, which are widely used in call centers, may need to detect a variety
of special information tones (SITs) being used by Service Providers around the world. The
Dialogic® Voice and Global Call APIs each provide 15 SITs with customizable SIT templates,
which allow the user to detect a variety of nonstandard SITs used by Service Providers. When the
Dialogic® DM3 Board firmware detects an incoming SIT tone during call progress analysis, it tries
to match it to one of the existing (default) templates. Tones that do not match the default templates
will be matched against the custom SIT templates created by the user, and reported as such. If the
SIT still does not fall into any of those two categories, custom or standard, it may still be collected
and reported as undetected (SIT_ANY), and also reported back.

The custom SITs are detected via the regular API events for detecting call progress analysis
outcome, and in particular, SIT tone detection. Create, query, and modify support of these SIT
tones via the Voice API is provided via the dx_createtone(), dx_querytone(), and
dx_deletetone() functions as discussed in Section 7.2.7, “Customizing Call Progress Tones on a
Per Board Basis”, on page 129.

For the Voice API, the custom tone templates are supported for detection and reporting by the
ATDX_CRTNID() function. For the Global Call API, the custom SITs are reported to the
application via the GCEV_DISCONNECTED event once any one of them is detected via Global
Call. The following table maps the custom SIT tone ID to the Global Call values:

In addition, four default SITs can be detected via Global Call. The following table maps the Voice
SITs to the Global Call values:

Global Call Result Value Tone ID Description

GCRV_SIT_UNKNOWN
(GCRV_RESULT | 0x70)

0x38F Custom SIT tone 1 detected

0x390 Custom SIT tone 2 detected

0x391 Custom SIT tone 3 detected

0x392 Custom SIT tone 4 detected

0x393 Custom SIT tone 5 detected

0x394 Custom SIT tone 6 detected

0x395 Custom SIT tone 7 detected

0x396 Custom SIT tone 8 detected

0x397 Custom SIT tone 9 detected

0x398 Custom SIT tone 10 detected

0x399 Custom SIT tone 11 detected

0x39A Custom SIT tone 12 detected

0x39B Custom SIT tone 13 detected

0x39C Custom SIT tone 14 detected

0x39D Custom SIT tone 15 detected

Dialogic® Global Call API Programming Guide — September 2008 131
Dialogic Corporation

Call Control

Supported Boards

The ability to create and detect the custom SITs is supported on the following boards:

• Dialogic® DM/V-B Media Boards

• Dialogic® DM/V300BTEPEQ, DM/V600BTEPEQ, and DM/V1200BTEPEQ Media Boards

• Dialogic® DI/SI Switching Boards

• Dialogic® DM/V160-LP Media Boards

• Dialogic® DM/V and DM/V-A Media Boards (ISDN or resource)

Note: DM/V and DM/V-A Boards running CAS, PDK (R2MF), and clear channel (ts16) do not support
this feature. Dialogic® DM/IP, HDSI, VFN, DM/F Fax, and CPI Fax Boards do not support this
feature.

Refer to the Release Guide for your Dialogic® System Release Software to see if this feature is
supported, as well as for PCD files that are excluded from this feature.

7.3 Resource Routing

The Dialogic® Global Call API routing functions use the device handles of resources such as a
voice channel, a media resource, or a network time slot. The gc_GetResourceH() function can be
used to obtain the network, media, and voice device handles, associated with the specified line
device.

The gc_GetResourceH() function with a resourcetype of GC_MEDIADEVICE returns the
media device handle for the specified line device.

The gc_GetResourceH() function with a resourcetype of GC_NETWORKDEVICE returns the
network device handle for the specified line device.

The gc_GetResourceH() function with a resourcetype of GC_VOICEDEVICE returns the voice
device handle only if the specified line device has a voice, media, or tone resource associated with
it, for example, if a voice channel was specified in the gc_OpenEx() function devicename

Voice SIT Global Call Result Value Value
Global Call Error

Code
Value Description

TID_SIT_ANY GCRV_SIT_UNKNOWN (GCRV_RESULT |
0x70)

EGC_SIT_
UNKNOWN

0x162 Unknown SIT
detected

TID_SIT_NC_INTERLATA GCRV_NO_CIRCUIT_
INTERLATA

(GCRV_RESULT |
0x71)

EGC_NO_
CIRCUIT_
INTERLATA

0x163 No circuit
interlata SIT
detected

TID_SIT_RO_INTERLATA GCRV_REORDER_
INTERLATA

(GCRV_RESULT |
0x72)

EGC_REORDER
_INTERLATA

0x164 Reorder
interlata SIT
detected

TID_SIT_IO GCRV_INEFFECTIVE_
OTHER

(GCRV_RESULT |
0x73)

EGC_INEFFECTI
VE_OTHER

0x165 Ineffective
other SIT
detected

132 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call Control

parameter, or if the voice channel was subsequently attached to the line device and has remained
attached to that line device.

Refer to the appropriate Dialogic® Global Call Technology Guide for technology-specific
information on routing resources when using the gc_OpenEx() function to specify a voice or
media resource, or when using the gc_AttachResource() function to associate a voice or media
resource with a Global Call line device.

7.4 Feature Transparency and Extension

Dialogic® Global Call Feature Transparency and Extension (FTE) provides a common interface to
multiple network interface-specific libraries for features that are abstracted across multiple call
control libraries (see Figure 1, “Dialogic® Global Call API Architecture”, on page 20). FTE is
described in the following topics:

• Feature Transparency and Extension Overview

• Technology-Specific Feature Access

• Technology-Specific User Information

7.4.1 Feature Transparency and Extension Overview

Feature Transparency and Extension (FTE) is comprised of a number of Dialogic® Global Call API
functions. These functions provide the flexibility to extend the generic Global Call API to access
all technology or protocol-specific features unique to any given network interfaces that were
formerly only accessible via their native technology call control libraries. Thus, technology-
specific features may be accessible from the application solely via the singular Global Call library
interface, thereby alleviating the need to access these call control libraries directly via additional
APIs.

The Global Call functions provided for FTE are:

gc_Extension()
provides a generic interface extensible for technology-specific features

gc_GetUserInfo()
retrieves technology-specific user information for the specified line device

gc_SetUserInfo()
permits technology-specific user information to be defined for the specified line device or call

Note: The gc_SetUserInfo() function is not supported for a board device.

7.4.2 Technology-Specific Feature Access

The gc_Extension() function provides a single common interface to access various technology-
specific features supported by underlying call control libraries.

This Dialogic® Global Call API function utilizes an extension function identifier (ext_id) to
specify the feature. The associated technology’s Dialogic® Global Call Technology Guide for each

Dialogic® Global Call API Programming Guide — September 2008 133
Dialogic Corporation

Call Control

call control library lists all the supported extension function identifiers (ext_id values) and the
associated features that are accessible via the gc_Extension() function (if any).

By specifying the associated parameter identifiers (also described in the associated technology’s
Dialogic® Global Call Technology Guide), and either the target line device or a specific call, those
features unique to the subject technology may be utilized entirely using Global Call. Without FTE
support, a Global Call application requiring this feature support would also have to be written to
the specific call control API in addition to Global Call.

For example, in an ISDN platform, the application may use the gc_Extension() function to set D
or B channel states. As the concept of B and D channels is ISDN specific and inherently foreign to
other protocols, without FTE support, the application would have to link directly with the ISDN
call control library then call the required Dialogic® ISDN library functions cc_SetBChanState()
or cc_SetDChanState().

The gc_Extension() function may be supported in either asynchronous mode, synchronous mode,
or both depending on the call control library.

If the gc_Extension() function is supported and called in synchronous mode, the relevant
information parameters returned in the GC_PARM_BLK buffer must be processed or copied prior
to the next Global Call function call. The reason for this is that the GC_PARM_BLK buffer will be
deallocated within Global Call in a subsequent function call.

If the gc_Extension() function is supported and called in asynchronous mode, relevant
information may be returned via the call control library via GCEV_EXTENSIONCMPLT
termination event and its referenced extension block structure, EXTENSIONEVTBLK. The
EXTENSIONEVTBLK structure contains technology-specific information and is referenced via
the extevtdatap pointer in the METAEVENT structure associated with the
GCEV_EXTENSIONCMPLT event. See the Dialogic® Global Call API Library Reference for
more information about these structures.

The gc_Extension() function can also be used to transmit information to the remote endpoint. In
this case, while the application at the local endpoint receives a GCEV_EXTENSIONCMPLT, the
application at the remote endpoint will receive an unsolicited GCEV_EXTENSION notification
event from the network with the transmitted information. The EXTENSIONEVTBLK structure
contains the transmitted information and is referenced via the extevtdatap pointer in the
METAEVENT structure associated with the GCEV_EXTENSION event.

The application at the local endpoint may also receive an unsolicited GCEV_EXTENSION event
with information from the network.

It is important to note that the EXTENSIONEVTBLK structure referenced in the
GCEV_EXTENSION event has a persistence only until the next call of gc_GetMetaEvent(). In
other words, any information contained or referenced in the associated EXTENSIONEVTBLK
structure must be either processed or copied in the application, or risk having the memory space
containing the actual information lost on the next gc_GetMetaEvent() call.

134 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Call Control

7.4.3 Technology-Specific User Information

The gc_GetUserInfo() and gc_SetUserInfo() functions permit the application to retrieve and
configure user information for the specified line device that is transmitted to or received from the
remote side. The actual content and format of the user information is technology- or protocol-
specific, or both. Refer to the associated technology’s Dialogic® Global Call Technology Guide for
details on the format of the user information supported and the proper usage of the
gc_GetUserInfo() and gc_SetUserInfo() functions.

One typical application of the gc_SetUserInfo() and gc_GetUserInfo() functions is on an ISDN
platform where it is desired to transmit and receive user-to-user information elements in each
incoming and outgoing message.

In the case of gc_SetUserInfo(), user information is transmitted to the remote side embedded in a
protocol-specific message. The duration flag is used to specify the persistence of the information.
Using the duration flag, the user information may be specified to persist as long as the current or
next call, or for all calls (including the current call). When the duration is specified to be all calls on
the specified line device, the user information is valid and utilized for all calls until the device is
eventually closed via gc_Close().

In the case of gc_GetUserInfo(), the user information is retrieved from an already received
protocol-specific message that has been received from the remote side. Note that the user
information parameters returned from the call control library in the GC_PARM_BLK buffer must
be processed or copied prior to the next Dialogic® Global Call API function call. The reason for
this is that the GC_PARM_BLK buffer will be deallocated within Global Call in a subsequent
function call.

Dialogic® Global Call API Programming Guide — September 2008 135
Dialogic Corporation

88.Alarm Handling

This chapter describes the Dialogic® Global Call API Alarm Management System (GCAMS).
Topics include the following:

• Alarm Handling Overview. 135

• Operation and Configuration of GCAMS . 137

• Sample Alarm Scenarios . 144

• GCAMS and the DTI API Method of Alarm Handling . 147

8.1 Alarm Handling Overview

Dialogic® Global Call API alarms originate from alarm source objects (ASOs). An alarm source
object can be a network library, such as the Dialogic® Springware DTI network library, or a call
control library, or it can reside within a call control library. Some alarm source objects are for
internal Global Call use only and are not available to the application.

There are basically two sources of Global Call alarms:

• Layer 1 alarms (physical alarms)

• “Logical” alarms, such as remote side out of service, or layer 2 or layer 3 out of service

Note: Not all technologies support physical alarms. Refer to the appropriate Dialogic® Global Call
Technology Guide to determine if a particular technology supports physical alarms.

The portion of the Global Call call control library that manages alarms is called the Global Call
Alarm Management System (GCAMS). GCAMS is initialized automatically when Global Call is
started.

GCAMS provides Global Call applications with the ability to receive extensive alarm information.
Some of the ways this information can be used include:

• Managing the network

• Troubleshooting hardware

• Monitoring line quality

• Working with the central office to solve line problems

• Generating status reports

• Modifying alarm source object properties and characteristics based on alarm history

• Manual handling of alarms for drop and insert applications.

The following sections describe the components and operation of GCAMS.

136 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Alarm Handling

8.1.1 Alarm Management System Components

The alarm management system (AMS) is made up of several components, including GCAMS. The
other components are the customer application’s AMS and the alarm source objects (ASOs). ASOs
can either reside within a call control library (cclib) or separate from a call control library.
Figure 30 illustrates the relationship between the alarm management system components.

Figure 30. Architectural Diagram of Alarm Management Components

The customer application is responsible for configuring the behavior of GCAMS, including the
designation of which alarms are blocking, which alarms the application wants to be notified of, and
controlling the flow of alarms to the application. For more information, see Section 8.2.3,
“Configuration of Alarm Properties and Characteristics”, on page 139.

GCAMS acts as an interface between the customer application and the alarm source objects.
GCAMS passes requests from the application to the ASOs, processes application configuration
requests, and processes ASO alarm events. GCAMS also maintains a database of the current
configuration attributes by alarm source object and line device. In addition, GCAMS implements
the ASOs that are common across multiple technologies. For more on the operation and

CUSTOMER APPLICATION
Operation and Configuration Subsystem

Customer AMS

Global Call
Operation and
Configuration
Subsystem

GCAMS

CALL
CONTROL
LIBRARY

ASO (optional)

Network
Interface

Network
Interface

ASO

Dialogic® Global Call API Programming Guide — September 2008 137
Dialogic Corporation

Alarm Handling

configuration of GCAMS, see Section 8.2, “Operation and Configuration of GCAMS”, on
page 137.

The final components of the alarm management system are the ASOs. ASOs are responsible for
generating alarm events when alarms occur and then clear. If configured to do so, ASOs are also
responsible for starting and stopping the transmission of alarms and setting and getting alarm
parameters, such as timing parameters.

8.2 Operation and Configuration of GCAMS

The primary functions of GCAMS are as follows:

• Generation of Events for Blocking Alarms

• Generation of Alarm Events

• Configuration of Alarm Properties and Characteristics

• Starting and Stopping Alarm Transmission

• Retrieving Alarm Data

8.2.1 Generation of Events for Blocking Alarms

Dialogic® Global Call API alarms are classified as either blocking or non-blocking. Blocking
alarms are alarms that cause the application to become blocked and potentially generate a
GCEV_BLOCKED event when the alarm is set (the “alarm on” condition is detected).
Subsequently, all blocking alarms generate a GCEV_UNBLOCKED event when the alarm clears
(the “alarm off” condition is detected). Non-blocking alarms are alarms that do not cause the
application to become blocked and do not generate a GCEV_BLOCKED or
GCEV_UNBLOCKED event when the alarm is set or clears.

Note: The gc_SetAlarmConfiguration() function can be used to change which alarms are blocking and
which alarms are not blocking for a given alarm source object. To retrieve the status of the current
alarm configuration, use gc_GetAlarmConfiguration(). For more on changing the configuration
of alarm source objects, see Section 8.2.3, “Configuration of Alarm Properties and
Characteristics”, on page 139.

The GCEV_BLOCKED and GCEV_UNBLOCKED events are unsolicited events that are sent in
addition to other Global Call events. The blocked and unblocked events do not require any
application-initiated action. The blocked event is generated only for the first blocking condition
detected. Subsequent blocking conditions on the same line device will not generate additional
blocked events. Until all blocking conditions are cleared, the line device affected by the blocking
condition (that is, the line device that received the GCEV_BLOCKED event) cannot generate or
accept calls. When the line device has completely recovered from the blocking condition, a
GCEV_UNBLOCKED event is sent.

When a blocking condition occurs while a call is in progress or connected, any calls on the line
device that is in the blocked condition are treated in the same manner as if a remote disconnection
occurred: an unsolicited GCEV_DISCONNECTED event is sent to the application and the call
changes to the Disconnected state. The result value retrieved for the event will indicate the reason

138 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Alarm Handling

for the disconnection, for example, an alarm condition occurred. Result values are retrieved by
calling the gc_ResultInfo() function, see Section 4.4, “Event Retrieval”, on page 97. The
GCEV_BLOCKED event is also sent to the application to indicate that a blocking condition
occurred; the gc_ResultInfo() function can be called to retrieve the reason for the
GCEV_BLOCKED event, as well.

The GCEV_BLOCKED and GCEV_DISCONNECTED events may arrive in any order. When the
blocking condition(s) clears, an unsolicited GCEV_UNBLOCKED event is sent to the application,
indicating complete recovery from the blocking condition.

When a blocking condition occurs while a line device is in the Null, Disconnected, or Idle state,
only the GCEV_BLOCKED event is sent since there is no call to disconnect. The call state does
not change when a GCEV_BLOCKED or GCEV_UNBLOCKED event is sent to the application.

Note: In the asynchronous mode, if a gc_WaitCall() function is pending when a GCEV_UNBLOCKED
event is generated, the gc_WaitCall() function does not need to be reissued.

The GCEV_BLOCKED and GCEV_UNBLOCKED events are generated for blocking alarms at
the trunk level and the channel level:

Trunk level
When Global Call recognizes a blocking alarm on condition at the trunk level, a
GCEV_BLOCKED event is generated for the trunk device, assuming that the device is open.
A GCEV_BLOCKED event is also generated for all time slots currently open on the trunk
device, assuming that the application is currently unblocked. The application will receive a
GCEV_BLOCKED event only for the first alarm on condition for a particular line device.

When Global Call recognizes a blocking alarm off condition at the trunk level, a
GCEV_UNBLOCKED event is generated for the trunk device, assuming that the device is
open. A GCEV_UNBLOCKED event is also generated for all time slots currently open on the
trunk device, assuming there are no other blocking conditions on the line device. The
application will receive a GCEV_UNBLOCKED event only for the last alarm off condition for
a particular line device.

Channel level
When Global Call recognizes a blocking alarm on condition at the channel level, a
GCEV_BLOCKED event is generated for the channel, assuming that the application is
currently unblocked. The application will receive a GCEV_BLOCKED event only for the first
alarm on condition for the line device.

When Global Call recognizes a blocking alarm off condition at the channel level, a
GCEV_UNBLOCKED event is generated for the time slot, assuming there are no other
blocking conditions on the line device. The application will receive a GCEV_UNBLOCKED
event only for the last alarm off condition for the line device.

Note: When using Global Call with Dialogic® DM3 Boards, alarms apply only a the trunk level. An
alarm that occurs on a trunk applies to all channels on that trunk.

8.2.2 Generation of Alarm Events

The GCEV_ALARM event can be generated by both blocking and non-blocking alarms. Blocking
alarms are alarms that generate GCEV_BLOCKED and GCEV_UNBLOCKED events when the

Dialogic® Global Call API Programming Guide — September 2008 139
Dialogic Corporation

Alarm Handling

alarms set and clear. GCEV_ALARM events are for information purposes only and do not cause
any channel state or call state changes.

Note: A previous method of retrieving alarm information was via the use of the dt_open() function.
Using the GCEV_ALARM event is the preferred method for retrieving alarm information.

In order for the GCEV_ALARM event to be returned by the application, the notify attribute for the
specified alarm source object must be set to “on” via the gc_SetAlarmConfiguration() function.
In addition, the alarm source object must meet the alarm flow configuration requirements, which
are set using the gc_SetAlarmFlow() function or the gc_NotifyAll() function. (See Section 8.2.3,
“Configuration of Alarm Properties and Characteristics”, on page 139 for more information.)

When the application returns a GCEV_ALARM event, indicating that an alarm has been received,
information about the alarm can be retrieved using the gc_AlarmName() function. The
gc_AlarmName() function converts the alarm to its text name to allow for interpretation of the
reason for the alarm. For more information on retrieving alarm data for a given GCEV_ALARM
event, see Section 8.2.5, “Retrieving Alarm Data”, on page 142.

Some of the ways the information provided by the GCEV_ALARM events can be used are:

• Administration of alarms (using alarm information to determine the appropriate configuration
of GCAMS)

• Detection and transmission of alarm conditions between networks (drop and insert
applications)

• Manual handling of alarms for drop and insert applications

• Generating reports

• Troubleshooting connections and protocols

8.2.3 Configuration of Alarm Properties and Characteristics

GCAMS provides the ability to set the alarm configuration for line devices and alarm source
objects (ASOs). The initialization of ASO configuration values is done at build time.

The Dialogic® Global Call API provides several functions that are used to configure how, when,
and which alarms are sent to the application, and to define the characteristics of the alarms. These
functions are:

• gc_SetAlarmConfiguration()

• gc_SetAlarmFlow()

• gc_SetAlarmNotifyAll()

• gc_SetAlarmParm()

Corresponding functions allow for the retrieval of the current status of the configurations. These
functions are:

• gc_GetAlarmConfiguration()

• gc_GetAlarmFlow()

• gc_GetAlarmParm()

140 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Alarm Handling

The use of these functions is described in the following sections. Alarm configuration tips are also
provided. For more information about the alarm configuration functions, see the Dialogic® Global
Call API Library Reference.

For line devices opened by technologies that use GCAMS, there is an entity called the network
ASO ID that is the alarm source object associated with the network. For example, in Dialogic®
Springware architecture, it is the DTI alarms. As a programming convenience, Global Call defines
ALARM_SOURCE_ID_NETWORK_ID that corresponds to the network ASO ID. This define is
useful in many contexts. For example, notification of all alarms on a line device can be configured
using the call:

 gc_SetAlarmNotifyAll(..., ALARM_SOURCE_ID_NETWORK_ID, ...)

The ALARM_SOURCE_ID_NETWORK_ID is a value that can be used to represent, for a given
line device, whatever the network ASO ID happens to be.

If two different line devices use different network ASO IDs, for example, the network ASO ID of
the first line device is ALARM_SOURCE_ID_SPRINGWARE_E1 and the network ASO ID of the
second line device is ALARM_SOURCE_ID_DM3_T1, then:

• gc_SetAlarmNotifyAll(linedevice1, ALARM_SOURCE_ID_NETWORK_ID, ...) means
use ALARM_SOURCE_ID_SPRINGWARE_E1.

• gc_SetAlarmNotifyAll(linedevice2, ALARM_SOURCE_ID_NETWORK_ID, ...) means
use ALARM_SOURCE_ID_DM3_T1.

The ALARM_SOURCE_ID_NETWORK_ID define is a convenience to the developer. An
alternative implementation to the example shown above might be (error handling not shown):

 unsigned long aso_id;

 gc_GetAlarmSourceObjectNetworkID(linedevice1, &aso_id)
 gc_SetAlarmNotifyAll(linedevice1, aso_id)

 gc_GetAlarmSourceObjectNetworkID(linedevice2, &aso_id)
 gc_SetAlarmNotifyAll(linedevice2, aso_id)

8.2.3.1 Configuring Alarm Notification

In order for an alarm to be sent to the application, the “notify” attribute of the alarm must be set to
“yes”. Initially, the notify attribute of all alarms is set to “no”. The gc_SetAlarmConfiguration()
function is used to set and change the notify attribute for a specified alarm source object on a given
line device. To retrieve the status of the alarm configuration parameters, use the
gc_GetAlarmConfiguration() function.

Alternatively, the gc_SetAlarmNotifyAll() function can be used as a shortcut when the
application wants to change the notification status, that is, when the application wants to change
from “notify” to “no notify”, for all line devices that have the specified alarm source object.

