intgl.

Global Call IP

Technology Guide

January 2004

05-2243-001




INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This Global Call IP Technology Guide as well as the software described in it is furnished under license and may only be used or copied in accordance
with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not
be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without express written consent of Intel Corporation.

Copyright © 2004, Intel Corporation

AnyPoint, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, 1960, iCOMP,
InstantIP, Intel, Intel Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, InteDX2, IntelDX4, IntelSX2, Intel InBusiness, Intel Inside,
Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon,
Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium |l Xeon, Pentium Il Xeon,
Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

* Other names and brands may be claimed as the property of others.
Publication Date: January 2004
Document Number: 05-2243-001

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page at:
http://www.intel.com/buy/wtb/wtb1028.htm

Global Call IP Technology Guide — January 2004


http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/wtb/wtb1028.htm

intel.

Contents

Revision History . . . ... . e e 11
About This Publication .. ........... . . .. .. 13
1 P OVeIVIEW . . ... e e 15
1.1 Introduction to VOIP . . . .. 15
1.2 H. 328 OVerVieW . . ..o e 15
121 H.B23 EnNtities . . ... 16

1.22 H.323 Protocol Stack . ... 17

1.2.83  CO00ECS . .ottt e e 18

1.24 BasicH.323Call Scenario ... ...t e 18

1.2.5 Registration with a Gatekeeper ......... ... .. .. . i 21

1.2.6 H.323 Call ScenarioviaaGateway ............. i, 22

1.3 SIP OVeIVIEW . . . o e 25
1.3.1  Advantages of USiNg SIP .. ... ... . e 25

1.3.2 SIP User Agents and Servers. . . ...t 25

1.3.3 BasicSIP Operation . . ...t e e 26

1.3.4 BasicSIPCall Scenario . .......cou it e 26

1.3.5  SIP MESSAQES. . . . v ittt 26

2 Global Call Architecture for IP . ... ... .. .. . . 29
2.1 Global Call over IP Architecture with a Host-Based Stack ........................ 29
2.2 Architecture Components . ... . e 30
2.2.1 HostApplication . ... . . . e 30

222 Global Call .. ... .. e 31

2.2.3 IP Signaling Call Control Library (IPT CCLib). . ........ .. ... . . .. 31

2.2.4 IP Media Call Control Library (IPMCCLib). .. ....... ..., 31

225 IPMediaResource. . ... ... ... 31

2.3 Device Typesand Usage. . . ... ..ot e 32
2.3.1 Device TypesUsedwith IP. . ... ... ... ... .. . . . . . .. 32

2.3.2 IPTBoardDeviCes . ... ... ... e 33

2.3.3 IPT Network Devices . . ... ... e e 34

2.3.4 IPT Start Parameters . . ... e 35

3 IP Call Scenarios . ......... .. i e e 37
3.1 Basic Call Control Scenarios When Using IP Technology. . ....................... 37
3.1.1  Basic Call Setup When UsingH.3280rSIP . ........ ... ... ... ........... 38

3.1.2 Basic Call Teardown When UsingH.3230orSIP. ... ..... .. .. ... .. ... .... 39

4 IP-Specific Operations . . . ... ... .. e 41
4.1 Call Control Configuration . .. ....... ... e e 41
4.2 UsingFastStartand Slow StartSetup . .......... ... i 42
4.3 Setting Call-Related Information . . ... ... . . 43
4.3.1  Setting Call Parameters on a System-Wide Basis ... ..................... 44

4.3.2 Setting Call Parameters on a Per Line DeviceBasis . ... .................. 45

4.3.3 Setting Call ParametersonaPerCallBasis ................. ... oo .. 45

Global Call IP Technology Guide — January 2004 3



u

Contents I nt9| o
4.3.4 Setting Coder Information .. ... ... .. . . . 45

4.3.5 Specifying Nonstandard Data Information When UsingH.323 . .............. 48

4.3.6 Specifying Nonstandard Control Information When UsingH.323 ............. 49

4.3.7 Setting and Retrieving Disconnect Cause or Reason Values . . .............. 50

4.4  Retrieving Current Call-Related Information. . . ......... ... ... ... ... oot 50
441 Retrieving Nonstandard Data From Protocol Messages When Using H.323 ... .53

4.4.2 Example of Retrieving Call-Related Information . .. ....................... 53

4.5  Setting and Retrieving SIP Message Information Fields .......................... 59
4.5.1 Enabling Access to SIP Message Information Fields . ..................... 59

4.5.2 Supported SIP Message Information Fields . ............................ 60

4.5.3 Setting a SIP Message Information Field ............ ... ... ... ... .. .... 60

454 Retrieving a SIP Message Information Field . .. .......... ... ... ... ... .... 61

4.6 Handling DTMFE. . . .o e 62
4.6.1  Specifying DTMF SUppOrt . . . ..ot 63

4.6.2 Getting Notification of DTMF Detection. . .. .......... .. i, 65

4.6.3 Generating DTMF . . ... . 66

4.7  Getting Media Streaming Status and Negotiated Coder Information .. ............... 66
4.8 Getting Notification of Underlying Protocol State Changes ........................ 67
4.9  Sending ProtoCol MESSages. . . . v vttt e 67
4.9.1 Nonstandard Ull Message (H.245) .. ... . 68

4.9.2 Nonstandard Facility Message (Q.931) . . ... ...t 69

4.9.3 Nonstandard Registration Message . ............ ... 70

4.9.4 Sending Facility, Ull, or Registration Message Scenario. .. ................. 71

4.10 Enabling and Disabling Unsolicited Notification Events . ... ....................... 71
4.11 Configuring the Sending of the ProceedingMessage .............. ... ... ... .. 73
4.12 Enabling and Disabling Tunnelingin H.323 . ... ... .. .. i 73
4.13 Specifying RTP Stream Establishment. ... ...... ... ... ... ... o . 73
4.14 Quality of Service Alarm Management. .. ... i 74
4.14.1 Alarm Source Object Name. . ... ... . i 75
4.14.2 Retrieving the Media DeviceHandle . . ......... .. ... .. ... .. ... .. ... .... 75
4.14.3 Setting QoS Threshold Values . ..... ... ... .. i 75
4.14.4 Retrieving QoS Threshold Values . . . ... ... .. .. 76
4.14.5 Handling QoS Alarms . . .. ..t 77

415 Registration. . . ... . e 79
4.15.1 Performing Registration Operations .. ......... .. ... .. . ... 80
4.15.2 Receiving Notification of Registration . ......... .. ... .. ... .. ... .. ... .... 83
4.15.3 Receiving Nonstandard Registration Messages ... .......... ... .. ... ..... 83
4.15.4 Registration Code Example. . ... ... 84
4.15.5 Deregistration Code Example .. ... 86
4.15.6 Gatekeeper Registration Failure . ... ... .. .. . . . 87

416 Sending and Receiving FaxesoverIP ... ... ... . . . . 88
4.16.1 Specifying T.38 Coder Capability .......... ... .. ... 88
4.16.2 Initiating Fax Transcoding . . . .. ..ottt e 89
4.16.3 Termination of Fax Transcoding . .. ... .. i 89
4.16.4 Getting Notification of Audio-to-Fax Transition . ........... ... .. ... ...... 90
4.16.5 Getting Notification of Fax-to-Audio Transition . ............ ... .. ... ..... 90
4.16.6 Getting Notification of T.38 Status Changes . .. .. ...... ... ... .. ... . ..., 91

417 Using Object Identifiers. . . ... .. . 92
5 Building Global Call IP Applications . . .. ......... ... ... . . . . 95
4 Global Call IP Technology Guide — January 2004



I nu o Contents

5.1 Header Files . . ... e 95
5.2 Required Libraries . . ... ... 95
5.3 Required System Software . .......... .. 95
6 Debugging Global Call IP Applications . ............... ... .. . . . . .. 97
6.1  Debugging OVerview . . . ... i e 97
6.2  Log Files ... e 97
6.2.1  Call Control Library and SIP Stack Debugging. .. ......... ... i .. 98

6.2.2 H.323 Stack Debugging on Linux Operating Systems ... ................. 102

6.2.3 H.323 Stack Debugging . . .. ...t 104

7 IP-Specific Function Information . ... ... ... ... .. ... ... ... . ... . 109
7.1 Global Call Functions Supported by IP .. . ........ ... . . . . . 109
7.2  Global Call Function VariancesforIP .. ... ... . . . . i 116
7.2.1 gc_AcceptCall() VariancesforIP. . ... ... i 116

7.2.2 gc_AnswerCall() VariancesforIP . ... ... .. . i 116

7.2.3 gc_CallAck() VariancesforIP . ... ... . . 117

7.2.4 gc_DropCall() Variances forIP ... ... . 118

7.25 gc_Extension() VariancesforlIP ........ .. .. .. .. 118

7.2.6 gc_GetAlarmParm() VariancesforlIP ... ... .. ... .. .. . . . . 120

7.2.7 gc_GetCallinfo() VariancesforIP . ... .. .. i 120

7.2.8 gc_GetCTInfo() VariancesforIP .. ... ... . . i 121

7.2.9 gc_GetResourceH() VariancesforIP ... ... ... .. .. . . . . . 121
7.2.10 gc_GetXmitSlot() VariancesforIP. ........ .. .. . . i 122

7.2.11 gc_Listen() VariancesforlIP . ... ... . . . 122
7.2.12 gc_MakeCall() Variancesfor IP. .. ... ... 122
7.2.13 gc_OpenEx() VariancesforIP. ... ... .. .. . . i 136
7.2.14 gc_ReleaseCallEx( ) Variancesfor IP. ... ... ... ... . i 137
7.2.15 gc_ReqService() VariancesforIP . ... .. i 138
7.2.16 gc_RespService() VariancesforIP ........ ... ... . . 141
7.2.17 gc_SetAlarmParm() VariancesforIP. ... ... ... .. . . . . . i . 142
7.2.18 gc_SetConfigData() VariancesforIP. . ... .. ... .. .. . . . .. 143
7.2.19 gc_SetUserInfo() VariancesforIP......... .. .. . . i 145
7.2.20 gc_Start() VariancesforIP . ... . 147
7.2.21 gc_UnListen() VariancesforIP . ... ... ... . . 149

7.3 Global Call States Supported by IP . . . ... ... 149
7.4  Global Call Events Supported by IP . . ... .. 150
7.5 Initialization Functions . . . ... ... 151
7.5.1 INIT_IPCCLIB_START_DATA() .ottt e e 151

7.52 INIT_IP_VIRTBOARD( ) . . oottt e e e e e 152

8 IP-Specific Parameter Reference .. .......... ... . . . . . i e 153
8.1  Overview of ParameterUsage. . .. ... . 154
8.2 GCSET_CALL_CONFIG ParameterSet. ....... ... .. .. 161
8.3 IPSET_CALLINFO Parameter Set. . .. ... . e 161
8.4 IPSET_CONFERENCE Parameter Set. . ... ... ... . i 162
8.5 IPSET_CONFIG Parameter Set .. ... ... i e 163
8.6 IPSET_DTMF Parameter Set .. ... . e 163
8.7 IPSET_EXTENSIONEVT _MSK. .. ... e e e 164
8.8 IPSET_IPPROTOCOL_STATE ParameterSet............ ... .. ... ... 165
8.9 IPSET_LOCAL_ALIAS ParameterSet ....... ... .. i 165

Global Call IP Technology Guide — January 2004 5



Contents i nt9| o

10

11

8.10 IPSET_MEDIA_STATE ParameterSet . ........ ... ... . i, 165
8.11 IPSET_MSG_H245 Parameter Set . ............ e 166
8.12 IPSET_MSG_Q931 Parameter Set .. ...t 166
8.13 IPSET_MSG_REGISTRATION ParameterSet .. ....... ... .. . .. 167
8.14 IPSET_NONSTANDARDCONTROL ParameterSet . ............... ... .. ....... 167
8.15 IPSET_NONSTANDARDDATA ParameterSet ............. .. ... 168
8.16 IPSET_PROTOCOL Parameter Set. ... ...... ... . i 168
8.17 IPSET_REGL_INFO Parameter Set. . ....... ... i 168
8.18 IPSET_SIP_MSGINFO Parameter Set. . . ........ .. i i 169
8.19 IPSET_SUPPORTED_PREFIXES ParameterSet............. ... .. ... . oo ... 170
8.20 IPSET_T38_TONEDET ParameterSet . ........... .. .. . i, 170
8.21 IPSET_T38CAPFRAMESTATUS ParameterSet. . ........... ... ..., 171
8.22 |IPSET_T38HDLCFRAMESTATUS ParameterSet ............ ... .. ..., 171
8.23 IPSET_T38INFOFRAMESTATUS ParameterSet.............. ... ............. 171
8.24 |IPSET_TDM_TONEDET Parameter Set ... ...t 173
8.25 IPSET_TRANSACTION Parameter Set. . ... i 173
8.26 IPSET_VENDORINFO Parameter Set. . ....... ... ... i, 173
IP-Specific Data Structures . ... ... ... . ... . . e 175
IP_AUDIO_CAPABILITY — basic audio capability information . ......................... 176
IP_CAPABILITY — basic capability information. .. ........ ... ... ... ... .. . ... 177
IP_CAPABILITY_UNION — parameters for different capability categories . ... ............. 179
IP_DATA_CAPABILITY — basic data capability information . .. .............. .. ... ...... 180
IP_DTMF_DIGITS — DTMF information .. .......... . .. . i 181
IP_H221NONSTANDARD — H.221 nonstandarddata .............. ... ... . ... ... ..... 182
IP_REGISTER_ADDRESS - gatekeeper registration information . ... ................... 183
IP_VIRTBOARD - information about an IPT boarddevice. . ............ ... ... ... ..... 184
IPADDR —local IP address . . . . ..o oo e e e 186
IPCCLIB_START_DATA — IP call control library configuration information ................ 187
IP-Specific Event Cause Codes . . .. ... ... . i e 189
10.1 IP-Specific Error Codes . . ... ...t 189
10.2 Error Codes When Using H.323. . .. ... .. . e 193
10.3 Internal Disconnect Reasons . . . ... . e 197
10.4 Event Cause Codes and Failure Reasons When UsingH.323 . ................... 200
10.5 Failure Response Codes When Using SIP. . ........ ... ... 208
Supplementary Reference Information. . .. ... ... ... ... ... ... . L 213
11.1 References to More Information. .. .......... .. i 213
11.2 Called and Calling Party Address List Format When UsingH.323. ... .............. 213
GlOSSarY . . . . .. e 217
INdeX . . . e 219

Global Call IP Technology Guide — January 2004



i nu o Contents

Figures

Global Call IP Technology Guide — January 2004

Typical H.323 NetworK. . . . ... e 16
H.323 Protocol Stack. . . ... .o e 17
Basic H.323 Network witha Gateway . . ... ... e 23
Basic SIP Call SCeNario. . .. ... 26
Global Call over IP Architecture Using a Host-Based Stack . ... ......... ... ... ... .... 30
Global Call DeVICES . . . .. oo e 33
Configurations for Binding IPT Boards to NIC IP Addresses. . .. .......... ... ..., 34
Basic Call Setup When Using H.323 0rSIP .. .. ... .. e e 38
Basic Call Teardown When UsingH.323 0rSIP ... ... .. ... e 39
0 Sending ProtoCcol MESSAgES . . . ..o vttt e 71



Contents i nt9| o

Tables

ONO O WDN =

Summary of Call-Related Information thatcanbe Set................ ... .. ........... 43
Coders Supported for Intel NetStructure IPTBoards . . ...t ... 46
Coders Supported for Intel NetStructure DM/IPBoards. . .......... ..., 46
Retrievable Call Information . .. ... ... .. .. . e 51
Supported SIP Message Information Fields. .. ........... .. .. . i 60
Summary of DTMF Mode Settings and Behavior. . ........ .. ... i, 64
Summary of Protocol Messages thatCanbe Sent. ......... ... .. .. .. .. .. . ... ... 68
SIP REGISTER Method . . .. ... e e e 80
Summary of Log File Options. . ... ... 97
Levels of Debug for Call Control Library Logging. . . . . ..« oottt i e 100
Levels of Debug Information for SIP Stack Logging. . . ... ... .o 101
Valid Extension IDs for the gc_Extension() Function . ........... ... ... ... ... ..... 119
Configurable Call Parameters When Using H.323 . . ... ... ... ... . .. 123
Configurable Call Parameters When Using SIP. ... ... . . i 125
Registration Information When Using H.323 . ... ... .. .. i 139
Registration Information When Using SIP ... ... ... 141
Parameters Configurable Using gc_SetConfigData() When Using H.323. .. ............. 144
Parameters Configurable Using gc_SetConfigData() When UsingSIP ................. 145
Summary of Parameter IDsand SetIDs . .............. .. 154
GCSET_CALL_CONFIG Parameter Set . .. ... e 161
IPSET_CALLINFO Parameter Set . .. ... e e e 162
IPSET_CONFERENCE Parameter Set . .......... i e e 163
IPSET_CONFIG Parameter Set. . .. ... i e e e e i 163
IPSET_DTMF Parameter Set. . . ... ..o e e e e e 164
IPSET_EXTENSIONEVT_MSK Parameter Set. . ... i 164
IPSET_IPPROTOCOL_STATE Parameter Set . ...t 165
IPSET_LOCAL_ALIAS Parameter Set. . .. ... i e e e 165
IPSET_MEDIA_STATE Parameter Set . ........ .. . e 166
IPSET_MSG_H245 Parameter Set .. ... ... e 166
IPSET_MSG_Q931 Parameter Set .. ... . e 167
IPSET_MSG_REGISTRATION Parameter Set . ......... .. i 167
IPSET_NONSTANDARDCONTROL ParameterSet .......... ... .. i 167
IPSET_NONSTANDARDDATA Parameter Set . ... ... i i 168
IPSET_PROTOCOL Parameter Set. . . ... e e e 168
IPSET_REG_INFO Parameter Set. . . . ... ... e e 169
IPSET_SIP_MSGINFO Parameter Set .. ... ... . . e 169
IPSET_SUPPORTED_PREFIXES Parameter Set. . . ........ .. .. ... i . 170
IPSET_T38_TONEDET Parameter Set . . ... i i 170
IPSET_T38CAPFRAMESTATUS Parameter Set. . . . ... ... i 171
IPSET_T38HDLCFRAMESTATUS Parameter Set . ........... ... 171
IPSET_T38INFOFRAMESTATUS Parameter Set. .............. ... .. oL, 172

Global Call IP Technology Guide — January 2004



i nu o Contents

42 |IPSET_TDM_TONEDET Parameter Set. . .. ... .. 173
43 |PSET_TRANSACTION Parameter Set .. ... e 173
44 |IPSET_VENDORINFO Parameter Set . ... i 174

Global Call IP Technology Guide — January 2004



Contents i nt6| o

10 Global Call IP Technology Guide — January 2004



intel.

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No.

Publication Date

Description of Revisions

05-2243-001

November 2003

Initial version of document under this title.

Much of the information contained in this document was previously published in the
Global Call IP over Host-based Stack Technology User’s Guide, document number
05-1512-004. In addition to the title change and a general reorganization, the
following changes are reflected in this document:

Setting Coder Information section: Added note that applications must explicitly set
the extra.vad field for coders that implicitly support VAD (PTR 30084, PTR
30285). Added explanation of the meaning of GCCAP_dontCare and why the
payload_type is currently not supported. Updated tables to indicate that 1 fpp is
not supported on G.723 and G.729 (PTR 30542). Added note to DM/IP table
that asymmetric coders are not supported (PTR 31212).

Example of Retrieving Call-Related Information: Corrected both example programs
Setting and Retrieving SIP Message Information Fields section: New section

Getting Notification of DTMF Detection section: Removed description of unsupported
IPPARM_DTMF_RFC_2833 parameter

Generating DTMF section: Removed description of IPPARM_DTMF_RFC_2833
parameter

Enabling and Disabling Unsolicited Notification Events section: Removed description
of unsupported EXTENSIONEVT_DTMF_RFC2833 parameter

Registration section: Removed incorrect reference to LRQ/LCF/LRJ RAS messages;
corrected code example for SIP registration; added table to map abstract
registrar registration concepts to SIP REGISTER elements

Gatekeeper Registration Failure: New section

Summary of Parameter IDs and Set IDs Table: Added SIP support for
IPSET_LOCAL_ALIAS

Global Call Functions Supported by IP section: Added bullet to indicate support for
gc_GetCTlInfo( )

gc_GetCTlInfo( ) Variances for IP section: New section

gc_ReqService( ) Variances for IP: Added IPSET_LOCAL_ALIAS for SIP to table 27,
added SIP support for alias

gc_Start( ) Variances for IP: Added note that network adaptor must be enabled
before calling function, and info on how to start with network adaptor diabled

Initialization Functions section: New section to describe two mandatory initialization
functions

Summary of Parameter IDs and Set IDs table: Removed gc_SetConfigData( ) from
the list of functions that can be used to set TOS. Removed description of
unsupported IPPARM_DTMF_RFC_2833 parameter

IPSET_DTMF Parameter Set section: Removed description of unsupported
IPPARM_DTMF_RFC_2833 parameter

IPSET_EXTENSIONEVT_MSK section: Removed description of unsupported
EXTENSIONEVT_DTMF_RFC2833 parameter

IPSET_SIP_MSGINFO Parameter Set section: Added section for parameters used
when setting and retrieving SIP Message Information fields.

Global Call IP Technology Guide — January 2004 11




Revision History I n
®
Document No. Publication Date Description of Revisions
05-2243-001 IPSET_REG_INFO Parameter Set table: Added row for IPPARM_REG_TYPE
(cont.) (H.323 only).

IPCCLIB_START_DATA structure reference page: Updated to refer to the INIT_
IPCCLIB_START_DATA() initialization function.

IPADDR structure reference page: Added note that the only ipv4 field value
supported is IP_CFG_DEFAULT

IP_REGISTER_ADDRESS structure reference page: corrected description of
time_to_live field

IP_RFC2833_EVENT structure reference page: Removed as unsupported

IP_VIRTBOARD structure reference page: Updated to refer to
INIT_IP_VIRTBOARD\) initialization function.

IP-Specific Event Cause Codes chapter: Updated descriptions of the possible event
causes (PTR 31213)

12 Global Call IP Technology Guide — January 2004



intel.

About This Publication

The following topics provide information about this publication.
* Purpose
¢ Intended Audience
* How to Use This Publication

e Related Information

Purpose

This guide is for users of the Global Call API writing applications that use host-based IP H.323 or
SIP technology. The Global Call API provides call control capability and supports IP Media
control capability. This guide provides Global Call IP-specific information only and should be used
in conjunction with the Global Call API Programming Guide and the Global Call API Library
Reference, which describe the generic behavior of the Global Call API.

For information on porting an application developed using System Release 5.x and the embedded
(on board) stack to the host-based stack implementation provided in System Release 6.0 and later,
see the Porting Global Call H.323 Applications from Embedded Stack to Host-Based Stack
Application Note.

Intended Audience

This guide is intended for:

¢ Distributors

¢ System Integrators

Toolkit Developers

Independent Software Vendors (ISVs)
Value Added Resellers (VARs)

Original Equipment Manufacturers (OEMs)

This publication assumes that the audience is familiar with the Windows* and Linux* operating
systems and has experience using the C programming language.

How to Use This Publication

Refer to this guide after you have installed the system software that includes the Global Call
software.

Global Call IP Technology Guide — January 2004 13



[ ]
About This Publication I nt9| o

This guide is divided into the following chapters:

Chapter 1, “IP Overview” gives a overview of VoIP technology and brief introductions to the
H.323 and SIP standards for novice users.

Chapter 2, “Global Call Architecture for IP” describes how Global Call can be used with IP
technology and provides an overview of the architecture.

Chapter 3, “IP Call Scenarios” provides some call scenarios that are specific to IP technology.

Chapter 4, “IP-Specific Operations” describes how to use Global Call to perform IP-specific
operations, such as setting call related information, registering with a registration server, etc.

Chapter 5, “Building Global Call IP Applications” provides guidelines for building Global
Call applications that use IP technology.

Chapter 6, “Debugging Global Call IP Applications” provides information for debugging
Global Call IP applications.

Chapter 7, “IP-Specific Function Information” describes the additional functionality of
specific Global Call functions used with IP technology.

Chapter 8, “IP-Specific Parameter Reference” provides a reference for IP-specific parameter
set IDs and their associated parameter IDs.

Chapter 9, “IP-Specific Data Structures” provides a data structure reference for Global Call
IP-specific data structures.

Chapter 10, “IP-Specific Event Cause Codes” provides descriptions of IP-specific event cause
codes.

Chapter 11, “Supplementary Reference Information” provides supplementary information
including technology references and the formats for called and calling party address lists for
H.323.

A Glossary and an Index can be found at the end of the document.

Related Information

Refer to the following documents and web sites for more information about developing
applications that use the Global Call API:

14

Global Call API Programming Guide
Global Call API Library Reference

Porting Global Call H.323 Applications from Embedded Stack to Host-Based Stack
Application Note

http://developer.intel.com/design/telecom/support/ (for technical support)

http://www.intel.com/network/csp/ (for product information)

Global Call IP Technology Guide — January 2004


http://developer.intel.com/design/telecom/support/
http://www.intel.com/network/csp

intel.

IP Overview 1

1.1

1.2

This chapter provides overview information about the following topics:

e Introduction to VOIP . ... .. . . . 15
© H.323 OVEIVIEW. . .\ttt et e e e 15
© SIP OVEIVIEW . .« o oottt e e e 25

Introduction to VolP

Voice over IP (VoIP) can be described as the ability to make telephone calls and send faxes over IP-
based data networks with a suitable Quality of Service (QoS). The voice information is sent in
digital form using discrete packets rather than via dedicated connections as in the circuit-switched
Public Switch Telephone Network (PSTN).

At the time of writing this document, there are two major international groups defining standards
for VoIP:

e International Telecommunications Union (ITU). The ITU has defined the following:
— H.323 standard, which covers VoIP
— H.248 standard, which covers the Megaco Protocol

¢ Internet Engineering Task Force (IETF). The IETF has defined drafts of the following RFC
(Request for Comment) documents:

— RFC 3261, the Session Initiation Protocol (SIP)
— RFC 27053, the Media Gateway Control Protocol (MGCP)

The H.323 standard was developed in the mid 1990s and is more mature than any of the protocols
mentioned above.

SIP (Session Initiation Protocol) is an emerging protocol for setting up telephony, conferencing,
multimedia, and other types of communication sessions on the Internet.

H.323 Overview

The H.323 specification is an umbrella specification for the implementation of packet-based
multimedia over IP networks that cannot guarantee Quality of Service (QoS). This section
discusses the following topics about H.323:

e H.323 Entities

e H.323 Protocol Stack

¢ Codecs

* Basic H.323 Call Scenario

Global Call IP Technology Guide — January 2004 15



IP Overview

1.2.1

Figure 1.

16

* Registration with a Gatekeeper

e H.323 Call Scenario via a Gateway

H.323 Entities

The H.323 specification defines the entity types in an H.323 network including:

Terminal
An endpoint on an IP network that supports the real-time, two-way communication with
another H.323 entity. A terminal supports multimedia coders/decoders (codecs) and setup and
control signaling.

Gateway
Provides the interface between a packet-based network (for example, an IP network) and a
circuit-switched network (for example, the PSTN). A gateway translates communication
procedures and formats between networks. It handles call setup and teardown and the
compression and packetization of voice information.

Gatekeeper
Manages a collection of H.323 entities in an H.323 zone controlling access to the network for
H.323 terminals, Gateways, and MCUs and providing address translation. A zone can span a
wide geographical area and include multiple networks connected by routers and switches.
Typically there is only one gatekeeper per zone, but there may be an alternate gatekeeper for
backup and load balancing. Typically, endpoints, such as terminals, gateways, and other
gatekeepers register with the gatekeeper.

Multipoint Control Unit (MCU)
An endpoint that support conferences between three or more endpoints. An MCU can be a
stand-alone unit or integrated into a terminal, gateway, or gatekeeper. An MCU consists of:
e Multipoint Controller (MC) — Handles control and signaling for conferencing support.
e Multipoint Processor (MP) — Receives streams from endpoints, processes them, and
returns them to the endpoints in the conference.

Figure 1 shows the entities in a typical H.323 network.

Typical H.323 Network

Terminal Terminal Gateway

LAN

Internet or

Terminal MCU Gatekeeper Router Intranet

Global Call IP Technology Guide — January 2004



intel.

1.2.2

Figure 2.

Global Call IP Technology Guide — January 2004

IP Overview

H.323 Protocol Stack

The H.323 specification is an umbrella specification for the many different protocols that comprise
the overall H.323 protocol stack. Figure 2 shows the H.323 protocol stack.

H.323 Protocol Stack

Application
Audio Codecs
H.245 H.225.0 RTCP G.711, G.723.1,
(Logical (Q.931 H.255.0 (Monitoring G.726, G.729, etc.
Channel Call (RAS) and QoS)

Signaling) Signaling) ~RTP

(Media Streaming)
TCP UDP
IP

The purpose of each protocol is summarized briefly as follows:

H.245
Specifies messages for opening and closing channels for media streams, and other commands,
requests, and indications.

Q.931
Defines signaling for call setup and call teardown.

H.225.0
Specifies messages for call control including signaling, Registration Admission and Status
(RAS), and the packetization and synchronization of media streams.

Real Time Protocol (RTP)
The RTP specification (RFC 18890) is an IETF draft standard that defines the end-to-end
transport of real-time data. RTP does not guarantee quality of service (QoS) on the
transmission. However, it does provides some techniques to aid the transmission of
isochronous data including:

¢ information about the type of data being transmitted
* time stamps
* sequence numbers

Real Time Control Protocol (RTCP)

RTCP is part of the RTP specification (RFC 18890) and defines the end-to-end monitoring of
data delivery and QoS by providing information such as:

e jitter, that is, the variance in the delays introduced in transmitting data over a wire

e average packet loss

The H.245, Q.931, and H.225.0 combination provide the signaling for the establishment of a
connection, the negotiation of the media format that will be transmitted over the connection, and
call teardown at termination. As indicated in Figure 2, the call signaling part of the H.323 protocol
is carried over TCP, since TCP guarantees the in-order delivery of packets to the application.

17



IP Overview

1.2.3

1.2.4

18

intel.

The RTP and RTCP combination is for media handling only. As indicated in Figure 2, the media
part of the H.323 protocol is carried over UDP and therefore there is no guarantee that all packets
will arrive at the destination and be placed in the correct order.

Codecs

RTP and RTCP data is the payload of a User Datagram Protocol (UDP) packet. Analog signals
coming from an endpoint are converted into the payload of UDP packets by codecs
(coders/decoders). The codecs perform compression and decompression on the media streams.

Different types of codecs provide varying sound quality. The bit rate of most narrow-band codecs is
in the range 1.2 kbits/s to 64 kbits/s. The higher the bit rate the better the sound quality. Some of the
most popular codecs are:

G.711
Provides a bit rate of 64 kbits/s.

G.723.1
Provides bit rates of either 5.3 or 6.4 kbits/s. Voice communication using this codec typically
exhibits some form of degradation.

G.729
Provides a bit rate of 8 kbits/s. This codec is very popular for voice over frame relay and for
V.70 voice and data modems.

GSM
Provides a bit rate of 13 kbits/s. This codec is based on a telephony standard defined by the
European Telecommunications Standards Institute (ETSI). The 13 kbits/s bit rate is achieved
with little degradation of voice-grade audio.

Basic H.323 Call Scenario

A simple H.323 call scenario can be described in five phases:
e Call Setup
e Capability Exchange

e (Call Initiation

Data Exchange

Call Termination

Calls between two endpoints can be either direct or routed via a gatekeeper. This scenario describes
a direct connection where each endpoint is a point of entry and exit of a media flow.

The example in this section describes the procedure for placing a call between two endpoints, A
and B, each with an IP address on the same subnet.

Global Call IP Technology Guide — January 2004



In

tel.

Note:

IP Overview

Call Setup

Establishing a call between two endpoints requires two TCP connections between the endpoints:

* One for the call setup (Q.931/H.225 messages)

* One for capability exchange and call control (H.245 messages)

It is also possible to encapsulate H.245 media control messages within Q.931/H.225 signaling
messages. The concept is known as H.245 tunneling. If tunneling is enabled, one less TCP port is
required for incoming connections.

The scenario described in this section assumes a slow start connection procedure. See Section 4.2,
“Using Fast Start and Slow Start Setup”, on page 42 for more information on the difference
between the slow start and fast start connection procedure.

The caller at endpoint A connects to the callee at endpoint B on a well-known port, port 1720, and
sends the call Setup message as defined in the H.225.0 specification. The Setup message includes:

* Message type; in this case, Setup
¢ Bearer capability, which indicates the type of call; for example, audio only
e Called party number and address

¢ Calling party number and address

Protocol Data Unit (PDU), which includes an identifier that indicates which version of
H.225.0 should be used and other information

When endpoint B receives the Setup message, it responds with one of the following messages:

¢ Release Complete
* Alerting
¢ Connect

e Call Proceeding

In this case, endpoint B responds with the Alerting message. Endpoint A must receive the Alerting
message before its setup timer expires. After sending this message, the user at endpoint B must
either accept or refuse the call with a predefined time period. When the user at endpoint B picks up
the call, a Connect message is sent to endpoint A and the next phase of the call scenario, Capability
Exchange, can begin.

Capability Exchange

Call control and capability exchange messages, as defined in the H.245 standard, are sent on a
second TCP connection. Endpoint A opens this connection on a dynamically allocated port at the
endpoint B after receiving the address in one of the following H.225.0 messages:

* Alerting
¢ Call Proceeding

e Connect

Global Call IP Technology Guide — January 2004 19



IP Overview

20

intel.

This connection remains active for the entire duration of the call. The control channel is unique for
each call between endpoints so that several different media streams can be present.

An H.245 TerminalCapabilitySet message that includes information about the codecs supported by
that endpoint is sent from one endpoint to the other. Both endpoints send this message and wait for
a reply which can be one of the following messages:

¢ TerminalCapabilitySetAck - Accept the remote endpoints capability
¢ TerminalCapabilitySetReject - Reject the remote endpoints capability

The two endpoints continue to exchange these messages until a capability set that is supported by
both endpoints is agreed. When this occurs, the next phase of the call scenario, Call Initiation, can
begin.

Call Initiation

Once the capability setup is agreed, endpoint A and B must set up the voice channels over which
the voice data (media stream) will be exchanged.

To open a logical channel at endpoint B, endpoint A sends an H.245 OpenLogicalChannel message
to endpoint B. This message specifies the type of data being sent, for example, the codec that will
be used. For voice data, the message also includes the port number that endpoint B should use to
send RTCP receiver reports. When endpoint B is ready to receive data, it sends an
OpenLogicalChannel Ack message to endpoint A. This message contains the port number on which
endpoint A is to send RTP data and the port number on which endpoint A should send RTCP data.

Endpoint B repeats the process above to indicate which port endpoint A will receive RTP data and
send RTCP reports to. Once these ports have been identified, the next phase of the call scenario,
Data Exchange, can begin.

Data Exchange

Endpoint A and endpoint B exchange information in RTP packets that carry the voice data.
Periodically, during this exchange both sides send RTCP packets, which are used to monitor the
quality of the data exchange. If endpoint A or endpoint B determines that the expected rate of
exchange is being degraded due to line problems, H.323 provides capabilities to make adjustments.
Once the data exchange has been completed, the next phase of the call scenario, Call Termination,
can begin.

Call Termination

To terminate an H.323 call, one of the endpoints, for example, endpoint A, hangs up. Endpoint A
must send an H.245 CloseLogicalChannel message for each channel it has opened with endpoint B.
Accordingly, endpoint B must reply to each of those messages with a CloseLogicalChannelAck
message. When all the logical channels are closed, endpoint A sends an H.245
EndSessionCommand, waits until it receives the same message from endpoint B, then closes the
channel.

Global Call IP Technology Guide — January 2004



1.2.5

Note:

IP Overview

Both endpoint A and endpoint B then send an H.225.0 ReleaseComplete message over the call
signalling channel, which closes that channel and ends the call.

Registration with a Gatekeeper

In a H.323 network, a gatekeeper is an entity that can manage all endpoints that can send or receive
calls. Each gatekeeper controls a specific zone and endpoints must register with the gatekeeper to
become part of the gatekeeper’s zone. The gatekeeper provides call control services to the
endpoints in its zone. The primary functions of the gatekeeper are:

¢ address resolution by translating endpoint aliases to transport addresses
* admission control for authorizing network access
* bandwidth management

¢ network management (in routed mode)

Endpoints communicate with a gatekeeper using the Registration, Admission, and Status (RAS)
protocol. A RAS channel is an unreliable channel that is used to carry RAS messages (as described
in the H.255 standard). The RAS protocol covers the following:

¢ Gatekeeper Discovery
¢ Endpoint Registration

* Endpoint Deregistration

Endpoint Location

* Admission, Bandwidth Change and Disengage

The RAS protocol covers status request, resource availability, nonstandard registration messages,
unknown message response and request in progress that are not described in any detail in this
overview. See ITU-T Recommendation H.225.0 (09/99) for more information.

Gatekeeper Discovery

An endpoint uses a process called gatekeeper discovery to find a gatekeeper with which it can
register. To start this process, the endpoint can multicast a GRQ (gatekeeper request) message to
the well-known discovery multicast address for gatekeepers. One or more gatekeepers may respond
with a GCF (gatekeeper confirm) message indicating that it can act as a gatekeeper for the
endpoint. If a gatekeeper does not want to accept the endpoint, it returns GRJ (gatekeeper reject). If
more than one gatekeeper responds with a GCF message, the endpoint can choose which
gatekeeper it wants to register with. In order to provide redundancy, a gatekeeper may specify an
alternate gatekeeper in the event of a failure in the primary gatekeeper. Provision for the alternate
gatekeeper information is provided in the GCF and RCF messages.

Endpoint Registration

An endpoint uses a process called registration to join the zone associated with a gatekeeper. In the
registration process, the endpoint informs the gatekeeper of its transport, alias addresses, and

endpoint type. Endpoints register with the gatekeeper identified in the gatekeeper discovery process
described above. Registration can occur before any calls are made or periodically as necessary. An

Global Call IP Technology Guide — January 2004 21



IP Overview

1.2.6

22

intel.

endpoint sends an RRQ (registration request) message to perform registration and in return receives
an RCF (registration confirmation) or RRJ (registration reject) message.

Endpoint Deregistration

An endpoint may send an URQ (unregister request) in order to cancel registration. This enables an
endpoint to change the alias address associated with its transport address or vice versa. The
gatekeeper responds with an UCF (unregister confirm) or URJ (unregister reject) message.

The gatekeeper may also cancel an endpoint’s registration by sending a URQ (unregister request)
to the endpoint. The endpoint should respond with an UCF (unregister confirm) message. The
endpoint should then try to re-register with a gatekeeper, perhaps a new gatekeeper, prior to
initiating any calls.

Endpoint Location

An endpoint that has an alias address for another endpoint and would like to determine its contact
information may issue a LRQ (location request) message. The LRQ message may be sent to a
specific gatekeeper or multicast to the well-known discovery multicast address for gatekeepers.
The gatekeeper to which the endpoint to be located is registered will respond with an LCF (location
confirm) message. A gatekeeper that is not familiar with the requested endpoint will respond with
LRIJ (location reject).

Admission, Bandwidth Change and Disengage

The endpoint and gatekeeper exchange messages to provide admission control and bandwidth
management functions. The ARQ (admission request) message specifies the requested call
bandwidth. The gatekeeper may reduce the requested call bandwidth in the ACF (admission
confirm) message. The ARQ message is also used for billing purposes, for example, a gatekeeper
may respond with an ACF message just in case the endpoint has an account so the call can be
charged. An endpoint or the gatekeeper may attempt to modify the call bandwidth during a call
using a BRQ (bandwidth change request) message. An endpoint will send a DRQ (disengage
request) message to the gatekeeper at the end of a call.

H.323 Call Scenario via a Gateway

While the call scenario described in Section 1.2.4, “Basic H.323 Call Scenario”, on page 18 is
useful for explaining the fundamentals of an H.323 call, is not a realistic call scenario. The IP
addresses of both endpoints were defined to be known. Most Internet Service Providers (ISPs)
allocate IP addresses to subscribers dynamically. This section describes the fundamentals of a more
realistic example that involves a gateway.

A gateway provides a bridge between different technologies, for example, an H.323 gateway (or IP

gateway) provides a bridge between an IP network and the PSTN. Figure 3 shows a configuration
that uses a gateway. User A is at a terminal, while user B is by a phone connected to the PSTN.

Global Call IP Technology Guide — January 2004



i nu o IP Overview

Figure 3. Basic H.323 Network with a Gateway

User A User B
Terminal Gateway

Internet or

Gatekeeper Intranet

Figure 3 also shows a gatekeeper. The gatekeeper provides network services such as Registration,
Admission, and Status (RAS) and address mapping. When a gatekeeper is present, all endpoints
managed by the gatekeeper must register with the gatekeeper at startup. The gatekeeper tracks
which endpoints are accepting calls. The gatekeeper can perform other functions also, such as
redirecting calls. For example, if a user does not answer the phone, the gatekeeper may redirect the
call to an answering machine.

The call scenario in this example involves the following phases:

¢ Establishing Contact with the Gatekeeper
* Requesting Permission to Call
e Call Signaling and Data Exchange

¢ Call Termination

Establishing Contact with the Gatekeeper

The user at endpoint A attempts to locate a gatekeeper by sending out a Gatekeeper Request (GRQ)
message and waiting for a response. When it receives a Gatekeeper Confirm (GCF) message, the
endpoint registers with the Gatekeeper by sending the Registration Request (RRQ) message and
waiting for a Registration Confirm (RCF) message. If more than one gatekeeper responds, endpoint
A chooses only one of the responding gatekeepers. The next phase of the call scenario, Requesting
Permission to Call, can now begin.

Requesting Permission to Call

After registering with the gatekeeper, endpoint A must request permission from the gatekeeper to
initiate the call. To do this, endpoint A sends an Admission Request (ARQ) message to the
gatekeeper. This message includes information such as:

* A sequence number
¢ A gatekeeper assigned identifier

¢ The type of call; in this case, point-to-point

The call model to use, either direct or gatekeeper-routed

The destination address; in this case, the phone number of endpoint B

Global Call IP Technology Guide — January 2004 23



IP Overview

24

intel.

* An estimation of the amount of bandwidth required. This parameter can be adjusted later by a
Bandwidth Request (BRQ) message to the gatekeeper.

If the gatekeeper allows the call to proceed, it sends an Admission Confirm (ACF) message to
endpoint A. The ACF message includes the following information:

¢ the call model used

e the transport address and port to use for call signaling (in this example, the IP address of the
gateway)

¢ the allowed bandwidth

All setup has now been completed and the next phase of the scenario, Call Signaling and Data
Exchange, can begin.

Call Signaling and Data Exchange

Endpoint A can now send the Setup message to the gateway. Since the destination phone is
connected to an analog line (the PSTN), the gateway goes off-hook and dials the phone number
using dual tone multifrequency (DTMF) digits. The gateway therefore is converting the H.225.0
signaling into the signaling present on the PSTN. Depending on the location of the gateway, the
number dialed may need to be converted. For example, if the gateway is located in Europe, then the
international dial prefix will be removed.

As soon as the gateway is notified by the PSTN that the phone at endpoint B is ringing, it sends the
H.225.0 Alerting message as a response to endpoint A. As soon as the phone is picked up at
endpoint B, the H.225.0 Connect message is sent to endpoint A. As part of the Connect message, a
transport address that allows endpoint A to negotiate codecs and media streams with endpoint B is
sent.

The H.225.0 and H.245 signaling used to negotiate capability, initiate and call, and exchange data

are the same as that described in the basic H.323 call scenario. See the Capability Exchange, Call

Initiation, and Data Exchange phases in Section 1.2.4, “Basic H.323 Call Scenario”, on page 18 for
more information.

In this example the destination phone is analog, therefore, it requires the gateway to detect the ring,
busy, and connect conditions so it can respond appropriately.

Call Termination

As in the basic H.323 call scenario example, the endpoint that hangs up first needs to close all the
channels that were open using the H.245 CloseLogicalChannel message. If the gateway terminates
first, it sends an H.245 EndSessionCommand message to endpoint A and waits for the same
message from endpoint A. The gateway then closes the H.245 channel.

When all channels between endpoint A and the gateway are closed, each must send a
DisengageRequest (DRQ) message to the gatekeeper. This message lets the gatekeeper know that
the bandwidth is being released. The gatekeeper sends a DisengageConfirm (DCF) message to both
endpoint A and the gateway.

Global Call IP Technology Guide — January 2004



1.3.1

1.3.2

IP Overview

SIP Overview

Session Initiation Protocol (SIP) is an ASCII-based, peer-to-peer protocol designed to provide
telephony services over the Internet. The SIP standard was developed by the Internet Engineering
Task Force (IETF) and is one of the most commonly used protocols for VoIP implementations. This
section discusses the following topics about SIP:

¢ Advantages of Using SIP
¢ SIP User Agents and Servers

Basic SIP Operation
Basic SIP Call Scenario
SIP Messages

Advantages of Using SIP

Some of the advantages of using SIP include:

* The SIP protocol stack is smaller and simpler than other commonly used VoIP protocols, such
as H.323.

* SIP-based systems are more easily scalable because of the peer-to-peer architecture used. The
hardware and software requirements for adding new users to SIP-based systems are greatly
reduced.

¢ Functionality is distributed over different components. Control is decentralized. Changes made
to a component have less of an impact on the rest of the system.

e SIP is Internet-enabled.

SIP User Agents and Servers

User agents (UAs) are appliances or applications, such as SIP phones, residential gateways and
software that initiate and receive calls over a SIP network.

Servers are application programs that accept requests, service requests and return responses to
those requests. Examples of the different types of servers are:

Location Server
Used by a SIP redirect or proxy server to obtain information about the location of the called

party.

Proxy Server
An intermediate program that operates as a server and a client and which makes requests on
behalf of the client. A proxy server does not initiate new requests, it interprets and possibly
modifies a request message before forwarding it to the destination.

Redirect Server
Accepts a request from a client and maps the address to zero or more new addresses and
returns the new addresses to the client. The server does not accept calls or generate SIP
requests on behalf of clients.

Global Call IP Technology Guide — January 2004 25



IP Overview i nt9| o

Registrar Server

Accepts REGISTER requests from clients. Often, the registrar server is located on the same
physical server as the proxy server or redirect server.

1.3.3 Basic SIP Operation

Callers and callees are identified by SIP addresses. When making a SIP call, a caller first locates
the appropriate server and then sends a SIP request. The most common SIP operation is the
invitation request. Instead of directly reaching the intended callee, a SIP request may be redirected
or may trigger a chain of new SIP requests by proxies. Users can register their location(s) with SIP
servers.

1.3.4 Basic SIP Call Scenario

Figure 4 shows the basic SIP call establishment and teardown scenario.

Figure 4. Basic SIP Call Scenario

SIP Phone SIP Phone
User A User B

I
User picks up
phone and dials

INVITE ] Phone
Rings
P 180, Ringing
User answers
200, OK
ACK >
Voice Exchange (RTP)
( — — — — — = 2L »
BYE User hangs up
200, OK

1.3.5 SIP Messages

In SIP, there are two types of messages:

¢ SIP Request Messages
¢ SIP Response Messages

26 Global Call IP Technology Guide — January 2004



i nu o IP Overview

SIP Request Messages

The most commonly used SIP request messages are:
e INVITE
e ACK
e BYE
¢ REGISTER
e CANCEL
e OPTIONS

For more information, see RFC 3261 at http://www.ietf.org/rfc/rfc326 1.txt >number=3261.

SIP Response Messages
SIP response messages are numbered. The first digit in each response number indicates the type of
response. The response types are as follows:

Ixx
Information responses; for example, 180 Ringing

2XX
Successful responses; for example, 200 OK

3xx
Redirection responses; for example, 302 Moved Temporarily

4xx
Request failure responses; for example, 402, Forbidden

5XX
Server failure responses; for example, 504, Gateway Timeout

6xx
Global failure responses; for example, 600, Busy Everywhere

For more information, see RFC 3261 at the URL given above.

Global Call IP Technology Guide — January 2004 27


http://www.ietf.org/rfc/rfc3261.txt?number=3261

IP Overview

28

Global Call IP Technology Guide — January 2004



intel.

Global Call Architecture for IP 2

This chapter discusses the following topics:

¢ Global Call over IP Architecture with a Host-Based Stack. .. ................... 29
e Architecture COMPONENLS . . ..ot v ettt ettt e ettt et e eeens 30
e Device Types and Usage . . .. .ottt e e e e 32

2.1 Global Call over IP Architecture with a Host-Based
Stack

Global Call provides a common call control interface that is independent of the underlying network
interface technology. While Global Call is primarily concerned with call control, that is, call
establishment and teardown, Global Call provides some additional capabilities to support
applications that use IP technology.

Global Call support for IP technology includes:

e call control capabilities for establishing calls over an IP network

e support for IP Media control by providing the ability to open and close IP Media channels for
streaming

Global Call supports a system configuration where the IP signaling stack (provided with the Intel®
Dialogic® System Software) is running on the host and a DM3 board or Intel® NetStructure™ IPT
board provides the IP resources for media processing.

Note: Global Call supports the RADVISION H.323 and SIP stacks. If other third-party call control stacks
are used, Global Call cannot be used for IP call control, but the IP Media Library can be used for
media resource management. See the IP Media Library API Programming Guide and IP Media
Library API Library Reference for more information.

Figure 5 shows the Global Call over IP architecture when using a DM3 board or an Intel
NetStructure IPT board and a host-based stack provided with the system software

Global Call IP Technology Guide — January 2004 29



[ ]
Global Call Architecture for IP I nt9| o

Figure 5. Global Call over IP Architecture Using a Host-Based Stack

Host Application

A

A

GlobalCall

A 1
Med_ia
v v Routing

Host [ H3230rgip | Media IP Media
NIC Call Control Contrﬂ Call Control
< Library - Library

(IPT CCLib) (IPM CCLib)

Call Control

Signaling
IP Network

Y

IP Media
Resource <: CT Bus

RTP/RTCP

Media
IP Network

To simplify IP Media management by the host application and to provide a consistent look and feel
with other Global Call technology call control libraries, the IP Signaling call control library (IPT
CCLib) controls the IP Media functionality.

2.2 Architecture Components

The role of each major component in the architecture is described in the following sections:

* Host Application

Global Call

IP Signaling Call Control Library (IPT CCLib)
IP Media Call Control Library (IPM CCLib)
IP Media Resource

2.2.1 Host Application

The host application manages and monitors the IP telephony system operations. Typically the
application performs the following tasks:

* initializes Global Call
¢ opens and closes IP line devices
* opens and closes IP Media devices

¢ opens and closes PSTN devices

30 Global Call IP Technology Guide — January 2004



Global Call Architecture for IP

configures IP Media and network devices (capability list, operation mode, etc.)

performs call control, including making calls, accepting calls, answering calls, dropping calls,
releasing calls, and processing call state events

queries call and device information

handles PSTN alarms and errors

2.2.2 Global Call

Global Call hides technology and protocol-specific information from the host application and acts
as an intermediary between the host application and the technology call control libraries. It
performs the following tasks:

performs high-level call control using the underlying call control libraries

maintains a generic call control state machine based on the function calls used by an
application and call control library events

collects and maintains data relating to resources

collects and maintains alarm data

2.2.3 IP Signaling Call Control Library (IPT CCLib)

The IP Signaling call control library (IPT CCLib) implements IP technology. It performs the
following tasks:

controls the H.323 and/or SIP stack

manages IP Media resources as required by the Global Call call state model and the IP
signaling protocol model

translates between the Global Call call model and IP signaling protocol model
processes Global Call call control library interface commands

generates call control library interface events

224 IP Media Call Control Library (IPM CCLib)

The IP Media Call Control Library (IPM CCLib) performs the following tasks:

processes Global Call call control library interface commands for the opening, closing, and
timeslot routing of media devices

configures QoS thresholds

translates QoS alarms to Global Call alarm events

2.2.5 IP Media Resource

The IP Media Resource processes the IP Media stream. It performs the following tasks:

encodes PCM data from the TDM bus into IP packets sent to the IP network
decodes IP packets received from the IP network into PCM data transmitted to the TDM bus

Global Call IP Technology Guide — January 2004 31



[ ]
Global Call Architecture for IP I nt9| o

2.3

2.3.1

32

¢ configures and reports QoS information to the IP Media stream

Device Types and Usage

This section includes information about device types and usage:

* Device Types Used with IP
¢ [PT Board Devices

e IPT Network Devices

e [PT Start Parameters

Device Types Used with IP

When using Global Call with IP technology, a number of different device types are used:

IPT Board Device
A virtual entity that represents a NIC or NIC address (if one NIC supports more than one IP
address). The format of the device name is iptBx, where x is the logical board number that
corresponds to the NIC or NIC address. See Section 2.3.2, “IPT Board Devices”, on page 33
for more information.

IPT Network Device
Represents a logical channel over which calls can be made. This device is used for call control
(call setup and tear down). The format of the device name is iptBxTy, where x is the logical
board number and y is the logical channel number. See Section 2.3.3, “IPT Network Devices”,
on page 34 for more information.

IP Media Device
Represents a media resource that is used to control RTP streaming, monitoring Quality of
Service (QoS) and the sending and receiving of DTMF digits. The format of the device name
is ipmBxCy, where x is the logical board number and y is the logical channel number.

The IPT network device (iptBxTy) and the IP Media device (ipmBxCy) can be opened
simultaneously in the same ge_OpenEx( ) command. If a voice resource is available in the system,
for example an IP board that provides voice resources or any other type of board that provides
voice resources, a voice device can also be included in the same ge_OpenEx( ) call to provide
voice capabilities on the logical channel. See Section 7.2.13, “gc_OpenEx( ) Variances for IP”, on
page 136 for more information.

