Global Call Analog
Technology User’s Guide

for Linux and Windows

Copyright © 2003 Intel Corporation

05-1041-007

INFORMATION IN THISDOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THISDOCUMENT. EXCEPT AS
PROVIDED IN INTEL'STERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This document as well as the software described in it is furnished under license and may only be used
or copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear in this document or any software that may be provided in
association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in aretrieval
system, or transmitted in any form or by any means without express written consent of Intel
Corporation.

Copyright © 2003, Intel Corporation

AnyPoint, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3,
EtherExpress, ETOX, FlashFile, i386, 1486, 1960, iCOMP, InstantIP, Intel, Intel Centrino, Intel
Centrino logo, Intel logo, Intel386, Intel486, Intel 740, IntelDX2, IntelDX4, Intel SX2, Intel InBusiness,
Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver,
Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, MCS,
MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium 11 Xeon,
Pentium 111 Xeon, Performance at Y our Command, RemoteExpress, SmartDie, Solutions960, Sound
Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VoiceBrick, Vtune,
and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiariesin the
United States and other countries.

* Other names and brands may be claimed as the property of others.
Publication Date: November 2003
Document Number: 05-1041-007

Intel Converged Communications, Inc.
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://devel oper .intel .convdesign/tel econvsupport

For Products and Services I nformation, visit the Intel Telecom Products website at:
http://www.intel.convdesi gn/networ k/products/telecom

For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page
at: http://mww.intel.comybuy/wtb/wtb1028.htm

Table of Contents

1 HOW tOUSE THIS GUIEcvieiiieiee et e 1
1.1. Organization Of thiSGUIEcceviervriri e 1
1.2. Intel® Dialogic® Products That Support Analog Interfaces.........cceovevererens 2
1.3, Related INfOrmMBation...........cvovrreiriireereeres e 2
2. Developing Global Call Analog Loop Start Applications.........ccccveevevereenen. 5
2.1. Analog Telephone CallS.......ccoeiiieieieei e 5

2.1.1. Inbound ANalog CallS. ..o 6

2.1.2. Outbound ANalog CallS.......cccoiiiiiiiiieeeee e 6
2.2. Enhanced Call ANalysiS CONCEPLS.......couerveriirerierieiieseesie et sieseeee e see e 7
2.3, ANEIOY SIgNAITNG . .c.eieeieite ittt sa e e be e ene s 8
2.4. Global Tone Detection CoNSiderationscoeeeereererienenesesesesee e 10
2.5. Call Progressand Call ANalySIS......cccoiiririeiieiieniene s 10

25.1. Cal Analysiswith DM3 BOards.........ccceeeeiereeneneneneseeee e 11

2.5.2. Cal Analysisfor PDKRT ProtoCols.........ccccoviierenenierieee e 15
2.6, HEBAEN FIIES ...ttt 16
2.7. RESOUICE ASSOCTALION ...ttt sttt e b e 16
2.8. Alarm HandliNg.......coeiiiinireeiee et e 17
2.9. Network Call TermMiNation.cociererinireeee et e 17
2.10. Run Time Configuration of the PDKRT Call Control Library................... 18
2.11. Run Time Configuration of PDK Protocol Parameters............ccocceceeeeennene. 18
2.12. Determining ProtoCOl VErSiON........cccoiueieiireneniereeee e 22
2.13. Programming Guidelines for PDK Analog Applications..........cccccceeeeeeueene. 23
3. Applying Global Call Functionsto Analog L oop Start Applications....... 25
1T IR o o oot o (O | I () S 26
3.2, gC ANSWEICAI() 1ovveeeeerierese e et eeeie e e e e et sre e e e snenrenne e 26
3.3. gc_Attach() and gc_AttaChRESOUICE() .ovvevvvrvereerierieeeeeereese e 26
3.4, gC BlINATIanSfer() ..eeeeeerereresieseseeeeses e e s 27
T« (ol = - o () I 27
G ST o (ol B (0] o @ |1 () 27
G Ao o © 1= 7N NN () T 28
T I o (ol C1= (0|1 1o TP 28
e o (ol €= =1 1 () I 29
1T (O o o |V = (= O | () T 29

3.10.1. Useof the timeout Parameter ... 29

3.10.2. Other gc_MakeCall() Considerations.........cccoevererereseseneeseerennens 30

Global Call Analog Technology User’s Guide for Linux and Windows

TN I o o @ o< o1 () ISP 31
3.11.1. gc_OpenEx() with Springware Boards...........c.cceoeevererenenenenieenens 31
3.11.2. gc_OpenEXx() with DM3 BOards........ccccevereenierenineeie e 32

3.12. gc_ReleaseCall() and gc_ReleaseCallEX() ..cooveerreererenerienieneeeeee e 33

3.13. gC_RESEILINEDEV() .veiueiuieieiiiesie sttt e 34

314, gC_SEPAMM() eeueeieiieeie ettt et e e 34

T LT o oS - (B TSRS 35

TN (ST o oS 7 I = o= () TSP 35

3.17. GC WaALCAI() .oveeeeeiirieieierieiees ettt st 35

4. Resource Allocation and ROULINGcoeieiiiiiiiiiiee e 37

5. ANAlOg ProtOCOISovviiiieiriecs et 39

5.1. ProtOCOIS SUPPOITEXcouiiuirieie ettt et 39

5.2. Protocol File Naming CONVENLIONScccoerererereeie e 40

5.3. ProtoCOl COMPONENES.ooiiiiriirtireeierie ettt e 41
5.3.1. ProtoCOl MOUUIESoceiiitirieeee e 41
5.3.2. Country Dependent Parameter (.cdp) Fil€S.......ccooeiiniiiieniniiieeenee 41

6. DEDUG ULIITIES ... e 43

6.1. Enabling and Disabling the LOGQiNgccceevrereererieiererenieseese e eeseeneens 43

6.2. Populating and Using a CCLIB_START_STRUCTccccvivvvnvvveereeenes 44

6.3. Definingthe GC_PDK_START_LOG Environment Variable.................... 50

(S 4 =00 (o [I o 1o [50
6.4.1. gC EXtensiONFUNCLION() veiveeeeeeeieiesiesiese e seesie e sie e enas 51
6.4.2. PDK_XTEN_LOG_FUNC.......cciiirrreiiirerenerreees e 51
6.4.3. Extended Logging Code EXample........ccooveeevererenenesece e 52

TNAEX et 55

List of Tables

Table 1. Signaling Used tO Dialccccooiiiiiiiiiece s 9
Table 2. Global Call Call Progress SEttings.........c.veeeererreerieneeresee e 13
Table 3. Call Analysis Support on DM3 ANalOg......cccoereerierenieeneeniesesieseeienens 13
Table 4. Reasonsfor Network Call Termination.........cccooeveereneiinensiesenenennens 17
Table 5. Configurable PDKRT Call Control Library Parameters..........ccccceeuenee 18
Table 6. CDP ParamMeLerS........ccoeoiiirieiire ettt snene 19
Table7. PSL and SY S Parameters........cccveirireiineneiene e 20
Table 8. Configurable PDK Protocol Parameters............cooeoererenenenenieeieeens 20
Table 9. Analog Call Conditions and RESUILS............cccoerererierenineneseeeeeene 30
Table 10. Parameters Supported, gc_GetParm(') and gc_SetParm().................. 34
Table 11. Protocol File Naming ConVENtionS...........cccoveeereererenenesesesieeie s 40
Table12. PDK North American Analog Protocol File Setcoceeeiiicienne 41
Table 13. cclib_dataFieldsand ValUes...........cccccoeiieieeiie e 45
Table 14. Loglevel Parameter ValUESoooieieiiieneeieeee e 46
Table 15. Service Parameter ValUES...........ccoeiiiiieinieieieseseciseseee e 47
Table 16. Cachedump Parameter ValUES...........cccovereririenieeieie e 49
Table 17. Sample Channel Parameter ValUES...........ccoereieeieneicie e 49
Table 18. PDK_XTEN_LOG_FUNC Field DesCriptions.........ccccoveeeereririenereneas 52

Global Call Analog Technology User’s Guide for Linux and Windows

Vi

1. How to Use This Guide

Thisguide isfor users who use the Global Call application programming interface
(API) and related software to develop Linux or Windows applicationsin an
analog loop start interface environment.

Complete reference information and programming guidelines for the Global Call
API are given in the companion documents, Global Call API Library Reference
and Global Call API Programming Guide. Certain Global Call functions have
additional functionality or perform differently when used in an analog loop start
environment. The general function descriptionsin the Global Call API Library
Reference do not contain detailed information on a particular technology. Detailed
information in terms of the additional functionality or the differencein
performance of those functionsin an analog loop start environment is contained in
this Global Call Analog Technology User’s Guide.

Throughout this document, the terms analog environment, analog loop start, and
analog interface refer to the telephone line interface that receives analog voice and
telephony signaling information from the telephone network.

NOTE: Differences between the implementation of a Global Call application in a
Linux or a Windows environment are either described parenthetically or
are presented in separate paragraphs or sections. Information that is
specific to the use of DM3 or Springware boards is identified explicitly.
Information that is specific to the use of the PDKRT call control library
isidentified explicitly.

Therest of this chapter describes the organization of this guide, the products
covered by this guide, and related publications.

1.1. Organization of this Guide
Theinformation in this guide is organized as follows:

Chapter 2. Developing Global Call Analog Loop Start Applications presents
guidelines for developing analog loop start applications.

Global Call Analog Technology User’s Guide for Linux and Windows

Chapter 3. Applying Global Call Functionsto Analog Loop Start Applications
describes the additional functionality or the difference in performance of specific
Global Call functions when used in an analog loop start environment.

Chapter 4. Resource Allocation and Routing describes using dedicated voice
resourcesin an analog loop start environment.

Chapter 5. Analog Protocols describes the protocol conventions used and
programming considerations when incorporating individual country protocol(s)
into your application.