Dialogic® Global Call API Programming Guide — September 2008 141
Dialogic Corporation

Alarm Handling

8.2.3.2 Configuring Alarm Flow

The gc_SetAlarmFlow() function is used to further refine which of the alarms are sent (that is,
allowed to “flow”) to the application. Alarm flow configuration is controlled on a line device basis.
The alarm flow can be configured in any of the following ways:

• All alarms are sent to the application.

• All, and only, blocking alarms are sent to the application.

• Only the first alarm on and the last alarm off are sent to the application.

• Only the first blocking alarm on and the last blocking alarm off are sent to the application.

Note: To configure the alarm flow so that no alarms are sent to the application, use the
gc_SetAlarmConfiguration() function and set the notify attribute of all alarms to “no”.

To determine the current alarm flow options, use the gc_GetAlarmFlow() function.

8.2.3.3 Configuring Blocking and Non-Blocking Alarm Classification

For any given alarm source object, the gc_SetAlarmConfiguration() function can be used to set
and change which alarms are blocking or non-blocking. This information is stored in the
ALARM_LIST data structure.

To retrieve the status of the current alarm configuration, use the gc_GetAlarmConfiguration()
function.

8.2.3.4 Configuring Alarm Parameters

The gc_SetAlarmParm() function is used to set alarm parameters that control ASO parameters
such as timing. An example of a timing parameter would be setting how long a loss of
synchronization must be present before the ASO declares a loss of sync alarm or alarm handling
mode.

Use of the gc_SetAlarmParm() function, as well as the gc_GetAlarmParm() function, is highly
alarm source object dependent and requires detailed knowledge of the underlying ASO technology
by the application writer. For a description of ASOs that are common across multiple technologies,
see the Dialogic® Global Call API Library Reference.

8.2.3.5 Alarm Configuration Tips

The procedures for configuring alarms depends on whether the application writer is configuring the
behavior of alarm source objects or specific line devices associated with a given alarm source
object. (When a line device is opened, it takes the blocking and notify attributes of the network
ASO, if any, associated with the given line device.)

The default configuration (that is, the flow, blocking, and notify attributes) of an alarm source
object can be changed by using the gc_SetAlarmFlow() and gc_SetAlarmConfiguration()
functions. Typically, the default configuration should be changed immediately after calling
gc_Start() and prior to calling gc_OpenEx().

142 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Alarm Handling

To change the default configuration for all known ASOs, perform the following steps:

1. Convert the ASO name to the ASO ID using the gc_AlarmSourceObjectNameToID()
function.

2. Change the attributes of the specified ASO name using the gc_SetAlarmConfiguration()
function.

Note: Changing the attributes of an ASO requires detailed knowledge of the given ASO.

The procedures for changing the configuration of line devices depends on whether all the line
devices associated with the same ASO are to have the same attributes, or if the application requires
different behaviors for line devices associated with the same ASO. For those applications that
require all line devices to have the same attributes, use the procedures for changing the default
configuration for ASOs as described above. For applications that are intended to be cross-
technology and/or more robust, the following steps should be performed to change the attributes:

1. Call gc_OpenEx().

2. Retrieve the network ASO ID associated with the line device using the
gc_GetAlarmSourceObjectNetworkID() function.

3. Convert the network ASO ID to a name using the gc_AlarmSourceObjectIDToName()
function. This is a necessary step, as not all ASOs will have a fixed ID.

4. Using the ASO name, change the attributes of the line device using the
gc_SetAlarmConfiguration() function.

Note: Changing the attributes of an ASO for a specified line device requires detailed
knowledge of the given ASO.

For applications that are using only one “known” technology, the application can use either
gc_GetAlarmSourceObjectNetworkID() to retrieve the network ASO ID associated with the
line device, or gc_AlarmSourceObjectNameToID() to retrieve the ID for the “known” ASO.

8.2.4 Starting and Stopping Alarm Transmission

GCAMS is automatically started when Global Call is started. However, to begin the transmission
of alarms to the remote side, the gc_TransmitAlarms() function must be called. The
gc_TransmitAlarms() function sends all alarms as specified in the ALARM_LIST data structure
for a given alarm source object.

To stop the transmission of alarms to the remote side, use the gc_StopTransmitAlarms()
function.

8.2.5 Retrieving Alarm Data

The GCAMS database contains the following information:

• A list, by call control library, of all the boards that are currently open

• Information about each opened board, including the board name, the call control library ID, all
open time slots on the board, alarm source objects associated with the device, and the alarm
callback procedure

Dialogic® Global Call API Programming Guide — September 2008 143
Dialogic Corporation

Alarm Handling

• A list of registered alarm source objects and their attributes. (Alarm source objects are
registered automatically when the gc_Start() function is called.)

• Default alarm source object data (provided by GCAMS)

8.2.5.1 Alarm Numbers and Names

Alarm events are identified in the database by name and number. The following functions are used
to retrieve the names, numbers, and IDs and to convert them from one to the other:

gc_AlarmName()
converts the alarm name to its text name, for a given event. Alarm names are assigned by the
developer for use in report generation.

gc_AlarmNumber()
retrieves the alarm number, for a given event. Alarm numbers (values) are predefined for a
given ASO. See the Dialogic® Global Call API Library Reference for ASOs that are common
to multiple call control libraries.

gc_AlarmNumberToName()
converts the alarm number to its text name

8.2.5.2 Alarm Source Object IDs and Names

Alarm source objects (ASOs) are identified in the GCAMS database by the ASO ID and by the
ASO name. ASOs that are not part of a call control library have predefined names, as provided in
the Dialogic® Global Call API Library Reference. The names of ASOs that are part of a call
control library are provided in the appropriate Dialogic® Global Call Technology Guide.

The following functions are used to retrieve ASO names and IDs and to convert them from one to
the other:

gc_AlarmSourceObjectID()
retrieves the alarm source object ID, for a given event

gc_AlarmSourceObjectIDToName()
converts the alarm source object ID to the alarm source object name

gc_AlarmSourceObjectName()
retrieves the alarm source object name, for a given event

gc_AlarmSourceObjectNameToID()
converts the alarm source object name to the alarm source object ID

Note: GCAMS uses predefined IDs for the ASOs it has implemented; however, applications should use
the gc_AlarmSourceObjectNameToID() function to associate the ASO name with an ID rather
than using the ID directly. This allows for more flexible applications if ASOs that reside in call
control libraries and have dynamically assigned IDs are added to the application.

In addition, the following functions are used to obtain additional information about the ASOs:

gc_GetAlarmSourceObjectList()
gets all ASOs associated with a line device

144 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Alarm Handling

gc_GetAlarmSourceObjectNetworkID()
gets the network ID associated with a line device

For more information on these functions, see the function descriptions in the Dialogic® Global
Call API Library Reference.

8.3 Sample Alarm Scenarios

The following scenarios illustrate the relationship between the application, GCAMS, and the ASO
and provide examples of alarm system configurations and the sequence for transmission of alarms.
The scenarios include:

• Scenario 1: Application Notified of First and Last Blocking Alarm

• Scenario 2: Default Behavior for Alarm Notification

• Scenario 3: Alarm Transmission

8.3.1 Scenario 1: Application Notified of First and Last Blocking
Alarm

In this scenario, the application wants to be notified of only the first and last blocking alarm events.
The default blocking configuration is acceptable. See Figure 31.

Note: If both a GCEV_ALARM and a GCEV_BLOCKED (or GCEV_UNBLOCKED) event are
generated for an alarm, the order in which these events are sent to the application is not guaranteed.

The steps are:

1. Configure all known call control libraries – set all alarms to notify and set flow control to first
and last blocking.

2. Open a line device. The line device’s configuration will be “inherited” from its network ASO,
which has already been initialized.

Dialogic® Global Call API Programming Guide — September 2008 145
Dialogic Corporation

Alarm Handling

Figure 31. Notification of First and Last Blocking Alarm

Note: The function calls for alarm processing are not shown.

Application Global Call Alarm Source
Object (ASO)

gc_NotifyAll (ASO1)

gc_NotifyAll (ASO2)

*gc_NotifyAll (ASOn)

gc_SetAlarmFlow (ASO1)

gc_SetAlarmFlow (ASO2)

*gc_SetAlarmFlow (ASOn)

gc_Open Ex ()

GCEV_ALARM

GCEV_BLOCKED

GCEV_UNBLOCKED

GCEV_ALARM

First Blocking Alarm Occurred

Second Blocking Alarm Occurred

First Unblocking Alarm Occurred

Second Unblocking Alarm Occurred

Note: * indicates that the function should be repeated for all ASO's

146 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Alarm Handling

8.3.2 Scenario 2: Default Behavior for Alarm Notification

The default behavior is that the application is not notified of alarm events. See Figure 32.

Figure 32. Default Behavior for Alarm Notification

Application Global Call Alarm Source
Object (ASO)

gc_OpenEx ()

GCEV_BLOCKED

GCEV_UNBLOCKED

First Blocking Alarm Occurred

Second Blocking Alarm Occurred

First Unblocking Alarm Occurred

Second Unblocking Alarm Occurred

Dialogic® Global Call API Programming Guide — September 2008 147
Dialogic Corporation

Alarm Handling

8.3.3 Scenario 3: Alarm Transmission

Figure 33 shows a scenario that demonstrates the sequence of function calls and the actions that
they cause in the transmission of alarms.

Figure 33. Alarm Transmission

8.4 GCAMS and the DTI API Method of Alarm Handling

GCAMS is the preferred way of handling alarms and supersedes the previous method that used the
standard Dialogic® R4 Digital Network Interface (DTI) API. Prior to the introduction of GCAMS,
an application could issue a gc_OpenEx() command on a board device, for example dtiB1, then
get PSTN alarms on the DTI device handle, which could be obtained using the
gc_GetResourceH() function with a resourcetype of GC_NETWORKDEVICE. With the
introduction of GCAMS, this is no longer possible, since the application receives alarms via
GCAMS on the Global Call device handle.

However, should it be necessary to continue to use the Dialogic® DTI API for alarm handling, a
workaround is available. The workaround involves the opening of a board device using
gc_OpenEx() followed by the opening of the same board device using dt_Open(). The
application then receives alarms on the DTI device handle allocated by the dt_Open() function.
While this method works, customers are encouraged to take advantage of the increased
functionality provided by GCAMS.

Application Global Call Network

gc_OpenEx ()

Set Alarm Parameters

Alarm Source
Object (ASO)

gc_SetAlarmParm ()
(optional depending on ASO)

gc_TransmitAlarms ()

gc_StopTransmitAlarms ()

gc_SetAlarmParm ()
(optional depending on ASO)

Transmit Alarm(s)

Set Alarm Parameters

Stop Transmitting Alarms

Transmit Alarm(s)

Stop Transmitting Alarms

148 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Alarm Handling

Dialogic® Global Call API Programming Guide — September 2008 149
Dialogic Corporation

99.Real Time Configuration
Management

This chapter describes the Dialogic® Global Call API Real Time Configuration Management
(RTCM) feature. Topics include the following:

• Real Time Configuration Management Overview. 149

• RTCM Components . 150

• Using RTCM Parameters . 152

• Getting and Setting Parameter Information. 154

• Querying Configuration Data . 157

• Handling RTCM Errors . 158

• Configuration Procedure . 158

• Sample Scenarios Using the RTCM API Functions . 159

• Dynamically Retrieving and Modifying Selected Protocol Parameters when Using Dialogic®
DM3 Boards167

9.1 Real Time Configuration Management Overview

The Dialogic® Global Call Real Time Configuration Management (RTCM) system manages run-
time configuration for Global Call components. The RTCM feature is used when the application
needs to retrieve or modify configuration data. If the configuration data is not modified, the
application uses the initial values for the configuration.

Note: Not all technologies support the RTCM feature. Refer to the appropriate Dialogic® Global Call
Technology Guide to determine if RTCM is supported.

The Global Call RTCM system allows applications to:

• Get or set the configuration of a protocol dynamically. For example, the default values of
country dependent parameters (CDP) can be retrieved or updated with new values.

• Get or set the configuration of a physical or logical entity dynamically. The entity can be a
system (that is, all boards), board, network interface, channel, or call.

• Get or set the configuration of a call control library dynamically. For example, the default call
state mask value of a channel can be retrieved or updated with a new value.

• Query the protocol ID from the given protocol name or CDP parameter ID from the given CDP
parameter name.

150 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

In addition, the RTCM feature provides Global Call applications with the ability to retrieve
configuration parameter information. Some of the ways this information can be used include:

• Efficient network management

• Troubleshooting software and hardware

• Performance tuning

• Dynamic alteration of a target object’s behavior based upon past behavior

• Generation of status reports

• Dynamic configuration of Global Call call modules or call events

9.2 RTCM Components

The RTCM comprises three major components: the customer application using RTCM, the
Dialogic® Global Call RTCM, which consists of the Global Call RTCM APIs and the Global Call
RTCM Manager, and the RTCM parameters. Figure 34 shows the relationship between these
components. Each of the components of the RTCM is described in the following sections.

Figure 34. Relationship of Customer Application, Dialogic® Global Call RTCM, and RTCM
Parameters

Customer RTCM

Global Call APIs

GCLib
Parameters

Operation and Maintenance Subsystem
CUSTOMER APPLICATION

Global Call RTCM

Global Call RTCM
Manager

Firmware
Parameters

CCLib
Parameters

Protocol
Parameters

Dialogic® Global Call API Programming Guide — September 2008 151
Dialogic Corporation

Real Time Configuration Management

9.2.1 Customer Application Using Dialogic® Global Call API
RTCM

The customer application interfaces with the Dialogic® Global Call RTCM Manager via Global
Call RTCM API functions. The primary function of an application with regards to RTCM is the
maintenance of parameter data. It is the application developer’s responsibility to understand the
impact on system operation before changing a parameter value. Specifically, the application
developer is responsible for the following:

• Obtaining the information about run-time configuration support from the appropriate
Dialogic® Global Call Technology Guide

• Checking that the configurable parameters match the target entity, and inserting parameter data
in the proper data format

• Choosing the proper Global Call RTCM API control parameters (programming mode, update
condition, and timeout) for increased efficiency of the retrieve or update configuration process,
and to make sure that the application program is not blocked

• Obtaining the configuration data from Global Call RTCM retrieval events

• Correcting errors in input configurable parameter data based on the Global Call error messages

9.2.2 Dialogic® Global Call RTCM

The Dialogic® Global Call RTCM acts as an interface between the customer application and the
configurations of the target objects. A target object is a configurable basic entity and is represented
by its target type and target ID (for more information, see Section 1.5.4, “Target Objects”, on
page 25).

As mentioned before, the Global Call RTCM comprises the RTCM Manager and the RTCM API
functions.

The RTCM Manager is responsible for configuring components, including the Global Call Library
(GCLib), Call Control Library (CCLib), protocol, and firmware parameters (see Section 9.3,
“Using RTCM Parameters”, on page 152).

The RTCM API functions are used to get, set, or query configuration parameters (consisting of a
specified target object and the configuration data) from the customer application to the software
module where the target object is located. The Global Call RTCM maintains the information about
a target object with its associated software module so that the Global Call RTCM can call the
appropriate software module to execute the configuration request. The Global Call RTCM also
assigns a unique ID for each request and outputs it to the application. The ID is used by the
application for tracking function calls.

In addition, the Global Call RTCM returns an error value when the function returns in synchronous
mode, or generates a Global Call event related to the Global Call RTCM in asynchronous mode.

Since the Global Call RTCM may not have any knowledge about configurable parameters defined
or used in individual modules, it passes the configuration request to the software module in which
the target object is located. The customer application must make sure that the target object and
requested parameters match.

152 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

9.2.3 RTCM Parameters

The RTCM parameters are the third component of the Dialogic® Global Call RTCM feature. The
parameters are defined and maintained in four categories of software modules: Global Call Library
(GCLib), Call Control Library (CCLib), Protocol, and Firmware. Each software module supports
different target objects as well as the target objects’ parameters.

9.3 Using RTCM Parameters

The Dialogic® Global Call RTCM provides a generic way of getting and setting the configuration
information for a target object. The target objects and their parameters are defined and maintained
in the following categories of software modules:

Parameters in GCLib module
parameters that are defined in GCLib. These parameters are common across multiple
technologies, such as protocol name and ID, call event mask, and the call state mask of a line
device. Although the GCLib module maintains many of the GCLib-defined parameters, some
parameters, such as calling number and call info, are maintained in other modules (such as
CCLib).

Parameters in CCLib module
parameters that are defined and maintained in the CCLib module. The CCLib may maintain
some GCLib-defined parameters, such as calling number and call info. See the appropriate
Dialogic® Global Call Technology Guide for more information about configurable parameters.

Parameters in protocol module
parameters that are defined and maintained in a protocol module. One example of protocol
parameters is the country dependent parameters (CDP). See the appropriate Dialogic® Global
Call Technology Guide for more information about configurable parameters.

Parameters in firmware module
parameters that are defined and maintained in a firmware module. See the appropriate
Dialogic® Global Call Technology Guide for more information about configurable parameters.

To access the value of a parameter, the application must specify a four-part name consisting of two
pairs: (target object type, target object ID) and (set ID, parameter ID).

Target object type and target object ID
This pair represents the target object. See Section 1.5.4, “Target Objects”, on page 25 for more
information. Both the target object type and target object ID are specified as the first two
arguments to the Global Call RTCM API function. An example of a target object is
(GCTGT_CCLIB_CHAN, Global Call line device ID).

Set ID and parameter ID
This uniquely represents a parameter within a specified target object. See Section 9.4, “Getting
and Setting Parameter Information”, on page 154 for more information. A set ID typically
represents a group of parameters that are closely related and are maintained in the same
software module. The parm ID represents a parameter within a given set ID. In general,
parameter IDs are only guaranteed to be unique within a given set ID. Note that some
configurable parameters are defined only for a specific software module, while others may be

Dialogic® Global Call API Programming Guide — September 2008 153
Dialogic Corporation

Real Time Configuration Management

used across different software modules. Typically, a software module that supports RTCM
contains multiple parameter sets as well as target objects.

Note: The set ID and parm ID pairs are used by other Global Call features in addition to
RTCM.

9.3.1 Parameter Dependencies

A high-level target object, such as a system entity, can contain a lower-level target object, such as a
channel entity. When a target object is created, its configuration is initialized as the default or
current value, depending on its implementation. If a parameter is defined and used for both the
high-level and the lower-level target object, updating the parameter of the high-level target object
may also cause the same parameter of the newly-created lower-level target object to be updated.
Consult the appropriate Dialogic® Global Call Technology Guide for information about parameter
usage.

9.3.2 Parameter Definitions

GCLib or CCLib parameter descriptions can be found in the Dialogic® Global Call API Library
Reference. Other target objects and their associated set IDs and parameters are described in the
appropriate Dialogic® Global Call Technology Guide. The Dialogic® Global Call Technology
Guides also include which header files are required.

There are two kinds of parameters:

Static
parameters that are predefined in header files with a fixed set ID and parameter ID

Dynamic
parameters where the set ID and parameter ID are generated by the Dialogic® Global Call API
at run time

Dynamic parameters can be obtained by calling the gc_QueryConfigData() function. For
example, to obtain the set ID and parameter ID of a dynamic parameter by name, such as a CDP
parameter, call the gc_QueryConfigData() function where:

• the source data is the parameter name

• the query ID is GCQUERY_PARM_NAME_TO_ID

• the destination data is stored in a GC_PARM_ID data structure

For more on the gc_QueryConfigData() function, see Section 9.5, “Querying Configuration
Data”, on page 157 and the Dialogic® Global Call API Library Reference.

Every parameter is further defined by the software module as one of the following update
conditions:

read-only
Parameter is not allowed to be changed by the application.

update immediately
Parameter is updated immediately upon a set request.

154 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

update-at-null call state
Parameter is only allowed to be updated at the Null call state (that is, when there are no active
calls). This parameter is updated after a set request is made and when the call state is Null.

See Section 9.4, “Getting and Setting Parameter Information”, on page 154 and the appropriate
Dialogic® Global Call Technology Guide for detailed information.

9.4 Getting and Setting Parameter Information

The Dialogic® Global Call RTCM feature supports the retrieval or updating of multiple parameters
of the same target object in a single Global Call function call. The functions used to get and set
configuration data are as follows:

gc_GetConfigData()
retrieves the configuration data from a given target object

gc_SetConfigData()
updates the configuration data of a given target object

The function call must include a valid target object that is consistent with the target ID. In addition,
the following conditions must exist:

• Valid parameters (set ID and parm ID) supported by this target object

• Correct parameter data type and data value

• Appropriate control parameters (programming mode, timeout, update condition) have been set

The set ID and parm ID, as well as the data type and data value, are specified in the function call
using the GC_PARM_BLK data structure.

9.4.1 GC_PARM_BLK Data Structure

As an argument of the gc_SetConfigData() function and the gc_GetConfigData() function, the
configuration data is required to be a generic GC_PARM_BLK data structure. The Dialogic®

Global Call application must input parameter information, such as the set ID, parm ID, and value,
strictly following entry specifications. In addition to inputting a valid set ID and parameter ID, the
parameter value size must match the parameter data type. For example, a long data type has four
bytes. A character string value is terminated by a NULL (\0). The Global Call utility functions must
be used to allocate or deallocate the GC_PARM_BLK memory, insert a parameter, or retrieve a
parameter. See the Dialogic® Global Call API Library Reference for more information on the
utility functions (gc_util_xxx functions).

The customer application should not configure the same parameter more than once in one single
function call; otherwise, the results will be undetermined. Also, the customer application must only
configure one target object in one function call. Otherwise, the mixture of parameters of different
target objects in the GC_PARM_BLK will be rejected by the Global Call RTCM API functions.

Dialogic® Global Call API Programming Guide — September 2008 155
Dialogic Corporation

Real Time Configuration Management

9.4.2 Control Parameters

The Dialogic® Global Call RTCM API control parameters help to maintain the efficiency of the
retrieve or update configuration process, and help to make sure that the application program is not
blocked. The application can specify:

• the programming mode

• the timeout interval for completing the retrieval or update

• the update condition, that is, whether the update should occur either at the Null call state or
immediately when updating the parameters of a target object with an active call. (This
parameter does not apply to the gc_GetConfigData() function.)