Alternatively, the IPT network device (iptBxTy) and the IP Media device (ipmBxCy) can be
opened in separate gc_OpenEx( ) calls and subsequently attached using the gc_AttachResource( )
function.

The IP Media device handle, which is required for managing Quality of Service (QoS) alarms for
example, can be retrieved using the gc_GetResourceH( ) function. See Section 4.14, “Quality of

Service Alarm Management”, on page 74 for more information.

Figure 6 shows the relationship between the various types of Global Call devices when a single
Host NIC is used.

Global Call IP Technology Guide — January 2004



[ ]
I nu o Global Call Architecture for IP

Figure 6. Global Call Devices

Host NIC
(ipt board device)

Fmmmmm e —— =
, GlobalCall line device

1 (with media and vocie
1 devices optionally

1
1
1
1
1 attached) 1
1 1
'H.3230rSIP| Ipt !
, Call Control network | 1
device !
: (on host) :
IP T
Network 1 - 1
Ipm dti
! RTP ; 1CTB :
: media | | 91 network
I RTCP device |, device
1 (on board) |
1 1
: dX_XX : Note: The dxxx voice device can
. voice , beon the same board as the ipm
1 device |, media device or on a different board.

2.3.2 IPT Board Devices

An IPT board device is a virtual entity that corresponds to a NIC or NIC address and is capable of
handling both H.323 and SIP protocols. The application uses the ge_Start( ) function to bind NIC
IP addresses to IPT virtual board devices. Possible configurations are shown in Figure 7. The
operating system must support the IP address and underlying layers before the Global Call
application can take advantage of the configurations shown in Figure 7. Up to eight virtual IPT
boards can be configured in one system. For each virtual IPT board, it is possible to configure the
local address and signaling port (H.323 and SIP), the number of IPT network devices that can be
opened simultaneously, etc. See Section 7.2.20, “gc_Start( ) Variances for IP”, on page 147 for
more information on how to configure IPT board devices.

Global Call IP Technology Guide — January 2004 33



Global Call Architecture for IP

Figure 7. Configurations for Binding IPT Boards to NIC IP Addresses

2.3.3

34

A. Multiple IP Addresses Assigned B. Multiple IP Addresses Belonging
to the Same Host NIC to Different Host NICs

IPT Channels | IPT Channels IPT Channels | IPT Channels
IPT Board 1 IPT Board 2 IPT Board 1 IPT Board 2
IPT Address 1 | IPT Address 2 IPT Address 1 | IPT Address 2

Host NIC Host NIC 1 Host NIC 2

C. Multiple IPT Boards Using

the Same IP Address

D. Multiple NICs Abstracted into One

IP Address by the OS

IPT Channels | IPT Channels IPT Channels | IPT Channels
IPT Board 1 IPT Board 2 IPT Board 1 IPT Board 2
IP Address 1 IP Address 1

Host NIC Host NIC 1 Host NIC 2

Note: IPT Board 1 and IPT Board 2
must have different port numbers.

Once the IPT board devices are configured, the application can open line devices with the
appropriate IPT network device (ipt channel) and optionally IPT media device (ipm channel).

The ge_SetConfigData( ) function can be used on an IPT board device to apply parameters to all
IPT channels associated with the IPT board device. The application can use the
gc_AttachResource( ) and ge_Detach( ) functions to load balance which host NIC makes a call
for a particular IPT media device (ipm channel). It is also possible that the operating system can
perform load balancing using the appropriate NIC for call control as shown in Figure 7,
configuration D.

The ge_ReqService( ) function is used on an IPT board device for registration with an H.323
gatekeeper or SIP registrar. See Section 7.2.15, “gc_ReqService( ) Variances for IP”, on page 138
for more information.

IPT Network Devices

Global Call supports three types of IPT network devices:

e H.323 only (P_H323 in the devicename string when opening the device)
e SIP only (P_SIP in the devicename string when opening the device)

* Dual protocol, H.323 and SIP (P_IP in the devicename string when opening the device)

Global Call IP Technology Guide — January 2004



2.3.4

Global Call Architecture for IP

The device type is determined when using the gc_OpenEx( ) function to open the device. H.323
and SIP only devices are capable of initiating and receiving calls of the selected protocol type only.

Dual protocol devices are capable of initiating and receiving calls using either the H.323 or SIP
protocol. The protocol used by a call on a dual protocol device is determined during call setup as
follows:

¢ for outbound calls, by a parameter to the gc_MakeCall( ) function

¢ for inbound calls, by calling gc_GetCallInfo( ) to retrieve the protocol type used. In this case,
the application can query the protocol type of the current call after the call is established, that
is, as soon as either GCEV_DETECTED (if enabled) or GCEV_OFFERED is received.

IPT Start Parameters

The application determines the number of boards that will be created by the IPT call control library
(up to the number of available IP addresses). For each board, the host application will provide the
following information:

* number of line devices on the board

¢ maximum number of IPT devices to be used for H.323 calls (used for H.323 stack allocation)
¢ maximum number of IPT devices to be used for SIP calls (used for SIP stack allocation)

* board IP address

e listen port for H.323

e listen port for SIP

¢ enable/disable access to SIP message information fields

Global Call IP Technology Guide — January 2004 35



Global Call Architecture for IP

36

Global Call IP Technology Guide — January 2004



intel.

IP Call Scenarios 3

This chapter provides common call control scenarios when using Global Call with IP technology.
Topics include:

e Basic Call Control Scenarios When Using IP Technology .. .................... 37

3.1 Basic Call Control Scenarios When Using IP Technology

This section provides details of the basic call control scenarios when using IP technology. The
scenarios include:

¢ Basic Call Setup When Using H.323 or SIP
¢ Basic Call Teardown When Using H.323 or SIP

Global Call IP Technology Guide — January 2004 37



IP Call Scenarios

3.1.1 Basic Call Setup When Using H.323 or SIP

Figure 8 shows the basic call setup sequence when using H.323 or SIP.

Notes: 1. This figure assumes that the network and media channels are already open and a media channel
with the appropriate media capabilities is attached to the network channel. See Section 7.2.13,
“gc_OpenEx( ) Variances for IP”, on page 136 for information on opening and attaching network
and media devices and Section 7.2.12, “gc_MakeCall( ) Variances for IP”, on page 122 for
detailed information on the specification of the destination address etc.

2. The destination address must be a valid address that can be translated by the remote node.

Figure 8. Basic Call Setup When Using H.323 or SIP

Application GlobalCall

gc_MakeCall( )

Y

GCEV_DIALING

GlobalCall Application

H.323: Q.931 Setup

SIP: INVITE

gc_WaitCall( )

—
-l

Il

GCEV_PROCEEDING

H.323: Q.931 Proceeding | (GCACK_SERVICE_PROC)
SIP: 100 (Trying) -t

™  GCEV_DETECTED
GCEV_OFFERED

gc_CallAck

_ GCEV_ALERTING

—

H.323: Q.931 Alerting
_ SIP: 180 (Ringing) -t

GCEV_CALLPROC

P

gc_AcceptCall( )

~ GCEV_CONNECTED

il

H.323: Q.931 Connected

SIP: 200 (OK)

GCEV_ACCEPT

|

gc_AnswerCall( )

-t

SIP: ACK

38

L GCEV_ANSWERED

Y

Global Call IP Technology Guide — January 2004



i nu ® IP Call Scenarios

3.1.2 Basic Call Teardown When Using H.323 or SIP

Figure 9 shows the basic call teardown scenario when using Global Call with H.323 or SIP.

Figure 9. Basic Call Teardown When Using H.323 or SIP

Application GlobalCall GlobalCall Application

gc_DropCall() H.323: Q.931 ReleaseComplete
- SIP: BYE

»] Gcev_DISCONNECT

» SIP: 200 (OK)
GCEV_DROPCALL -~
gc_DropCali( )
GCEV_DROPCALL
gc_ReleaseCallEx( ) o _gc_ReleaseCallEx( )
GCEViRELEASECAL: GCEV_RELEASECALL

Global Call IP Technology Guide — January 2004 39



IP Call Scenarios

40

Global Call IP Technology Guide — January 2004



intel.

IP-Specific Operations

4

4.1

This chapter describes how to use Global Call to perform certain operations in an IP environment.
These operations include:

Call Control Configuration . . ... .........c.iuon it 41
Using Fast Start and Slow Start Setup. .. ... 42
Setting Call-Related Information. .. ......... ... .. 43
Retrieving Current Call-Related Information .. ........... ... .. ... .. ... ... 50
Setting and Retrieving SIP Message Information Fields. . ...................... 59
Handling DTMF . . ..o e e 62
Getting Media Streaming Status and Negotiated Coder Information . ............. 66
Getting Notification of Underlying Protocol State Changes..................... 67
Sending Protocol Messages. . . ..o vv vt 67
Enabling and Disabling Unsolicited Notification Events .. ............... ... ... 71
Configuring the Sending of the Proceeding Message . . ........................ 73
Enabling and Disabling Tunneling in H.323 ... ... .. .. ... ... . . ... 73
Specifying RTP Stream Establishment . ........ ... ... ... .. ... .. .. ... .. 73
Quality of Service Alarm Management. . . .......... ..ot enennen .. 74
RegISIration . . . ..o e 79
Sending and Receiving Faxesover IP .. ... ... .. .. . .. . . i 88
Using Object Identifiers. . . .. .. ..ot e 92

Call Control Configuration

Certain configuration parameters, such as the maximum number of IPT devices available, the local
IP address, and the call signaling port, are configurable when using the gc_Start( ) function to start
Global Call. For example, the default maximum number of IPT devices is 120, but is configurable
to as many as 2016 depending on the values of other configuration parameters.

When using the ge_Start( ) function, the INIT_IPCCLIB_START_DATA() and
INIT_IP_VIRTBOARD( ) functions are used to specify default values that can then be overridden
with desired values. See Section 7.2.20, “gc_Start( ) Variances for IP”, on page 147 for more
information.

Global Call IP Technology Guide — January 2004

41



u
IP-Specific Operations I nt9| o

4.2

42

Note:

Note:

Note:

When using an Intel® NetStructure™ IPT board, the default values provided by the
INIT_IP_VIRTBOARD( ) convenience function (see Section 7.2.20, “gc_Start( ) Variances for
IP”, on page 147) must be overriden to take advantage of the higher numbers of IPT devices
available on the board (up to 672).

In the IPCCLIB_START_DATA structure, the maximum value of the num_boards field, which
defines the number of NICs or NIC addresses, is 8.

Using Fast Start and Slow Start Setup

Fast start and slow start are supported in both the H.323 and SIP protocols. Fast start connection is
preferable to slow start connection because fewer network round trips are required to set up a call
and the local exchange can generate messages when circumstances prevent a connection to the
endpoint.

In H.323, fast start and slow start setup are supported depending on the version of H.323 standard
supported at the remote side. If the remote side supports H.323 version 2 and above, fast start setup
can be used; otherwise, a slow start setup is used. Fast start connection reduces the time required to
set up a call to one round-trip delay following the H.225 TCP connection. The concept is to include
all the necessary parameters for the logical channel to be opened (H.245 information) in the Setup
message. The logical channel information represents a set of supported capabilities from which the
remote end can choose the most appropriate capability. If the remote side decides to use fast start
connection, it returns the desired logical channel parameters in the Alerting, Proceeding, or
Connect messages.

In SIP, fast start and slow start setup are also supported. In slow start setup, the INVITE message
will have no Session Description Protocol (SDP) and therefore the remote side will propose the
session attributes in the SDP of the ACK message.

In Global Call, fast start and slow start connection are supported on a call-by-call basis. Fast start
connection is used by default, but slow start connection can be forced by including the
IPPARM_CONNECTIONMETHOD parameter ID with a value of
IP_CONNECTIONMETHOD_SLOWSTART in the ext_datap field (of type GC_PARM_BLK) in
the GCLIB_MAKECALL_BLK structure associated with a call. The following code segment
shows how to specify a slow start connection explicitly by including the
IPPARM_CONNECTIONMETHOD parameter ID when populating the ext_datap field:

gc_util_insert parm val (&libBblock.ext datap, IPSET CALLINFO, IPPARM_ CONNECTIONMETHOD,
sizeof (char), IP_CONNECTIONMETHOD SLOWSTART) ;

In addition, the IPPARM_CONNECTIONMETHOD parameter ID can be set to a value of
IP_CONNECTIONMETHOD_ FASTSTART to force a fast start connection on a line device
configured to use a slow start connection (using gc_SetUserInfo( ) with a duration parameter of
GC_ALLCALLS).

In SIP, only the calling side can choose fast start or slow start, unlike H.323 where both sides can
select either fast start or slow start.

Global Call IP Technology Guide — January 2004



Setting Call-Related Information

IP-Specific Operations

Table 1 summarizes the types of information elements that can be specified, the corresponding set
IDs and parameter IDs used to set the information and the functions that can be used to set the
information, and an indication of whether the information is supported when using H.323, SIP, or

both.

Table 1. Summary of Call-Related Information that can be Set

¢ IPPARM_NONSTANDARDDATA_DATA
and
IPPARM_NONSTANDARDDATA_OBJID

or

¢ IPPARM_NONSTANDARDDATA_DATA
and
IPPARM_H221NONSTANDARD

gc_MakeCall( )

Type o.f Set ID and Parameter IDs Functions Use:d to Set H.323/SIP
Information Information
Coder Information | GCSET_CHAN_CAPABILITY gc_SetConfigData( ) both
Tt ¢ IPPARM_LOCAL_CAPABILITY gc_SetUserInfo( ) T
gc_MakeCall( )
Conference Goal IPSET_CONFERENCE gc_SetConfigData( ) H.323 only
¢ |IPPARM_CONFERENCE_GOAL gc_SetUserinfo() 1
gc_MakeCall( )
Connection IPSET_CALLINFO gc_SetConfigData( ) both
Method + IPPARM_CONNECTIONMETHOD gc_SetUserinfo( ) t
gc_MakeCall( )
DTMF Support IPSET_DTMF gc_SetConfigData( ) both
¢ IPPARM_SUPPORT_DTMF_BITMASK | gc_SetUserinfo() t
Display IPSET_CALLINFO gc_SetConfigData( ) both
Information * IPPARM_DISPLAY gc_SetUserinfo( ) t
gc_MakeCall( )
Enabling/Disabling | IPSET_EXTENSIONEVT_MSK gc_SetConfigData( ) both
Unsolicited Events o GCACT_ADDMSK
e GCACT_SETMSK
¢ GCACT_SUBMSK
Nonstandard IPSET_NONSTANDARDCONTROL gc_SetConfigData( ) H.323 only
Control Either: gc_SetUserinfo( ) t
Information

device basis).

1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a live

11 On the terminating side, can only be set using gc_SetConfigData( ) on a board device. See Section 4.12, “Enabling and
Disabling Tunneling in H.323”, on page 73 for more information.
111 If no transmit or receive coder type is specified, any supported coder type is accepted. The default is “don’t care”; that is,
any media coder supported by the platform is valid.

Global Call IP Technology Guide — January 2004

43




IP-Specific Operations I n

Table 1. Summary of Call-Related Information that can be Set (Continued)

4.3.1

44

Type of Functions Used to Set

. Set ID and Parameter IDs . H.323/SIP
Information Information
Nonstandard Data | IPSET_NONSTANDARDDATA gc_SetConfigData( ) H.323 only
Either: gc_SetUserInfo( ) T
¢ IPPARM_NONSTANDARDDATA_DATA gc_MakeCall( )
and

IPPARM_NONSTANDARDDATA_OBJID
or
* IPPARM_NONSTANDARDDATA_DATA

and
IPPARM_H221NONSTANDARD

Phone List IPSET_CALLINFO gc_SetConfigData( ) both
¢ IPPARM_PHONELIST gc_SetUserinfo()
gc_MakeCall( )
SIP Message IPSET_SIP_MSGINFO gc_SetUserInfo( ) t SIP only

Information Fields e IPPARM_REQUEST_URI

* IPPARM_TO_DISPLAY

* IPPARM_CONTACT_DISPLAY
* IPPARM_REFERRED_BY

* IPPARM_REPLACES

Tunnellingtt IPSET_CALLINFO gc_SetConfigData( ) H.323 only
¢ IPPARM_H245TUNNELING gc_SetUserInfo( )
gc_MakeCall( )
Type of Service IPSET_CONFIG gc_SetUserinfo( ) t H.323 only
(ToS) * IPPARM_CONFIG_TOS gc_MakecCall( )
User to User IPSET_CALLINFO gc_SetConfigData( ) H.323 only
Information  IPPARM_USERUSER_INFO gc_SetUserlinfo( ) 1

gc_MakeCall()

Vendor Information | IPSET_VENDORINFO gc_SetConfigData( ) H.323 only
¢ IPPARM_H221NONSTD

¢ IPPARM_VENDOR_PRODUCT_ID
¢ IPPARM_VENDOR_VERSION_ID

1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a live

device basis).

11 On the terminating side, can only be set using gc_SetConfigData( ) on a board device. See Section 4.12, “Enabling and

Disabling Tunneling in H.323”, on page 73 for more information.

111 If no transmit or receive coder type is specified, any supported coder type is accepted. The default is “don’t care”; that is,
any media coder supported by the platform is valid.

Setting Call Parameters on a System-Wide Basis
Use the gc_SetConfigData( ) function to configure call-related parameters including coder
information. The values set by the gc_SetConfigData( ) function are used by the call control

library as default values for each line device.

See Section 7.2.18, “gc_SetConfigData( ) Variances for IP”, on page 143 for more information
about the values of function parameters to set in this context.

Global Call IP Technology Guide — January 2004



I n ® IP-Specific Operations

4.3.2 Setting Call Parameters on a Per Line Device Basis

The ge_SetUserInfo( ) function (with the duration parameter set to GC_ALLCALLS) can be used
to set the values of call-related parameters on a per line-device basis. The values set by
gc_SetUserInfo( ) become the new default values for the specified line device and are used by all
subsequent calls on that device. See Section 7.2.19, “gc_SetUserInfo( ) Variances for IP”, on

page 145 for more information about the values of function parameters to set in this context.

4.3.3 Setting Call Parameters on a Per Call Basis

There are two ways to set call parameters on a per-call basis:

¢ Using gc_SetUserInfo( ) - with the duration parameter set to GC_SINGLECALL
¢ Using gc_MakeCall()

4.3.3.1 Using gc_SetUserInfo( )

The ge_SetUserInfo( ) function (with the duration parameter set to GC_SINGLECALL) can be
used to set call parameter values for a single incoming call. At the end of the call, the values set as
default values for the specified line device override these values. This is useful since the
gc_AnswerCall( ) function does not have a parameter to specify a GC_PARM_BLK.

If a gc_MakeCall( ) function is issued after the gc_SetUserInfo( ), the values specified in the
gc_MakeCall( ) function override the values specified by the ge_SetUserInfo( ) function. See

Section 7.2.19, “gc_SetUserInfo( ) Variances for IP”, on page 145 for more information about the
values of function parameters to set in this context.

4.3.3.2 Using gc_MakeCall( )

The gec_MakeCall( ) function can be used to set call parameter values for a call. The values set are
only valid for the duration of the current call. At the end of the call, the values set as default values
for the specified line device override the values specified by the gc_MakeCall( ) function.

See Section 7.2.12, “gc_MakeCall( ) Variances for IP”, on page 122 for more information about
the values of function parameters to set in this context.

4.3.4 Setting Coder Information

Terminal capabilities are exchanged during call establishment. The terminal capabilities are sent to
the remote side as notification of coder supported.

Table 2 shows the coders that are supported when using the Global Call API with Intel®
NetStructure™ IPT boards.

Global Call IP Technology Guide — January 2004 45



IP-Specific Operations I n

Table 2. Coders Supported for Intel NetStructure IPT Boards

Coder and Global Call # Define Frames Per Pa_lcket (fpp) VAD
Rate or Frame Size (ms) Support
G.711 A-law GCCAP_AUDIO_g711Alaw64k Frame Size: 10, 20, and 30 ms Not
(Frames Per Packet: Fixed at 1 fpp) applicable
G.711 u-law GCCAP_AUDIO_g711Ulaw64k Frame Size: 10, 20, and 30 ms Not
(Frames Per Packet: Fixed at 1 fpp) applicable
G.7231 GCCAP_AUDIO_g7231_5_3k Frames Per Packet: 2, or 3 Supported
5.3 kbps (Frame Size: Fixed at 30 ms)
G.723.1, GCCAP_AUDIO_g7231_6_3k Frames Per Packet: 2, or 3 Supported
6.3 kbps (Frame Size: Fixed at 30 ms)
G.729 or GCCAP_AUDIO_g729AnnexA Frames Per Packet: 2, 3, or 4 Not
G.729a (Frame Size: Fixed at 30 ms) applicable
G.729b or GCCAP_AUDIO_g729AnnexA Frames Per Packet: 2, 3, or 4 Supported
G.729a+b wAnnexB (Frame Size: Fixed at 30 ms)
T.38 GCCAP_DATA_t38UDPFax Not applicable Not
applicable
Notes:

1. For G.711 coders, the frame size value (not the frames per packet value) is specified in the frames_per_pkt field of the
IP_AUDIO_CAPABILITY structure. See Section , “IP_AUDIO_CAPABILITY”, on page 176 for more information.

2. Intel NetStructure IPT boards support symmetrical coder definitions only; that is, the transmit and receive coder definitions
must be the same.

3. Applications must explicitly specify VAD support even though G.729a+b implicitly supports VAD.

Table 3 shows the coders that are supported when using the Global Call API with Intel®
NetStructure™ DM/IP boards.

Table 3. Coders Supported for Intel NetStructure DM/IP Boards

Coder and Global Call # Define Frames Per P_acket (fpp) VAD
Rate or Frame Size (ms) Support

G.711 A-law GCCAP_AUDIO_g711Alaw64k Frame Size: 10, 20 or 30 ms Not
(Frames Per Packet: Fixed at 1 fpp) applicable

G.711 u-law GCCAP_AUDIO_g711Ulaw64k Frame Size: 10, 20 or 30 ms Not
(Frames Per Packet: Fixed at 1 fpp) applicable

G.723.1 GCCAP_AUDIO_g7231_5_3k Frames Per Packet: 2 or 3 Supported

5.3 kbps (Frame Size: Fixed at 30 ms)

G.723.1, GCCAP_AUDIO_g7231_6_3k Frames Per Packet: 2 or 3 Supported

6.3 kbps (Frame Size: Fixed at 30 ms)

Notes:

1. For G.711 coders, the frame size value (not the frames per packet value) is specified in the frames_per_pkt field of the
IP_AUDIO_CAPABILITY structure. See Section , “IP_AUDIO_CAPABILITY”, on page 176 for more information.

2. Intel NetStructure DM/IP boards support symmetrical coder definitions only; that is, the transmit and receive coder
definitions must be the same.

3.Intel NetStructure DM/IP boards support G.726 play and record functionality only. Transcoding using G.726 is not
supported.

4. GSM Telecommunications and Internet Protocol Harmonization over Networks (TIPHON) is a sub-group of the European
Telecommunications Standards Institute (ETSI) GSM specification.

5. GCCAP_dontCare can be used to indicate that any supported coder is valid.

6. Applications must explicitly specify VAD support even though G.729a+b implicitly supports VAD.

46 Global Call IP Technology Guide — January 2004



u
I nu o IP-Specific Operations

Table 3. Coders Supported for Intel NetStructure DM/IP Boards (Continued)

Coder and Global Call # Define Frames Per Pallcket (fpp) VAD
Rate or Frame Size (ms) Support
G.729 or GCCAP_AUDIO_g729AnnexA Frames Per Packet: 2, 3 or 4 Not
G.729a (Frame Size: Fixed at 10 ms) applicable
G.729 or GCCAP_AUDIO_g729AnnexA Frames Per Packet: 3 or 4 Supported
G.729a+b wAnnexB (Frame Size: Fixed at 10 ms)
GSM Full GCCAP_AUDIO_gsmFullRate Frames Per Packet: 1,2 or 3 Disabled
Rate (Frame Size: Fixed at 20 ms) (default) or
(TIPHON™) Enabled
T.38 GCCAP_DATA_t38UDPFax Not applicable Not
applicable

Notes:
1. For G.711 coders, the frame size value (not the frames per packet value) is specified in the frames_per_pkt field of the
IP_AUDIO_CAPABILITY structure. See Section , “IP_AUDIO_CAPABILITY”, on page 176 for more information.
2. Intel NetStructure DM/IP boards support symmetrical coder definitions only; that is, the transmit and receive coder
definitions must be the same.
3.Intel NetStructure DM/IP boards support G.726 play and record functionality only. Transcoding using G.726 is not
supported.
4. GSM Telecommunications and Internet Protocol Harmonization over Networks (TIPHON) is a sub-group of the European
Telecommunications Standards Institute (ETSI) GSM specification.
5. GCCAP_dontCare can be used to indicate that any supported coder is valid.
6. Applications must explicitly specify VAD support even though G.729a+b implicitly supports VAD.

Coder information can be set in the following ways:

¢ On a system wide basis using gc_SetConfigData( ).

* On a per line device basis using gc_SetUserInfo( ) with a duration parameter value of
GC_ALLCALLS.

* On a per call basis using gc_MakeCall( ) or gc_SetUserInfo( ) with a duration parameter
value of GC_SINGLECALL.

In each case, a GC_PARM_BLK is set up to contain the coder information. The GC_PARM_BLK
must contain the GCSET_CHAN_CAPABILITY parameter set ID with the
IPPARM_LOCAL_CAPABILITY parameter ID, which is of type IP_CAPABILITY.

Possible values for fields in the IP_ CAPABILITY structure are:

e capability - One of the following:
— GCCAP_AUDIO_g711Alaw64k
— GCCAP_AUDIO_g711Ulaw64k
— GCCAP_AUDIO_g7231_5_3k (at 5.3 kbps)
— GCCAP_AUDIO_g7231_6_3k (at 6.3 kbps)
— GCCAP_AUDIO_g729AnnexA
— GCCAP_AUDIO_gsmFullRate
— GCCAP_DATA _t38UDPFax

— GCCAP_dontCare - The complete list of coders supported by a product is included. If
multiple variations of the same coder are supported by a product, the underlying call
control library offers the preferred variant only. For example, if G.711 10ms, 20ms, and
30ms are supported, only the preferred variant G.711, 20 ms is included.

Global Call IP Technology Guide — January 2004 47



u
IP-Specific Operations I nt9| o

4.3.5

48

* type - One of the following:
- GCCAPTYPE_AUDIO
— GCCAPTYPE_RDATA

¢ direction - One of the following:
—IP_CAP_DIR_LCLTRANSMIT - transmit capability
—IP_CAP_DIR_LCLRECEIVE - receive capability
—IP_CAP_DIR_LCLRXTX - transmit and receive capability (T.38 only)

Note: It is recommended to specify both the transmit and receive capabilities.

payload_type - Not supported. The currently supported coders have static (pre-assigned)
payload types defined by standards.

e extra - Must be of type IP_AUDIO_CAPABILITY.

— frames_per_packet - The number of frames per packet.

Note: For G.711 coders, the extra.frames_per_packet field is the frame size (in ms).
— VAD - GCPV_DISABLE (0) or GCPV_ENABLE (1).

Note: Applications must explicitly set this field to GCPV_ENABLE for the coders that
implicitly support only VAD, such as GCCAP_AUDIO_g729 AnnexAwAnnexB.

See Section , “IP_CAPABILITY”, on page 177 for more information.

Specifying Nonstandard Data Information When Using
H.323

Set up the GC_PARM_BLK pointed by the infoparmblkp function parameter with the
IPSET_NONSTANDARDDATA parameter set ID, and one of two possible combinations of
parameter IDs. First set the IPPARM_NONSTANDARDDATA_DATA parameter ID (maximum
length MAX_NS_PARM_DATA_LENGTH or128). Then set either of the following two parameter
IDs, depending on the type of object identifier to use:

¢ IPPARM_NONSTANDARDDATA_OBIJID. The maximum length is
MAX_NS_PARM_OBIJID_LENGTH (40).

e [PPARM_H221NONSTANDARD

See Section 8.15, “IPSET_NONSTANDARDDATA Parameter Set”, on page 168 for more
information.

The following code example shown how to set nonstandard data elements:

IP_H221NONSTANDARD appH221NonStd;

appH221NonStd.country code = 181;

appH221NonStd.extension = 31;

appH221NonStd.manufacturer code = 11;

char* pData = "Data String";

char* pOid = "1 22 333 4444";

choiceOfNSData = 1;/* App decides which type of object identifier to use */

Global Call IP Technology Guide — January 2004



intel.

4.3.6

IP-Specific Operations

/* setting NS Data */
gc_util_insert_parm ref (&§pParmBlock,
IPSET NONSTANDARDDATA,
IPPARM_NONSTANDARDDATA DATA,
(unsigned char) (strlen(pData)+1),
pData) ;

if (choiceOfNSData) /* App decides the CHOICE of OBJECTIDENTIFIER.
It cannot set both objid & H221 */

{
gc_util_insert_parm ref (&§pParmBlock,
IPSET NONSTANDARDDATA,
IPPARM_H221NONSTANDARD,
(unsigned char)sizeof (IP_H221NONSTANDARD) ,
&appH221NonStd) ;

}

else

{
gc_util_insert_parm ref (&pParmBlock,
IPSET NONSTANDARDDATA,
IPPARM NONSTANDARDDATA OBJID,
(unsigned char) (strlen(p0Oid)+1),
poid) ;

Specifying Nonstandard Control Information When Using
H.323

Use the gc_SetUserInfo( ) function with a duration parameter set to GC_SINGLECALL to set
nonstandard control information. If the duration parameter is set to GC_ALLCALLS, the function
will fail.

Set up the GC_PARM_BLK pointed by the infoparmblkp function parameter with the
IPSET_NONSTANDARDCONTROL parameter set ID and one of two combinations of parameter
IDs. First set the IPPARM_NONSTANDARDDATA_DATA parameter ID (maximum length is
MAX_NS_PARM_DATA_LENGTH or 128). Then set either of the following parameter IDs
according to which type of object identifier to use:

¢ JPPARM_NONSTANDARDDATA_OBIJID. The maximum length is
MAX_NS_PARM_OBJID_LENGTH (40).

e [PPARM_H22INONSTANDARD

See Section 8.14, “IPSET_NONSTANDARDCONTROL Parameter Set”, on page 167 for more
information.

The following code example shows how to set nonstandard data elements:

IP_H221NONSTANDARD appH221NonStd;

appH221NonStd.country code = 181;

appH221NonStd.extension = 31;

appH221NonStd.manufacturer code = 11;

char* pControl = "Control String";

char* pOid = "1 22 333 4444";

choiceOfNSControl = 1; /* App decides which type of object identifier to use */

Global Call IP Technology Guide — January 2004 49



u
IP-Specific Operations I nt9| o

4.3.7

4.4

50

Note:

/* setting NS Control */

gc_util_insert_parm ref (&pParmBlock,
IPSET NONSTANDARDCONTROL,
IPPARM NONSTANDARDDATA_ DATA,
(unsingned char) (strlen(pControl)+1),
pControl) ;

if (choiceOfNSControl) /* App decide the CHOICE of OBJECTIDENTIFIER.
It cannot set both objid & h221 */

{

gc_util insert_parm ref (&§pParmBlock,
IPSET NONSTANDARDCONTROL,
IPPARM H221NONSTANDARD,
(unsingned char) sizeof (IP_H221NONSTANDARD) ,
&appH221NonStd) ;

}

else

{
gc_util_insert_parm ref (§pParmBlock,
IPSET_ NONSTANDARDCONTROL,
IPPARM NONSTANDARDDATA OBJID,
(unsingned char) (strlen(pOid)+1),
p0Oid) ;

Setting and Retrieving Disconnect Cause or Reason Values

Use the cause parameter in the gc_DropCall( ) function to specify a disconnect reason/cause to be
sent to the remote endpoint.

When using SIP, reasons are only supported when a call is disconnected while in the Offered state.

Use the ge_ResultInfo( ) function to get the reason/cause of a GCEV_DISCONNECTED event.
This reason/cause could be sent from the remote endpoint or it could be the result of an internal
error.

IP-specific reason/cause values are specified in the e[P_EC_TYPE enumerator defined in the
gcip_defs.h header file.

Retrieving Current Call-Related Information

To support large numbers of channels, the call control library must perform all operations in
asynchronous mode. To support this, an extension function variant allows the retrieval of a
parameter as an asynchronous operation.

The retrieval of call-related information is a four step process:

1. Set up a GC_PARM_BLK that identifies which information is to be retrieved. The
GC_PARM_BLK includes GC_PARM_DATA blocks. The GC_PARM_DATA blocks specify
only the Set_ID and Parm_ID fields, that is, the value_size field is set to 0. The list of
GC_PARM_DATA blocks indicate to the call control library the parameters to be retrieved.

2. Use the gc_Extension( ) function to request the data. The target_type should be
GCTGT_GCLIB_CRN and the target_id should be the actual CRN. The ext_id function
parameter (extension ID) should be set to IPEXTID_GETINFO, the parmblkp function

Global Call IP Technology Guide — January 2004



IP-Specific Operations

parameter should point to the GC_PARM_BLK set up in step 1, and the mode function
parameter should be set to EV_ASYNC (asynchronous).

3. A GCEV_EXTENSIONCMPLT event is generated in response to the gc_Extension( )
request. The extevtdatap field in the METAEVENT structure for the
GCEV_EXTENSIONCMPLT event is a pointer to an EXTENSIONEVTBLK structure that
contains a GC_PARM_BLK with the requested call-related information.

4. Extract the information from the GC_PARM_BLK associated with the
GCEV_EXTENSIONCMPLT event. In this case, the GC_PARM_BLK contains real data; that
is, the value_size field is not 0, and includes the size of the data following for each parameter

requested.

Table 4 shows the parameters that can be retrieved and when the information should be retrieved.

The table also identifies which information can be retrieved when using H.323 and which

information can be retrieved using SIP.

Table 4. Retrievable Call Information

. Datatype in
Parameter Set ID and Paramter ID(s) When Inform_atlon value_buf Field H.323/
Can Be Retrieved SIP
(see Note 1)
Call ID IPSET_CALLINFO Any state after String, max. length | H.323
e IPPARM_CALLID Offered or =|P_CALLID_ only
Proceeding LENGTH
(16 bytes)
Call Duration | IPSET_CALLINFO After Disconnected, | Unsigned long H.323
¢ IPPARM_CALL_DURATION before Idle. (value in ms) only
Conference IPSET_CONFERENCE Any state after Uint[8] H.323
Goal * IPPARM_CONFERENCE_GOAL | Offered or only
Proceeding.
Conference IPSET_CONFERENCE Any state after char*, max. length H.323
ID « IPPARM_CONFERENCE_ID Offered or =IP_CONFER only
Proceeding. ENCE_ID_
LENGTH (16)
Display IPSET_CALLINFO Any state after char*, max. length both
Information * IPPARM_DISPLAY Offered or = MAX_DISPLAY_
Proceeding. LENGTH (82), null-
terminated
Notes:
1. This field is the value_buf field in the GC_PARM_DATA structure associated with the GCEV_EXTENSIONCMPLT event
generated in response to the gc_Extension( ) function requesting the information.
2. Display information, user to user information, phone list, nonstandard data, vendor information and nonstandard control
information, and H221 nonstandard information may not be present.
3.Vendor information is included in a Q931 SETUP message received from a peer.
4. The nonstandard object id and nonstandard data parameters described here refer to nonstandard data contained in a
SETUP message for example. This should not be confused with the nonstandard data included in protocol messages sent
using gc_Extension( ) which can be retrieved from the metaevent associated with a GCEV_EXTENSION event.

Global Call IP Technology Guide — January 2004

51




IP-Specific Operations

52

Table 4. Retrievable Call Information (Continued)

In

Datatype in

Parameter Set ID and Paramter ID(s) When Inform.atlon value_buf Field H.323/
Can Be Retrieved SIP
(see Note 1)
Nonstandard | IPSET_NONSTANDARDCONTROL | See Section 4.4.1, | char*, max. length H.323
Control « IPPARM_NONSTANDARDDATA_ | “Retrieving = MAX_NS_PARM_ | only
DATA Nonstandard Data DATA_LENGTH
« IPPARM_NONSTANDARDDATA_ | F"om Protocol (128)
OBJID Messages When char*, max. length
or Using H.323”, on = MAX_NS_PARM_
page 53 for more OBJID_LENGTH
Nonstandard | IPSET_NONSTANDARDDATA See Section 4.4.1, char*, max. length H.323
Data o IPPARM_NONSTANDARDDATA_ | “Retrieving = MAX_NS_PARM_ | only
DATA Nonstandard Data DATA_LENGTH
« IPPARM_NONSTANDARDDATA_ | From Protocol (128)
OBJID Messages When char*, max. length
or Using H.323", on = MAX_NS_PARM_
page 53 for more OBJID_LENGTH
* IPPARM_H221NONSTANDARD | information. (40)
Phone List IPSET_CALLINFO Any state after char*, both
e IPPARM_PHONELIST Offered or max. length = 131
Proceeding.
User to User | IPSET_CALLINFO Any state after char*, max. length = | H.323
Information « IPPARM_USERUSER_INFO Offered or MAX_USERUSER_ | only
Proceeding. INFO_LENGTH
(131 octets)
Vendor IPSET_VENDORINFO Any state after char*, max. length= | H.323
Product ID « IPPARM_VENDOR_PRODUCT_ | Offered or MAX_PRODUCT_ | only
D Proceeding. ID_LENGTH (32)
Vendor IPSET_VENDORINFO Any state after char*, max. length H.323
Version ID « IPPARM_VENDOR_VERSION_ | Offered or = MAX_VERSION_ | only
D Proceeding. ID_LENGTH (32)
H.221 IPSET_VENDORINFO Any state after IP_H221_ H.323
Nonstandard o IPPARM_H221NONSTD Offered or NONSTANDARD only
Information Proceeding. (see note 4)
Notes:

1. This field is the value_buf field in the GC_PARM_DATA structure associated with the GCEV_EXTENSIONCMPLT event
generated in response to the gc_Extension( ) function requesting the information.
2. Display information, user to user information, phone list, nonstandard data, vendor information and nonstandard control
information, and H221 nonstandard information may not be present.

3.Vendor information is included in a Q931 SETUP message received from a peer.
4. The nonstandard object id and nonstandard data parameters described here refer to nonstandard data contained in a
SETUP message for example. This should not be confused with the nonstandard data included in protocol messages sent
using gc_Extension( ) which can be retrieved from the metaevent associated with a GCEV_EXTENSION event.

If an attempt is made to retrieve information in a state in which the information is not available, no
error is generated. The GC_PARM_BLK associated with the generated
GCEV_EXTENSIONCMPLT event will not contain the requested information. If phone list and
display information are requested and only phone list is available, then only phone list information
is available in the GC_PARM_BLK. An error is generated if there is an internal error (such as
memory cannot be allocated).

Global Call IP Technology Guide — January 2004




4.4.1

Note:

4.4.2

44.2.1

IP-Specific Operations

All call information is available until a gc_ReleaseCall( ) is issued.

Retrieving Nonstandard Data From Protocol Messages
When Using H.323

Any Q.931 message can include nonstandard data. The application can use the gc_Extension( )
function with and ext_id of IPEXTID_GETINFO to retrieve the data while a call is in any state.
The target_type should be GCTGT_GCLIB_CRN and the target_id should be the actual CRN.
The information is included with the corresponding GCEV_EXTENSIONCMPLT termination
event.

When retrieving nonstandard data, it is only necessary to specify
IPPARM_NONSTANDARDDATA_DATA in the extension request. It is not necessary to specify
IPPARM_NONSTANDARDDATA_OBIJID or IPPARM_H221NONSTANDARD. The call control
library ensures that the GCEV_EXTENSIONCMPLT event includes the correct information.

Example of Retrieving Call-Related Information

The following code demonstrates how to do the following:

e create a structure that identifies which information should be retrieved, then use the
gc_Extension( ) with an extID of IPEXTID_GETINFO to issue the request

e cxtract the data from a structure associated with the GCEV_EXTENSIONCMPLT event
received as a termination event to the gc_Extension( ) function

Similar code can be used when using SIP, except that the code must include only information
parameters supported by SIP (see Table 4, “Retrievable Call Information”, on page 51).

Specifying Call-Related Information to Retrieve

The following function shows how an application can construct and send a request to retrieve call-
related information.

int getInfoAsync (CRN crn)

{
GC_PARM_BLKP gcParmBlk = NULL;
GC_PARM BLKP retParmBlk;
int frc;

frc = gc_util_insert_parm val (&gcParmBlk,
IPSET CALLINFO,
IPPARM_ PHONELIST,
sizeof (int),1);
if (GC_SUCCESS != frc)

{
}

return GC_ERROR;

Global Call IP Technology Guide — January 2004 53



IP-Specific Operations

54

frc = gc_util_insert_parm val (&gcParmBlk,
IPSET CALLINFO,
IPPARM_CALLID,
sizeof (int), 1) ;

if (GC_SUCCESS != frc)

{

return GC_ERROR;

frc = gc_util_insert_parm_ val (&gcParmBlk,
IPSET CONFERENCE,

IPPARM_ CONFERENCE_ID,

sizeof (int),1);
if (GC_SUCCESS != frc)

{

return GC ERROR;

frc = gc_util_insert_parm val (&gcParmBlk,
IPSET CONFERENCE,

IPPARM_CONFERENCE_GOAL,

sizeof (int),1);
if (GC_SUCCESS != frc)

{

return GC_ERROR;

frc = gc_util_insert_parm_ val (&gcParmBlk,
IPSET CALLINFO,
IPPARM DISPLAY,
sizeof (int),1);

if (GC_SUCCESS != frc)

{

return GC ERROR;

frc = gc_util_insert_parm val (&gcParmBlk,
IPSET CALLINFO,

IPPARM_USERUSER_INFO,

sizeof (int),1);

if (GC_SUCCESS != frc)

{

return GC ERROR;

frc = gc_util_insert_parm val (&gcParmBlk,
IPSET VENDORINFO,

IPPARM_VENDOR_PRODUCT_ID,

sizeof (int), 1) ;
if (GC_SUCCESS != frc)

{

return GC_ERROR;

frc = gc_util_insert_parm_ val (&gcParmBlk,
IPSET VENDORINFO,

IPPARM_VENDOR_VERSION_ID,

sizeof (int),1);
if (GC_SUCCESS != frc)

{

return GC ERROR;

Global Call IP Technology Guide — January 2004



I n ® IP-Specific Operations

frc = gc_util_insert_parm val (&gcParmBlk,
IPSET_VENDORINFO,
IPPARM H221NONSTD,
sizeof (int),1);

if (GC_SUCCESS != frc)

{
}

return GC_ERROR;

frc = gc_util_insert_ parm val (&gcParmBlk,/* NS Data: setting this IPPARM implies
retrieval of the complete element */
IPSET_NONSTANDARDDATA,
IPPARM NONSTANDARDDATA DATA,
sizeof (int),1);
if (GC_SUCCESS != frc)

{
}

return GC_ERROR;

frc = gc_util_insert_parm val (&gcParmBlk, /* NS Control: setting this IPPARM implies
retrieval of the complete element */
IPSET_ NONSTANDARDCONTROL,
IPPARM NONSTANDARDDATA DATA,
sizeof (int),1);
if (GC_SUCCESS != frc)

{
}

return GC_ERROR;

frc = gc_Extension (GCTGT_GCLIB_CRN,
crn,
IPEXTID_GETINFO,
gcParmBlk,
&retParmBlk,
EV_ASYNC) ;

if (GC_SUCCESS != frc)

{
}

return GC_ERROR;

gc_util delete_parm blk (gcParmBlk) ;
return GC_SUCCESS;

4.4.2.2 Extracting Call-Related Information Associated an Extension Event

The following code demonstrates how an application can extract call information when a
GCEV_EXTENSIONCMPLT event is received as a result of a request for call-related information.

int OnExtensionAndComplete (GC_PARM BLKP parm_blk,CRN crn)

{

GC_PARM DATA *parmp = NULL;
parmp = gc_util next parm(parm_blk,parmp) ;
if (!parmp)

{
}

return GC_ERROR;

while (NULL != parmp)

{

switch (parmp->set_ ID)

case IPSET_CALLINFO:
switch (parmp->parm ID)

{

Global Call IP Technology Guide — January 2004 55



IP-Specific Operations I n

case IPPARM DISPLAY:
if (parmp->value_size != 0)

{
}

break;

printf ("\tReceived extension data DISPLAY: %s\n", parmp->value_ buf);

case IPPARM CALLID:

/* print the Call ID in parmp->value buf as array of bytes */
for (int count = 0; count < parmp->value_size; count++)

{

printf ("0x%2X ", value_buf [count]) ;
}
break;

case IPPARM USERUSER_INFO:
if (parmp->value_size != 0)

{
}

break;

printf ("\tReceived extension data UUI: %s\n", parmp->value_buf);

case IPPARM PHONELIST:
if (parmp->value_size != 0)
{
printf ("\tReceived extension data PHONELIST: %s\n",
parmp->value_buf) ;

}

break;

default:
printf ("\tReceived unknown CALLINFO extension parmID %d\n",
parmp->parm_ID) ;
break;

}/* end switch (parmp->parm ID) for IPSET CALLINFO */
break;

case IPSET_CONFERENCE:
switch (parmp->parm_ID)
{
case IPPARM CONFERENCE_ GOAL:
if (parmp->value_size != 0)
{
printf ("\tReceived extension data IPPARM_CONFERENCE GOAL: %d\n",
(unsigned int) (* (parmp->value_buf))) ;

}

break;

case IPPARM CONFERENCE ID:
if (parmp->value_size != 0)
{
printf ("\tReceived extension data IPPARM_CONFERENCE ID: %s\n",
parmp->value_buf) ;

}

break;

default:
printf ("\tReceived unknown CONFERENCE extension parmID %d\n",
parmp->parm_ID) ;
break;

}

break;

56 Global Call IP Technology Guide — January 2004



u
IP-Specific Operations

case IPSET_VENDORINFO:
switch (parmp->parm ID)

{

case IPPARM_VENDOR_PRODUCT ID:
if (parmp->value_size != 0)

{
printf ("\tReceived extension data PRODUCT ID %$s\n", parmp->value_buf);
}

break;

case IPPARM_VENDOR_VERSION_ID:
if (parmp->value_size != 0)

{
printf ("\tReceived extension data VERSION_ID %s\n", parmp->value buf);
}

break;

case IPPARM H221NONSTD:

{

if (parmp->value_size == sizeof (IP_H221NONSTANDARD) )

IP_H221NONSTANDARD *pH221NonStandard;
pH221NonStandard = (IP_H221NONSTANDARD *) (& (parmp->value_buf)) ;

printf ("\tReceived extension data VENDOR H221NONSTD:
CC=%d, Ext=%d, MC=%d\n",
pH221NonStandard->country_code,
pH221NonStandard->extension,
pH221NonStandard->manufacturer_code) ;

break;

default:
printf ("\tReceived unknown VENDORINFO extension parmID %d\n",

parmp->parm_ID) ;

break;
}/* end switch (parmp->parm ID) for IPSET VENDORINFO */

break;

case IPSET_NONSTANDARDDATA:
switch (parmp->parm_ID)

{

case IPPARM_NONSTANDARDDATA DATA:
printf ("\tReceived extension data (NSDATA) DATA: %s\n", parmp->value buf);

break;
case IPPARM_NONSTANDARDDATA OBJID:
printf ("\tReceived extension data (NSDATA) OBJID: %$s\n", parmp->value_buf);

break;

case IPPARM_ H221NONSTANDARD:

{

if (parmp->value_size == sizeof (IP_H221NONSTANDARD) )

{

IP_H221NONSTANDARD *pH221NonStandard;

pH221NonStandard = (IP_H221NONSTANDARD *) (& (parmp->value_buf)) ;

printf ("\tReceived extension data (NSDATA) h221:CC=%d, Ext=%d, MC=%d\n",
pH221NonStandard->country_code,
pH221NonStandard->extension,
pH221NonStandard->manufacturer_code) ;

break;

Global Call IP Technology Guide — January 2004

57



IP-Specific Operations I n o

default:
printf ("\tReceived unknown (NSDATA) extension parmID %d\n",

parmp->parm_ID) ;
break;

}

break;

case IPSET_ NONSTANDARDCONTROL:
switch (parmp->parm_ID)
{
case IPPARM NONSTANDARDDATA DATA:
printf ("\tReceived extension data (NSCONTROL) DATA: %s\n",
parmp->value buf) ;
break;

case IPPARM NONSTANDARDDATA OBJID:
printf ("\tReceived extension data (NSCONTROL) OBJID: %s\n",
parmp->value_buf) ;
break;

case IPPARM H221NONSTANDARD:

{

if (parmp->value_size == sizeof (IP_H221NONSTANDARD) )
{
IP_H221NONSTANDARD *pH221NonStandard;
pH221NonStandard = (IP_H221NONSTANDARD *) (&(parmp->value_buf)) ;
printf ("\tReceived extension data (NSCONTROL) h221:CC=%d, Ext=%d, MC=%d\n",
pH221NonStandard->country_code,
pH221NonStandard->extension,
pH221NonStandard->manufacturer_code) ;

}

break;

default:
printf ("\tReceived unknown (NSCONTROL) extension parmID %d\n",

parmp->parm_ID) ;
break;

}

break;

case IPSET_MSG_Q931:
switch (parmp->parm_ID)
{
case IPPARM MSGTYPE:
switch ((*(int *) (parmp-s>value_ buf)))
{
case IP_MSGTYPE Q931 FACILITY:
printf ("\tReceived extension data IP_MSGTYPE_Q931 FACILITY\n");

break;

default:
printf ("\tReceived unknown MSG_Q931 extension parmID %d\n",

parmp->parm_ID) ;

break;
} /* end switch ((int) (parmp->value_buf)) */
break;
}/* end switch (parmp->parm ID) for IPSET MSG Q931 */

break;

58 Global Call IP Technology Guide — January 2004



u
I nt6| o IP-Specific Operations

case IPSET MSG H245:
switch (parmp->parm ID)

{
case IPPARM_MSGTYPE:
switch ((*(int *) (parmp->value_buf)))

{

case IP_MSGTYPE H245 INDICATION:
printf ("\tReceived extension data IP_MSGTYPE H245 INDICATION\n");
break;

default:
printf ("\tReceived unknown MSG_H245 extension parmID %d\n",
parmp->parm_ID) ;
break;
}/* end switch ((int) (parmp->value buf)) */
break;
}/* end switch (parmp->parm ID) for IPSET MSG H245 */
break;

default:
printf ("\t Received unknown extension setID %d\n",parmp->set_ID);
break;
}/* end switch (parmp->set ID) */

parmp = gc_util next_ parm(parm_blk,parmp) ;

}

return GC_SUCCESS;

}
Note: TPPARM_CALLID is a set of bytes and should not be interpreted as a string.

4.5 Setting and Retrieving SIP Message Information
Fields

Global Call supports the setting and retrieving of SIP message information fields in the INVITE
message. This feature is described in the following topics:

¢ Enabling Access to SIP Message Information Fields
e Supported SIP Message Information Fields
¢ Setting a SIP Message Information Field

¢ Retrieving a SIP Message Information Field

4.5.1 Enabling Access to SIP Message Information Fields

The ability to set and retrieve SIP message information fields is an optional feature that can be
enabled and disabled. The feature must be enabled at the time the gc_Start( ) function is called.
The INIT_IPCCLIB_START_DATA( ) and INIT_IP_VIRTBOARD( ) must be called to
populate the [IPCCLIB_START_DATA and IP_VIRTBOARD structures with default values.

The default value of the sip_msginfo_mask field in the IP_VIRTBOARD structure disables access
to SIP message information fields; therefore, the default sip_msginfo_mask field value must be
overridden with a value of IP_SIP_MSGINFO_ENABLE for each IPT board device on which the
feature is to be enabled. The following code provides an example:

Global Call IP Technology Guide — January 2004 59



IP-Specific Operations

4.5.2

Note:

INIT IPCCLIB_START_DATA (&ipcclibstart, 2, ip_virtboard);
INIT_IP_VIRTBOARD (&ip_virtboard[0]) ;

u
I n ®
INIT IP_VIRTBOARD (&ip virtboard([1]) ;

ip virtboard[0] .sip msginfo_mask IP_SIP_MSGINFO_ENABLE; /* override SIP message default */
ip_virtboard[1l] .sip_msginfo_mask IP_SIP MSGINFO ENABLE; /* override SIP message default */
Setting the sip_msginfo_mask field to a value of I[P_SIP_MSGINFO_ENABLE enables setting or
retrieving all SIP message information fields collectively. Enabling and disabling access to
individual SIP message information fields is not supported.

Supported SIP Message Information Fields

Table 5 shows the supported SIP message information fields for INVITE messages. The fields are
set in a GC_PARM_BLK structure associated with the ge_SetUserInfo( ) function and retrieved
from a GC_PARM_BLK structure associated with a GCEV_OFFERED event. Table 5 also
indicates the relevant parameter set ID and parameter ID for each supported field and the defines
that identify the maximum allowable length for each field.

Table 5. Supported SIP Message Information Fields

4.5.3

60

Note:

Note:

Field Name Set/Get Set ID Parameter ID Maximum Length Define

Request URI Set and Get | IPSET_ IPPARM_ IP_REQURI_MAXLEN
SIP_MSGINFO | REQUEST_URI

Contact URI Get only IPSET_ IPPARM_ IP_CONTACT_URI_MAXLEN
SIP_MSGINFO | CONTACT_URI

From Display Set and Get | IPSET_ IPPARM_ IP_FROM_DISPLAY_MAXLEN

String SIP_MSGINFO | FROM_DISPLAY

To Display Set and Get | IPSET_ IPPARM_ IP_TO_DISPLAY_MAXLEN

String SIP_MSGINFO | TO_DISPLAY

ContactDisplay | Setand Get | IPSET_ IPPARM_ IP_CONTACT_DISPLAY_

String SIP_MSGINFO | CONTACT_DISPLAY | MAXLEN

Note: These parameters are character arrays with the maximum size of the array (including the NULL) equal

to the corresponding maximum length define.