Chapter 6. Debug Utilities describes the diagnostic tools available for debugging
aGlobal Call application.

1.2. Intel® Dialogic® Products That Support Analog
Interfaces

The Global Call software provides a consistent interface across Intel® Dialogic®
products interfaced to various networks (for example, E1 CAS, T1 robbed bit, E1
ISDN, T1 ISDN, analog, SS7, and IP). See the Release Guide for your Intel®
Dialogic® system release for the Intel® Dialogic® product combinations that
support analog interfaces.

1.3. Related Information

Use this guide in conjunction with the following manuals:

e Global Call API Library Reference — provides areference to all functions,
events, data structures, and error codesin the Global Call API library.

» Global Call API Programming Guide — provides guidelines for developing
applications using the Global Call API.

e Global Call Country Dependent Parameters (CDP) Configuration Guide —
describes the parameters associated with each of the countries needed for
utilizing Global Call.

» Release Notes for the Global Call Protocols package — provides information
about installing and using Global Call protocols.

1. How to Use This Guide

The following information is also useful:

Release Guide for your system release — provides information about the
system release, system requirements, software and hardware features,
supported hardware, and release documentation.

Release Update for your system release (available on the Technical Support
Web site only) — describes compatibility issues, restrictions and limitations,
known problems, and late-breaking updates or correctionsto the release
documentation. The Release Update is updated with new information as
needed during the lifecycle of the release.

http://devel oper.intel.com/design/tel ecomysupport — Technical Support Web
site which contains devel oper support information, downloads, release
documentation, technical notes, application notes, a user discussion forum,
and more.

2. Developing Global Call Analog
Loop Start Applications

This chapter offers advice and suggestions for programmers designing and coding
Global Call applicationsin aLinux or Windows environment. Specific guidelines
for developing analog loop start applications are provided. Topics include the
following:

e Analog telephone calls

» Enhanced call analysis concepts

e Analog signaling

* Global tone detection considerations

e Cadll progressand call analysis

* Header files

* Resource association

» Alarm handling

* Network call termination

* Runtime configuration of the PDKRT call control library
* Runtime configuration of PDK protocol parameters
» Determining protocol version

e Programming guideline for PDK analog applications

2.1. Analog Telephone Calls

For each analog loop start channel, the gc_OpenEx() function is used to open the
voice line device and the tel ephone network interface device (interface to the loop
start telephone line or trunk).

For Springware platforms, the gc_L cadDxParm() function isinvoked to set
voice parameters to be used for the voice channel associated with aline device.

Global Call Analog Technology User’s Guide for Linux and Windows

These voice parameters are specified in a user-created voice channel parameter
(.vcp) ASCII text file. Parameters that are not specified will be assigned their
default value automatically. The voice channel parameters include al channel-
level parameters set by the voice function, dx_setparm(), and all enhanced call
analysis parameters defined in the voice DX_CAP data structure. Thisfeatureis
not currently available on DM3 platforms.

2.1.1. Inbound Analog Calls

For inbound calls, after the operations described in Section 2.1. Analog
Telephone Calls complete, agc_WaitCall() function isissued and waits for an
inbound call request on the loop start network interface device.

* Whenthegc WaitCall() function isissued synchronoudly, the function waits
for the number of rings defined by the default number of rings parameter (set
by the .cdp file—not available on DM 3, as calls are offered to the application
as soon as the firmware has all of the information needed to present the call)
or for time-out to expire. When either condition occurs, the function returns.

* Whenthegc WaitCall() function isissued asynchronously, the function
completes when an unsolicited GCEV_OFFERED event occurs.

When an inbound call isreceived, the gc_Answer Call() function establishes the
conditions for answering the call, answers the call, and continues to monitor for a
disconnect. The rings parameter of the gc_Answer Call(') function is not used, as
the analog protocol does not generate the actual ringback; it is generated by the
analog switch.

During the call, Global Call continually tests for call disconnect by monitoring for
disconnect tones or for aloop current change.

Thegc_CallAck() function is not supported for analog calls.

2.1.2. Outbound Analog Calls

For an outbound call, after the operations described in Section 2.1. Analog
Telephone Calls complete, the gc_M akeCall() function isinvoked to make an
outgoing call using the specified loop start network and voice resources. Firgt, the
channel used to make the outbound call is taken off-hook. Then the number is

2. Developing Global Call Analog Loop Start Applications

dialed using DTMF signaling, MF tone signaling, or pulse dialing. (Pulse dialing
isnot available on DM 3 boards.) Call progress tones are monitored to track the
progress (current status) of the call. Enhanced call analysisis used for outbound
analog telephone calls.

On Springware boards, the call progress tones can be changed from their default
values by using the dx_ API to change the appropriate default tones in the
firmware. (Refer to the Voice API Library Reference.) Other call analysis
parameters can be set by the gc_L oadDxPar m() function (Springware only).
Global Call analog technology can be configured to not use call progress tones,
but the protocol will transition to the connected state immediately after dialing, as
there is no way for the protocol to determine connection status with call progress
analysis.

2.2. Enhanced Call Analysis Concepts

Intel® Dialogic® analog call technology uses a method of signal identification for
call analysisthat can also detect fax machines and answering machines.

NOTE: All call analysis parameters (“basic only” and “enhanced”) are supported
by Global Call analog call technology.

Call analysisisinitiated when acall isdialed. Call parameters are determined by
the parameters and values defined in the voice DX_CAP call analysis parameter
data structure. On Springware boards, the default parameter values defined in the
DX_CAP data structure can be changed by the gc_L oadDxPar m() function to fit
the needs of your application. (The default values cannot be changed on DM 3
boards.) For a detailed description of enhanced call analysis (PerfectCall) and how
to use call analysis, see the Voice APl Programming Guide.

For each analog call, signaling information is sent to the local CO and then to each
successive CO until the destination CO is reached. The destination CO attempts to
connect to the called party. Concurrently, the destination CO sends back signaling
information representing the condition or status of the called party’sline. This
signaling information passes through the network as audio tones. The number of
tones used and the frequency combinations used to convey this signaling
information vary from country to country. Also, whenever acall is switched via
networks that do not support or pass caller identification information, then this
information can be lost.

Global Call Analog Technology User’s Guide for Linux and Windows

The following sections describe analog signaling asit is used in a network, DTMF
(dual tone multi-frequency) signaling, global tone detection considerations, and
the Global Call call analysis capability.

2.3. Analog Signaling

Analog signaling (DTMF, MF tones, or pulses) transmit the telephone number of
the called party to the local CO. For each call, whether an inbound or an outbound
call, the entity making the call isthe “calling party” and the entity receiving the
call isthe “called party.”

For example, a calling party sendsthe first dialed digits to the local CO. The local
CO uses these digits to determine the next CO in the connection chain. The next
CO usesthesefirst dialed digits to determine if they are the destination CO or if
the call isto be switched to another CO. Eventually, the call reaches the
destination CO. At the destination CO, the call is received and acknowledged. The
destination CO eventually getsthe last dialed digits, which explicitly identify the
called party.

The destination CO checks the called party’ s lineto determineiif it isidle or busy.
If the called party’slineisidle, the destination CO applies ringing to the line and
sends ringback tones backwards to the calling party. When the called party
answersthe call, the calling party is switched through to the called party. If the
called party’slineis busy, the destination CO sends this information backwards to
the calling party viatones.

NOTE: Analog technology does not provide a means to physically block or
unblock an analog line.

Pulse dialing (also called rotary dialing) sends digit information to the CO by
momentarily opening and closing (or breaking) the electrical loop from the calling
party to the CO. This electrical loop is broken once for the digit 1, twice for 2,
etc., and 10 times for the digit 0. (Pulse dialing is not available on DM 3 boards.)

DTMF and MF signaling use a multifrequency code system wherein each DTMF
or MF signal is composed of two frequencies, aslisted in Table 1. Signaling Used
to Dial. Although DTMF signaling is designed for operation on international
networks with 15 multifrequency combinations in each direction, in national

2. Developing Global Call Analog Loop Start Applications

networks it can be used with a reduced number of signaling frequencies (for
example, 10 multifrequency combinations).

Some MF digits use approximately the same frequencies as DTMF digits; for
example, the digit 4 uses 770 and 1209 Hz for DTMF or 700 and 1300 Hz for MF
transmissions. Because of this frequency overlap, MF digits could be mistaken for
DTMF digitsif the incorrect tone detection is enabled. Digit detection accuracy
depends on the digit sent and the type of detection, MF or DTMF, enabled when
the digit is detected. See the Voice API Library Reference for details.

Table 1. Signaling Used to Dial

Code Pulse (clicks) DTMF (Hz) MF (Hz)

1 1 697, 1209 700, 900

2 2 697, 1336 700, 1100
3 3 697, 1477 900, 1100
4 4 770, 1209 700, 1300
5 5 770, 1336 900, 1300
6 6 770, 1477 1100, 1300
7 7 852, 1209 700, 1500
8 8 852, 1336 900, 1500
9 9 852, 1477 1100, 1500
0 10 941, 1336 1300, 1500
* - 941, 1209 1100, 1700
- 941, 1477 1500, 1700

Global Call Analog Technology User’s Guide for Linux and Windows

2.4. Global Tone Detection Considerations

The Global Call API provides network device independence by shielding the
application from protocol-specific details while giving access to each protocol’s
full range of features.

Since global tone detection (GTD) tones are used for call analysis, the tone
definitions are sent to the firmware when the gc_OpenEx() function isissued.
The voice channel must beidle. Any pre-existing tones are deleted.

CAUTION

The application must not delete tones after the tones are downloaded, or
the protocol will fail.

If the application requires additional tones after theinitial set of tones are |oaded,
they must be redefined after calling the gc_OpenEx() function. The tone IDs
cannot be in the range from 101-189.