9.4.2.1 Programming Mode

The customer application can specify whether to access configurations in the asynchronous mode
or synchronous mode. The following paragraphs describe how the gc_GetConfigData() and
gc_SetConfigData() functions operate in the asynchronous and synchronous programming
modes:

gc_GetConfigData(), Synchronous Mode
Upon completion of the function call, the retrieved parameter data is still in the original
GC_PARM_BLK data block after the gc_GetConfigData() function returns. The function’s
return value, GC_SUCCESS, indicates that all requested parameters in a given target object
have been successfully retrieved. Other return values indicate that at least one requested
parameter in the target object failed to be retrieved due to an error. The gc_ErrorInfo()
function is called immediately to obtain the last error and an additional message describing the
parameter and the error (pointer to the additional message field). During the
gc_GetConfigData() function call, once an error occurs, the Dialogic® Global Call API stops
retrieving the remaining parameters and returns an error value to the application. If this
function call is retrieving multiple parameters, the parameters before the error may have been
retrieved while other parameters will not have had a chance to be retrieved.

gc_GetConfigData(), Asynchronous Mode
Upon completion of the function call, the Global Call application receives the
GCEV_GETCONFIGDATA event if all requested parameters have been successfully
retrieved. Otherwise, the Global Call application receives the
GCEV_GETCONFIGDATA_FAIL event, which means at least one requested parameter of
this request failed to be retrieved due to an error. The METAEVENT data structure associated
with both events has a field evtdatap that points to a GC_RTCM_EVTDATA data structure. In
GC_RTCM_EVTDATA, the retrieved _parmblkp field points to the retrieved parameter data.
The error value and additional message describing the parameter and the error are also
provided in the GC_RTCM_EVTDATA data structure.

Note: The gc_GetConfigData() function cannot be called in asynchronous mode for the following target
types: GCTGT_GCLIB_SYSTEM, GCTGT_CCLIB_SYSTEM,
GCTGT_PROTOCOL_SYSTEM, and GCTGT_FIRMWARE_SYSTEM. The function returns
invalid target type. The gc_GetConfigData() function must be called in synchronous mode for
these target types.

156 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

gc_SetConfigData(), Synchronous Mode
Upon completion of the function call, the gc_SetConfigData() function returns a value of
GC_SUCCESS to indicate that all requested parameters in a given target object have been
successfully updated. Any other return value indicates that at least one requested parameter in
a target object failed to be updated due to an error. The gc_ErrorInfo() function is called
immediately to obtain the last error and an additional message describing the parameter and
the error (pointer to the additional message field). During the gc_SetConfigData() function
call, once an error occurs, Global Call stops updating the remaining parameters and returns an
error value to the application. If this function call requires updating multiple parameters in a
target object, the parameters before the error may have been updated while other parameters
will not have a chance to be updated.

gc_SetConfigData(), Asynchronous Mode
The Global Call application receives the GCEV_SETCONFIGDATA event if all the requested
parameters in a given target object are successfully updated. Otherwise, the Global Call
application receives the GCEV_SETCONFIGDATA_FAIL event, which indicates that at least
one requested parameter in the target object failed to update due to an error. The
METAEVENT data structure, which is associated with both events, has a field, evtdatap, that
points to a GC_RTCM_EVTDATA data structure. The GC_RTCM_EVTDATA data structure
provides the error value and additional message describing the parameter and the error.

Note: When using E1, T1, and ISDN technologies, the gc_SetConfigData() function cannot be called in
asynchronous mode for the following target types: GCTGT_GCLIB_SYSTEM,
GCTGT_CCLIB_SYSTEM, GCTGT_PROTOCOL_SYSTEM, and
GCTGT_FIRMWARE_SYSTEM. The function returns invalid target type. The
gc_SetConfigData() function must be called in synchronous mode for these target types.

The original GC_PARM_BLK data block is not changed after the gc_SetConfigData() function
returns.

9.4.2.2 Timeout Option

The following guidelines for using the timeout option apply:

• The customer application can specify the timeout for completing the parameter retrieval or
update. The gc_GetConfigData() and gc_SetConfigData() functions support the timeout
option only in synchronous mode. When a timeout occurs in the synchronous mode, the
function returns an EGC_TIMEOUT error to the application. The timeout option is ignored if
the function is executed in asynchronous mode.

• The function call is stopped immediately when a timeout occurs. When accessing multiple
parameters in a single function call, some, but not all, parameters may have been retrieved or
updated before the timeout.

• A timeout value selected to be less than or equal to zero indicates an infinite timeout. When the
gc_SetConfigData() function has an infinite timeout set and is updated at the Null call state,
this thread is blocked if the target object still has any active call. The customer application can
avoid this situation by using the asynchronous mode or multi-threading technology.

Dialogic® Global Call API Programming Guide — September 2008 157
Dialogic Corporation

Real Time Configuration Management

9.4.2.3 Update Condition

When using the gc_SetConfigData() function to update the parameters of a target object with an
active call, the application can specify whether the update should occur either at the Null call state
or immediately. If parameters are to be updated at the Null state, but the function requests to
immediately update them while the target object has any active calls, the function returns an error
to the application. If parameters are to be updated immediately, the function can update them
immediately or at the Null state.

Table 17 describes the possible settings and resulting actions for the update condition as used by
the gc_SetConfigData() function.

The gc_ResetLineDev() function is used to speed the update of the parameters that are waiting for
the arrival of the Null state. For example, the customer application can call the
gc_SetConfigData() function multiple times to request the parameters to be updated at the Null
state. Instead of waiting for the Null state, the customer application can call the
gc_ResetLineDev() function to reset the channel to the Null state and update all the parameters.

9.5 Querying Configuration Data

The gc_QueryConfigData() function provides limited query capability to obtain other
configuration data based on known information. The search is limited to the given target object.

The main purpose of this function is to help the application find the protocol ID by name and the
dynamic parameter ID by name. The source data and destination data point to a GC_PARM data
structure.

Table 17. Update Condition Flag and Dialogic® Global Call Process

Update Condition Flag
(Dialogic® Global Call

API APP)

Parameter Update
Allowed in Target Object

Target Object Status
Dialogic® Global Call

API Action

GCUPDATE_IMMEDIATE

Update immediately Active or no active call Update parameter

Update at Null state
No active call Update parameter

Active call Return error

GCUPDATE_ATNULL

Update immediately

No active call Update parameter

Active call Postpone until no
active call

Update at Null state

No active call Update parameter

Active call Postpone until no
active call

158 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

The query ID also defines the data type of the source data and destination data used by the
gc_QueryConfigData() function. For example, GCQUERY_PARM_NAME_TO_ID implies the
source data is a character string, and the destination data is a GC_PARM_ID data structure.

Note: The gc_QueryConfigData() function cannot be called in asynchronous mode for the following
target types: GCTGT_GCLIB_SYSTEM, GCTGT_CCLIB_SYSTEM,
GCTGT_PROTOCOL_SYSTEM, and GCTGT_FIRMWARE_SYSTEM. The function returns
invalid target type. The gc_QueryConfigData() function must be called in synchronous mode for
these target types.

9.6 Handling RTCM Errors

Configuration data for multiple parameters of a target object can be updated in a single Dialogic®

Global Call API function call. The function will abort on any single parameter retrieval failure. If
the function returns a Global Call error, the application calls the gc_ErrorInfo() function
immediately to obtain the last error code, error message, and additional message. An additional
message identifies which parameter has an error. In the asynchronous mode, the application calls
the gc_ResultInfo() function immediately to obtain the result value, error message, and additional
message.

See the Dialogic® Global Call API Library Reference for Global Call RTCM error values and
messages.

9.7 Configuration Procedure

The basic steps for using the Dialogic® Global Call RTCM feature are:

1. Check that the target object has been opened or loaded, and find the target object ID.

2. Find the parameter information (set ID, parm ID, and data type) related to the target object.

3. Find the parameter update condition or requirement. Understand the impact on the operation
of itself or other target objects after change of parameters.

4. Select the appropriate programming mode, timeout, and update condition (if applicable) to
allow Global Call to finish the request efficiently without blocking the application program.

Figure 35 illustrates the run-time configuration procedure.

Dialogic® Global Call API Programming Guide — September 2008 159
Dialogic Corporation

Real Time Configuration Management

Figure 35. Run Time Configuration Procedure

9.8 Sample Scenarios Using the RTCM API Functions

This section shows the following examples in which the customer application uses the Dialogic®
Global Call RTCM API functions to get or set the configuration of various target objects. The
examples include:

• Getting or Setting GCLib Configuration in Synchronous Mode

• Getting or Setting CCLib Configuration in Synchronous Mode

• Getting or Setting Protocol Configuration in Synchronous Mode

• Getting or Setting Line Device Configuration in Synchronous Mode

• Setting Line Device Configuration in Asynchronous Mode

Application Global Call
Library

gc_Start ()

gc_CCLibNameToID ()

Load CCLib

Get CCLib ID

Create Target Data for Retrieving
CCLib Parameters

Get or Update Parameters of CCLib

Read Parameters from the Target Data
Block for the gc_GetConfigData () Function

gc_GetConfigData () or
 gc_SetConfigData ()

gc_util_next_parm ()

Open a Time Slot and Load a Protocolgc_OpenEx ()

gc_QueryConfigData ()

gc_QueryConfigData ()

Find the Protocol ID

Find the Parm Info (Set ID, Parm ID,
Data Type) by CDP Name

Create Target Data for
Retrieving the Protocol Parameters

Get or Change the Parameter Values of a Protocol

Read Parameters from the Target Data
Block for the gc_GetConfigData () Function

Create Target Data for Parameters of a Line Device

Get or Change Parameter Values of a Line Device

Read Parameters from the Target Data
Block for the gc_GetConfigData () Function

gc_util_insert_parm_ref () or
gc_util_insert_parm_val ()

gc_GetConfigData () or
 gc_SetConfigData ()

gc_util_next_parm ()

gc_util_insert_parm_ref () or
gc_util_insert_parm_val ()

gc_GetConfigData () or
 gc_SetConfigData ()

gc_util_next_parm ()

gc_util_insert_parm_ref () or
gc_util_insert_parm_val ()

160 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

9.8.1 Getting or Setting GCLib Configuration in Synchronous
Mode

The Dialogic® Global Call RTCM feature allows the customer application to retrieve or change the
default configuration of a GCLib even before any line device is opened. Figure 36 shows the
procedure for synchronous mode.

Figure 36. Getting or Setting GCLib Configuration in Synchronous Mode

The following steps describe the procedure for getting or setting the configuration of the GCLib in
synchronous mode:

1. Load the GCLib (after the gc_Start() function is called).

2. Create the target object data (a GC_PARM_BLK data structure) with the appropriate set ID,
parm ID, value size, and value, if applicable, by calling the Global Call utility function
gc_util_insert_parm_ref() or gc_util_insert_parm_val(). See the Dialogic® Global Call
API Library Reference for more information.

3. Call the gc_GetConfigData() or gc_SetConfigData() function with:
target_type = GCTGT_GCLIB_SYSTEM
target_id = 0
time_out = 0
mode = EV_SYNC

4. If the gc_GetConfigData() function returns successfully, then obtain the individual parameter
data by calling the gc_util_get_next_parm() function. If an error occurs, call the
gc_ErrorInfo() function to find the error and correct it.

Application Global Call
Library

gc_Start ()

gc_util_insert_parm_ref () or
gc_util_insert_parm_val ()

Load GCLib

Create Target Data for Retrieving
or Updating GCLib Parameters

Get the Current Values or Set New
Values of the GCLib Parameters

Get the Parameters from the Target Data Block
for the gc_GetConfigData () Function

gc_GetConfigData () or
 gc_SetConfigData ()

gc_util_next_parm ()

Dialogic® Global Call API Programming Guide — September 2008 161
Dialogic Corporation

Real Time Configuration Management

9.8.2 Getting or Setting CCLib Configuration in Synchronous
Mode

The Dialogic® Global Call RTCM feature allows the customer application to retrieve or change the
default configuration of a CCLib even before any line device is opened. Figure 37 shows the
procedure for synchronous mode.

Figure 37. Getting or Setting CCLib Configuration in Synchronous Mode

The following steps describe the procedure for getting or setting the configuration of a CCLib in
synchronous mode:

1. Load the call control library after the gc_Start() function is called.

2. Find the CCLib ID using its name by calling the gc_CCLibNameToID() function. If the
application has doubt about the CCLib name, it can call the gc_GetCCLibStatusAll()
function to verify whether the CCLib has been started.

3. Create the target object data (a GC_PARM_BLK data structure) with the appropriate set ID,
parm ID, value size, and value, if applicable, by calling the Global Call utility function
gc_util_insert_parm_ref() or gc_util_insert_parm_val(). See the Dialogic® Global Call
API Library Reference for more information.

4. Call the gc_GetConfigData() or gc_SetConfigData() function with:
target_type = GCTGT_CCLIB_SYSTEM
target_id = CCLib ID
time_out = 0
mode = EV_SYNC

Application Global Call
Library

gc_Start ()

gc_CCLibNameToID ()

gc_util_insert_parm_ref () or
gc_util_insert_parm_val ()

Load CCLib

Get CCLib ID

Create Target Data for Retrieving
or Upddating CCLib Parameters

Get the Current Values or Set New
Values of the CCLib Parameters

Get the Parameters from the Target Data Block
for the gc_GetConfigData () Function

gc_GetConfigData () or
 gc_SetConfigData ()

gc_util_next_parm ()

162 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

5. If the gc_GetConfigData() function returns successfully, then obtain the individual parameter
data by calling the gc_util_get_next_parm() function. If an error occurs, call the
gc_ErrorInfo() function to find the error and correct it.

9.8.3 Getting or Setting Protocol Configuration in Synchronous
Mode

The Dialogic® Global Call RTCM feature allows the customer application to retrieve or change the
default configuration of a protocol. Figure 38 shows the procedure for the synchronous mode.

Figure 38. Getting or Setting Protocol Configuration in Synchronous Mode

The following steps describe the procedure for getting or setting the configuration of a protocol in
the synchronous mode:

1. Load the protocol (after, in many cases, calling the gc_OpenEx() function for the first channel
running the protocol).

2. Find the protocol ID by its name. Call the gc_QueryConfigData() function with:
target type = GCTGT_GCLIB_SYSTEM
target id = 0

Application Global Call
Library

gc_OpenEx ()

gc_QueryConfigData ()

gc_QueryConfigData ()

Load a Protocol

Find the Protocol ID

Find the Parameter Information (Set ID,
Parm ID, Data Type) by CDP Name

Create Target Data for Retrieving
or Updating CDP Parameters

Get the Current Values or Set New
Values of the CDP Parameters

gc_util_insert_parm_ref () or
gc_util_insert_parm_val ()

gc_GetConfigData () or
 gc_SetConfigData ()

Get the Parameters from the Target Data
Block for the gc_GetConfigData () Function

Open Other Channels with Updated
Values of CDP Parameters

gc_util_next_parm ()

gc_OpenEx()

Dialogic® Global Call API Programming Guide — September 2008 163
Dialogic Corporation

Real Time Configuration Management

query ID = GCQUERY_PROTOCOL_NAME_TO_ID
source data = protocol name

3. Find the CDP parameter ID by its name. Call the gc_QueryConfigData() function with:
target type = GCTGT_PROTOCOL_SYSTEM
target id = protocol ID
query ID = GCQUERY_PARM_NAME_TO_ID
source data = CDP name

4. Create the target object data (a GC_PARM_BLK data structure) with the appropriate set ID,
parm ID, value size, and value by calling the Global Call utility function
gc_util_insert_parm_ref() or gc_util_insert_parm_val(). See the Dialogic® Global Call
API Library Reference for more information.

5. Call the gc_GetConfigData() or gc_SetConfigData() function with:
target_type = GCTGT_PROTOCOL_SYSTEM (for getting or setting the parameter on a
system-wide basis, that is, for all channels) or GCTGT_PROTOCOL_CHAN (for getting or
setting the parameter on an individual channel)
target_id = protocol ID
time_out = 0
mode = EV_SYNC

Note: If a CDP parameter value is changed, the change takes effect for newly opened
devices only. It does not apply to devices that are already opened.

6. If the gc_GetConfigData() function returns successfully, then obtain the individual parameter
data by calling the gc_util_get_next_parm() function. If an error occurs, call the
gc_ErrorInfo() function to find the error and correct it.

7. Call the gc_OpenEx() function to open other channels with updated values of CDP
parameters.

The following code shows a function that can be used to change a modifiable CDP parameter value
for a channel:

// name = CDP parameter name
// val = pointer to data
// size = size of data

void ChangeChannelCDPParm(LINEDEV chan, char *name, void *val, int size)
{
 int id; /* protocol ID */
 char prot_name[] = "pdk_ar_r2_io";
 GC_PARM src, dest;
 GC_PARM_ID pair;
 GC_PARM_BLK *pblkp = NULL;
 GC_PARM_DATA *parm;
 long req_id;

 // Get Protocol ID from name
 src.paddress = prot_name;
 gc_QueryConfigData(GCTGT_GCLIB_SYSTEM, 0, &src, GCQUERY_PROTOCOL_NAME_TO_ID, &dest);
 id = dest.intvalue;

 // Get CDP parameter IDs from name
 src.paddress = name;
 dest.pstruct = &pair;
 gc_QueryConfigData(GCTGT_PROTOCOL_SYSTEM, id, &src, GCQUERY_PARM_NAME_TO_ID, &dest);

164 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

 // Build GC_PARM_BLK and call SetConfigData to change CDP parameter
 gc_util_insert_parm_ref(&pblkp, pair.set_ID, pair.parm_ID, size, val);
 gc_SetConfigData(GCTGT_PROTOCOL_CHAN, chan, pblkp, 0, GCUPDATE_ATNULL,
 &req_id, EV_SYNC); /* Must be GCUPDATE_ATNULL for CDP parameters */
 gc_util_delete_parm_blk(pblkp);
 pblkp = NULL; /* strictly speaking, not necessary, but it is good practice to
 always set the parm block pointer to NULL when done with it */
}

9.8.4 Getting or Setting Line Device Configuration in
Synchronous Mode

The Dialogic® Global Call RTCM feature allows the customer application to retrieve or change the
default configuration of a line device in synchronous mode. Synchronous mode can be used
effectively in any of the following cases:

• The request is to retrieve parameters.

• The request is to update parameters that are NOT call related.

• The request is to update parameters that are call related but there is no active call on the target
object.

• The target type is neither GCTGT_FIRMWARE_CHAN nor GCTGT_FIRMWARE_NETIF
(that is, the parameters are not maintained in the firmware).

Figure 39 shows the procedure for getting or setting line device configuration in synchronous
mode.

Figure 39. Getting or Setting Line Device Configuration in Synchronous Mode

Application Global Call
Library

gc_OpenEx ()

gc_QueryConfigData ()

Open a Line Device

Find the Set ID and Parm ID
of the Parameters

Create Target Data for Retrieving or
Updating Parameters of the Line Device

Get the Current Values or Set New
Values of the Parameters of the Line Device

gc_util_insert_parm_ref () or
gc_util_insert_parm_val ()

gc_GetConfigData () or
 gc_SetConfigData ()

Get the Parameters from the Target Data
Block for the gc_GetConfigData () Function

gc_util_next_parm ()

Dialogic® Global Call API Programming Guide — September 2008 165
Dialogic Corporation

Real Time Configuration Management

The following steps describe the procedure for getting or setting the configuration of a line device:

1. Open the line device (by calling the gc_OpenEx() function) and get the line device ID.

2. If the parameters of the line device are protocol CDP parameters, use an approach similar to
getting the CDP parameter ID described in the “Getting or Setting Protocol Configuration in
Synchronous Mode” section.

3. Create the target object data (a GC_PARM_BLK data structure) with the appropriate set ID,
parm ID, value size, and value, if applicable, by calling the Global Call utility functions. See
the Dialogic® Global Call API Library Reference for more information on the utility
functions.

4. Call the gc_GetConfigData() or gc_SetConfigData() function with:
target_type = GCTGT_CCLIB_NETIF, GCTGT_PROTOCOL_NETIF,
GCTGT_CCLIB_CHAN, or GCTGT_PROTCOL_CHAN
target_id = Global Call line device ID
time_out > 0
mode = EV_SYNC
update condition = GCUPATE_IMMEDIATE (gc_SetConfigData() function only)

5. If the gc_GetConfigData() function returns successfully, obtain the individual parameter data
by calling the gc_util_get_next_parm() function. If an error occurs, call the gc_ErrorInfo()
function to find the error and then correct it.

9.8.5 Setting Line Device Configuration in Asynchronous Mode

The Dialogic® Global Call RTCM allows the customer application to retrieve or change the default
configuration of a line device in asynchronous mode.

Asynchronous mode is generally suggested to be used in either of the following cases:

• The request is to update parameters that are call related and the channel is not at the NULL
state.

• The target type is GCTGT_FIRMWARE_CHAN or GCTGT_FIRMWARE_NETIF (that is,
the parameters are maintained in firmware).

Figure 40 shows the procedure for setting line device configuration in asynchronous mode.

166 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

Figure 40. Setting Line Device Configuration in Asynchronous Mode

The procedure for setting the configuration of a line device in asynchronous mode is as follows:

1. The channel has an active call. Create the target object data (that is, a GC_PARM_BLK data
structure) with the appropriate set ID, parm ID, value size, and value buffer by calling the
Global Call utility functions. See the Dialogic® Global Call API Library Reference for more
information.

2. Call the gc_SetConfigData() function with:
target_type = GCTGT_CCLIB_NETIF, GCTGT_PROTOCOL_NETIF,
GCTGT_FIRMWARE_NETIF, GCTGT_CCLIB_CHAN, GCTGT_PROTCOL_CHAN, or
GCTGT_FIRMWARE_CHAN
target_id = Global Call line device ID
time_out = 0
mode = EV_ASYNC
update condition = GCUPATE_ATNULL

3. Call the gc_ResetLineDev() function to enforce the line to the NULL state.

4. If the gc_ResetLineDev() function is successful, a GCEV_RESETLINEDEV event is
received. If the gc_SetConfigData() function is successful, a GCEV_SETCONFIGDATA
event is received. If the GCEV_SETCONFIGDATA_FAIL event is received, call the
gc_ResultInfo() function to find the error and correct it.

Application Global Call
Library

GCEV_CONNECTED or
GCEV_ANSWERED

Create Target Data for Parameters
of the Line Device

Set the Parameters if this Timeslot
Target Object in Asynchronous Mode

Force the Line to the NULL State

gc_util_insert_parm_ref () or
gc_util_insert_parm_val ()

 gc_SetConfigData ()

Received RESETLINEDEV Event

 gc_ResetLineDev ()

Received SETCONFIGDATA Event

GCEV_RESETLINEDEV

GCEV_SETCONFIGDATA

Received Connected or
Answered Event

Dialogic® Global Call API Programming Guide — September 2008 167
Dialogic Corporation

Real Time Configuration Management

9.9 Dynamically Retrieving and Modifying Selected
Protocol Parameters when Using Dialogic® DM3
Boards

The ability to dynamically retrieve or modify certain protocol-specific parameter values stored by
the Dialogic® DM3 Board firmware is supported on the following boards:

• Dialogic® DM/V-A Media Boards

• Dialogic® DM/V-B Media Boards

This feature allows a user to dynamically (at run time) retrieve and/or modify the following
parameter values:

• Protocol ID

• CAS signal definitions

• CDP variable values

• Line type (E1_CRC, D4, ESF) and coding (B8ZS, HDB3, AMI) for a trunk

• Protocol for a trunk

Some typical use cases for this feature are as follows:

• When a new system is configured and then provisioned by a new carrier, protocol parameters,
such as wink settings, need to be tweaked before a call can be placed using the new switch.
The provision of the API to perform these changes at run time alleviates the need to manually
edit configuration files and subsequently re-download the firmware.