The From URI and To URI message fields are not part of this feature but are accessible using other

Global Call functions. For example, the gc_GetCalllnfo( ) function can be used to retrieve the
From URI and To URI message fields.

Setting a SIP Message Information Field

Use the ge_SetUserInfo( ) function to set the value of a SIP message information field. The
information is not transmitted until the gc_MakeCall( ) function is issued.

Using the ge_SetUserInfo( ) function to set SIP message information requires a detailed
knowledge of the SIP protocol and its relationship to Global Call. The application has the
responsibility to ensure that the correct SIP message information is set before calling the
appropriate Global Call function.

Global Call IP Technology Guide — January 2004




4.5.4

Note:

IP-Specific Operations

Calling the gc_SetUserInfo( ) function results in the following behavior:

¢ SIP message information fields that are set do not take effect until the gc_MakeCall( )
function is issued.

¢ Using the gc_SetUserInfo( ) does not affect incoming SIP messages on the same channel.
* Any SIP message information fields that are set only affect the next Global Call function call.

¢ The gc_SetUserInfo( ) function fails with GC_ERROR if the sip_msginfo_mask field in the
IP_VIRTBOARD structure is not set to IP_SIP_MSGINFO_ENABLE. When
gc_ErrorInfo( ) is called, the error code is IPERR_BAD_PARAM.

The following code shows how to set the Request URI information field before issuing
gc_MakeCall( ). This translates to a SIP INVITE message with the specified request-URI.

#include "gclib.h"

GC_PARM BLK *pParmBlock = NULL;
char *pDestAddrBlk = "1111@127.0.0.1\0";
char *pReqURI = "gip:2222@127.0.0.1\0";

/* Insert SIP request URI field */
/* Add 1 to strlen for the NULL termination character */
gc_util_insert_parm ref (&§pParmBlock,
IPSET SIP_MSGINFO,
IPPARM REQUEST URTI,
(unsigned char)strlen(pReqURI) + 1,
pReqURI) ;

/* Set Call Information */
gc_SetUserInfo (GCTGT GCLIB_CHAN, ldev, pParmBlock, GC_SINGLECALL) ;

gc_util_delete_parm blk (pParmBlock) ;

/* set GCLIB_ADDRESS BLK with destination string & type*/
strcpy (gemkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE TRANSPARENT;

/* calling the function with the MAKECALL BLK,

the INVITE "To" field will be: 1111@127.0.0.1

the INVITE RequestURI will be: sip:2222@127.0.0.1

*/

gc_MakeCall (ldev, &crn, NULL, &gcmkbl, MakeCallTimeout, EV_ASYNC) ;

The information fields that can be set are described in Table 5, “Supported SIP Message
Information Fields”, on page 60.

Retrieving a SIP Message Information Field

SIP information is reported to the application via standard Global Call events that are processed
using the gc_GetMetaEvent( ) function.

The application must retrieve the necessary SIP message information by copying it into its own
buffer before the next call to gc_GetMetaEvent( ). Once the next gc_GetMetaEvent( ) call is
issued, the SIP information will no longer be available.

Global Call IP Technology Guide — January 2004 61



u
IP-Specific Operations I nt9| o

The following code demonstrates how to copy the Request URI information field from the
associated GCEV_OFFERED event. The GC_PARM_BLK structure containing the information
field is referenced via the extevtdatap pointer in the METAEVENT structure. In this particular
scenario, the GCEV_OFFERED event is generated as a result of receiving an INVITE message.

#include "gclib.h"

METAEVENT metaevt;

GC_PARM BLK *pParmBlock = NULL;

GC_PARM_DATA ‘*parmp = NULL;

char reqestURI [IP_REQUEST_URI_MAXLEN] ;

/* Get Meta Event */
gc_GetMetaEvent (&metaevt) ;

switch(metaevt->evttype)

{

case GCEV_OFFERED:
currentCRN = metaevt->crn;
pParmBlock = (GC_PARM BLK*) (metaevt->extevtdatap) ;
parmp = NULL;

/* going thru each parameter block data*/
while ((parmp = gc_util_next_parm(pParmBlock,parmp)) !

{

Il
o

switch (parmp->set_ID)

{
/* Handle SIP message information */
case IPSET_ SIP MSGINFO:
switch (parmp->parm ID)

{

/* Copy Request URI from parameter block */

/* NOTE: value_size = string length + 1 (for the NULL termination) */
case IPPARM REQUEST URI:

strncpy (requestURI, parmp->value buf, parmp->value_size);
break;

break;

The information fields that can be retrieved are described in Table 5, “Supported SIP Message
Information Fields”, on page 60.

4.6 Handling DTMF

DTMF handling is described under the following topics:
¢ Specifying DTMF Support
¢ Getting Notification of DTMF Detection
* Generating DTMF

62 Global Call IP Technology Guide — January 2004



INlal.

4.6.1

Note:

IP-Specific Operations

Specifying DTMF Support

Global Call can be used to configure which DTMF modes (UII Alphanumeric, RFC 2833, or
Inband) are supported by the application. The DTMF mode can be specified:

e for all line devices simultaneously by using ge_SetConfigData( )

¢ on a per-line device basis by using ge_SetUserInfo( ) with a duration parameter value of
GC_ALLCALLS

* on a per-call basis by using gc_SetUserInfo( ) with a duration parameter value of
GC_SINGLECALL

The GC_PARM_BLK associated with the gc_SetConfigData( ) or gc_SetUserInfo( ) function
should be used to discover which DTMF modes are supported. The GC_PARM_BLK should
include the IPSET_DTMEF parameter set ID and the [IPPARM_SUPPORT_DTMF_BITMASK
parameter ID, which specifies the DTMF transmission mode(s), with one of the following values:

IP_ DTMF_TYPE_ALPHANUMERIC (default)
For H.323, DTMF digits are sent and received in H.245 User Input Indication (UII)
Alphanumeric messages.
For SIP, this value is not supported, and one of the following two options must therefore be
explicitly specified.

IP_DTMF_TYPE_INBAND_RTP
DTMF digits are sent and received inband via standard RTP transcoding.

IP_DTMF_TYPE_RFC_2833
DTMF digits are send and received in the RTP stream as defined in RFC 2833.

SIP applications must change the default signaling mode to either in-band or RFC2833 prior to
calling gc_MakeCall( ), gc_AnswerCall( ), gc_AcceptCall( ), and gc_CallAck( ). If a SIP
application does not make this change, the functions will fail with an
IPERR_NO_DTMF_CAPABILITY.

The following code snippet shows how to specify the out-of-band signaling mode:

{

GC_PARM BLKP parmblkp = NULL;
gc_util_insert_parm val (&parmblkp,
IPSET_DTMF,
IPPARM SUPPORT DTMF_BITMASK,
sizeof (char),
IP_DTMF_TYPE_ INBAND RTP) ;
if (gc_SetUserInfo (GCTGT_GCLIB_CHAN, port[callindex].ldev,
parmblkp, GC ALLCALLS) != GC_SUCCESS) {

// gc_SetUserInfo returned an error

}

gc_util_delete_parm blk (parmblkp) ;

The IPPARM_SUPPORT_DTMF_BITMASK can only be replaced; it cannot be modified. For
each gc_SetConfigData( ) or gc_SetUserInfo( ) call, the
IPPARM_SUPPORT_DTMF_BITMASK parameter is overwritten.

Global Call IP Technology Guide — January 2004 63



IP-Specific Operations

64

intel.

The mode in which DTMF is transmitted (Tx) is determined by the intersection of the mode values
specified by the IPPARM_SUPPORT_DTMF_BITMASK and the receive capabilities of the
remote endpoint. When this intersection includes multiple modes, the selected mode is based on

the following priority:
1. RFC 2833
2. H.245 UII Alphanumeric (H.323 only)
3. Inband

The mode in which DTMEF is received (Rx) is based on the selection of transmission mode from the
remote endpoint; however, RFC 2833 can only be received if RFC 2833 is specified by the

IPPARM_SUPPORT_DTMF_BITMASK parameter ID.

Table 6 summarizes the DTMF mode settings and associated behavior.

Table 6. Summary of DTMF Mode Settings and Behavior

supported by remote
endpoint, otherwise
Ull Alphanumerict

IP_DTMF_TYPE_ IP_DTMF_TYPE_ IP_DTMF_TYPE_ Transmit (Tx) Receive (Rx)
RFC_2833 ALPHANUMERICt INBAND DTMF Mode DTMF Mode
1 (enabled) 0 (disabled) 0 (disabled) RFC 2833 if RFC 2833, Ull

Alphanumerict or
Inband as chosen
by the remote
endpoint

0 (disabled) 1 (enabled) 0 (disabled) Ull Alphanumerict

Ull Alphanumerict
or Inband as
chosen by the
remote endpoint

0 (disabled) 0 (disabled) 1 (enabled) Inband

Ull Alphanumerict
or Inband as
chosen by the
remote endpoint

0 (disabled) 1 (enabled) 1 (enabled) Ull Alphanumerict

Ull Alphanumerict
or Inband as
chosen by the
remote endpoint

1 (enabled) 1 (enabled) 0 (disabled) RFC 2833 if
supported by remote
endpoint, otherwise
Ull Alphanumerict

RFC 2833, Ull
Alphanumerict or
Inband as chosen
by the remote
endpoint

1 Applies to H.323 only.

Global Call IP Technology Guide — January 2004




intel.

IP-Specific Operations

Table 6. Summary of DTMF Mode Settings and Behavior (Continued)

4.6.2

IP_DTMF_TYPE_ | IP_DTMF_TYPE_ IP_DTMF_TYPE_ Transmit (Tx) Receive (Rx)
RFC_2833 ALPHANUMERICY INBAND DTMF Mode DTMF Mode
1 (enabled) 0 (disabled) 0 (disabled) RFC 2833 if RFC 2833, Ull
supported by remote | Alphanumerict or
endpoint, otherwise Inband as chosen
Ull Alphanumerict by the remote
endpoint
1 (enabled) 0 (disabled) 1 (enabled) RFC 2833 if RFC 2833, Ull
supported by the Alphanumerict or
remote endpoint, Inband as chosen
otherwise Inband by the remote
endpoint
1 (enabled) 1 (enabled) 1 (enabled) RFC 28383 if RFC 2833, Ull
supported by the Alphanumerict or
remote endpoint, Inband as chosen
otherwise UlI by the remote
Alphanumerict endpoint

T Applies to H.323 only.

When using RFC 2833, the payload type is specified using the IPSET_DTMEF parameter set ID and
the IPPARM_DTMF_RFC2833_PAYLOAD_TYP parameter ID with one of the following values:

e [P_USE_STANDARD_PAYLOADTYPE (default payload type, 101)
* Any value in the range 96 to 127 (dynamic payload type)

Getting Notification of DTMF Detection

Once DTMF support has been configured (see Section 4.6.1, “Specifying DTMF Support”, on
page 63), the application can specify which DTMF modes will provide notification when DTMF
digits are detected. The events for this notification must be enabled; see Section 4.10, “Enabling
and Disabling Unsolicited Notification Events”, on page 71.

Once the events are enabled, when an incoming DTMF digit is detected, the application receives a
GCEV_EXTENSION event, with an extID of IPEXTID_RECEIVE_DTMF. The
GCEV_EXTENSION event contains the digit and the method. The GC_PARM_BLK associated
with the event contains the IPSET_DTMF parameter set ID and the following parameter ID:

IPPARM_DTMF_ALPHANUMERIC
For H.323, DTMF digits are received in H.245 User Input Indication (UII) alphanumeric
messages. The parameter value is of type IP_DTMF_DIGITS. See Section ,
“IP_DTMEF_DIGITS”, on page 181 for more information. For SIP, this parameter is not
supported.

Global Call IP Technology Guide — January 2004 65




u
IP-Specific Operations I nt9| o

4.6.3

4.7

66

Generating DTMF

Once DTMF support has been configured (see Section 4.6.1, “Specifying DTMF Support”, on
page 63), the application can use the gc_Extension( ) function to generate DTMF digits. The
relevant gc_Extension( ) function parameter values in this context are:

e target_type should be GCTGT_GCLIB_CRN
e target_id should be the actual CRN
e ext_ID should be IPEXTID_SEND_DTMF

The GC_PARM_BLK pointed to by the parmblkp parameter must contain the IPSET_DTMF
parameter set ID and the following parameter ID:

IPPARM_DTMF_ALPHANUMERIC
For H.323, specifies that DTMF digits are to be sent in H.245 User Input Indication (UII)
Alphanumeric messages. For SIP, this parameter is not supported.

Getting Media Streaming Status and Negotiated
Coder Information

The application can receive notification of changes in the status (connection and disconnection) of
media streaming in the transmit and receive directions. When notification of the connection of the
media stream in either direction is received, information about the coders negotiated for that
direction is also available.

The events for this notification must be enabled; see Section 4.10, “Enabling and Disabling
Unsolicited Notification Events”, on page 71. Once the events are enabled, when a media
streaming connection state changes, the application receives a GCEV_EXTENSION event. The
EXTENSIONEVTBLK structure pointed to by the extevtdatap pointer within the
GCEV_EXTENSION event will contain the following information:

extID
IPEXTID_MEDIAINFO

parmblk
A GC_PARM_BLK containing the protocol connection status with the
IPSET_MEDIA_STATE parameter set ID and one of the following parameter IDs:

e [PPARM_TX_CONNECTED - Media streaming has been initiated in transmit direction.
The datatype of the parameter is IP_CAPABILITY and contains the coder configuration
that resulted from the capability exchange with the remote peer.

¢ [PPARM_TX_DISCONNECTED - Media streaming has been terminated in transmit
direction. The parameter value is not used.

e [PPARM_RX_CONNECTED — Media streaming has been initiated in receive direction.
The datatype of the parameter is IP_CAPABILITY and contains the coder configuration
that resulted from the capability exchange with the remote peer.

¢ [PPARM_RX_DISCONNECTED - Media streaming has been terminated in receive
direction. The parameter value is not used.

Global Call IP Technology Guide — January 2004



4.9

IP-Specific Operations

Getting Notification of Underlying Protocol State
Changes

The application can receive notification of intermediate protocol signaling state changes for both
H.323 and SIP. The events for this notification must be enabled; see Section 4.10, “Enabling and
Disabling Unsolicited Notification Events”, on page 71.

Once these events are enabled, when a protocol state change occurs, the application receives a
GCEV_EXTENSION event. The EXTENSIONEVTBLK structure pointed to by the extevtdatap
pointer within the GCEV_EXTENSION event will contain the following information:

extID
IPEXTID_IPPROTOCOL_STATE

parmblk
A GC_PARM_BLK containing the protocol connection status with the
IPSET_IPPROTOCOL_STATE parameter set ID and one of the following parameter IDs:

¢ [PPARM_SIGNALING_CONNECTED - The signaling for the call has been established
with the remote endpoint. For example, in H.323, a CONNECT message was received by
the caller or a CONNECTACK message was received by the callee.

e [PPARM_SIGNALING_DISCONNECTED - The signaling for the call has been
terminated with the remote endpoint. For example, in H.323, a RELEASE message was
received by the terminator or a RELEASECOMPLETE message was received by peer.

¢ [PPARM_CONTROL_CONNECTED - Media control signaling for the call has been
established with the remote endpoint. For example, in H.323, an OpenLogicalChannel
message (for the receive direction) or an OpenLogicalCahnnelAck message (for the
transmit direction) was received.

¢ [PPARM_CONTROL_DISCONNECTED - Media control signaling for the call has been
terminated with the remote endpoint. For example, in H.323, an EndSession message was
received.

Note: The parameter value field in this GC_PARM_BLK in each case is unused (NULL).

Sending Protocol Messages

The following message types are supported:
¢ Nonstandard User Input Indication (UII) Message (H.245)
¢ Nonstandard Facility Messages (Q.931)

* Nonstandard Registration Messages

Table 7 summarizes the set IDs and parameter IDs used to send the messages and describes the call
states in which each message should be sent.

Global Call IP Technology Guide — January 2004 67



u
IP-Specific Operations I nt9| o

Table 7. Summary of Protocol Messages that Can be Sent

Type Set ID Parameter ID When Message Should be Sent
Nonstandard UlI IPSET_MSG_H245 | IPPARM_MSGTYPE (set | Only when call is in Connected
Message (H.245) to IP_MSGTYPE_H245_ | state

INDICATION)
Nonstandard Facility | IPSET_MSG_Q931 | IPPARM_MSGTYPE (set | In any call state
Message (Q.931) to IP_MSGTYPE_Q931_
FACILITY)
Nonstandard IPSET_MSG_RAS | IPPARM_MSGTYPE (set
Registration to IP_MSGTYPE_REG_
Message NONSTD

4.9.1 Nonstandard Ull Message (H.245)

To send nonstandard UII messages, use the gc_Extension( ) function in asynchronous mode with
an ext_id (extension ID) of IPEXTID_SENDMSG. The target_type should be
GCTGT_GCLIB_CRN and the target_id should be the actual CRN. At the sending end, reception
of a GCEV_EXTENSIONCMPLT event indicates that the message has been sent. At the receiving
end, a GCEV_EXTENSION event with the same ext_id value is generated. The extevtdatap field in
the METAEVENT structure for the GCEV_EXTENSION event is a pointer to an
EXTENSIONEVTBLK structure which in turn contains a GC_PARM_BLK that includes all of the
data in the message.

The relevant parameter set IDs and parameter IDs for this purpose are:

IPSET_MSG_H245
¢ JPPARM_MSGTYPE - Set to IP_MSGTYPE_H245_INDICATION

IPSET_NONSTANDARDDATA
with either:
e [JPPARM_NONSTANDARDDATA_DATA — Actual nonstandard data. The maximum
length is MAX_NS_PARM_DATA_LENGTH (128).
e [PPARM_NONSTANDARDDATA_OBJID - Object ID string. The maximum length is
MAX_NS_PARM_OBIJID_LENGTH (40).

or
e [JPPARM_NONSTANDARDDATA_DATA — Actual nonstandard data. The maximum
length is MAX_NS_PARM_DATA_LENGTH (128).
e JPPARM_H221NONSTANDARD — H.221 nonstandard data identifier.

Note: The message type IPPARM_MSGTYPE) is mandatory. At least one other information element
must be included.

See Section 8.12, “IPSET_MSG_Q931 Parameter Set”, on page 166 and Section 8.15,
“IPSET_NONSTANDARDDATA Parameter Set”, on page 168 for more information.

/* H245 UII with ObjId and data */

68 Global Call IP Technology Guide — January 2004



4.9.2

Note:

IP-Specific Operations

rc = gc_util_insert_parm val (&t_PrmBlkp, IPSET_ MSG_H245, IPPARM MSGTYPE,
sizeof (int), IP_MSGTYPE_H245_ INDICATION) ;

rc = gc_util_insert_parm ref (&t_PrmBlkp, IPSET NONSTANDARDDATA,
IPPARM NONSTANDARDDATA_ OBJID, ObjLen+l, ObjId);

rc = gc_util_insert_parm ref (&t_PrmBlkp, IPSET NONSTANDARDDATA,
IPPARM NONSTANDARDDATA DATA, DataLen+l, data);

if (rc == -1)

{
printf ("Fail to insert parm");
return -1;

}

else
printf ("Sending IP H245 UII Message");

gc_Extension (GCTGT _GCLIB_CRN,
crn,
IPEXTID_SENDMSG,
t_PrmBlkp,
&t_RetBlkp,
EV_ASYNC) ;

gc_util delete_parm(t_PrmBlkp) ;

Nonstandard Facility Message (Q.931)

Use the gc_Extension( ) function in asynchronous mode with an ext_id (extension ID) of
IPEXTID_SENDMSG to send nonstandard facility (Q.931 Facility) messages. The target_type
should be GCTGT_GCLIB_CRN and the target_id should be the actual CRN. At the sending end,
a GCEV_EXTENSIONCMPLT event is received indicating that the message has been sent. At the
receiving end, a GCEV_EXTENSION event with the same ext_id value is generated. The
extevtdatap field in the METAEVENT structure for the GCEV_EXTENSION event is a pointer to
an EXTENSIONEVTBLK structure which in turn contains a GC_PARM_BLK that includes all of
the data in the message.

The relevant parameter set IDs and parameter IDs are:

IPSET_MSG_Q931
¢ [PPARM_MSGTYPE - Set to IP_ MSGTYPE_Q931_FACILITY.

IPSET_NONSTANDARDDATA
with either:
e [JPPARM_NONSTANDARDDATA_DATA — Actual nonstandard data. The maximum
length is MAX_NS_PARM_DATA_LENGTH (128).
¢ [PPARM_NONSTANDARDDATA_OBIJID - Object ID string. The maximum length is
MAX_NS_PARM_OBIJID_LENGTH (40).
or
e [JPPARM_NONSTANDARDDATA_DATA — Actual nonstandard data. The maximum
length is MAX_NS_PARM_DATA_LENGTH (128).
e JPPARM_H22INONSTANDARD — H.221 nonstandard data identifier.

The message type (IPPARM_MSGTYPE) is mandatory. At least one other information element
must be included.

Global Call IP Technology Guide — January 2004 69



u
IP-Specific Operations I nt9| o

4.9.3

70

See Section 8.12, “IPSET_MSG_Q931 Parameter Set”, on page 166 and Section 8.15,
“IPSET_NONSTANDARDDATA Parameter Set”, on page 168 for more information.

The following code shows how to set up and send a Q.931 nonstandard facility message.

char ObjId[]= "1 22 333 4444";
char NSData[]= "DataField Facility";

GC_PARM_BLKP gcParmBlk = NULL;

gc_util_insert_parm val (&gcParmBlk,
IPSET MSG Q931,
IPPARM_MSGTYPE,
sizeof (int),
IP_MSGTYPE Q931 FACILITY) ;

gc_util_insert_parm ref (&gcParmBlk,
IPSET NONSTANDARDDATA,
IPPARM_NONSTANDARDDATA OBJID,
sizeof (ObjId),
ObjId) ;

gc_util_insert_parm ref (&gcParmBlk,
IPSET NONSTANDARDDATA,
IPPARM_NONSTANDARDDATA DATA,
sizeof (NSData),
NSData) ;

gc_Extension( GCTGT _GCLIB_CRN,
crn,
IPEXTID_SENDMSG,
gcParmBlk,
NULL,
EV_ASYNC) ;

gc_util_delete_parm blk (gcParmBlk) ;

Nonstandard Registration Message

Use the ge_Extension( ) function in asynchronous mode with an ext_id (extension ID) of
IPEXTID_SENDMSG to send nonstandard registration messages. The target_type should be
GCTGT_GCLIB_CRN and the target_id should be the actual CRN. At the sending end, a
GCEV_EXTENSIONCMPLT event is received indicating that the message has been sent. At the
receiving end, a GCEV_EXTENSION event with the same ext_id value is generated. The
extevtdatap field in the METAEVENT structure for the GCEV_EXTENSION event is a pointer to
an EXTENSIONEVTBLK structure which in turn contains a GC_PARM_BLK that includes all of
the data in the message.

The relevant parameter set IDs and parameter IDs for this purpose are:

IPSET_MSG_REGISTRATION
e IPPARM_MSGTYPE - Set to IP_ MSGTYPE_REG_NONSTD

IPSET_NONSTANDARDDATA
with either:
e [JPPARM_NONSTANDARDDATA_DATA — Actual nonstandard data. The maximum
length is MAX_NS_PARM_DATA_LENGTH (128).

Global Call IP Technology Guide — January 2004



u
I nu o IP-Specific Operations

¢ [PPARM_NONSTANDARDDATA_OBIJID - Object ID string. The maximum length is
MAX_NS_PARM_OBIJID_LENGTH (40).
or
e [JPPARM_NONSTANDARDDATA_DATA - Actual nonstandard data. The maximum
length is MAX_NS_PARM_DATA_LENGTH (128).
e JPPARM_H221NONSTANDARD - H.221 nonstandard data identifier.

Note: The message type IPPARM_MSGTYPE) is mandatory. At least one other information element
must be included.

See Section 8.13, “IPSET_MSG_REGISTRATION Parameter Set”, on page 167 and Section 8.15,
“IPSET_NONSTANDARDDATA Parameter Set”, on page 168 for more information.

494 Sending Facility, Ull, or Registration Message Scenario

The ge_Extension( ) function can be used to send H.245 UII messages or Q.931 nonstandard
facility messages. Figure 10 shows this scenario.

An H.245 UII message can only be sent when a call is in the connected state. A Q.931 nonstandard
facility message can be sent in any call state.

Figure 10. Sending Protocol Messages

Sender Receiver

Application GlobalCall GlobalCall Application

gc_Extension( )
(ip_ext = IPEXTID_SENDMSG)

o
|

~ GCEV_EXTENSIONCMPLT

------- > GCEV_EXTENSION
(ip_ext = IPEXTID_RECEIVEMSG)

o

410 Enabling and Disabling Unsolicited Notification
Events

The application can enable and disable the GCEV_EXTENSION events associated with
unsolicited notification including:

e DTMF digit detection
¢ underlying protocol (Q.931 and H.245) connection state changes
* media streaming connection state changes

e T.38 fax events

Global Call IP Technology Guide — January 2004 71



u
IP-Specific Operations I nt9| o

Enabling and disabling unsolicited GCEV_EXTENSION notification events is done by
manipulating the event mask, which has a default value of zero, using the gc_SetConfigData( )
function. The relevant gc_SetConfigData( ) function parameter values in this context are:

e target_type - GCTGT_CCLIB_NETIF
e target_id - IPT board device
e sijze - Set to a value of GC_VALUE_LONG

e target_datap - A pointer to a GC_PARM_BLK structure that contains the parameters to be
configured

The GC_PARM_BLK should contain the IPSET_EXTENSIONEVT_MSK parameter set ID and
one of the following parameter IDs:

GCACT_ADDMSK
Add an event to the mask

GCACT_SUBMSK
Remove an event from the mask

GCACT_SETMSK
Set the mask to a specific value

Possible values (corresponding to events that can be added or removed from the mask are) are:

EXTENSIONEVT_DTMF_ALPHANUMERIC
For notification of DTMF digits received in User Input Indication (UII) messages with
alphanumeric data. When using SIP, this value is not applicable.

EXTENSIONEVT_SIGNALING_STATUS
For notification of intermediate protocol state changes in signaling (in H.323, for example,
Q.931 Connected and Disconnected) and control (in H.323, for example, H.245 Connected
and Disconnected).

EXTENSIONEVT_STREAMING_STATUS
For notification of the status and configuration information of transmit or receive directions of
media streaming including: Tx Connected, Tx Disconnected, Rx Connected, and Rx
Disconnected.

EXTENSIONEVT_T38_STATUS
For notification of fax tones, capability frame type, info frame type, and HDLC frame type
detected on T.38 fax.

72 Global Call IP Technology Guide — January 2004



In

4.11

4.12

4.13

®

Note:

IP-Specific Operations

Configuring the Sending of the Proceeding
Message

The application can configure if the Proceeding message is sent under application control (using
the gc_CallAck( ) function) or automatically by the stack. The ge_SetConfigData( ) function can
be used for this purpose.

The relevant set ID and parameter ID that must be included in the associated GC_PARM_BLK are:

GCSET_CHAN_CONFIG
GCPARM_CALLPROC. Possible values are:
¢ GCCONTROL_APP - The application must use gc_CallAck( ) to send the Proceeding
message. This is the default.
¢ GCCONTROL_TCCL - The stack sends the Proceeding message automatically.

Enabling and Disabling Tunneling in H.323

Tunneling is the encapsulation of H.245 media control messages within Q.931/H.225 signaling
messages. If tunneling is enabled, one less TCP port is required for incoming connections.

For outgoing calls, the application can enable or disable tunneling by including the
IPSET_CALLINFO parameter set ID and the IPPARM_H245TUNNELING parameter ID in the
GCLIB_MAKECALL_BLK used by the gc_MakeCall( ) function. Possible values for the
IPPARM_H245TUNNELING parameter ID are:

e [P_H245TUNNELING_ON
e [P_H245TUNNELING_OFF

For incoming calls, tunneling is enabled by default, but it can be configured on a board device level
(where a board device is a virtual entity that corresponds to a NIC or NIC address; see

Section 2.3.2, “IPT Board Devices”, on page 33). This is done using the gc_SetConfigData( )
function with target ID of the board device and the parameters above specified in the
GC_PARM_BLKRP structure associated with the gc_SetConfigData( ) function.

Tunneling for inbound calls can be configured on a board device basis only (using the
gc_SetConfigData( ) function). Tunneling for inbound calls cannot be configured on a per line
device or per call basis (using the gc_SetUserInfo( ) function).

Specifying RTP Stream Establishment

When using Global Call, RTP streaming can be established before the call is connected (that is,
before the calling party receives the GCEV_CONNECTED event). This feature enables a voice
message to be played to the calling party (for example, a message stating that the called party is
unavailable for some reason) without the calling party being billed for the call.

The gec_SetUserInfo( ) function can be used to specify call-related information such as coder
information and display information before issuing gc_CallAck( ), gc_AcceptCall( ) or

Global Call IP Technology Guide — January 2004 73



u
IP-Specific Operations I nt9| o

4.14

74

Note:

gc_AnswerCall( ). See Section 7.2.19, “gc_SetUserInfo( ) Variances for IP”, on page 145 for more
information.

On the called party side, RTP streaming can be established before any of the following functions
are issued to process the call:

* gc_AcceptCall( ) - SIP Ringing (180) message returned to the calling party
¢ gc_AnswerCall( ) - SIP OK (200) message returned to the calling party

Quality of Service Alarm Management

Global Call supports the setting and retrieving of Quality of Service (QoS) thresholds and the
handling of a QoS alarm when it occurs. The QoS thresholds supported by Global Call are:

* lost packets

* jitter

When developing applications that use Intel® NetStructure™ IPT boards, the only threshold
attribute supported is the fault threshold value. Similarly, when developing applications that use
Intel® NetStructure™ DM/IP boards, the supported threshold attributes are: time interval,
debounce on, debounce off, fault threshold, percent success threshold, and percent fail threshold.

See the IP Media Library API Library Reference and the IP Media Library API Programming
Guide for more information on the supported thresholds.

When using Global Call with other technologies (such as E1 CAS, T1 Robbed Bit etc.), alarms are
managed and reported on the network device. For example, when ge_OpenEx( ) is issued,
specifying both a network device (dtiB1T1) and a voice device (dxxxB1C1) in the devicename
parameter, the function retrieves a Global Call line device. This Global Call line device can be used
directly in Global Call Alarm Management System (GCAMS) functions to manage alarms on the
network device.

When using Global Call with IP technology, alarms such as QoS alarms, are more directly related
to the media processing and are therefore reported on the media device not on the network device.
When ge_OpenEx( ) is issued, specifying both a network device (iptB1T1) and a media device
(ipmB1C1) in the devicename parameter, two Global Call line devices are created:

¢ The first Global Call line device corresponds to the network device and is retrieved in the
gc_OpenEx( ) function.

* The second Global Call line device corresponds to the media device and is retrieved using the
gc_GetResourceH( ) function. This is the line device that must be used with GCAMS
functions to manage QoS alarms. See the Global Call API Programming Guide for more
information about GCAMS.

Applications must include the gcipmlib.h header file before Global Call can be used to set or
retrieve QoS threshold values.

Global Call IP Technology Guide — January 2004



INlal.

4.14.1

4.14.2

4.14.3

IP-Specific Operations

Alarm Source Object Name
In Global Call, alarms are managed using the Global Call Alarm Management System (GCAMS).
Each alarm source is represented by an Alarm Source Object (ASO) that has an associated name.

When using Global Call with IP, the ASO name is IPM QoS ASO. The ASO name is useful in
many contexts, for example, when configuring a device for alarm notification.

Retrieving the Media Device Handle
To retrieve the Global Call line device corresponding to the media device, use the
gc_GetResourceH( ) function. See Section 7.2.9, “gc_GetResourceH( ) Variances for IP”, on

page 121 for more information.

The Global Call line device corresponding to the media device is the device that must be used with
GCAMS functions to manage QoS alarms.

Setting QoS Threshold Values

To set QoS threshold values, use the gc_SetAlarmParm( ) function. See Section 7.2.17,
“gc_SetAlarmParm( ) Variances for IP”, on page 142 for more information.

The following code demonstrates how to set QoS threshold values.

Notes: 1. The following code uses the IPM_QOS_THRESHOLD_INFO structure from the IP Media

Library (IPML). See the IP Media Library API Library Reference and the IP Media Library API
Programming Guide for more information.

The unTimelnterval, unDebounceOn, unDebounceOff, unPercentSuccessThreshold,
unPercentFailThreshold fields are not supported when using Intel NetStructure IPT boards.
These values should be set to 0.

/*****************************************************************************
Routine: SetAlarmParm

Assumptions/Warnings: None.

Description: calls gc_SetAlarmParm()

Parameters: handle of the Media device

Returns: None
FK KKK KK KKK KKK KKK I FK KKK I I KKK K I KA I IR A I I I I I AT I I Ik k ok hkkh ok ko kkkkkkkkdx /

void SetAlarmParm(int hMediaDevice)

{
ALARM_PARM_LIST alarm parm list;
IPM_QOS_THRESHOLD_INFO QoS_info;
alarm_parm_ list.n parms = 1;
QoS_info.unCount=1;
QoS_info.QoSThresholdData
QoS_info.QoSThresholdData
QoS_info.QoSThresholdData .unDebounceOn = 100;

[0] .eQoSType = QOSTYPE_LOSTPACKETS;
ro]
(o]
QoS_info.QoSThresholdData [0] .unDebounceOff = 100;
(o]
ro]
(o]

.unTimeInterval = 50;

QoS_info.QoSThresholdData .unFaultThreshold = 10;
QoS_info.QoSThresholdData .unPercentSuccessThreshold = 90;
QoS_info.QoSThresholdData .unPercentFailThreshold = 10;

alarm_parm list.alarm parm fields[0].alarm parm data.pstruct =
(void *) &QoS_info;

Global Call IP Technology Guide — January 2004 75



IP-Specific Operations I n

if (gc_SetAlarmParm(hMediaDevice, ALARM SOURCE_ID_NETWORK_ID,
ParmSetID gosthresholdalarm, &alarm parm list, EV_SYNC)!= GC_SUCCESS)

/* handle gc_SetAlarmParm() failure */
printf ("SetAlarmParm(hMediaDevice=%d, mode=EV_SYNC) Failed", hMediaDevice) ;
return;

}

printf ("SetAlarmParm(hMediaDevice=%d, mode=EV_SYNC) Succeeded", hMediaDevice) ;

4.14.4 Retrieving QoS Threshold Values

To retrieve QoS threshold values, use the gc_GetAlarmParm( ) function. See Section 7.2.6,
“gc_GetAlarmParm( ) Variances for IP”, on page 120 for more information.

The following code demonstrates how to retrieve QoS threshold values.

Notes: 1. The following code uses the IPM_QOS_THRESHOLD_INFO structure from the IP Media
Library (IPML). See the IP Media Library API Library Reference and the IP Media Library API
Programming Guide for more information.

2. The unTimlInterval, unDebounceOn, unDebounceOff, unPercentSuccessThreshold,
unPercentFailThreshold fields are not supported when using Intel NetStructure IPT boards.

/‘k‘k‘k*******************************‘k‘k*********‘k‘k******************************
Routine: GetAlarmParm

Assumptions/Warnings: None

Description: calls gc_GetAlarmParm()

Parameters: handle of Media device

Returns: None

ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ko ko ko ok ko ko k ok kR ko k ko k ko k ko ko kk ko kkkkkkkk ko kkk ok ok kk ok /

void GetAlarmParm(int hMediaDevice)

{
ALARM_PARM_LIST alarm parm list;
unsigned int n;
IPM_QOS_THRESHOLD_INFO QoS_info;
IPM QOS_THRESHOLD INFO *QoS_infop;

QoS_info.unCount=2;
QoS_info.QoSThresholdData [0] .eQoSType = QOSTYPE_LOSTPACKETS;
QoS_info.QoSThresholdData[1] .eQoSType = QOSTYPE JITTER;

/* get QoS thresholds for LOSTPACKETS and JITTER */
alarm _parm list.alarm parm fields[0] .alarm parm data.pstruct = (void *) &QoS_info;
alarm _parm_list.n_parms = 1;

if (gc_GetAlarmParm(hMediaDevice, ALARM SOURCE_ID_NETWORK_ID,
ParmSetID gosthresholdalarm, &alarm parm list, EV_SYNC) != GC_SUCCESS)

/* handle gc_GetAlarmParm() failure */
printf ("gc_GetAlarmParm(hMediaDevice=%d, mode=EV_SYNC) Failed", hMediaDevice) ;
return;

/* display threshold values retrieved */

printf ("n_parms = %d\n", alarm parm list.n_parms);

QoS_infop = alarm parm list.alarm parm fields[0].alarm parm data.pstruct;

for (n=0; n < QoS_info.unCount; n++)

{
printf ("QoS type = %d\n"
printf ("\tTime Interval
printf ("\tDebounce On =

QoS_infop->QoSThresholdData [n] .eQoSType) ;
$u\n", QoS_infop->QoSThresholdData [n] .unTimeInterval) ;
u\n", QoS_infop->QoSThresholdData [n] .unDebounceOn) ;

o I~

76 Global Call IP Technology Guide — January 2004



IP-Specific Operations

printf ("\tDebounce Off = %u\n", QoS_infop->QoSThresholdData [n] .unDebounceOff) ;
printf ("\tFault Threshold = %u\n", QoS_infop->QoSThresholdData[n].unFaultThreshold) ;

printf ("\tPercent Success Threshold = %u\n",

QoS_infop->QoSThresholdData [n] .unPercentSuccessThreshold) ;

printf ("\tPercent Fail Threshold = %u\n",

QoS_infop->QoSThresholdData [n] .unPercentFailThreshold) ;

printf ("\n\n") ;

4.14.5 Handling QoS Alarms

The application must first be enabled to receive notification of alarms on the specified line device.

The following code demonstrates how this is achieved.

kK ks ok ok ok sk ok ok ok ok ok ok ok ok sk k ok ok ok sk ko ok ko kR ok ko kk ko ko k ok ok k ok ko kkk ko k ok ok k ko k ok ok

* NAME: enable_alarm notification(struct channel *pline)

* DESCRIPTION: Enables all alarms notification for pline

* Also fills in pline-s>mediah

* INPUT: pline - pointer to channel data structure

* RETURNS: None - exits if error

* CAUTIONS: Does no sanity checking as to whether or not the technology
* supports alarms - assumes caller has done that already

Hokok ko ok ok ok ok kk ok ok ok ok ok k ok ok k ok ok k ok ok kkk ko kk ko kkkkkkkk ok ok kkkkkkkkkkkkkkkkokk /

static void enable_alarm notification(struct channel *pline)

{

char str[MAX STRING SIZE];
int alarm_ldev; /* linedevice that alarms come on */
alarm_ldev = pline->ldev; /* until proven otherwise */

if (pline->techtype == H323)

{

/* Recall that the alarms for IP come on the media device,
if (gc_GetResourceH (pline->ldev, &alarm ldev, GC_MEDIADEVICE) != GC_SUCCESS)

{

sprintf (str, "gc_GetResourceH(linedev=%1ld, &alarm_ ldev,

GC_MEDIADEVICE) Failed", pline->ldev);

printandlog(pline->index, GC_APIERR, NULL, str);

exitdemo (1) ;

}

sprintf (str, "gc_GetResourceH(linedev=%1ld, &alarm_ldev,
GC_MEDIADEVICE) passed, mediah = %d", pline->ldev, alarm ldev);

printandlog(pline->index, MISC, NULL, str);

not the network device */

pline->mediah = alarm ldev; /* save for later use */

}

else

{

printandlog(pline->index, MISC, NULL, "Not setting pline->mediah

since techtype != H323");

}

sprintf (str, "enable alarm notification - pline->mediah = %d\n", (int) pline->mediah);

if (gc_SetAlarmNotifyAll (alarm_ldev, ALARM SOURCE_ID_NETWORK_ID,

ALARM_NOTIFY) != GC_SUCCESS)

sprintf (str, "gc_SetAlarmNotifyAll (linedev=%1d,

ALARM_SOURCE_ID_NETWORK_ ID, ALARM NOTIFY)
printandlog(pline->index, GC_APIERR, NULL, str);
exitdemo (1) ;

Global Call IP Technology Guide — January 2004

Failed",

pline->1ldev) ;

77



IP-Specific Operations

78

}

sprintf (str,

INlal.

"gc_SetAlarmNotifyAll (linedev=%1d, ALARM SOURCE_ID NETWORK_ ID,

ALARM NOTIFY) PASSED", pline->ldev);
printandlog (pline->index, MISC, NULL, str);

When a GCEV_ALARM event occurs, use the Global Call Alarm Management System (GCAMS)
functions such as, gc_AlarmNumber( ) to retrieve information about the alarm. The following

code demonstrates how to process a QoS alarm when it occurs. In this case the application simply
logs information about the alarm.

JEE KA KK KKK KK KKK K I KKK KKK KK IR K IR A KK KKK K IR KK IR Kk kR Ak kR khh kK kkk

*

*

*

*

*

*

*

DESCRIPTION:

CAUTIONS:

NAME: void print_alarm_info (METAEVENTP metaeventp,

struct channel *pline)

Prints alarm information

INPUTS: metaeventp - pointer to the alarm event
pline - pointer to the channel data structure

RETURNS: NA

Assumes already known to be an alarm event

KKK KKK IR KK KKK K IR KKK KKK KRR KKK KKK KK h Rk K IR Kk kA Kk ok hhkkh kKK [

static void print_alarm info (METAEVENTP metaeventp, struct channel *pline)

{

long alarm_number;

char *alarm name;

unsigned long alarm_source_objectID;

char *alarm_source_object_name;

char str [MAX_STRING_SIZE];

if (gc_AlarmNumber (metaeventp, &alarm number) != GC_SUCCESS)
sprintf (str, "gc_AlarmNumber(...) FAILED");

printandlog(pline->index,
printandlog(pline->index,
exitdemo (1) ;

(gc_AlarmName (metaeventp,

GC_APIERR, NULL, str);
STATE, NULL, " ");

&alarm name) != GC_SUCCESS)

sprintf (str, "gc_AlarmName(...) FAILED");

printandlog(pline->index,
printandlog(pline->index,
exitdemo (1) ;

GC_APIERR, NULL, str);
STATE, NULL, " ");

(gc_AlarmSourceObjectID (metaeventp, &alarm source_objectID) != GC_SUCCESS)

sprintf (str, "gc_AlarmSourceObjectID(...) FAILED");

printandlog(pline->index,
printandlog(pline->index,
exitdemo (1) ;

GC_APIERR, NULL, str);
STATE, NULL, " ");

(gc_AlarmSourceObjectName (metaeventp, &alarm_source_object_name) != GC_SUCCESS)

sprintf (str, "gc_AlarmSourceObjectName(...) FAILED");

printandlog(pline->index,
printandlog(pline->index,
exitdemo (1) ;

GC_APIERR, NULL, str);
STATE, NULL, " ");

Global Call IP Technology Guide — January 2004



}

IP-Specific Operations

sprintf (str, "Alarm %s (%d) occurred on ASO %s (%d)",

alarm_name, (int) alarm number, alarm source_object_name,
(int) alarm_source_objectID) ;

printandlog(pline->index, MISC, NULL, str);

See the Global Call API Programming Guide for more information about the operation of GCAMS
and the Global Call API Library Reference for more information about GCAMS functions.

4.15 Registration

In an H.323 network, a gatekeeper manages the entities in a specific zone and an endpoint must
register with the gatekeeper to become part of that zone. In a SIP network, a registrar performs a
similar function. Global Call provides applications with the ability to perform endpoint
registration. Registration tasks supported include:

performing registration-related operations

receiving notification of registration

When using Global Call to perform endpoint registration, the following restrictions apply:

An application must use an IPT board device handle to perform registration. A board device
handle can be obtained by using gc_OpenEx( ) with a devicename parameter of “N_iptBx”.

An application must perform registration before using gc_OpenEx( ) on any other line device.

Once an application chooses to be registered with a gatekeeper, it may change its
gatekeeper/registrar by deregistering and reregistering with another gatekeeper/registrar, but it
cannot handle calls without being registered with some gatekeeper/registrar.

Once an application is registered, if it wishes to handle calls without the registration protocol
(that is, return to the same mode as before registration), it can simply deregister.

Once an application is registered and has active calls, deregistration or switching to a different
gatekeeper must be done only when all calls are in the Idle state. The gc_ResetLineDev( )
function can be used to put all channels in the Idle state.

When setting alias information, if the protocol is H.323 only, the gc_ReqService( ) function
can include more than one alias in the GC_PARM_BLK associated with the function. If the
registration target includes SIP, only one alias is supported and prefixes should not be
included.

When using the gc_ReqService( ) function, two mandatory parameters IDs,
PARM_REQTYPE and PARM_ACK, both in the GCSET_SERVREQ parameter set, are
required in the GC_PARM_BLK parameter block. These parameters are required by the
generic service request mechanism provided by Global Call and are not sent in any registration
message.

Registration operations cannot be included in the preset registration information using
gc_SetConfigData( ).

Global Call IP Technology Guide — January 2004 79



u
IP-Specific Operations I nt9| o

4.15.1

80

Note:

Performing Registration Operations

Global Call provides a number of options for registration and manipulation of registration
information. The Global Call API simplifies and abstracts the network RAS messages in H.323 and
Registrar messages in SIP. The following functionality is supported:

* locating a registration server (gatekeeper in H.323 or registrar in SIP) via unicast or multicast
(RAS messages: GRQ/GCF/GRIJ)

* registration (RAS message: RRQ)

¢ specifying one-time or periodical registration (RAS message: RRQ)

¢ changing registered information (RAS message: RRQ)

e removing registered information by value (RAS message: RRQ)

¢ sending non-standard registration message (RAS message: NonStandardMessage)
¢ deregistering (RAS messages: URQ/UCF/URJ)

¢ handling calls according to the gatekeeper policy for directing and routing calls (RAS
messages: ARQ/ACF/ARJ, DRQ/DCF/DRJ)

For detailed information on RAS negotiation, see ITU-T Recommendation H.225.0.

SIP REGISTER

The SIP REGISTER method is used to register associations between a media endpoint alias and its
real (transport) address. The associations are maintained in a SIP registrar and used for SIP call
routing. Global Call supports only registering with a registrar, and does not support receiving SIP
REGISTER methods. Table 8 associates abstract registrar registration concepts with SIP
REGISTER elements and Global Call interface elements.

Table 8. SIP REGISTER Method

Concept SIP REGISTER Element Global Call Interface Element
Initiate registration REGISTER method gc_ReqgService( )
Registrar’s address Request URI IPSET_REG_INFO

IP_REGISTER_ADDRESS.reg_server

Alias (Address-of-record) To IPSET_REG_INFO
IP_REGISTER_ADDRESS.reg_client

Sender's address-of-record (alias) | From None (this is OK)
(same as address of record to be
registered if registering own self)

Transport address (address Contact IPSET_LOCAL_ALIAS (string)
bindings or real address, not alias)

Locating a Registration Server

A Global Call application can choose to use a known address for the registration server (gatekeeper
in H.323 or registrar in SIP) or to discover a registration server by multicasting to a well-known
address on which registration servers listen. This choice is determined by the IP address specified
as the registration address during registration.

Global Call IP Technology Guide — January 2004



In

U o IP-Specific Operations

The registration address is specified in the IPPARM_REG_ADDRESS parameter in the
IPSET_REG_INFO parameter set. The [IPPARM_REG_ADDRESS is of type
IP_REGISTER_ADDRESS, which contains the reg_server field that is the address value. A
specific range of IP addresses is reserved for multicast transmission:

* If the application specifies an address in the range of multicast addresses or specifies the
default multicast address (IP_REG_MULTICAST_DEFAULT_ADDR), then registration
server discovery is selected.

e If the application specifies an address outside the range of multicast addresses, then
registration with a specific server is selected.

Notes: 1. The application can specify the maximum number of hops (connections between routers) in the

max_hops field of the IP_REGISTER_ADDRESS structure. This field applies only to H.323
applications using gatekeeper discovery (H.225 RAS) via the default multicast registration
address.

2. When using H.323, the port number used for RAS is one less than the port number used for
signaling. Consequently, to avoid a conflict when configuring multiple IPT board devices in the
IPCCLIB_START_DATA structure, do not assign consecutive H.323 signaling port numbers to
IPT board devices. See Section 7.2.20, “gc_Start( ) Variances for IP”, on page 147 for more
information.

Registration

An application can use the gc_ReqService( ) function to register with a gatekeeper/registrar. The
registration information in this case is included in the GC_PARM_BLK associated with the
gc_ReqService( ) function. See Section 4.15.4, “Registration Code Example”, on page 84 for more
information.

If registration is initiated by a Global Call application via gc_ReqService( ) and the gatekeeper
rejects the registration, a GCEV_SERVICERESP event will be received with a reason of
IPEC_RASReasonInvalidI[PEC_RASAddress.

Specifying One-Time or Periodic Registration

Global Call enables an application to specify a one-time registration or periodic registration where
information is re-registered with the gatekeeper/registrar at the interval (in seconds) specified by
the application. This is achieved by setting the time_to_live field in the IP_REGISTER_ADDRESS
structure. If the parameter is set to zero, then the stack uses one-time registration functionality. If
the parameter is set to a value greater than zero, for example 5, then each registration with the
server is valid for 5 seconds and the stack will automatically refresh its request before timeout.
Registered applications are not notified of the refresh transactions.

When using SIP, periodic registration is also supported. The behavior depends on the time_to_live
value specified in the IP_REGISTER_ADDRESS structure as follows:

e If the time_to_live value is specified, registration is done with this value set in the Expires
header.

Global Call IP Technology Guide — January 2004 81



u
IP-Specific Operations I nt9| o

82

Note:

Note:

¢ If the time_to_live value is zero, the call control library automatically sets the Expires header
to a value of 3600 seconds, which is treated as an application-specified time-to-live value.

The actual expiration time for registration is determined by the registrar. The expiration time
received from the registrar is stored and when half of this time expires, re-registration occurs.

If the gatekeeper rejects the registration (sends RRJ) during periodic registration, an unsolicited
GCEV_TASKFAIL event will be received with a reason provided by the gatekeeper. If the
gatekeeper does not set the reason, the reason will be
IPEC_RASReasonInvalidIPEC_RASAddress.

Changing Registered Information

Global Call provides the ability to modify or add to the registration information after it has been
registered with the gatekeeper/registrar. To change registration information, use the
gc_ReqService( ) function. The GC_PARM_BLK in this context should contain an element with a
set ID of IPSET_REG_INFO and a parameter ID of IPPARM_OPERATION_REGISTER that has
a value of:

IP_REG_SET_INFO
To override existing registration.

IP_REG_ADD_INFO
To add to existing registration information.

The overriding or additional information is contained in other elements in the GC_PARM_BLK.
The elements that can be included are given in Table 15, “Registration Information When Using
H.323”, on page 139 and Table 16, “Registration Information When Using SIP”, on page 141.

Removing Registered Information by Value

When an application needs to delete one (or more) of its aliases or supported prefixes from the list,
it may use the gc_ReqService( ) function. The GC_PARM_BLK in this context should contain an
element with a set ID of IPSET_REG_INFO and a parameter ID of
IPPARM_OPERATION_REGISTER with a value of IP_REG_DELETE_BY_VALUE. If the
string is registered, it will be deleted from the database and an updated list will be sent to the
gatekeeper.

When using IPPARM_OPERATION_REGISTER, the value [IP_REG_DELETE_ALL is
prohibited.

Sending Nonstandard Registration Messages

Global Call provides the ability to send nonstandard messages to and receive nonstandard
messages from the gatekeeper or registrar. To send nonstandard messages, the application uses the
gc_Extension( ) function. The first element must be set as described in Section 8.13,
“IPSET_MSG_REGISTRATION Parameter Set”, on page 167. Other elements are set as in
conventional nonstandard messages; see Section 8.15, “IPSET_NONSTANDARDDATA
Parameter Set”, on page 168.

Global Call IP Technology Guide — January 2004



4.15.2

4.15.3

IP-Specific Operations

Deregistering

Global Call provides the ability to deregister from a gatekeeper/registrar. To deregister, an
application uses the gc_ReqService( ) function. When deregistering, the application can decide
whether to keep the registration information locally or delete it. The GC_PARM_BLK in this
context should contain an element with a set ID of IPSET_REG_INFO and a parameter ID of
IPPARM_OPERATION_DEREGISTER that has a value set to either:

IP_REG_MAINTAIN_LOCAL_INFO
To keep the registration information locally.

IP_REG_DELETE_ALL
To delete the registration information stored locally.

See Section 4.15.5, “Deregistration Code Example”, on page 86 for more information.

Receiving Notification of Registration

An application that sends a registration request to a gatekeeper/registrar will receive notification of
whether the registration is successful or not. When using Global Call the application will receive a
GCEV_SERVICERESP termination event with an associated GC_PARM_BLK that contains the
following elements:

e [PSET_PROTOCOL parameter set ID with the IPPARM_PROTOCOL_BITMASK parameter
ID that has one of the following values:

—IP_PROTOCOL_H323
— IP_PROTOCOL_SIP
e [PSET_REG_INFO parameter set ID with the IPPARM_REG_STATUS parameter ID that has
one of the following values:
— IP_REG_CONFIRMED
— IP_REG_REJECTED

Receiving Nonstandard Registration Messages

An unsolicited GCEV_EXTENSION event with an extension ID (ext_id) of
IPEXTID_RECEIVEMSG can be received that contains a nonstandard registration message. The
associated GC_PARM_BLK contains the message details as follows:

* A message identifier element that contains the IPSET_MSG_REGISTRATION parameter set
ID and an IPPARM_MSGTYPE parameter ID with a value of
IP_MSGTYPE_REG_NONSTD.