2.5. Call Progress and Call Analysis

Call analysis consists of both pre-connect and post-connect information about the
progress of the call. Pre-connect call progress determines the status of the call
connection, that is, busy, no dial tone, no ringback, etc. Post-connect call analysis,
which is also known as media type detection, determines the destination party’s
mediatype, that is, answering machine, fax, voice, etc.

NOTE: In Global Call terminology, the term call analysisis used interchangeably
with the term call progress.

Global Call call analysis uses global tone detection (GTD) to detect voice, fax,
busy, fast busy, ringback, and Special Information Tones (SIT).

Thegc_MakeCall() function defines the maximum time (in seconds) within
which a call must be answered. Within that interval, busy and ringback tones can
be detected. Global Call will disconnect an outbound call and report a
GCEV_CALLSTATUS or GCEV_DISCONNECTED event to the application if

10

2. Developing Global Call Analog Loop Start Applications

the call is not answered within the default time-outs defined by the protocol or the
gc_MakeCall() function. Global Call can aso count the number or rings and
report the GCEV_CALLSTATUS or GCEV_DISCONNECTED event if the
maximum number or rings is reached. The maximum number or rings can be
changed by using the gc_L oadDxPar m() function (Springware only) to change
the Global Call ca_nbrdna voice call analysis parameter; otherwise the default
value of four ringsis used. (The default value cannot be changed on DM 3 boards.)

The ringback tone heard on any specific call depends on the specific CO that is
serving the called party, not the local CO. The ringback tone must be known in
order to complete acall. The ringback tone generates a GCEV_ALERTING
event, which is reported to the application.

When the gc_GetCallinfo() function is used to retrieve information about the
detected mediatype, theinfo_id parameter to the gc_GetCalllnfo() function
must be CONNECT _TYPE. See Section 3.8. gc_GetCalllnfo() for alist of the
values that may be returned when the info_id parameter is CONNECT _TYPE.

The following sections discuss:

e Cdl analysis with DM 3 boards
e Cadll analysisfor PDKRT protocols

2.5.1. Call Analysis with DM3 Boards

NOTE: When using DM3 boards, Globa Call provides a consistent method of
pre-connect call progress and post-connect call analysis across analog,
CAS, and ISDN protocols. Refer to the Global Call API Programming
Guide for information about this method of call progress analysis.

The information included below is specific to the anal og technology and
is provided for backward compatibility only. For new applications, it is
recommended to use the cross-technology call progress analysis method
described in the Global Call APl Programming Guide.

There are two methods available for call analysis when using DM 3 boards: the
Global Call method and the dx_dial() method.

The Global Call media detection method is especially useful for performing post-
connect call analysis. When activated by setting the GCPR_MEDIADETECT

11

Global Call Analog Technology User’s Guide for Linux and Windows

parameter to GCPV_ENABLE for a particular channel, post-connect call analysis
is performed as part of the gc_MakeCall() function’s operation. The
gc_MakeCall() function is used to place acall; the signal detector analyzes the
incoming signals to perform call progress analysis.

After the normal gc_MakeCall() processing finishes and GCEV_CONNECTED
event is sent, call analysis runs and generatesa GCEV_MEDIADETECTED event
that tells the application the result of the analysis (for example, FAX, PVD, or
PAMD is detected).

The outcome of the analysis determines the events generated and the action that
can be taken as follows:

» If thecall issuccessful, gc_MakeCall() finishesand a
GCEV_CONNECTED event is sent, call analysis runs, and generates a
GCEV_MEDIADETECTED event. The gc_ResultValue() and
gc_GetCalllnfo() functions can then be used to get more information about
the type of media detected, such as voice, answering machine, and fax.

e If thecdll is not successful—for example, there is no ringback—a
GCEV_DISCONNECTED event is generated and the gc_ResultValue()
function can be used to retrieve the reason for the failure. See the Global Call
API Library Reference for error codes and the gcerr.h file for more
information.

NOTE: Theinformation above applies when using gc MakeCall() in
asynchronous or synchronous mode. However, in synchronous mode,
since the gc_M akeCall() function must complete, the
GCEV_MEDIADETECTED event is generated after the call is
connected.

GCPR_MEDIADETECT and GCPR_CALL PROGRESS parameter settings
for gc_SetParm() actually alow the application to specify whether pre- or post-
connect call analysis or both should be activated. This method for achieving thisis
shown in Table 2.

12

2. Developing Global Call Analog Loop Start Applications

Table 2. Global Call Call Progress Settings

GCPR_CALLPROG
RESS=GCPV_DISA
BLE

GCPR_CALLPROG
RESS=GCPV_ENA
BLE (default)

GCPR_MEDIADETECT

No call progress

Pre-connect call

=GCPV_DISABLE
(default)

progress only

GCPR_MEDIADETECT
=GCPV_ENABLE

No call progress Full call progress

As can be seenin this table, the default behavior (GCPR_MEDIADETECT =
GCPV_DISABLE) disables media detection but actually activates pre-connect
call progress for DM3 analog. To enable full call progress analysis, set the
GCPR_MEDIADETECT parameter to GCPV_ENABLE for the respective
channel.

NOTE: For this Global Call media detection to work, a voice device must be
attached to the line device and properly routed. Failure to do so will
cause subsequent outgoing call attemptsto fail.

The GCPR_CALL PROGRESS parameter can be used to enable or disable pre-
connect call progress. When combined with GCPR_MEDIADETECT, this
allows the application to specify whether to use pre-connect call progress only or
full call progress. If GCPR_CALLPROGRESS = GCPV_DISABLE, there will
be no call progress at all, regardless of the setting of GCPR_MEDIADETECT.

Table 3 explains call analysis support on DM3 analog via the Global Call
interface.

Table 3. Call Analysis Support on DM3 Analog

Call Analysis Support | How Obtained/Notes

Feature on DM3

Busy Yes Upon DISCONNECT event, call
gc_ResultValue().

13

Global Call Analog Technology User’s Guide for Linux and Windows

Call Analysis Support | How Obtained/Notes

Feature on DM3

No ringback No

SIT Yes Upon DISCONNECT event, call
gc_ResultValue().

No answer Yes Upon DISCONNECT event, call
gc_ResultValue().

Cadence break No

Discarded No

NA Yes Use GCPR_MEDIADETECT parameter.
Upon MEDIADETECTED event, call
gc_GetCalllnfo().

Unknown Yes Use GCPR_MEDIADETECT parameter.
Upon MEDIADETECTED event, call
gc_GetCalllnfo().

PVD Yes Use GCPR_MEDIADETECT parameter.
Upon MEDIADETECTED event, call
gc_GetCalllnfo().

PAMD Yes Use GCPR_MEDIADETECT parameter.
Upon MEDIADETECTED event, call
gc_GetCalllnfo().

Fax Yes Use GCPR_MEDIADETECT parameter.
Upon MEDIADETECTED event, call
gc_GetCalllnfo().

In progress Yes Use GCPR_MEDIADETECT parameter.
Upon MEDIADETECTED event, call
gc_GetCalllnfo().

Note that the call analysistime-out parameters values apply, and they are

configurable by the user. (They cannot be changed at runtime.) The parameters are
CaSignal Timeout, CaAnswer Timeout, and CaPvdTimeout; their values are

14

2. Developing Global Call Analog Loop Start Applications

found in the CHP section of the configuration (.config) file. However, they apply
only to post-connect call analysis and are not used until the call moves from an
initiated to a Proceeding, Alerting, or Connected state.

Another option for call analysisis provided by the VVoice API, which provides
post-connect call analysis on DM 3 boards through the dx_dial() function. Note
that the Global Call method and the dx_dial () method are mutually exclusive, so
you must choose one or the other.

2.5.2. Call Analysis for PDKRT Protocols

NOTE: Theinformation in this section is applicable to Springware boards only.
DM 3 boards do not use PDKRT analog protocols. On DM 3, the analog
protocol is embedded in the firmware.

The Protocol Development Kit Run-Time (PDKRT) library uses default tones
defined in the Intel® Diaogic® Voice library for recognition of call progress
tones. Any call progress tone defined by the Voice library will be detected. See
the Voice API Programming Guide for more information about the default tones
and the methods used to change the tones.

PDKRT protocols support call analysis via both the gc_ M akeCall (') function and
two PSL parameters, PSL_M akeCall_CallProgress and
PSL_MakeCall M ediaDetect defined in the .cdp file.

For call progress, when the PSL_M akeCall_CallProgr ess parameter is set to 0,
call progressis disabled. When the PSL_M akeCall_CallProgr ess parameter is
set to 1, call progressis enabled. When the PSL_M akeCall_CallProgress
parameter is set to 2, call progressis enabled unlessNO_CALL_PROGRESSis
specified inthe PDK_MAKECALL_BLK structure used by the gc M akeCall()
function.

For mediatype detection, when the PSL_M akeCall_M ediaDetect parameter is
set to 1, media type detection is enabled. When the
PSL_MakeCall_MediaDetect parameter is set to 2, mediatype detection is
disabled unlessMEDIA_TYPE _DETECT is specified in the
PDK_MAKECALL_BLK structure used by the gc_M akeCall() function. In
either case, the application must receive a GCEV_CONNECTED event before the
gc_GetCalllnfo() function can be used to get information about the type of

15

Global Call Analog Technology User’s Guide for Linux and Windows

connection. Even after the GCEV_CONNECTED event is received, the call
information may not be available. Consequently, the application may need to poll
for the information.

2.6. Header Files

In addition to the common Global Call header files gclib.h and gcerr.h that are
required irrespective of the technology used, the following header files may also
be required when devel oping applications for anal og technol ogy:

e gcpdkrt.h - required when using PDK error codes, the
PDK_MAKECALL_BLK structure for call analysis, or logging viathe
gc_Start() function.

e dm3cc_parm.h - required when developing applications for DM 3 platforms;
contains the SetlDs and Parml Ds for the different technologies.