• When using ISDN protocols, the ability to dynamically determine the protocol running on a
particular span is important in determining whether features such as Two-B Call Transfer
(TBCT) or Overlapped Sending can be supported.

This feature is implemented using the Dialogic® Global Call RTCM facility, which uses the Global
Call gc_GetConfigData(), gc_SetConfigData(), and gc_QueryConfigData() functions. Details
on how to dynamically configure the parameter types mentioned above are provided in the
following sections:

• Prerequisites for Feature Use

• Retrieving a Protocol ID

• Retrieving or Modifying CAS Signal Definitions

• Retrieving or Modifying CDP Variable Values

• Sample Code for Getting and Setting CAS Signal Definitions and CDP Variable Values

• Dynamically Configuring a Trunk

• Applicable Data Structures, Set IDs, and Parm IDs

• Restrictions and Limitations

168 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

9.9.1 Prerequisites for Feature Use

Prerequisites are discussed in the following sections:

• Creating a dm3enum.cfg File

• Enabling Protocol Configuration

9.9.1.1 Creating a dm3enum.cfg File

Before this feature can be used, it must be enabled. To enable the feature, a configuration file
named dm3enum.cfg must be created and stored in the Dialogic\cfg directory. The dm3enum.cfg
file determines the boards on which this dynamic protocol configuration feature is to be enabled.

The syntax of the commands that can be included in a dm3enum.cfg file are:

board <n>
Specifies a logical board (<n>) on which this feature is to be enabled.

board (startBd endBd)
Specifies a range of boards on which this feature is to be enabled.

Notes: 1. The “board” command word can be abbreviated to “b”.

2. The startBd value must be less than the endBd value.

Some examples of commands that can be included in a dm3enum.cfg file are:

board 0
b 1
board (1 3)
b (1 3)

The feature generates a number of log files in the Dialogic\log directory:

Dm3enumreate.log
Log file for application that starts dynamic protocol configuration enablement

Protocol_enmurate_board_#.log
Log file of actual dynamic protocol configuration enablement process for boards that use non-
PDK protocols

Pdkenumerate.log_board#
Log file of actual dynamic protocol configuration enablement process for boards that use PDK
protocols

9.9.1.2 Enabling Protocol Configuration

To enable protocol configuration for PDK protocols, after running the pdkmanagerregsetup
add command, run the following command:

pdkmanagerregsetup enumerate

Then,

• Download the board firmware.

Dialogic® Global Call API Programming Guide — September 2008 169
Dialogic Corporation

Real Time Configuration Management

• Run the devmapdump utility to check that the protocol information has been loaded (search for
CDP_ and CAS_ parameters). If this is not the case, run the dm3enumerate utility to load the
protocol information manually after each firmware download.

To enable protocol configuration for non-PDK protocols, run the dm3enumerate utility to load
protocol name information.

9.9.2 Retrieving a Protocol ID

DM3 protocol names have the format “lb#pv#:Variant_Name”, where:

• lb# is the logical board ID on a physical DM3 Board

• pv# is the protocol variant ID

Some examples are:

• “lb1pv1:pdk_us_mf_io” - A PDK protocol that is the first protocol variant on logical board 1

• “lb2pv1:isdn_net5” - An ISDN Net5 protocol that is the first protocol variant on logical board
2

• “lb0pv5:analog_loop_fxs”- An analog protocol that is the fifth protocol variant on logical
board 0

Note: All characters in protocol names are lowercase.

The protocol ID is assigned by Global Call, and the user must obtain the protocol ID prior to
accessing any protocol-related data.

The protocol name and ID for a DM3 Board can be obtained by calling the gc_GetConfigData()
function on an opened time slot device handle with the following parameter values:

• target_type = GCTGT_GCLIB_CHAN

• target_id = the line device handle

• target_datap = GC_PARM_BLKP parameter pointer, as constructed by the utility function
gc_util_insert_parm_val() for protocol ID and gc_util_insert_parm_ref() for protocol
name

• time_out = time interval (in seconds) during which data must be retrieved. If the interval is
exceeded, the retrieve request is ignored. This parameter is supported in synchronous mode
only, and it is ignored when set to 0.

• request_idp = pointer to the location for storing the request ID

• mode = EV_ASYNC for asynchronous execution or EV_SYNC for synchronous execution.
EV_SYNC mode is recommended.

Note: Only time slot objects support the retrieval of the protocol ID and name.

See Section 9.9.5, “Sample Code for Getting and Setting CAS Signal Definitions and CDP
Variable Values”, on page 173, specifically the ObtainProtocolIDAndName() function, for
example code that demonstrates how to retrieve the protocol ID and name.

170 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

If the protocol name is known, the protocol ID can be obtained by calling the
gc_QueryConfigData() function with the following parameter values:

• target_type = GCTGT_GCLIB_SYSTEM

• target_id = GC_LIB

• source_datap = GC_PARM parameter pointer for storing the protocol name (input)

• query_id = Query ID, in this case, GCQUERY_PROTOCOL_NAME_TO_ID

• response_datap = GC_PARM parameter pointer for storing the protocol ID (output)

9.9.3 Retrieving or Modifying CAS Signal Definitions

This feature enables the user to dynamically retrieve or modify CAS signal definitions. Before the
CAS signal definition can be retrieved or modified, the {set ID:parm ID} pair that identifies the
signal in the firmware must be retrieved. The datatype of the corresponding parameter value must
also be retrieved. The following sections describe the operations relating to CAS signal definitions
that can be performed:

• Obtaining the {Set ID:Parm ID} Pair for a CAS Signal

• Retrieving a CAS Signal Definition

• Setting a CAS Signal Definition

9.9.3.1 Obtaining the {Set ID:Parm ID} Pair for a CAS Signal

Each CAS parameter in a DM3 PDK protocol has a unique {set ID:parm ID} pair, in which the set
ID represents the component that contains the parameter and parm ID represents an internal ID
within that component. The set ID is one of a predefined set of values in the dm3cc_parm.h file,
and the parm ID is assigned by the DM3 firmware at download time. For example, the
CAS_ANSWER parameter (which defines a CAS signal) is contained in the CAS component
identified by the PRSET_CAS_SIGNAL set ID with the parm ID being assigned internally by the
firmware.

Before dynamically retrieving or modifying the value of a CAS parameter in the DM3 firmware,
the user must call the gc_QueryConfigData() function to obtain the {set ID:parm ID} pair of the
CAS parameter using the parameter name obtained from the CDP file.

The gc_QueryConfigData() function is called with the following parameter values:

• target_type = GCTGT_PROTOCOL_SYSTEM

• target_id = PDK Protocol ID

• source_datap = GC_PARM parameter pointer for storing input CAS parameter name

• query_id = Query ID, in this case, GCQUERY_PARM_NAME_TO_ID

• response_datap = GC_PARM parameter pointer for storing output {set ID:parm ID} and
value type

Dialogic® Global Call API Programming Guide — September 2008 171
Dialogic Corporation

Real Time Configuration Management

See Section 9.9.5, “Sample Code for Getting and Setting CAS Signal Definitions and CDP
Variable Values”, on page 173, specifically the QueryParmID() function, for example code that
demonstrates how to retrieve the {set ID:parm ID} pair for a CAS signal.

Note: Obtaining the {set ID:parm ID} pair is a prerequisite to retrieving the definition of a CAS signal or
redefining a CAS signal.

9.9.3.2 Retrieving a CAS Signal Definition

The gc_GetConfigData() function can be used to retrieve the value of CAS parameters in the
DM3 firmware. Function parameter values to use in this context are:

• target_type = GCTGT_PROTOCOL_SYSTEM

• target_id = PDK Protocol ID

• target_datap = GC_PARM_BLKP parameter pointer, as constructed by the
gc_util_insert_parm_ref() utility function for CAS signal

• time_out = time interval (in seconds) during which the parameter value must be retrieved. If
the interval is exceeded, the retrieve request is ignored. This parameter is supported in
synchronous mode only, and it is ignored when set to 0.

• request_idp = pointer to the location for storing the request ID, output from Global Call

• mode = EV_ASYNC for asynchronous execution or EV_SYNC for synchronous execution.
EV_ASYNC mode is recommended.

See Section 9.9.5, “Sample Code for Getting and Setting CAS Signal Definitions and CDP
Variable Values”, on page 173, specifically the GetCASSignalDef() function, for example code
that demonstrates how to retrieve the definition of a CAS signal, in this case the CAS_WINKREV
signal.

9.9.3.3 Setting a CAS Signal Definition

The gc_SetConfigData() function with the following parameter values can be used to set a new
definition for a CAS signal in the DM3 firmware:

• target_type = GCTGT_PROTOCOL_SYSTEM

• target_id = PDK Protocol ID

• target_datap = GC_PARM_BLKP parameter pointer, as constructed by the utility function
gc_util_insert_parm_ref() for the CAS signal

• time_out = time interval (in seconds) during which the parameter value must be updated. If
the interval is exceeded, the update request is ignored. This parameter is supported in
synchronous mode only, and it is ignored when set to 0.

• update_cond = ignored for DM3 PDK protocols

• request_idp = pointer to the location for storing the request ID, output from Global Call

• mode = EV_ASYNC for asynchronous execution or EV_SYNC for synchronous execution.
EV_ASYNC mode is recommended.

See Section 9.9.5, “Sample Code for Getting and Setting CAS Signal Definitions and CDP
Variable Values”, on page 173, specifically the SetCASSignalDef() function, for example code

172 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

that demonstrates how to change the definition of a CAS signal, in this case the CAS_WINKREV
signal.

9.9.4 Retrieving or Modifying CDP Variable Values

This feature enables the user to dynamically retrieve or modify parameter values defined in DM3
PDK protocol country dependent parameter (CDP) files. Before the CDP variable value can be
retrieved or modified, the {set ID:parm ID} pair that identifies the CDP variable in the firmware
must be retrieved. The datatype of the corresponding CDP variable value must also be retrieved.
The following sections describe the operations relating to CDP variable values that can be
performed:

• Obtaining the {Set ID:Parm ID} Pair for a CDP Variable

• Getting the Current Values of Multiple CDP Variables

• Setting New Values for Multiple CDP Variables

9.9.4.1 Obtaining the {Set ID:Parm ID} Pair for a CDP Variable

Each CDP variable in a DM3 PDK protocol has a unique {set ID:parm ID} pair, in which the set
ID represents the component that contains the parameter and parm ID represents an internal ID
within that component. The set ID is one of a predefined set of values in the dm3cc_parm.h file,
and the parm ID is assigned by the DM3 firmware at download time.

Before dynamically retrieving or modifying the value of a CDP variable in the DM3 firmware, the
user must call the gc_QueryConfigData() function to obtain the {set ID:parm ID} pair of the
CDP variable using the parameter name obtained from the CDP file.

The gc_QueryConfigData() function is called with the following parameter values:

• target_type = GCTGT_PROTOCOL_SYSTEM

• target_id = PDK Protocol ID

• source_datap = GC_PARM parameter pointer for storing the input CDP variable name

• query_id = Query ID, in this case, GCQUERY_PARM_NAME_TO_ID

• response_datap = GC_PARM parameter pointer for storing the output {set ID:parm ID} and
value type

Note: Obtaining the {set ID:parm ID} pair is a prerequisite to retrieving or changing the value of a CDP
variable.

See Section 9.9.5, “Sample Code for Getting and Setting CAS Signal Definitions and CDP
Variable Values”, on page 173, specifically the QueryParmID() function, for example code that
demonstrates how to retrieve the {set ID:parm ID} pair for a CDP variable.

9.9.4.2 Getting the Current Values of Multiple CDP Variables

The gc_GetConfigData() function can be used to retrieve the value of a CDP variable in the DM3
firmware. Function parameter values to use in this context are:

• target_type = GCTGT_PROTOCOL_SYSTEM

Dialogic® Global Call API Programming Guide — September 2008 173
Dialogic Corporation

Real Time Configuration Management

• target_id = PDK Protocol ID

• target_datap = GC_PARM_BLKP parameter pointer, as constructed by the utility function
gc_util_insert_parm_val() for CDP integer value and gc_util_insert_parm_ref() for CDP
string value

• time_out = time interval (in seconds) during which the parameter value must be retrieved. If
the interval is exceeded, the retrieve request is ignored. This parameter is supported in
synchronous mode only, and it is ignored when set to 0.

• request_idp = pointer to the location for storing the request ID, output from Global Call

• mode = EV_ASYNC for asynchronous execution or EV_SYNC for synchronous execution.
EV_ASYNC mode is recommended.

See Section 9.9.5, “Sample Code for Getting and Setting CAS Signal Definitions and CDP
Variable Values”, on page 173, specifically the GetCDPVarParms() function, for example code
that demonstrates how to get the current values of multiple CDP variables.

9.9.4.3 Setting New Values for Multiple CDP Variables

The gc_SetConfigData() function can be used to set new values for multiple CDP variables in the
DM3 firmware. Function parameter values to use in this context are:

• target_type = GCTGT_PROTOCOL_SYSTEM

• target_id = PDK Protocol ID

• target_datap = GC_PARM_BLKP parameter pointer, as constructed by the utility function
gc_util_insert_parm_val() for the CDP integer value and gc_util_insert_parm_ref() for
the CDP string value

• time_out = time interval (in seconds) during which the parameter value must be updated. If
the interval is exceeded, the update request is ignored. This parameter is supported in
synchronous mode only, and it is ignored when set to 0.

• update_cond = ignored for DM3 PDK protocol parameters

• request_idp = pointer to the location for storing the request ID, output from Global Call

• mode = EV_ASYNC for asynchronous execution or EV_SYNC for synchronous execution.
EV_ASYNC mode is recommended.

See Section 9.9.5, “Sample Code for Getting and Setting CAS Signal Definitions and CDP
Variable Values”, on page 173, specifically the SetCDPVarParms() function, for example code
that demonstrates how to set new values of multiple CDP variables.

9.9.5 Sample Code for Getting and Setting CAS Signal
Definitions and CDP Variable Values

/* Dialogic Header Files */
#include <gcip.h>
#include <gclib.h>
#include <gcisdn.h>
#include <srllib.h>
#include <dm3cc_parm.h>

174 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

int ObtainProtocolIDAndName(LINEDEV a_GCLineDevH, char *a_pProtName, long *a_pProtID)
{
 GC_PARM_BLK * t_pParmBlk = NULL;
 GC_PARM_DATA * t_pParmData = NULL;
 char * t_ProtName[20];
 long t_RequestID = 0;
 int t_result;

 /* Reserve the space for protocol ID */
 *a_pProtID = 0;
 gc_util_insert_parm_val(&t_pParmBlk, GCSET_PROTOCOL, GCPARM_PROTOCOL_ID, sizeof(long),
 *a_pProtID);
 /* Reserve the space for protocol Name */

 gc_util_insert_parm_ref(&t_pParmBlk, GCSET_PROTOCOL, GCPARM_PROTOCOL_NAME,
 sizeof(t_ProtName), t_ProtName);
 /* Since the protocol information has already been stored in GC library during gc_OpenEx(),
 it is recommended to call gc_GetConfigData() in SYNC mode */
 t_result = gc_GetConfigData(GCTGT_GCLIB_CHAN, a_GCLineDevH, t_pParmBlk, 0, & t_RequestID,
 EV_SYNC);
 if (t_result)
 {
 /* Process the error */
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
 }
 /* Obtain the protocol ID */
 t_pParmData = gc_util_find_parm(t_pParmBlk, GCSET_PROTOCOL, GCPARM_PROTOCOL_ID);
 if (NULL != t_pParmData)
 {
 memcpy(a_pProtID, t_pParmData->value_buf, t_pParmData->value_size);
 }
 /* Obtain the protocol Name */
 t_pParmData = gc_util_find_parm(t_pParmBlk, GCSET_PROTOCOL, GCPARM_PROTOCOL_NAME);
 if (NULL != t_pParmData)
 {
 strcpy(a_pProtName, (const char*)t_pParmData->value_buf);
 }
 printf("ObtainProtocolIDAndName(linedev:%d, protocol_id:%d, protocol_name:%s)",
 a_GCLineDevH, *a_pProtID, a_pProtName);
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
}

int QueryParmID(long a_PDKProtocolID, char *a_pParmName, unsigned short * a_pSetID,
 unsigned short * a_pParmID, unsigned char * a_pValType)
{
 GC_PARM t_SourceData;
 GC_PARM t_RespData;
 GC_PARM_ID t_ParmIDBlk;
 int t_result = 0;

 /* Pass the CDP name, which is defined in CDP file, e.g., "CAS_WINKRCV" or "CDP_ANI_ENABLED"
 in pdk_us_mf_io.cdp */
 t_SourceData.paddress = a_pParmName;
 memset(&t_ParmIDBlk, '0', sizeof(GC_PARM_ID));
 t_RespData.pstruct = & t_ParmIDBlk;
 t_result = gc_QueryConfigData(GCTGT_PROTOCOL_SYSTEM, a_PDKProtocolID, &t_SourceData,
 GCQUERY_PARM_NAME_TO_ID, &t_RespData);
 if (t_result)
 {
 /* Process the error */
 *a_pSetID = 0;
 *a_pParmID = 0;
 *a_pValType = 0;
 printf("gc_QueryConfigData(parm:%s) failed on protocol:%d", a_pParmName,
 a_PDKProtocolID);

Dialogic® Global Call API Programming Guide — September 2008 175
Dialogic Corporation

Real Time Configuration Management

 }
 else
 {
 *a_pSetID = t_ParmIDBlk.set_ID;
 *a_pParmID = t_ParmIDBlk.parm_ID;
 *a_pValType = t_ParmIDBlk.value_type;
 printf("gc_QueryConfigData(parm:%s) succeed with {setID:0x%x, parmID:0x%x, valType:%d}
 on protocol:%d",
 a_pParmName, *a_pSetID, *a_pParmID, *a_pValType, a_PDKProtocolID);
 }
 return t_result;
}

int SetCASSignalDef(long a_PDKProtocolID)
{
 GC_PARM_BLK * t_pParmBlk = NULL;
 unsigned short t_SetID;
 unsigned short t_ParmID;
 unsigned char t_ValType;
 long t_RequestID = 0;
 int t_result = 0;
 GC_CASPROT_TRANS t_CasTrans;
 GC_CASPROT_PULSE t_CasPulse = {"00xx", "11xx", 50, 62, 0, 80, 20, 250, 300};
 GC_CASPROT_TRAIN t_CasTrain;
 /* Find the {setID, parmID, DataType} of CAS_WINKRCV for pdk_us_mf_io */
 t_result = QueryParmID(a_PDKProtocolID, "CAS_WINKRCV", &t_SetID, &t_ParmID, &t_ValType);
 if (t_result)
 {
 /* Process the error */
 return t_result;
 }
 /* Insert new definition for CAS signals, dependent on the signal type */
 switch (t_ValType)
 {
 case GC_VALUE_CAS_TRANS:
 gc_util_insert_parm_ref(&t_pParmBlk, t_SetID, t_ParmID, sizeof(GC_CASPROT_TRANS),
 &t_CasTrans);
 break;
 case GC_VALUE_CAS_PULSE:
 gc_util_insert_parm_ref(&t_pParmBlk, t_SetID, t_ParmID, sizeof(GC_CASPROT_PULSE),
 &t_CasPulse);
 break;
 case GC_VALUE_CAS_TRAIN:
 gc_util_insert_parm_ref(&t_pParmBlk, t_SetID, t_ParmID, sizeof(GC_CASPROT_TRAIN),
 &t_CasTrain);
 break;
 default:
 /* Process the error here */
 return -1;
 break;
 }
 /* Set the CAS_WINKRCV with new value */
 t_result = gc_SetConfigData(GCTGT_PROTOCOL_SYSTEM, a_PDKProtocolID, t_pParmBlk, 0,
 GCUPDATE_IMMEDIATE, &t_RequestID, EV_ASYNC);
 if (t_result)
 {
 /* Process the error */
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
 }
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
}

176 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

int GetCASSignalDef(long a_PDKProtocolID)
{
 GC_PARM_BLK * t_pParmBlk = NULL;
 unsigned short t_SetID;
 unsigned short t_ParmID;
 unsigned char t_ValType;
 long t_RequestID = 0;
 int t_result = 0;
 GC_CASPROT_TRANS t_CasTrans;
 GC_CASPROT_PULSE t_CasPulse;
 GC_CASPROT_TRAIN t_CasTrain;
 /* Find the {setID, parmID, dataType} of CAS_WINKRCV for pdk_us_mf_io */
 t_result = QueryParmID(a_PDKProtocolID, "CAS_WINKRCV", &t_SetID, &t_ParmID, &t_ValType);
 if (t_result)
 {
 /* Process the error */
 return t_result;
 }
 /* Insert memory space for storing definition for CAS signals, dependent on the signal type
 */
 switch (t_ValType)
 {
 case GC_VALUE_CAS_TRANS:
 memset(&t_CasPulse, 0, sizeof(GC_CASPROT_TRANS));
 gc_util_insert_parm_ref(&t_pParmBlk, t_SetID, t_ParmID, sizeof(GC_CASPROT_TRANS),
 &t_CasTrans);
 break;
 case GC_VALUE_CAS_PULSE:
 memset(&t_CasPulse, 0, sizeof(GC_CASPROT_PULSE));
 gc_util_insert_parm_ref(&t_pParmBlk, t_SetID, t_ParmID, sizeof(GC_CASPROT_PULSE),
 &t_CasPulse);
 break;
 case GC_VALUE_CAS_TRAIN:
 memset(&t_CasPulse, 0, sizeof(GC_CASPROT_TRAIN));
 gc_util_insert_parm_ref(&t_pParmBlk, t_SetID, t_ParmID, sizeof(GC_CASPROT_TRAIN),
 &t_CasTrain);
 break;
 default:
 /* Process the error here */
 return -1;
 break;
 }
 /* Get the CAS_WINKRCV with new value */
 t_result = gc_GetConfigData(GCTGT_PROTOCOL_SYSTEM, a_PDKProtocolID, t_pParmBlk, 0,
 &t_RequestID, EV_ASYNC);
 if (t_result)
 {
 /* Process the error */
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
 }
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
}

typedef struct {
 char name[50];
 int type;
 void * valuep;
} CDP_PARM;

int GetCDPVarParms(long a_PDKProtocolID, int a_NumParms, CDP_PARM * a_CDPVarParms, long *
a_pRequestID)
{
 GC_PARM_BLK * t_pParmBlk = NULL;
 unsigned short t_SetID;
 unsigned short t_ParmID;

Dialogic® Global Call API Programming Guide — September 2008 177
Dialogic Corporation