¢ One or more additional elements that contain the message data of the form:

— IPSET_NONSTANDARDDATA with

¢ JPPARM_NONSTANDARDDATA_DATA. - The maximum length is
MAX_NS_PARM_DATA_LENGTH (128).

¢ [PPARM_NONSTANDARDDATA_OBIJID. - The maximum length is
MAX_NS_PARM_OBIJID_LENGTH (40).

OR

Global Call IP Technology Guide — January 2004 83



IP-Specific Operations I n

—IPSET_NONSTANDARDDATA with

¢ IPPARM_NONSTANDARDDATA_DATA. - The maximum length is
MAX_NS_PARM_DATA_LENGTH (128).

e IPPARM_H221NONSTANDARD

4.15.4 Registration Code Example

The following code example shows how to populate a GC_PARM_DATA structure that can be used
to register an endpoint with a gatekeeper (H.323) or registrar (SIP). The GC_PARM_DATA
structure contains the following registration information:

¢ two mandatory parameters required by the generic gc_ReqService( ) function

¢ the protocol type (H.323, SIP, or both)

* the type of operation (register/deregister) and sub-operation (set information, add information,
delete by value, delete all)

the IP address to be registered

* the endpoint type to register as

a number of local aliases

e anumber of supported prefixes
int boardRegistration (IN LINEDEV boarddev)

GC_PARM_BLKP pParmBlock = NULL;
int frc = GC_SUCCESS;

/***%%% Two (mandatory) elements that are not related directly to
the server-client negotiation ***xx%%%/
frc = gc_util insert parm val (&pParmBlock,

GCSET_SERVREQ,

PARM REQTYPE,

sizeof (char),

IP_REQTYPE REGISTRATION) ;

frc = gc_util insert parm val (&pParmBlock,
GCSET_SERVREQ,
PARM ACK,
sizeof (char),
1);

/******Setting the protocol target*****kkkkk*/
frc = gc_util_insert_parm val (&pParmBlock,
IPSET PROTOCOL,
IPPARM PROTOCOL_BITMASK,
sizeof (char),
IP_PROTOCOL_H323); /*can be H323, SIP or Both*/

/***%%% Setting the operation to perform *****kkxkxx/
frc = gc_util insert parm val (&pParmBlock,
IPSET REG INFO,
IPPARM OPERATION REGISTER, /* can be Register or Deregister */
sizeof (char),
IP_REG SET INFO); /* can be other relevant "sub" operations */

84 Global Call IP Technology Guide — January 2004



I n IP-Specific Operations

/***x%%% Setting address information ***xxk*kxxx%/

IP_REGISTER_ADDRESS registerAddress;

strcpy (registerAddress.reg_server,"101.102.103.104"); /* set server address*/
strcpy (registerAddress.reg_client, "user@l0.20.30.40"); /* set alias for SIPx/
registerAddress.max_hops = regMulticastHops;

registerAddress.time_to live = regTimeToLive;

frc = gc_util_insert_parm_ref (&pParmBlock,
IPSET REG INFO,
IPPARM_REG_ADDRESS,
(UINT8) sizeof (IP_REGISTER_ADDRESS),
&registerAddress) ;

/***x*%* Setting endpoint type to GATEWAY (H.323 only) ***xkkxkkxx/
gc_util_insert_parm ref (&§pParmBlock,
IPSET_REG_INFO,
IPPARM_REG_TYPE,
(unsigned char)sizeof (EPType),
IP_REG GATEWAY) ;

/***%* Setting terminalAlias information *#*%*%/
/*xx% With H.323 - may repeat this line with different aliases and alias types *xx%/
/***% SIP allows registering only a single transport address ***%/
frc = gc_util_insert_parm_ref (&pParmBlock,
IPSET LOCAL_ALIAS,
(unsigned short)IPPARM ADDRESS_EMAIL,
(UINT8) (strlen ("someone@someplace.com") +1),
"someone@someplace.com") ;

/***%%% Setting supportedPrefixes information ***xxxxxxxx/
/***% With H.323 - may repeat this line with different supported prefixes and
supported prefix types *xxx/
/***%* SIP does not allow setting of this parm block ***%/
frc = gc_util_insert_parm_ref (&pParmBlock,
IPSET SUPPORTED_ PREFIXES,
(unsigned short) IPPARM ADDRESS_PHONE,
(UINT8) (strlen("011972")+1),
"011972") ;

/**x*x%* Send the request FhkkkKkkkkkk [
unsigned long servicelD ;
int rc = gc_RegService (GCTGT_CCLIB_NETIF,
boarddev,
&servicelD,
pParmBlock,
NULL,
EV_ASYNC) ;

if (rc != GC_SUCCESS)

{
printf ("failed in gc_RegService\n");
return GC_ERROR;

gc_util _delete_parm blk (pParmBlock) ;
return GC_SUCCESS;

Global Call IP Technology Guide — January 2004 85



IP-Specific Operations I n

4.15.5

86

Deregistration Code Example

The following code example shows how to populate a GC_PARM_DATA structure that can be used
to deregister an endpoint with a gatekeeper (H.323). The GC_PARM_DATA structure contains the
following deregistration information:

the type of operation (in this case, deregister) and sub-operation (do not retain the registration
information locally)

two mandatory parameters required by the generic gc_ReqService( ) function

the protocol type (in this case, H.323)

void unregister()

{

GC_PARM_BLKP pParmBlock = NULL;

unsigned long servicelD = 1;

int rc, frc;

int gc_error; // GC error code

int cclibid; // Call Control library ID for gc_ErrorValue
long cc_error; // Call Controll library error code

char *resultmsg; // String associated with cause code

char *1ib_name; // Library name for cclibid

gc_util_insert_parm val (&pParmBlock,
IPSET REG INFO,
IPPARM_OPERATION_DEREGISTER,
sizeof (unsigned char),
IP_REG DELETE_ALL) ;

frc = gc_util_insert_parm val (&pParmBlock,
GCSET SERVREQ,
PARM REQTYPE,
sizeof (unsigned char),
IP_REQTYPE REGISTRATION) ;

if (frc != GC_SUCCESS)

{
printf ("failed in PARM_REQTYPE\n“);
termapp () ;

frc = gc_util_insert_parm val (&pParmBlock,
GCSET_SERVREQ,
PARM ACK,
sizeof (unsigned char),
IP_REQTYPE REGISTRATION) ;

if (frc != GC_SUCCESS)

{
printf ("failed in PARM ACK\n");
termapp () ;

frc = gc_util insert_parm val (&pParmBlock,
IPSET_ PROTOCOL,
IPPARM_PROTOCOL_BITMASK,
sizeof (char),
IP_PROTOCOL_H323); /*can be H323, SIP or Both*/

if (frc != GC_SUCCESS)

{
printf ("failed in IPSET_PROTOCOL\n") ;
termapp () ;

Global Call IP Technology Guide — January 2004



4.15.6

IP-Specific Operations

rc = gc_RegService (GCTGT_CCLIB_NETIF,
brddev,
&servicelD,
pParmBlock,
NULL,
EV_ASYNC) ;

if ( GC_SUCCESS != rc)

{
printf ("gc_RegService failed while unregestering\n");
if (gc_ErrorValue (&gc_error, &cclibid, &cc_error) != GC_SUCCESS)

{
}

else

{

printf ("gc_Start () failed: Unable to retrieve error value\n");

gc_ResultMsg (LIBID_GC, (long) gc_error, &resultmsg);

printf ("gc_RegService() failed: gc_error=0x%X: $%$s\n", gc_error, resultmsg);
gc_ResultMsg(cclibid, cc_error, &resultmsg) ;

gc_CCLibIDToName (cclibid, &lib_name) ;

printf ("$s library had error 0x%1lx - %s\n", lib _name, cc_error, resultmsg);

}

gc_util_delete_parm blk (pParmBlock) ;

exit (0);
}
printf ("Unregister request to the GK was sent ...\n");
printf ("the application will not be able to make calls !!! so it will EXIT\n");
gc_util_delete_parm blk (pParmBlock) ;
return;

Gatekeeper Registration Failure

Gatekeeper registration may fail for any one of several reasons, such as disconnecting the network
cable, network topology change resulting in the loss of all paths to the gatekeeper, a gatekeeper
failure, or a gatekeeper shutdown. When a RAS registration is active and a failure occurs, the RAS
registration fails only when the Time To Live (programmable 20 second default) or Response
Timeout (2 seconds) threshold is exceeded. If a RAS registration is attempted when the cable is
disconnected, the transaction fails immediately because of a socket bind failure.

When RAS loses the gatekeeper registration, all calls are disconnected and new calls are rejected.
The application must attempt to re-register or unregister using gc_ReqService( ). Until RAS
successfully registers with the gatekeeper, or is explicitly unregistered, calls will continue to be
rejected. The gc_ReqService( ) requests return either a GCEV_SERVICERESP (success) or
TASK_FAIL (fail) completion event.

If the re-registration fails (TTL or socket bind failure) a GCEV_TASKFAIL is sent to the
application. The gc_ReqService( ) function must be called by the application again to re-register
RAS in response to that event.

If the RAS registration request is rejected, or IPT CCLib is still cleaning up after the registration
failure, a GCEV_TASKFAIL event is sent to notify the application and gc_ReqService( ) must be
called again by the application to re-register.

Global Call IP Technology Guide — January 2004 87



u
IP-Specific Operations I nt9| o

4.16

Note:

4.16.1

88

Calls in progress that are disconnected during RAS recovery are identified in the
GCEV_DISCONNECTED event by an IPT CCLib result value of
IPEC_RASReasonNotRegistered.

Sending and Receiving Faxes over IP

The functionality described in this section are the mechanisms that support the sending are
receiving of fax information over IP (FoIP). Separate fax resources are required to handle fax
transmission and reception.

Sending and receiving faxes using SIP is not currently supported.

A fax over IP (FoIP) call can be initiated in the following ways:

* At call setup time, the local side requests FoIP (T.38 only) for either an outgoing or incoming
call.

¢ At call setup time, the remote side requests FoIP (T.38 only) for either an outgoing or
incoming call.

* A voice call is connected and fax tones are detected on the local endpoint; the call switches to
FolP transcoding.

* A voice call is connected and the remote endpoint requests a switch to FolP transcoding; the
call switches to FolP transcoding.

In any one of these scenarios, the local application must specify T.38 coder capability in advance if
FolIP exchange is to be allowed.

Specifying T.38 Coder Capability

Using Global Call, T.38 coder support is specified in the same manner as any other coder
capability, that is:

* On a per line device basis using gc_SetUserInfo( ) with a duration parameter value of
GC_ALLCALLS.

* On a per call basis using gc_MakeCall( ) or gc_SetUserInfo( ) with a duration parameter
value of GC_SINGLECALL.

To support the initiation of a T.38-only call, the application must specifically disable audio
capability. This cannot be achieved by specifying no audio capability, since specifying no audio
capability is equivalent to a “don’t care” condition meaning all capabilities are enabled.
Consequently, the audio capabilities must be explicitly disabled by specifying a
GCCAP_AUDIO_disabled capability in the capabilities list.

Global Call IP Technology Guide — January 2004



4.16.2

4.16.3

IP-Specific Operations

When specifying the capability on a line device basis or on a per call basis, a GC_PARM_BLK
with the GCSET_CHAN_CAPABILITY parameter set ID and the
IPPARM_LOCAL_CAPABILITY parameter ID must be set up.

The GCPARM_LOCAL_CAPABILITY parameter is of type IP_CAPABILITY and should include
the following field values:

capability
set to GCCAP_DATA_t38UDPFax

type
GCCAPTYPE_RDATA

direction
IP_CAP_DIR_LCLTXRX

payload
Not supported

extra
A parameter of type [IP_DATA_CAPABILITY that includes the following field:
e max_bit_rate — set to a value of 144 (in units of 100 bits/sec)

See Section , “IP_CAPABILITY”, on page 177 for more information.

Initiating Fax Transcoding

Calls initiated or answered using the Global Call API support fax transcoding transparently without
intervention by the application. For fax transcoding to occur, the line device or call must have
specified and exchanged the T.38 UDP coder as one of the supported channel capabilities.

If this coder has been specified, fax transcoding will be initiated upon detection of a CED, CNG or
V.21 tone from the local endpoint. Upon detection of one of these fax tones, the current audio RTP
stream will be terminated and fax transmission will be initiated. If the remote endpoint does not
support T.38 UDP fax capability, no T.38 transcoding change occurs.

Termination of Fax Transcoding

Fax termination can be triggered in the following ways:

¢ A call disconnection from either endpoint, that is, gc_DropCall( ) from the local endpoint or a
GCEV_DISCONNECTED event from the remote endpoint.

¢ The detection of a fax termination event on the local endpoint.

* The remote endpoint sends a signal (via the signaling protocol, for example, H.323 or SIP) to
terminate fax transcoding.

Global Call IP Technology Guide — January 2004 89



u
IP-Specific Operations I nt9| o

Note:

4.16.4

4.16.5

90

In the last two cases, once fax transcoding using T.38 is completed, Global Call transitions back to
the audio transcoding in use prior to the fax call. This occurs automatically without any
intervention by the application.

The call in this context refers to all communication with the remote endpoint, that is, both media
transcoding and signaling.

Getting Notification of Audio-to-Fax Transition

Audio transcoding to fax transcoding is done automatically with no intervention necessary by the
application, but the application can be configured to receive notification when the transition takes
place. The events for this notification must be enabled; see Section 4.10, “Enabling and Disabling
Unsolicited Notification Events”, on page 71 for information on enabling streaming connection
and disconnection events (EXTENSIONEVT_STREAMING_STATUS).

Once the notification events have been enabled, when an audio transcoding session transitions to
fax transcoding, four GCEV_EXTENSION events are received, each with the extID of
IPEXTID_MEDIAINFO and a parameter set ID of IPSET_MEDIA_STATE.

Each GCEV_EXTENSION event contains a parameter. The parameter for each event in order of
reception is as follows:

IPPARM_TX_DISCONNECTED
The transmit audio RTP stream is terminated. The GC_PARM_BLK does not contain any
additional information.

IPPARM_RX_DISCONNECTED
The receive audio RTP stream is terminated. The GC_PARM_BLK does not contain any
additional information.

IPPARM_TX_CONNECTED
Transmit fax transcoding is initiated. The datatype of the parameter is an IP_CAPABILITY
structure representing the T.38 transcoder being used. See Section 4.16.1, “Specifying T.38
Coder Capability”, on page 88 for more information.

IPPARM_RX_CONNECTED
Receive fax transcoding is initiated. The datatype of the parameter is an [P_CAPABILITY
structure representing the T.38 transcoder in use. See Section 4.16.1, “Specifying T.38 Coder
Capability”, on page 88 for more information.

Getting Notification of Fax-to-Audio Transition

Fax transcoding to audio transcoding is done automatically with no intervention necessary by the
application, but the application can be configured to receive notification when the transition takes
place. The events for this notification must be enabled; see Section 4.10, “Enabling and Disabling
Unsolicited Notification Events”, on page 71 for information on enabling streaming connection
and disconnection events (EXTENSIONEVT_STREAMING_STATUS).

Once the notification events have been enabled, when a fax transcoding session transitions back to

the prior audio transcoding session, four GCEV_EXTENSION events are received, each with the
extID of IPEXTID_MEDIAINFO and a parameter set ID of IPSET_MEDIA_STATE.

Global Call IP Technology Guide — January 2004



u
I nu o IP-Specific Operations

Each GCEV_EXTENSION event contains a parameter. The parameter for each event in order of
reception is as follows:

IPPARM_TX_DISCONNECTED
The transmit fax RTP stream is terminated. No more information is contained in the
GC_PARM_BLK.

IPPARM_RX_DISCONNECTED
The receive fax RTP stream is terminated. No more information is contained in the
GC_PARM_BLK.

IPPARM_TX_CONNECTED
Transmit audio transcoding is initiated. The datatype of the parameter is an IP_CAPABILITY
structure representing the audio transcoder setting in use before fax transcoding was initiated.
See Section 4.16.1, “Specifying T.38 Coder Capability”, on page 88 for more information.

IPPARM_RX_CONNECTED
Receive audio transcoding is initiated. The datatype of the parameter is an [IP_ CAPABILITY
structure representing the audio transcoder setting in use before fax transcoding was initiated.
See Section 4.16.1, “Specifying T.38 Coder Capability”, on page 88 for more information.

4.16.6  Getting Notification of T.38 Status Changes

The application can receive notification of underlying T.38 status changes including: tone detection
on the TDM or IP sides, T.38 capability frame status, T.38 information frame status, and T.38
HDLC frame status. The events for this notification must be enabled; see Section 4.10, “Enabling
and Disabling Unsolicited Notification Events”, on page 71 for information on enabling T.38 fax
status changes (EXTENSIONEVT_T38_STATUS).

Once these events are enabled, when the T.38 status change occurs, the application receives a
GCEV_EXTENSION event. The EXTENSIONEVTBLK structure pointed to by the extevtdatap
pointer within the GCEV_EXTENSION event will contain the following information:

e extID - IPEXTID_FOIP
* A GC_PARM_BLK that contains information about the T.38 status change. The
GC_PARM_BLK can contain the following parameter set IDs and parameter IDs:

— IPSET_TDM_TONEDET - A parameter set identifying a tone detected on the TDM side
as identified by one of the following parameter IDs:

e [PPARM_TDMDET_CED - CED tone detected from TDM side.
e [PPARM_TDMDET_CNG - CNG tone detected from TDM side.
e [PPARM_TDMDET V21 - V.21 tone detected from TDM side.
Note: The parameter value field in the GC_PARM_BLK in each case is unused (NULL).

— IPSET_T38_TONEDET - A parameter set identifying a tone detected on the IP side as
identified by one of the following parameter IDs:

e [PPARM_T38DET_CED - CED tone detected from IP side.
e [PPARM_T38DET_CNG - CNG tone detected from IP side.
e JPPARM_T38DET_V21 - V21 tone detected from IP side.
Note: The parameter value field in the GC_PARM_BLK in each case is unused (NULL).

Global Call IP Technology Guide — January 2004 91



IP-Specific Operations

4.17

92

intel.

—IPSET_T38CAPFRAME_STATUS - A parameter set identifying the T.38 capability
frame type identified by one of the following parameter IDs:

Note:

IPPARM_T38CAPFRAME_TX_DIS_DTC
IPPARM_T38CAPFRAME_TX_DCS
IPPARM_T38CAPFRAME_TX_CTC
IPPARM_T38CAPFRAME_RX_DIX_DTC
IPPARM_T38CAPFRAME_RX_DCS
IPPARM_T38CAPFRAME_RX_CTC

The parameter value field in the GC_PARM_BLK in each case includes the
capability frame status structure, IPM_T38CAPFRAM_STATUS_INFO.

—IPSET_T38INFOFRAME_STATUS - A parameter set identifying the T.38 information
frame type identified by one of the following parameter IDs:

Note:

IPPARM_T38INFOFRAME_TX_SUB
IPPARM_T38INFOFRAME_RX_SUB
IPPARM_T38INFOFRAME_TX_SEP
IPPARM_T38INFOFRAME_RX_SEP
IPPARM_T38INFOFRAME_TX_PWD
IPPARM_T38INFOFRAME_RX PWD
IPPARM_T38INFOFRAME_TX_TSI
IPPARM_T38INFOFRAME_RX_TSI
IPPARM_T38INFOFRAME_TX_CSI
IPPARM_T38INFOFRAME_RX_CSI
IPPARM_T38INFOFRAME_TX_CIG
IPPARM_T38INFOFRAME_RX_ CIG

The parameter value field in this GC_PARM_BLK in each case includes the frame
buffer.

— IPSET_T38HDLCFRAME_STATUS - A parameter set identifying the T.38 HDLC frame
type identified by one of the following parameter IDs:

IPPARM_T38HDLCFRAME_TX
IPPARM_T38HDLCFRAME_RX

Using Object Identifiers

Object Identifiers (OIDs) are not free strings, they are standardized and assigned by various
controlling authorities such as, the International Telecommunications Union (ITU), British
Standards Institute (BSI), American National Standards Institute (ANSI), Internet Assigned
Numbers Authority (IANA), International Standards Organization (ISO), and public corporations.
Depending on the authority, OIDs use different encoding and decoding schemes. Vendors,
companies, governments and others may purchase one or more OIDs to use while communicating
with another entity on the network. For more information about OIDs, see
http://www.alvestrand.no/objectid/.

Global Call IP Technology Guide — January 2004


http://www.alvestrand.no/objectid/
http://www.alvestrand.no/objectid/

u
I nu o IP-Specific Operations

An application may want to convey an OID to the remote side. This can be achieved by setting the
OID string in any nonstandard parameter that can be sent in any Setup, Proceeding, Alerting,
Connect, Facility, or User Input Indication (UII) message.

Global Call supports the use of any valid OID by allowing the OID string to be included in the
GC_PARM_BLK associated with the specific message using the relevant parameter set ID and
parameter IDs. Global Call will not send an OID that is not in a valid format. For more information
on the valid OID formats see http://asn-1.com/x660.htm which defines the general procedures for
the operation of OSI (Open System Interconnection) registration authorities.

The application is responsible for the validity and legality of any OID used.

Global Call IP Technology Guide — January 2004 93


http://asn-1.com/x660.htm

u
IP-Specific Operations I nt6| o

94 Global Call IP Technology Guide — January 2004



intel.

Building Global Call IP 5
Applications

5.1

5.2

5.3

Note:

This chapter describes the IP-specific header files and libraries required when building
applications.

e Header Files. . ... ..o 95
e Required Libraries. . . .. ... vt e 95
e Required System Software .............. . i 95

For more information about building applications, see the Global Call API Programming Guide.

Header Files

When compiling Global Call applications for the IP technology, it is necessary to include the
following header files in addition to the standard Global Call header files, which are listed in the
Global Call API Library Reference and Global Call API Programming Guide:

gcip.h
[P-specific data structures

gcip_defs.h
IP-specific type definitions, error codes and IP-specific parameter set IDs and parameter IDs

gecfgparm.h
Global Call type definitions, configurable parameters in the Global Call library and generic

parameter set IDs and parameter IDs

gcipmlib.h
for Quality of Service (QoS) features

Required Libraries

When building Global Call applications for the IP technology, it is not necessary to link any
libraries other than the standard Global Call library, libgc.lib. Other libraries, including IP-specific
libraries, are loaded automatically.

Required System Software

The Intel® Dialogic® system software must be installed on the development system. See the
Software Installation Guide for your system release for further information.

Global Call IP Technology Guide — January 2004 95



u
Building Global Call IP Applications I nt6| o

96 Global Call IP Technology Guide — January 2004



intel.

Debugging Global Call IP
Applications

This chapter provides information about debugging Global Call IP applications:

* Debugging Overview

e Log Files

6.1 Debugging Overview

The Global Call software can be configured to write underlying call control library and stack
information to log files while an application is running. This information can help trace the

sequence of events and identify the source of a problem. These log files are also useful when
reporting problems to technical support personnel.

Table 9 shows the log files that can be generated, the directory into which each log file is written,
the purpose of each log file, and the configuration files that can be used to customize the output

each log file.

Note: Log file generation is enabled by placing the configuration file in the respective directory as
indicated in Table 9.

Table 9. Summary of Log File Options

Log File Where Configuration . Placfemer!t of
Purpose . Configuration File for Log
Name Generated File .
Generation
gc_h3r.log | Call control library and Application gc_h3r.cfg Application directory
SIP stack debugging in directory
both Linux and Windows
operating systems.
logfile.log H.323 stack debugging on | Application msg.conf Application directory
Linux operating systems. directory
rvtsp1.log H.323 stack debugging in | Application rvtele.ini WINNT directory, for
a Windows environment. directory example, C:\Winnt\rvtele.ini

6.2 Log Files

The following topics provide information about the use of each log file:

e (all Control Library and SIP Stack Debugging

e H.323 Stack Debugging on Linux Operating Systems
e H.323 Stack Debugging

Global Call IP Technology Guide — January 2004

97



u
Debugging Global Call IP Applications I nt9| o

6.2.1

6.2.1.1

98

Call Control Library and SIP Stack Debugging

The gc_h3r.cfg file can be used to customize the information written to the gc_h3r.log file by one
or both of the following:

¢ Customizing Call Control Library Logging to the gc_h3r.log File
¢ Customizing SIP Stack Logging to the gc_h3r.log File

Customizing Call Control Library Logging to the gc_h3r.log File

The call control library comprises three library files; libgch3r.so, libsigal.so, and libsipsigal.so for
Linux operating systems, and libgch3r.dll, libsigal.dll, and libsipsigal.dll for Windows operating
systems.

The modules in libgch3r.so and libgch3r.dll and the type of log information generated by each
module are:

M_CRN
Call Reference Number information and states.

M_SHM
Interface to User information (for example, when calling gc_ReleaseCallEx( ),
ShmReleaseCallEx is output to the log).

M_LD
Line device operation and states.

M_MEDIA
Media channel related information.

M_PDL
Predefined Library information.

M_PACKER
Packed event information to the application.

M_SH_DB
Preconfiguration information saved in the control library.

M_SH_DEC
Internal process communication information.

M_SH_ENC
Internal process communication information.

M_SH_IPC
Internal process communication information.

M_SH_UNPACK
Information unpacked from the application.

M_BOARD
Board-related information.

Global Call IP Technology Guide — January 2004



The modules in libsigal.so and libsigal.dll and the type of log information generated by each

module are:

M_SIG_MAN
DLL manager information.

M_CALL_MAN
Call manager information.

M_SIGNAL
Q.931 manager information.

M_CONTROL
H.245 manager information.

M_CHAN_MAN
Logical channel manager information.

M_CHAN
Logical channel information.

M_IE
Information element information.

M_SIG_DEC

Internal process communication information.

M_SIG_ENC

Internal process communication information.

M_SIG_IPC

Internal process communication information.

M_RAS

Registration, Admission and Status information.

M_CAPS
Capability matching algorithm information.

Debugging Global Call IP Applications

The modules in libsipsigal.so and libsipsigal.dll and the type of log information generated by each

module are:

M_S_SIGAL
DLL manager information.

M_S_CALLM
Call manager information.

M_S_SIGNL
SIP manager information.

M_S_CHMGR
Logical channel manager information.

M_SIP_IE
Information element information.

M_SIP_CAP
Capability matching algorithm information.

Global Call IP Technology Guide — January 2004

99



u
Debugging Global Call IP Applications I nt9| o

100

M_SIP_DEC
Internal process communication information.

M_SIP_ENC
Internal process communication information.

M_SIP_IPC
Internal process communication information.

M_INFO
Message send information (not yet implemented).

M_REFER
Call transfer information (not yet implemented).

M_PRACK
Provisional response information (not yet implemented).

M_AUTHENT
Authentication information (not yet implemented).

In the gc_h3r.cfg file, you can set a different debug level for each module. Table 10 shows the valid
debug levels.

Table 10. Levels of Debug for Call Control Library Logging

Debug Levelt Infgfr::gon Call Control Library Output to Log File
0 L_NONE No information
1 L_SPECIAL Limited information describing call control library configuration
2 L_ERROR Error information. This is the default level.
3 L_WARNING Warning information
4 L_INFO Significant state transition information
5 L_EXTEND Additional relevant information
6 L_ALL All information

1Selecting a debug level automatically includes all lower debug levels. For example, selecting level 3 automatically includes
levels 0, 1, and 2.

To set a module to the desired debug level, use the following syntax:
Module name = Debug Level Number
Some examples are:

m_sip enc = 2

sets the m_sip_enc module to the LEVEL_ERROR debug level

m call man = 6

sets the m_call_man module to the LEVEL_ALL debug level

m _media = 4

sets the m_media module to the LEVEL_INFO debug level

Global Call IP Technology Guide — January 2004



intel.

6.2.1.2

Table 11.

Debugging Global Call IP Applications

Customizing SIP Stack Logging to the gc_h3r.log File

The SIP stack comprises a number of modules as follows:

* RvSipStack_Message

¢ RvSipStack_Core

* RvSipStack_Transport

¢ RvSipStack_Transaction
* RvSipStack_Call

* RvSipStack_Parser

* RvSipStack_Stack

¢ RvSipStack_Authenticator
* RvSipStack_RegClient

* RvSipStack_MsgBuilder

In the gc_h3r.cfg file, you can set different debug levels for each module. Table 11 shows the valid
debug levels that can be set. More than one level of debug can be set for each module. This is
achieved by specifying a decimal number that is the binary equivalent of the binary values of each
desired level ORed together. For example, a value of 31 decimal (11111 binary) enables all debug
levels.

Levels of Debug Information for SIP Stack Logging

I?:vl:al:s-’r Debug Information SIP Stack Output to Log File
0 None No information. This is the default level.
1 DEBUG Detailed information about SIP stack activity.
2 INFO Information about SIP stack activity.
4 WARNING Warnings about possible non-fatal errors.
8 ERROR A non-fatal error occurred.
16 EXCEP A fatal error occurred that blocks stack operation.

1 Uses a decimal representation of a bit mask, that is level 2 is 010, level 8 is 01000, level 16 is 010000 etc.

Special gc_h3r.cfg Configuration Parameters

In the gc_h3r.cfg file, two parameters that have special significance are:

outputdest
This parameter should be always be set to 0.

print_file_n_line
Controls whether filename and line numbers are written to the log. Possible values are:
¢ | —Filenames and line numbers are written to the log file.
¢ 0 - Filenames and line numbers are not written to the log file.

Global Call IP Technology Guide — January 2004 101



Debugging Global Call IP Applications I n

Sample Extract from gc_h3r.log File

The following is an extract from a gc_h3r.log file:

4 ! 09:35:54.558 ! M _MEDIA ! L_INFO ! 2 ! >> eventHandler:

ev CNTRL_EV _RX CONNECT st TRL_ ST TXCONNECT

4 ! 09:35:54.558 ! M _MEDIA ! L_INFO ! 2 | >> Media::connectALL

4 ! 09:35:54.558 ! M_MEDIA ! L_INFO ! 2 | >> mediaEventHandler:

ev EV_CONNECTALL st ST _WAIT_ FOR CALL

6 ! 09:35:54.558 ! M_MEDIA ! L_ALL ! 2 ! >> MediaState::startTransaction

6 ! 09:35:54.558 ! M_MEDIA ! L_ALL ! 2 | >> Mediaipml::setEventMaskCALL : mode

32768, maskEvt 0x7f

6 ! 09:35:54.558 ! M_MEDIA ! L_ALL ! 2 | << Mediaipml::setEventMaskCALL
:m_EventMaskState 0x22 : [0]

6 ! 09:35:54.558 ! M_MEDIA ! L_ALL ! 2 | >> Mediaipml::setRemoteMediaInfoCALL

5 ! 09:35:54.558 ! M_MEDIA ! L_EXTEND ! 2 | LOCAL RTP Port = 2720 Address : 10.242.212.44
5 ! 09:35:54.568 ! M_MEDIA ! L_EXTEND ! 2 ! LOCAL_RTCP Port = 2721 Address : 10.242.212.44
5 ! 09:35:54.568 ! M_MEDIA ! L_EXTEND ! 2 | REMOTE RTP Port = 2710 Address :
10.242.212.44

5 ! 09:35:54.568 ! M_MEDIA ! L_EXTEND ! 2 | LOCAL_CODER, G711ULAW64K,FSize 20,FPP 1,V O,
PT 0,RedPT 0

5 ! 09:35:54.568 ! M_MEDIA ! L_EXTEND ! 2 | REMOTE_RTCP Port = 2711 Address
10.242.212.44

5 ! 09:35:54.568 ! M_MEDIA ! L_EXTEND ! 2 ! REMOTE_CODER, G711ULAW64K,FSize 20,FPP 1,V
0,PT 0,RedPT 0

6 ! 09:35:54.568 ! M _MEDIA ! L_ALL ! 2 | << Mediaipml::setRemoteMediaInfoCALL: [0]

6 ! 09:35:54.568 ! M_MEDIA ! L_ALL ! 2 | << MediaState::startTransaction: [0

4 ! 09:35:54.568 ! M_MEDIA ! L_INFO ! 2 ! << mediaEventHandler: ev EV_CONNECTALL st

ST _STARTING: [0

Notes: 1. Lines that begin with 4 (level 4) indicate state machine transitions.

2. Lines that begin with 5 (Ievel 5) provide extended information (in this case the remote coder and
the local coder and RTP/RTCP information starting the media channel).

3. Lines that begin with 6 (level 6) provide additional information (in this case the entry to and exit
from functions).

6.2.2 H.323 Stack Debugging on Linux Operating Systems

The msg.conf file can be used to customize the logging of H.323 stack information to the logfile.log
file. You can use the msg.conf file for the following:

¢ Selecting Modules that Write to logfile.log
¢ Selecting the Debug Level
¢ Selecting the Debug Output Type

6.2.2.1 Selecting Modules that Write to logfile.log

The H.323 stack comprises a number of modules as follows:
Note: 1 indicates the most commonly used modules.
e EMA
e MEMORY
e RA
e CAT

102 Global Call IP Technology Guide — January 2004



6.2.2.2

Global Call IP Technology Guide — January 2004

CMT

CMAPI}
CMAPICB T
CMERRT
TPKTCHAN
CONFIGT
APPL
FASTSTARTY
VT

UNREG
RASY
UDPCHAN
TCP
TRANSPORT
ETIMER
PERTY
PERERRT
TUNNCTRLY
Q9317
Q931ERR

L1

TIMER
AnnexE
SSEERR
SSEAPI
SSEAPICS
SSCHAN
SUPS

TPKTCHAN
UDPCHAN
#CMAPICB
#CMAPI

Selecting the Debug Level

Debugging Global Call IP Applications

In the msg.conf file, you can enable or disable the modules that write information to logfile.log. A
module is disabled by including a pound symbol (#) in front of the module name. For example, in
the following segment of the msg.conf file, the TPKTCHAN and UDPCHAN modules write to the
log file, but the CMAPICB and CMAPI modules do not.

In the msg.conf file, you can set the debug level by including lines similar to the following:

103



u
Debugging Global Call IP Applications I nt9| o

6.2.2.3

6.2.3

104

#set up debug level
%2

In this example, the debug level is set to 2. The valid debug levels and their meanings are:

0
Do not display or print debug information. This is the default level.

1
Do not display trees or do not check trees for ASN.1 consistency.
2
Display all information including trees, but do not check trees for ASN.1 consistency.
3
Display all information and check trees for ASN.1 consistency. Display any inconsistencies
found.
4

Display all messages.

Selecting the Debug Output Type
In the msg.conf file, you can direct where the debug output will be written by including lines
similar to the following:

#debug output definition
>file

In this example, the debug output is directed to a file. The valid output options are:

file
Write the debug output to a file. The name of the file is <current directory>logfile.log.

logger
Write the debug output to a logger, such as the debug logger, or to any other printing tool.

terminal
Display the debug output on a terminal.

H.323 Stack Debugging

The rvtele.ini file can be used to customize the logging of H.323 stack information to the rvtspl.log
file. You can use the rvtele.ini file for the following:

¢ Selecting Modules that Write to rvtspl.log

Selecting the Debug Level

Selecting the Debug Output Type

¢ Configuring Cyclic Mode Parameters

Global Call IP Technology Guide — January 2004



intel.
6.2.3.1

Note:

Debugging Global Call IP Applications

Selecting Modules that Write to rvisp1.log

The H.323 stack comprises a number of modules as follows:

1 indicates the most commonly used modules.

EMA
MEMORY
RA

CAT

CM+T

CMAPI}
CMAPICB T
CMERRT
TPKTCHAN
CONFIGT
APPL
FASTSTARTY
VT

UNREG
RAST
UDPCHAN
TCP
TRANSPORT
ETIMER
PERT
PERERRT
TUNNCTRL
Q931+
Q931ERR

L1

TIMER
AnnexE
SSEERR
SSEAPI
SSEAPICS
SSCHAN
SUPS

Global Call IP Technology Guide — January 2004

105



u
Debugging Global Call IP Applications I nt9| o

Note:

6.2.3.2

6.2.3.3

106

In the rvtele.ini file, you can enable or disable modules from writing information to rvtspl.log. A
module is enabled by including a line with the <module name>=1 under a section labeled
[insertIntoFile]. For example:

[insertIntoFile]

TPKTCHAN=1

UDPCHAN=1

CMPAPICB=0
CMPAPI=0

In this example, the TPKTCHAN and UDPCHAN modules write to the log file, but the CMAPICB
and CMAPI modules do not.

Only one section labeled [insertIntoFile] is allowed in the rvzele.ini file.

Selecting the Debug Level

In the rvtele.ini file, you can set the debug level by including lines similar to the following:

#set up debug level
deblevel=2

In this example, the debug level is set to 2. The valid debug levels and their meanings are:

0
Do not display or print debug information. This is the default level.

1
Display messages from all source modules, except those source modules in the list given with
the filtering level instructions.

2
Display messages from all source modules according to the list given with the filtering level
instructions.

3

Display messages from all source modules.

Selecting the Debug Output Type

In the rvtele.ini file, the following section must exist to direct the debug output:
[supserve]
nsgfile-1

msgdeb=1
msgwin=0

In this example, the debug output is directed to the rvtspl.log file and writes all debug output to the
debugger window, such as the Windows debugger when running the application in a Windows
environment. The valid output options are:

msgfile
The stack writes all debug messages to the rvespl.log file.

msgdeb
The stack writes all debug messages to a debugger window.

Global Call IP Technology Guide — January 2004



u
I nu o Debugging Global Call IP Applications

msgwin
The stack writes all debug messages to a special window that it creates.

6.2.3.4 Configuring Cyclic Mode Parameters

When using a debug output of msgfile=1, it is possible to work in cyclic mode and set a limit to the
physical size of the rvtspl.log file. When the log file expands to this size, information will be
logged to the beginning of the file overwriting older logging information. The lines in the rvtele.ini
file that control these parameters are as follows:

[fileParams]

fileSize=20000000
fileCyclic=1

To disable this option, set the parameter values as follows:
[fileParams]

fileSize=-1
fileCyclic=0

Global Call IP Technology Guide — January 2004 107



u
Debugging Global Call IP Applications I nt6| o

108 Global Call IP Technology Guide — January 2004



intel.

IP-Specific Function Information 7/

7.1

Certain Global Call functions have additional functionality or perform differently when used with
IP technology. The generic function descriptions in the Global Call API Library Reference do not
contain detailed information for any specific technology. Detailed information in terms of the
additional functionality or the difference in performance of those functions when used with IP
technology is contained in this chapter. The information provided in this guide therefore must be
used in conjunction with the information presented in the Global Call API Library Reference to
obtain the complete information when developing Global Call applications that use IP technology.
[P-specific variances are described in the following topics:

e Global Call Functions Supported by IP. .. ...... ... ... ... .. 109
¢ Global Call Function Variances for IP. . ......... . .. .. . . . i .. 116
e Global Call States Supported by IP. ... ... ... . 149
e Global Call Events Supported by IP ....... ... ... . i 150
e Initialization Functions ... ........ ... i e 151

Global Call Functions Supported by IP

The following is a full list of the Global Call functions that indicates the level of support when used
with IP technology. The list indicates whether the function is supported, not supported, or
supported with variances.

gc_AcceptCall()
Supported with variances described in Section 7.2.1, “gc_AcceptCall( ) Variances for IP”, on
page 116

gc_AcceptInitXfer( )
Supported

gc_AcceptXfer()
Supported

gc_AlarmName( )
Supported

gc_AlarmNumber( )
Supported

gc_AlarmNumberToName( )
Supported

gc_AlarmSourceObjectID( )
Supported

gc_AlarmSourceObjectIDToName( )
Supported

Global Call IP Technology Guide — January 2004 109



u
IP-Specific Function Information I nt9| o

gc_AlarmSourceObjectName( )
Supported

gc_AlarmSourceObjectNameToID( )
Supported

gc_AnswerCall( )
Supported with variances described in Section 7.2.2, “gc_AnswerCall( ) Variances for IP”, on
page 116

gc_Attach()
Not supported

gc_AttachResource( )
Supported

gc_BlindTransfer( )
Not supported

gc_CallAck()
Supported with variances described in Section 7.2.3, “gc_CallAck( ) Variances for IP”, on
page 117

gc_CallProgress( )
Not supported

gc_CCLibIDToName( )
Supported

gc_CCLibNameTolID( )
Supported

gc_CCLibStatus()
Supported, but deprecated. Use ge_ CCLibStatusEx( ).

gc_CCLibStatusAll( )
Supported, but deprecated. Use ge_ CCLibStatusEx( ).

gc_CCLibStatusEx( )
Supported

gc_Close()
Supported

gc_CompleteTransfer( )
Not supported

gc_CRN2LineDev( )
Supported

gc_Detach( )
Supported

gc_DropCall( )
Supported with variances described in Section 7.2.4, “gc_DropCall( ) Variances for IP”, on
page 118

gc_ErrorInfo()
Supported

110 Global Call IP Technology Guide — January 2004



IP-Specific Function Information

gc_ErrorValue()
Supported, but deprecated. Use ge_ErrorInfo( ).

gc_Extension( )
Supported with variances described in Section 7.2.5, “gc_Extension( ) Variances for IP”, on
page 118

gc_GetAlarmConfiguration( )
Supported

gc_GetAlarmFlow( )
Supported

gc_GetAlarmParm( )
Supported with variances described in Section 7.2.6, “gc_GetAlarmParm( ) Variances for IP”,
on page 120

gc_GetAlarmSourceObjectList( )
Supported

gc_GetAlarmSourceObjectNetworkID( )
Supported

gc_GetANI()
Not supported

gc_GetBilling( )
Not supported

gc_GetCalllnfo( )
Supported with variances described in Section 7.2.7, “gc_GetCallInfo( ) Variances for IP”, on
page 120

gc_GetCallProgressParm( )
Not supported

gc_GetCallState( )
Supported

gc_GetConfigData( )
Not supported

gc_GetCRN()
Supported

gc_GetCTInfo( )
Supported with variances described in Section 7.2.8, “gc_GetCTInfo( ) Variances for IP”, on
page 121

gc_GetDNIS()
Not supported

gc_GetFrame()
Not supported

gc_GetInfoElem( )
Not supported

Global Call IP Technology Guide — January 2004 111



u
IP-Specific Function Information I nt9| o

gc_GetLineDev( )
Supported

gc_GetLineDevState( )
Not supported

gc_GetMetaEvent( )
Supported.

gc_GetMetaEventEx( )
Supported (Windows extended asynchronous mode only)

gc_GetNetCRV()
Not supported

gc_GetNetworkH( )
Not supported

gc_GetParm( )
Not supported

gc_GetResourceH( )
Supported with variances described in Section 7.2.9, “gc_GetResourceH( ) Variances for IP”,
on page 121

gc_GetSigInfo( )
Not supported

gc_GetUserInfo( )
Not supported

gc_GetUsrAttr( )
Supported

gc_GetVer()
Supported

gc_GetVoiceH()
Not supported

gc_GetXmitSlot( )
Supported with variances described in Section 7.2.10, “gc_GetXmitSlot( ) Variances for IP”,
on page 122

gc_HoldACK()
Not supported

gc_HoldCall( )
Not supported

gc_HoldRej()
Not supported

gc_InitXfer()
Supported

gc_InvokeXfer( )
Supported

112 Global Call IP Technology Guide — January 2004



IP-Specific Function Information

gc_LinedevToCCLIBID( )
Supported

gc_Listen( )
Supported with variances described in Section 7.2.11, “gc_Listen( ) Variances for IP”, on
page 122

gc_LoadDxParm( )
Not supported

gc_MakeCall( )
Supported with variances described in Section 7.2.12, “gc_MakeCall( ) Variances for IP”, on
page 122

gc_Open()
Not supported

gc_OpenEx()

Supported with variances described in Section 7.2.13, “gc_OpenEx( ) Variances for IP”, on
page 136

gc_QueryConfigData( )
Not supported

gc_RejectInitXfer( )
Supported

gc_RejectXfer( )
Supported

gc_ReleaseCall( )
Not supported

gc_ReleaseCallEx( )
Supported with variances described in Section 7.2.14, “gc_ReleaseCallEx( ) Variances for IP”,
on page 137

gc_ReqANI()
Not supported

gc_ReqMorelnfo( )
Not supported

gc_ReqService( )
Supported with variances described in Section 7.2.15, “gc_ReqService( ) Variances for IP”, on
page 138

gc_ResetLineDev( )
Supported

gc_RespService( )
Supported with variances described in Section 7.2.16, “gc_RespService( ) Variances for IP”,
on page 141

gc_ResultInfo( )
Supported

gc_ResultMsg( )
Not supported

Global Call IP Technology Guide — January 2004 113



u
IP-Specific Function Information I nt9| o

gc_ResultValue( )
Not supported

gc_RetrieveAck( )
Not supported

gc_RetrieveCall( )
Not supported

gc_RetrieveRej( )
Not supported

gc_SendMorelnfo( )
Not supported

gc_SetAlarmConfiguration( )
Supported

gc_SetAlarmFlow( )
Supported

gc_SetAlarmNotifyAll( )
Supported

gc_SetAlarmParm( )
Supported with variances described in Section 7.2.17, “gc_SetAlarmParm( ) Variances for IP”,
on page 142

gc_SetBilling( )
Not supported

gc_SetCallingNum( )
Not supported

gc_SetCallProgressParm( )
Not supported

gc_SetChanState( )
Not supported

gc_SetConfigData( )
Supported with variances described in Section 7.2.18, “gc_SetConfigData( ) Variances for IP”,
on page 143

gc_SetEvtMask( )
Not supported

gc_SetInfoElem( )
Not supported

gc_SetParm()
Not supported

gc_SetUpTransfer( )
Not supported

gc_SetUserInfo( )
Supported with variances described in Section 7.2.19, “gc_SetUserInfo( ) Variances for IP”,
on page 145

114 Global Call IP Technology Guide — January 2004



u
I nu o IP-Specific Function Information

gc_SetUsrAttr()
Supported

gc_SndFrame()
Not supported

gc_SndMsg( )
Not supported

gc_Start( )
Supported with variances described in Section 7.2.20, “gc_Start( ) Variances for IP”, on
page 147

gc_StartTrace( )
Not supported

gc_Stop()
Supported

gc_StopTrace()
Not supported

gc_StopTransmitAlarms( )
Not supported

gc_SwapHold()
Not supported

gc_TransmitAlarms( )
Not supported

gc_UnListen( )
Supported with variances described in Section 7.2.21, “gc_UnListen( ) Variances for IP”, on
page 149

gc_util_delete_parm_blk( )
Supported

gc_util_find_parm()
Supported

gc_util_insert_parm_ref( )
Supported

gc_util_insert_parm_val()
Supported

gc_util_next_parm( )
Supported

gc_WaitCall( )
Supported

Global Call IP Technology Guide — January 2004 115



u
IP-Specific Function Information I nt9| o

7.2 Global Call Function Variances for IP

Note: All functions are supported in asynchronous mode. Functions that also support synchronous mode
(gc_OpenEx( ), gc_Listen( ), gc_ReleaseCallEx( ), and gc_Unlisten( )) are noted explicitly.

The Global Call function variances that apply when using IP technology are described in the
following sections. See the Global Call API Library Reference for generic (technology-
independent) descriptions of the Global Call API functions.

7.2.1 gc_AcceptCall( ) Variances for IP

The rings parameter is ignored.

Variance for H.323

The gc_AcceptCall( ) function is used to send the Q.931 ALERTING message to the originating
endpoint.

Variance for SIP

The ge_AcceptCall( ) function is used to send the 180 Ringing message to the originating
endpoint.

7.2.2 gc_AnswerCall( ) Variances for IP
The rings parameter is ignored.

Coders can be set in advance of using ge_AnswerCall( ) by using gc_SetUserInfo( ). See
Section 7.2.19, “gc_SetUserInfo( ) Variances for IP”, on page 145 for more information.

The following code example shows how to use the ge_SetUserInfo( ) function to set coder
information before calls are answered using gc_AnswerCall( ).

/* Specifying coders before answering calls */

LINEDEV ldev;

CRN crn;

GC_PARM BLK *target_datap;

/* Define Coder */

IP_CAPABILITY a_DefaultCapability;

gc_OpenEx (&ldev, ":N iptB1T1:M ipmB1C1:P_H323", EV_ASYNC, 0);

/* wait for GCEV_OPENEX event ... */

/* Set default coder for this ldev */

target_datap = NULL;

memset (&a_DefaultCapability,0,sizeof (IP_CAPABILITY)) ;
a_DefaultCapability.capability = GCCAP_AUDIO g7231_5_3k;
a_DefaultCapability.direction = IP_CAP_DIR_LCLTRANSMIT;
a_DefaultCapability.type = GCCAPTYPE_AUDIO;

116 Global Call IP Technology Guide — January 2004



7.2.3

IP-Specific Function Information

a_DefaultCapability.extra.audio.frames_per_pkt = 1;
a_DefaultCapability.extra.audio.VAD = GCPV_DISABLE;
gc_util_insert_parm ref (&target_datap, GCSET_ CHAN_ CAPABILITY,
IPPARM LOCAL CAPABILITY, sizeof (IP_CAPABILITY),
&a_DefaultCapability) ;

/* set both receive and transmit coders to be the same (since

the IPTxxx board does not support asymmetrical coders */
memset (&a_DefaultCapability, 0,sizeof (IP_CAPABILITY)) ;
a_DefaultCapability.capability = GCCAP_AUDIO g7231_5_3k;
a_DefaultCapability.direction = IP_CAP_DIR_LCLRECEIVE;
a_DefaultCapability.type = GCCAPTYPE AUDIO;
a_DefaultCapability.extra.audio.frames_per_pkt = 1;
a_DefaultCapability.extra.audio.VAD = GCPV_DISABLE;
gc_util_insert_parm ref (&target_datap, GCSET CHAN_ CAPABILITY,
IPPARM LOCAL_CAPABILITY, Sizeof(IP_CAPAEILITY),
&a_DefaultCapability) ;

gc_SetUserInfo (GCTGT _GCLIB_CHAN, ldev, target_datap, GC_ALLCALLS) ;
gc_util_delete_parm blk(target_datap) ;

gc_WaitCall(ldev, NULL, NULL, 0, EV_ASYNC);

/*... Receive GCEV_OFFERED ... */

/*... Retrieve crn from metaevent... */

gc_AnswerCall (crn, 0, EV_ASYNC) ;

/*... Receive GCEV_ANSWERED ... */

Variance for H.323

The ge_AnswerCall( ) function is used to send the Q.931 CONNECT message to the originating
endpoint.

Variance for SIP

The ge_AnswerCall( ) function is used to send the 200 OK message to the originating endpoint.

gc_CallAck( ) Variances for IP

The callack_blkp parameter must be a pointer to a GC_CALLACK_BLK structure that contains a
type field with a value of GCACK_SERVICE_PROC. The following code example shows how to
set up a GC_CALLACK_BLK structure and issue the gc_CallAck( ) function.

GC_CALLACK BLK gcCallAckBlk;

memset (&gcCallAckBlk, 0, sizeof (GC_CALLACK BLK)) ;
gcCallAckBlk.type = GCACK_SERVICE_PROC;

rc = gc_CallAck(crn, &gcCallAckBlk, EV_ASYNC) ;

The application can configure if the Proceeding message is sent manually using the ge_CallAck( )

function or if it is sent automatically by the stack. See Section 4.11, “Configuring the Sending of
the Proceeding Message”, on page 73 for more information.

Variance for H.323

The ge_CallAck( ) function is used to send the Proceeding message to the originating endpoint.

Global Call IP Technology Guide — January 2004 117



u
IP-Specific Function Information I nt9| o

7.2.4

7.2.5

118

Note:

Variance for SIP

The ge_CallAck( ) function is used to send the 100 Trying message to the originating endpoint.

gc_DropCall( ) Variances for IP

The cause parameter can be any of the generic cause codes documented in the ge_DropCall( )
function reference page in the Global Call API Library Reference or a protocol-specific cause code
as described below.

Variance for H.323

Allowable protocol-specific cause codes are prefixed by IPEC_H225 or IPEC_Q931 in Chapter 10,
“IP-Specific Event Cause Codes”.

Variance for SIP

Allowable protoicol-specific cause codes are prefixed by IPEC_SIP in Chapter 10, “IP-Specific
Event Cause Codes”.

Cause codes and reasons are only supported when gc_DropCall( ) is issued while the call is in the
Offered state.

gc_Extension( ) Variances for IP

The ge_Extension( ) function can be used for the following purposes:
e retrieving call-related information
e getting notification of underlying protocol connection or disconnection state transitions

¢ getting notification of media streaming initiation and termination in both the transmit and
receive directions

¢ specifying which DTMF types, when detected, provide notification to the application
* sending DTMF digits

e retrieving protocol messages (Q.931, H.245, and registration)

* sending protocol messages (Q.931, H.245, and registration)

e getting notification for T.38 fax events

Table 12 shows the valid extension IDs and their purpose.

Global Call IP Technology Guide — January 2004



IP-Specific Function Information

Table 12. Valid Extension IDs for the gc_Extension( ) Function

Extension ID

Description

IPEXTID_FOIP

Used in GCEV_EXTENSION events for notification of information related
to fax. See Section 4.10, “Enabling and Disabling Unsolicited Notification
Events”, on page 71 for more information.

IPEXTID_GETINFO

Used to retrieve call-related information. See Section 4.4, “Retrieving
Current Call-Related Information”, on page 50 for more information.

IPEXTID_IPPROTOCOL_STATE

Used in GCEV_EXTENSION events for notification of intermediate
protocol states, such as, Q.931 and H.245 session connections and
disconnections. See Section 4.10, “Enabling and Disabling Unsolicited
Notification Events”, on page 71 for more information.