2.7. Resource Association

For Springware voice boards with on-board analog loop start devices (for
example, D/41ESC, D/160SC-L S), a voice device and an analog loop start device
comprise asingle channel. Although these devices can be addressed separately, all
analog signaling is processed by the associated voice device; analog signaling
(ring detection and loop current detection) events are not transmitted over the
SChus. In resource sharing applications using the voice resources of a voice board
with on-board analog loop start devices, the analog loop start device associated
with a shared voice resource is disabled. See Chapter 4. Resource Allocation and
Routing for more information.

The Global Cdll linedevice ID (LDID) isasingle ID that represents the
combination of the voice resource and analog loop start (or digital) interface
resource that work together to establish and to tear-down calls.

DM 3 analog boards are comprised of separate voice devices and analog |oop start
devices, much like adigital board. As such, these devices are treated separately,
with no inherent association between them. Analog loop start devices are denoted
asdti devices, just like network time slots are on digital boards. When doing
gc_OpenEx() on aDM3 analog device, it is necessary to supply the analog loop

16

2. Developing Global Call Analog Loop Start Applications

start device name as well as a voice device name, or attach a voice device to the
analog loop start device after gc_OpenEXx().

2.8. Alarm Handling

Asdescribed in the Global Call API Library Reference, the GCEV_BLOCKED
event indicates that alineis blocked and the application cannot issue call-related
function calls, and the GCEV_UNBLOCKED event indicates that the line has
become unblocked.

The portion of the Global Call call control library that manages alarms, called the
Global Call Alarm Management System (GCAMS), is not used. Asaresult,
Global Call applications cannot configure alarm properties and characteristics or
receive GCEV_ALARM events.

2.9. Network Call Termination

When acall isterminated by the network, an unsolicited
GCEV_DISCONNECTED event is sent to the application. For analog calls, this
disconnection may be due to the reasons described in Table 4. Reasons for
Network Call Termination.

Table 4. Reasons for Network Call Termination

Reason/M essage Global Call Result Value
Disconnect by loop current change ~ GCRV_NORMAL
Disconnect by tone GCRV_NORMAL

The application can retrieve the reason for the disconnection using the
gc_ResultInfo() function.

17

Global Call Analog Technology User’s Guide for Linux and Windows

2.10. Run Time Configuration of the PDKRT Call Control
Library

NOTE: Theinformation in this section is applicable to Springware boards only.
DM 3 boards do not use PDKRT analog protocols. On DM 3, the analog
protocol is embedded in the firmware.

Table 5. Configurable PDKRT Call Control Library Parameters shows the
parameters of the PDKRT call control library that can be configured using the real
time configuration management (RTCM) functions. The gc_GetConfigData()
function can be used to retrieve the target object configuration, and the
gc_SetConfigData() function can be used to update the target object
configuration.

NOTE: Since these parameters are statically defined, the gc_QueryConfigData(
) function is not applicable.

Table 5. Configurable PDKRT Call Control Library Parameters

Set ID Parm ID Target Object Description Data | Access
Type Type | Attribute*
GCSET_ CONNECT _ | GCTGT_CCLIB_ | Connect type char | GC RO
CALLINFO | TYPE CRN (alternative to
gc_GetCalllnfo())

*Note: GC_R O - retrieve only

2.11. Run Time Configuration of PDK Protocol
Parameters

NOTE: Theinformation in this section is applicable to Springware boards only.
DM 3 boards do not use PDKRT analog protocols. On DM 3, the analog
protocol is embedded in the firmware.

Configurable PDK protocol parameters are grouped in two sets:
» Protocol state information (PSl) variable parameters

e Protocol service layer (PSL) variable parameters

18

2. Developing Global Call Analog Loop Start Applications

NOTE: To avoid errors, both PS| and PSL parameters of a
GCTGT_PROTOCOL_CHAN channel are allowed to be changed only
when the channel object does not have an active call.

PSI variable parameters are interpreted by the PDK run-time component
(PDKRT). The names of the PSI variable parameters (beginning with CDP_) are
found in the .cdp file. The PSI parameters that can be accessed via
gc_GetConfigData(), gc_SetConfigData(), and gc_QueryConfigData() are
shown in Table 6.

Table 6. CDP Parameters

Parameter Name Data Type
CDP_ConnectOnNoRingBack boolean
CDP_Working_Under_PBX_Env boolean
CDP_Time_Before Blind_Dialing_Under_PBX_Env integer
CDP_Dgts For_Outside Line In_ PBX_Env string
CDP_PBX_DiaToneTimeout integer
CDP DiaTone As Disconnect_In_Connected boolean

The PSL variable parameters are not available to the protocol state machine, but
rather are used by the protocol services layer to control the behavior of various
network and voice functions. The names of the PSL variable parameters begin
with PSL__and SYS . No variation in the names is allowed. These parameters are
required to control protocol parameters (e.g., timing) or they may control the
behavior of the underlying implementation. In the latter case, the parameters will
most likely have a platform tag. All of these parameter names must begin with
PSL. The PSL parameters that can be accessed viagc_GetConfigData(),
gc_SetConfigData(), and gc_QueryConfigData() are shown in Table 7.

19

Global Call Analog Technology User’s Guide for Linux and Windows

Table 7. PSL and SYS Parameters

PSL Variable Name Data Type
PSL_MakeCall_CallProgress integer
PSL_MakeCall _MediaDetect integer
PSL_DefaultMakeCall Timeout integer
PSL_ANALOG_NUM_RINGS BEFORE_RINGON integer
SYS PSINAME string

Table 8 shows the Set ID and Parm ID for these parameter types.

Table 8. Configurable PDK Protocol Parameters

Set ID ParmID Target Explanation Update
Object Flag **
Type
PDKSET _ Dynamically | GCTGT_ Protocol state information GC_W_N
PSI_VAR* assigned PROTOCOL _ (PSl) variable parameters
SYSTEM,
GCTGT_PROT
OCOL_CHAN
PDKSET_ Dynamically | GCTGT_ Protocol service layer (PSL) GC_W_N
SERVICE_ assigned PROTOCOL _ variable parameter and system
VAR SYSTEM, parameters
GCTGT_PROT
OCOL_CHAN

*|ndicates that CAS pattern signals and tones cannot be accessed.
** GC_W_N - update only at null state

The PDK GCTGT_PROTOCOL_SY STEM target object is not available until the
first gc_OpenEx() function is called to run this protocol.

The Global Call application can call gc_GetConfigData() to retrieve protocol

configuration information or gc_SetConfigData() to set protocol configuration
information. Since these parameters are protocol dependent, their parameters are

20

2. Developing Global Call Analog Loop Start Applications

dynamically assigned when a protocol isloaded into the PDKRT. Therefore, a
Global Call application must call gc_QueryConfigData() to find the parameter
information (set ID, parm ID, and value datatype, etc.) first. For more information
about these functions, refer to the Global Call APl Programming Guide.

The pair (target object type, target object D) supporting gc_QueryConfigData()
to find PDKRT protocol parameter information can be one of the following:

e (GCTGT_PROTOCOL_SYSTEM, Global Call protocol 1D)
e (GCTGT_PROTOCOL_CHAN, Global Call line device ID)

For a given protocol, although the GCTGT_PROTOCOL_SY STEM target object
and GCTGT_PROTOCOL_CHAN target object share the same set ID and parm
ID for PSI variables, they can have different values. When a new
GCTGT_PROTOCOL_CHAN target object is opened, it gets a copy of the
current PSI variable configuration of GCTGT_PROTOCOL_SY STEM target
object. Under this situation, changes to the GCTGT_PROTOCOL_SY STEM
target object configuration will not affect the configuration of the
GCTGT_PROTOCOL_CHAN target object. But the
GCTGT_PROTOCOL_SY STEM target object shares the same PSL variable
configuration with other GCTGT_PROTOCOL_CHAN target objects.

The following example shows how to set the CDP_ConnectOnNoRingBack
parameter for channel Idev running a PDK protocol at the NULL state in
asynchronous mode.

NOTE: Error handling is not shown.

QC PARM t _Sour ceParm t_Dest Parm

QC PARMID t_Parm DSt;

char t_nane[25] = “CDP_Connect ONNbR ngBack”;
long request _id;

LI NEDEV | dev;

QC PARMIBLK * t_pParnmBl k = NULL;

/* first find the paraneter info by calling gc_QueryGonfigData() function */

t _Sour cePar m padress = t_nang; /* Pass the PSl variable nane */
nmenset (& _Parm Dt, 0, sizeof (GC PARMID);
t_DestParmpstruct = & _Parni DStruct; /* Pass desired the parminfo */

gc_Quer yConf i gDat a(GCTGT_PROTGOOL_CHAN, | dev, & _Sour ceParm
QOQUERY_PARM NAME TO I D, & _DestParn);
/* Call GCutility function to insert a paraneter data to GC_PARMBLK */
gc_util_insert_parmval (& _pParnBl k, t_Parm DStruct.set_ID
t_ParmiDStruct.parml|D, sizeof(int), 10);

/* Call gc_Set@onfigData() function to set the “CDP_Connect OnNbR ngBack” */

21

Global Call Analog Technology User’s Guide for Linux and Windows

gc_Set Gonfi gDat a(GCTGI_PROTOOCL_CHAN, | dev, t_pParnB k, O,

GOUPDATE_ATNULL, &request _id, EV_ASYNG);

/* Oslll QC utility function to rel ease the menory after using the GC PARMBLK */
gc_util _del et e_parm bl k(t_pParnBl k) ;

2.12. Determining Protocol Version

NOTE: Theinformation in this section is applicable to Springware boards only.
DM 3 boards do not use PDKRT analog protocols. On DM 3, the analog
protocol is embedded in the firmware.

The following software code demonstrates how you can determine the Global Call
protocol version you are running.