Real Time Configuration Management

 unsigned char t_ValType = 0;
 int t_result = 0;
 int index1 = 0;

 if (!a_PDKProtocolID)
 {
 /* Process the error */
 return -1;
 }
 if (!a_CDPVarParms)
 {
 /* Process the error */
 return -1;
 }
 /* Support retrieving multiple CDP variables in a single gc_GetConfigData() function call */
 for (index1 = 0; index1 < a_NumParms; index1 ++)
 {
 /* Find the {setID, parmID, valueType} of each CDP variable by its name: e.g.,
 "CDP_ANI_ENABLED" in pdk_ar_r2_io.cdp */
 t_result = QueryParmID(a_PDKProtocolID, a_CDPVarParms[index1].name, &t_SetID, &t_ParmID,
 &t_ValType);
 if (t_result)
 {
 /* Process the error */
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
 }
 if (t_SetID != PRSET_TSC_VARIABLE)
 {
 /* Not a CDP variable parameter */
 gc_util_delete_parm_blk(t_pParmBlk);
 return -1;
 }
 /* Insert new definition for CDP variable signals, dependent on the value data type */
 switch (t_ValType)
 {
 case GC_VALUE_SHORT:
 gc_util_insert_parm_val(&t_pParmBlk, t_SetID, t_ParmID, sizeof(unsigned short),
 0);
 break;
 case GC_VALUE_STRING:
 gc_util_insert_parm_ref(&t_pParmBlk, t_SetID, t_ParmID, 30, "");
 break;
 case GC_VALUE_ULONG:
 gc_util_insert_parm_val(&t_pParmBlk, t_SetID, t_ParmID, sizeof(unsigned long),
 0);
 break;
 case GC_VALUE_UCHAR:
 gc_util_insert_parm_val(&t_pParmBlk, t_SetID, t_ParmID, sizeof(unsigned char),
 0);
 break;
 default:
 /* Process the error here */
 printf("!!!!Invalid value type for protocolID:%d to CDP variable(name:%s,
 set_id:0x%x, parm_id:0x%x, valtype:%d)",
 a_PDKProtocolID, a_CDPVarParms[index1].name, t_SetID, t_ParmID,
 t_ValType);
 gc_util_delete_parm_blk(t_pParmBlk);
 return -1;
 break;
 }
 }
 /* Get the values of multiple CDP variables */
 *a_pRequestID = 0;
 t_result = gc_GetConfigData(GCTGT_PROTOCOL_SYSTEM, a_PDKProtocolID, t_pParmBlk, 0,
 a_pRequestID, EV_ASYNC);
 if (t_result)

178 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

 {
 /* Process the error */
 printf("gc_GetConfigData(protocol_id:%d) failed on setting CDP parameters()",
 a_PDKProtocolID);
 *a_pRequestID = 0;
 }
 else
 {
 printf("gc_GetConfigData(protocol_id:%d, req_id:0x%x) succeed on setting CDP
 parameters",
 a_PDKProtocolID, *a_pRequestID);
 }
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
}

int SetCDPVarParms(long a_PDKProtocolID, int a_NumParms, CDP_PARM * a_CDPVarParms, long *
a_pRequestID)
{
 GC_PARM_BLK * t_pParmBlk = NULL;
 unsigned short t_SetID;
 unsigned short t_ParmID;
 unsigned char t_ValType = 0;
 int t_result = 0;
 int t_IntVal = 0;
 unsigned long t_ULongVal = 0;
 unsigned char t_UCharVal = 0;
 unsigned char t_StrSize = 0;
 int index1 = 0;

 if (!a_PDKProtocolID)
 {
 /* Process the error */
 return -1;
 }
 if (!a_CDPVarParms)
 {
 /* Process the error */
 return -1;
 }
 /* Support setting multiple CDP variables in a single gc_SetConfigData() function call */
 for (index1 = 0; index1 < a_NumParms; index1 ++)
 {
 /* Find the {setID, parmID, valueType} of each CDP variable by its name: e.g.,
 "CDP_ANI_ENABLED" in pdk_ar_r2_io.cdp */
 t_result = QueryParmID(a_PDKProtocolID, a_CDPVarParms[index1].name, &t_SetID, &t_ParmID,
 &t_ValType);
 if (t_result)
 {
 /* Process the error */
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
 }
 if (t_SetID != PRSET_TSC_VARIABLE)
 {
 /* Not a CDP variable parameter */
 gc_util_delete_parm_blk(t_pParmBlk);
 return -1;
 }
 /* Insert new definition for CDP variable signals, dependent on the value data type */
 switch (t_ValType)
 {
 case GC_VALUE_INT:
 t_IntVal = *((int*)a_CDPVarParms[index1].valuep);
 gc_util_insert_parm_val(&t_pParmBlk, t_SetID, t_ParmID, sizeof(int), t_IntVal);
 printf("Set Integer Value:%d (0x%x) to parmID:0x%x",
 t_IntVal, t_IntVal, t_ParmID);

Dialogic® Global Call API Programming Guide — September 2008 179
Dialogic Corporation

Real Time Configuration Management

 break;
 case GC_VALUE_STRING:
 t_StrSize = strlen((char *)a_CDPVarParms[index1].valuep) + 1;
 gc_util_insert_parm_ref(&t_pParmBlk, t_SetID, t_ParmID, t_StrSize, (char *)
 a_CDPVarParms[index1].valuep);
 printf("Set String Value:%s to parmID:0x%x",
 (char *) a_CDPVarParms[index1].valuep, t_ParmID);
 break;
 case GC_VALUE_ULONG:
 t_ULongVal = *((unsigned long *)a_CDPVarParms[index1].valuep);
 gc_util_insert_parm_val(&t_pParmBlk, t_SetID, t_ParmID, sizeof(unsigned long),
 t_ULongVal);
 printf("Set Long Value:%d (0x%x) to parmID:0x%x",
 t_ULongVal, t_ULongVal, t_ParmID);
 break;
 case GC_VALUE_UCHAR:
 t_UCharVal = *((unsigned char *)a_CDPVarParms[index1].valuep);
 gc_util_insert_parm_val(&t_pParmBlk, t_SetID, t_ParmID, sizeof(unsigned char),
 t_UCharVal);
 printf("Set Char Value:%d(0x%x) to parmID:0x%x",
 t_UCharVal, t_UCharVal, t_ParmID);
 break;
 default:
 /* Process the error here */
 printf("!!!!Invalid value type for protocolID:%d to CDP variable(name:%s,
 set_id:0x%x, parm_id:0x%x, valtype:%d)",
 a_PDKProtocolID, a_CDPVarParms[index1].name, t_SetID, t_ParmID,
 t_ValType);
 gc_util_delete_parm_blk(t_pParmBlk);
 return -1;
 break;
 }
 }
 /* Set the CDP parameters with new values */
 *a_pRequestID = 0;
 t_result = gc_SetConfigData(GCTGT_PROTOCOL_SYSTEM, a_PDKProtocolID, t_pParmBlk, 0,
 GCUPDATE_IMMEDIATE, a_pRequestID, EV_ASYNC);
 if (t_result)
 {
 /* Process the error */
 printf("gc_SetConfigData(protocol_id:%d) failed on setting CDP parameters()",
 a_PDKProtocolID);
 *a_pRequestID = 0;
 }
 else
 {
 printf("gc_SetConfigData(protocol_id:%d, req_id:0x%x) succeed on setting CDP
 parameters",
 a_PDKProtocolID, *a_pRequestID);
 }
 gc_util_delete_parm_blk(t_pParmBlk);
 return t_result;
}

int ProcessRTCMEvent(unsigned long a_GCEvent, unsigned long a_ReqID, GC_PARM_BLK * a_pParmBlk)
{
 GC_CASPROT_TRANS * t_pCasTrans = NULL;
 GC_CASPROT_PULSE * t_pCasPulse = NULL;
 GC_CASPROT_TRAIN * t_pCasTrain = NULL;
 unsigned char t_UCharVal = 0;
 unsigned short t_UShortVal = 0;
 unsigned long t_ULongVal = 0;
 char * t_StringVal = NULL;
 int t_StrLen = 0;

 /* Obtain the first parameter */
 GC_PARM_DATA * t_pParmData = gc_util_next_parm(a_pParmBlk, NULL);

180 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

 while (t_pParmData)
 {
 if (t_pParmData->set_ID == PRSET_CAS_SIGNAL)
 {
 /* This is a CAS signal */
 if (t_pParmData->value_size == sizeof(GC_CASPROT_TRANS))
 {
 t_pCasTrans = (GC_CASPROT_TRANS *) &t_pParmData->value_buf;
 printf("Obtain CAS Trans signal definition on parmID:0x%x (%s, %s, %d, %d, %d,
 %d)",
 t_pParmData->parm_ID, t_pCasTrans->PreTransCode, t_pCasTrans->PostTransCode,
 t_pCasTrans->PreTransInterval, t_pCasTrans->PostTransInterval,
 t_pCasTrans->PreTransIntervalNom, t_pCasTrans->PostTransIntervalNom);
 }
 else if (t_pParmData->value_size == sizeof(GC_CASPROT_PULSE))
 {
 t_pCasPulse = (GC_CASPROT_PULSE *) &t_pParmData->value_buf;
 printf("Obtain CAS Pulse signal definition on parmID:0x%x (%s, %s, %d, %d, %d,
 %d, %d, %d, %d) ",
 t_pParmData->parm_ID, t_pCasPulse->OffPulseCode, t_pCasPulse->OnPulseCode,
 t_pCasPulse->PrePulseInterval, t_pCasPulse->PostPulseInterval,
 t_pCasPulse->PrePulseIntervalNom, t_pCasPulse->PostPulseIntervalNom,
 t_pCasPulse->PulseIntervalMin, t_pCasPulse->PulseIntervalNom,
 t_pCasPulse->PulseIntervalMax);
 }
 else if (t_pParmData->value_size == sizeof(GC_CASPROT_TRAIN))
 {
 t_pCasTrain = (GC_CASPROT_TRAIN *) &t_pParmData->value_buf;
 printf("Obtain CAS Train signal definition on parmID:0x%x (%s, %s, %d, %d, %d,
 %d, %d, %d, %d) ",
 t_pParmData->parm_ID, t_pCasTrain->OffPulseCode, t_pCasTrain->OnPulseCode,
 t_pCasTrain->PreTrainInterval, t_pCasTrain->PostTrainInterval,
 t_pCasTrain->PreTrainIntervalNom, t_pCasTrain->PostTrainIntervalNom,
 t_pCasTrain->PulseIntervalMin, t_pCasTrain->PulseIntervalNom,
 t_pCasTrain->PulseIntervalMax);
 }
 else
 {
 printf("Error! Incorrect value_size =%d for {setID:0x%x, parmID:0x%x}",
 t_pParmData->value_size, t_pParmData->set_ID, t_pParmData->parm_ID);
 }
 }
 else if (t_pParmData->set_ID == PRSET_TSC_VARIABLE)
 {
 /* This is a TSC Variable */
 switch (t_pParmData->value_size)
 {
 case 1:
 /* Unisgned char data */
 memcpy(&t_UCharVal, &t_pParmData->value_buf,t_pParmData->value_size);
 printf("Obtain TSC unsigned char value:%d(0x%x) of parmID:0x%x\n",
 t_UCharVal, t_UCharVal, t_pParmData->parm_ID);
 break;
 case 2:
 /* Unisgned short data */
 memcpy(&t_UShortVal, &t_pParmData->value_buf,t_pParmData->value_size);
 printf("Obtain TSC unsigned short value:%d(0x%x) of parmID:0x%x\n",
 t_UShortVal, t_UShortVal, t_pParmData->parm_ID);
 break;
 case 4:
 /* Unisgned long data */
 memcpy(&t_ULongVal, &t_pParmData->value_buf,t_pParmData->value_size);
 printf("Obtain TSC integer value:%d(0x%x) of parmID:0x%x",
 t_ULongVal, t_ULongVal, t_pParmData->parm_ID);
 break;
 default:
 {

Dialogic® Global Call API Programming Guide — September 2008 181
Dialogic Corporation

Real Time Configuration Management

 t_StringVal = (char*) t_pParmData->value_buf;
 t_StrLen = strlen(t_StringVal);
 if (t_pParmData->value_size > t_StrLen)
 {
 /* String data */
 printf("Obtain TSC string value:%s(first char: 0x%x) of
 parmID:0x%x",t_StringVal, t_StringVal[0], t_pParmData->parm_ID);
 }
 else
 {
 /* Unsupported value size */
 printf("Unsupported value size:%d for TSC variable parmID:0x%x",
 t_pParmData->value_size, t_pParmData->parm_ID);
 }
 }
 break;
 }
 }
 else
 {
 /* Unsupported set ID */
 printf("Unsupported set_id:0x%x with (parmID:0x%x, value_size:%d) ",
 t_pParmData->set_ID, t_pParmData->parm_ID, t_pParmData->value_size);
 }
 /* Obtain next parameter */
 t_pParmData = gc_util_next_parm(a_pParmBlk, t_pParmData);
 }
 return 0;
}

struct channel
{
 LINEDEV LineDev; /* GlobalCall line device handle */
 char DevName[50];
 long ProtocolID;
} port[120];

void process_event()
{
 METAEVENT metaevent;
 int evttype;
 GC_RTCM_EVTDATA * t_pRtcmEvt = NULL;
 int t_Result = 0;
 int index = 0;
 struct channel *pline = NULL;
 char t_ProtocolName[30];
 int t_NumParms = 0;
 int t_RequesID = 0;
 CDP_PARM t_CDPVarParms[3] = {
 {"CDP_IN_WinkStart", GC_VALUE_INT, 0},
 {"CDP_OUT_WinkStart", GC_VALUE_INT, 0},
 {"CDP_OUT_Send_Alerting_After_Dialing", GC_VALUE_INT, 0}
 };

 /* Populate the metaEvent structure */
 if(gc_GetMetaEvent(&metaevent) != GC_SUCCESS)
 {
 printf("gc_GetMetaEvent() failed \n");
 /* Process error */
 }
 /* process GlobalCall events */
 if ((metaevent.flags & GCME_GC_EVENT) == 0)
 {
 printf("Received a non-GC Event 0x%lx\n", metaevent.evttype);
 return;
 }
 evttype = metaevent.evttype;

182 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

 if (metaevent.usrattr)
 {
 pline = (struct channel *) metaevent.usrattr;
 }
 switch (evttype)
 {
 case GCEV_UNBLOCKED:
 {
 int t_IntVal = 1;
 t_Result = ObtainProtocolIDAndName(pline->LineDev, t_ProtocolName,
 &pline->ProtocolID);
 if (t_Result)
 {
 /* Error processs */
 }
 t_NumParms = 3;
 t_CDPVarParms[0].valuep = &t_IntVal;
 t_CDPVarParms[1].valuep = &t_IntVal;
 t_CDPVarParms[2].valuep = &t_IntVal;
 /* Setting new values to CDP variables */
 t_Result = SetCDPVarParms(pline->ProtocolID, t_NumParms, t_CDPVarParms,
 &t_RequesID);
 if (t_Result)
 {
 /* Processs error */
 }
 }
 break;
 case GCEV_GETCONFIGDATA:
 t_pRtcmEvt = (GC_RTCM_EVTDATA *) metaevent.evtdatap;
 if (! t_pRtcmEvt || !t_pRtcmEvt->retrieved_parmblkp)
 {
 break;
 }
 printf("Received GCEV_GETCONFIGDATA EVENT on target_type=%d, target_id=0x%x,
 rquest_id=0x%x",
 t_pRtcmEvt->target_type, t_pRtcmEvt->target_id, t_pRtcmEvt->request_ID);
 ProcessRTCMEvent(evttype, t_pRtcmEvt->request_ID, t_pRtcmEvt->retrieved_parmblkp);
 break; /* RETURN POINT!!!!! */
 break;
 case GCEV_SETCONFIGDATA:
 t_pRtcmEvt = (GC_RTCM_EVTDATA *) metaevent.evtdatap;
 if (! t_pRtcmEvt)
 {
 break;
 }
 printf("Received GCEV_SETCONFIGDATA EVENT on target_type=%d, target_id=0x%x,
 rquest_id=0x%x",
 t_pRtcmEvt->target_type, t_pRtcmEvt->target_id, t_pRtcmEvt->request_ID);
 t_NumParms = 3;
 /* Retrieving existing values from CDP variables */
 t_Result = GetCDPVarParms(t_pRtcmEvt->target_id, t_NumParms, t_CDPVarParms,
 &t_RequesID);
 if (t_Result)
 {
 /* Processs error */
 }
 break;
 case GCEV_GETCONFIGDATA_FAIL:
 t_pRtcmEvt = (GC_RTCM_EVTDATA *) metaevent.evtdatap;
 if (! t_pRtcmEvt)
 {
 break;
 }
 printf("Received GCEV_GETCONFIGDATA EVENT_FAIL on target_type=%d, target_id=0x%x,
 rquest_id=0x%x",
 t_pRtcmEvt->target_type, t_pRtcmEvt->target_id, t_pRtcmEvt->request_ID);

Dialogic® Global Call API Programming Guide — September 2008 183
Dialogic Corporation

Real Time Configuration Management

 break;
 case GCEV_SETCONFIGDATA_FAIL:
 t_pRtcmEvt = (GC_RTCM_EVTDATA *) metaevent.evtdatap;
 if (! t_pRtcmEvt)
 {
 break;
 }
 printf("Received GCEV_SETCONFIGDATA_FAIL EVENT on target_type=%d, target_id=0x%x,
 rquest_id=0x%x",
 t_pRtcmEvt->target_type, t_pRtcmEvt->target_id, t_pRtcmEvt->request_ID);
 break;
 default:
 break;
 }
}

9.9.6 Dynamically Configuring a Trunk

This feature enables the user to perform the following dynamic configuration operations at run
time:

• Setting the Line Type and Coding for a Trunk

• Specifying the Protocol for a Trunk

Note: The gc_SetConfigData() function can be used on a board device to perform these operations.
However, it is the application's responsibility to handle all active calls on the trunk, and terminate
them if necessary. In addition, the gc_ResetLineDev() function may be issued on all channels
(time slots) prior to issuing gc_SetConfigData() to prevent incoming calls. If there are any active
calls present at the time the gc_ResetLineDev() or gc_SetConfigData() function is issued, they
are gracefully terminated internally. The application does not receive GCEV_DISCONNECTED
events when calls are terminated in this manner.

9.9.6.1 Setting the Line Type and Coding for a Trunk

The gc_SetConfigData() function can be used on the board device to reconfigure the line type for
the trunk. The gc_SetConfigData() function uses a GC_PARM_BLK structure that contains the
configuration information. The GC_PARM_BLK is populated using the
gc_util_insert_parm_val() function.

To configure the line type, use the gc_util_insert_parm_val() function with the following
parameter values:

• parm_blkpp = pointer to the address of a valid GC_PARM_BLK structure where the
parameter and value are to be inserted

• setID = CCSET_LINE_CONFIG

• parmID = CCPARM_LINE_TYPE

• data_size = sizeof(int)

• data = One of the following values:

– Enum_LineType_dsx1_D4 - D4 framing type, Superframe (SF)

– Enum_LineType_dsx1_ESF - Extended Superframe (ESF)

– Enum_LineType_dsx1_E1 - E1 standard framing

– Enum_LineType_dsx1_E1_CRC - E1 standard framing and CRC-4

184 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

To configure the coding type, use the gc_util_insert_parm_val() function with the following
parameter values:

• parm_blkpp = pointer to the address of a valid GC_PARM_BLK structure where the
parameter and value are to be inserted

• setID = CCSET_LINE_CONFIG

• parmID = CCPARM_CODING_TYPE

• data_size = sizeof(int)

• data = One of the following values:

– Enum_CodingType_AMI - Alternate Mark Inversion

– Enum_CodingType_B8ZS - Modified AMI used on T1 lines

– Enum_CodingType_HDB3 - High Density Bipolar of Order 3 used on E1 lines

Once the GC_PARM_BLK has been populated with the desired values, the gc_SetConfigData()
function can be issued to perform the configuration. The parameter values for the
gc_SetConfigData() function are as follows:

• target_type = GCTGT_CCLIB_NETIF

• target_id = the trunk line device handle, as obtained from gc_OpenEx() with a devicename
string of “:N_dtiBx:P...”

• target_datap = GC_PARM_BLKP parameter pointer, as constructed by the utility function
gc_util_insert_parm_val()

• time_out = time interval (in seconds) during which the target object must be updated with the
data. If the interval is exceeded, the update request is ignored. This parameter is supported in
synchronous mode only, and it is ignored when set to 0.

• update_cond = GCUPDATE_IMMEDIATE

• request_idp = pointer to the location for storing the request ID

• mode = EV_ASYNC for asynchronous execution or EV_SYNC for synchronous execution

The application receives one of the following events:

• GCEV_SETCONFIGDATA to indicate that the request to dynamically change the line type
and/or coding has been successfully initiated.

• GCEV_SETCONFIGDATA_FAIL to indicate that the request to dynamically change the line
type and/or coding failed. More information is available from the GC_RTCM_EVTDATA
structure associated with the event.

The following code example shows how to dynamically configure a T1 trunk to operate with the
Extended Superframe (ESF) line type and the B8ZS coding type.

GC_PARM_BLKP ParmBlkp = NULL;
long id;

/* configure Line Type = Extended Superframe for a T1 trunk */
gc_util_insert_parm_val(&ParmBlkp, CCSET_LINE_CONFIG, CCPARM_LINE_TYPE, sizeof(int),
 Enum_LineType_dsx1_ESF);

/* configure Coding Type = B8ZS for a T1 trunk */
gc_util_insert_parm_val(&ParmBlkp, CCSET_LINE_CONFIG, CCPARM_CODING_TYPE, sizeof(int),
 Enum_CodingType_B8ZS);

Dialogic® Global Call API Programming Guide — September 2008 185
Dialogic Corporation

Real Time Configuration Management

gc_SetConfigData(GCTGT_CCLIB_NETIF, bdev, ParmBlkp, 0, GCUPDATE_IMMEDIATE, &id, EV_ASYNC);
 gc_util_delete_parm_blk(ParmBlkp);

if (sr_waitevt(-1) >= 0)
{
 METAEVENT meta;
 gc_GetMetaEvent(&meta);
 switch(sr_getevttype())
 {
 case GCEV_SETCONFIGDATA:
 printf("Received event GCEV_SETCONFIGDATA(ReqID=%d) on device %s
 \n",((GC_RTCM_EVTDATA *)(meta.evtdatap))->request_ID,
 ATDV_NAMEP(sr_getevtdev()));
 break;
 case GCEV_SETCONFIGDATA_FAIL:
 printf("Received event GCEV_SETCONFIGDATA_FAIL(ReqID=%d) on device
 %s, Error=%s\n",((GC_RTCM_EVTDATA *)(meta.evtdatap))->request_ID,
 ATDV_NAMEP(sr_getevtdev()),
 ((GC_RTCM_EVTDATA *)(meta.evtdatap))->additional_msg);
 break;
 default:
 printf("Received event 0x%x on device %s\n", sr_getevttype(),
 ATDV_NAMEP(sr_getevtdev()));
 break;
 }
}

9.9.6.2 Specifying the Protocol for a Trunk

The protocol used by a trunk can be dynamically configured after devices have been opened using
the gc_SetConfigData() function. All channels on the affected trunk inherit the newly selected
protocol.

The gc_SetConfigData() function uses a GC_PARM_BLK structure that contains the
configuration information. The GC_PARM_BLK is populated using the
gc_util_insert_parm_ref() function.