IPEXTID_MEDIAINFO

Used in GCEV_EXTENSION events for notification of the initiation and
termination of media streaming in the transmit and receive directions. In
the case of media streaming connection notification, the datatype of the
parameter is IP_CAPABILITY and consists of the coder configuration that
resulted from the capability exchange with the remote peer. See

Section 4.10, “Enabling and Disabling Unsolicited Notification Events”, on
page 71 for more information.

IPEXTID_RECEIVE_DTMF

Used to select which DTMF types, when detected, provide notification to
the application. See Section 4.10, “Enabling and Disabling Unsolicited
Notification Events”, on page 71 for more information.

IPEXTID_RECEIVEMSG

Used in GCEV_EXTENSION events when Q.931, H.245, and non-
standard registration messages are received.

IPEXTID_SEND_DTMF

Used to send DTMF digits. When this call is successful, the sending side
receives a GCEV_EXTENSIONCMPLT event with the same ext_id. The
remote side receives a GCEV_EXTENSION event with
IPEXTID_RECEIV_DTMF but only when configured for notification of a
specific type of DTMF. See Section 4.10, “Enabling and Disabling
Unsolicited Notification Events”, on page 71 for more information.

IPEXTID_SENDMSG

Used to send Q.931, H.245, and RAS messages. The supported
parameter sets are:

* |IPSET_MSG_H245

e |IPSET_MSG_Q931

* IPSET_MSG_RAS
When the gc_Extension( ) function completes successfully, the sending
side receives a GCEV_EXTENSIONCMPLT event with the same ext_id.
The remote side receives a GCEV_EXTENSION event with an ext_id
field value of IPEXTID_RECEIVEMSG.

The ge_Extension( ) function is only used in the context of a call where the protocol is already
known, therefore the protocol does not need to be specified. When protocol-specific information is
specified and it is not of the correct protocol type, for example, attempting to send a Q.931
FACILITY message in a SIP call, the operation fails.

See the Section 4.4.2, “Example of Retrieving Call-Related Information”, on page 53 for a code
example showing how to identify the type of extension event and extract the related information.

Global Call IP Technology Guide — January 2004 119



u
IP-Specific Function Information I nt9| o

7.2.6

7.2.7

120

Note:

gc_GetAlarmParm( ) Variances for IP

The ge_GetAlarmParm( ) function can be used to get QoS threshold values. The function
parameter values in this context are:

linedev
The media device handle, retrieved using the gc_GetResourceH( ) function. See
Section 4.14.2, “Retrieving the Media Device Handle”, on page 75 for more information.

aso_id
The alarm source object ID. Set to ALARM_SOURCE_ID_NETWORK_ID.

ParmSetID
Must be set to ParmSetID_qosthreshold_alarm.

alarm_parm_list

A pointer to an ALARM_PARM_FIELD structure. The alarm_parm_number field is not used.
The alarm_parm_data field is of type GC_PARM, which is a union. In this context, the type
used is void *pstruct, and is cast as a pointer to an IPM_QOS_THRESHOLD_INFO structure,
which includes an IPM_QOS_THRESHOLD_DATA structure that contains the parameters
representing threshold values. See the IPM_QOS_THRESHOLD_INFO structure in the /P
Media Library API Library Reference and the IP Media Library API Programming Guide for
more information. The thresholds supported by Global Call are QOSTYPE_LOSTPACKETS
and QOSTYPE_JITTER.

mode
Must be set to EV_SYNC.

Applications must include the gcipmlib.h header file before Global Call can be used to set or
retrieve QoS threshold values.

See Section 4.14.3, “Setting QoS Threshold Values”, on page 75 for code examples.

gc_GetCallinfo( ) Variances for IP

The ge_GetCalllnfo( ) function can be used to retrieve calling (ANI) or called party (DNIS)
information such as an IP address, an e-mail address, and E.164 number, a URL, etc. The supported
values of the info_id parameter are:

ORIGINATION_ADDRESS
the calling party information (equivalent to ANI)

DESTINATION_ADDRESS
the called party information (equivalent to DNIS)

When an info_id of ORIGINATION_ADDRESS (ANI) is specified and the function completes
successfully, the valuep string is a concatenation of values delimited by a pre-determined character
(configurable in the IPCCLIB_START_DATA data structure used by gc_Start( ); the default is a
comma).

When an info_id of DESTINATION_ADDRESS (DNIS) is specified and the function completes

successfully, the valuep string is a concatenation of values delimited by a pre-determined character
(configurable in the IPCCLIB_START_DATA data structure used by gc_Start( ); the default is a

Global Call IP Technology Guide — January 2004



7.2.8

7.2.9

Note:

IP-Specific Function Information

comma). The IP address of the destination gateway (that is processing the DNIS) is not included in
the string.

The gec_GetCalllnfo( ) function can also be used to query the protocol used by a call. The info_id
parameter should be set to CALLPROTOCOL and the valuep parameter returns a pointer to an
integer that is one of the following values:

e CALLPROTOCOL_H323
e CALLPROTOCOL_SIP
For an inbound call, the ge_GetCallInfo( ) function can be used to determine the protocol any time

after the GCEV_OFFERED event is received and before the GCEV_DISCONNECTED event is
received.

Variance for H.323

When retrieving calling (ANI) information, the following rules apply. Any section in the string that
includes a prefix (TA:, TEL:, or NAME:) has been inserted as an alias by the originating party. Any
section in the string that does not include a prefix has been inserted as a calling party number
(Q.931) by the originating party.

When retrieving called party (DNIS) information, the following rules apply. Any section in the
string that includes a prefix (TA:, TEL:, or NAME:) has been inserted as an alias by the originating
party. Any section in the string that does not include a prefix has been inserted as a called party
number (Q.931) by the originating party.

Variance for SIP

When retrieving calling party (ANI) information, the address is taken from the From: header and is
of the form user@host. Prefixes (TA:, TEL; or NAME:) are not used.

When retrieving called party (DNIS) information, the address is taken from the To: header and is of
the form user @host. Prefixes (TA:, TEL:, or NAME:) are not used.

gc_GetCTInfo( ) Variances for IP

The ge_GetCTInfo( ) function can be used to retrieve product information (via the CT_DEVINFO
structure) for the media sub-device (ipm) attached to the network device (ipt). If no media device is
associated with the network device, the function returns as though not supported.

gc_GetResourceH( ) Variances for IP

The gc_GetResourceH( ) function can be used to retrieve the media device (ipm device) handle,
which is required by GCAMS functions, such as, gc_SetAlarmParm( ) and gc_GetAlarmParm( )
to set and retrieve QoS threshold values. The function parameter values in this context are:

linedev
the network device, that is, the Global Call line device retrieved by the gc_OpenEx( ) function

Global Call IP Technology Guide — January 2004 121



u
IP-Specific Function Information I nt9| o

Note:

Note:

7.2.10

7.2.11

Note:

7.2.12

122

resourcehp
the address where the media device handle is stored when the function completes

resourcetype
GC_MEDIADEVICE

Applications must include the gcipmlib.h header file before Global Call can be used to set or
retrieve QoS threshold values.

The other resource types including GC_NETWORKDEVICE (for a network device),
GC_VOICEDEVICE (for a voice device), and GC_NET_GCLINEDEVICE (to retrieve the Global
Call line device handle when the media handle is known) are also supported.

The GC_VOICEDEVICE option above applies only if the voice device was opened with the line
device or opened separately and subsequently attached to the line device.

gc_GetXmitSlot( ) Variances for IP

The ge_GetXmitSlot( ) function can be used to get the transmit time slot information for an IP
Media device. The function parameter values in this context are:

linedev
The Global Call line device handle for an IP device (that is, the handle returned by
gc_OpenEx( ) for a device with :N_iptBxTy in the devicename parameter and a media device
attached).

sctsinfop
A pointer to the transmit time slot information for the IP Media device (a pointer to a CT Bus
time slot information structure).

gc_Listen( ) Variances for IP

The ge_Listen( ) function is supported in both asynchronous and synchronous modes. The
function is blocking in synchronous mode.

For line devices that comprise media (ipm) and voice (dxxx) devices, routing is only done on the
media devices. Routing of the voice devices must be done using the Voice API (dx_ functions).

gc_MakeCall( ) Variances for IP

Global Call supports multiple IP protocols on a single device. See Section 2.3.1, “Device Types
Used with IP”, on page 32 for more information. When using multi-protocol devices only, the
protocol can be specified in the associated GC_MAKECALL_BLK structure. The relevant set ID
in this context is [IPSET_PROTOCOL and the relevant parameter ID is
IPPARM_PROTOCOL_BITMASK with one of the following values:

e [P_PROTOCOL_SIP
e [P_PROTOCOL_H323

When making calls on devices that support multiple protocols, if the application does not explicitly
specify a protocol in the makecall block, the default protocol is IP_PROTOCOL_H323. When

Global Call IP Technology Guide — January 2004



7.2.121

IP-Specific Function Information

making calls on devices that support only one protocol, it is not necessary to include an
IPSET_PROTOCOL element in the makecall block. If the application tries to include an
IPSET_PROTOCOL element in the makecall block that conflicts with the protocol supported by
the device, the application receives an error.

Configurable Call Parameters

Call parameters can be specified when using the gc_MakeCall( ) function. The parameters values
specified are only valid for the duration of the current call. At the end of the current call, the default
parameter values for the specific line device override these parameter values. The makecallp
parameter of the gc_MakeCall( ) function is a pointer to the GC_MAKECALL_BLK structure.
The GC_MAKECALL_BLK structure has a gclib field that points to a
GCLIB_MAKECALL_BLK structure. The ext_datap field within the GCLIB_MAKECALL_BLK
structure points to a GC_PARM_BLK structure with a list of the parameters to be set as call values.
The parameters that can be specified through the ext_datap pointer depend on the protocol used,
H.323 or SIP and are described in the subsections following.

Variance for H.323

Table 13 shows the call parameters that can be specified when using gc_MakeCall( ) with H.323.

Table 13. Configurable Call Parameters When Using H.323

Set ID Parameter ID(s) and Datatypes

GCSET_CHAN_CAPABILITY IPPARM_LOCAL_CAPABILITY

Datatype IP_CAPABILITY. See Section , “IP_CAPABILITY”, on

page 177 for more information.

Note: If no transmit/receive coder type is specified, any supported
coder type is accepted.

IPSET_CALLINFO IPPARM_CONNECTIONMETHOD
See Section 8.3, “IPSET_CALLINFO | Enumeration, with one of the following values:
Parameter Set’, on page 161 for « IPPARM_CONNECTIONMETHOD_FASTSTART

information.
more information « IPPARM_CONNECTIONMETHOD_SLOWSTART

See Section 4.2, “Using Fast Start and Slow Start Setup”, on page 42
for more information.

IPPARM_DISPLAY
String, max. length = MAX_DISPLAY_LENGTH (82), null-terminated

IPPARM_H245TUNNELING
Enumeration, with one of the following values:
e IP_H245TUNNELING_ON or IP_H245TUNNELING_OFF

See Section 4.12, “Enabling and Disabling Tunneling in H.323”, on
page 73 for more information.

IPPARM_PHONELIST
String, max. length = 131.

Notes:
The term “String” implies the normal definition of a character string which can contain letters, numbers, white space, and a null
(for termination).

Global Call IP Technology Guide — January 2004 123



IP-Specific Function Information I n

Table 13. Configurable Call Parameters When Using H.323

Set ID Parameter ID(s) and Datatypes

IPPARM_USERUSER_INFO
String, max. length = MAX_USERUSER_INFO_LENGTH (131 bytes)

IPSET_CONFERENCE IPPARM_CONFERENCE_GOAL

Enumeration with one of the following values:

* |IP_CONFERENCEGOAL_UNDEFINED

* |IP_CONFERENCEGOAL_CREATE

* |IP_CONFERENCEGOAL_JOIN

* IP_CONFERENCEGOAL_INVITE

* |IP_CONFERENCEGOAL_CAP_NEGOTIATION

* |IP_CONFERENCEGOAL_SUPPLEMENTARY_SRVC

IPSET_NONSTANDARDDATA Either:
See Section 8.15, * IPPARM_NONSTANDARDDATA_DATA
“IPSET_NONSTANDARDDATA String, max. length = MAX_NS_PARM_DATA_LENGTH (128)

Parameter Set”, on page 168 for

. . and
more information.

¢ IPPARM_NONSTANDARDDATA_OBJID
Unsigned Int[ ], max. length =MAX_NS_PARM_OBJID_LENGTH
(40)
or
* IPPARM_NONSTANDARDDATA_DATA
String, max. length = MAX_NS_PARM_DATA_LENGTH (128)
and
* IPPARM_H221NONSTANDARD
Datatype IP_H221NONSTANDARD

IPSET_NONSTANDARDCONTROL | Either:

See Section 8.14,  IPPARM_NONSTANDARDDATA_DATA

“IPSET_NONSTANDARDCONTROL String, max. length = MAX_NS_PARM_DATA_LENGTH (128)
Parameter Set”, on page 167 for

more information.

and
* IPPARM_NONSTANDARDDATA_OBJID
Unsigned Int[ ], max. length = MAX_NS_PARM_OBJID_LENGTH
(40)
or
* IPPARM_NONSTANDARDDATA_DATA
String, max. length = MAX_NS_PARM_DATA_LENGTH (128)
and
* IPPARM_H221NONSTANDARD
Datatype IP_H221NONSTANDARD

Notes:
The term “String” implies the normal definition of a character string which can contain letters, numbers, white space, and a null
(for termination).

Variance for SIP

Table 14 shows the call parameters that can be specified when using ge_MakeCall( ) with SIP.

124 Global Call IP Technology Guide — January 2004



intel.

Table 14.

7.2.12.2

Note:

7.2.12.3

IP-Specific Function Information

Configurable Call Parameters When Using SIP

Set ID Parameter ID and Datatype

GCSET_CHAN_CAPABILITY IPPARM_LOCAL_CAPABILITY

Datatype IP_CAPABILITY. See Section , “IP_CAPABILITY”, on

page 177 for more information.

Note: If no transmit/receive coder type is specified, any supported
coder type is accepted.

IPSET_CALLINFO IPPARM_CONNECTIONMETHOD

See Section 8.3, “IPSET_CALLINFO | Enumeration, with one of the following values:
Parameter Set”, on page 161 for * IPPARM_CONNECTIONMETHOD_FASTSTART
more information. * IPPARM_CONNECTIONMETHOD_SLOWSTART

See Section 4.2, “Using Fast Start and Slow Start Setup”, on page 42
for more information.

IPPARM_DISPLAY
String, max. length = MAX_DISPLAY_LENGTH (82), null-terminated

IPPARM_PHONELIST
String, max. length = 131

Notes:

The term “String” implies the normal definition of a character string which can contain letters, numbers, white space, and a
null (for termination).

The parameter names used are more closely aligned with H.323 terminology. Corresponding SIP terminology is described in
http://www.ietf.org/rfc/rfc3261.txt?number=3261.

Origination Address Information

The origination address can be specified in the origination field of type GCLIB_ADDRESS_BLK
in the GCLIB_MAKECALL_BLK structure. The address field in the GCLIB_ADDRESS_BLK
contains the actual address and the address_type field in the GCLIB_ADDRESS_BLK structure
defines the type (IP address, name, telephone number) in the address field.

The total length of the address string is limited by the value MAX_ADDRESS_LEN (defined in
gclib.h).

The origination address can be set using the ge_SetCallingNum( ) function, which is a deprecated
function. The preferred equivalent is gc_SetConfigData( ). See the Global Call API Library
Reference for more information.

Forming a Destination Address String

Variance for H.323

The destination address is formed by concatenating values from three different sources:
e the GC_MAKECALL_BLK
¢ the numberstr parameter of gc_MakeCall( )

¢ the phone list

Global Call IP Technology Guide — January 2004 125


http://www.ietf.org/rfc/rfc3261.txt?number=3261

u
IP-Specific Function Information I nt9| o

The order or precedence of these elements and the rules for forming a destination address are
described below.

Notes: 1. The following description refers to a delimited string. The delimiter is configurable by setting the
value of the delimiter field in the IP_CCLIB_START_DATA structure used by the gc_Start( )
function.

2. The total length of the address string is limited by the value MAX_ADDRESS_LEN (defined in
gelib.h).

3. The destination address must be a valid address that can be translated by the remote node.

The destination information string is delimited concatenation of the following strings in the order
of precedence shown:

1. A string constructed from the destination field of type GCLIB_ADDRESS_BLK in the
GCLIB_MAKECALL_BLK. When specifying the destination information in the
GCLIB_ADDRESS_BLK, the address field contains the actual address information and the
address_type field defines the type (IP address, name, telephone number) in the address. For
example, if the address field is “127.0.0.1”, the address_type field must be
GCADDRTYPE_IP. Other supported address types are:

* GCADDRTYPE_INTL - International telephone number

GCADDRTYPE_NAT - National telephone number

GCADDRTYPE_LOCAL - Local telephone number

GCADDRTYPE_DOMAIN - Domain name

GCADDRTYPE_URL - URL name

e GCADDRTYPE_EMAIL - email address

2. The numberstr parameter in the gc_MakeCall( ) function. The numberstr parameter is
treated as a free string that may be a delimited concatenation of more than one section. The
application may include a prefix in a section that maps to a corresponding field in the Setup

message. See Section 7.2.12.4, “Destination Address Interpretation”, on page 128, for more
information.

3. Phone list as described in Table 13, “Configurable Call Parameters When Using H.323”, on
page 123 (and set using IPSET_CALLINFO, IPPARM_PHONELIST). Phone List is treated
as a free string that may be a delimited concatenation of more than one section. The
application may prefix a section that maps to a corresponding field in the Setup message. See
the Destination Address Interpretation section for more information.

Variance for SIP

The format of the destination address for a SIP call is:
user@host; param=value
with the elements representing:

user
A user name or phone number

host
A domain name or an IP address

126 Global Call IP Technology Guide — January 2004



Note:

IP-Specific Function Information

param=value
An optional additional parameter

When making a SIP call, the destination address is formed according to the following rules in the
order of precedence shown:

1. If Phone List (as described in Table 14, “Configurable Call Parameters When Using SIP”, on
page 125 and identified by IPSET_CALLINFO, IPPARM_PHONELIST) exists, it is taken to
construct the global destination-address-string.

2. If the destination address field (of type GCLIB_ADDRESS_BLK in
GCLIB_MAKECALL_BLK) exists, it is taken to construct the global destination-address-
string. The address_type in GCLIB_ADDRESS_BLK is ignored. If the global destination-
address-string is not empty before setting the parameter, an “@” delimiter is used to separate
the two parts.

3. If the numberstr parameter from the gc_MakeCall( ) function exists, it is taken to
destination-address-string. If the global destination-address-string is not empty before setting
the parameter, a “;” delimiter is used to separate the two parts.

To observe the logic described above, the application may use only one of the APIs to send a string
that is a valid SIP address.

The following code examples demonstrate the recommended ways of forming the destination
string when making a SIP call. Prerequisite code for setting up the GC_MAKECALL_BLK in all
the scenarios described in this section is as follows:

GC_MAKECALL_BLK gcmkbl;

GCLIB MAKECALL BLK gclib mkbl = {0};
gcmkbl.cclib = NULL;

gcmkbl.gelib = &gclib _mkbl;

GC_PARM _BLK *target_datap = NULL;

gc_util_insert_parm val (&target_datap,
IPSET PROTOCOL,
IPPARM_PROTOCOL_BITMASK,
sizeof (char),
IP_PROTOCOL_SIP) ;

Scenario 1 - Making a SIP call to a known IP address, where the complete address (user@host) is
specified in the makecall block:

char *pDestAddrBlk = "11223344@127.0.0.1"; /* where "11223344" is the
phone number of the user
and "127.0.0.1" is the
IP address of the host */

/* set GCLIB_ADDRESS_BLK with destination string & type*/
strcpy (gecmkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE TRANSPARENT;

/* calling the function with the MAKECALL BLK, and numberstr parameter=NULL
the INVITE dest address will be: 11223344@127.0.0.1 */
gc_MakeCall (ldev, &crn, NULL, &gcmkbl, MakeCallTimeout, EV_ASYNC) ;

Scenario 2 - Making a SIP call to a known IP address, where the complete address (user@host) is
formed by the combination of the destination address in the makecall block and the phone list
element:

Global Call IP Technology Guide — January 2004 127



IP-Specific Function Information I n
®
char *pDestAddrBlk = "127.0.0.1"; /*host*/
char *IpPhoneList = "003227124311"; /*user*/

7.2.12.4

128

Note:

/* insert phone list */
gc_util_insert_parm ref (&target_datap,
IPSET CALLINFO,
IPPARM_PHONELIST,
(unsigned char) (strlen (IpPhoneList)+1),
IpPhonelist) ;

/* set GCLIB_ADDRESS BLK with destination string & type*/
strcpy (gemkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE_ TRANSPARENT;

gclib_mkbl.ext_datap = target_datap;

/* calling the function with the MAKECALL BLK, and numberstr parameter = NULL
the INVITE dest address will be: 003227124311@127.0.0.1 */
gc_MakeCall (ldev, &crn, NULL, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;

Scenario 3 - Making a SIP call to a known IP address, where the complete address (user @host) is
formed by the combination of the destination address in the makecall block, a phone list element,
and optional parameter (user=phone):

char *pDestAddrBlk = "127.0.0.1"; /*host*/
char *IpPhoneList= "003227124311"; /*user*/
char *pDestAddrStr = "user=phone"; /*extra parameter*/

/* insert phone list */
gc_util_insert_parm ref (&target_datap,
IPSET_ CALLINFO,
IPPARM PHONELIST,
(unsigned char) (strlen(IpPhonelList) +1),
IpPhonelist) ;

/* set GCLIB_ADDRESS BLK with destination string & type*/
strcpy (gemkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE_TRANSPARENT;

gclib _mkbl.ext_datap = target_datap;

/* calling the function with the MAKECALL BLK, and numberstr parameter = NULL
the INVITE dest address will be: 003227124311@127.0.0.1;user=phone */

gc_MakeCall (1dev, &crn, pDestAddrStr, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;

Destination Address Interpretation

The following information applies when using H.323 only.

Once a destination string is formed as described in the previous section, the H.323 stack treats the
string according to the following rules:

* The first section of the string is the destination of the next IP entity (for example, a gateway,
terminal, the alias for a remote registered entity, etc.) with which the application attempts to
negotiate.

* A non-prefixed section in the string is the Q.931 calledPartyNumber and is the last section that
is processed. Any section following the first non-prefixed section is ignored. Only one Q.931
calledPartyNumber is allowed in the destination string.

* One or more prefixed sections (H.225 destinationAddress fields) must appear before the non-
prefixed section (Q.931 calledPartyNumber).

Global Call IP Technology Guide — January 2004



IP-Specific Function Information

¢ When using free strings (numberstr parameter or Phone List), if the application wants to
prefix buffers, valid buffer prefixes for H.225 addresses are:
e TA: —IP Transport Address
e TEL: — e164 Telephone Number
* NAME: - H.323 ID
¢ URL: — Universal Resource Locator
¢ EMAIL: — E-mail Address

The following code examples demonstrate the recommended ways of forming the destination
string when making an H.323 call. Prerequisite code for setting up the GC_MAKECALL_BLK in
all the scenarios described in this section is as follows:

GC_MAKECALL BLK gcmkbl;

GCLIB MAKECALL BLK gclib mkbl = {0};
gcmkbl.cclib = NULL;

gcmkbl.gclib = &gclib_mkbl;

GC_PARM BLK *target_datap = NULL;

gc_util_insert_parm val (&target_datap,
IPSET PROTOCOL,
IPPARM_PROTOCOL_BITMASK,
sizeof (char),
IP_PROTOCOL_H323);

Scenario 1 - Making a call to a known IP address, and setting the Q.931 calledPartyNumber:

char *pDestAddrBlk = "127.0.0.1";
char *pDestAddrStr = "123456";

/* set GCLIB_ADDRESS BLK with destination string & type*/
strcpy (gemkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE IP;

gclib_mkbl.ext_datap = target_datap;
/* calling the function with the MAKECALL_ BLK*/
gc_MakeCall (1dev, &crn, pDestAddrStr, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;

Scenario 2 - Making a call to a known IP address, setting a number of H.225 aliases, and setting
the Q.931 calledPartyNumber:

char *pDestAddrBlk = "127.0.0.1";
char *pDestAddrStr = "TEL:111,TEL:222,76543";

/* set GCLIB_ADDRESS_BLK with destination string & type*/
strcpy (gecmkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE_IP;

gclib_mkbl.ext_datap = target_datap;
/* calling the function with the MAKECALL BLK*/
gc_MakeCall (ldev, &crn, pDestAddrStr, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;

Scenario 3 - Making a call to a known IP address, setting a number of H.225 aliases, and setting
the Q.931 calledPartyNumber:

char *pDestAddrBlk = "127.0.0.1";
char *pDestAddrStr = "TEL:111,TEL:222,NAME:myName";
char *IpPhoneList= "003227124311";

Global Call IP Technology Guide — January 2004 129



IP-Specific Function Information I n
®
/* insert phone list */
gc_util_insert_parm ref (&target_datap,
IPSET_ CALLINFO,
IPPARM PHONELIST,
(unsigned char) (strlen(IpPhonelList) +1),
IpPhonelist) ;
/* set GCLIB_ADDRESS BLK with destination string & type*/
strcpy (gemkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE_IP;
gclib _mkbl.ext_datap = target_datap;
/* calling the function with the MAKECALL BLK*/
gc_MakeCall (ldev, &crn, pDestAddrStr, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;
Scenario 4 - Making a call to a known IP address, setting a number of H.225 aliases, and setting
the Q.931 calledPartyNumber:
char *pDestAddrBlk = "127.0.0.1";
char *IpPhonelList= "TEL:003227124311,TEL:444,TEL:222,TEL:1234,171717";
/* insert phone list */
gc_util_insert_parm ref (&target_datap,
IPSET CALLINFO,
IPPARM_PHONELIST,
(unsigned char) (strlen (IpPhoneList)+1),
IpPhonelist) ;
gclib _mkbl.ext_datap = target_datap;
/* set GCLIB_ADDRESS BLK with destination string & type*/
strcpy (gemkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE_IP;
gclib _mkbl.ext_datap = target_datap;
/* calling the function with the MAKECALL BLK, and numberstr
parameter = NULL */
gc_MakeCall (1dev, &crn, NULL, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;
Scenario 5 - While registered, making a call, via the gatekeeper, to a registered entity (using a
known H.323 ID), setting a number of H.225 aliases, and setting the Q.931 calledPartyNumber:
char *pDestAddrBlk = " RegisteredRemoteGW "; /* The alias of the remote (registered) entity */

130

char *pDestAddrStr = "TEL:111,TEL:222,987654321";

/* set GCLIB_ADDRESS BLK with destination string & type (H323-ID) */
strcpy (gemkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE_DOMAIN;

gclib _mkbl.ext_datap = target_datap;
/* calling the function with the MAKECALL BLK */
gc_MakeCall (ldev, &crn, pDestAddrStr, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;

Scenario 5 - While registered, making a call, via the gatekeeper, to a registered entity (using a
known e-mail address), setting a number of H.225 aliases, and setting the Q.931
calledPartyNumber:

char *pDestAddrBlk = " user@host.com "; /* The alias of the remote (registered) entity */
char *pDestAddrStr = "TEL:111,TEL:222,987654321";

/* set GCLIB_ADDRESS BLK with destination string & type (EMAIL) */

strcpy (gemkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE_ EMAIL;

Global Call IP Technology Guide — January 2004



7.2.12.5

Note:

Note:

7.2.12.6

IP-Specific Function Information

gclib_mkbl.ext_datap = target_datap;
/* calling the function with the MAKECALL_ BLK */
gc_MakeCall (1dev, &crn, pDestAddrStr, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;

Scenario 7 - While registered, making a call, via the gatekeeper, to a registered entity (using a
known URL), setting a number of H.225 aliases, and setting the Q.931 calledPartyNumber:

char *pDestAddrBlk = "www.gwl.intel.com"; /* The alias of the remote (registered) entity */
char *pDestAddrStr = "TEL:111,TEL:222,987654321";

/* set GCLIB_ADDRESS_BLK with destination string & type (URL) */
strcpy (gecmkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE URL;

gclib_mkbl.ext_datap = target_datap;
/* calling the function with the MAKECALL BLK */
gc_MakeCall (ldev, &crn, pDestAddrStr, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;

Specifying a Timeout
The following information applies when using H.323 only.

The timeout parameter of the gc_MakeCall( ) function specifies the maximum time in seconds to
wait for the establishment of a new call, after receiving the first response to the call. This value
corresponds to the Q.931\connectTimeOut parameter. If the call is not established during this
time, the Disconnect procedure is initiated. The default value is 120 seconds.

In addition to the Q.931\connectTimeOut parameter described in Section 7.2.12, “gc_MakeCall( )
Variances for IP”, on page 122, two other parameters that affect the timeout behavior, but are not
configurable are:

Q931\responseTimeOut
The maximum time in seconds to wait for the first response to a new call. If no response is
received during this time, the Disconnect procedure is initiated. The default value is 4 seconds.

h245\timeout:
The maximum time in seconds to wait for the called party to acknowledge receipt of the
capabilities it sent. The default value is 40 seconds.

When using the H.323 protocol, the application may receive a timeout when trying to make an
outbound call if network congestion is encountered and a TCP connection cannot be established. In
this case, the SETUP message is not sent on the network.

Code Examples

H.323-Specific Code Example

The following code example shows how to make a call using the H.323 protocol.

/* Make an H323 IP call on line device ldev */
void MakeH323IpCall (LINEDEV ldev)
{
char *IpDisplay = "This is a Display"; /* display data */
char *IpPhoneList= "003227124311"; /* phone list */
char *IpUUI = "This is a UUI"; /* user to user information string */
char *pDestAddrBlk = "127.0.0.1"; /* destination IP address for MAKECALL BLK*/

Global Call IP Technology Guide — January 2004 131



IP-Specific Function Information I n
®
char *pSrcAddrBlk = "987654321"; /* origination address for MAKECALL_BLK*/
char *pDestAddrStr = "123456"; /* destination string for gc_MakeCall() function*/
char *IpNSDataData = "This is an NSData data string";
char *IpNSControlData = "This is an NSControl data string";
char *IpCommonObjId = "1 22 333 4444"; /* unique format */

IP_H221NONSTANDARD appH221NonStd;
appH221NonStd.country code = 181; /* USA */
appH221NonStd.extension = 11;
appH221NonStd.manufacturer_code = 11;

int ChoiceOfNSData = 1;

int ChoiceOfNSControl = 1;

int rc = 0;

CRN crn;

GC_MAKECALL_BLK gcmkbl ;

int MakeCallTimeout = 120;

/* initialize GCLIB_MAKECALL BLK structure */
GCLIB_MAKECALL BLK gclib _mkbl = {0};

/* set to NULL to retrieve new parameter block from utility function */
GC_PARM BLK *target_datap = NULL;

gcmkbl.cclib = NULL; /* CCLIB pointer unused */

gcmkbl.gclib = &gclib_mkbl;

/* set GCLIB_ADDRESS BLK with destination string & type*/
strcpy (gemkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE_IP;

/* set GCLIB_ADDRESS BLK with origination string & type*/
strcpy (gemkbl.gelib->origination.address, pSrcAddrBlk) ;
gcmkbl.gclib->origination.address_type = GCADDRTYPE_ NAT;

/* set signaling PROTOCOL to H323. default is H323 if device is multi-protocol */
rc = gc_util_insert_parm val (&target_datap,

IPSET_ PROTOCOL,

IPPARM PROTOCOL_BITMASK,

sizeof (char),

IP_PROTOCOL_H323);

/* initialize IP_CAPABILITY structure */

IP CAPABILITY t_ Capability = {0};

/* configure a GC_PARM BLK with four coders, display, phone list and UUI message: */
/* specify and insert first capability parameter data for G.7231 coder */
t_Capability.type = GCCAPTYPE AUDIO;

t_Capability.direction = IP_CAP_DIR LCLTRANSMIT;

t_Capability.extra.audio.VAD = GCPV_DISABLE;

t_Capability.extra.audio.frames_per pkt = 1;

t_Capability.capability = GCCAP_AUDIO g7231_6_3k;

rc = gc_util_insert_parm ref (&target_datap,
GCSET_CHAN_CAPABILITY,
IPPARM LOCAL_CAPABILITY,
sizeof (IP_CAPABILITY),
&t_Capability) ;

t_Capability.type = GCCAPTYPE AUDIO;
t_Capability.direction = IP_CAP_DIR LCLRECEIVE;
t_Capability.extra.audio.VAD = GCPV_DISABLE;
t_Capability.extra.audio.frames_per pkt = 1;
t_Capability.capability = GCCAP_AUDIO g7231_6_3k;

rc = gc_util_insert_parm ref (&target_datap,
GCSET_CHAN_CAPABILITY,
IPPARM LOCAL_CAPABILITY,
sizeof (IP_CAPABILITY),
&t_Capability) ;

132 Global Call IP Technology Guide — January 2004



I n IP-Specific Function Information

/* specify and insert second capability parameter data for G.7229AnnexA coder */
/* changing only frames per pkt and the coder type from first capability: */
t_Capability.extra.audio.frames_per pkt = 3;
t_Capability.capability = GCCAP_AUDIO_g729AnnexA;
rc = gc_util_insert_parm ref (&target_datap,

GCSET_CHAN_CAPABILITY,

IPPARM_LOCAL_CAPABILITY,

sizeof (IP_CAPABILITY),

&t_Capability);

/* specify and insert 3rd capability parameter data for G.711Alaw 64kbit coder */
/* changing only frames per pkt and the coder type from first capability: */
t_Capability.capability = GCCAP_AUDIO_g711Alawé64k;
t_Capability.extra.audio.frames_per pkt = 10;

/* For G.711 use frame size (ms) here, frames per packet fixed at 1 fpp */
rc = gc_util_insert_parm ref (&target_datap,
GCSET_CHAN_CAPABILITY,
IPPARM_LOCAL_CAPABILITY,
sizeof (IP_CAPABILITY),
&t_Capability);

/* specify and insert fourth capability parameter data for G.711 Ulaw 64kbit coder
/* changing only the coder type from previous capability */
t_Capability.capability = GCCAP_AUDIO_g711Ulawé64k;
rc = gc_util_insert parm ref (&target_datap,

GCSET_CHAN_CAPABILITY,

IPPARM LOCAL_CAPABILITY,

sizeof (IP_CAPABILITY),

&t_Capability) ;

/* insert display string */
rc = gc_util_insert_parm ref (&target_datap,
IPSET CALLINFO,
IPPARM_DISPLAY,
(unsigned char) (strlen(IpDisplay)+1),
IpDisplay) ;

/* insert phone list */
rc = gc_util_insert parm ref (&target_datap,
IPSET CALLINFO,
IPPARM PHONELIST,
(unsigned char) (strlen(IpPhonelist) +1),
IpPhonelist) ;

/* insert user to user information */

rc = gc_util_insert_parm ref (&target_datap,
IPSET CALLINFO,
IPPARM_USERUSER_INFO,
(unsigned char) (strlen(IpUUI)+1),
IpUUI) ;

/* setting NS Data elements */
gc_util_insert_parm ref (&target_datap,
IPSET_NONSTANDARDDATA,
IPPARM NONSTANDARDDATA DATA,
(unsigned char) (strlen(IpNSDataData)+1),
IpNSDataData) ;

if (ChoiceOfNSData) /* App chooses in advance which type of */
{ /* second NS element to use */
gc_util_insert_parm ref (&target_datap,
IPSET NONSTANDARDDATA,
IPPARM H221NONSTANDARD,
sizeof (IP_H221NONSTANDARD) ,
&appH221NonStd) ;

Global Call IP Technology Guide — January 2004

*/

133



IP-Specific Function Information I n

else
{
gc_util_insert_parm ref (&target_datap,
IPSET_ NONSTANDARDDATA,
IPPARM NONSTANDARDDATA OBJID,
(unsigned char) (strlen(IpCommonObjId)+1),
IpCommonObjId) ;

/* setting NS Control elements */
gc_util_insert_parm ref (&target_datap,
IPSET NONSTANDARDCONTROL,
IPPARM_NONSTANDARDDATA DATA,
(unsigned char) (strlen(IpNSControlData)+1),
IpNSControlData) ;

if (ChoiceOfNSControl) /* App chooses in advance which type of */
{ /* second NS element to use */
gc_util_insert_parm ref (&target_datap,
IPSET NONSTANDARDCONTROL,
IPPARM H221NONSTANDARD,
sizeof(IP_H221NONSTANDARD),
&appH221NonStd) ;
}
else
{
gc_util_insert_parm ref (&target_datap,
IPSET_ NONSTANDARDCONTROL,
IPPARM NONSTANDARDDATA OBJID,
(unsigned char) (strlen (IpCommonObjId)+1),
IpCommonObjId) ;

gclib_mkbl.ext_datap = target_datap;
rc = gc_MakeCall (ldev, &crn, pDestAddrStr, &gcmkbl,
MakeCallTimeout, EV_ASYNC) ;

/* deallocate GC_PARM BLK pointer */
gc_util _delete_parm blk(target_datap) ;

SIP-Specific Code Example

The following code example shows how to make a call using the SIP protocol.

/* Make a SIP IP call on line device ldev */

void MakeSipIpCall (LINEDEV ldev)

{
char *IpDisplay = "This is a Display"; /* display data */
char *pDestAddrBlk = "12345@127.0.0.1"; /* destination IP address for MAKECALL_ BLK */
char *pSrcAddrBlk = "987654321"; /* origination address for MAKECALL BLK*/

int rc = 0;

CRN crn;

GC_MAKECALL BLK gcmkbl;
int MakeCallTimeout = 120;

/* initialize GCLIB_MAKECALL BLK structure */
GCLIB MAKECALL BLK gclib mkbl = {0};

134 Global Call IP Technology Guide — January 2004



I n IP-Specific Function Information

/* set to NULL to retrieve new parameter block from utility function */
GC_PARM BLK *target_datap = NULL;

gcmkbl.cclib = NULL; /* CCLIB pointer unused */

gcmkbl.gclib = &gclib_mkbl;

/* set GCLIB_ADDRESS_BLK with destination string & type*/
strcpy (gcmkbl.gclib->destination.address, pDestAddrBlk) ;
gcmkbl.gclib->destination.address_type = GCADDRTYPE TRANSPARENT;

/* set GCLIB_ADDRESS_BLK with origination string & type*/
strcpy (gemkbl.gclib->origination.address, pSrcAddrBlk) ;
gcmkbl.gclib->origination.address_type = GCADDRTYPE_TRANSPARENT;

/* set signaling PROTOCOL to SIP*/

rc = gc_util_insert_parm val (&target_datap,
IPSET PROTOCOL,
IPPARM_PROTOCOL_BITMASK,
sizeof (char),
IP_PROTOCOL_SIP);

/* initialize IP_CAPABILITY structure */

IP_CAPABILITY t_Capability = {0};

/* configure a GC_PARM BLK with four coders, display, phone list and UUI message: */
/* specify and insert first capability parameter data for G.7231 coder */

t Capability.type = GCCAPTYPE AUDIO;

t_Capability.direction = IP_CAP_DIR_LCLTRANSMIT;

t_Capability.extra.audio.VAD = GCPV_DISABLE;

t_Capability.extra.audio.frames_per pkt = 1;

t_Capability.capability = GCCAP_AUDIO g7231_6_3k;

rc = gc_util_insert_parm ref (&target_datap,
GCSET_CHAN_CAPABILITY,
IPPARM_LOCAL_CAPABILITY,
sizeof (IP_CAPABILITY),
&t_Capability);

t_Capability.type = GCCAPTYPE AUDIO;
t_Capability.direction = IP_CAP DIR_LCLRECEIVE;
t_Capability.extra.audio.VAD = GCPV_DISABLE;
t_Capability.extra.audio.frames_per pkt = 1;
t_Capability.capability = GCCAP_AUDIO g7231_6_3k;

rc = gc_util_insert_parm ref (&target_datap,
GCSET_CHAN_CAPABILITY,
IPPARM_LOCAL_CAPABILITY,
sizeof (IP_CAPABILITY),
&t_Capability);

/* specify and insert second capability parameter data for G.7229AnnexA coder */
/* changing only frames per pkt and the coder type from first capability: */
t_Capability.extra.audio.frames_per pkt = 3;
t_Capability.capability = GCCAP_AUDIO_g729AnnexA;
rc = gc_util_insert_parm ref (&target_datap,

GCSET_CHAN_CAPABILITY,

IPPARM_LOCAL_CAPABILITY,

sizeof (IP_CAPABILITY),

&t_Capability);

/* specify and insert 3rd capability parameter data for G.711Alaw 64kbit coder */
/* changing only frames per pkt and the coder type from first capability: */
t_Capability.capability = GCCAP_AUDIO_g711Alawé64k;
t_Capability.extra.audio.frames_per pkt = 10;

Global Call IP Technology Guide — January 2004 135



IP-Specific Function Information I n

7.2.13

136

/* For G.711 use frame size (ms) here, frames per packet fixed at 1 fpp */
rc = gc_util_insert_parm ref (&target_datap,

GCSET_CHAN_CAPABILITY,

IPPARM LOCAL_CAPABILITY,

sizeof (IP_CAPABILITY),

&t_Capability) ;

/* specify and insert fourth capability parameter data for G.711 Ulaw 64kbit coder */
/* changing only the coder type from previous capability */
t_Capability.capability = GCCAP_AUDIO g711Ulawé64k;
rc = gc_util_insert_parm ref (&target_datap,
GCSET_CHAN_CAPABILITY,
IPPARM LOCAL_CAPABILITY,
sizeof (IP_CAPABILITY),
&t_Capability) ;

/* insert display string */
rc = gc_util_insert_parm ref (&target_datap,
IPSET_ CALLINFO,
IPPARM DISPLAY,
(unsigned char) (strlen(IpDisplay)+1),
IpDisplay) ;

gclib_mkbl.ext_datap = target_datap;

/* numberstr parameter may be NULL if MAKECALL BLK is set, as secondary
address is ignored in SIP */

rc = gc_MakeCall (ldev, &crn, NULL, &gcmkbl, MakeCallTimeout,EV_ASYNC) ;

/* deallocate GC_PARM BLK pointer */
gc_util _delete_parm blk(target_datap) ;

gc_OpenEXx( ) Variances for IP

The ge_OpenEx( ) function is supported in both asynchronous and synchronous mode. Using the
function is asynchronous mode is recommended. The procedure for opening devices is the same
regardless of whether H.323 or SIP is used. The IPT network device (N_ipt_BxTy) and IP Media
device (M_ipmBxCy) can be opened in the same gc_OpenEx( ) call and a voice device
(V_dxxxBwCz) can also be included.

The format of the devicename parameter is:

Notes: 1.

2.

:P_nnnn:N iptBxTy:M ipmBxCy:V_dxxxBwCz

The board and timeslot numbers for network devices do not have to be the same as the board and
channel numbers for media devices.

It is possible to specify :N_iptBx (without any :M component) in the devicename parameter to
get an IPT board device handle. Certain Global Call functions use the IPT board device, such as
gc_SetConfigData( ) to specify call parameters (such as coders) for all devices in one operation
or gc_ReqService( ) to perform registration and deregistration operations. See Section 7.2.18,
“gc_SetConfigData( ) Variances for IP”, on page 143 and Section 7.2.15, “gc_ReqService( )
Variances for IP”, on page 138 for more information.

It is also possible to specify :M_ipmBx (without any :N component) in the devicename
parameter to get an IP Media board device handle.

Global Call IP Technology Guide — January 2004



7.2.14

Note:

IP-Specific Function Information

The prefixes (P_, N_, M_ and V_) are used for parsing purposes. These fields may appear in any
order. The conventions described below allow the Global Call API to map subsequent calls made
on specific line devices or CRNs to interface-specific libraries. The fields within the devicename
parameter must each begin with a colon.

The meaning of each field in the devicename parameter is as follows:

P_nnnn
Specifies the IP protocol to be used by the device. This field is mandatory. Possible values are:
e P_H323 — Use the device for H.323 calls only
e P_SIP — Use the device for SIP calls only
e P_IP — Multi-protocol option; use the device for SIP or H.323 calls

Note: When specifying an IPT board device (see below), use the multi-protocol option,
P_IP.

N_iptBxTy
Specifies the name of the IPT network device where x is the logical board number and y is the
logical channel number. An IPT board device can be specified using N_iptBx, where x is the
logical board number.

M_ipmBxCy
Specifies the name of the IP Media device, where x is the logical board number and y is the
logical channel number to be associated with an IPT network device. This field is optional.

V_dxxxBwCz
Specifies a voice resource, where w and z are the voice board and channel numbers
respectively. This field is optional.

In other technologies, an IPT board device can be used for alarms. However, for IP technology, the
use of an IPT board device (iptBx) for alarms is not supported. When using Global Call with IP,
alarms are reported on IP Media (ipm) devices, not IPT network (ipt) devices.

For Windows operating systems, the SRL function sr_getboardent( ) can be used to retrieve the
number of IPT board devices in the system. The class_namep parameter in this context should be
DEV_CLASS_IPT. The SRL function ATDV_SUBDEVS() can be used to retrieve the number of
channels on a board. The dev parameter in this context should be an IPT board device handle, that
is, a handle returned by ge_OpenEx( ) when opening an IPT board device.

For Linux operating systems, the SRL device mapper functions SRLGetAllPhysicalBoards( ),
SRLGetVirtualBoardsOnPhysicalBoard( ) and SRLGetSubDevicesOnVirtualBoard( ) can be
used to retrieve information about the boards and devices in the system.

gc_ReleaseCallEx( ) Variances for IP

The gc_ReleaseCallEx( ) function is supported in both asynchronous and synchronous mode.
Using the function in asynchronous mode is recommended.

An existing call on a line device must be released before an incoming call can be processed.

Global Call IP Technology Guide — January 2004 137



u
IP-Specific Function Information I nt9| o

7.2.15

138

gc_ReqgService( ) Variances for IP

The gc_ReqService( ) function can be used to register an endpoint with a registration server
(gateway in H.323 or registrar in SIP). Function parameter must be set as follows:

target_type
GCTGT_GCLIB_NETIF

target_ID
An IPT board device, obtained by using gc_OpenEx( ) with a devicename parameter of
“N_iptBx”.

service_ID
Any valid reference to an unsigned long; must not be NULL.

reqdatap
A pointer to a GC_PARM_BLK containing registration information.

respdatapp
Set to NULL for asynchronous mode. This function is not supported in synchronous mode.

mode
EV_ASYNC

The registration information that can be included is protocol specific as described in Table 15,
“Registration Information When Using H.323”, on page 139 and Table 16, “Registration
Information When Using SIP”, on page 141.

Registration options include:

¢ Overriding an existing registration value.
In this case, IPPARM_OPERATION_REGISTER =IP_REG_SET_INFO.

* Adding a registration value.
In this case, IPPARM_OPERATION_REGISTER = IP_REG_ADD_INFO.

* Removing a registration value; local alias or supported prefix only.
In this case, IPPARM_OPERATION_REGISTER =1P_REG_DELETE _BY_VALUE.

See Section 4.15.4, “Registration Code Example”, on page 84 for more information.

The ge_ReqService( ) function also provides the following deregister options:

* Deregister and keep the registration information locally.
In this case,
IPPARM_OPERATION_DEREGISTER =I1P_REG_MAINTAIN_LOCAL_INFO.

* Deregister and discard the registration information locally.
In this case, IPPARM_OPERATION_DEREGISTER =1P_REG_DELETE_ALL.

See Section 4.15.5, “Deregistration Code Example”, on page 86 for more information.

Since some of the registration data may be protocol specific, there is a facility to set the protocol
type using IP parameters in reqdatap and respdatapp, which are of type GC_PARM_BLK.

Global Call IP Technology Guide — January 2004



u
I nu o IP-Specific Function Information

The relevant items for the GC_PARM_BLK are the IPSET_PROTOCOL parameter set ID and the
IPPARM_PROTOCOL_BITMASK parameter ID with one of the following values:

e [P PROTOCOL_H323
e [P_PROTOCOL_SIP
¢ [P_PROTOCOL_H323 | IP_PROTOCOL_SIP

Note: The default value for the protocol, when not specified by the application, is [P_PROTOCOL_H323.

The GCEV_SERVICERESP event indicates that a service has been responded to by an H.323
gatekeeper or a SIP registrar. The event is received on an IPT board device handle. The event data
includes a specification of the protocol used. The sr_getevtdatap( ) function returns a pointer to a
GC_PARM_BLK that includes the IPSET_PROTOCOL parameter set ID and the
IPPARM_PROTOCOL_BITMASK parameter ID with one of the following values:

¢ [P_PROTOCOL_H323
e [P PROTOCOL_SIP

Variance for H.323

When using H.323, the registration information that can be included in the GC_PARM_BLK
associated with the gc_ReqService( ) function is shown in Table 15.

Table 15. Registration Information When Using H.323

Set ID Parameter IDs
GCSET_SERVREQ PARM_REQTYPE t
Datatype IP_REQTYPE_REGISTRATION
GCSET_SERVREQ PARM_ACK t
IPSET_PROTOCOL IPPARM_PROTOCOL_BITMASK

Bitmask composed from the following values:
e IP_PROTOCOL_H323
¢ IP_PROTOCOL_SIP

T indicates mandatory parameters. These parameters are required to support the generic service request mechanism
provided by Global Call and are not sent in any registration message.

Global Call IP Technology Guide — January 2004 139



IP-Specific Function Information

Table 15. Registration Information When Using H.323 (Continued)

Set ID

Parameter IDs

IPSET_REG_INFO

See Section 8.17, “IPSET_REG_INFO
Parameter Set”, on page 168, for more
information.

IPPARM_OPERATION_REGISTER
One of the following values:

* IP_REG_SET_INFO
* IP_REG_ADD_INFO
* IP_REG_DELETE_BY_VALUE

IPPARM_OPERATION_DEREGISTER
One of the following values:

* IP_REG_MAINTAIN_LOCAL_INFO
* IP_REG_DELETE_ALL

IPPARM_REG_ADDRESS

Datatype IP_REGISTER_ADDRESS

See Section , “IP_REGISTER_ADDRESS”, on page 183, for
more information

IPPARM_REG_TYPE
One of the following values:

* IP_REG_GATEWAY
* IP_REG_TERMINAL

IPSET_LOCAL_ALIAS

IPPARM_ADDRESS_DOT_NOTATION
IPPARM_ADDRESS_EMAIL
IPPARM_ADDRESS_H323_ID
IPPARM_ADDRESS_PHONE
IPPARM_ADDRESS_TRANSPARENT
IPPARM_ADDRESS_URL

Datatype: String

IPSET_SUPPORTED_PREFIXES

IPPARM_ADDRESS_DOT_NOTATION
IPPARM_ADDRESS_EMAIL
IPPARM_ADDRESS_H323_ID
IPPARM_ADDRESS_PHONE
IPPARM_ADDRESS_TRANSPARENT
IPPARM_ADDRESS_URL

Datatype: String

1 indicates mandatory parameters. These parameters are required to support the generic service request mechanism
provided by Global Call and are not sent in any registration message.

Multiple aliases and supported prefix information is supported when the target protocol for

registration is H.323.

Variance for SIP

When using SIP, the registration information that can be included in the GC_PARM_BLK
associated with the gec_ReqService( ) function is shown in Table 16.

140

Global Call IP Technology Guide — January 2004




IP-Specific Function Information

Table 16. Registration Information When Using SIP

7.2.16

Set ID Parameter IDs
GCSET_SERVREQ PARM_REQTYPE t
Datatype IP_REQTYPE_REGISTRATION
GCSET_SERVREQ PARM_ACK t
IPSET_LOCAL_ALIAS IPPARM_ADDRESS_DOT_NOTATION

IPPARM_ADDRESS_EMAIL
IPPARM_ADDRESS_H323_ID
IPPARM_ADDRESS_PHONE
IPPARM_ADDRESS_TRANSPARENT
IPPARM_ADDRESS_URL

Datatype: String

IPSET_PROTOCOL IPPARM_PROTOCOL_BITMASK
Bitmask composed from the following values:

* |P_PROTOCOL_H323
* |IP_PROTOCOL_SIP

IPSET_REG_INFO IPPARM_OPERATION_REGISTER
See Section 8.17, “IPSET_REG_INFO One of the following values:
Parameter Set”, on page 168, for more * IP_REG_SET_INFO
information. « IP_REG_ADD_INFO

* IP_REG_DELETE_BY_VALUE

IPPARM_OPERATION_DEREGISTER
One of the following values:

e IP_REG_MAINTAIN_LOCAL_INFO
e IP_REG_DELETE_ALL

IPPARM_REG_ADDRESS

Datatype IP_REGISTER_ADDRESS

See Section , “IP_REGISTER_ADDRESS”, on page 1883, for
more information

T indicates mandatory parameters. These parameters are required to support the generic service request mechanism

provided by Global Call and are not sent in any registration message.

Only one alias is supported when the target protocol for registration is SIP. Prefix information is
not supported for SIP.

When using SIP, periodic registration is supported. The call control library will automatically re-
register every time_to_live/2 seconds.

gc_RespService( ) Variances for IP

The gc_RespService( ) function operates on an IPT board device and is used to respond to requests
from an H.323 gatekeeper or a SIP registrar. Since some of the data may be protocol specific (in
future releases), there is a facility to set the protocol type using IP parameters in datap, which is of
type GC_PARM_BLK.

Global Call IP Technology Guide — January 2004 141




u
IP-Specific Function Information I nt9| o

Note:

7.217

142

The following are the relevant function parameters:

target_type
GCTGT_CCLIB_NETIF

target_id
IPT board device

The relevant items for the GC_PARM_BLK are the IPSET_PROTOCOL parameter set ID and the
IPPARM_PROTOCOL_BITMASK parameter ID with one of the following values:

e IP_PROTOCOL_H323
e [P_PROTOCOL_SIP
¢ [P_PROTOCOL_H323 | IP_PROTOCOL_SIP

The default value for the protocol, when not specified by the application, is [P._PROTOCOL_H323.