#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>
#include <srllib.h>

int main()
LI NEDEV | dev;
QC_PARM parm
int ret code;

METAEVENT net aevent ;
par m paddr ess = NULL;

int node;

#i fdef _WN32

node = SR STASYNJ SR PO.LMXDE;
#el se

node = SR PALMIE

#endi f

if (sr_setparn{SRL_DEVI CE, SR MDELTYPE, &mode) == -1)
/] Error processing

}

gc_Start(NULL);

retcode = gc_Qpen(& dev, ": P_pdk_na_an_i 0: V_dxxxB1Cl", 0);

if (retcode != GC SUCCESS)
/1 Error processing

sr_wai t evt (50);

retcode = gc_Get Met aBEvent (&net aevent) ;

if (retcode != GC SUCCESS)

/1 Error processing

}
if (metaevent.flags & GOME GC EVENT)
{
if (metaevent.evttype == GCEV_UNBLOXKED)
{

if (gc_GetParn(ldev, QPR PROTVER &parn) ==
QC_SUCCESS)
{

22

2. Developing Global Call Analog Loop Start Applications

printf("The protocol version: %\n", parm paddress);
el se

/1 Error processing
int gc_error;

int cclibid;

long cc_error;
char* gc_nsg;

char* cc_nsg;

gc_ErrorVal ue(&c_error, &cclibid, &c_error);

gc_Resul t Msg(LIBID GG (long)gc_error, &jc_nsg);

gc_Resul t Msg(cclibid, cc_error, &c_nsg);

printf("gc_GetParnm{GOPR PROTVER) failed! GXO0x%x) -
%; O 0x%x) - 9%\n",

gc_error, gc_msg, cc_error, CC_Nsg);

return (gc_error);

}
}

gc_d ose(l dev);
gc_stop();
return(0);

2.13. Programming Guidelines for PDK Analog
Applications

Because of alimitation in the dx_ (voice) library, an application using the
PDK analog protocol should not call any dx_ function for a devicethat is
expecting a Global Call termination. For example, when an application calls
gc_OpenEXx() to open a PDK analog device, the application should not call
any dx__function on that device before receiving the GCEV_UNBLOCKED
event.

When using the dx_setevtmsk() function, the following mask settings must
be specified for analog channels, in addition to whatever other mask settings
are needed in the application:

DM LOCFF| DM LOON DM LCREV] DM R NGS| DM RNGCFF| DM W NK

Thisis because the PDK analog library uses dx_setevtmsk() internally, and
needs those masksin order to function correctly. Since every call to
dx_setevtmsk() overrides the settings in the previous call, these settings
must be included in al callsto dx_setevtmsk() on analog channels, or else
the protocol will stop working.

23

3. Applying Global Call Functions to
Analog Loop Start Applications

Certain Global Call functions have additional functionality or perform differently
when used in an analog loop start environment. The general function descriptions
in the Global Call API Library Reference do not contain detailed information on a
particular technology. Detailed information in terms of the additional functionality
or the differences in performance of those functions in an analog loop start
environment is contained in this chapter. Note that this information must be used
in conjunction with the information presented in the Global Call API Library
Reference.

The following Global Call analog loop start functions are described in this
chapter:

e gc AcceptCall()

* gc_ AnswerCall()

e gc Attach() and gc_AttachResource()

* gc BlindTransfer()

e gc Detach()

* gc DropCall()

e gc GetANI()

* gc _GetCalllnfo()

e gc GetParm()

* gc_MakeCall()

e gc OpenEx()

* gc_ReleaseCall() and gc_ReleaseCallEx()
e gc ResetLineDev()

* gc _SetParm()

e gc Start()

25

Global Call Analog Technology User’s Guide for Linux and Windows

e gc StartTrace()
* gc WaitCall()

See the Global Call API Library Reference for a complete listing of Global Call
functions and for detailed function descriptions.

3.1. gc_AcceptCall()
In the analog protocol, the rings parameter isignored.

The gc_AcceptCall() function provides compatibility only with other Global Call
libraries and applications. If your application uses the gc_AcceptCall() function
in an anal og technol ogy application, calling the function causes an immediate
transition to the Accepted state.

The gc_AcceptCall() function is not applicable when using the DMV 160L PHIZ
board.

3.2. gc_AnswercCall()

The gc_Answer Call() function indicates to the remote end that the connection is
established (call has been answered). For analog calls, the rings parameter of the
gc_Answer Call() functionis not used since this value is set by the default
number of rings parameter in the .cdp file.

Set the rings parameter of the gc_Answer Call() function to O for analog calls.

3.3. gc_Attach() and gc_AttachResource()

NOTE: Thegc Attach() function is deprecated; the preferred equivalent is
gc_AttachResource().

When using analog DM 3 boards, if the gc_Attach() or gc_AttachResource()
function isissued on adevice in the Idle state (for example, between calls), the
attach operation is performed, but also an “on-hook” transition occurs in the
firmware. Thistransition is required to allow inbound calls to be answered.

26

3. Applying Global Call Functions to Analog Loop Start Applications

3.4. gc_BlindTransfer()

Thegc _BlindTransfer () function is supported on DM3 analog boards. (The

gc_SetUpTransfer(), gc_CompleteTransfer (), and gc_SwapHold() functions,

which are used for supervised transfers, are not currently supported.)

When used with DM 3 analog boards, the timeout parameter value of the
gc_BlindTransfer () function isignored.

Thegc BlindTransfer () function is not applicable when using the
DMV 160LPHIZ board.

3.5. gc_Detach()
When using analog DM 3 boards, if the gc_Detach() function isissued on a
devicein the Idle state (for example, between calls), the detach operation is

performed, but also an “off-hook” transition occursin the firmware. This
transition is required to ensure that no inbound calls will be processed.

3.6. gc_DropCall()

The cause parameter value of the gc_DropCall() function isignored.

CAUTION

Beforeissuing agc_DropCall() function, you must first terminate any
voice-related function currently in progress. For example, if the play or
the record function isin progress, then before you drop the call, issue a
stop channel function on that voice channel and then call the
gc_DropCall() function to drop the call.

Thegc_DropCall() function is not applicable when using the DMV 160L PHIZ

board.

27

Global Call Analog Technology User’s Guide for Linux and Windows

3.7. gc_GetANI()

Thegc_GetANI () function only returns the calling party’ s telephone number
(Directory Number, DN). Other information, such as time of day, date, and caller
name, may also be available. The gc_GetCalllnfo() function can be used to
obtain this other information.

The transmission of caller ID information by the CO is protocol dependent. See
your protocol in the Global Call Country Dependent Parameters (CDP)
Configuration Guide for required parameter settings.

3.8. gc_GetCallinfo()

Thegc_GetCalllnfo() function can be used to retrieve ANI information such as
time of day, date, and caller name, if available, from the network. When using this
function to retrieve information for an inbound call, the following limitations
apply to theinfo_id parameter:

e CALLTIME must be exactly AN_MAXCALLTIME bytesin length
 CALLNAME must be exactly AN_MAXCALLNAME bytesin length
When using this function to retrieve information for an outbound call, theinfo_id

parameter CONNECT _TY PE contains the type of connection as returned by the
function. These connection types are:

* GCCT_CAD - connection due to cadence break

e GCCT_LPC - connection due to change in loop current

* GCCT_PVD - connection due to voice detection

e GCCT_PAMD - connection due to answering machine detection
* GCCT_FAX - connection due to fax machine detection

e GCCT_NA - connection typeis not applicable

28

3. Applying Global Call Functions to Analog Loop Start Applications

3.9. gc_GetParm()

The gc_GetParm() function retrieves the value of the specified parameter for a
line device. In addition to the GCPR_CALLINGPARTY parameter, which is
common across al technologies and documented in the Global Call API Library
Reference, the following parameters are supported:

e OnDMS3 boards:

* GCPR_CALLPROGRESS
* GCPR_MEDIADETECT

e On Springware boards:
¢ GCPR_CALLPROGRESS

See Section 3.14. gc_SetParm() for more information on the meaning of these
parameters.

3.10. gc_MakeCall()

Thegc_MakeCall() function is not applicable when using the DMV 160LPHIZ
board.

3.10.1. Use of the timeout Parameter

When using voice line devices, the timeout argument in thegc_M akeCall()
function is supported in both the synchronous and asynchronous programming
modes.

If the timeout value expires before the remote end answers the call, the
application is notified of this condition and should respond as described in the
gc_MakeCall() function description in the Global Call API Library Reference.
Also, see the Global Call Country Dependent Parameters (CDP) Configuration
Guide that accompanies your protocol software for other time-outs that may apply
to your analog protocol.

If al time-out values are set to 0, no time-out condition will apply.

29

Global Call Analog Technology User’s Guide for Linux and Windows

3.10.2. Other gc_MakeCall() Considerations

For analog calls, the dialing mode can be changed by the application by including
one of the following case-sensitive dialing codes in the dialing string specified by
the numberstr parameter:

e P-for pulse mode dialing
e T -for DTMF tone mode dialing
e M -for MF tone mode dialing

When included in the dialing string, the dialing code overrides the default set by
the dialing mode parameter in the .cdp file (Springware only). (On DM3,
inclusion of these dialing codes causes the digits not to be dialed.)

Thegc_MakeCall() function description in the Global Call API Library

Reference provides atable describing call conditions and results. In addition to the

information in that table, the values described in Table 9 apply when running
anal og technology.