To configure the protocol, use the gc_util_insert_parm_ref() function with the following
parameter values:

• parm_blkpp = pointer to the address of a valid GC_PARM_BLK structure where the
parameter and value are to be inserted

• setID = GCSET_PROTOCOL

• parmID = GCPARM_PROTOCOL_NAME

• data_size = strlen(“<protocol_name>”), for example, strlen(“4ESS”)

• data = “<protocol_name>”, for example, “4ESS” (a null-terminated string). For ISDN
protocols, the protocol name must be one of the supported protocols listed in the CONFIG file
that corresponds to the PCD/FCD file that is downloaded. Only protocols of the same line type
can be selected; that is, if the trunk is of line type E1, then only a protocol variant that is valid
for E1 can be selected.

186 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

Once the GC_PARM_BLK has been populated with the desired values, the gc_SetConfigData()
function can be issued to perform the configuration. The parameter values for the
gc_SetConfigData() function are as follows:

• target_type = GCTGT_CCLIB_NETIF

• target_id = the trunk line device handle, as obtained from gc_OpenEx() with a devicename
string of “:N_dtiBx:P...”

• target_datap = GC_PARM_BLKP parameter pointer, as constructed by the utility function
gc_util_insert_parm_ref()

• time_out = time interval (in seconds) during which the target object must be updated with the
data. If the interval is exceeded, the update request is ignored. This parameter is supported in
synchronous mode only, and it is ignored when set to 0.

• update_cond = GCUPDATE_IMMEDIATE

• request_idp = pointer to the location for storing the request ID

• mode = EV_ASYNC for asynchronous execution or EV_SYNC for synchronous execution

The application receives one of the following events:

• GCEV_SETCONFIGDATA to indicate that the request to dynamically change the protocol
has been successfully initiated.

• GCEV_SETCONFIGDATA_FAIL to indicate that the request to change the protocol has
failed. More information is available from the GC_RTCM_EVTDATA structure associated
with the event.

The following code example shows how to dynamically configure a T1 trunk to operate with the
4ESS protocol.

static int MAX_PROTOCOL_LEN=20;
GC_PARM_BLKP ParmBlkp = NULL;
long id;
char protocol_name[]="4ESS";

gc_util_insert_parm_ref(&ParmBlkp, GCSET_PROTOCOL, GCPARM_PROTOCOL_NAME,
strlen(protocol_name)+1, protocol_name);

gc_SetConfigData(GCTGT_CCLIB_NETIF, bdev, ParmBlkp, 0, GCUPDATE_IMMEDIATE, &id, EV_ASYNC);
gc_util_delete_parm_blk(ParmBlkp);

if (sr_waitevt(-1) >= 0)
{
 METAEVENT meta;
 gc_GetMetaEvent(&meta);

 switch(sr_getevttype())
 {
 case GCEV_SETCONFIGDATA:
 printf("Received event GCEV_SETCONFIGDATA(ReqID=%d) on device %s
 \n",((GC_RTCM_EVTDATA *)(meta.evtdatap))->request_ID,
 ATDV_NAMEP(sr_getevtdev()));
 break;
 case GCEV_SETCONFIGDATA_FAIL:
 printf("Received event GCEV_SETCONFIGDATA_FAIL(ReqID=%d) on device
 %s, Error=%s\n",((GC_RTCM_EVTDATA *)(meta.evtdatap))->request_ID,
 ATDV_NAMEP(sr_getevtdev()),
 ((GC_RTCM_EVTDATA *)(meta.evtdatap))->additional_msg);
 break;

Dialogic® Global Call API Programming Guide — September 2008 187
Dialogic Corporation

Real Time Configuration Management

 default:
 printf("Received event 0x%x on device %s\n", sr_getevttype(),
 ATDV_NAMEP(sr_getevtdev()));
 break;
 }
}

9.9.7 Applicable Data Structures, Set IDs, and Parm IDs

The following sections discuss these topics:

• GC_RTCM_EVTDATA

• Data Structures for CAS Signals

• Set IDs and Parm IDs

9.9.7.1 GC_RTCM_EVTDATA

The GC_RTCM_EVTDATA structure, defined in the gclib.h file, is generally associated with
Global Call RTCM events (namely, GCEV_SETCONFIGDATA,
GCEV_SETCONFIGDATA_FAIL, GCEV_GETCONFIGDATA, and
GCEV_GETCONFIGDATA_FAIL).

The target_type and target_id fields enable applications to identify the DM3 protocol object
associated with an event. Note that the line_dev and crn accessed by the evtdatap pointer in the
METAEVENT structure are zero for DM3 protocol target objects.

The following shows the GC_RTCM_EVTDATA data structure with the target_type and target_id
fields shown in bold text:

typedef struct{
 long request_ID; /* The RTCM request ID */
 int gc_result; /* GC result value for this event */
 int cclib_result; /* CCLib result value for this event */
 int cclib_ID; /* CCLib ID for the result */
 char * additional_msg; /* Additional message for this event */
 GC_PARM_BLKP retrieved_parmblkp; /* Retrieved GC_PARM_BLK -- */
 /* used for gc_GetConfigData() in */
 /* asynchronous mode */
 int target_type; /* Target type */
 long target_id; /* Target ID */
} GC_RTCM_EVTDATA, *GC_RTCM_EVTDATAP;

9.9.7.2 Data Structures for CAS Signals

Data structures that are used by the gc_SetConfigData() and gc_GetConfigData() functions to
retrieve/modify the CAS signal definitions associated with a PDK protocol are defined in the
gclib.h file:

• CAS Transition Signal

• CAS Pulse Signal

• CAS Train Signal

188 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

As a convenience that enables the user to enter a new CAS signal definition and retrieve the current
CAS signal definition, the fields in these data structures strictly follow the same sequence as the
CAS signal definitions in the PDK CDP file. Since CAS signal defines in the CDP file apply to
both Dialogic® DM3 and Dialogic® Springware Boards, some time parameters may not be
supported on DM3 Boards. Also, ASCII characters are used to represent signal bit codes in the data
structures. For example, “11xx” represents signal bits 11xx (where x represents “don't care”). All
time parameters have units in milliseconds with a resolution of 4 milliseconds.

The following define for the size of the CAS signal bits string is common to all three structures
following:

#define GCVAL_CAS_CODE_SIZE 0x5 /* The size of CAS Signal code in string */

CAS Transition Signal

/* Data structure for CAS Transition signal */
typedef struct {
 char PreTransCode[GCVAL_CAS_CODE_SIZE]; /* ABCD pre-transition code */
 char PostTransCode[GCVAL_CAS_CODE_SIZE]; /* ABCD post-transition code */
 unsigned short PreTransInterval; /* The minimum time for the duration
 of the pre-transition (in msec)*/
 unsigned short PostTransInterval; /* The minimum time for the duration
 of the post-transition (in msec)*/
 unsigned short PreTransIntervalNom; /* The nominal time for the duration
 of the pre-transition (in msec).
 Ignored in DM3: always 0 */
 unsigned short PostTransIntervalNom; /* The nominal time for the duration
 of the post-transition (in msec).
 Ignored in DM3: always 0 */
} GC_CASPROT_TRANS;

CAS Pulse Signal

/* Data structure of CAS Pulse signal */
typedef struct {
 char OffPulseCode[GCVAL_CAS_CODE_SIZE]; /* ABCD pulse off code */
 char OnPulseCode[GCVAL_CAS_CODE_SIZE]; /* ABCD pulse on code */
 unsigned short PrePulseInterval; /* The minimum time for the duration
 of the pre-pulse (in msec) */
 unsigned short PostPulseInterval; /* The minimum time for the duration
 of the post-pulse (in msec) */
 unsigned short PrePulseIntervalNom; /* The nominal time for the duration
 of the pre-pulse. Ignored in DM3: always 0 */
 unsigned short PostPulseIntervalNom; /* The nominal time for the duration
 of the post-pulse (in msec). Ignored in DM3: always 0 */
 unsigned short PulseIntervalMin; /* The minimum time for the duration
 of the pulse interval (in msec) */
 unsigned short PulseIntervalNom; /* The nominal time for the duration
 of the pulse interval (in msec) */
 unsigned short PulseIntervalMax; /* The maximum time for the duration
 of the pulse interval (in msec) */
} GC_CASPROT_PULSE;

CAS Train Signal

/* Data structure of CAS Train signal */
typedef struct {
 char OffPulseCode[GCVAL_CAS_CODE_SIZE]; /* ABCD pulse off code */
 char OnPulseCode[GCVAL_CAS_CODE_SIZE]; /* ABCD pulse on code */
 unsigned short PreTrainInterval; /* The minimum time for the duration

Dialogic® Global Call API Programming Guide — September 2008 189
Dialogic Corporation

Real Time Configuration Management

 of the pre-train (in msec) */
 unsigned short PostTrainInterval; /* The minimum time for the duration
 of the post-train (in msec) */
 unsigned short PreTrainIntervalNom; /* The nominal time for the duration
 of the pre-train. Ignored in DM3: always 0 */
 unsigned short PostTrainIntervalNom; /* The nominal time for the duration
 of the post-train (in msec). Ignored in DM3: always 0 */
 unsigned short PulseIntervalMin; /* The minimum time for the duration
 of the pulse interval (in msec)*/
 unsigned short PulseIntervalNom; /* The nominal time for the duration
 of the pulse interval (in msec)*/
 unsigned short PulseIntervalMax; /* The maximum time for the duration
 of the pulse interval (in msec)*/
 unsigned short InterPulseIntervalMin; /* The minimum time for the duration
 of inter-pulse interval (in msec)*/
 unsigned short InterPulseIntervalNom; /* The nominal time for the duration
 of inter-pulse interval (in msec)*/
 unsigned short InterPulseIntervalMax; /* The maximum time for the duration
 of inter-pulse interval (in msec) */
} GC_CASPROT_TRAIN;

CAS Signal Type Defines

The following value types for CAS signal parameter are defined in the gccfgparm.h file to
represent the CAS Transition, CAS Pulse, and CAS Train types, respectively. These defines are
used by the gc_QueryConfigData() for the value type of CAS signal.

 GC_VALUE_CAS_TRANS = 0x10, /* CAS Transition data struture ==> GC_CASPROT_TRANS */
 GC_VALUE_CAS_PULSE = 0x11, /* CAS Pulse data struture ==> GC_CASPROT_PULSE */
 GC_VALUE_CAS_TRAIN = 0x12, /* CAS Train data struture ==> GC_CASPROT_TRAIN */

Other value types (for example, integer, string, long, etc.) are also defined in the gccfgparm.h file.

9.9.7.3 Set IDs and Parm IDs

This feature uses the following Set IDs and Parm IDs:

9.9.8 Restrictions and Limitations

The following restrictions and limitations apply:

• This feature supports the redefinition of CAS signals and the setting of CDP variable values
for a specific protocol variant, which will affect all channels running that protocol variant. It
does not, however, support the getting or setting of protocol parameters on an individual

Set ID Parm IDs

CCSET_LINE_CONFIG CCPARM_LINE_TYPE

CCPARM_CODING_TYPE

GCSET_PROTOCOL GCPARM_PROTOCOL_ID

GCPARM_PROTOCOL_NAME

PRSET_CAS_SIGNAL
(defined in dm3cc_parm.h)

The parm ID is dynamically generated.

PRSET_TSC_VARIABLE
(defined in dm3cc_parm.h)

The parm ID is dynamically generated.

190 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Real Time Configuration Management

channel basis. Getting and setting CAS signal definitions or CDP variable values is only
supported for PDK protocols.

• Prior to changing parameters of a protocol, all channels running the protocol should be in the
Idle state (that is, there should be no call activity on the channels). Once the parameter value
change is complete, reset the channels running the affected protocol.

• At least one time slot has to remain open while setting or retrieving CAS signal definitions or
CDP variable values.

• Using this feature to set/get multiple CAS signal definitions in a single GC_PARM_BLK via
the gc_SetConfigData() and gc_GetConfigData() functions, or mixing CAS signal
definitions with other parameters, is not supported. Only one CAS signal definition (and no
other parameters) can be included in any one function call.

• The API for this feature can be used only after the board firmware has been downloaded.

• Configuration files are not updated with changes made using this API for this feature. The API
does not save or store the changes made; and if the firmware is re-downloaded, all information
configured using this API will be lost. It is the API user’s responsibility to save or store the
changed configuration information and reset via the API in the event of a re-download.

• This feature supports the redefinition of CAS Transition, CAS Pulse, and CAS Train signals
only. In addition, this feature does not support the changing of the CAS signal type during
redefinition. For example, the CAS_WINKRCV signal type cannot be changed from a CAS
Pulse to a CAS Transition.

• Error checking and checking the validity of parameters passed through this API are the
responsibilities of the API user.

• The list of parameters that need to be modified must be managed at run time. Parameter
updates are sent to the firmware one at a time, as opposed to the parallel procedures used to set
parameters at firmware download time. The list of parameters that need modification should be
kept to a minimum.

• This feature supports the setting and retrieval of multiple CDP variable values in a single API
call, but it does not support the mixing of CDP variables with other parameters when setting or
retrieving values.

• To set the values of the CDP_IN_ANI_Enabled and CDP_OUT_ANI_Enabled parameters in
the pdk_us_mf_io.cdp file, the user is required to remove feature_ANI from the
SYS_FEATURES section of the CDP file. Similarly, to set the values of the
CDP_IN_DNIS_Enabled and CDP_OUT_DNIS_Enabled parameters, the user is required to
remove feature_DNIS from the SYS_FEATURES section.

Dialogic® Global Call API Programming Guide — September 2008 191
Dialogic Corporation

1010.Handling Service Requests

This chapter describes the Dialogic® Global Call API Service Request (GCSR) feature. Topics
include the following:

• Service Request Overview. 191

• Service Request Components . 192

• Service Request Data. 193

• General Service Request Scenario. 193

• ISDN BRI-Specific Service Request Scenario . 194

10.1 Service Request Overview

The Dialogic® Global Call API Service Request (GCSR) feature is an optional feature that allows a
device to send a request to another remote device for some kind of service. Some examples of the
services that may be requested are:

• Device registration

• Channel setup

• Call setup

• Information requests

• Operational requests

In general, this feature is useful when a Global Call application needs to make a request between
two Global Call devices across a network.

Some examples of typical uses are:

• Registration requests

• Administration requests (for example, logon requests)

• Bandwidth requests

• Capabilities requests (for example, determining remote-side capabilities)

• Preference requests (for example, informing remote-side of setup preferences)

Since this is a generic feature, the capabilities in a given technology are largely dependent on the
support provided by the call control libraries for that technology. Refer to the appropriate
Dialogic® Global Call Technology Guide for more information.

Figure 41 shows the architecture of the GCSR feature.

192 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Handling Service Requests

Figure 41. Service Request Architecture

10.2 Service Request Components

Using the Dialogic® Global Call API Service Request (GCSR) feature involves the following API
components:

gc_ReqService()
function to make a request

gc_RespService()
function to respond to a request

GCEV_SERVREQ
an event indicating that a request has been received

GCEV_SERVRESP
an event indicating a response has been received; therefore, this is also a termination event for
the gc_ReqService() function

GCEV_SERVRESPCMPLT
termination event for the gc_RespService() function

When using the GCSR, all requests and responses are to be made on specific device targets (that is,
LDID, CRN); and, depending on the type of request and the call control library used, additional

CUSTOMER APPLICATION
Operation and Configuration
Subsystem

Global Call
Operation and
Configuration
Subsystem

GCSR

CALL
CONTROL
LIBRARY

Network
Interface

Remote
Device

Dialogic® Global Call API Programming Guide — September 2008 193
Dialogic Corporation

Handling Service Requests

restrictions may apply. See the appropriate Dialogic® Global Call Technology Guide for more
information.

10.3 Service Request Data

All information transmitted and received using the Service Request feature is done using the
generic GC_PARM_BLK data structure. Three parameter IDs, under the GCSET_SERVREQ set
ID, are used for all requests and responses:

PARM_SERVICEID (unsigned long)
the service identification number. This is a number assigned by the call control library to
distinguish between requests. It is used as follows:

• When making a request (gc_ReqService()), ignore this field.

• When generating a response (gc_RespService()), this value needs to be set to the same
ID as the ID of the received request (through GCEV_SERVREQ).

• When receiving a response (through GCEV_SERVRESP), this field should match the ID
assigned when the request was first made.

PARM_REQTYPE (int)
the type of request made. Refer to the appropriate Dialogic® Global Call Technology Guide for
the actual values.

PARM_ACK (short)
the acknowledgment field. It is used as follows:

• When used for a service request, a value of GC_ACK indicates that a response is required,
and a value of GC_NACK indicates that no response is necessary.

• When used for a service response, a value of GC_ACK indicates a confirmation, and a
value of GC_NACK indicates a rejection.

Depending on the call control library used, additional parameters may also be used.

Before the Service Request feature can be used, a GC_PARM_BLK data structure must be set up to
handle the data associated with the service request. Each request or response is assigned a Service
ID by the call control library and should be used by the application when generating responses as
well as to distinguish among different requests and responses. See the GC_PARM_BLK data
structure and utility functions (gc_util_xxx) in the Dialogic® Global Call API Library Reference
for more information on setting up the data structure for the Service Request feature.

Notes: 1. When using the gc_ReqService() function, PARM_REQTYPE and PARM_ACK are
mandatory parameters of the GC_PARM_BLK pointed to by the reqdatap function parameter.

2. When using the gc_RespService() function, PARM_SERVICEID is a mandatory parameter of
the GC_PARM_BLK pointed to by the datap function parameter.

10.4 General Service Request Scenario

Figure 42 is a general scenario of how the Service Request feature operates in asynchronous mode.
Since the Service Request feature is generic, the nature of each request and response depends on

194 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Handling Service Requests

the underlying call control library. Refer to the appropriate Dialogic® Global Call Technology
Guide for more information.

Figure 42. Generic Service Request Operation

10.5 ISDN BRI-Specific Service Request Scenario

In ISDN BRI, the request for device registration is automatically generated when the device is
initialized, so this feature is essentially used in a response-only manner by the network side. See
Figure 43.

Requesting
Application

Requesting
Device

Responding
Application

gc_ReqService ()

Responding
Device

GCEV_SERVICEREQ*

Generate Request

Notification
of Request

Process Request

gc_RespService ()

Generate Response

Notification
of Response

GCEV_SERVICERESP*

Note: * Indicates that the extdatap of each of these events contains a pointer to
 GC_PARM_BLK, which in turn contains all the information associated with
 the corresponding request or response. The pointer is only valid until the
 next call to gc_GetMetaEvent () or gc_GetMetaEventEx ().

Dialogic® Global Call API Programming Guide — September 2008 195
Dialogic Corporation

Handling Service Requests

Figure 43. ISDN BRI Service Request Operation

User
Application

User
Device

Network
Application

gc_OpenEx ()

Network
Device

GCEV_SERVICEREQ

Process

Generate Response

GCEV_SERVICERESP

GCEV_UNBLOCKED

gc_SetConfigData ()

Send SPID

Verify SPID

gc_RespService ()

196 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Handling Service Requests

Dialogic® Global Call API Programming Guide — September 2008 197
Dialogic Corporation

1111.Using Dialogic® Global Call API to
Implement Call Transfer

The information in this chapter is technology independent; however, it describes a method of call
transfer that is supported by IP technology only. For more specific information about
implementing call transfer on IP technology, see the Dialogic® Global Call IP Technology Guide.
The topics discussed in this chapter are:

• Introduction to Call Transfer . 197

• Call Transfer State Machine . 198

11.1 Introduction to Call Transfer

The Dialogic® Global Call API supports the following call transfer methods:

• Blind Call Transfer

• Supervised Call Transfer

11.1.1 Blind Call Transfer

In a blind call transfer scenario (Figure 44), party A transfers the call between A and B (Call 1) to a
call between party B and C without consulting party C. Party A places the primary call (Call 1) on
hold, directly dials the party C address, and then disconnects from Call 1 before the second call
(Transferred-to call, Call 2 - between B and C) is established. Party A may also request party B to
dial party C's address and then disconnect from Call 1 after Call 2 between B and C has been
established.

Before call transfer can occur, party A must be in a call with party B (Primary Call, Call 1).

Note: In the scenario shown in Figure 44, party B initiates the transferred call to party C.

198 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Using Dialogic® Global Call API to Implement Call Transfer

Figure 44. Blind Call Transfer (Unsupervised Transfer)

11.1.2 Supervised Call Transfer

In a supervised call transfer scenario (Figure 45), party A transfers the call between A and B (Call
1) to a call between party B and C after establishing a consultation call with party C. In this call,
party A informs Transferred-to party C of the intent of transferring party B to party C and collects
the feedback and rerouting address from party C. Party A requests that party B dial party C’s
address (rerouting address) and then disconnect from Calls 1 and 2 after Call 3 (Transferred-to call)
between party B and party C has been established.

Before call transfer can occur, party A must be in a call with party B (Primary Call, Call 1).

Figure 45. Supervised Call Transfer

11.2 Call Transfer State Machine

Table 18 lists the Dialogic® Global Call API call states for blind call transfer.

Transferred_
To_Party (C)

Transferring
Party (A)

Transferred
Party (B)

Call 1

Before Blind Transfer

Transferring
Party (A)

Transferred
Party (B)

Transferred_
To_Party (C)

Call 1

Call 2

Transferring
Party (A)

Transferred
Party (B)

Call 2

Blind Call Transfer After Blind Transfer

Transferred_
To_Party (C)

Transferred_
To_Party (C)

Transferring
Party (A)

Transferred
Party (B)

Call 1

Before Transfer

Transferring
Party (A)

Transferred
Party (B)

Transferred_
To_Party (C)

Call 1

Call 2

Transferring
Party (A)

Transferred
Party (B)

Call 3

Call 2 Setup Call 3 Setup

Transferred_
To_Party (C)

Call 1

Call 2

Transferred
Party (B)

Call 3

After Call Transfer

Transferred_
To_Party (C)

Transferring
Party (A)

Dialogic® Global Call API Programming Guide — September 2008 199
Dialogic Corporation

Using Dialogic® Global Call API to Implement Call Transfer

Note: The state diagrams in Figure 46 and Figure 47 apply to the case where party B initiates the
transferred call to party C (see Figure 44), and not to the case where party A places the primary call
with party B on hold and then calls party C.