The GCEV_SERVICEREQ event indicates that a service has been requested by an H.323
gatekeeper or a SIP registrar. The event is received on an IPT board device handle. The event data
includes a specification of the protocol used. The sr_getevtdatap( ) function returns a pointer to a
GC_PARM_BLK that includes the IPSET_PROTOCOL parameter set ID and the
IPPARM_PROTOCOL_BITMASK parameter ID with one of the following values:

¢ [P_PROTOCOL_H323
e [P_PROTOCOL_SIP

gc_SetAlarmParm( ) Variances for IP

The ge_SetAlarmParm( ) function can be used to set QoS threshold values. The function
parameter values in this context are:

linedev
The media device handle, retrieved using the gc_GetResourceH( ) function. See
Section 4.14.2, “Retrieving the Media Device Handle”, on page 75 for more information.

aso_id
The alarm source object ID. Set to ALARM_SOURCE_ID_NETWORK_ID.

ParmSetID
Must be set to ParmSetID_qosthreshold_alarm.

alarm_parm_list
A pointer to an ALARM_PARM_FIELD structure. The alarm_parm_number field is not used.
The alarm_parm_data field is of type GC_PARM, which is a union. In this context, the type
used is void *pstruct, and is cast as a pointer to an [IPM_QOS_THRESHOLD_INFO structure,
which includes an IPM_QOS_THRESHOLD_DATA structure that contains the parameters
representing threshold values. See the IPM_QOS_THRESHOLD_INFO structure in the /P
Media Library API Library Reference and the IP Media Library API Programming Guide for
more information. The thresholds supported by Global Call are QOSTYPE_LOSTPACKETS
and QOSTYPE_JITTER.

Global Call IP Technology Guide — January 2004



u
I nu o IP-Specific Function Information

mode
Must be set to EV_SYNC.

Note: Applications must include the gcipmlib.h header file before Global Call can be used to set or
retrieve QoS threshold values.

See Section 4.14.3, “Setting QoS Threshold Values”, on page 75 for code examples.

7.2.18 gc_SetConfigData( ) Variances for IP

The ge_SetConfigData( ) function is used for a number of different purposes:

* setting parameters for all board devices, including devices that are already open
¢ enabling and disabling unsolicited GCEV_EXTENSION events on a board device basis
* setting the type of DTMF support and the RFC 2833 payload type on a board device basis

* masking call state events on a line device basis

Notes: 1. The ge_SetConfigData( ) function operates on board devices, that is, devices opened using
gc_OpenEx( ) with :N_iptBx:P_IP in the devicename parameter. By its nature, a board device is
multi-protocol, that is, it applies to both the H.323 and SIP protocols and is not directed to one
specific protocol. You cannot open a board device (with :P_H323 or :P_SIP in the devicename
parameter) to target a specific protocol.

2. When using the gc_SetConfigData( ) function to set parameters, the parameter values apply to
all board devices, including devices that are already open. The parameters can be overridden by
specifying new values in the gc_SetUserInfo( ) function (on a per line device basis) or the
gc_MakeCall( ) function (on a per call basis).

3. Coder information can be specified for a device when using ge_SetConfigData( ), or when using
gc_MakeCall( ) to make a call, or when using gc_AnswerCall( ) to answer a call.

4. Use gec_SetUserInfo( ) to set parameters on line devices.

When using the ge_SetConfigData( ) function on a board device (the first three bullets above), use
the following function parameter values:

target_type
GCTGT_CCLIB_NETIF

target_id
An IPT board device that can be obtained by using the gc_OpenEx( ) function with
:N_iptBx:P_IP in the devicename parameter. See Section 7.2.13, “gc_OpenEx( ) Variances
for IP”, on page 136 for more information.

target_datap
A pointer to a GC_PARM_BLKP structure that contains the parameters to be configured. The
parameters that can be included in the GC_PARM_BLK are protocol specific. See Section ,
“Variance for H.323”, on page 144 and Section , “Variance for SIP”, on page 145.

As in other technologies supported by Global Call, the gc_SetConfigData( ) function can be used

to mask call state events, such as GCEV_ALERTING, on a line device basis. When used for this
purpose, the target_type is GCTGT_GCLIB_CHAN and the target_ID is a line device. See the

Global Call IP Technology Guide — January 2004 143



IP-Specific Function Information

144

In

Call State Event Configuration section in the Global Call API Library Reference for more
information on masking events in general.

Variance for H.323

Table 15 describes the call parameters that can be included in the GC_PARM_BLK associated with

the gc_SetConfigData( ) function. These parameters are in addition to the call parameters

described in Table 13, “Configurable Call Parameters When Using H.323”, on page 123 that can

also be included.

Table 17. Parameters Configurable Using gc_SetConfigData( ) When Using H.323

Set ID

Parameter IDs

Use Beforet

GCSET_CALL_CONFIG

GCPARM_CALLPROC tt
Enumeration with one of the following values:

* GCCONTROL_APP - The application must
use gc_CallAck( ) to send the Proceeding
message. This is the default.

* GCCONTROL_TCCL - The stack sends the
Proceeding message automatically.

gc_AnswerCall( )

IPSET_CALLINFO

IPPARM_H245TUNNELING 11t
Enumeration with one of the following values:
e |IP_H245TUNNELINGON
e |P_H245TUNNELINGOFF

gc_AnswerCall()

IPSET_DTMF

IPPARM_SUPPORT_DTMF_BITMASK
Datatype: Uint8][ ]
IPPARM_DTMF_RFC2833_PAYLOAD_TYPE
Datatype: Uint8][ ]

gc_AnswerCall( )
gc_MakeCall( )

IPSET_VENDORINFO

IPPARM_VENDOR_PRODUCT_ID
String, max. length =
MAX_PRODUCT_ID_LENGTH (32)
IPPARM_VENDOR_VERSION_ID
String, max. length =
MAX_VERSION_ID_LENGTH (32)
IPPARM_H221NONSTD

Datatype IP_H221NONSTANDARD.

gc_AnswerCall( )
gc_MakeCall( )

IPSET_EXTENSIONEVT_MSK

GCACT_ADDMSK
Datatype: Uint8][ ]
GCACT_SETMSK
Datatype: Uint8][ ]
GCACT_SUBMSK
Datatype: Uint8][ ]

gc_AnswerCall( )

page 154 for more information.

1 Information can be set in any state but it is only used in certain states. See Section 8.1, “Overview of Parameter Usage”, on

11 This is a system configuration parameter for the terminating side, not a call configuration parameter. It cannot be
overwritten by setting a new value in gc_SetUserinfo( ) or gc_MakeCall( ).
111 Applies to the configuration of tunneling for inbound calls only. See Section 4.12, “Enabling and Disabling Tunneling in
H.323", on page 73 for more information.

Global Call IP Technology Guide — January 2004




intel.

Table 18.

7.2.19

Note:

IP-Specific Function Information

Variance for SIP

Table 18 describes the call parameters that can be included in the GC_PARM_BLK associated with
the gc_SetConfigData( ) function. These parameters are in addition to the call parameters
described in Table 14, “Configurable Call Parameters When Using SIP”, on page 125 that can also
be included.

Parameters Configurable Using gc_SetConfigData( ) When Using SIP

Set ID Parameter IDs Use Beforet

GCSET_CALL_CONFIG GCPARM_CALLPROC tt gc_AnswerCall()
Enumeration with one of the following values:
¢ GCCONTROL_APP - The application must
use gc_CallAck( ) to send the Proceeding
message. This is the default.
* GCCONTROL_TCCL - The stack sends
the Proceeding message automatically.

IPSET_DTMF IPPARM_SUPPORT_DTMF_BITMASK gc_AnswerCall()
Datatype: Uint8][ ] gc_MakeCall( )
IPPARM_DTMF_RFC2833_PAYLOAD_TYPE
Datatype: Uint8][ ]

IPSET_EXTENSIONEVT_MSK GCACT_ADDMSK gc_AnswerCall()
Datatype: Uint8][ ]
GCACT_SETMSK
Datatype: Uint8][ ]
GCACT_SUBMSK
Datatype: Uint8][ ]

1 Information can be set in any state but it is only used in certain states. See Section 8.1, “Overview of
Parameter Usage”, on page 154 for more information.

11 This is a system configuration parameter for the terminating side, not a call configuration parameter. It cannot be
overwritten by setting a new value in gc_SetUserInfo( ) or gc_MakeCall( ).

gc_SetUserlInfo( ) Variances for IP

The gec_SetUserInfo( ) function can be used to:

e set call values for all calls on the specified line device
* set call values for the duration of a single call

¢ set SIP message information fields

The gc_SetUserInfo( ) function is used only to set the values of call-related information, such as
coder information, display information, phone list etc. before a call has been initiated. The
information is not transmitted until the next Global Call function, such as, gc_AnswerCall( ),
gc_AcceptCall( ), gc_CallAck( ) etc. that initiates the transmission of information on the line.

If no receive coder type is specified, any supported coder type is accepted.

The parameters that are configurable using gc_SetUserInfo( ) are given in Table 13, “Configurable
Call Parameters When Using H.323”, on page 123 and Table 14, “Configurable Call Parameters
When Using SIP”, on page 125. In addition, the DTMF support bitmask, see Table 17, “Parameters
Configurable Using gc_SetConfigData( ) When Using H.323”, on page 144 and Table 18,

Global Call IP Technology Guide — January 2004 145




u
IP-Specific Function Information I nt9| o

“Parameters Configurable Using gc_SetConfigData( ) When Using SIP”, on page 145, is also
configurable using gc_SetUserInfo( ).

The ge_SetUserInfo( ) function operates on either a CRN or a line device:

o If the target of the function is a CRN, the information in the function is automatically directed
to the protocol associated with that CRN.
e If the target of the function is a line device, then:

— If the line device was opened as a multi-protocol device (:N_PIP), the information in the
function is automatically directed to each protocol and is used by either H.323 or SIP calls
made subsequently.

— If the line device was opened as a single-protocol device (:N_H323 or :N_SIP), then the
information in the function automatically applies to that protocol only and is used by calls
made using that protocol.

Note: Use ge_SetConfigData( ) to set parameters on board devices.

7.2.19.1 Setting Call Parameters for the Next Call

The relevant function parameter values in this context are:

target_type
GCTGT_GCLIB_CRN (if a CRN exists) or GCTGT_GCLIB_CHAN (if a CRN does not
exist)

target_id
CRN (if it exists) or line device (if a CRN does not exist)

duration
GC_SINGLECALL

infoparmblkp
a pointer to a GC_PARM_BLK with a list of parameters (including coder information) to be
set for the line device.

Note: 1If acallis in the Null state, the new parameter values apply to the next call. If a call is in a non-Null
state, the new parameter values apply to the remainder of the current call only.

7.2.19.2  Setting Call Parameters for the Next and Subsequent Calls

When the duration parameter is set to GC_ALLCALLS, the new call values become the default
values for the line device and are used for all subsequent calls on that device. The pertinent
function parameter values in this context are:

target_type
GCTGT_GCLIB_CHAN

target_id
line device

duration
GC_ALLCALLS

146 Global Call IP Technology Guide — January 2004



Note:

7.2.19.3

7.2.20

IP-Specific Function Information

infoparmblkp
a pointer to a GC_PARM_BLK with a list of parameters (including coder information) to be
set for the line device.

If a call is in the Null state, the new parameter values apply to the next call and all subsequent calls.
If a call is in a non-Null state, the new parameter values apply to the remainder of the current call
and all subsequent calls.

Setting SIP Message Information Fields

The ge_SetUserInfo( ) function can be used to set SIP message information fields. The relevant
function parameter values in this context are:

target_type
GCTGT_GCLIB_CHAN

target_id
line device

duration
GC_SINGLECALL

infoparmblkp
A pointer to a GC_PARM_BLK that contains the IPSET_SIP_MSGINFO parameter set ID
and one of the following parameter IDs that identify the fields to be set:

e [PPARM_REQUEST_URI
e [PPARM_TO_DISPLAY
e [PPARM_CONTACT_DISPLAY

See Section 4.5.3, “Setting a SIP Message Information Field”, on page 60 for more information
and a cod e example.

gc_Start( ) Variances for IP

The ge_Start( ) function is used to define the number of IPT board devices to create (see
Section 2.3.2, “IPT Board Devices”, on page 33 for the meaning of an IPT board device) and the
parameters for each IPT board device.

The number of IPT boards is identified in an IPCCLIB_START_ DATA structure that also contains
a pointer to an array of IP_VIRTBOARD structures (one structure for each board) that contain the
parameters for each board. The parameters include:

* total number of IPT devices that can be open concurrently

¢ maximum number of IPT devices to be used for H.323 calls
e H.323 local address and signaling port

* maximum number of IPT devices to be used for SIP calls

e SIP local address and signaling port

* a parameter to enable/disable access to SIP message information fields

See Section , “IP_VIRTBOARD”, on page 184 for more information.

Global Call IP Technology Guide — January 2004 147



u
IP-Specific Function Information I nt9| o

148

Notes:

Two convenience functions, INIT_IPCCLIB_START_DATA() and INIT_IP_VIRTBOARD()
(defined in the gcip.h header file) must be used to initialize the [IPCCLIB_START_DATA and
IP_VIRTBOARD structures to use default settings. The default settings can then be overridden by
desired values. The following provides a code example.

IP_VIRTBOARD ip virtboard[2];

IPCCLIB_START DATA ipcclibstart;

INIT IPCCLIB_START DATA (&ipcclibstart, 2, ip_virtboard);

INIT IP VIRTBOARD (&ip virtboard[0]) ;

INIT_IP_VIRTBOARD (&ip_virtboard[1]) ;

ip_virtboard[0] .sup serv_mask = IP_SUP_SERV_CALL XFER; /* override supp services default */
ip virtboard[1] .sup_serv_mask = IP_SUP_SERV_CALL_XFER; /* override supp services default */

The total number of IPT devices is not necessarily the number of IPT devices used for H.323 calls
plus the number of IPT devices used for SIP calls. Each IPT device can be used for both H.323 and
SIP. If there are 2016 devices available (total_max_calls=2016, three Intel® NetStructure™ [PT
boards), you can specify that all 2016 devices can be used for both H.323 calls (max_h323=2016)
and SIP (max_sip=2016), or half are used for H.323 only (max_h323=1008) and half are used for
SIP only (max_sip=1008), or any other such combination.

The default value for the maximum number of IPT devices is 120, but this can be set to a value up
to 2016. See Section , “IP_VIRTBOARD?”, on page 184 for more information. The local IP address
for each IPT board device is a parameter of type IPADDR in the IP_VIRTBOARD structure. See
Section , “IPADDR?”, on page 186 for more information.

. When using Intel® NetStructure™ IPT boards that have higher numbers of IP resources, it is
important to remember to change the default maximum number of IPT devices (120) to take
advantage of the larger number of IP resources.

Applications intending to use Global Call over IP should ensure that the network adapter is
enabled before calling ge_Start( ); the function will fail if the network adapter is disabled.

When using Global Gall over IP, the GC_LIB_START structure must include both the
GC_H3R_LIB and GC_IPM_LIB libraries since there are inter-dependencies. When the
application doesn’t intend to use Global Call over IP and needs to keep the network adapter
disabled, the GC_LIB_START structure should not include either the GC_H3R_LIB or
GC_IPM_LIB library.

4. The maximum value of the num_boards field is 8.

5. When using the H.323 stack, the maximum number of simultaneous calls recommended is 240.

Some variations on the code above are as follows:

/* open 120 IPT devices, 120 H323 calls, 120 SIP calls */
virtBoards[0] .total_max calls = IP_CFG_DEFAULT;
virtBoards [0] .h323_max calls = IP_CFG_DEFAULT;
virtBoards [0] .sip_max calls = IP_CFG_DEFAULT;

/* open 2016 IPT devices, 2016 H323 calls, 2016 SIP calls */
virtBoards[0] .total_max calls = 2016;
virtBoards[0] .h323_max calls = 2016;
virtBoards [0] .sip _max_calls = 2016;

/* open 2016 IPT devices, 2016 H323 calls, no SIP calls */
virtBoards[0] .total_max calls = 2016;
virtBoards[0] .h323_max_calls = IP_CFG MAX AVAILABLE CALLS;
virtBoards[0] .sip_max calls = IP_CFG_NO_CALLS;

Global Call IP Technology Guide — January 2004



7.2.21

7.3

Note:

IP-Specific Function Information

/* open 2016 IPT devices, 1008 H323 calls, 1008 SIP calls */
virtBoards [0] .total_max_calls = 2016;
virtBoards [0] .h323_max _calls = 1008;
virtBoards[0] .sip _max_calls = 1008;

The total_max_calls, h323_max_calls, and SIP_max_calls fields in the IP_VIRTBOARD structure
can be used to allocate the number and types of calls among the available devices. The following
#defines have been provided as a convenience to the application developer:

IP_CFG_DEFAULT
indicates to the call control library that it should determine and fill in the correct value.

IP_CFG_MAX_AVAILABLE_CALLS
indicates to the call control library that it should use the maximum available resources.

Note: Do not use IP_CFG_MAX_AVAILABLE_CALLS unless you intend to use 2016
channels. Initialization may take a long time and consume a lot of memory.

IP_CFG_NO_CALLS
indicates to the call control library that it should net allocate any resources.2

The following restrictions apply when overriding values in the IPCCLIB_START_DATA structure.
The ge_Start( ) function will fail if these restrictions are not observed.

* The total number of devices (total_max_calls) must not be larger than the sum of the values for
the maximum number of H.323 calls (h323_max_calls) and the maximum number of SIP calls
(sip_max_calls).

e The total number of devices (total_max_calls) cannot be set to IP_CFG_NO_CALLS.

¢ The maximum number of H.323 calls (h323_max_calls) and maximum number of SIP calls
(sip_max_calls) values cannot both be set to IP_CFG_NO_CALLS.

* When configuring multiple board devices, [IP_CFG_DEFAULT cannot be used as an address
specifier.

e [f different IP addresses or port numbers are not used when running multiple instances of an
application for any one technology (H.323 or SIP), then the xxx_max_calls (xxx =h323 or sip)
parameter for the other technology must be set to IP_CFG_NO_CALLS.

gc_UnListen( ) Variances for IP
The ge_UnListen( ) function is supported in both asynchronous and synchronous modes. The
function is blocking in synchronous mode.

For line devices that comprise media (ipm) and voice (dxxx) devices, routing is only done on the
media devices. Routing of the voice devices must be done using the Voice API (dx_ functions).

Global Call States Supported by IP

The following Global Call call states are supported when using Global Call with IP technology:

¢ GCST_ACCEPTED
e GCST_ALERTING

Global Call IP Technology Guide — January 2004 149



u
IP-Specific Function Information I nt9| o

7.4

150

GCST_CALLROUTING
GCST_CONNECTED
GCST_DETECTED
GCST_DIALING
GCST_DISCONNECTED
GCST_IDLE
GCST_NULL
GCST_OFFERED
GCST_PROCEEDING

See the Global Call API Programming Guide for more information about the call state models.

Global Call Events Supported by IP

The following Global Call events are supported when using Global Call with IP technology:

GCEV_ACCEPT

GCEV_ACKCALL (deprecated; equivalent is GCEV_CALLPROC)
GCEV_ALARM

GCEV_ALERTING
GCEV_ANSWERED

GCEV_ATTACH
GCEV_ATTACHFAIL
GCEV_BLOCKED
GCEV_CONNECTED
GCEV_CALLPROC
GCEV_DETECTED

GCEV_DETACH
GCEV_DETACHFAIL
GCEV_DIALING
GCEV_DISCONNECTED
GCEV_DROPCALL

GCEV_ERROR

GCEV_EXTENSION (unsolicited event)
GCEV_EXTENSIONCMPLT (termination event for gc_Extension( ))
GCEV_FATALERROR

GCEV_LISTEN

GCEV_OFFERED

GCEV_OPENEX

Global Call IP Technology Guide — January 2004



I nu o IP-Specific Function Information

e GCEV_OPENEX_FAIL

¢ GCEV_PROCEEDING

¢ GCEV_RELEASECALL

e GCEV_RESETLINEDEV

¢ GCEV_SERVICEREQ

¢ GCEV_SERVICERESP

¢ GCEV_SERVICERESPCMPLT
¢ GCEV_SETCONFIGDATA

¢ GCEV_SETCONFIGDATAFAIL
¢ GCEV_TASKFAIL

¢ GCEV_UNBLOCKED

¢ GCEV_UNLISTEN

See the Global Call API Library Reference for more information about Global Call events.

7.5 Initialization Functions

Two initialization functions, defined as inline functions in the gcip.h header file, provide the
mechanism for initializing startup and IPT board structures.

7.5.1 INIT_IPCCLIB_START_DATA()

The function prototype is defined as follows:
void INIT IPCCLIB_START DATA (IPCCLIB_START DATA *pIpStData,

unsigned char numBoards,
IP_VIRTBOARD *pIpVb)

Applications must use this function to initialize the IPCCLIB_START_DATA structure.

The function takes the following parameters:

pIpStData
A pointer to the IPCCLIB_START_DATA structure to be initialized

numBoards
the number of virtual IPT boards being defined (up to a maximum of 8)

plpVb
A pointer to an array of IP_VIRTBOARD structures, one for each IPT board

This function is used when using the gc_Start( ) function. See Section 7.2.20, “gc_Start( )
Variances for IP”, on page 147 for a code example of how to use this function.

Global Call IP Technology Guide — January 2004 151



u
IP-Specific Function Information I nt9| o

7.5.2 INIT_IP_VIRTBOARD()

The function prototype is defined as follows:

void INIT IP_VIRTBOARD (IP_VIRTBOARD *pIpVb)

Applications must use this function to initialize the IP_VIRTBOARD structure associated with
each IPT board device. The function sets IP_VIRTBOARD fields to default values. The application
can then override these defaults as desired.

The function takes one parameter:

pIpVb
a pointer to the IP_VIRTBOARD structure for a specific IPT board device.

This function is used when using the ge_Start( ) function. See Section 7.2.20, “gc_Start( )
Variances for IP”, on page 147 for a code example of how to use this function.

152 Global Call IP Technology Guide — January 2004



intel.

IP-Specific Parameter Reference

8

This chapter describes the parameter set IDs (set IDs) and parameter IDs (parm IDs) used with IP
technology. Topics include:

Overview of Parameter Usage . .. .......votn it 154
GCSET_CALL_CONFIG Parameter Set . .. ..o e 161
IPSET_CALLINFO Parameter Set . ... ...t 161
IPSET_CONFERENCE Parameter Set. ... ... 162
IPSET_CONFIG Parameter Set . .. ...t i 163
IPSET_DTMF Parameter Set . ... ... s 163
IPSET_EXTENSIONEVT_MSK .. ... . 164
IPSET_IPPROTOCOL_STATE Parameter Set. . ..., 165
IPSET_LOCAL_ALIAS Parameter Set .. ... .o 165
IPSET_MEDIA_STATE Parameter Set. . .. ... ..o 165
IPSET_MSG_H245 Parameter Set . . .. ..ottt 166
IPSET_MSG_Q931 Parameter Set . . .......... i 166
IPSET_MSG_REGISTRATION Parameter Set . ..., 167
IPSET_NONSTANDARDCONTROL Parameter Set. . ......... ... .. 167
IPSET_NONSTANDARDDATA Parameter Set. . ...........o .. 168
IPSET_PROTOCOL Parameter Set. . . . ...ttt 168
IPSET_REG_INFO Parameter Set . .. ... 168
IPSET_SIP_MSGINFO Parameter Set .. .......... ...ttt 169
IPSET_SUPPORTED_PREFIXES Parameter Set ........... ... ... ... ........ 170
IPSET _T38 TONEDET Parameter Set. . . . ... ... 170
IPSET_T38CAPFRAMESTATUS Parameter Set............ ... ... ... ... . 171
IPSET_T38HDLCFRAMESTATUS Parameter Set .. ..............c.oouiin... 171
IPSET_T38INFOFRAMESTATUS Parameter Set................. ... ........ 171
IPSET _TDM_TONEDET Parameter Set . ... ... 173
IPSET_TRANSACTION Parameter Set. ........... ...t 173
IPSET _VENDORINFO Parameter Set. ... ... 173

Global Call IP Technology Guide — January 2004

153



IP-Specific Parameter Reference

8.1

Overview of Parameter Usage

In

The parameter set IDs and parameter IDs described in this chapter are defined in the gcip.h header
file. Table 19 summarizes the parameter set IDs and parameter IDs used by Global Call in an IP
environment.

The meaning of the columns in the table following are:

Set ID - An identifier for a group of related parameters.

Parameter ID - A identifier for a specific parameter.

Set - Indicates the Global Call functions used to set the parameter information.

Send - Indicates the Global Call functions used to send the information to a peer endpoint.

Retrieve - Indicates the Global Call function used to retrieve information that was sent by a

peer endpoint.

e H.323/SIP - Indicates if the parameter is supported when using H.323, SIP, or both.

Table 19. Summary of Parameter IDs and Set IDs

Set ID Parameter ID Set Send Retrieve Hglz'f /
GCSET_ GCPARM_ gc_SetConfigData( ) both
CALL_CONFIG CALLPROC
GCSET_ IPPARM_ gc_SetConfigData( ) gc_AnswerCall() | gc_Extension() both
CHAN_ LOCAL_CAPABILITY | gc_SetUserInfo() gc_MakeCall( ) (IPEXTID_GETINFO)
CAPABILITY
IPSET_ IPPARM_ gc_Extension() both
CALLINFO CALLDURATION (IPEXTID_GETINFO)

IPSET_ IPPARM_CALLID - - gc_Extension() H.323
CALLINFO (IPEXTID_GETINFO) only
IPSET_ IPPARM_ gc_MakecCall() gc_AnswerCall() | gc_Extension() both
CALLINFO CONNECTION gc_SetUserinfo( ) t gc_MakeCall( ) (IPEXTID_GETINFO)

METHOD

IPSET_ IPPARM_DISPLAY gc_SetUserinfo() t gc_AnswerCall() | gc_Extension() both
CALLINFO gc_MakeCall( ) gc_MakeCall( ) (IPEXTID_GETINFO)

IPSET_ IPPARM_ gc_SetUserinfo() t gc_MakeCall( ) gc_Extension() H.323
CALLINFO H245TUNNELING gc_MakeCall( ) (IPEXTID_GETINFO) only

gc_SetConfigData( )

IPSET_ IPPARM_ gc_SetUserinfo() t gc_MakeCall( ) gc_Extension() both
CALLINFO PHONELIST gc_MakeCall( ) (IPEXTID_GETINFO)

IPSET_ IPPARM_ gc_SetUserinfo() gc_MakeCall( ) gc_Extension( ) H.323
CALLINFO USERUSER_INFO gc_MakeCall( ) (IPEXTID_GETINFO) only

1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a line device basis).
I Tunneling for incoming calls can only be specified using the gc_SetConfigData( ) function with a board device target ID.

154

Global Call IP Technology Guide — January 2004




INlal.

IP-Specific Parameter Reference

Table 19. Summary of Parameter IDs and Set IDs (Continued)

Set ID Parameter ID Set Send Retrieve H;z: /
IPSET_ IPPARM_ gc_MakeCall() gc_AnswerCall() | gc_Extension() H.323
CONFERENCE CONFERENCE_ gc_SetUserInfo( ) gc_MakeCall() (IPEXTID_GETINFO) only

GOAL
IPPARM_ gc_Extension() H.323
CONFERENCE_ID (IPEXTID_GETINFO) only
IPSET_CONFIG IPPARM_ gc_MakeCall() gc_AnswerCall() | gc_Extension() both
CONFIG_TOS gc_SetUserinfo( ) T gc_MakeCall() (IPEXTID_GETINFO)
IPSET_DTMF IPPARM_ gc_Extension() gc_Extension() both
DTMF_ (IPEXTID_SEND_ | (IPEXTID_
ALPHANUMERIC DTMF) RECEIVE_DTMF)
IPPARM_ gc_SetConfigData( ) --- both
DTMF_RFC2833_ gc_SetUserinfo( )
PAYLOAD_TYPE
IPPARM_ gc_SetConfigData( ) --- both
SUPPORT_DTMF_ gc_SetUserinfo()
BITMASK
IPSET_ GCACT_ADDMSK gc_SetConfigData( ) --- both
EXTENSIONEVT
MSK ~ | GCACT_GET_MSK gc_SetConfigData( ) both
GCACT_SETMSK gc_SetConfigData( ) - both
GCACT_SUBMSK gc_SetConfigData( ) --- both
IPSET_ IPPARM_ GCEV_EXTENSION H.323
IPPROTOCOL _ CONTROL_ (IPEXTID_ only
STATE CONNECTED IPPROTOCOL _
STATE)
IPPARM_ GCEV_EXTENSION H.323
CONTROL_ (IPEXTID_ only
DISCONNECTED IPPROTOCOL _
STATE)
IPPARM_ GCEV_EXTENSION H.323
SIGNALING_ (IPEXTID_ only
CONNECTED IPPROTOCOL _
STATE)
IPPARM_ GCEV_EXTENSION H.323
SIGNALING_ (IPEXTID_ only
DISCONNECTED IPPROTOCOL _
STATE)
1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a line device basis).
1 Tunneling for incoming calls can only be specified using the gc_SetConfigData( ) function with a board device target ID.
Global Call IP Technology Guide — January 2004 155




IP-Specific Parameter Reference

®
Table 19. Summary of Parameter IDs and Set IDs (Continued)

Set ID Parameter ID Set Send Retrieve H;z: /
IPSET_ IPPARM_ - gc_ReqService() | -- both
LOCAL_ALIAS ADDRESS_DOT_

NOTATION
IPPARM_ - gc_ReqService() | -- both
ADDRESS_EMAIL
IPPARM_ - gc_ReqService() | --- H.323
ADDRESS_H323_ID only
IPPARM_ --- gc_ReqService() | --- H.323
ADDRESS_PHONE only
IPPARM_ - gc_ReqService() | -- both
ADDRESS_
TRANSPARENT
IPPARM_ - gc_ReqService() | -- H.323
ADDRESS_URL only
IPSET_ IPPARM_ GCEV_EXTENSION both
MEDIA_STATE RX_CONNECTED (IPEXTID_
MEDIAINFO)
IPPARM_ GCEV_EXTENSION both
RX_ (IPEXTID_
DISCONNECTED MEDIAINFO)
IPPARM_ GCEV_EXTENSION both
TX_CONNECTED (IPEXTID_
MEDIAINFO)
IPPARM_ GCEV_EXTENSION both
TX_ (IPEXTID_
DISCONNECTED MEDIAINFO)
IPSET_ IPPARM_MSGTYPE | --- gc_Extension() GCEV_EXTENSION H.323
MSG_H245 (IPEXTID_ (IPEXTID_ only
SENDMSG) RECEIVEMSG)
IPSET_ IPPARM_MSGTYPE | --- gc_Extension() GCEV_EXTENSION H.323
MSG_Q931 (IPEXTID_ (IPEXTID_ only
SENDMSG) RECEIVEMSG)
IPSET_ IPPARM_MSGTYPE | --- gc_Extension() GCEV_EXTENSION both

MSG_
REGISTRATION

(IPEXTID_
SENDMSG)

(IPEXTID_
RECEIVEMSG)

1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a line device basis).
1 Tunneling for incoming calls can only be specified using the gc_SetConfigData( ) function with a board device target ID.

156

Global Call IP Technology Guide — January 2004




I n IP-Specific Parameter Reference

Table 19. Summary of Parameter IDs and Set IDs (Continued)

Set ID Parameter ID Set Send Retrieve H;z: /
IPSET_ IPPARM_ gc_SetConfigData( ) gc_AnswerCall() | gc_Extension() H.323
NONSTANDARD | H221NON gc_MakeCall() gc_MakeCall() (IPEXTID_GETINFO) only
CONTROL STANDARD gc_SetUserinfo( ) T

IPPARM_ gc_SetConfigData( ) gc_AnswerCall() | gc_Extension() H.323
NONSTANDARD gc_SetUserInfo( ) gc_MakeCall( ) (IPEXTID_GETINFO) only
DATA_DATA gc_MakeCall( ) gc_DropcCall()
gc_ReqgService( )
IPPARM_ gc_SetConfigData( ) gc_AnswerCall() | gc_Extension() H.323
NONSTANDARD gc_SetUserinfo( ) T gc_MakeCall() (IPEXTID_GETINFO) only
DATA_OBJID gc_MakeCall() gc_DropcCali()
gc_ReqService()
IPSET_ IPPARM_ gc_SetConfigData( ) gc_AnswerCall() | gc_Extension() H.323
NONSTANDARD | H221NON gc_MakeCall() gc_MakeCall() (IPEXTID_GETINFO) only
DATA STANDARD gc_SetUserInfo( )
IPPARM_ gc_SetConfigData( ) gc_AnswerCall() | gc_Extension() H.323
NONSTANDARD gc_SetUserinfo( ) T gc_MakeCall() (IPEXTID_GETINFO) only
DATA_DATA gc_MakeCall( ) gc_DropCall()
gc_ReqgService()
IPPARM_ gc_SetConfigData( ) gc_AnswerCall() | gc_Extension() H.323
NONSTANDARD gc_SetUserInfo( ) gc_MakeCall() (IPEXTID_GETINFO) only
DATA_OBJID gc_MakeCall( ) gc_DropcCall()
gc_ReqService( )
IPSET_ IPPARM_ gc_SetConfigData( ) gc_ReqgService() | --- both
PROTOCOL PROTOCOL _ gc_SetUserInfo( ) gc_MakeCall( )
BITMASK gc_MakeCall()
IPSET_ IPPARM_ gc_ReqService() | --- both
REG_INFO OPERATION_
DEREGISTER
IPPARM_ gc_ReqgService() | --- both
OPERATION_
REGISTER
IPPARM_ gc_ReqgService() | --- both
REG_ADDRESS
IPPARM_ Forwarded both
REG_STATUS automatically in a
GCEV_
SERVICERESP event

1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a line device basis).
1 Tunneling for incoming calls can only be specified using the gc_SetConfigData( ) function with a board device target ID.

Global Call IP Technology Guide — January 2004 157



IP-Specific Parameter Reference

®
Table 19. Summary of Parameter IDs and Set IDs (Continued)

Set ID Parameter ID Set Send Retrieve H;ZF? /
IPSET_SIP_ IPPARM_ From GCEV_ SIP
MSGINFO CONTACT_URI OFFERED event only

IPPARM_ gc_SetUserlInfo( ) gc_MakecCall( ) From GCEV_ SIP
CONTACT_DISPLAY OFFERED event only
IPPARM_ From GCEV_ SIP
FROM_DISPLAY OFFERED event only
IPPARM_ gc_SetUserInfo( ) gc_MakeCall( ) From GCEV_ SIP
REFERRED_BY OFFERED event only
IPPARM_ gc_SetUserlInfo( ) gc_MakecCall( ) From GCEV_ SIP
REPLACES OFFERED event only
IPPARM_ gc_SetUserlnfo( ) gc_MakeCall( ) From GCEV_ SIP
REQUEST_URI OFFERED event only
IPPARM_ gc_SetUserInfo( ) gc_MakeCall( ) From GCEV_ SIP
TO_DISPLAY OFFERED event only
IPSET_ IPPARM_ gc_ReqService() | --- H.323
SUPPORTED_ ADDRESS_DOT_ only
PREFIXES NOTATION
IPPARM_ gc_ReqService() | --- H.323
ADDRESS_EMAIL only
IPPARM_ --- gc_ReqService() | --- H.323
ADDRESS_ only
H323_ID
IPPARM_ --- gc_ReqService() | --- H.323
ADDRESS_PHONE only
IPPARM_ - gc_ReqService() | -- H.323
ADDRESS_ only
TRANSPARENT
IPPARM_ - gc_ReqService() | -- H.323
ADDRESS_URL only
IPSET_ IPPARM_ GCEV_EXTENSION both
T38_TONEDET T38DET_CED (IPEXTID_FOIP)
IPPARM_ GCEV_EXTENSION both
T38DET_CNG (IPEXTID_FOIP)
IPPARM_ GCEV_EXTENSION both
T38DET_V21 (IPEXTID_FOIP)

1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a line device basis).
1 Tunneling for incoming calls can only be specified using the gc_SetConfigData( ) function with a board device target ID.

158

Global Call IP Technology Guide — January 2004




I n IP-Specific Parameter Reference

Table 19. Summary of Parameter IDs and Set IDs (Continued)

Set ID Parameter ID Set Send Retrieve H;z: /
IPSET_ IPPARM_ GCEV_EXTENSION both
T38CAPFRAME T38CAPFRAME_ (IPEXTID_FOIP)

STATUS RX_CTC
IPPARM_ GCEV_EXTENSION both
T38CAPFRAME_ (IPEXTID_FOIP)
RX_DCS
IPPARM_ GCEV_EXTENSION both
T38CAPFRAME_ (IPEXTID_FOIP)
RX_DIX_DTC
IPPARM_ GCEV_EXTENSION both
T38CAPFRAME_ (IPEXTID_FOIP)
TX_CTC
IPPARM_ GCEV_EXTENSION both
T38CAPFRAME_ (IPEXTID_FOIP)
TX_DCS
IPPARM_ GCEV_EXTENSION both
T38CAPFRAME_ (IPEXTID_FOIP)
TX_DIS_DTC
IPSET_ IPPARM_ GCEV_EXTENSION both
T38HLDCFRAME | T38HLDCFRAME_ (IPEXTID_FOIP)
STATUS RX
IPPARM_ GCEV_EXTENSION both
T38HLDCFRAME_ (IPEXTID_FOIP)
X
1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a line device basis).
1 Tunneling for incoming calls can only be specified using the gc_SetConfigData( ) function with a board device target ID.

Global Call IP Technology Guide — January 2004 159



IP-Specific Parameter Reference I n

®
Table 19. Summary of Parameter IDs and Set IDs (Continued)

Set ID Parameter ID Set Send Retrieve H;ZF? /
IPSET_ IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME | T38INFOFRAME_ (IPEXTID_FOIP)

STATUS RX_CSI
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
RX_PWD
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
RX_SEP
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
RX_SIG
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
RX_SUB
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
RX_TSI
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
TX_CSI
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
TX_PWD
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
TX_SEP
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
TX_SIG
IPPARM_ GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
TX_SUB
IPPARM_ --- --- GCEV_EXTENSION both
T38INFOFRAME_ (IPEXTID_FOIP)
TX_TSI
IPSET_ IPPARM_ --- --- GCEV_EXTENSION both
TDM_TONEDET TDMDET_CED (IPEXTID_FOIP)
IPPARM_ - - GCEV_EXTENSION both
TDMDET_CNG (IPEXTID_FOIP)
IPPARM_ - - GCEV_EXTENSION both
TDMDET_V21 (IPEXTID_FOIP)

1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a line device basis).
1 Tunneling for incoming calls can only be specified using the gc_SetConfigData( ) function with a board device target ID.

160

Global Call IP Technology Guide — January 2004




INlal.

IP-Specific Parameter Reference

Table 19. Summary of Parameter IDs and Set IDs (Continued)

Set ID Parameter ID Set Send Retrieve H;z: /
IPSET_ IPPARM_ gc_Extension() both
TRANSACTION TRANSACTION_ID (Any ext_id)

IPSET_ IPPARM_ gc_SetConfigData( ) gc_Extension() gc_Extension() H.323
VENDORINFO H221NONSTD (IPEXTID_ (IPEXTID_GETINFO) only
SENDMSG)
IPPARM_ gc_SetConfigData( ) gc_Extension() gc_Extension() H.323
VENDOR_ (IPEXTID_ (IPEXTID_GETINFO) only
PRODUCT_ID SENDMSG)
IPPARM_ gc_SetConfigData( ) gc_Extension() gc_Extension() H.323
VENDOR_ (IPEXTID_ (IPEXTID_GETINFO) only
VERSION_ID SENDMSG)

1 The duration parameter can be set to GC_SINGLECALL (to apply on a call basis) or to GC_ALLCALLS (to apply on a line device basis).
I Tunneling for incoming calls can only be specified using the gc_SetConfigData( ) function with a board device target ID.

8.2

GCSET CALL_CONFIG Parameter Set

Table 20 shows the parameter IDs in the GCSET_CALL_CONFIG parameter set that are relevant

in an IP context.

Table 20. GCSET_CALL_CONFIG Parameter Set

8.3

Parameter ID Type Description H'Sslisl
GCPARM_CALLPROC | Enumeration, with one of the following Used to specify if the both
values: Proceeding message is
¢ GCCONTROL_APP - The application sent under applica}tion
must use gc_CallAck( ) to send the control or automatically by
Proceeding message. This is the default. | the stack
* GCCONTROL_TCCL - The stack sends
the Proceeding message automatically.
IPSET_CALLINFO Parameter Set
Table 21 shows the parameter IDs in the IPSET_CALLINFO parameter set.
161

Global Call IP Technology Guide — January 2004




IP-Specific Parameter Reference I n
®
Table 21. IPSET_CALLINFO Parameter Set
Parameter ID Type Description H'S?"z:al
IPPARM_CALLDURATION unsigned long Duration of the call H.323
only
IPPARM_CALLID bytes (GUID), max. length = The call ID both
IP_CALLID_LENGTH (16 bytes) | Note: In SIP, setting the call
ID is not supported.
IPPARM_CONNECTION Enumeration, with one of the The connection method: Fast | both
METHOD following values: Start or Slow Start. See
« IPPARM_CONNECTION Section 4.2, “Using Fast Start
METHOD_FASTSTART and Slow Start Setup”, on
« IPPARM CONNECTION page 42 for more information.
METHOD_SLOWSTART
IPPARM_DISPLAY String, max. length = Display information. This both
MAX_DISPLAY_LENGTH (82), information can be used by a
null-terminated peer as additional address
information.
IPPARM_H245TUNNELING Enumeration, with one of the Specify if tunneling is on or H.323
following values: off. See Section 4.12, only
* IP_H245TUNNELING_ON “Enabling and Disabling
« IP_H245TUNNELING_OFF | Tunnelingin H.323" on
page 73 for more information.
IPPARM_PHONELIST String, max. length = Phone numbers that can be both
MAX_ADDRESS_LENGTH (128) | retrieved at the remote end
point.
Note: When issuing a
gc_MakeCall( ), this
information can also
be sent through the
numberstr parameter.
See Section 7.2.12,
“gc_MakecCall( )
Variances for IP”, on
page 122 for more
information.
IPPARM_USERUSER_INFO | Uint8[ ], max size = User-to-user information H.323
MAX_USERUSER_INFO_ only
LENGTH (131)
For parameter IDs of type String, the length of the string when used in a GC_PARM_BLK is the length of the string plus 1.

8.4 IPSET _CONFERENCE Parameter Set

Table 22 shows the parameter IDs in the IPSET_CONFERENCE parameter set.

162 Global Call IP Technology Guide — January 2004



I n IP-Specific Parameter Reference

Table 22. IPSET_CONFERENCE Parameter Set

Parameter ID Type Description H'S:ﬁf/
IPPARM_CONFERENCE_GOAL | Enumeration, with one of the following The conference H.323
values: functionality to be | only
« IP_CONFERENCEGOAL_UNDEFINED | achieved
¢ |IP_CONFERENCEGOAL_CREATE
¢ |IP_CONFERENCEGOAL_JOIN
¢ |IP_CONFERENCEGOAL_INVITE
¢ |IP_CONFERENCEGOAL_CAP_
NEGOTIATION
¢ |IP_CONFERENCEGOAL_
SUPPLEMENTARY_SRVC
IPPARM_CONFERENCE_ID String, max. length = IP_CONFERENCE_ | The conference H.323
ID_LENGTH (16) identifier only
1. For parameter IDs of type String, the length of the string when used in a GC_PARM_BLK is the length of the
string plus 1.
2. Conference ID retrieval is only relevant when an application is in a conference. In a peer-to-peer call, the
conference ID does not signify a call identifier. The application should use IPPARM_CALLID to retrieve the call
identifier. See Section 8.3, “IPSET_CALLINFO Parameter Set”, on page 161 for more information.
8.5 IPSET_CONFIG Parameter Set
Table 23 shows the parameter IDs in the IPSET_CONFIG parameter set.
Table 23. IPSET_CONFIG Parameter Set
Parameter ID Type Description H':I?I
IPPARM_CONFIG_TOS Uint8 Set the Type of Service (TOS) byte. Valid values are in both
the range 0 to 255. The default value is 0.

8.6 IPSET DTMF Parameter Set

Table 24 shows the parameter IDs in the IPSET_DTMEF parameter set. This parameter set is used to
set DTMF-related parameters for the notification, suppression or sending of DTMF digits.

Global Call IP Technology Guide — January 2004 163



IP-Specific Parameter Reference I n

®
Table 24. IPSET_DTMF Parameter Set
Parameter IDs Type Description H.S:.’ali3/
IPPARM_DTMF_ALPHANUMERIC int Used when sending or receiving DTMF both

via Ull alphanumeric messages. The
parameter value contains an
IP_DTMF_DIGITS structure that includes
the digit string.

IPPARM_DTMF_RFC2833_PAYLOAD_TYPE | int Used to specify the RFC2833 RTP both
payload type. The data field is an
unsigned char with a valid range of 96 to
127. The default value is
IP_USE_STANDARD_PAYLOADTYPE

(101).

IPPARM_SUPPORT_DTMF_BITMASK int Used to specify a bitmask that defines both
which DTMF transmission methods are to
be supported.

Possible values are:
¢ |IP_DTMF_TYPE_ALPHANUMERIC t
e IP_DTMF_TYPE_INBAND_RTP
e IP_DTMF_TYPE_RFC_2833

8.7 IPSET_EXTENSIONEVT_MSK

This parameter set is used to enable or disable the events associated with unsolicited notification
such as the detection of DTMF or a change of connection state in an underlying protocol. Table 25
shows the parameter IDs in the IPSET_EXTENSIONEVT_MSK parameter set.

Table 25. IPSET_EXTENSIONEVT_MSK Parameter Set

Parameter IDs Type Description H'Sslisl
GCPARM_GET_MSK int Retrieve the bitmask of enabled events both
GCACT_SETMSK int Set the bitmask of enabled events. both
GCACT_ADDMSK int Add to the bitmask of enabled events both
GCACT_SUBMSK int Remove from the bitmask of enabled events both

Values that can be used to make up the bitmask are:
* EXTENSIONEVT_DTMF_ALPHANUMERIC (0x04) t
* EXTENSIONEVT_SIGNALING_STATUS (0x08)
e EXTENSIONEVT_STREAMING_STATUS (0x10)
EXTENSIONEVT_T38_STATUS (0x20)

164 Global Call IP Technology Guide — January 2004



u
I nu o IP-Specific Parameter Reference

8.8 IPSET IPPROTOCOL_STATE Parameter Set

This parameter set is used when retrieving notification of protocol signaling states via
GCEV_EXTENSION events. Table 26 shows the parameter IDs in the
IPSET_IPPROTOCOL_STATE parameter set.

Table 26. IPSET_IPPROTOCOL_STATE Parameter Set

Parameter IDs Type Description H.ssli3l
IPPARM_SIGNALING_CONNECTED int Call signaling for the call has been H.323
established with the remote endpoint only
IPPARM_SIGNALING_DISCONNECTED | int Call signaling for the call has been H.323
terminated only
IPPARM_CONTROL_CONNECTED int Media control signaling for the call has been | H.323
established with the remote endpoint only
IPPARM_CONTROL_DISCONNECTED int Media control signaling for the call has been | H.323
terminated only
8.9 IPSET_LOCAL_ALIAS Parameter Set
Table 27 shows the parameter IDs in the IPSET_LOCAL_ALIAS parameter set.
Table 27. IPSET_LOCAL_ALIAS Parameter Set
Parameter IDs Type Description H.S:ilisl
IPPARM_ADDRESS_DOT_NOTATION | String | A valid IP address both
IPPARM_ADDRESS_EMAIL String Email address composed of characters from both
the set “[A-Z][a-z][0-9]_-. @~
IPPARM_ADDRESS_H323_ID String | A valid H.323 ID H.323
only
IPPARM_ADDRESS_PHONE String An E.164 telephone number H.323
only
IPPARM_ADDRESS_TRANSPARENT | String Unspecified address type both
IPPARM_ADDRESS_URL String A valid URL composed of characters from the H.323
set “[A-Z][a-z][0-9]-”. Must contain at least one | only
“” and may not begin or end with a “-”.

Note: LOCAL_ALIAS, for SIP, is not the alias (or address of record), but rather the transport address or
contact.

8.10 IPSET_MEDIA_STATE Parameter Set

Table 28 shows the parameter IDs in the IPSET_MEDIA_STATE parameter set.

Global Call IP Technology Guide — January 2004 165



IP-Specific Parameter Reference

Table 28. IPSET_MEDIA_STATE Parameter Set

Parameter IDs

Type

Description

H.323/
SIP

IPPARM_RX_CONNECTED

int

Streaming has been initiated in the receive direction
from the remote endpoint. The datatype of this
parameter is IP_CAPABILITY, which includes coder
information negotiated with the remote peer. See
Section 4.10, “Enabling and Disabling Unsolicited
Notification Events”, on page 71 for more
information.

both

IPPARM_RX_DISCONNECTED

Streaming in the receive direction from the remote
endpoint has been terminated.

both

IPPARM_TX_CONNECTED

int

Streaming has been initiated in the transmit direction
toward the remote endpoint. The datatype of this
parameter is IP_CAPABILITY, which includes coder
information negotiated with the remote peer. See
Section 4.10, “Enabling and Disabling Unsolicited
Notification Events”, on page 71 for more
information.

both

IPPARM_TX_DISCONNECTED

int

Streaming in the transmit direction toward the remote
endpoint has been terminated.

both

8.1

IPSET_MSG H245 Parameter Set

Table 29 shows the parameter IDs in the IPSET_MSG_H245 parameter set. This parameter set is
used with the gc_Extension( ) and the IPEXTID_SENDMSG extension and encapsulates all the
parameters required to send an H.245 message.

Table 29.

IPSET_MSG_H245 Parameter Set

Parameter IDs Type Description H.S3Ii3l
IPPARM_MSGTYPE int Possible values for H.245 messages are: H.323
e IP_MSGTYPE_H245_INDICATION only

8.12

IPSET_MSG_ Q931 Parameter Set

Table 30 shows the parameter IDs in the IPSET_MSG_Q931 parameter set. This parameter set is
used with the ge_Extension( ) and the IPEXTID_SENDMSG extension and encapsulates all the
parameters required to send an Q.931 message.

166

Global Call IP Technology Guide — January 2004



u
I nt6| o IP-Specific Parameter Reference

Table 30. IPSET_MSG_Q931 Parameter Set

Parameter IDs Type Description H'S:ﬁs/
IPPARM_MSGTYPE int Possible values for Q.931 messages are: H.323
* IP_MSGTYPE_Q931_FACILITY only

8.13 IPSET MSG REGISTRATION Parameter Set

Table 31 shows the parameter IDs in the IPSET_MSG_REGISTRATION parameter set. This
parameter set is used with the ge_Extension( ) and the IPEXTID_SENDMSG extension and
encapsulates all the parameters required to send a registration message.

Table 31. IPSET_MSG_REGISTRATION Parameter Set

Parameter IDs Type Description H.siiliiil
IPPARM_MSGTYPE int Possible value for registration messages is: both
e IP_MSGTYPE_REG_NONSTD

8.14 IPSET_NONSTANDARDCONTROL Parameter Set

Table 32 shows the parameter IDs in the IPSET_NONSTANDARDCONTROL parameter set.

Table 32. IPSET_NONSTANDARDCONTROL Parameter Set

Parameter IDs Type Description H.SSIZPSI
IPPARM_NONSTANDARDDATA_DATA String, max. length = Contains the nonstandard H.323
MAX_NS_PARM_ data supplied, if any. If only
DATA_LENGTH (128) nonstandard data was not
supplied, this parameter
should not be present in the
parm block.
IPPARM_NONSTANDARDDATA_OBJID | Uint[ ], max. length = Contains the nonstandard H.323
MAX_NS_PARM_ object ID supplied, ifany. Ifa | only
OBJID_LENGTH (40) nonstandard object ID was
not provided, this parameter
should not be present in the
parm block.
PPARM_H221NONSTANDARD String Contains an H.221 H.323
nonstandard data identifier. only
For parameter IDs of type String, the length of the string when used in a GC_PARM_BLK is the length of the string plus 1.

Global Call IP Technology Guide — January 2004 167



u
IP-Specific Parameter Reference I nt9| o

8.15 IPSET _NONSTANDARDDATA Parameter Set

Table 33 shows the parameter IDs in the IPSET_NONSTANDARDDATA parameter set.

Table 33. IPSET_NONSTANDARDDATA Parameter Set

Parameter IDs Type Description H':Iisl
IPPARM_NONSTANDARDDATA_DATA String, max. length = Contains the nonstandard | H.323
MAX_NS_PARM_DATA_ data supplied, if any. If only
LENGTH (128) nonstandard data was not
supplied, this parameter
should not be present in
the parm block.
IPPARM_NONSTANDARDDATA_OBJID | Uint[ ], max. length = Contains the nonstandard | H.323
MAX_NS_PARM_OBJID_ | object ID supplied, if any. only
LENGTH (40) If a nonstandard object ID
was not provided, this
parameter should not be
present in the parm block.
IPPARM_H221NONSTANDARD String Contains an H.221 H.323
nonstandard data only
identifier.
For parameter IDs of type String, the length of the string when used in a GC_PARM_BLK is the length of the string plus 1.

8.16 IPSET _PROTOCOL Parameter Set

Table 34 shows the parameter IDs in the IPSET_PROTOCOL parameter set.

Table 34. IPSET_PROTOCOL Parameter Set

Parameter IDs Type Description H-S3Ii3l
IPPARM_PROTOCOL_BITMASK int The IP protocol to use. Possible values are: both

* IP_PROTOCOL_H323
e IP_PROTOCOL_SIP

8.17 IPSET REG_INFO Parameter Set

Table 35 shows the parameter IDs in the IPSET_REG_INFO parameter set.