Table 9. Analog Call Conditions and Results

Condition Event/Return Value Result/Error Value
Noringback Async: GCEV_CALLSTATUSor Async: GCRV_NORB result
detected GCEV_DISCONNECTED vaue

Sync: 0 Sync: EGC_NORB error
Operator Async: GCEV_CALLSTATUSor Async: GCRV_CEPT result
intercept GCEV_DISCONNECTED value
detected Sync: 0 Sync: EGC_CEPT error
Call progress Async: GCEV_CALLSTATUSor Async: GCRV_STOPD result
stopped GCEV_DISCONNECTED value

Sync: 0 Sync: EGC_STOPD error
SIT Async: GCEV_CALLSTATUSor Async: GCRV_CPERROR
detection GCEV_DISCONNECTED result value
error Sync: 0 Sync: EGC_CPERROR error
Nodia tone Async: GCEV_DISCONNECTED Async: GCRV_DIALTONE
detected

30

Sync: <0

Sync: EGC_DIALTONE

3. Applying Global Call Functions to Analog Loop Start Applications

3.11. gc_OpenEx()

The gc_OpenEXx() function opens voice channels, voice devices, or analog loop
start interfaces. The following sections describe using gc_OpenEx() with
Springware boards and with DM 3 boards.

3.11.1. gc_OpenEx() with Springware Boards

For Springware boards that host both voice devices and analog loop start interface
devices, both the voice device and its associated analog loop start interface device
are opened as asingle channel. A single line device ID (LDID) identifies both the

voice channel and the analog loop start interface.

A voice channel, voice device, or analog loop start interface device is specified by
the devicename parameter using a format that includes the following information:

:P_<protocol_name>:V_<voice_channel_name>

where:

» <protocol_name> specifies the analog loop start protocol. Use the root file
name of the analog protocoal file (for example, pdk_na_an_io) for your
country or telephone network.

e <voice_channel_name> specifies the name of the voice channel, voice
device, or analog loop start interface device to be associated with the device
being opened. Use the following format for the voice device:

dxxxB<virtual board number>C<channel or device number>
The prefixes (P_and V_) in devicename are used for parsing purposes. The order
of input of these parameters may be set by the application. The fields within the
devicename parameter must each begin with a colon.
The following example illustrates the format for defining the devicename

parameter for voice and analog loop start interface devices when processing
analog calls.

31

Global Call Analog Technology User’s Guide for Linux and Windows

To open voice channel 2 on a D/160SC-L S board identified as virtual board 3:
:P_pdk_na_an_io:V_dxxxB3C2

Global Call automatically opens both voice device 2 and analog loop start
interface device 2 on virtual board 3 and internally attaches the voice device to the
analog loop start interface.

NOTE: When using analog protocol, opening a board device, that is, using only
the board number in the devicename parameter (for example,
:V_dxxxB1) is not supported.

3.11.2. gc_OpenEx() with DM3 Boards

On DM3 analog boards, the voice devices and the analog loop start devices are
separate devices. When calling gc_OpenEx(), the application can either open
only the analog loop start device, or open both the analog loop start interface
device and the voice device at the same time. The device(s) is specified viathe
devicename parameter using a format that includes the following information:

:P_<protocol_name>:N_<loop_start_device_name>:V_<voice_channel_name>

where:

* <protocol_name> can be any string. :P_ must be present, but the name of the
protocol does not matter, as the protocol is embedded in the firmware and
cannot be changed.

e <loop_start_device_ name> specifies the name of the analog loop start
device to be associated with the device being opened. Use the following
format for the loop start device:

dtiB<virtual board number>T<channel or device number>

* <voice_channel_name> specifies the name of the optional voice channel to
be associated with the device being opened. Use the following format for the
voice channel name:

dxxxB<virtual board number>C<channel or device number>

32

3. Applying Global Call Functions to Analog Loop Start Applications

The prefixes (P_, N_, and V_) in devicename are used for parsing purposes. The
order of input of these parameters may be set by the application. The fields within
the devicename parameter must each begin with a colon.

The following example illustrates the format for defining the devicename
parameter for voice and analog loop start interface devices when processing
analog calls.

To open loop start device 2 on aDMV 160 board identified as virtual board 1
along with voice device 1 on virtual board 2:

:P_dm3an:N_dtiB1T2:V_dxxxB2C1

Global Call automatically opens both the analog loop start interface and voice
device and internally attaches the voice device to the analog loop start interface.

The voice device could be opened later using the dx_open() function and then
attached to the Global Call device using the gc_AttachResour ce() function. The
application would have to manually route the resources together. Without avoice
device attached to the Global Call device, no outbound calls can be made as there
will be no resources to dial digits.

3.12. gc_ReleaseCall() and gc_ReleaseCallEx()

NOTE: Thegc ReleaseCall() function is deprecated; the preferred equivalent is
gc_ReleaseCallEx().

The gc_ReleaseCallEx() function must be called after agc_DropCall() function
completes. If anew inbound call has arrived since the last gc_DropCall()
function was issued, that call will be pending until the gc_ReleaseCallEx()
function is called.

If agc WaitCall() function isissued asynchronously, the inbound call
notification can be received immediately after the gc_ReleaseCallEx() function
iscaled. If agc WaitCall() functionisissued synchronously and a
gc_ReleaseCallEx() function isissued subsequently, the inbound call will be
pending until the gc_ WaitCall() function isissued again.

33

Global Call Analog Technology User’s Guide for Linux and Windows

Thegc_ReleaseCall() and gc_ReleaseCallEx() functions are not applicable
when using the DMV 160L PHIZ board.

3.13. gc_ResetLineDev()

Thegc_ResetLineDev() function is used to ensure that voice channels are set on-
hook. The gc_ResetLineDev() function also sets the Global Call call stateto Idle.
Placing each voice channel on-hook ensures that any active calls are disconnected
and eliminates the possibility of leaving alinein aringing condition.

Thegc_ResetLineDev() function can be called only in the asynchronous mode.
Y ou must wait until the GCEV_RESETLINEDEV event isreceived from each
voice channel before continuing to ensure that the voice channels have been set
on-hook.

3.14. gc_SetParm()

The gc_SetParm() function sets the default parameters and all channel
information associated with the specific line device. In addition to the
GCPR_CALLINGPARTY parameter, which is common across all technologies
and documented in the Global Call API Library Reference, the parameters listed
in Table 10 are supported.

Table 10. Parameters Supported, gc_GetParm() and gc_SetParm()

Parameter Leve Description Supported on
GCPR_CALL | channel | Enablesor disablescall progress, | DM3,
PROGRESS enabled by default. If this Springware

parameter is disabled, post-
connect call progressis also
disabled, regardless of the setting
of GCPR_MEDIADETECT.

GCPR_MEDI | channel | Enables or disables post-connect | DM3
ADETECT call progress or media detection;
disabled by defaullt.

34

3. Applying Global Call Functions to Analog Loop Start Applications

For further information about the use of the GCPR_CALLPROGRESS and
GCPR_MEDIADETECT parameters, see Section 2.5.1. Call Analysiswith DM3
Boards.

NOTE: Thegc SetParm() functionis not supported when using PDK analog.

3.15. gc_Start()

For PDK protocols, the gc_Start() function is used to access the error and debug
logging capabilities of the PDKRT call control library. See Chapter 6. Debug
Utilities for more information.

3.16. gc_StartTrace()

For PDK protocols, thegc_StartTrace() function can be used to enable logging
onindividual channels. This function has no effect unless the name of the log file
and the logging level have been set using the gc_Start() function. The
gc_StartTrace() filename parameter isignored. The name of the log fileis
specified inthe CCLIB_START_STRUCT data structure. See Section 6.2.
Populating and Using a CCLIB_START_STRUCT for more information.

3.17. gc_WaitCall()

The gc_WaitCall() function is not applicable when using the DMV 160LPHIZ
board.

35

4. Resource Allocation and Routing

Analog loop start protocols require a voice or tone resource for setting up acall.
Application development considerations for using dedicated voice resourcesin an
analog loop start environment are discussed in this chapter.

For Springware boards with on-board analog loop start devices, a voice device
and an analog loop start device comprise a single channel. Although these devices
can be addressed separately, all analog signaling is processed by the associated
voice device; analog signaling (ring detection and loop current detection) events
are not transmitted over the SCbus. For DM 3 boards with on-board analog loop
start devices, the voice device and the analog loop start device are separate
devices.

Applications requiring voice resources during the entire call (for example, voice-
mail, announcements) must have enough voice channels to dedicate one channel

to each analog loop start channel. A single gc_OpenEx() function call can open
both the analog loop start device and voice device on both Springware and DM 3.

To perform activities such as routing and voice store and forward, use the
gc_GetVoiceH () functions to obtain the voice handle associated with aline
device. For example, before playing afile, you can retrieve the voice handle using
the gc_GetVoiceH () function. If needed, you may route other resources to the
analog loop start channel (for example, to send afax) and reroute the voice
channel back to the analog loop start channel before setting up or waiting for
another call. Y ou must route the same voice channel back to the associated analog
loop start channel on Springware because these two resources were internally
attached when opened. On DM 3, no such restriction exists because the two
resources are independent of each other.

The following example illustrates the function calls that apply when using
dedicated voice resources.

37

Global Call Analog Technology User’s Guide for Linux and Windows

/* Open a @obal Call device with a voice channel and an
anal og | oop start network tine slot */

1 if (gc_QpenEx(&inedev, “:P_pdk_na_an_i o:V_dxxxB1Cl", 0, &usrattr)
I == BEQC NOERR {
* Wit for GOEV_UNBLOXKED event.
*
}* Make an outgoing call */
2 if (gc_MakeCall (linedev, &rn, “123456”, NUL, 0, EV_ASYNQ
== EGC NCERR)
/*
* Vit for GOEV_CONNECTED event.
x|
} else {
/* Process error fromgc_MikeCall() */
} else {
/* Process error fromgc_QpenEx() */
}
L egend:
1 The gc_OpenEx() function:
» opensaGlobal Call line device using voice channel dxxxB1C1 and
configures the line device to use North American Analog Protocol.
» opensthe analog loop start time slot and voice channel
automatically
SCbus time dlot routing and attaching are done automatically. The
function need only be called once for an analog loop start time slot/voice
channel pair.
2 Thegc_MakeCall() function is invoked once for each outbound call.

38

5. Analog Protocols

The protocols supported, protocol file naming conventions, protocol components,
and their corresponding protocol files are described in this chapter.