Table 18. Dialogic® Global Call API Call Transfer States

Call State Description Trigger Event

GCST_INVOKE_XFER_
ACCEPTED

The transfer request has been
accepted by the remote party

GCEV_INVOKE_XFER_ACCEPTED
(unsolicited event)

GCST_INVOKE_XFER The invoke transfer is successful (i.e.,
the transfer is completed at transferring
party)

GCEV_INVOKE_XFER
(termination event for the
gc_InvokeXfer() function)

GCST_REQ_XFER Receive a transfer request and wait for
accept/reject

GCEV_ REQ_XFER
(unsolicited event)

GCST_ACCEPT_XFER Accepted the transfer request GCEV_ACCEPT_XFER
(termination event for the
gc_AcceptXfer() function)

GCST_XFER_CMPLT Transfer is completed at transferred
party

GCEV_XFER_CMPLT
(unsolicited event)

GCST_REQ_INIT_XFER Receive a transfer initiate request and
wait for accept/reject

GCEV_ REQ_INIT_XFER
(unsolicited event)

200 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Using Dialogic® Global Call API to Implement Call Transfer

Figure 46. Call State Model for Blind Call Transfer at Party A

GCST_NULL

GCST_IDLE

GCST_INVOKE_XFER

GCEV_DISCONNECTED
(XFER CMPLT)

GCEV_RELEASECALL

Transferring Party
(Party A)

GCEV_INVOKE_
XFER_FAIL

GCST_INVOKE_
XFER_ACCEPTED

GCST_CONNECTED or
GCST_HOLD

GCEV_INVOKE_XFER

GCEV_INVOKE_XFER

GCEV_INVOKE_XFER_ACCEPTED

GCEV_INVOKE_XFER_REJ
GCEV_INVOKE_XFER_FAIL

GCST_DISCONNECTED

GCEV_DROPCALL

Dialogic® Global Call API Programming Guide — September 2008 201
Dialogic Corporation

Using Dialogic® Global Call API to Implement Call Transfer

Figure 47. Call State Model for Blind Call Transfer at Party B

GCST_CONNECTED or
GCST_HELD

GCST_NULL

GCST_IDLE

GCST_REQ_XFER

GCEV_REQ_XFER

GCEV_DROPCALL

GCEV_RELEASECALL

Transferred Party

(Party B)

GCEV_REJ_XFER
GCEV_ACCEPT_XFER_FAIL
GCEV_REJ_XFER_FAIL

GCST_DISCONNECTED

GCEV_XFER_CMPLT

gc_MakeCall(CRN2)

GCST_ALERTING

GCST_CONNECTED

GCST_PROCEEDING

GCEV_PROCEEDING

GCEV_CONNECTED

GCST_DIALING

GCEV_ALERTING

GCST_ACCEPT_XFER

GCEV_ACCEPT_XFER

GCST_XFER_CMPLT

GCEV_DISCONNECTED
(XFER CMPLT)

GCEV_XFER_FAIL

Transferred-to Party (Party C) - the rerouting call is same as new incoming call, except
GCEV_DETECTGED / GCEV_OFFERED with a flag indicating a transfer call

202 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Using Dialogic® Global Call API to Implement Call Transfer

Note: The state diagrams in Figure 48, Figure 49, and Figure 50 apply to the supervised transfer case
represented in Figure 45.

Figure 48. Call State Model for Supervised Transfer at Party A

GCEV_INVOKE_
XFER_FAIL

GCST_INVOKE_XFER

GCST_INVOKE_
XFER_ACCEPTED

GCST_CONNECTED or
GCST_HOLD

GCEV_INVOKE_XFER

GCEV_INVOKE_XFER

Transferring Party (Party A)

GCST_NULL

GCST_IDLE

GCST_CONNECTED or
GCST_HOLD

GCEV_INIT_XFER or
GCEV_INIT_XFER_FAIL
GCEV_INIT_XFER_REJ

GCEV_DROPCALL

GCEV_RELEASECALL

GCST_DISCONNECTED

GCST_NULL

GCEV_RELEASE

Call 1 Call 2

GCST_IDLE

GCEV_DISCONNECTED
(XFER CMPLT)

GCEV_INVOKE_XFER_ACCEPTED

GCEV_INVOKE_XFER_REJ
GCEV_INVOKE_XFER_FAIL

GCST_DISCONNECTED

GCEV_DROPCALL

GCEV_DISCONNECTED
(XFER CMPLT)

Dialogic® Global Call API Programming Guide — September 2008 203
Dialogic Corporation

Using Dialogic® Global Call API to Implement Call Transfer

Figure 49. Call State Model for Supervised Transfer at Party B

GCST_XFER_CMPLT

GCST_ACCEPT_XFER

GCST_CONNECTED or
GCST_HELD

GCEV_REQ_XFER

GCEV_XFER_CMPLT

Call 1

GCEV_XFER_FAIL

GCST_DISCONNECTED

GCEV_DISCONNECTED

GCST_NULL

GCEV_RELEASE

GCST_IDLE

GCEV_DROPCALL

GCST_DIALING

GCST_CONNECTED

GCST_ALERTING

GCEV_ALERTING

GCEV_CONNECTED

GCST_PROCEEDING

GCEV_PROCEEDING

Call 3

GCST_REQ_XFER

GCEV_ACCEPT_XFER

 GCEV_ACCEPT_XFER_FAIL
GCEV_REJ_XFER

GCEV_REJ_XFER_FAIL

gc_MakeCall(C3)

Transferred Party (Party B)

204 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Using Dialogic® Global Call API to Implement Call Transfer

Figure 50. Call State Model for Supervised Transfer at Party C

GCST_CONNECTED or
GCST_HELD

GCST_REQ_INIT_XFER

GCEV_REQ_INIT_XFER

GCEV_ACCEPT_INIT_XFER or
GCEV_REJ_INIT_XFER or

GCEV_REJ_INIT_XFER_FAIL or
GCEV_ACCEPT_INIT_XFER_FAIL

Call 2

GCST_IDLE

GCST_CONNECTED

GCST_OFFERED

GCEV_OFFERED

GCEV_ANSWERED

GCEV_DISCONNECTED

Call 3

GCST_DISCONNECTED

GCST_NULL

GCEV_RELEASE

GCST_IDLE

GCEV_DROPCALL

GCEV_DISCONNECTED
(XFER CMPLT)

GCST_DISCONNECTED

Transferred-To Party (Party C)

GCST_DETECTED

GCEV_DETECTED

Dialogic® Global Call API Programming Guide — September 2008 205
Dialogic Corporation

1212.Building Applications

This chapter provides general information for building applications that use the Dialogic® Global
Call API. For additional technology-specific information, refer to the appropriate Dialogic® Global
Call Technology Guide. Topics included in this chapter are:

• Compiling and Linking in Linux . 205

• Compiling and Linking in Windows® . 206

12.1 Compiling and Linking in Linux

An application that uses the Dialogic® Global Call API must include references to the Global Call
header files and must include the appropriate library files. This information is provided the
following topics:

• Include Files

• Required Libraries

• Variables for Compiling and Linking Commands

12.1.1 Include Files

The following header files contain equates that are required for each application that uses the
Dialogic® Global Call API library:

gclib.h
primary Global Call header file

gcerr.h
header file containing equates for error codes

Note: See the appropriate Dialogic® Global Call Technology Guide for technology-specific header files.

12.1.2 Required Libraries

The following library files must be linked to the application in the following order:

libgc.so
the primary Dialogic® Global Call API shared object file. Linking this file is mandatory. Use
the -lgc argument to the system linker.

libdxxx.so
the primary Dialogic® Voice API shared object file. This library is only required if the
application uses Voice library functions directly, for example, dx_play().

Note: When compiling an application, you must list Dialogic® libraries first before all other libraries,
such as operation system libraries.

206 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Building Applications

12.1.3 Variables for Compiling and Linking Commands

The following variables provide a standardized way of referencing the directories that contain
header files and shared objects:

INTEL_DIALOGIC_INC
Variable that points to the directory where header files are stored

INTEL_DIALOGIC_LIB
Variable that points to the directory where shared library files are stored

These variables are automatically set at login and should be used in compiling and linking
commands. The following is an example of a compiling and linking command that uses these
variables:
cc -I${INTEL_DIALOGIC_INC} -o myapp myapp.c -L${INTEL_DIALOGIC_LIB} -lgc

Note: Developers should consider using these variables when compiling and linking applications. The
names of the variables will remain constant, but the values may change over time.

12.2 Compiling and Linking in Windows®

An application that uses the Dialogic® Global Call API must include references to the Global Call
header files and must include the appropriate library files. In addition, when using specific
protocols, other libraries and protocol modules are dynamically loaded. The Windows® libraries
may be linked and run using Microsoft® Visual C++® (version 6.x or later). The following topics
provide more information:

• Include Files

• Required Libraries

• Variables for Compiling and Linking Commands

• Dynamically Loaded Libraries

• Dynamically Loaded Protocol Modules

12.2.1 Include Files

The following header files contain equates that are required for each application that uses the
Dialogic® Global Call API library:

gclib.h
primary Global Call header file

gcerr.h
header file containing equates for error codes

Note: See the appropriate Dialogic® Global Call Technology Guide for technology-specific header files.

Dialogic® Global Call API Programming Guide — September 2008 207
Dialogic Corporation

Building Applications

12.2.2 Required Libraries

The following library files must be linked to the application:

libgc.lib
the primary Dialogic® Global Call API library file.

libdxxmt.lib
the primary Dialogic® Voice API library file. This library is only required if the application
uses Voice library functions directly, for example, dx_play().

12.2.3 Variables for Compiling and Linking Commands

The following variables provide a standardized way of referencing the directories that contain
header files and shared objects:

INTEL_DIALOGIC_INC
Variable that points to the directory where header files are stored

INTEL_DIALOGIC_LIB
Variable that points to the directory where shared library files are stored

These variables are automatically set at login and should be used in compiling and linking
commands. The following is an example of a compiling and linking command that uses these
variables:
cc -I${INTEL_DIALOGIC_INC} -o myapp myapp.c -L${INTEL_DIALOGIC_LIB} -lgc

Note: Developers should consider using these variables when compiling and linking applications. The
names of the variables will remain constant, but the values may change over time.

12.2.4 Dynamically Loaded Libraries

When the gc_Start() function is called, the configured library or libraries that are used by the
application are dynamically loaded. The libraries include:

pdkrt.dll
PDKRT call control library

libgcr2.dll
ICAPI call control library

libgcis.dll
ISDN call control library

libdm3cc.dll
DM3 call control library

libgcs7.dll
SS7 call control library

libgch3r.dll
IP call control library

208 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Building Applications

libgcipm.dll
IP call control library

If a configured library cannot be found, the Dialogic® Global Call API enters an error message in
the event logger.

Note: The PDKRT and ICAPI call control libraries can be concurrently linked and loaded.

12.2.5 Dynamically Loaded Protocol Modules

When an application uses ICAPI or PDK protocols, protocol libraries and modules are also
dynamically loaded when requested by an application, typically when a device that uses the
protocol is opened using gc_OpenEx().

Caution: For Dialogic® System Release 5.1 or later, you must use protocols from the Global Call Protocol
Package that contains shared library versions of all protocols for each operating system that the
Dialogic® Global Call API supports. Previously released static protocol modules are not supported
by System Release 5.1 or later.

For PDK protocols (E1 CAS or T1 robbed bit), protocol modules [protocol state information (.psi)
files] are also dynamically loaded when required by the application. These protocol modules use
the following naming format:

• ccl_cc_tt_ffff_d.psi or cc_tt_d.psi

where: ccl=call control library, cc=country code, tt=protocol type, ffff=special hardware or
software feature, d=direction indicator

For ICAPI protocols (E1 CAS or T1 robbed bit), protocol modules are dynamically loaded when
required by the application. These protocol modules use the following naming format:

• ccl_cc_tt_ffff_d.dll or ccl_cc_tt_d.dll

where: ccl=call control library, cc=country code, tt=protocol type, ffff=special hardware or
software feature, d=direction indicator

See the Dialogic® Global Call E1/T1 CAS/R2 Technology Guide for more information.

See the Dialogic® Global Call ISDN Technology Guide for more information about using ISDN
protocols.

Dialogic® Global Call API Programming Guide — September 2008 209
Dialogic Corporation

1313.Debugging

This chapter provides references to other documents that provide detailed information for
debugging applications that use the Dialogic® Global Call API.

For general Global Call debugging information, see the “Runtime Trace Facility (RTF) Reference”
chapter in the Dialogic® System Software Diagnostics Guide.

For debugging information that is technology- or protocol-specific, see the following:

• Dialogic® Global Call Analog Technology Guide

• Dialogic® Global Call E1/T1 CAS/R2 Technology Guide

• Dialogic® Global Call IP Technology Guide

• Dialogic® Global Call ISDN Technology Guide

• Dialogic® Global Call SS7 Technology Guide

210 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

Debugging

Dialogic® Global Call API Programming Guide — September 2008 211
Dialogic Corporation

Glossary

ANI: Automatic Number Identification. A service that identifies the phone number of the calling party.

ANI-on-Demand: A feature of AT&T ISDN service whereby the user can automatically request caller ID from
the network even when caller ID does not exist.

ASCII: American Standard Code for Information Interchange.

ASO: Alarm Source Object. The source of an alarm, for example, either a physical alarm or a logical alarm.

asynchronous function: A function that returns immediately to the application and returns a
completion/termination at some future time. An asynchronous function allows the current thread to continue
processing while the function is running.

asynchronous mode: Classification for functions that operate without blocking other functions.

available library: A call control library configured to be recognized by the Dialogic® Global Call API and
successfully started by the Global Call gc_Start() function.

B channel: A bearer channel used in ISDN interfaces. This circuit-switched, digital channel can carry voice or
data at 64,000 bits/second in either direction.

BC: See bearer capability.

bearer capability: A field in an ISDN call setup message that specifies the speed at which data can be
transmitted over an ISDN line.

blind dialing: Dialing without waiting for dial tone detection.

blind transfer: See unsupervised transfer.

blocked: The condition of a line device initially when it is opened and after a GCEV_BLOCKED event has been
received on that line device. When a line device is in a blocked condition, the application can only perform a limited
subset of the Dialogic® Global Call API commands on that line device. Call related functions may not be called,
with the exception of gc_DropCall(), gc_ReleaseCall() and gc_ReleaseCallEx(). Non-call related functions are
generally allowed. See also unblocked below.

blocking alarm: An alarm that causes a GCEV_BLOCKED event to be sent to the application. When the
application receives a GCEV_BLOCKED event, the line device is blocked, which means only a limited subset of
the Dialogic® Global Call API commands are available to the application.

call analysis: When using Dialogic® DM3 Boards, a term that describes the activity that occurs after a call is
connected (post-connect), such as voice detection and answering machine detection. Compare to call progress.

call control: The process of setting up a call and call tear-down.

212 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

call control library: A collection of routines that interact directly with a network interface. These libraries are
used by the Dialogic® Global Call API functions to implement network specific commands and communications.

call progress: When using Dialogic® DM3 Boards, a term that describes the activity that occurs before a call is
connected (pre-connect), such as busy or ringback. Compare to call analysis.

call progress analysis: When using Dialogic® Springware Boards, a term that describes the process used to
automatically determine what happens after an outgoing call is dialed. When using Dialogic® DM3 Boards, a
collective term for call progress and call analysis. See also call progress and call analysis.

call progress tone: A tone sent from the PTT to tell the calling party the progress of the call (for example, a dial
tone, busy tone, or ringback tone). The PTTs can provide additional tones, such as a confirmation tone, splash tone,
or a reminder tone, to indicate a feature in use.

Call Reference Number (CRN): A number assigned by the Dialogic® Global Call API library to identify a call
on a specific line device.

call states: Call processing stages in the application.

CAS: Channel Associated Signaling. Signaling protocols in which the signaling bits for each time slot are in a
fixed location with respect to the framing. In E1 systems, time slot 16 is dedicated to signaling for all 30 voice
channels (time slots). The time slot the signaling corresponds to is determined by the frame number within the
multiframe and whether it's the high or low nibble of time slot 16. In T1 systems, the signaling is also referred to as
robbed-bit signaling, where the least significant bit of each time slot is used for the signaling bits during specific
frames.

CDP: Country Dependent Parameter; see the Dialogic® Global Call Country Dependent Parameters (CDP) for
PDK Protocols Configuration Guide for details.

CEPT: Conference des Administrations Europeenes des Postes et Telecommunications. A collection of groups
that set European telecommunications standards.

compelled signaling: Transmission of next signal is held until acknowledgment of the receipt of the previous
signal is received at the transmitting end.

configured library: A call control library supported by the Dialogic® Global Call API.

congestion: Flow of user-to-user data.

CRN: See Call Reference Number.

CRV: Call Reference Value.

D channel: The data channel in an ISDN interface that carries control signals and customer call data in packets.
This information is used to control transmission of data on associated B channels.

data structure: Programming term for a data element consisting of fields, where each field may have a different
definition and length. A group of data structure elements usually share a common purpose or functionality.

DDI string: A string of Direct Dialing In digits that identifies a called number.

Dialogic® Global Call API Programming Guide — September 2008 213
Dialogic Corporation

device: Any computer peripheral or component that is controlled through a software device driver.

device channel: A Dialogic® data path that processes one incoming or outgoing call at a time. Compare to time
slot.

device handle: Numerical reference to a device, obtained when a device is opened. This handle is used for all
operations on that device. See also Call Reference Number.

digital channel: Designates a bi-directional transfer of data for a single time slot of a T1 or E1 digital frame
between a T1/E1 device that connects to the digital service and the SCbus. Digitized information from the T1/E1
device is sent to the SCbus over the digital transmit channel. The response to this call is sent from the SCbus to the
T1/E1 device over the digital receive (listen) channel.

DLL (Dynamically Linked Library): In Windows® environments, a sequence of instructions, dynamically
linked at run time and loaded into memory when they are needed. These libraries can be shared by several
processes.

DNIS: Dialed Number Identification Service. A feature of 800 lines that allows a system with multiple 800 lines in
its queue to access the 800 number the caller dialed. Also provides caller party number information.

DPNSS: Digital Private Network Signaling System. An E1 primary rate protocol used in Europe to pass calls
transparently between PBXs.

driver: A software module that provides a defined interface between a program and the hardware.

drop and insert: 1. A process where the information carried by a transmission system is demodulated (dropped)
at an intermediate point, and different information is entered (inserted) for subsequent transmission. 2. A
configuration in which two network interface resources are connected via an internal bus, such as the SCbus, to
connect calls from one network interface to the other. A call from one network interface can be dropped to a
resource, such as a voice resource, for processing. In return, the resource can insert signaling and audio and
retransmit this new bit stream via the internal bus and connect the call to a different channel. Drop and insert
configurations provide the ability to access an operator or another call.

E1: Another name given to the CEPT digital telephony format devised by the CCITT that carries data at the rate of
2.048 Mbps (DS1 level).

E1 CAS: E1 line using Channel Associated Signaling. In CAS, one of the 32 channels (time slot 16) is dedicated
to signaling for all of the 30 voice channels.

en-bloc mode: Mode where the setup message contains all the information required by the network to process
the call, such as the called party address information.

event: An unsolicited communication from a hardware device to an operating system, application, or driver.
Events are generally attention-getting messages, allowing a process to know when a task is complete or when an
external event occurs.

extended asynchronous: In Windows® environments, the extended asynchronous (multithread asynchronous)
model extends the features of the asynchronous model with the extended functions, sr_WaitEvtEx() and
gc_GetMetaEventEx(). These extended functions allow an application to run different threads, wherein each
thread handles the events from a different device.

214 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

failed library: A call control library configured to be recognized by the Dialogic® Global Call API and which did
not successfully start when the Global Call gc_Start() function was issued.

glare: When an inbound call arrives while an outbound call is in the process of being set up, a glare condition
occurs. Unless the protocol specifies otherwise, the incoming call takes precedence over the outbound call.

Global Call: A unified, high-level Dialogic® API that shields developers from the low-level signaling protocol
details that differ in countries around the world. Allows the same application to work on multiple signaling systems
worldwide (for example, ISDN, T1 robbed bit, R2/MF, pulsed, SS7, IP H.323, etc.).

IA5: International Alphabet No. 5 (defined by CCITT).

ICAPI: The Interface Control Application Programming Interface. Provides a device-specific telephony and
signaling interface for the Dialogic® Global Call API to control Dialogic® network interface boards using T1
robbed bit or E1 CAS signaling schemes. Also the name of a call control library configured for Global Call. This
library cannot be accessed directly.

IE: See Information Element.

Information Element (IE): Used by the ISDN (Integrated Services Digital Network) protocol to transfer
information. Each IE transfers information in a standard format defined by CCITT standard Q.931.

Integrated Services Digital Network: See ISDN.

ISDN: Integrated Services Digital Network. An internationally accepted standard for voice, data, and signaling
that provides users with integrated services using digital encoding at the user-network interface. Also the name of a
call control library configured for the Dialogic® Global Call API.

LAPB: Link Access Protocol Balanced.

LAPD: Link Access Protocol on the D channel.

line device identifier (LDID): A unique number that is assigned to a specific device or device group by the
Dialogic® Global Call API.

main thread: See thread.

multitasking functions: Functions that allow the software to perform concurrent operations. After being
initiated, multitasking functions return control to the application so that during the time it takes the function to
complete, the application program can perform other operations, such as servicing a call on another line device.

multithread asynchronous: See extended asynchronous.

NCAS: Non-Call Associated Signaling. Allows users to communicate by user-to-user signaling without setting up
a circuit-switched connection (this signal does not occupy B channel bandwidth). A temporary signaling
connection is established and cleared in a manner similar to the control of a circuit-switch connection. Since NCAS
calls are not associated with any B channel, applications receive and transmit NCAS calls on the D channel line
device. Once the NCAS connection is established, the application can transmit user-to-user messages using the
CRN associated with the NCAS call.

Dialogic® Global Call API Programming Guide — September 2008 215
Dialogic Corporation

Network Facility Associated Signal: See NFAS.

network handle: Dialogic® Standard Runtime Library (SRL) device handle associated with a network interface
board or time slot; equivalent to the device handle returned from the network library's dt_open() function.

network resource: Any device or group of devices that interface with the telephone network. Network resources
include analog (loop start, ground start, etc.) and digital network interface devices. Network resources are assigned
to telephone lines (calls) on a dedicated or a shared resource basis. Network resources control the signal handling
required to manage incoming calls from the network and the outgoing calls to the network.

NFAS: Network Facility Associated Signaling. Allows multiple spans to be controlled by a single D channel
subaddressing.

Non-Call Associated Signal: See NCAS.

NSI: Network Specific Information message.

NT1: Network Terminator. The connector at either end of an ISDN link that converts the two-wire ISDN circuit
interface to four wires.

null: A state in which no call is assigned to the device (line or time slot).

overlap viewing: A condition of waiting for additional information about the called party number (destination
number).

PDKRT: The Dialogic® Protocol Development Kit Run Time call control library. Provides a device-specific
telephony and signaling interface for the Dialogic® Global Call API to control Dialogic® network interface boards
using T1 robbed bit or E1 CAS signaling schemes. A call control library configured for Global Call.

preemptive multitasking: A form of multitasking wherein the execution of one thread or process can be
suspended by the operating system to allow another thread to execute. Linux and Windows® both use preemptive
multitasking to support multiple simultaneous processes.

PRI: Primary Rate Interface. An interface at the ends of high-volume trunks linking CO facilities and ISDN
network switches to each other. A T1 ISDN PRI transmits 23 B channels (voice/data channels) and one D channel
(signaling channel), each at 64 Kbps. An E1 ISDN PRI transmits 30 B channels, one D channel, and one framing
channel (synchronization channel), each at 64 Kbps. A standard digital telecommunication service, available in
many countries and most of the United States, that allows the transfer of voice and data over T1 or E1 trunks.