168 Global Call IP Technology Guide — January 2004



Table 35. IPSET_REG_INFO Parameter Set

IP-Specific Parameter Reference

8.18

Parameter IDs Type Description H.SS:DSI
IPPARM_OPERATION_ char Used to manipulate registration information both
REGISTER when registering an endpoint with a

gatekeeper/registrar. Possible values are:
* IP_REG_ADD_INFO
* IP_REG_DELETE_BY_VALUE
e IP_REG_SET_INFO
IPPARM_OPERATION_ char Used when deregistering an endpoint with a both
DEREGISTER gatekeeper/registrar. Possible values are:
e |IP_REG_DELETE_ALL - Discard the
registration data in the local database.
e IP_REG_MAINTAIN_LOCAL_INFO - Keep
the registration data in the local database.
IPPARM_REG_ADDRESS IP_REGISTER_ Address information to be registered with a both
ADDRESS. See gatekeeper/registrar.
Section ,
“IP_REGISTER_
ADDRESS”, on
page 183 for more
information.
IPPARM_REG_TYPE int The registration type. Possible values are: H.323
* IP_REG_GATEWAY only
* IP_REG_TERMINAL
IPPARM_REG_STATUS int Provides an indication of whether the endpoint | both
registration with a gatekeeper/registrar was
successful or not. Possible values are:
* |IP_REG_CONFIRMED
* IP_REG_REJECTED
IPSET_SIP_MSGINFO Parameter Set
Table 36 shows the parameter IDs in the IPSET_SIP_MSGINFO parameter set.
Table 36. IPSET_SIP_MSGINFO Parameter Set
Parameter IDs Type Description H's3"2:,3l
IPPARM_CONTACT_DISPLAY String Used to set or retrieve the Contact Display message | SIP
information field in SIP messages only
IPPARM_CONTACT_URI String Used to retrieve the Contact URI message SIP
information field in SIP messages only
IPPARM_FROM_DISPLAY String Used to set or retrieve the From Display message SIP
information field in SIP messages only
169

Global Call IP Technology Guide — January 2004




u
IP-Specific Parameter Reference I nt9| o

Table 36. IPSET_SIP_MSGINFO Parameter Set (Continued)

Parameter IDs Type Description H'Sslisl
IPPARM_REQUEST_URI String Used to set or retrieve the Request URI message SIP
information field in SIP messages only
IPPARM_TO_DISPLAY String Used to set or retrieve the To Display message SIP
information field in SIP messages only
8.19 IPSET_SUPPORTED_PREFIXES Parameter Set
Table 37 shows the parameter IDs in the IPSET_SUPPORTED_PREFIXES parameter set.
Table 37. IPSET_SUPPORTED_PREFIXES Parameter Set

Parameter IDs Type Description H.Siiliiil

IPPARM_ADDRESS_DOT_NOTATION | String | A valid IP address H.323
only

IPPARM_ADDRESS_EMAIL String Email address composed of characters from H.323
the set “[A-Z][a-z][0-9]_-.@" only

IPPARM_ADDRESS_H323_ID String | Avalid H.323 ID H.323
only

IPPARM_ADDRESS_PHONE String An E.164 telephone number H.323
only

IPPARM_ADDRESS_TRANSPARENT | String Unspecified address type H.323
only

IPPARM_ADDRESS_URL String A valid URL composed of characters from the | H.323
set “[A-Z][a-z][0-9]-". Must contain at least one | only

“’ and may not begin or end with a “-”.

8.20 IPSET _T38 TONEDET Parameter Set

Table 38 shows the parameter IDs in the IPSET_T38_TONEDET parameter set.

Table 38. IPSET_T38 TONEDET Parameter Set

Parameter IDs Type Description H;SSI?I
IPPARM_T38DET_CED int Indicates Called Terminal Identification (CED) tone both
detection on the IP
IPPARM_T38DET_CNG int Indicates Calling Tone (CNG) detection on the IP side both
IPPARM_T38DET_V21 int Indicates V21 tone detection on the IP side both

170 Global Call IP Technology Guide — January 2004



intel.

8.21

Table 39.

8.22

Table 40.

8.23

IP-Specific Parameter Reference

IPSET_T38CAPFRAMESTATUS Parameter Set

Table 39 shows the parameter IDs in the IPSET_T38CAPFRAMESTATUS parameter set. These
parameters correspond to commands described in the ITU T.30 Standard.

IPSET_T38CAPFRAMESTATUS Parameter Set

Parameter IDs Type Description H'-s3|2p3/
IPPARM_T38CAPFRAME_TX_DIS_DTC | int Digital Transmit Command (DTC) — The both

digital command response to the standard
capabilities identified by the DISt signal.

IPPARM_T38CAPFRAME_TX_DCS int Digital Command Signal (DCS) — The digital | both
set-up command responding to the standard
capabilities identified by the DISt signal.

IPPARM_T38CAPFRAME_TX_CTC int Continue To Correct (CTC) — This digital both
command is only used in the optional T.4
error correction mode.

IPPARM_T38CAPFRAME_RX_DIX_DTC | int Digital Transmit Command (DTC) — The both
digital command response to the standard

capabilities identified by the DISt signal.

IPPARM_T38CAPFRAME_RX_DCS int Digital Command Signal (DCS) — The digital | both
set-up command responding to the standard
capabilities identified by the DISt signal.

IPPARM_T38CAPFRAME_RX_CTC int Continue To Correct (CTC) — This digital both
command is only used in the optional T.4
error correction mode.

1 The Digital Identification Signal (DIS) characterizes the standard ITU-T capabilities of the called terminal.

IPSET T38HDLCFRAMESTATUS Parameter Set

Table 40 shows the parameter IDs in the IPSET_T38HDLCFRAMESTATUS parameter set.

IPSET_T38HDLCFRAMESTATUS Parameter Set

Parameter IDs Type Description H.S3Ii3l
IPPARM_T38HDLCFRAME_TX int T.38 HDLC transmit frame both
IPPARM_T38HDLCFRAME_RX int T.38 HDLC receive frame both

IPSET_T38INFOFRAMESTATUS Parameter Set

Table 41 shows the parameter IDs in the IPSET_T38INFOFRAMESTATUS parameter set. These
parameters correspond to sections in the Facsimile Information Field (FIF) as described in the ITU
T.30 Standard.

Global Call IP Technology Guide — January 2004 171



IP-Specific Parameter Reference I n

Table 41. IPSET_T38INFOFRAMESTATUS Parameter Set

Parameter IDs Type Description H-S?’"Z:SI
IPPARM_T38INFOFRAME_TX_SUB int Subaddress (SUB) - A subaddress in the both

called subscriber’s domain. Used to provide
additional routing information in the
facsimile procedure.

IPPARM_T38INFOFRAME_RX_SUB int Subaddress (SUB) - A subaddress in the both
called subscriber’'s domain. Used to provide
additional routing information in the
facsimile procedure.

IPPARM_T38INFOFRAME_TX_SEP int Selective Polling (SEP) - A subaddress for both
the polling mode that may be used to
indicate if a specific document will be polled
at the called terminal.

IPPARM_T38INFOFRAME_RX_SEP int Selective Polling (SEP) - A subaddress for both
the polling mode that may be used to
indicate if a specific document will be polled
at the called terminal.

IPPARM_T38INFOFRAME_TX_PWD int Passwrod (PWD) - A password for the both
polling mode that may be used to provide
additional security to the facsimile
procedure.

IPPARM_T38INFOFRAME_RX_PWD int Password (PWD) - A password for the both
polling mode that may be used to provide
additional security to the facsimile
procedure.

IPPARM_T38INFOFRAME_TX_TSI int Transmitting Subscriber Identification (TSI) - | both
The identification of the transmitting
terminal that may be used to provide
additional security to the facsimile
procedures.

IPPARM_T38INFOFRAME_RX_TSI int Transmitting Subscriber Identification (TSI) - | both
The identification of the transmitting
terminal that may be used to provide
additional security to the facsimile
procedures.

IPPARM_T38INFOFRAME_TX_CSI int Called Subscriber Identification (CSI) - both
Identifies the called subscriber by its
international telephone number.

IPPARM_T38INFOFRAME_RX_CSI int Called Subscriber Identification (CSI) - both
Identifies the called subscriber by its
international telephone number.

172 Global Call IP Technology Guide — January 2004



intel.

IP-Specific Parameter Reference

Table 41. IPSET_T38INFOFRAMESTATUS Parameter Set (Continued)

Parameter IDs Type Description Hglisl
IPPARM_T38INFOFRAME_TX_CIG int Calling Subscriber Identification (CIG) - both
Identifies the calling terminal and may be
used to provide additional security to the
facsimile procedure.
IPPARM_T38INFOFRAME_RX_CIG int Calling Subscriber Identification (CIG) - both
Identifies the calling terminal and may be
used to provide additional security to the
facsimile procedure.
8.24 IPSET_TDM_TONEDET Parameter Set
Table 42 shows the parameter IDs in the IPSET_TDM_TONEDET parameter set.
Table 42. IPSET_TDM_TONEDET Parameter Set
Parameter IDs Type Description H'Sslisl
IPPARM_TDMDET_CED int Indicates Called Terminal Identification (CED) tone both
detection on the TDM side
IPPARM_TDMDET_CNG int Indicates Calling Tone (CNG) detection on the TDM side both
IPPARM_TDMDET_V21 int Indicates V21 tone detection on the TDM side both
8.25 IPSET_TRANSACTION Parameter Set
Table 43 shows the parameter IDs in the IPSET_TRANSACTION parameter set.
Table 43. IPSET_TRANSACTION Parameter Set
Parameter IDs Type Description H's3|i3l
IPPARM_TRANSACTION_ID int Used to uniquely identify any transaction H.323
only
8.26 IPSET_VENDORINFO Parameter Set
Table 44 shows the parameter IDs in the IPSET_VENDORINFO parameter set.
Global Call IP Technology Guide — January 2004 173



IP-Specific Parameter Reference I n

®
Table 44. IPSET_VENDORINFO Parameter Set
Parameter IDs Type Description H'S:ﬁs/

IPPARM_H221NONSTD IP_H221NONSTANDARD. See Contains country code, H.323
Section , extension code and only
“IP_H221NONSTANDARD”, on manufacturer code
page 182 for more information.

IPPARM_VENDOR_PRODUCT_ID | String, max. length = Vendor product identifier | H.323
MAX_PRODUCT_ID_LENGTH only
(32)

IPPARM_VENDOR_VERSION_ID | String, max. length = Vendor version identifier H.323
MAX_VERSION_ID_LENGTH only
(32)

For parameter IDs of type String, the length of the string when used in a GC_PARM_BLK is the length of the string plus 1.

174 Global Call IP Technology Guide — January 2004



intel.

IP-Specific Data Structures

This chapter describes the data structures that are specific to IP technology.

Note: These data structures are defined in the gcip.h header file.

¢ [P_AUDIO_CAPABILITY . . ..o e
¢ IP_CAPABILITY ... e
e JP_CAPABILITY_UNION . . ... e
¢ IP_DATA_CAPABILITY . ... o e

¢ [P_DTMF_DIGITS
¢ [P_H22INONSTANDARD
¢ [P_REGISTER_ADDRESS
¢ [P_RFC2833_EVENT
¢ [P_VIRTBOARD
e IPADDR
¢ [PCCLIB_START_DATA

Global Call IP Technology Guide — January 2004

175



n
IP_AUDIO_CAPABILITY — basic audio capability information | ntel .

IP_AUDIO_CAPABILITY

typedef struct

{
unsigned long frames_per_ pkt;
long VAD;

} IP_AUDIO CAPABILITY;

B Description

The IP_AUDIO_CAPABILITY data structure is used to allow some minimum set of information to
be exchanged together with the audio codec identifier.

B Field Descriptions

The fields of the IP_AUDIO_CAPABILITY data structure are described as follows:

frames_per_pkt
When bundling more than one audio frame into a single transport packet, this value should
represent the maximum number of frames per packet that will be sent on the wire. When set to
zero, indicates that the exact number of frames per packet is not known, or that the data is not
applicable. This field can also be set to GCCAP_dontCare to indicate that any supported value
is valid.

Note: For G.711 coders, this field represents the frame size (for example, 10 msec); the
frames per packet value is fixed at 1 fpp. For other coders, this field represents the
frames per packet and the frame size is fixed. See Section 4.3.4, “Setting Coder
Information”, on page 45 for more information.

VAD
Applies to audio algorithms that support the concept of voice activated detection (VAD) only.
Possible values are:
¢ GCPV_ENABLE - VAD enabled
¢ GCPV_DISABLE — VAD disabled

This field can also be set to GCCAP_dontCare to indicate that any supported value is valid.

176 Global Call IP Technology Guide — January 2004



u
I nu o basic capability information — IP_CAPABILITY

IP_CAPABILITY

typedef struct

{

int capability;
int type;

int direction;
int payload_type;
IP_CAPABILITY_ UNION extra;

char rfu[0x10] ;

} IP_CAPABILITY;
B Description

The IP_CAPABILITY data structure provides a level of capability information in addition to
simply the capability or codec identifier.

Note: The IP_CAPABILITY data structure is not intended to provide all the flexibility of the H.245
terminal capability structure, but provides a first level of useful information in addition to the
capability or codec identifier.

B Field Descriptions

The fields of the IP_CAPABILITY data structure are described as follows:
capability
The IP Media capability for this structure. Possible values are:
¢ GCCAP_AUDIO_g711Alaw64k
¢ GCCAP_AUDIO_g711Ulaw64k
e GCCAP_AUDIO_g7231_5_3k
e GCCAP_AUDIO_g7231_6_3k
¢ GCCAP_AUDIO_g729AnnexA
e GCCAP_AUDIO_g729AnnexAwAnnexB
¢ GCCAP_AUDIO_NO_AUDIO
¢ GCCAP_DATA_t38UDPFax
e GCCAP_dontCare
type
The category of capability specified in this structure. Indicates which member of the
IP_CAPABILITY_UNION union is being used. Possible values are:

¢ GCCAPTYPE_AUDIO - Audio
e GCCAPTYPE_RDATA - Data

direction
The capability direction code for this capability. Possible values are:
e [P_CAP_DIR_LCLTRANSMIT - Indicates a transmit capability for the local endpoint.
e [P_CAP_DIR_LCLRECIEVE - Indicates a receive capability for the local endpoint.
e [P_CAP_DIR_LCLRXTX - Indicates a receive and transmit capability for the local
endpoint. Supported for T.38 only.

Global Call IP Technology Guide — January 2004 177



u
IP_CAPABILITY — basic capability information I nt9| o

payload_type
The payload type. When using a standard payload type, set the value of this field to
IP_USE_STANDARD_PAYLOADTYPE. When using a nonstandard payload type, use this
field to specify the RTP payload type that will be used in conjunction with the coder specified
in the capability field in this structure.

Not currently supported.

extra
The contents of the IP_CAPABILITY_UNION will be indicated by the type field.

rfu
Reserved for future use. Must be set to zero when not used.

178 Global Call IP Technology Guide — January 2004



u
I nu o parameters for different capability categories — IP_CAPABILITY_UNION

IP_CAPABILITY_UNION

typedef union

{

IP_AUDIO_ CAPABILITY audio;
IP _VIDEO_CAPABILITY video;
IP_DATA_ CAPABILITY data;

} IP_CAPABILITY UNION;
B Description

The IP_CAPABILITY_UNION union enables different capability categories to define their own
additional parameters or interest.

B Field Descriptions

The fields of the IP_CAPABILITY_UNION union are described as follows:

audio
A structure that represents the audio capability. See IP_ AUDIO_CAPABILITY, on page 176
for more information.

video
Not supported.

data
Not supported.

Global Call IP Technology Guide — January 2004 179



n
IP_DATA_CAPABILITY — basic data capability information | ntel .

IP_DATA_CAPABILITY

typedef struct

int max_bit_rate;
} IP_DATA CAPABILITY;

B Description

The IP_DATA_CAPABILITY data structure provides additional information about the data
capability.

B Field Descriptions

The fields of the IP_DATA_CAPABILITY data structure are described as follows:
max_bit_rate
Possible values are:
e 2400
e 4800
* 9600
e 14400
The recommended value for T.38 coders is 14400.

180 Global Call IP Technology Guide — January 2004



[ ]
| n‘tel . DTMF information — IP_DTMF_DIGITS

IP_DTMF_DIGITS

typedef struct

{

char digit_buf [IP_MAX_DTMF_DIGITS] ;
unsigned int num digits;
} IP_DTMF DIGITS;

B Description

The IP_DTMEF_DIGITS data structure is used to provide DTMF information when the digits are
received in a User Input Indication (UIl) message with alphanumeric data.

B Field Descriptions

The fields of the IP_ DTMF_DIGITS data structure are described as follows:

digit_buf
The DTMF digit string buffer; 32 characters in size.

num_digits
The number of DTMF digits in the string buffer.

Global Call IP Technology Guide — January 2004 181



IP_H221NONSTANDARD — H.221 nonstandard data

IP_H221NONSTANDARD

typedef struct

int country code;

int extension;

int manufacturer_code;
} IP_H221NONSTANDARD;

B Description

The IP_H221NONSTANDARD data structure is used to store H.221 nonstandard data.

B Field Descriptions

The fields of the IP_H221NONSTANDARD data structure are described as follows:

country_code
The country code.

extension
The extension number.

manufacturer_code
The manufacturer code.

182

Global Call IP Technology Guide — January 2004



u
I nu o gatekeeper registration information — IP_REGISTER_ADDRESS

IP_REGISTER_ADDRESS

typedef struct

{

char reg_client [IP_REG_CLIENT ADDR_LENGTH] ;
char reg_server [IP_REG_SERVER_ADDR LENGTH] ;
int time_to_live;

int max_hops;

} IP_REGISTER ADDRESS;
B Description

The IP_REGISTER_ADDRESS data structure is used to store registration information.
B Field Descriptions

The fields of the IP_ REGISTER_ADDRESS data structure are described as follows:
reg_client
The meaning is protocol dependent:
* When using H.323, this field is not used. Any value specified is ignored.
* When using SIP, this field is an alias for the subscriber
reg_server
The address of the registration server. Possible value are:

¢ an [P address in dot notation. A port number can also be specified as part of the address,
for example, 10.242.212.216:1718.

¢ [P_REG_MULTICAST_DEFAULT_ADDR

time_to_live
The time to live value in seconds. The number of seconds for which a registration is considered
to be valid when repetitive registration is selected.

max_hops
The multicast time to live value in hops. The maximum number of hops (connections between
routers) that a packet can take before being discarded or returned when using multicasting.
This field applies only to H.323 applications using gatekeeper discovery (H.225 RAS) via the
default multicast registration address.

Global Call IP Technology Guide — January 2004 183



[ ]
IP_VIRTBOARD — information about an IPT board device I nt9| o

IP_VIRTBOARD

184

typedef struct

{

unsigned short version;

unsigned int total_max calls;
unsigned int h323_max_calls;
unsigned int sip_max calls;
IPADDR locallp;

unsigned short h323_signaling_port;
unsigned short sip_signaling_port;
void *reserved;

unsigned short size;

unsigned int sip_msginfo_mask;

}IP VIRTBOARD;

B Description

The IP_VIRTBOARD data structure is used to store information about an IPT board device.
Field Descriptions

The fields of the IP_VIRTBOARD data structure are described as follows:

version
The version of the structure. The correct version number is populated by the
INIT_IP_VIRTBOARD( ) function and does not need to be overriden.

total_max_calls
The maximum total number of IPT devices that can be open concurrently. Possible values are
in the range 1 to 2016 (IP_CFG_MAX_AVAILABLE_CALLS). Each IPT device can support
both the H.323 and SIP protocols.

h323_max_calls
The maximum number of IPT devices used for H.323 calls. Possible values are in the range 1
to 2016 (IP_CFG_MAX_AVAILABLE_CALLS).

sip_max_calls
The maximum number of IPT devices used for SIP calls. Possible values are in the range 1 to
2016 (IP_CFG_MAX_AVAILABLE_CALLS).

locallP
The local IP address of type IPADDR. See IPADDR, on page 186.

h323_signaling_port
The H.323 call signaling port. Possible values are the port number or IP_CFG_DEFAULT. For
H.323, the default port is 1720.

sip_signaling_port
The SIP call signaling port. Possible values are the port number or IP_CFG_DEFAULT. For
SIP, the default port is 5060.

reserved
For library use only.

size
For library use only.

Global Call IP Technology Guide — January 2004



[ ]
I nu o information about an IPT board device — IP_VIRTBOARD

sip_msginfo_mask (version 0x101 or later)
Enables and disables access to SIP message information fields. Use the value
IP_SIP_MSGINFO_ENABLE to enable access.

Global Call IP Technology Guide — January 2004 185



[ |
IPADDR — local IP address | ntel .

IPADDR

typedef struct

{

unsigned char ip_ver;
union{
unsigned int ipv4;
unsigned int ipve [4]
}u_ipaddr;

}IPADDR, *PIPADDR;
B Description

The IPADDR structure is used to specify a local IP address.
B Field Descriptions

The fields of the IPADDR data structure are described as follows:
ip_ver
The version of the local IP address. Possible values are:
e [PVER4
e IPVERG
u_ipaddr
A union that contains the actual address. The datatype is different depending on whether the

address is an IPv4 or an IPv6 address. For more information on the byte order of IPv4
addresses, see RFC 791 and RFC 792.

Note: In the u_ipaddr union, the only value of the ipv4 field currently supported is IP_CFG_DEFAULT.

186 Global Call IP Technology Guide — January 2004



intel.

IP call control library configuration information — IPCCLIB_START_DATA

IPCCLIB_START_DATA

typedef struct

{

unsigned short version;
unsigned char delimiter;
unsigned char num_boards;
IP_VIRTBOARD *board_list;

} IPCCLIB START DATA;
Description

The IPCCLIB_START_DATA structure is used to configure the IP H.323/SIP call control library
when starting Global Call. Use the INIT_IPCCLIB_START_DATA( ) function to populate a
IPCCLIB_START_DATA structure with default values, then override the default values as desired.

Field Descriptions

The fields of the IPCCLIB_START_ DATA data structure are described as follows:

version
The version of the start structure. The correct version number is populated by the
INIT_IPCCLIB_START_DATA() function and does not need to be overriden.

delimiter
An ANSI character used to change the default address string delimiter, that is, “,”. The
delimiter is used to separate the components of the destination information when using
gc_MakeCall( ) for example.

num_boards
The number of IPT board devices. See Section 2.3.2, “IPT Board Devices”, on page 33 for
more information on IPT board devices. The maximum value is 8.

board_list
A pointer to an array of IP_VIRTBOARD structures, one structure for each IPT board device.
See IP_VIRTBOARD, on page 184 for more information.

Global Call IP Technology Guide — January 2004 187



u
IPCCLIB_START_DATA — IP call control library configuration information I nt6| o

188 Global Call IP Technology Guide — January 2004



intel.

IP-Specific Event Cause Codes 10

This chapter lists the IP-specific error and event cause codes and provides a description of each
code. The codes described in this chapter are defined in the gcip_defs.h header file.

When a GCEV_DISCONNECTED event is received, use the gc_ResultInfo( ) function to retrieve
the reason or cause of that event.

When using ge_DropCall( ) with H.323, only event cause codes prefixed by IPEC_H2250 or
IPEC_Q931 should be specified in the cause parameter.

When using ge_DropCall( ) with SIP, if the application wants to reject a call during call
establishment, the relevant cause value for the gc_DropCall( ) function can be either one of the
generic Global Call cause values for dropping a call (see the gc_DropCall( ) function description
in the Global Call API Library Reference), or one of the cause codes prefixed by IPEC_SIP in this
chapter. If the application wants to drop a call that is already connected (simply hanging up
normally) the same rules apply, but the cause is not relevant in the BYE message.

10.1 IP-Specific Error Codes

The following IP-specific error codes are supported:

IPERR_ADDRESS_IN_USE
The address specified is already in use. For IP networks, this will usually occur if an attempt is
made to open a socket with a port that is already in use.

IPERR_ADDRESS_RESOLUTION
Unable to resolve address to a valid IP address.

IPERR_BAD_PARAM
Call failed because of a bad parameter.

IPERR_CALLER_ID
Unable to allocate or copy caller ID string.

IPERR_CANT_CLOSE_CHANNEL
As a result of the circumstances under which this channel was opened, it cannot be closed.
This could occur for some protocols in the scenario when channels are opened before the call
is connected. In this case, the channels should be closed and deleted after hangup.

IPERR_CHANNEL_ACTIVE
Media channel is already active.

IPERR_COPYING_OCTET_STRING
Unable to copy octet string.

IPERR_COPYING_OR_RESOLVING_ALIAS
An error occurred while copying the alias. The error could be the result of a memory allocation
failure or it could be an invalid alias format.

Global Call IP Technology Guide — January 2004 189



u
IP-Specific Event Cause Codes I nt9| o

IPERR_DESTINATION_UNKNOWN
Failure to locate the host with the address given.

IPERR_DIAL_ADDR_MUST _BE_ALIAS
The address being dialed in this case may not be an IP address or domain name. It must be an
alias because two intermediate addresses have already been specified, that is, Local Proxy,
Remote Proxy and Gateway Address.

IPERR_DLL_LOAD_FAILED
Dynamic load of a DLL failed.

IPERR_DTMF_PENDING
Already in a DTMF generate state.

IPERR_DUP_CONF_ID
A conference ID was specified that matches an existing conference ID for another conference.

IPERR_FRAMESPERPACKET_NOT_SUPP
Setting frames-per-packet is not supported on the specified audio capability.

IPERR_GC_INVLINEDEV
Invalid line device.

IPERR_HOST_NOT_FOUND
Could not reach the party with the given host address.

IPERR_INCOMING_CALL_HANDLE
The handle passed as the incoming call handle does not refer to a valid incoming call.

IPERR_INTERNAL
An internal error occurred.

IPERR_INVALID_ADDRESS_TYPE
The address type specified did not map to any known address type.

IPERR_INVALID_CAPS
Channel open or response failed due to invalid capabilities.

IPERR_INVALID_DEST_ADDRESS
The destination address did not conform to the type specified.

IPERR_INVALID_DOMAIN_NAME
The domain name given is invalid.

IPERR_INVALID DTMF _CHAR
Invalid DTMF character sent.

IPERR_INVALID_EMAIL_ADDRESS
The email address given is invalid.

IPERR_INVALID_HOST_NAME
The host name given is invalid.

IPERR_INVALID_ID
An invalid ID was specified.

IPERR_INVALID_IP_ADDRESS
The IP address given is invalid.

190 Global Call IP Technology Guide — January 2004



IP-Specific Event Cause Codes

IPERR_INVALID_MEDIA_HANDLE
The specified media handle is different from the already attached media handle.

IPERR_INVALID_PHONE_NUMBER
The phone number given is invalid.

IPERR_INVALID_PROPERTY
The property ID is invalid.

IPERR_INVALID_STATE
Invalid state to make this call.

IPERR_INVALID_URL_ADDRESS
The URL address given is invalid.

IPERR_INVDEVNAME
Invalid device name.

IPERR_IP_ADDRESS_NOT_AVAILABLE
The network socket layer reports that the IP address is not available. This can happen if the
system does not have a correctly configured IP address.

IPERR_LOCAL_INTERNAL_PROXY_ADDR
Local internal proxy specified could not be resolved to a valid IP address or domain name.

IPERR_MEDIA_NOT_ATTACHED
No media resource was attached to the specified linedevice.

IPERR_MEMORY
Memory allocation failure.

IPERR_MULTIPLE_CAPS
Attaching a channel with multiple capabilities is not supported by this stack or it is not
supported in this mode.

IPERR_MULTIPLE _DATATYPES
Attaching a channel with multiple data types (such as audio and video) is not permitted. All
media types proposed for a single channel must be of the same type.

IPERR_NO_AVAILABLE_PROPOSALS
No available proposals to respond to.

IPERR_NO_CAPABILITIES_SPECIFIED
No capabilities have been specified yet. They must either be pre-configured in the
configuration file or they must be set using an extended capability API.

IPERR_NO_DTMF_CAPABILITY
The remote endpoint does not have DTMF capability.

IPERR_NO_INTERSECTING_CAPABILITIES
No intersecting capability found.

IPERR_NOANSWER
Timeout due to no answer from peer.

IPERR_NOT_IMPLEMENTED
The function or property call has not been implemented. This differs from
IPERR_UNSUPPORTED in that there is the implication that this is an early release which
intends to implement the feature or function.

Global Call IP Technology Guide — January 2004 191



u
IP-Specific Event Cause Codes I nt9| o

192

IPERR_NOT_MULTIPOINT_CAPABLE
The call cannot be accepted into a multipoint conference because there is no known multipoint
controller, or the peer in a point-to-point conference is not multipoint capable.

IPERR_NULL_ADDRESS
Addess given is NULL.

IPERR_NULL_ALIAS
The alias specified is NULL or empty.

IPERR_OK
Successful completion.

IPERR_PEER_REIJECT
Peer has rejected the call placed from this endpoint.

IPERR_PENDING_RENEGOTIATION
A batched channel renegotiation is already pending. This implementation does not support
queuing of batched renegotiation.

IPERR_PROXY_GATEWAY_ADDR
Two intermediate addresses were already specified in the local internal proxy and remote
proxy addresses. The gateway address in this case cannot be used.

IPERR_REMOTE_PROXY_ADDR
Remote proxy specified could not be resolved to a valid IP address or domain name.

IPERR_SERVER_REGISTRATION_FAILED
Attempt to register with the registration and admission server (RAS) failed.

IPERR_STILL_REGISTERED
The address object being deleted is still registered and cannot be deleted until it is
unregistered.

IPERR_TIMEOUT
Timeout occured while executing an internal function.

IPERR_UNAVAILABLE
The requested data is unavailable.

IPERR_UNDELETED_OBIJECTS
The object being deleted has child objects that have not been deleted.

IPERR_UNICODE_TO_ASCII
Unable to convert the string or character from unicode or wide character format to ASCIIL.

IPERR_UNINITIALIZED
The stack has not been initialized.

IPERR_UNKNOWN_API_GUID
This is the result of either passing in a bogus GUID or one that is not found in the current DLL
or executable.

IPERR_UNRESOLVABLE_DEST_ADDRESS
No Gateway, Gatekeepter, or Proxy is specified, therefore the destination address must be a
valid resolvable address. In the case of IP based call control, the address specified should be an
IP address or a resolvable host or domain name.

Global Call IP Technology Guide — January 2004



10.2

IP-Specific Event Cause Codes

IPERR_UNRESOLVABLE_HOST_NAME)
The host or domain name could not be resolved to a valid address. This will usually occur if
the host or domain name is not valid or is not accessible over the existing network.

IPERR_UNSUPPORTED
This function or property call is unsupported in this configuration or implementation of stack.
This differs from IPERR_NOT_IMPLEMENTED in that it implies no future plan to support
this feature of property.

Error Codes When Using H.323

The following error codes are supported:

IPEC_addrRegistrationFailed
Registration with the Registration and Admission server failed.

IPEC_addrListenFailed
Stack was unable to register to listen for incoming calls.

IPEC_CHAN_REJECT _unspecified
No cause for rejection specified.

IPEC_CHAN_REJECT_dataTypeNotSupported
The terminal was not capable of supporting the dataType indicated in OpenLogicalChannel.

IPEC_CHAN_REJECT_dataTypeNotAvailable
The terminal was not capable of supporting the dataType indicated in OpenLogicalChannel
simultaneously with the dataTypes of logical channels that are already open.

IPEC_CHAN_REJECT_unknownDataType
The terminal did not understand the dataType indicated in OpenLogicalChannel.

IPEC_CHAN_REJECT _insuffientBandwdith
The channel could not be opened because permission to use the requested bandwidth for the
logical channel was denied.

IPEC_CHAN_REJECT _unsuitableReverseParameters
This code shall only be used to reject a bi-directional logical channel request when the only
reason for rejection is that the requested parameters are inappropriate.

IPEC_CHAN_REJECT_dataTypeALCombinationNotSupported
The terminal was not capable of supporting the dataType indicated in OpenLogicalChannel
simultaneously with the Adaptation Layer type indicated in H223LogicalChannelParameters.

IPEC_CHAN_REJECT_multicastChannelNotAllowed
Multicast Channel could not be opened.

IPEC_CHAN_REJECT _separateStackEstablishmentFailed
A request to run the data portion of a call on a separate stack failed.

IPEC_CHAN_REJECT invalidSessionID
Attempt by the slave to set the SessionID when opening a logical channel to the master.

Global Call IP Technology Guide — January 2004 193



u
IP-Specific Event Cause Codes I nt9| o

194

IPEC_CHAN_REJECT_masterSlaveConflict
Attempt by the slave to open logical channel in which the master has determined a conflict
may occur.

IPEC_CHAN_REJECT_waitForCommunicationMode
Attempt to open a logical channel before the MC has transmitted the
CommunicationModeCommand.

IPEC_CHAN_REJECT _invalidDependentChannel
Attempt to open a logical channel with a dependent channel specified that is not present.

IPEC_CHAN_REJECT _replacementForRejected
A logical channel of the type attempted cannot be opened using the replacement For
parameter.The transmitter may wish to re-try by first closing the logical channel that is to be
replaced, and then opening the replacement.

IPEC_CALL_END_timeout
A callback was received because a local timer expired.

IPEC_InternalError
An internal error occured while executing asynchronously.

IPEC_INFO_NONE_NOMORE
No more digits are available.

IPEC_INFO_PRESENT_MORE
The requested digits are now available. More/additional digits are available.

IPEC_INFO_PRESENT_ALL
The requested digits are now available.

IPEC_INFO_NONE_TIMEOUT
No digits are available; timed out.

IPEC_INFO_SOME_NOMORE
Only some digits are available, no more digits will be received.

IPEC_INFO_SOME_TIMEOUT
Only some digits are available; timed out.

IPEC_NO_MATCHING_CAPABILITIES
No intersection was found between the proposed and matching capabilites.

IPEC_REG_FAIL_duplicateAlias
The alias used to register with the Registration and Admission server is already registered.
This failure typically results if the endpoint is already registered. It could also occur with some
servers if a registration is attempted too soon after unregistering using the same alias.

IPEC_REG_FAIL _invalidCallSigAddress
Server registration failed due to an invalid call signalling address specified.

IPEC_REG_FAIL _invalidAddress
The local host address specified for communicating with the server is invalid.

IPEC_REG_FAIL _invalidAlias
The alias specified did not conform to the format rules for the type of alias specified.

IPEC_REG_FAIL _invalidTermType
An invalid terminal type was specified with the registration request.

Global Call IP Technology Guide — January 2004



IP-Specific Event Cause Codes

IPEC_REG_FAIL _invalidTransport
The transport type of the local host's address is not supported by the server.

IPEC_REG_FAIL_qosNotSupported
The registration request announced a transport QoS that was not supported by the server.

IPEC_REG_FAIL_reRegistrationRequired
Registration permission has expired. Registration should be performed again.

IPEC_REG_FAIL _resourcesUnavailable
The server rejected the registration request due to unavailability of resources. This typically
occurs if the server has already reached the maximum number of registrations it was
configured to accept.

IPEC_REG_FAIL_securityDenied
The server denied access for security reasons. This can occur if the password supplied does not
match the password on file for the alias being registered.

IPEC_REG_FAIL_unknown
The server refused to allow registration for an unknown reason.

IPEC_REG_FAIL_serverDown
The server has gone down or is no longer responding.

IPEC_MEDIA_startSessionFailed
Attempt to call gc_media_StartSession( ) (an internal function) after establishing media
channel returned error.

IPEC_MEDIA_TxFailed
Attempt to establish or terminate a Tx channel with attached capabilities failed. The
application is expected to keep the Rx capabilities unchanged in the next call to
gc_AttachEx( ).

IPEC_MEDIA_RxFailed
Attempt to establish or terminate an Rx channel with attached capabilities failed. The
application is expected to keep the Tx capabilities unchanged in the next call to
gc_AttachEx( ).

IPEC_MEDIA_TxRxFailed
Attempts to establish or terminate Tx and Rx channels with attached capabilities failed.

IPEC_MEDIA_OnlyTxFailed
Attempts to establish a Tx channel with attached capabilities failed. The status of other media
channel is unavailable. Relevant to the GCEV_MEDIA_RE] event.

IPEC_MEDIA_OnlyRxFailed
Attempts to establish an Rx channel with attached capabilities failed. The status of other media
channel is unavailable. Relevant to the GCEV_MEDIA_RE] event.

IPEC_MEDIA_TxRequired
Attempts to establish a Tx channel with attached capabilities failed.

IPEC_MEDIA_RxRequired
Attempts to establish an Rx channel with attached capabilities failed.

IPEC_TxRx_Fail
Both channels have failed to open.

Global Call IP Technology Guide — January 2004 195



u
IP-Specific Event Cause Codes I nt9| o

196

IPEC_Tx_FailTimeout
A Tx channel failed to open because of timeout.

IPEC_Rx_FailTimeout
An Rx channel failed to open because of timeout.

IPEC_Tx_Fail
A Tx channel failed to open for an unknown reason.

IPEC_Rx_Fail
An Rx channel failed to open for an unknown reason.

IPEC_TxRx_FailTimeout
Both the Tx and Rx channels failed because of a timeout.

IPEC_TxRx_Rej
Both the Tx and Rx channels were rejected for an unknown reason.

IPEC_Tx_Rej
Opening of a Tx channel was rejected for unknown reasons.

IPEC_Rx_Rej
Opening of an Rx channel was rejected for unknown reasons.

IPEC_CHAN_FAILURE_unspecified
The channel failed to open/close because of an unspecified reason.

IPEC_CHAN_FAILURE_timeout
The channel failed to open/close because of a timeout.

IPEC_CHAN_FAILURE_localResources
The channel failed to open/close because of limited resources.

IPEC_FAIL_TxRx_unspecified
Both the Tx and Rx channels failed to open for unspecified reasons.

IPEC_FAIL_TxUnspecifiedRxTimeout
A Tx channel failed to open for unspecified reasons and the Rx channel failed to open because
of a timeout.

IPEC_FAILTxUnspecifiedRxResourceUnsuff
A Tx channel failed to open for unspecified reasons and the Rx channel failed to open because
of insufficient resources.

IPEC_FAIL_RxUnspecifiedTxTimeout
An Rx channel failed to open for unspecified reasons and the Tx channel failed to open
because of a timeout.

IPEC_FAIL_RXUnspecifiedTxResourceUnsuff
An Rx channel failed to open for unspecified reasons and the Tx channel failed to open
because of insufficient resources.

IPEC_FAIL_TxTimeoutRxUnspecified
A Tx channel failed to open because of a timeout and the Rx channel failed to open for
unspecified reasons.

IPEC_FAIL_TxRxTimeout
The Tx and Rx channels both failed to open because of a timeout.

Global Call IP Technology Guide — January 2004



10.3

IP-Specific Event Cause Codes

IPEC_FAIL_TxTimeoutRxResourceUnsuff
A Tx channel failed to open because of a timeout and the Rx channel failed to open because of
insufficient resources.

IPEC_FAIL_RxTimeoutTXUnspecified
An Rx channel failed because of a timeout and the Tx channel failed for unspecified reasons.

IPEC_FAIL_RxTimeoutTxResourceUnsuff
A Tx channel failed to open because of a timeout and the Rx channel failed to open because of
insufficient resources.

IPEC_FAIL_TxResourceUnsuffRxUnspecified
A Tx channel failed to open because of insufficient resources and the Rx channel failed to
open for unspecified reasons.

IPEC_FAIL_TxResourceUnsuffRxTimeout
A Tx channel failed to open because of insufficient resources and the Rx channel failed to
open because of a timeout.

IPEC_FAIL_TxRxResourceUnsuff
Tx and Rx channels failed to open because of insufficient resources.

IPEC_FAIL_RxResourceUnsuffTxUnspecified
A Tx channel failed to open for unspecified reasons and the Rx channel failed to open because
of insufficient resources.

IPEC_FAIL_RxResourceUnsuffTxTimeout
A Tx channel failed to open because of a timeout and the Rx channel failed to open because of
insufficient resources.

Internal Disconnect Reasons

The following internal disconnect reasons are supported when using H.323:

IPEC_InternalReasonBusy (0x3e9, 1001 decimal)
Cause 01; Busy

IPEC_InternalReasonCallCompletion (0x3ea, 1002 decimal)
Cause 02; Call Completion

IPEC_InternalReasonCanceled (0x3eb, 1003 decimal)
Cause 03; Cancelled

IPEC_InternalReasonCongestion (0x3ec, 1004 decimal)
Cause 04; Network congestion

IPEC_InternalReasonDestBusy (0x3ed, 1005 decimal)
Cause 05; Destination busy

IPEC_InternalReasonDestAddrBad (0x3ee, 1006 decimal)
Cause 06; Invalid destination address

IPEC_InternalReasonDestOutOfOrder (0x3ef, 1007 decimal)
Cause 07; Destination out of order

Global Call IP Technology Guide — January 2004 197



IP-Specific Event Cause Codes

198

IPEC_InternalReasonDestUnobtainable (0x3f0, 1008 decimal)
Cause 08; Destination unobtainable

IPEC_InternalReasonForward (0x3f1, 1009 decimal)
Cause 09; Forward

IPEC_InternalReasonIncompatible (0x3f2, 1010 decimal)
Cause 10; Incompatible

IPEC_InternalReasonIncomingCall, (0x3f3, 1011 decimal)
Cause 11; Incoming call

IPEC_InternalReasonNewCall (0x3f4, 1012 decimal)
Cause 12; New call

IPEC_InternalReasonNoAnswer (0x3f5, 1013 decimal)
Cause 13; No answer from user

IPEC_InternalReasonNormal (0x3f6, 1014 decimal)
Cause 14; Normal clearing

IPEC_InternalReasonNetworkAlarm (0x3f7, 1015 decimal)
Cause 15; Network alarm

IPEC_InternalReasonPickUp (0x3f8, 1016 decimal)
Cause 16; Pickup

IPEC_InternalReasonProtocolError (0x3f9, 1017 decimal)
Cause 17; Protocol error

IPEC_InternalReasonRedirection (0x3fa, 1018 decimal)
Cause 18; Redirection

IPEC_InternalReasonRemoteTermination (0x3fb, 1019 decimal)
Cause 19; Remote termination

IPEC_InternalReasonRejection (0x3fc, 1020 decimal)
Cause 20; Call rejected

IPEC_InternalReasonSIT (0x3fd, 1021 decimal)
Cause 21; Special Information Tone (SIT)

IPEC_InternalReasonSITCustlrreg (0x3fe, 1022 decimal)
Cause 22; SIT, Custom Irregular

IPEC_InternalReasonSITNoCircuit (0x3ff, 1023 decimal)
Cause 23; SIT, No Circuit

IPEC_InternalReasonSITReorder (0x400, 1024 decimal)
Cause 24; SIT, Reorder

IPEC_InternalReasonTransfer (0x401, 1025 decimal)
Cause 25; Transfer

IPEC_InternalReasonUnavailable (0x402, 1026 decimal)
Cause 26; Unavailable

IPEC_InternalReasonUnknown (0x403, 1027 decimal)
Cause 27; Unknown cause

Global Call IP Technology Guide — January 2004



IP-Specific Event Cause Codes

IPEC_InternalReasonUnallocatedNumber (0x404, 1028 decimal)
Cause 28; Unallocated number

IPEC_InternalReasonNoRoute (0x405, 1029 decimal)
Cause 29; No route

IPEC_InternalReasonNumberChanged (0x406, 1030 decimal)
Cause 30; Number changed

IPEC_InternalReasonOutOfOrder (0x407, 1031 decimal)
Cause 31; Destination out of order

IPEC_InternalReasonInvalidFormat (0x408, 1032 decimal)
Cause 32; Invalid format

IPEC_InternalReasonChanUnavailable (0x409, 1033 decimal)
Cause 33; Channel unavailable

IPEC_InternalReasonChanUnacceptable (0x40a, 1034 decimal)
Cause 34; Channel unacceptable

IPEC_InternalReasonChanNotImplemented (0x40b, 1035 decimal)
Cause 35; Channel not implemented

IPEC_InternalReasonNoChan (0x40c, 1036 decimal)
Cause 36; No channel

IPEC_InternalReasonNoResponse (0x40d, 1037 decimal)
Cause 37; No response

IPEC_InternalReasonFacilityNotSubscribed (0x40e, 1038 decimal)
Cause 38; Facility not subscribed

IPEC_InternalReasonFacilityNotImplemented (0x40f, 1039 decimal)
Cause 39; Facility not implemented

IPEC_InternalReasonServiceNotImplemented (0x410, 1040 decimal)
Cause 40; Service not implemented

IPEC_InternalReasonBarredInbound (0x411, 1041 decimal)
Cause 41; Barred inbound calls

IPEC_InternalReasonBarredOutbound (0x412, 1042 decimal)
Cause 42; Barred outbound calls

IPEC_InternalReasonDestIncompatible (0x413, 1043 decimal)
Cause 43; Destination incompatible

IPEC_InternalReasonBearerCapUnavailable (0x414, 1044 decimal)
Cause 44; Bearer capability unavailable

Global Call IP Technology Guide — January 2004 199



u
IP-Specific Event Cause Codes I nt9| o

10.4 Event Cause Codes and Failure Reasons When
Using H.323

The following event cause codes apply when using H.323.

H.225.0 Cause Codes

IPEC_H2250ReasonNoBandwidth (0x7d0, 2000 decimal)
Maps to Q.931/Q.850 cause 34 - No circuit or channel available; indicates that there is no
appropriate circuit/channel presently available to handle the call.

IPEC_H2250ReasonGatekeeperResource (0x7d1, 2001 decimal)
Maps to Q.931/Q.850 cause 47 - Resource unavailable; used to report a resource unavailable
event only when no other cause in the resource unavailable class applies.

IPEC_H2250ReasonUnreachableDestination (0x7d2, 2002 decimal)
Maps to Q.931/Q.850 cause 3 - No route to destination; indicates that the called party cannot
be reached because the network through which the call has been routed does not serve the
destination desired.

IPEC_H2250ReasonDestinationRejection (0x7d3, 2003 decimal)
Maps to Q.931/Q.850 cause 16 - Normal call clearing - indicates that the call is being cleared
because one of the users involved in the call has requested that the call be cleared.

IPEC_H2250ReasonInvalidRevision (0x7d4, 2004 decimal)
Maps to Q.931/Q.850 cause 88 - Incompatible destination; indicates that the equipment
sending this cause has received a request to establish a call which has low layer compatibility,
high layer compatibility, or other compatibility attributes (for example, data rate) which cannot
be accommodated.

IPEC_H2250ReasonNoPermission (0x7d5, 2005 decimal)
Maps to Q.931/Q.850 cause 111 - Interworking, unspecified.

IPEC_H2250ReasonUnreachableGatekeeper (0x7d6, 2006 decimal)
Maps to Q.931/Q.850 cause 38 - Network out of order; indicates that the network is not
functioning correctly and that the condition is likely to last a relatively long period of time, for
example, immediately re-attempting the call is not likely to be successful.

IPEC_H2250ReasonGatewayResource (0x7d7, 2007 decimal)
Maps to Q.931/Q.850 cause 42 - Switching equipment congestion; indicates that the switching
equipment generating this cause is experiencing a period of high traffic.

IPEC_H2250ReasonBadFormatAddress (0x7d8, 2008 decimal)
Maps to Q.931/Q.850 cause 28 - Invalid number format; indicates that the called party cannot
be reached because the called party number is not in a valid format or is incomplete.

IPEC_H2250ReasonAdaptiveBusy (0x7d9, 2009 decimal)
Maps to Q.931/Q.850 cause 41 - Temporary failure; indicates that the network is not
functioning correctly and that the condition is not likely to last for a long period of time, for
example, the user may wish to try another call attempt almost immediately.

200 Global Call IP Technology Guide — January 2004



u
I nu o IP-Specific Event Cause Codes

IPEC_H2250ReasonInConf (0x7da, 2010 decimal)
Maps to Q.931/Q.850 cause 17 - User busy; used to indicate that the called party is unable to
accept another call because the user busy condition has been encountered. This cause value
may be generated by the called user or by the network.

IPEC_H2250ReasonUndefinedReason (0x7db, 2011 decimal)
Maps to Q.931/Q.850 cause 31 - Normal, unspecified; Normal, unspecified; used to report a
normal event only when no other cause in the normal class applies.

IPEC_H2250ReasonFacilityCallDeflection (0x7dc, 2012 decimal)
Maps to Q.931/Q.850 cause 16 - Normal call clearing - indicates that the call is being cleared
because one of the users involved in the call has requested that the call be cleared.

IPEC_H2250ReasonSecurityDenied (0x7dd, 2013 decimal)
Maps to Q.931/Q.850 cause 31 - Normal, unspecified; Normal, unspecified; used to report a
normal event only when no other cause in the normal class applies.

IPEC_H2250ReasonCalledPartyNotRegistered (0x7de, 2014 decimal)
Maps to Q.931/Q.850 cause 20 - Subscriber absent; used when a mobile station has logged off,
radio contact is not obtained with a mobile station or if a personal telecommunication user is
temporarily not addressable at any user-network interface.

IPEC_H2250ReasonCallerNotRegistered (0x7df, 2015 decimal)
Maps to Q.931/Q.850 cause 31 - Normal, unspecified; used to report a normal event only when
no other cause in the normal class applies.

Q.931 Cause Codes

IPEC_Q931Cause01UnassignedNumber (0xbb9, 3001 decimal)
Q.931 cause 01 - Unallocated (unassigned) number; indicates that the called party cannot be
reached because. Although the called party number is in a valid format, it is not currently
allocated (assigned).

IPEC_Q931Cause02NoRouteToSpecifiedTransitNetwork (Oxbba, 3002 decimal)
Q.931 cause 02 - No route to specified transit network (national use); indicates that the
equipment sending this cause has received a request to route the call through a particular
transit network which it does not recognize. The equipment sending this cause does not
recognize the transit network either because the transit network does not exist or because that
particular transit network, while it does exist, does not serve the equipment which is sending
this cause. This cause is supported on a network-dependent basis.

IPEC_Q931Cause03NoRouteToDestination (Oxbbb, 3003 decimal)
Q.931 cause 03 - No route to destination; indicates that the called party cannot be reached
because the network through which the call has been routed does not serve the destination
desired. This cause is supported on a network-dependent basis.

IPEC_Q931Cause06ChannelUnacceptable (Oxbbe, 3006 decimal)
Q.931 cause 06 - Channel unacceptable; indicates that the channel most recently identified is
not acceptable to the sending entity for use in this call.

Global Call IP Technology Guide — January 2004 201



u
IP-Specific Event Cause Codes I nt9| o

202

IPEC_Q931Cause07CallAwardedAndBeingDeliveredIn AnEstablishedChannel (Oxbbf, 3007
decimal)
Q.931 cause 07 - Call awarded and being delivered in an established channel; indicates that the
user has been awarded the incoming call, and that the incoming call is being connected to a
channel already established to that user for similar calls (e.g. packet-mode X.25 virtual calls).

IPEC_Q931Cause16NormalCallClearing (Oxbc8, 3016 decimal)
Q.931 cause 16 - Normal call clearing; indicates that the call is being cleared because one of
the user’s involved in the call has requested that the call be cleared. Under normal situations,
the source of this cause is not the network.

IPEC_Q931Causel7UserBusy (0xbc9, 3017 decimal)
Q.931 cause 17 - User busy; used to indicate that the called party is unable to accept another
call because the user busy condition has been encountered. This cause value may be generated
by the called user or by the network.

IPEC_Q931Causel18NoUserResponding (Oxbca, 3018 decimal)
Q.931 cause 18 - No user responding; used when a called party does not respond to a call
establishment message with either an alerting or connect indication within the prescribed
period of time allocated.

IPEC_Q931Cause19UserAlertingNoAnswer (0Oxbcb, 3019 decimal)
Q.931 cause 19 - No answer from user (user alerted); used when the called party has been
alerted but does not respond with a connect indication within a prescribed period of time. This
cause is not necessarily generated by Q.931 procedures but may be generated by internal
network timers.

IPEC_Q931Cause21CallRejected (Oxbcd, 3021 decimal)
Q.931 cause 21 - Call rejected; indicates that the equipment sending this cause does not wish
to accept this call, although it could have accepted the call because the equipment sending this
cause is neither busy nor incompatible. This cause may also be generated by the network,
indicating that the call was cleared due to a supplementary service constraint. The diagnostic
field may contain additional information about the supplementary service and reason for
rejection.

IPEC_Q931Cause22NumberChanged (0xbce, 3022 decimal)
Q.931 cause 22 - Number changed; returned to a calling party when the called party number
indicated by the calling party is no longer assigned. The new called party number may
optionally be included in the diagnostic field. If a network does not support this cause value,
cause No. 1, unallocated (unassigned) number should be used.

IPEC_Q931Cause26NonSelectUserClearing (0xbd2, 3026 decimal)
Q.931 cause 26 - Non-selected user clearing; indicates that the user has not been awarded the
incoming call.

IPEC_Q931Cause27DestinationOutOfOrder (0xbd3, 3027 decimal)
Q.931 cause 27 - Destination out of order; indicates that the destination indicated by the user
cannot be reached because the interface to the destination is not functioning correctly. The
term "not functioning correctly" indicates that a signalling message was unable to be delivered
to the remote party, for example, a physical layer or data link layer failure at the remote party,
or user equipment off-line.

Global Call IP Technology Guide — January 2004



IP-Specific Event Cause Codes

IPEC_Q931Cause28InvalidNumberFormatIncompleteNumber (0Oxbd4, 3028 decimal)
Q.931 cause 28 - Invalid number format (address incomplete); indicates that the called party
cannot be reached because the called party number is not in a valid format or is not complete.
Note: This condition may be determined immediately after reception of an ST signal or on
time-out after the last received digit.