NOTE: Theinformation in this chapter is applicable to Springware boards only.
On DM3 boards, the analog protocol is embedded in the firmware.

5.1. Protocols Supported

Protocols are distributed separately on individual CDs or as part of a software
package release. This modular design simplifies adapting applications for use in
numerous countries. The Global Call protocols available are listed in the Global
Call Country Dependent Parameters (CDP) Configuration Guide. For the most
up-to-date list of available protocols, contact your nearest Intel Sales Office.

The protocol and parameters used at the application’sinterface to the PTT must
complement those used by the local CO. To maintain compatibility with the local
PTT, Intel provides .cdp country dependent parameter files that can be modified
to satisfy local requirements. User-sel ectable options allow customization of
country dependent parameters to fit a particular application or configuration
within a country (for example, switches within the same country may use the same
protocol but may require different parameter values for local use). These
parameters are specified in the country dependent parameter (.cdp) file and may
be modified at configuration time (that is, at any time before starting your
application). The Global Call Country Dependent Parameters (CDP)
Configuration Guide that accompanies the protocol software lists each supported
protocol and describes the modifiable parametersin the protocol’s .cdp file.

When using PDK protocols, some parameters are dynamically updateable (that is,
the parameter value can be changed while the application is running). See Section
2.11. Run Time Configuration of PDK Protocol Parameters for more
information.

39

Global Call Analog Technology User’s Guide for Linux and Windows

5.2. Protocol File Naming Conventions

When a protocol isinstalled on your system, several files areinstalled, including
the protocol module(s), firmware parameter files, and country dependent
parameter files. The Global Call analog loop start protocol files use the naming
conventions described in Table 11.

Table 11. Protocol File Naming Conventions

Filename Description

pdk cc tt d.ps PDK protocol state information file
pdk cc tt d.cdpor country dependent parameter file

pdk cc tt ffff_d.cdp
where:
e pdkisaprefix for PDK protocolsonly.
» ccisaZ2-character 1SO country code, for example, na= North America.

NOTE: The country code nais used to designate protocols used in both the
United States and Canada.

e ttisaZ2-character protocol type, for example, an = analog protocol.
» disal- or 2-character direction indicator. Valid directions are:

e i:inbound
e 0: outbound
e jo: inbound/outbound

» ffff isoptional and defines a special software or hardware feature supported
by the protocol; 1 to 4 characters.

The protocol name used in the devicename parameter of the gc_OpenEx()
function is the root name of the .cdp file (for example, pdk_na_an_io for North
America).

Examples of the files included for the PDK North American analog protocol are
listed in Table 12.

40

5. Analog Protocols

Table 12. PDK North American Analog Protocol File Set

Protocol Files
Description Linux and Windows

Analog loop start protocol module pdk na an io.psi

Inbound/outbound country dependent pdk na an io.cdp
parameters

5.3. Protocol Components

Thefile types included with a protocol are:
» protocol modules

e country dependent parameter (.cdp) files

5.3.1. Protocol Modules

These files contain protocol specific information and are dynamically linked to the
application as needed.

For PDK, the protocol module is a protocol state information (.psi) file, abinary
filethat isinterpreted by the PDK run-time component (PDKRT).

5.3.2. Country Dependent Parameter (.cdp) Files

In addition to the voice parameter file loaded by the gc_L oadDxParm() function,
Global Call uses a country dependent parameter (.cdp) file that defines country
specific and protocol specific parameters. For some protocols, certain parameters
must be set in the country dependent parameter file to ensure proper operation of
the protocol. Country dependent parameter files may be customized by modifying
the file using any utility or word processor that can edit and save ASCI| text.
Refer to the Global Call Country Dependent Parameters (CDP) Configuration
Guide or the Release Note for your analog protocol for country dependent
parameters that are most likely to be modified and for any required settings.

41

6. Debug Utilities

The Global Call debugging utilities are described in this chapter.

NOTE: Theinformation in this chapter is applicable to Springware boards only.
There are no specific protocol debugging capabilities for DM 3 boards.
Debugging of DM 3 applications can usually be done with RTF logs.

Global Call includes powerful debugging capabilities for troubleshooting
protocol-related problems, including the ability to generate a detailed log file.
These debugging tools should not be used during normal operations or when
running an application for an extended period of time since they increase the
processing load on the system and they can quickly generate alarge log file.

NOTE: Only run the debugging and logging utilities on alimited number of
channels at atimeto avoid the possibility of losing events.

The following sections discuss:

e Enabling and disabling the logging

* Populating and Using aCCLIB_START_STRUCT

e Defining the GC_PDK_START_LOG environment variable
» Extended logging

6.1. Enabling and Disabling the Logging

In a Springware environment, the Global Call PDKRT (Protocol Development Kit
Run-Time) provides arich set of logging features that are useful to protocol
developers and implementers of the engine and call control libraries. The
application may add additional log records to the log file when logging is enabled.

43

Global Call Analog Technology User’s Guide for Linux and Windows

CAUTION

It is recommend that |ogging be done on an as-needed basis. Logging
uses significant resources and can reduce the performance of the Global
Call PDKRT call control library. Full logging (debug logging) enabled
on many channels can reduce performance to such a degree that time-
critical operations are affected and the behavior of a protocol may be
altered.

The PDKRT call control library provides a service for capturing error and debug
information in alog file. Enabling and disabling logging is achieved using the
gc_Start() function. Once logging is enabled, the gc_StartTrace() function can
be used to enable logging on each individual channel.

The parameters that control the logging mechanism can be set by:

e Populating and usinga CCLIB_START_STRUCT. See Section 6.2.
Populating and Using a CCLIB_START_STRUCT.

» Defining the GC_PDK_START_LOG environment variable. See Section 6.3.
Defining the GC_PDK_START_LOG Environment Variable.

When both methods are used, the CCLIB_START_STRUCT takes precedence
over the GC_PDK_START_LOG environment variable.

6.2. Populating and Using a CCLIB_START_STRUCT

The following code shows an example of how to define a
CCLIB_START_STRUCT, populate the fields, and use it to enable logging when
issuing thegc_Start() function.

QC START_STRCT t_GStart;

QQLI B_START_STRUCT t_PdkStart;
t_PdkStart.cclib_name = “GC PDKRT_LIB’;
t_PdkStart.cclib_data = "filenane: pdktest.| og;
binaryfile: 1;

| ogl evel : ENABLE DEBUG

servi ce: R2MF_ENABLE | CAS ENABLE;
cachedunp: WHEN FULL | THREAD O\
channel : BICl, B2Q-4;

cachesi ze: 10;

naxfil esize: 0;

44

6. Debug Utilities

m ndi skfree: 20";
t_GStart.numcclibs = 1;
t_GSart.cclib_list = (void *)
(& t_PdkStart);
int t_result = gc_Start((GC START_STRCIP)& t_GStart);
NOTE: The example above shows al the possible fieldsin acclib_data string.
In practice, you only need to specify the values of fields that are different

than the default values.

The value of the cclib_name field must be either GC_PDKRT_LIB or
PDGV_LIB, and the cclib_data field should have the following format:

“field name 1 : field value 1; field nane 2 : field value 2; ...”
where the allowable field names and values are given in Table 13.

Table 13. cclib_data Fields and Values

Field Name Field Values Default Value

filename Log file name gc_pdk.log

loglevel See Table 14. ENABLE FATAL or 5

service See Table 15. ALL_SERVICES or OXFFFFFFFF
cachedump See Table 16. WHEN_FULL or 1

cachesize Any positive integer 1 (number of records in cache)
channel See Table 17. B*C*

maxfilesize Integer 0 (Megabytes)

mindiskfree Integer 20 (Megabytes)

The fields can be defined in any sequence. If any field is not defined or defined
incorrectly (either in name or value), then the default value is used for logging.
The actual values of the fields are posted as the first record of thelog file. In this
way, when alog file is received, the user knows how logging was configured (that
is, which log level and services were enabled, and what the cache size and cache
dump conditions were when it was generated).

45

Global Call Analog Technology User’s Guide for Linux and Windows

The following examples show how to set the cclib_data string:

The example below shows all the possible fields. In practice, you only have to
specify the values of fields that are different than the default values.

cclib_data = “fil ename: pdktest.| og;
binaryfile: 1;

service: RRMF_ENABLE;

cachedunp: WHEN FULL| THREAD O\
channel : B1Cl, B2Q2-4;

cachesi ze: 10;

maxfil esi ze: O;

m ndi skfree: 20"

For simplicity and to avoid errors, use only the values of fieldsthat are
different than the default values. For example, to specify alog file name
called mylog.log that includes al log entries, use the following cclib_data
string:

cclib_data = “filename: nylog.log; |oglevel: ENABLE DEBUG

The following tables show the allowable values for the loglevel, service,
cachedump, and channel fields respectively. The values of loglevel, service, and
cachedump can be numbers or symboals. (If hex format is used, the prefix 0x
should be used.) Consequently, before these values are passed to the LOG_INIT,
the values must be examined and converted from symbols to numbers, if
necessary. The value symbol of service and cachedump can be a bit mask.

Table 14 shows the valid values for the loglevel parameter.

Table 14. Loglevel Parameter Values

loglevel Valid | Description

Value
ENABLE_FATAL 5 Only fatal errors arelogged. A fatal error isan
(default) error that will make the program run

abnormally or will stop the program. For
example, in channelimpl.cpp, dx_open()
returns INVALID_VOICEH. It is expected
that an exception will be thrown and the log
cache will be dumped to afileif possible.

46

6. Debug Utilities

loglevel

Valid
Value

Description

ENABLE_WARNING

All levels above ALERT are logged. An error
occurs that may make the program run
abnormally. For example, in channelimpl.cpp,
the new local state is not ChanState InService
while the reason is Wait Call. An exception
may be thrown, but log cache will not be
dumped to afile automatically.