Primary Rate Interface: See PRI.

primary thread: See thread.

process (Linux): The execution of a program. In Linux, process incorporates the concept of an execution
environment that includes the contents of memory, register values, name of the current directory, status of files, and
various other information. Each process is a distinct entity, able to execute and terminate independently of all other
processes. A process can be forked/split into a parent process and a child process with separate but initially
identical, parent's permissions, working directory, root directory, open files, text, data, stack segments, etc. Each
child process executes independently of its parent process, although the parent process may explicitly wait for the
termination of one or more child processes.

216 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

process (Windows®): 1. An executing application comprising a private virtual address space, code, data, and
other operating system resources, such as files, pipes, and synchronization objects that are visible to the process. A
process contains one or more threads that run in the context of the process. 2. The address space where the sequence
of executable instructions is loaded. A process in Windows consists of blocks of code in memory loaded from
executables and dynamically linked libraries (DLLs). Each process has its own 4 GB address space and owns
resources such as threads, files, and dynamically allocated memory. Code in the address space for a process is
executed by a thread. Each process comprises at least one thread, which is the component that Windows actually
schedules for execution. When an application is launched, Windows starts a process and a primary thread. Windows
processes: 1) are implemented as objects and accessed using object services; 2) can have multiple threads executing
in their address space; 3) have built-in synchronization for both process objects and thread objects. Unlike other
operating systems, Windows does not use a parent/child relationship with the processes it creates.

Process or System Scheduler for Linux: Controls the execution of each process or program. This Scheduler
enables processes to spawn (create) child processes that are necessary for the operation of the parent process. By
default, the Scheduler uses a time-sharing policy that adjusts process priorities dynamically to provide good
response time for interactive processes and good throughput for CPU-intensive processes. The Scheduler also
enables an application to specify the exact order in which processes run. The Scheduler maintains process priorities
based on configuration parameters, process behavior, and user requests.

PSI: Protocol State Information file used by the PDKRT to define a specific protocol.

PSTN: See Public Switched Telephone Network.

Public Switched Telephone Network (PSTN): Refers to the worldwide telephone network accessible to all
those with either a telephone or access privileges.

QSIG: A protocol for Integrated Services Digital Network (ISDN) communications based on the Q.931 standard.
It is used for signaling between digital private branch exchanges (PBXs). QSIG is employed in voice over IP (VoIP)
networks, virtual private networks (VPNs), and high-speed, multi-application networks.

R2 MFC: An international signaling system that is used in Europe, South America, and the Far East to permit the
transmission of numerical and other information relating to the called and calling subscribers' lines.

receive: Accepting or taking digitized information transmitted by another device.

result value: Describes the reason for an event.

RFU: Reserved for future use.

SCbus: Signal Computing bus. Third generation Time Division Multiplexed (TDM) resource sharing bus that
allows information to be transmitted and received among resources over multiple data lines. A hardwired
connection between Switch Handlers on SCbus-based products for transmitting information over 1024 time slots to
all devices connected to the SCbus.

SCSA: Signal Computing System Architecture. An open-hardware and software standard architecture that
incorporates virtually every other standard in PC-based switching. SCSA describes the components and specifies
the interfaces for a signal processing system. SCSA describes all elements of the system architecture from the
electrical characteristics of the SCbus and SCxbus to the high level device programming interfaces. All signaling is
out-of-band. In addition, SCSA offers time slot bundling and allows for scalability.

Dialogic® Global Call API Programming Guide — September 2008 217
Dialogic Corporation

SDP: Site Dependent Parameter file used by the PDKRT. Protocol configuration parameters that are user
modifible for a specific installation site.

SIT: See Special Information Tone.

Special Information Tone (SIT): Detection of a SIT sequence indicates an operator intercept or other problem
in completing a call.

SRL (Standard Runtime Library): A Dialogic® library that contains C functions common to all Dialogic®
devices, a data structure to support application development, and a common interface for event handling.

supervised transfer: A call transfer in which the person transferring the call stays on the line, announces the
call, and consults with the party to whom the call is being transferred before the transfer is completed.

synchronization objects: Windows® executive objects used to synchronize the execution of one or more
threads. These objects allow one thread to wait for the completion of another thread and enable the completed
thread to signal its completion to any waiting thread(s). Threads in Windows are scheduled according to their
priority level (31 levels are available) and run until one of the following occurs: 1) its maximum allocated execution
time is exceeded; 2) a higher priority thread marked as waiting becomes waiting; or 3) the running thread decides to
wait for an event or an object.

synchronous function: Functions that block an application or process until the required task is successfully
completed or a failed/error message is returned.

synchronous mode: Programming characterized by functions that run uninterrupted to completion.
Synchronous functions block an application or process until the required task is successfully completed or a
failed/error message is returned.

T1: A digital line transmitting at 1.544 Mbps over 2 pairs of twisted wires. Designed to handle a minimum of 24
voice conversations or channels, each conversation digitized at 64 Kbps. T1 is a digital transmission standard in
North America.

T1 robbed bit: A T1 digital line using robbed bit signaling. In T1 robbed bit signaling systems, typically the least
significant bit in every sixth frame of each of the 24 time slots is used for carrying dialing and control information.
The signaling combinations are typically limited to ringing, hang up, wink, and pulse digit dialing.

TBCT: See Two B Channel Transfer.

TEI: Terminal Endpoint Identifier. (See Recommendations Q.920 and Q.921.)

termination condition: An event that causes a process to stop.

termination events: Dialogic® Global Call API events returned to the application to terminate function calls.

thread (Windows®): The executable instructions stored in the address space of a process that the operating
system actually executes. All processes have at least one thread, but no thread belongs to more than one process. A
multithreaded process has more than one thread that are executed seemingly simultaneously. When the last thread
finishes its task, then the process terminates. The main thread is also referred to as a primary thread; both main and
primary thread refer to the first thread started in a process. A thread of execution is just a synonym for thread.

218 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

time slot: In a digital telephony environment, a normally continuous and individual communication (for example,
someone speaking on a telephone) is 1) digitized, 2) broken up into pieces consisting of a fixed number of bits,
3) combined with pieces of other individual communications in a regularly repeating, timed sequence
(multiplexed), and 4) transmitted serially over a single telephone line. The process happens at such a fast rate that,
once the pieces are sorted out and put back together again at the receiving end, the speech is normal and continuous.
Each individual pieced-together communication is called a time slot.

tone resource: Same as a voice resource except that a tone resource cannot perform voice store and forward
functions.

transmit: Sending or broadcasting of digitized information by a device.

Two B Channel Transfer (TBCT): Connects two independent B Channel calls at an ISDN PRI user's interface
to each other at the PBX or CO. The ISDN PRI user sends a Facility message to the PBX or CO requesting that the
two B Channel calls be connected. If accepted, the user is released from the calls.

unblocked: The condition of a line device such that an application can perform any valid function on the line
device, for example, wait for a call or make a call. By default, when a line device is first opened, it is in the blocked
condition. The application receives a GCEV_UNBLOCKED event to indicate that the line device has moved to an
unblocked condition from a previously blocked condition. See also blocked.

unsolicited event: An event that occurs without prompting (for example, GCEV_BLOCKED,
GCEV_UNBLOCKED, etc.).

unsupervised transfer: A transfer in which the call is transferred without any consultation or announcement by
the person transferring the call.

USID: User Service Identifier.

UUI: User-to-User Information. Proprietary messages sent to the remote system during call establishment.

Vari-A-Bill: Service bureaus can vary the billing rate of a 900 call at any time during the call. Callers select
services from a voice-automated menu and each service can be individually priced.

voice channel: Designates a bi-directional transfer of data for a single call between a voice device processing
that call and the SCbus. Digitized voice from the T1/E1 interface device is transmitted over the SCbus to the voice
receive (listen) channel for processing by the voice device. The voice device sends the response to the call over the
voice transmit channel to an SCbus time slot that transmits this response to the T1/E1 interface device.

voice handle: Dialogic® Standard Runtime Library (SRL) device handle associated with a voice channel;
equivalent to the device handle returned from the Dialogic® Voice API library's dx_open() function.

voice resource: See voice channel.

Dialogic® Global Call API Programming Guide — September 2008 219

Dialogic Corporation

Index

A
abandoned calls 52

GCRV_CALLABANDONED 52

alarm flow 141

alarm handling 135

alarm source objects 135

ALARM_SOURCE_ID_NETWORK_ID
usage 140

alarms 135
blocking 137
GCEV_UNBLOCKED event 137
non-blocking 137
recovery 137

analog links 124

application-handler thread, Windows 99

ASO 135

asynchronous callback model, Linux 32

asynchronous mode
Windows 34

asynchronous mode programming
Linux 31

asynchronous models
Linux 32
Windows 34

asynchronous polled model
Linux 32

asynchronous programming model
Windows 34

asynchronous with SRL callback 99

asynchronous with SRL callback model
Windows 34, 35

asynchronous with SRL callback thread 33

asynchronous with Win32 synchronization
Windows 34

asynchronous with Win32 synchronization model 35

asynchronous with Windows® callback
Windows 34

asynchronous with Windows® callback model
Windows 35

automatic error recovery 102

B
blind call transfer 92

blocking alarms 137
time slot level 138
trunk level 138

blocking condition 97

C
call disconnect 83

call reference number
multiple 120

call state
transitions summary 59

call states
asynchronous termination summary 66
synchronous call termination transitions 83

call teardown 65

call termination 65
asynchronous 67
synchronous mode 83

call transfer
supervised 90
unsupervised 92

Configuration
fixed/flexible routing 108

coupled resources 108

CRN
support for multiple on DM3 boards 120

CRN (Call Reference Number) 24
lifespan 24
released CRN and late events 97

D
data structures

GC_RTCM_EVTDATA 156
METAEVENT 97

device handles
extracting 131

device threads 32

Disconnected state
transition 67, 85
transition when alarm occurs 137

drop and insert applications
programming tips 106

dt_getevt(_) 33

220 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

dx_getevt(_) 33

E
error events

GCEV_TASKFAIL 101

error handling 101
automatic error recovery 102
fatal errors 102

event data in metaevent 97

event handlers 33, 98, 99
event handler thread 99
Linux 98
SRL event handler thread 35
Windows 35

event mask 87

event notification, asynchronous mode programming 34

event processing thread, SRL 33

event processing, Windows 99

events
CRN in METAEVENT structure 97
LDID association 24
non Global Call events 97
reason code 97
retrieving 97

exiting an application
programming tips 105

extended asynchronous programming model, Windows 34,
36

F
fatal errors 102

fax device handle
fixed routing 118

Features
call control 18
operation, administration and maintenance 19

firmware 152

firmware module 152

Fixed routing
configuration 108

Flexible routing
configuration 108

fx_open()
fixed routing 118

G
gc_BlindTransfer(_) 90

gc_Close(_)
LDID becomes invalid 24
programming tips 105

gc_CompleteTransfer(_) 90

gc_DropCall(_) 67, 85
programming tips 105

gc_GetMetaEvent(_) 32, 33, 34, 35, 97, 99

gc_GetMetaEventEx(_) 36, 97
caution re. Multiple threads 36
programming tips 106

gc_GetResourceH(_)
programming tips 105

gc_HoldCall(_) 88

gc_OpenEx(_)
LDID assignment 24

gc_ReleaseCallEx(_) 24, 67, 85
late events 97
programming tips 105

gc_ResultInfo(_) 97, 101, 138

gc_RetrieveCall(_) 88

GC_RTCM_EVTDATA data structure 156

gc_SetConfigData(_) 87

gc_SetupTransfer(_) 90

gc_SwapHold(_) 90

gc_WaitCall(_) 138
GCEV_UNBLOCKED event 138

gcerr.h header 101

GCEV_ALARM 138

GCEV_ALARM events 139

GCEV_BLOCKED 137

GCEV_BLOCKED event
Alarm On condition 138

GCEV_DISCONNECTED event
asynchronous call termination 67
sent when alarm occurs 137
synchronous call termination 85

GCEV_ERROR
error indicating event 98

GCEV_FATALERROR event 102

GCEV_GETCONFIGDATA_FAIL event 101

GCEV_SETCONFIGDATA event 101

GCEV_TASKFAIL
error indicating event 98

GCEV_TASKFAIL event 101

GCEV_UNBLOCKED 137

GCEV_UNBLOCKED event
Alarm Off condition 138
with gc_WaitCall(_) pending 138

GCEV_UNBLOCKED event for alarm recovery 137

Dialogic® Global Call API Programming Guide — September 2008 221

Dialogic Corporation

glare
handling for DM3 boards 120

Global Call
API overview 20
architecture 20
call control library overview 21
major components 17
product overview 17

I
ID number

library 23

identifying a call using CRN 24

Idle state
transition to 67, 85

independent resources 108

information retrieval via metaevents 97

internal SRL event handler thread 99

L
late events 97

LDID (Line Device Identifier) 24
in METAEVENT structure 97

libraries
ASCII name string 23
ID numbers 23

Line Device Identifier (LDID) 24

Linux event handlers 98

M
message/eventing

Windows 34

METAEVENT data structure 34, 36
caution re. Multiple threads 36
retrieval of LDID 24

metaevents 97

multiple threads
caution re. gc_GetMetaEventEx(_) 36

N
network ASO ID

usage 140

non-blocking alarms 137

non-signal callback model
Linux 98

non-signal mode, Linux asynchronous callback model 32

Null state 69
call termination 67, 85

P
polled model 32

porting applications
fixed routing

DM3 boards 119

programming tips
avoiding performance deterioration in Linux 106
choosing a programming model in Windows 106
drop and insert applications 106
general 105
SRL-related 106

protocol handler 95

protocol operation
errors 101

R
resource sharing 24

resources, coupled/independent 108

ringback tone 124

Routing configuration (fixed/flexible)
overview 108

S
setting up a call 59, 69

signal handlers 87

signal mode, Linux asynchronous callback model 32

sr_enbhdlr(_) 35, 99

sr_getboardcnt() 119

SR_MODELTYPE 35, 36, 99

SR_MODELTYPE value 99

sr_NotifyEvt(_) 35

sr_setparm(_) 33, 99

SR_STASYNC 99

sr_waitevt(_) 32, 34, 35, 36, 99

sr_waitevtEx(_) 36

SRL
event handler thread 35, 36

SRL callback thread 33

SRL events 32, 34
handling 98

SRL handler thread 35
Windows 35

SRL handler thread, Windows 99

222 Dialogic® Global Call API Programming Guide — September 2008
Dialogic Corporation

SRL-related programming tips 106

state
accepted 46, 71
alerting 61, 81
connected 46, 71
dialing 61
null 47, 61, 72, 81
offered 47, 72

state diagrams
asynchronous call tear-down 66

states, call establishment 59, 69

supervised call transfer 90

synchronous mode 31, 32

synchronous programming model
Windows 32

synchronous threads 33

T
TDM bus

application considerations 121

terminating a call
asynchronous mode 67
synchronous mode 85

termination event 32

termination events 34

thread execution 32

tips
drop and insert applications 106
general programming 105
SRL-related 106

transfer
supervised 90
unsupervised 90, 92

U
unsolicited event

synchronous mode 87

unsolicited events
alarm events 137
processing in synchronous model 33

unsupervised call transfer 92

user-specified message 35

W
Windows® message handling 35

	Contents
	Figures
	Tables
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Product Description
	1.1 Dialogic® Global Call API Software Overview
	1.2 Dialogic® Global Call API Feature Categories
	1.2.1 Call Control Features
	1.2.2 Operation, Administration, and Maintenance Features

	1.3 Dialogic® Global Call API Architecture
	1.3.1 Overview
	1.3.2 Dialogic® Global Call API

	1.4 Call Control Libraries
	1.4.1 Starting Call Control Libraries
	1.4.2 Call Control Library States

	1.5 Dialogic® Global Call API Object Identifiers
	1.5.1 Line Device Identifier
	1.5.2 Call Reference Number
	1.5.3 Object Identifiers and Resource Sharing Across Processes
	1.5.4 Target Objects

	1.6 Dialogic® Global Call API versus Dialogic® DTI API
	1.7 Dialogic® Global Call API versus Dialogic® ISDN API

	2. Programming Models
	2.1 Programming Models Overview
	2.2 Synchronous Mode Programming for Linux
	2.3 Asynchronous Mode Programming for Linux
	2.4 Synchronous Mode Programming for Windows®
	2.5 Asynchronous Mode Programming for Windows®
	2.5.1 Asynchronous Model Overview
	2.5.2 Asynchronous Model with Event Handlers
	2.5.3 Asynchronous with Windows® Callback Model
	2.5.4 Asynchronous with Win32® Synchronization Model
	2.5.5 Extended Asynchronous Programming Model

	3. Call State Models
	3.1 Call State Model Overview
	3.2 Basic Call Model
	3.2.1 Basic Call States at the Inbound Interface
	3.2.2 Basic Call States at the Outbound Interface
	3.2.3 Basic Call States for Call Termination

	3.3 Basic Call Model Configuration Options
	3.3.1 Call State Configuration
	3.3.2 Call State Event Configuration
	3.3.3 Call Acknowledgment Configuration
	3.3.4 Call Proceeding Configuration
	3.3.5 Minimum Destination Information Configuration
	3.3.6 Maximum Destination Information Configuration

	3.4 Basic Call Control in Asynchronous Mode
	3.4.1 Inbound Calls in Asynchronous Mode
	3.4.2 Outbound Calls in Asynchronous Mode
	3.4.3 Call Termination in Asynchronous Mode

	3.5 Basic Call Control in Synchronous Mode
	3.5.1 Inbound Calls in Synchronous Mode
	3.5.2 Outbound Calls in Synchronous Mode
	3.5.3 Call Termination in Synchronous Mode
	3.5.4 Handling Unsolicited Events

	3.6 Advanced Call Control with Call Hold and Transfer
	3.6.1 Advanced Call State Model Overview
	3.6.2 Advanced Call States for Hold and Transfer
	3.6.3 Call Hold
	3.6.4 Call Transfer

	4. Event Handling
	4.1 Overview of Event Handling
	4.2 Event Categories
	4.3 Blocked and Unblocked Event Handling
	4.4 Event Retrieval
	4.5 Events Indicating Errors
	4.6 Masking Events
	4.7 Event Handlers
	4.7.1 Event Handlers for Linux
	4.7.2 Event Handlers for Windows®

	5. Error Handling
	5.1 Error Handling Overview
	5.2 Fatal Error Recovery

	6. Application Development Guidelines
	6.1 General Programming Tips
	6.2 Tips for Programming Drop and Insert Applications
	6.3 Using Dialogic® Global Call API with Dialogic® DM3 Boards
	6.3.1 Routing Configurations Overview
	6.3.2 Working with Flexible Routing Configurations
	6.3.3 Working with Fixed Routing Configurations
	6.3.4 Handling Multiple Call Objects Per Channel in a Glare Condition
	6.3.5 TDM Bus Time Slot Considerations

	7. Call Control
	7.1 Call Analysis when Using Dialogic® Springware Boards
	7.2 Call Progress Analysis when Using Dialogic® DM3 Boards
	7.2.1 Call Progress Analysis Definition
	7.2.2 Configuring Default Call Progress Analysis Parameters
	7.2.3 Configuring Call Progress Analysis on a Per Call Basis
	7.2.4 Setting Call Analysis Attributes on a Per Call Basis
	7.2.5 Configuring Call Progress Analysis on a Per Channel Basis
	7.2.6 Setting Call Analysis Attributes on a Per Channel Basis
	7.2.7 Customizing Call Progress Tones on a Per Board Basis
	7.2.8 Customizing Nonstandard Special Information Tones

	7.3 Resource Routing
	7.4 Feature Transparency and Extension
	7.4.1 Feature Transparency and Extension Overview
	7.4.2 Technology-Specific Feature Access
	7.4.3 Technology-Specific User Information

	8. Alarm Handling
	8.1 Alarm Handling Overview
	8.1.1 Alarm Management System Components

	8.2 Operation and Configuration of GCAMS
	8.2.1 Generation of Events for Blocking Alarms
	8.2.2 Generation of Alarm Events
	8.2.3 Configuration of Alarm Properties and Characteristics
	8.2.4 Starting and Stopping Alarm Transmission
	8.2.5 Retrieving Alarm Data

	8.3 Sample Alarm Scenarios
	8.3.1 Scenario 1: Application Notified of First and Last Blocking Alarm
	8.3.2 Scenario 2: Default Behavior for Alarm Notification
	8.3.3 Scenario 3: Alarm Transmission

	8.4 GCAMS and the DTI API Method of Alarm Handling

	9. Real Time Configuration Management
	9.1 Real Time Configuration Management Overview
	9.2 RTCM Components
	9.2.1 Customer Application Using Dialogic® Global Call API RTCM
	9.2.2 Dialogic® Global Call RTCM
	9.2.3 RTCM Parameters

	9.3 Using RTCM Parameters
	9.3.1 Parameter Dependencies
	9.3.2 Parameter Definitions

	9.4 Getting and Setting Parameter Information
	9.4.1 GC_PARM_BLK Data Structure
	9.4.2 Control Parameters

	9.5 Querying Configuration Data
	9.6 Handling RTCM Errors
	9.7 Configuration Procedure
	9.8 Sample Scenarios Using the RTCM API Functions
	9.8.1 Getting or Setting GCLib Configuration in Synchronous Mode
	9.8.2 Getting or Setting CCLib Configuration in Synchronous Mode
	9.8.3 Getting or Setting Protocol Configuration in Synchronous Mode
	9.8.4 Getting or Setting Line Device Configuration in Synchronous Mode
	9.8.5 Setting Line Device Configuration in Asynchronous Mode

	9.9 Dynamically Retrieving and Modifying Selected Protocol Parameters when Using Dialogic® DM3 Boards
	9.9.1 Prerequisites for Feature Use
	9.9.2 Retrieving a Protocol ID
	9.9.3 Retrieving or Modifying CAS Signal Definitions
	9.9.4 Retrieving or Modifying CDP Variable Values
	9.9.5 Sample Code for Getting and Setting CAS Signal Definitions and CDP Variable Values
	9.9.6 Dynamically Configuring a Trunk
	9.9.7 Applicable Data Structures, Set IDs, and Parm IDs
	9.9.8 Restrictions and Limitations

	10. Handling Service Requests
	10.1 Service Request Overview
	10.2 Service Request Components
	10.3 Service Request Data
	10.4 General Service Request Scenario
	10.5 ISDN BRI-Specific Service Request Scenario

	11. Using Dialogic® Global Call API to Implement Call Transfer
	11.1 Introduction to Call Transfer
	11.1.1 Blind Call Transfer
	11.1.2 Supervised Call Transfer

	11.2 Call Transfer State Machine

	12. Building Applications
	12.1 Compiling and Linking in Linux
	12.1.1 Include Files
	12.1.2 Required Libraries
	12.1.3 Variables for Compiling and Linking Commands

	12.2 Compiling and Linking in Windows®
	12.2.1 Include Files
	12.2.2 Required Libraries
	12.2.3 Variables for Compiling and Linking Commands
	12.2.4 Dynamically Loaded Libraries
	12.2.5 Dynamically Loaded Protocol Modules

	13. Debugging
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