IPEC_Q931Cause29FacilityRejected (0xbdS, 3029 decimal)
Q.931 cause 29 - Facility rejected; returned when a supplementary service requested by the
user cannot be provided by the network.

IPEC_Q931Cause30ResponseToOSTATUSENQUIRY (0xbd6, 3030 decimal)
Q.931 cause 30 - Response to STATUS ENQUIRY; included in the STATUS message when
the reason for generating the STATUS message was the prior receipt of a STATUS ENQUIRY
message.

IPEC_Q931Cause3 1NormalUnspecified (0xbd7, 3031 decimal)
Q.931 cause 31 - Normal, unspecified; used to report a normal event only when no other cause
in the normal class applies.

IPEC_Q931Cause34NoCircuitChannel Available (Oxbda, 3034 decimal)
Q.931 cause 34 - No circuit/channel available; indicates that there is no appropriate
circuit/channel presently available to handle the call.

IPEC_Q931Cause38NetworkOutOfOrder (Oxbde, 3038 decimal)
Q.931 cause 38 - Network out of order; indicates that the network is not functioning correctly
and that the condition is likely to last a relatively long period of time, that is, immediately re-
attempting the call is not likely to be successful.

IPEC_Q931Cause41TemporaryFailure (Oxbel, 3041 decimal)
Q.931 cause 41 - Temporary failure; indicates that the network is not functioning correctly and
that the condition is not likely to last a long period of time, that is, the user may wish to try
another call attempt almost immediately.

IPEC_Q931Cause42SwitchingEquipmentCongestion (0xbe2, 3042 decimal)
Q.931 cause 42 - Switching equipment congestion; indicates that the switching equipment
generating this cause is experiencing a period of high traffic.

IPEC_Q931Cause43 AccessInformationDiscarded (Oxbe3, 3043 decimal)
Q.931 cause 43 - Access information discarded; indicates that the network could not deliver
access information to the remote user as requested, that is, user-to-user information, low layer
compatibility, high layer compatibility, or sub-address, as indicated in the diagnostic. The
particular type of access information discarded is optionally included in the diagnostic.

IPEC_Q931Cause44RequestedCircuitChannelNotAvailable (Oxbe4, 3044 decimal)
Q.931 cause 44 - Requested circuit/channel not available; returned when the circuit or channel
indicated by the requesting entity cannot be provided by the other side of the interface.

IPEC_Q931Cause47ResourceUnavailableUnspecified (0xbe7, 3047 decimal)
Q.931 cause 47 - Resource unavailable, unspecified; used to report a resource unavailable
event only when no other cause in the resource unavailable class applies.

IPEC_Q931Cause57BearerCapabilityNotAuthorized (Oxbfl, 3057 decimal)
Q.931 cause 57 - Bearer capability not authorized; indicates that the user has requested a
bearer capability that is implemented by the equipment that generated this cause but the user is
not authorized to use.

Global Call IP Technology Guide — January 2004 203



u
IP-Specific Event Cause Codes I nt9| o

204

IPEC_Q931Cause58BearerCapabilityNotPresentlyAvailable (0xbf2, 3058 decimal)
Q.931 cause 58 - Bearer capability not presently available; indicates that the user has requested
a bearer capability that is implemented by the equipment that generated this cause but it is not
available at this time.

IPEC_Q931Cause63ServiceOrOptionNotAvailableUnspecified (0xbf7, 3063 decimal)
Q.931 cause 63 - Service or option not available, unspecified; used to report a service or option
not available event only when no other cause in the service or option not available class
applies.

IPEC_Q931Cause65BearCapabilityNotImplemented (0xbf9, 3065 decimal)
Q.931 cause 65 - Bearer capability not implemented; indicates that the equipment sending this
cause does not support the bearer capability requested.

IPEC_Q931Cause66Channel TypeNotImplemented (Oxbfa, 3066 decimal)
Q.931 cause 66 - Channel type not implemented; indicates that the equipment sending this
cause does not support the channel type requested.

IPEC_Q931Cause69RequestedFacilityNotImplemented (Oxbfd, 3069 decimal)
Q.931 cause 69 - Requested facility not implemented; indicates that the equipment sending
this cause does not support the requested supplementary service.

IPEC_Q931Cause700nlyRestrictedDigitalInformationBearerCapabilityIsAvailable (Oxbfe, 3070
decimal)
Q.931 cause 70 - Only restricted digital information bearer capability is available (national
use); indicates that the calling party has requested an unrestricted bearer service but that the
equipment sending this cause only supports the restricted version of the requested bearer
capability.

IPEC_Q931Cause79ServiceOrOptionNotImplementedUnspecitfied (0xc07, 3079 decimal)
Q.931 cause 79 - Service or option not implemented, unspecified; used to report a service or
option not implemented event only when no other cause in the service or option not
implemented class applies.

IPEC_Q931Cause81InvalidCallReference Value (0xc09, 3081 decimal)
Q.931 cause 81 - Invalid call reference value; indicates that the equipment sending this cause
has received a message with a call reference that is not currently in use on the user-network
interface.

IPEC_Q931Cause82IdentifiedChannelDoesNotExist (0xc0a, 3082 decimal)
Q.931 cause 82 - Identified channel does not exist; indicates that the equipment sending this
cause has received a request to use a channel not activated on the interface for a call. For
example, if a user has subscribed to those channels on a primary rate interface numbered from
1 to 12 and the user equipment or the network attempts to use channels 13 through 23, this
cause is generated.

IPEC_Q931Cause83AsuspendedCallExistsButThisCallldentityDoesNot (0xcOb, 3083 decimal)
Q.931 cause 83 - A suspended call exists, but this call identity does not; indicates that a call
resume has been attempted with a call identity that differs from that in use for any presently
suspended call(s).

IPEC_Q931Cause84CallldentityInUse (0xcOc, 3084 decimal)
Q.931 cause 84 - Call identity in use; indicates that the network has received a call suspended
request containing a call identity (including the null call identity) that is already in use for a
suspended call within the domain of interfaces over which the call might be resumed.

Global Call IP Technology Guide — January 2004



IP-Specific Event Cause Codes

IPEC_Q931Cause85NoCallSuspended (0xcOd, 3085 decimal)
Q.931 cause 85 - No call suspended; indicates that the network has received a call resume
request containing a call identity information element that presently does not indicate any
suspended call within the domain of interfaces over which calls may be resumed.

IPEC_Q931Cause86CallHavingTheRequestedCallldentityHasBeenCleared (OxcOe, 3086 decimal)
Q.931 cause 86 - Call having the requested call identity has been cleared; indicates that the
network has received a call resume request containing a call identity information element
indicating a suspended call that has in the meantime been cleared while suspended (either by
network timeout or by the remote user).

IPEC_Q931Cause88IncompatibleDestination (0xc10, 3088 decimal)
Q.931 cause 88 - Incompatible destination; indicates that the equipment sending this cause has
received a request to establish a call that has low layer compatibility, high layer compatibility,
or other compatibility attributes (for example, data rate) that cannot be accommodated.

IPEC_Q931Cause91InvalidTransitNetworkSelection (Oxc13, 3091 decimal)
Q.931 cause 91 - Invalid transit network selection (national use); indicates that a transit
network identification was received that is of an incorrect format as defined by Annex
C/Q.931.

IPEC_Q931Cause95InvalidMessageUnspecified (0xc17, 3095 decimal)
Q.931 cause 95 - Invalid message, unspecified; used to report an invalid message event only
when no other cause in the invalid message class applies.

IPEC_Q931Cause96MandatoryInformationElementMissing (0xc18, 3096 decimal)
Q.931 cause 96 - Mandatory information element is missing; indicates that the equipment
sending this cause has received a message that is missing an information element that must be
present in the message before that message can be processed.

IPEC_Q931Cause97MessageTypeNonExistentOrNotImplemented (0xc19, 3097 decimal)
Q.931 cause 97 - Message type non-existent or not implemented; indicates that the equipment
sending this cause has received a message with a message type it does not recognize either
because 1) the message type is not defined or 2) the message type is defined but not
implemented by the equipment sending this cause.

IPEC_Q931Cause100InvalidInformationElementContents (0Oxclc, 3100 decimal)
Q.931 cause 100 - Invalid information element contents; indicates that the equipment sending
this cause has received an information element that it has implemented; however, one or more
fields in the information element are coded in such a way that has not been implemented by the
equipment sending this cause.

IPEC_Q931Cause101MessageNotCompatibleWithCallState (Oxcld, 3101 decimal)
Q.931 cause 101 - Message not compatible with call state; indicates that a message that is
incompatible with the call state has been received.

IPEC_Q931Cause102RecoveryOnTimeExpiry (Oxcle, 3102 decimal)
Q.931 cause 102 - Recovery on timer expiry; indicates that a procedure has been initiated by
the expiry of a timer in association with error handling procedures.

IPEC_Q931Causel 1 1ProtocolErrorUnspecified (0xc27, 3111 decimal)
Q.931 cause 111 - Protocol error, unspecified; used to report a protocol error event only when
no other cause in the protocol error class applies.

Global Call IP Technology Guide — January 2004 205



u
IP-Specific Event Cause Codes I nt9| o

206

IPEC_Q931Cause127InterworkingUnspecified (0xc37, 3127 decimal)
Q.931 cause 127 - Interworking, unspecified; indicates that there has been interworking with a
network that does not provide causes for the actions it takes. Thus, the precise cause for a
message that is being sent cannot be ascertained.

RAS Failure Reasons

IPEC_RASReasonResourceUnavailable (Oxfal, 4001 decimal)
Resources have been exhausted. (In GRJ, RRJ, ARJ, and LRJ messages.)

IPEC_RASReasonInsufficientResources (0xfa2, 4002 decimal)
Insufficient resources to complete the transaction. (In BRJ messages.)

IPEC_RASReasonInvalidRevision (0xfa3, 4003 decimal)
The registration version is invalid. (In GRJ, RRJ, and BRJ messages.)

IPEC_RASReasonInvalidCallSignal Address (Oxa4, 4004 decimal)
The call signal address is invalid. (In RRJ messages.)

IPEC_RASReasonInvalidIPEC_RASAddress (0Oxfa5, 4005 decimal)
The supplied address is invalid. (In RRJ messages.)

IPEC_RASReasonInvalidTerminal Type (Oxfa6, 4006 decimal)
The terminal type is invalid. (In RRJ messages.)

IPEC_RASReasonInvalidPermission (Oxfa7, 4007 decimal)
Permission has expired. (In ARJ messages.)
A true permission violation. (In BRJ messages.)
Exclusion by administrator or feature. (In LRJ messages.)

IPEC_RASReasonInvalidConferencelD (0xfa8, 4008 decimal)
Possible revision. (In BRJ messages.)

IPEC_RASReasonInvalidEndpointID (0xfa9, 4009 decimal)
The endpoint registration ID is invalid. (In ARJ messages.)

IPEC_RASReasonCallerNotRegistered (Oxfaa, 4010 decimal)
The call originator is not registered. (In ARJ messages.)

IPEC_RASReasonCalledPartyNotRegistered (Oxfab, 4011 decimal)
Unable to translate the address. (In ARJ messages.)

IPEC_RASReasonDiscoveryRequired (Oxfac, 4012 decimal)
Registration permission has expired. (In RRJ messages.)

IPEC_RASReasonDuplicateAlias (Oxfad, 4013 decimal)
The alias is registered to another endpoint. (In RRJ messages.)

IPEC_RASReasonTransportNotSupported (Oxfae, 4014 decimal)
One or more of the transport addresses are not supported. (In RRJ messages.)

IPEC_RASReasonCalllnProgress (Oxfaf, 4015 decimal)
A call is already in progress. (In URJ messages.)

IPEC_RASReasonRouteCallToGatekeeper (0xfb0, 4016 decimal)
The call has been routed to a gatekeeper. (In ARJ messages.)

Global Call IP Technology Guide — January 2004



u
I nu o IP-Specific Event Cause Codes

IPEC_RASReasonRequestToDropOther (0xfb1, 4017 decimal)
Unable to request to drop the call for others. (In DRJ messages.)

IPEC_RASReasonNotRegistered (0xfb2, 4018 decimal)
Not registered with a gatekeeper. (In DRJ, LRJ, and INAK messages.)

IPEC_RASReasonUndefined (0xfb3, 4019 decimal)
Unknown reason. (In GRJ, RRJ, URJ, ARJ, BRJ, LRJ, and INAK messages.)

IPEC_RASReasonTerminalExcluded (0xfb4, 4020 decimal)
Permission failure and not a resource failure. (In GRQ messages.)

IPEC_RASReasonNotBound (0xfb5, 4021 decimal)
Discovery permission has expired. (In BRJ messages.)

IPEC_RASReasonNotCurrentlyRegistered (0xfb6, 4022 decimal)
The endpoint is not registered. (In URJ messages.)

IPEC_RASReasonRequestDenied (0xfb7, 4023 decimal)
No bandwidth is available. (In ARJ messages.)
Unable to find location. (In LRJ messages.)

IPEC_RASReasonLocationNotFound (0xfb8, 4024 decimal)
Unable to find location. (In LRJ messages.)

IPEC_RASReasonSecurityDenial (0xfb9, 4025 decimal)
Security access has been denied. (In GRJ, RRJ, URJ, ARJ, BRJ, LRJ, DRJ, and INAK
messages.)

IPEC_RASTransportQOSNotSupported (0Oxfba, 4026 decimal)
QOS is not supported by this gatekeeper. (In RRJ messages.)

IPEC_RASResourceUnavailable (Oxfbb, 4027 decimal)
Resources have been exhausted. (In GRJ, RRJ, ARJ and LRJ messages.)

IPEC_RASInvalidAlias (Oxfbc, 4028 decimal)
The alias is not consistent with gatekeeper rules. (In RRJ messages.)

IPEC_RASPermissionDenied (0Oxfbd, 4029 decimal)
The requesting user is not allowed to unregistered the specified user. (In URJ messages.)

IPEC_RASQOSControlNotSupported (0Oxfbe, 4030 decimal)
QOS control is not supported. (In ARJ messages.)

IPEC_RASIncompleteAddress (0xfbf, 4031 decimal)
The user address is incomplete. (In ARJ messages.)

IPEC_RASFullRegistrationRequired (0xfc0, 4032 decimal)
Registration permission has expired. (In RRJ messages.)

IPEC_RASRouteCallToSCN (0xfc1, 4033 decimal)
The call was routed to a switched circuit network. (In ARJ and LRJ messages.)

IPEC_RASAliasesInconsistent (0xfc2, 4034 decimal)
Multiple aliases in the request identify separate people. (In ARJ and LRJ messages.)

Global Call IP Technology Guide — January 2004 207



u
IP-Specific Event Cause Codes I nt9| o

10.5

208

Failure Response Codes When Using SIP

The following failure response codes apply when using SIP. Each code is followed by a description.
The codes are listed in code value order.

Request Failure Response Codes (4xx)

IPEC_SIPReasonStatus400BadRequest (0x1518, 5400 decimal)
SIP Request Failure Response 400 - Bad Request - The request could not be understood due to
malformed syntax. The Reason-Phrase should identify the syntax problem in more detail, for
example, "Missing Call-ID header field".

IPEC_SIPReasonStatus401Unauthorized (0x1519, 5401 decimal)
SIP Request Failure Response 401 - Unauthorized - The request requires user authentication.
This response is issued by User Agent Servers (UASs) and registrars, while 407 (Proxy
Authentication Required) is used by proxy servers.

IPEC_SIPReasonStatus402PaymentRequired (0x151a, 5402 decimal)
SIP Request Failure Response 402 - Payment Required - Reserved for future use.

IPEC_SIPReasonStatus403Forbidden (0x151b, 5403 decimal)
SIP Request Failure Response 403 - Forbidden - The server understood the request, but is
refusing to fulfill it. Authorization will not help, and the request should not be repeated.

IPEC_SIPReasonStatus404NotFound (0x151c, 5404 decimal)
SIP Request Failure Response 404 - Not Found - The server has definitive information that the
user does not exist at the domain specified in the Request-URI. This status is also returned if
the domain in the Request-URI does not match any of the domains handled by the recipient of
the request.

IPEC_SIPReasonStatus405MethodNotAllowed (0x151d, 5405 decimal)
SIP Request Failure Response 405 - Method Not Allowed - The method specified in the
Request-Line is understood, but not allowed for the address identified by the Request-URI.
The response must include an Allow header field containing a list of valid methods for the
indicated address.

IPEC_SIPReasonStatus406NotAcceptable (0x151e, 5406 decimal)
SIP Request Failure Response 406 - Not Acceptable - The resource identified by the request is
only capable of generating response entities that have content characteristics not acceptable
according to the Accept header field sent in the request.

IPEC_SIPReasonStatus407ProxyAuthenticationRequired (0x151f, 5407 decimal)
SIP Request Failure Response 407 - Proxy Authentication Required - This code is similar to
401 (Unauthorized), but indicates that the client must first authenticate itself with the proxy.
This status code can be used for applications where access to the communication channel (for
example, a telephony gateway) rather than the callee, requires authentication.

IPEC_SIPReasonStatus408RequestTimeout (0x1520, 5408 decimal)
SIP Request Failure Response 408 - Request Timeout - The server could not produce a
response within a suitable amount of time, for example, if it could not determine the location
of the user in time. The client may repeat the request without modifications at any later time.

Global Call IP Technology Guide — January 2004



IP-Specific Event Cause Codes

IPEC_SIPReasonStatus4 10Gone (0x1522, 5410 decimal)
SIP Request Failure Response 410 - Gone - The requested resource is no longer available at
the server and no forwarding address is known. This condition is expected to be considered
permanent. If the server does not know, or has no facility to determine, whether or not the
condition is permanent, the status code 404 (Not Found) should be used instead.

IPEC_SIPReasonStatus413RequestEntityTooLarge (0x1525, 5413 decimal)
SIP Request Failure Response 413 - Request Entity Too Large - The server is refusing to
process a request because the request entity-body is larger than the server is willing or able to
process. The server may close the connection to prevent the client from continuing the request.
If the condition is temporary, the server should include a Retry-After header field to indicate
that it is temporary and after what time the client may try again.

IPEC_SIPReasonStatus414RequestUriTooLong (0x1526, 5414 decimal)
SIP Request Failure Response 414 - Request-URI Too Long - The server is refusing to service
the request because the Request-URI is longer than the server is willing to interpret.

IPEC_SIPReasonStatus415UnsupportedMediaType (0x1527, 5415 decimal)
SIP Request Failure Response 415 - Unsupported Media Type - The server is refusing to
service the request because the message body of the request is in a format not supported by the
server for the requested method. The server must return a list of acceptable formats using the
Accept, Accept-Encoding, or Accept-Language header field, depending on the specific
problem with the content.

IPEC_SIPReasonStatus416UnsupportedURIScheme (0x1528, 5416 decimal)
SIP Request Failure Response 416 - Unsupported URI Scheme - The server cannot process the
request because the scheme of the URI in the Request-URI is unknown to the server.

IPEC_SIPReasonStatus420BadExtension (0x153c, 5420 decimal)
SIP Request Failure Response 420 - Bad Extension - The server did not understand the
protocol extension specified in a Proxy-Require or Require header field. The server must
include a list of the unsupported extensions in an Unsupported header field in the response.

IPEC_SIPReasonStatus42 1 ExtensionRequired (0x153d, 5421 decimal)
SIP Request Failure Response 421 - Extension Required - The User Agent Server (UAS) needs
a particular extension to process the request, but this extension is not listed in a Supported
header field in the request. Responses with this status code must contain a Require header field
listing the required extensions. A UAS should not use this response unless it truly cannot
provide any useful service to the client. Instead, if a desirable extension is not listed in the
Supported header field, servers should process the request using baseline SIP capabilities and
any extensions supported by the client.

IPEC_SIPReasonStatus423IntervalTooBrief (0x153f, 5423 decimal)
SIP Request Failure Response 423 - Interval Too Brief - The server is rejecting the request
because the expiration time of the resource refreshed by the request is too short. This response
can be used by a registrar to reject a registration whose Contact header field expiration time
was too small.

IPEC_SIPReasonStatus480TemporarilyUnavailable (0x1568, 5480 decimal)
SIP Request Failure Response 480 - Temporarily Unavailable - The callee's end system was
contacted successfully but the callee is currently unavailable (for example, is not logged in,
logged in but in a state that precludes communication with the callee, or has activated the "do
not disturb" feature). The response may indicate a better time to call in the Retry-After header
field. The user could also be available elsewhere (unbeknownst to this server). The reason

Global Call IP Technology Guide — January 2004 209



u
IP-Specific Event Cause Codes I nt9| o

210

phrase should indicate a more precise cause as to why the callee is unavailable. This value
should be settable by the User Agent (UA). Status 486 (Busy Here) may be used to more
precisely indicate a particular reason for the call failure. This status is also returned by a
redirect or proxy server that recognizes the user identified by the Request-URI, but does not
currently have a valid forwarding location for that user.

IPEC_SIPReasonStatus481CallTransactionDoesNotExist (0x1569, 5481 decimal)
SIP Request Failure Response 481 - Call/Transaction Does Not Exist - This status indicates
that the User Agent Server (UAS) received a request that does not match any existing dialog or
transaction.

IPEC_SIPReasonStatus482LoopDetected (0x156a, 5482 decimal)
SIP Request Failure Response 482 - Loop Detected - The server has detected a loop.

IPEC_SIPReasonStatus483TooManyHops (0x156b, 5483 decimal)
SIP Request Failure Response 483 - Too Many Hops - The server received a request that
contains a Max-Forwards header field with the value zero.

IPEC_SIPReasonStatus484 AddressIncomplete (0x156c, 5484 decimal)
SIP Request Failure Response 484 - Address Incomplete - The server received a request with a
Request-URI that was incomplete. Additional information should be provided in the reason
phrase. This status code allows overlapped dialing. With overlapped dialing, the client does not
know the length of the dialing string. It sends strings of increasing lengths, prompting the user
for more input, until it no longer receives a 484 (Address Incomplete) status response.

IPEC_SIPReasonStatus485 Ambiguous (0x156d, 5485 decimal)
SIP Request Failure Response 485 - The Request-URI was ambiguous. The response may
contain a listing of possible unambiguous addresses in Contact header fields. Revealing
alternatives can infringe on privacy of the user or the organization. It must be possible to
configure a server to respond with status 404 (Not Found) or to suppress the listing of possible
choices for ambiguous Request-URIs.

IPEC_SIPReasonStatus486BusyHere (0x156e, 5486 decimal)
SIP Request Failure Response 486 - Busy Here - The callee's end system was contacted
successfully, but the callee is currently not willing or able to take additional calls at this end
system. The response may indicate a better time to call in the Retry-After header field. The
user could also be available elsewhere, such as through a voice mail service. Status 600 (Busy
Everywhere) should be used if the client knows that no other end system will be able to accept
this call.

IPEC_SIPReasonStatus487RequestTerminated (0x156f, 5487 decimal)
SIP Request Failure Response 487 - Request Terminated - The request was terminated by a
BYE or CANCEL request. This response is never returned for a CANCEL request itself.

IPEC_SIPReasonStatus488NotAcceptableHere (0x1570, 5488 decimal)
SIP Request Failure Response 488 - Not Acceptable Here - The response has the same
meaning as 606 (Not Acceptable), but only applies to the specific resource addressed by the
Request-URI and the request may succeed elsewhere. A message body containing a
description of media capabilities may be present in the response, which is formatted according
to the Accept header field in the INVITE (or application/SDP if not present), the same as a
message body in a 200 (OK) response to an OPTIONS request.

IPEC_SIPReasonStatus491RequestPending (0x1573, 5491 decimal)
SIP Request Failure Response 491 - Request Pending - The request was received by a User
Agent Server (UAS) that had a pending request within the same dialog.

Global Call IP Technology Guide — January 2004



IP-Specific Event Cause Codes

IPEC_SIPReasonStatus493Undecipherable (0x1575, 5493 decimal)
SIP Request Failure Response 493 - Undecipherable - The request was received by a User
Agent Server (UAS) that contained an encrypted MIME body for which the recipient does not
possess or will not provide an appropriate decryption key. This response may have a single
body containing an appropriate public key that should be used to encrypt MIME bodies sent to
this User Agent (UA).

Server Failure Response Codes (5xx)

IPEC_SIPReasonStatus500ServerInternalError (0x157¢, 5500 decimal)
Server Failure Response 500 - Server Internal Error - The server encountered an unexpected
condition that prevented it from fulfilling the request. The client may display the specific error
condition and may retry the request after several seconds. If the condition is temporary, the
server may indicate when the client may retry the request using the Retry-After header field.

IPEC_SIPReasonStatus501NotImplemented (0x157d, 5501 decimal)
Server Failure Response 501 - Not Implemented - The server does not support the
functionality required to fulfill the request. This is the appropriate response when a User Agent
Server (UAS) does not recognize the request method and is not capable of supporting it for any
user. Proxies forward all requests regardless of method. Note that a 405 (Method Not Allowed)
is sent when the server recognizes the request method, but that method is not allowed or
supported.

[PEC_SIPReasonStatus502BadGateway (0x157e, 5502 decimal)
Server Failure Response 502 - Bad Gateway - The server, while acting as a gateway or proxy,
received an invalid response from the downstream server it accessed in attempting to fulfill the
request.

IPEC_SIPReasonStatus503ServiceUnavailable (0x157f, 5503 decimal)
Server Failure Response 503 - Service Unavailable - The server is temporarily unable to
process the request due to a temporary overloading or maintenance of the server. The server
may indicate when the client should retry the request in a Retry-After header field. If no Retry-
After is given, the client must act as if it had received a 500 (Server Internal Error) response. A
client (proxy or User Agent Client) receiving a 503 (Service Unavailable) should attempt to
forward the request to an alternate server. It should not forward any other requests to that
server for the duration specified in the Retry-After header field, if present. Servers may refuse
the connection or drop the request instead of responding with 503 (Service Unavailable).

IPEC_SIPReasonStatus504ServerTimeout (0x1580, 5504 decimal)
Server Failure Response 504 - Server Time-out - The server did not receive a timely response
from an external server it accessed in attempting to process the request. 408 (Request Timeout)
should be used instead if there was no response within the period specified in the Expires
header field from the upstream server.

IPEC_SIPReasonStatus505 VersionNotSupported (0x1581, 5505 decimal)
Server Failure Response 505 - Version Not Supported - The server does not support, or refuses
to support, the SIP protocol version that was used in the request. The server is indicating that
it is unable or unwilling to complete the request using the same major version as the client,
other than with this error message.

IPEC_SIPReasonStatus5 13MessageTooLarge (0x1589, 5513 decimal)
Server Failure Response 513 - Message Too Large - The server was unable to process the
request since the message length exceeded its capabilities.

Global Call IP Technology Guide — January 2004 211



u
IP-Specific Event Cause Codes I nt9| o

212

Global Failure Response Codes (6xx)

IPEC_SIPReasonStatus600BusyEverywhere (0x15e0, 5600 decimal)
SIP Global Failure Response 600 - Busy Everywhere - The callee's end system was contacted
successfully but the callee is busy and does not wish to take the call at this time. The response
may indicate a better time to call in the Retry-After header field. If the callee does not wish to
reveal the reason for declining the call, the callee uses status code 603 (Decline) instead. This
status response is returned only if the client knows that no other end point (such as a voice mail
system) will answer the request. Otherwise, 486 (Busy Here) should be returned.

IPEC_SIPReasonStatus603Decline (0x15e3, 5603 decimal)
SIP Global Failure Response 603 - 603 Decline - The callee's machine was successfully
contacted but the user explicitly does not wish to or cannot participate. The response may
indicate a better time to call in the Retry-After header field. This status response is returned
only if the client knows that no other end point will answer the request.

IPEC_SIPReasonStatus604DoesNotExistAnywhere (0x15e4, 5604 decimal)
SIP Global Failure Response 604 - Does Not Exist Anywhere - The server has authoritative
information that the user indicated in the Request-URI does not exist anywhere.

IPEC_SIPReasonStatus606NotAcceptable (0x15e6, 5606 decimal)
SIP Global Failure Response 606 - Not Acceptable - The user's agent was contacted
successfully but some aspects of the session description such as the requested media,
bandwidth, or addressing style were not acceptable. A 606 (Not Acceptable) response means
that the user wishes to communicate, but cannot adequately support the session described.

The 606 (Not Acceptable) response may contain a list of reasons in a Warning header field
describing why the session described cannot be supported.

A message body containing a description of media capabilities may be present in the response,
which is formatted according to the Accept header field in the INVITE (or application/SDP if
not present), the same as a message body in a 200 (OK) response to an OPTIONS request.

It is hoped that negotiation will not frequently be needed, and when a new user is being invited
to join an already existing conference, negotiation may not be possible. It is up to the
invitation initiator to decide whether or not to act on a 606 (Not Acceptable) response.

This status response is returned only if the client knows that no other end point will answer the
request.

Other SIP Codes (8xx)

IPEC_SIPReasonStatusBYE (0x16a8, 5800 decimal)
SIP reason status 800. BYE code.

IPEC_SIPReasonStatusCANCEL (0x16a9, 5801 decimal)
SIP reason status 801. CANCEL code.

Global Call IP Technology Guide — January 2004



intel.

Supplementary Reference 11
Information

This chapter lists related publications and includes other reference information as follows:

e References to More Information . .. .......... .. .. 213
¢ Called and Calling Party Address List Format When Using H.323 ............... 213
11.1 References to More Information

The following publications provide related information:

ITU-T Recommendation H.323 (11/00) - Packet-based multimedia communications systems
ITU-T Recommendation H.245 (07/01) - Control protocol for multimedia communication

ITU-T Recommendation H.225.0 (09/99) - Call signaling protocols and media stream
packetization for packet-based multimedia communications systems

ITU-T Recommendation T.38 (06/98) - Procedures for real-time Group 3 facsimile
communication over IP networks

ITU-T Recommendation T.30 (07/96) - Procedures for document facsimile transmission in the
general switched telephone network

RFC 1889, RTP: A Transport Protocol for Real-Time Applications, IETF Publication,
http://www.ietf.org/rfc/rfc1889.txt

RFC 3261, Session Initiation Protocol (SIP), IETF Publication, draft reference
http://www.ietf.org/rfc/rfc3261.txt >number=3261

Cisco Systems, Signaled Digits in SIP, draft reference http://www.ietf.org/internet-
drafts/draft-mahy-sipping-signaled-digits-00.txt
Black, Uyless, Voice over IP, Prentice Hall PTR, Prentice-Hall, Inc. (Copyright 2000)

Douskalis, Bill, IP Telephony,; The Integration of Robust VoIP Services, Prentice Hall PTR,
Prentice-Hall, Inc., ISBN 0-13-014118-6

Galtieri, Paolo, Introduction to Voice Over the Internet Protocol, Applied Computing
Technologies, Winter 2000

11.2 Called and Calling Party Address List Format When
Using H.323

This section provides reference information about called and calling party address list format:

Called Party Address List
Calling Party Address List

Global Call IP Technology Guide — January 2004 213


http://www.ietf.org/rfc/rfc1889.txt
http://www.ietf.org/rfc/rfc3261.txt?number=3261
http://www.ietf.org/internet-drafts/draft-mahy-sipping-signaled-digits-00.txt
http://www.ietf.org/internet-drafts/draft-mahy-sipping-signaled-digits-00.txt

u
Supplementary Reference Information I nt9| o

214

¢ Examples of Called and Calling Party Addresses

Called Party Address List

Called party address lists are formatted as follows:

Called Party Address list ::= Called Party Address |
Called Party Address Delimiter Party Address list

Called Party Address ::= Dialable Address | Name |
E164ALIAS | Extension | Subaddress | Transport
Address | Email Address | URL | Party Number |
Transport Name

where:

e Dialable Address ::= E164Address | E164Address “;” Dialable Address
e Name ::= “NAME:” H323ID

e E164ALIAS ::= “TEL:” E164Address

e Extension ::= “EXT:” E164Address | “EXTID : “ H323ID

¢ Subaddress ::= “SUB:” E164Address

¢ Transport Address ::= “TA:” Transport Address Spec | “FTH : “ Transport address Spec.
— Transport Address Spec ::= Host Name”:” Port Number | Host Name
¢ Host Name ::= Host IP in decimal dotted notation.

e Email Address ::= “EMAIL :” email address
e URL Address ::= “URL : “ URL

e PN Address ::= “PN :” party number [“$” party number type]
— Party Number Type ::= (select either the numerical or string value from the following list):
* 0.PUU - The numbering plan follows the E.163 and E.164Recommendations.

¢ PUI - The number digits carry a prefix indicating type of number according to
national recommendations.

* PUN - The number digits carry a prefix indicating the type of number according to
national recommendations.

¢ PUNS - The number digits carry a prefix indicating the type of number according to
network specifications.

e PUA - Valid only for the called party number at the outgoing access; the network
substitutes appropriate number.

e D - Valid only for the called party number at the outgoing access; the network
substitutes appropriate number.

* PRL2 - Level 2 regional subtype of private number.

e PRLI1 - Level 1 regional subtype of private number.

* PRP - PISN subtype of private number.

¢ PRL - Local subtype of private number.

¢ PRA - Abbreviated subtype of private number.

* N - The number digits carry a prefix indicating standard type of number according to
national recommendations.

¢ Transport Name ::= “TNAME :” Transport Address Spec

Global Call IP Technology Guide — January 2004



intel.

Supplementary Reference Information

Notes: 1. The delimiter is “,” by default, but it may be changed by setting the value of the delimiter field in

Note:

the [IPCCLIB_START_DATA used by the ge_Start( ) function. See Section 7.2.20, “gc_Start( )
Variances for IP”, on page 147 for more information.

If the Dialable Address form of the address is used, it should be the last item in the list of address
alternatives.

Calling Party Address List

Calling party address lists are formatted as follows:

Calling Party address list ::= Calling Party address |
Calling Party address Delimiter |
Calling Party address list

Calling Party address ::= Dialable Address | Name |
E164ALIAS | Extension | Subaddress | Transport
Address | Email Address | URL | Party Number |
Transport Name

where the format options Dialable Address, Name, etc. are as described in the Called Party Address
List section.

If the Dialable Address form of the Party address is used, it should be the last item in the list of
Party address alternatives.

Examples of Called and Calling Party Addresses

Some examples of called party and calling party addresses are:
¢ Called and Calling Party addresses: 1111;1111
e NAME: John, NAME: Jo
* TA:192.114.36.10

Global Call IP Technology Guide — January 2004 215



u
Supplementary Reference Information I nt6| o

216 Global Call IP Technology Guide — January 2004



intel.

Glossary

alias: A nickname for a domain or host computer on the Internet.

codec: A device that converts analog voice signals to a digital form and vice versa. In this context, analog signals
are converted into the payload of UDP packets for transmission over the internet. The codec also performs
compression and decompression on a voice stream.

H.225.0: Specifies messages for call control including signaling, Registration Admission and Status (RAS), and
the packetization and synchronization of media streams.

en-bloc mode: A mode where the setup message contains all the information required by the network to process
the call, such as the called party address information.

H.245: H.245 is a standard that provides the call control mechanism that allows H.323-compatible terminals to
connect to each other. H.245 provides a standard means for establishing audio and video connections. It specifies
the signaling, flow control, and channeling for messages, requests, and commands. H.245 enables codec selection
and capability negotiation within H.323. Bit rate, frame rate, picture format, and algorithm choices are some of the
elements negotiated by H.245.

gateway: Translates communication procedures and formats between networks, for example the interface
between an IP network and the circuit-switched network (PSTN).

Gatekeeper: Manages a collection of H.323 entities (terminals, gateway, multipoint control units) in an H.323
zone.

H.255.0: The H.255.0 standard defines a layer that formats the transmitted audio, video, data, and control streams
for output to the network, and retrieves the corresponding streams from the network.

H.323: H.323 is an ITU recommendation for a standard for interoperability in audio, video and data transmissions
as well as Internet phone and voice-over-IP (VoIP). H.323 addresses call control and management for both point-to-
point and multipoint conferences as well as gateway administration of IP Media traffic, bandwidth and user
participation.

IP: Internet Protocol

IP Media Library: Intel API library used to control RTP streams.

Multipoint Control Unit (MCU): An endpoint that support conferences between three or more endpoints.
prefix: One or several digits dialed in front of a phone number, usually to indicate something to the phone system.
For example, dialing a zero in front of a long distance number in the United States indicates to the phone company
that you want operator assistance on a call.

Q.931: The Q.931 protocol defines how each H.323 layer interacts with peer layers, so that participants can

interoperate with agreed upon formats. The Q.931 protocol resides within H.225.0. As part of H.323 call control,
Q.931 is a link layer protocol for establishing connections and framing data.

Global Call IP Technology Guide — January 2004 217



intel.

RTP: Real-time Transport Protocol. Provides end-to-end network transport functions suitable for applications
transmitting real-time data such as audio, video or simulation data, over multicast or unicast network services. RTP
does not address resource reservation and does not guarantee quality-of-service for real-time services.

RTCP: RTP Control Protocol (RTCP). Works in conjunction with RTP to allow the monitoring of data delivery in
a manner scalable to large multicast networks, and to provide minimal control and identification functionality.
RTCP is based on the periodic transmission of control packets to all participants in the session, using the same
distribution mechanism as the data packets.

silence suppression: See Voice Activation Detection (VAD).

UA: In a SIP context, user agents (UAs) are appliances or applications, such as, SIP phones, residential gateways
and software that initiate and receive calls over a SIP network.

SIP: Session Initiated Protocol. An ASCII-based, peer-to-peer protocol designed to provide telephony services
over the Internet.

split call control: An IP telephony software architecture in which call control is done separately from IP Media
stream control, for example, call control is done on the host and IP Media stream control is done on the board.

tunneling: The encapsulation of H.245 messages within Q.931/H.225 messages so that H.245 media control
messages can be transmitted over the same TCP port as the Q.931/H.225 signaling messages.

VAD: Voice Activation Detection. In Voice over IP (VoIP), voice activation detection (VAD) is a technique that

allows a data network carrying voice traffic over the Internet to detect the absence of audio and conserve bandwidth
by preventing the transmission of silent packets over the network.

218 Global Call IP Technology Guide — January 2004



intel.

Index

C

call duration

retrieving 51

set ID and parameter ID for 162
call ID

retrieving 51

set ID and parameter ID for 162

call parameters
retrieving 50
setting 45
coders
code example of configuration 132
IP_AUDIO_CAPABILITY parameters 176
list supported by Global Call 46
options for setting 47
retrieving negotiated coders 66, 119
set ID and parameter ID for 161
setting 43
setting before gc_AnswerCall() 116
setting for all devices in the system 143
setting information 45
setting on a line device basis 145
supported by Intel NetStructure DM/IP boards 46
supported by Intel NetStructure IPT boards 46
types of 18
conference goal
options 124
retrieving 51
set ID and parameter ID for 163
setting 43
conference ID
retrieving 51
set ID and parameter ID for 163
connection method
setting 43

connection method, setting fast start 42
connection method, setting slow start 42

connection methods
set ID and parameter ID for 162
types of 42

Global Call IP Technology Guide — January 2004

D

data structure
IP_AUDIO_CAPABILITY 176
IP_CAPABILITY 177
IP_DATA_CAPABILITY 180
IP_DTMF_DIGITS 181
IP_H221NONSTANDARD 182
IP_REGISTER_ADDRESS 183
IP_VIRTBOARD 184
IPADDR 186
IPCCLIB_START_DATA 187
debugging
H.323 stack on Linux operating systems 102
disconnect cause, retrieving 50
display
retrieving 51
set ID and parameter ID for 162
setting 43
DTMF
configuration 63
protocol signaling notification 67
setting supported types 43

E

events, enabling and disabling 43

F

Facility messages (Q.931), sending 69
Fax over IP (FoIP), support for 88
fax transcoding
initation 89
notification of audio to fax 90
notification of fax to audio 90
termination 89

G

gatekeeper, function of 16
gateway, function of 16
gc_AcceptCall( )
variances for IP 116
H.323-specific 116
SIP-specific 116

219



gc_AnswerCall( )
variances for IP 116
H.323-specific 117
SIP-specific 117
gc_CallAck()
variances for IP 117
H.323-specific 117
SIP-specific 118
gc_DropCall( )
variances for IP 118
H.323-specific 118
SIP-specific 118
gc_Extension( )
variances for I[P 118
gc_Extension( ), variances for IP 118, 120, 121, 122, 136,
137, 138, 141, 142, 143, 145, 147, 149
gc_GetAlarmParm( )
variances for I[P 120
gc_GetCalllnfo( )
variances for I[P 120
H.323-specific 121
SIP-specific 121
gc_GetCTInfo( )
variances for IP 121
gc_GetResourceH( )
variances for IP 121
gc_GetXmitSlot( )
variances for IP 122
gc_Listen( )
variances for IP 122
gc_MakeCall( )
variances for IP 122
H.323-specific 123
SIP-specific 124
gc_OpenEx( )
variances for IP 136
gc_ReleaseCallEx( )
variances for IP 137
gc_ReqService( )
variances for IP 138
H.323-specific 139
SIP-specific 140
gc_RespService( )
variances for IP 141
gc_SetAlarmParm( )
variances for I[P 142
gc_SetConfigData( )
variances for I[P 143
H.323-specific 144
SIP-specific 145

220

gc_SetUserInfo( )
variances for IP 145
SIP-specific 147
gc_Start( )
variances for IP 147

gc_Unlisten( )
variances for IP 149

GCSET 123, 125

H

H.221 nonstandard data
set ID and parameter ID for 173, 174

H.221 nonstandard data, set ID and parameter ID for 168
H.221 nonstandard information, retrieving 52
H.225.0, purpose of 17

H.245 messages
sending 67

H.245, purpose of 17

H.323
basic call scenario 18
call scenario via a gateway 22
debugging in Linux 102
protocol stack 17
specification 15
terminals 16
types of entities 16

INIT_IP_VIRTBOARD( )
function description 152

INIT_IPCCLIB_START_DATA()
function description 151

initialization functions 151
IP_AUDIO_CAPABILITY data structure 176
IP_CAPABILITY data structure 177
IP_CAPABILITY_UNION union 179
IP_DATA_CAPABILITY data structure 180
IP_DTMEF_DIGITS data structure 181
IP_H221NONSTANDARD data structure 182
IP_REGISTER_ADDRESS data structure 183
IP_VIRTBOARD data structure 184
IPADDR data structure 186
IPCCLIB_START_DATA data structure 187
IPPARM 123, 125, 168

L

line device parameters, setting 45

Global Call IP Technology Guide — January 2004



intel.

log files
logfile.log (Linux) 102
summary of options 97

M

media streaming
connection notification 66
disconnection notification 66

Multipoint Controller Unit, function of 16

N

nonstandard control information
retrieving 52
setting 124
nonstandard data
set ID and parameter ID for 168
setting 43
setting for H.245 messages 49
nonstandard data object ID
retrieving 52
set ID and parameter ID for 168
setting 44

nonstandard registration messages (H.245), sending 70
nonstandard UIl messages (H.245), sending 68

Global Call IP Technology Guide — January 2004

P

parameter set
GCSET_CALL_CONFIG 161
IPSET_CALLINFO 161
IPSET_CONFERENCE 162
IPSET_CONFIG 163
IPSET_DTMF 163
IPSET_EXTENSIONEVT_MSK 164
IPSET_IPPROTOCOL_STATE 165
IPSET_LOCAL_ALIAS 165
IPSET_MEDIA_STATE 165
IPSET_MSG_H245 166
IPSET_MSG_Q931 166
IPSET_MSG_REGISTRATION 167
IPSET_NONSTANDARDCONTROL 167
IPSET_NONSTANDARDDATA 168
IPSET_PROTOCOL 168
IPSET_REG_INFO 168
IPSET_SIP_MSGINFO 169
IPSET_SUPPORTED_PREFIXES 170
IPSET_T38_TONEDET 170
IPSET_T38CAPFRAMESTATUS 171
IPSET_T38HDLCFRAMESTATUS 171
IPSET_T38INFOFRAMESTATUS 171
IPSET_TDM_TONEDET 173
IPSET_TRANSACTION 173
IPSET_VENDORINFO 173

phone list
in H.323 destination string 129
in SIP destination string 127
retrieving 52
set ID and parameter ID for 162
setting 44

product ID, setting 174

Q

Q.931
sending messages 67

Q.931, purpose of 17

R

RFC 2833 tones
configuration for generation 63
generation 66

RTCP, purpose of 17

RTP, purpose of 17

221



S

SIP message information fields
setting 44

—~

T.38
initiating fax transcoding 89
specitying coder capability 88
terminating fax transcoding 89
ToS, setting 44
tunneling
configuring for incoming calls 73
definition 19
enabling 44
enabling/disabling for outgoing calls 73
set ID and parameter ID for 162

U

user-to-user information
retrieving 52
set ID and parameter ID for 162
setting 44

\'

vendor information
H.221 nonstandard data 182
product ID 174
received from a peer 51
setting 44
version ID 174
vendor product ID, retrieving 52
version ID, setting 174

VoIP, definition of 15

222 Global Call IP Technology Guide — January 2004



	Contents
	Figures
	Tables
	Revision History
	About This Publication
	1. IP Overview
	1.1 Introduction to VoIP
	1.2 H.323 Overview
	1.2.1 H.323 Entities
	1.2.2 H.323 Protocol Stack
	1.2.3 Codecs
	1.2.4 Basic H.323 Call Scenario
	1.2.5 Registration with a Gatekeeper
	1.2.6 H.323 Call Scenario via a Gateway

	1.3 SIP Overview
	1.3.1 Advantages of Using SIP
	1.3.2 SIP User Agents and Servers
	1.3.3 Basic SIP Operation
	1.3.4 Basic SIP Call Scenario
	1.3.5 SIP Messages


	2. Global Call Architecture for IP
	2.1 Global Call over IP Architecture with a Host-Based Stack
	2.2 Architecture Components
	2.2.1 Host Application
	2.2.2 Global Call
	2.2.3 IP Signaling Call Control Library (IPT CCLib)
	2.2.4 IP Media Call Control Library (IPM CCLib)
	2.2.5 IP Media Resource

	2.3 Device Types and Usage
	2.3.1 Device Types Used with IP
	2.3.2 IPT Board Devices
	2.3.3 IPT Network Devices
	2.3.4 IPT Start Parameters


	3. IP Call Scenarios
	3.1 Basic Call Control Scenarios When Using IP Technology
	3.1.1 Basic Call Setup When Using H.323 or SIP
	3.1.2 Basic Call Teardown When Using H.323 or SIP


	4. IP-Specific Operations
	4.1 Call Control Configuration
	4.2 Using Fast Start and Slow Start Setup
	4.3 Setting Call-Related Information
	4.3.1 Setting Call Parameters on a System-Wide Basis
	4.3.2 Setting Call Parameters on a Per Line Device Basis
	4.3.3 Setting Call Parameters on a Per Call Basis
	4.3.4 Setting Coder Information
	4.3.5 Specifying Nonstandard Data Information When Using H.323
	4.3.6 Specifying Nonstandard Control Information When Using H.323
	4.3.7 Setting and Retrieving Disconnect Cause or Reason Values

	4.4 Retrieving Current Call-Related Information
	4.4.1 Retrieving Nonstandard Data From Protocol Messages When Using H.323
	4.4.2 Example of Retrieving Call-Related Information

	4.5 Setting and Retrieving SIP Message Information Fields
	4.5.1 Enabling Access to SIP Message Information Fields
	4.5.2 Supported SIP Message Information Fields
	4.5.3 Setting a SIP Message Information Field
	4.5.4 Retrieving a SIP Message Information Field

	4.6 Handling DTMF
	4.6.1 Specifying DTMF Support
	4.6.2 Getting Notification of DTMF Detection
	4.6.3 Generating DTMF

	4.7 Getting Media Streaming Status and Negotiated Coder Information
	4.8 Getting Notification of Underlying Protocol State Changes
	4.9 Sending Protocol Messages
	4.9.1 Nonstandard UII Message (H.245)
	4.9.2 Nonstandard Facility Message (Q.931)
	4.9.3 Nonstandard Registration Message
	4.9.4 Sending Facility, UII, or Registration Message Scenario

	4.10 Enabling and Disabling Unsolicited Notification Events
	4.11 Configuring the Sending of the Proceeding Message
	4.12 Enabling and Disabling Tunneling in H.323
	4.13 Specifying RTP Stream Establishment
	4.14 Quality of Service Alarm Management
	4.14.1 Alarm Source Object Name
	4.14.2 Retrieving the Media Device Handle
	4.14.3 Setting QoS Threshold Values
	4.14.4 Retrieving QoS Threshold Values
	4.14.5 Handling QoS Alarms

	4.15 Registration
	4.15.1 Performing Registration Operations
	4.15.2 Receiving Notification of Registration
	4.15.3 Receiving Nonstandard Registration Messages
	4.15.4 Registration Code Example
	4.15.5 Deregistration Code Example
	4.15.6 Gatekeeper Registration Failure

	4.16 Sending and Receiving Faxes over IP
	4.16.1 Specifying T.38 Coder Capability
	4.16.2 Initiating Fax Transcoding
	4.16.3 Termination of Fax Transcoding
	4.16.4 Getting Notification of Audio-to-Fax Transition
	4.16.5 Getting Notification of Fax-to-Audio Transition
	4.16.6 Getting Notification of T.38 Status Changes

	4.17 Using Object Identifiers

	5. Building Global Call IP Applications
	5.1 Header Files
	5.2 Required Libraries
	5.3 Required System Software

	6. Debugging Global Call IP Applications
	6.1 Debugging Overview
	6.2 Log Files
	6.2.1 Call Control Library and SIP Stack Debugging
	6.2.2 H.323 Stack Debugging on Linux Operating Systems
	6.2.3 H.323 Stack Debugging


	7. IP-Specific Function Information
	7.1 Global Call Functions Supported by IP
	7.2 Global Call Function Variances for IP
	7.2.1 gc_AcceptCall(�) Variances for IP
	7.2.2 gc_AnswerCall(�) Variances for IP
	7.2.3 gc_CallAck(�) Variances for IP
	7.2.4 gc_DropCall(�) Variances for IP
	7.2.5 gc_Extension(�) Variances for IP
	7.2.6 gc_GetAlarmParm(�) Variances for IP
	7.2.7 gc_GetCallInfo(�) Variances for IP
	7.2.8 gc_GetCTInfo(�) Variances for IP
	7.2.9 gc_GetResourceH(�) Variances for IP
	7.2.10 gc_GetXmitSlot(�) Variances for IP
	7.2.11 gc_Listen(�) Variances for IP
	7.2.12 gc_MakeCall(�) Variances for IP
	7.2.13 gc_OpenEx(�) Variances for IP
	7.2.14 gc_ReleaseCallEx(�) Variances for IP
	7.2.15 gc_ReqService(�) Variances for IP
	7.2.16 gc_RespService(�) Variances for IP
	7.2.17 gc_SetAlarmParm(�) Variances for IP
	7.2.18 gc_SetConfigData(�) Variances for IP
	7.2.19 gc_SetUserInfo(�) Variances for IP
	7.2.20 gc_Start(�) Variances for IP
	7.2.21 gc_UnListen(�) Variances for IP

	7.3 Global Call States Supported by IP
	7.4 Global Call Events Supported by IP
	7.5 Initialization Functions
	7.5.1 INIT_IPCCLIB_START_DATA(�)
	7.5.2 INIT_IP_VIRTBOARD(�)


	8. IP-Specific Parameter Reference
	8.1 Overview of Parameter Usage
	8.2 GCSET_CALL_CONFIG Parameter Set
	8.3 IPSET_CALLINFO Parameter Set
	8.4 IPSET_CONFERENCE Parameter Set
	8.5 IPSET_CONFIG Parameter Set
	8.6 IPSET_DTMF Parameter Set
	8.7 IPSET_EXTENSIONEVT_MSK
	8.8 IPSET_IPPROTOCOL_STATE Parameter Set
	8.9 IPSET_LOCAL_ALIAS Parameter Set
	8.10 IPSET_MEDIA_STATE Parameter Set
	8.11 IPSET_MSG_H245 Parameter Set
	8.12 IPSET_MSG_Q931 Parameter Set
	8.13 IPSET_MSG_REGISTRATION Parameter Set
	8.14 IPSET_NONSTANDARDCONTROL Parameter Set
	8.15 IPSET_NONSTANDARDDATA Parameter Set
	8.16 IPSET_PROTOCOL Parameter Set
	8.17 IPSET_REG_INFO Parameter Set
	8.18 IPSET_SIP_MSGINFO Parameter Set
	8.19 IPSET_SUPPORTED_PREFIXES Parameter Set
	8.20 IPSET_T38_TONEDET Parameter Set
	8.21 IPSET_T38CAPFRAMESTATUS Parameter Set
	8.22 IPSET_T38HDLCFRAMESTATUS Parameter Set
	8.23 IPSET_T38INFOFRAMESTATUS Parameter Set
	8.24 IPSET_TDM_TONEDET Parameter Set
	8.25 IPSET_TRANSACTION Parameter Set
	8.26 IPSET_VENDORINFO Parameter Set

	9. IP-Specific Data Structures
	IP_AUDIO_CAPABILITY
	IP_CAPABILITY
	IP_CAPABILITY_UNION
	IP_DATA_CAPABILITY
	IP_DTMF_DIGITS
	IP_H221NONSTANDARD
	IP_REGISTER_ADDRESS
	IP_VIRTBOARD
	IPADDR
	IPCCLIB_START_DATA

	10. IP-Specific Event Cause Codes
	10.1 IP-Specific Error Codes
	10.2 Error Codes When Using H.323
	10.3 Internal Disconnect Reasons
	10.4 Event Cause Codes and Failure Reasons When Using H.323
	10.5 Failure Response Codes When Using SIP

	11. Supplementary Reference Information
	11.1 References to More Information
	11.2 Called and Calling Party Address List Format When Using H.323

	Glossary
	Index