ENABLE_ALERT

All levels above INFO are logged. Thereisa
problem, generally not an error, that the user
should know aboui.

ENABLE_INFO

All levels above DEBUG are logged.
Important information that the user needs to
be aware of islogged. For example, in
channelimpl.cpp, issuing agc_StartTrace()
and gc_StopTrace() determines if logging
for a specific channel ison or off. Thiskind
of information is alevel higher than DEBUG.

ENABLE_DEBUG

All levels are logged. This gives the most
detailed information to help debug protocols
or code step-by-step. For example, in
channelimpl.cpp, acall to any of the
GC_PDK_C XXX functions should be
logged at thislevel. Most routine logging
should use thislevel.

Note: Vauesarein decimal but can also be specified in hex using a Ox prefix.

Table 15 shows the valid values for the service parameter.

Table 15. Service Parameter Values

service

Valid Value Description

ALL_SERVICES
(defaullt)

OxFFFFFFFF (65535) All services are enabled.

a7

Global Call Analog Technology User’s Guide for Linux and Windows

service Valid Value Description
USRAPP_ENABLE 0x00000001 (1) Only USRAPP service
enabled.
GCAPI_ENABLE (0x00000002 (2) Only GCAPI service enabled.
GCXLTR_ENABLE 0x00000004 (4) Only GCXLTR service
enabled.
LINEADMIN_ENABLE| 0x00000008 (8) Only LINEADMIN service
enabled.
CHANNEL_ENABLE | 0x00000010 (16) Only CHANNEL service
enabled.
LOADER_ENABLE 0x00000020 (32) Only LOADER service
enabled.
CALL_ENABLE 0x00000040 (64) Only CALL service enabled.
R2MF_ENABLE 0x00000080 (128) Only R2MF service enabled.
TONE_ENABLE 0x00000100 (256) Only TONE service enabled.
CAS_ENABLE 0x00000200 (512) Only CAS service enabled.
TIMER_ENABLE 0x00000400 (1024) | Only TIMER service enabled.
SDL_ENABLE 0x00000800 (2048) | Only SDL service enabled.
SRL_ENABLE 0x00001000 (4096) | Only SRL service enabled.
ERRHNDLR_ENABLE | 0x00002000 (8192) | Only ERRHNDLR service
enabled.
LOGGER_ENABLE 0x00004000 (16384) | Only LOGGER service
enabled.
RTCM_ENABLE 0x00008000 (32768) | Only RTCM service enabled.
GCLIB_ENABLE 0x00010000 (65546) | Only GCLIB service enabled.

shown in parentheses.

Note: Values prefixed with Ox are hexadecimal values. Decimal values are

Table 16 shows the valid values for the cachedump parameter.

48

6. Debug Utilities

Table 16. Cachedump Parameter Values

cachedump Valid Value | Description
ON_FATAL 0x0000 The cache memory will be dumped to the log
(bit1=0) file once thereisalog record witha FATAL
level.
WHEN_FULL 0x0001 The cache memory will be dumped to the log
(default) (bit1=1) file once the log cacheis full as determined
by the cachesize parameter. For example, if
cachesizeis 10, the log cache is dumped to a
filewhen it contains 10 log records.
THREAD_OFF | 0x0000 The dump operation will be executed by the
(default) (hit2=0) caling thread.
THREAD_ON 0x0002 The dump operation will be executed by a
(bit2=1) separate cache dumping thread.

Note: Values prefixed with Ox are hexadecimal values.

Table 17 shows some examples of the channel parameter.

Table 17. Sample Channel Parameter Values

Example Value

Boardsand Channels Enabled for Logging

B*C* (default)

All boards and all channels

B-1C-1

Only board number = -1 and channel number = -1

B1C* All channels on board 1
B1C-1 Only board 1 level

B1C1 Channel 1 on board 1
B1C1-5 Channel 1 to 5 on board 1
B1C1,20 Channel 1 and 20 on board 1
B1-4C* All channels of boards 1 to 4

49

Global Call Analog Technology User’s Guide for Linux and Windows

Example Value Boardsand Channels Enabled for Logging
B1C2, B2C2,20-22 Channel 2 on board 1, channel 2, 20, 21, and 22 on
board 2

6.3. Defining the GC_PDK_START_LOG Environment
Variable

The GC_PDK_START_LOG environment variable can also be used to enable
and configure logging.

The following examples show how to set the GC_PDK_START_LOG
environment variable.

e Thefollowing isan example of aGC_PDK_START_LOG environmental
variable definition showing all the possible field valuesin the environment
variable. In practice, you only have to specify the values of fields that are
different than the default values.

set GC PDK START_LGG = “filenanme : pdktest.log; binaryfile : 1;
| ogl evel : ENABLE DEBUG service : R2M-_ENABLE | CAS ENABLE
cachedunp : WHEN FULL | THREAD O\ channel : BICl, B2Q-4;
cachesi ze : 10; naxfilesize : 0; mindiskfree : 20"

» For simplicity and to avoid errors, use only the values of fieldsthat are
different than the default values. For example, to specify alog file name
called mylog.log that includes al log entries, use the following
GC_PDK_START_LOG environment variable definition:

set GC PDK_START_LGG = “filenane: nylog.log; |oglevel: ENABLE DEBUG

This definition is equivalent to the logging configuration used in Section 6.2.
Populating and Using a CCLIB_START_STRUCT and the definition for each
field is also the same as described in that section.

6.4. Extended Logging

The gc_ExtensionFunction() function provides extended features directly from
the call control libraries. For applications that use the PDK protocols, if logging is
enabled, the gc_ExtensionFunction() function can be used to add user-specified
log records to the log file.

50

6. Debug Utilities

6.4.1. gc_ExtensionFunction()

For debugging purposes, the gc_ExtensionFunction() should only be used if
requested by Intel Technical Support. It enables users to include debug
information useful to Technical Support personnel when reading the log file. The
log fileis abinary file that cannot be read without the required tools, which are
supplied with the Protocol Development Kit Run-Time (PDKRT).

The function header of the gc_ExtensionFunction() functionis:

gc_Ext ensi onFunction(int cclibid, LINEDEV |inedev, CRN crn,
voi d *dat ap)

where:

» cclibid isthe Global Call call control library ID
* linedev isthe Global Call line device handle

» crnisthe cal reference number

» datap isapointer to acall control library-specific structure containing
information about the extended feature

For extended logging, the datap parameter is a pointer to a structure of type
PDK_XTEN_LOG_FUNC, which contains extended logging information. See
Section 6.4.2. PDK_XTEN_LOG_FUNC for more information.

6.4.2. PDK_XTEN_LOG_FUNC

For extended logging, the gc_ExtensionFunction() usesthe
PDK_XTEN_LOG_FUNC data structure. The structure definition is as follows:

t ypedef struct

PDK_XTEN_FUNCNUM f unc_no;

char* | og_dat a;
PDK_LOG LEVEL | og_I evel ;
PDK_SERVI CE Servi ce;
char * file_nane;
| ong | i ne_num

} PDK_XTEN LOG FUNG

51

Global Call Analog Technology User’s Guide for Linux and Windows

Table 18 describes each field in the data structure.

Table 18. PDK_XTEN_LOG_FUNC Field Descriptions

Field Description

func_no I dentifies the extension feature requested. Possible values are:
« PDK_FUNC LOG=1
« PDK_FUNC_DUMPLOG =2

log_data A string that isto be added to the log file.

log_level Thelogging level of the added record. Valid logging levels are:
« PDK_LOGLEVEL_DEBUG =1

« PDK_LOGLEVEL_INFO=2

e PDK_LOGLEVEL_ALERT =3

* PDK_LOGLEVEL_WARNING =4

e PDK_LOGLEVEL_FATAL =5

service The service name. Valid values are:
* PDK_SERVICE_USRAPP=1
* PDK_SERVICE _GCAPI =2

file_name The name of the source file from which the log entry originated.
line_num The line number in the source file from which the log entry
originated.

6.4.3. Extended Logging Code Example

The following code example shows how to include user-defined log recordsin the
log file.

#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>

52

6. Debug Utilities

#i ncl ude <gcpdkrt. h>
voi d mai n()

QGC_START_STRUCT gc_start;
PDK_START_STRUCT pdk_start;
PDK_XTEN LGG FUNC | ogst ruct ;

char *data = "This is a log record";
LI NEDEV | dev;

pdk_start.cclib_name = "PDKRT";
pdk_start.start_paraneters = "filenane: pdkrt;
| ogl evel : ENABLE DEBUG';

gc_start.nStartStructures = 1,
gc_start.cclib_start_struct[0] =
(QCLI B_START_STRUCTP) &pdk_st art ;

gc_Start(&gc_start);
gc_pen(& dev, ":NdtiBlT1:P us t1l em" ,0);

logstruct.func_no = PDK_ FUNC LGG

logstruct.log _data = dat a;

logstruct.log | evel = PDK LOAEVEL_ALERT;

l ogstruct. service = PDK_SERVI CE_USRAPP;
logstruct.file name = __FILE
logstruct.line_num= _ LINE_;

gc_Ext ensi onFuncti on(PDGV_LI B, | dev, 0, & ogstruct);
/* PDGV_LIBis the ID of the PDKRT */

/* the rest of the application goes here */

53

Index

.cdp file, 39

A

additiona tones, 10

alarm handling, 17

analog loop start, 5

analog loop start device, 16, 37
analog signaling, 8, 16, 37
ANI information, 28

answering machine
detect, 7

answering machine detection, 28

application
designing and coding, 5

audio tones, 7

B
block analog line, 8

C

cadence break, 28
cal andysis, 7, 10
call disconnect, 6
call parameters, 7
call progress, 10

call progresstones, 7

call termination
network, 17

caled party, 7, 8
caler 1D, 28
caling party, 8
cause parameter, 27

CCLIB_START_STRUCT
using for debugging, 44

channel-level parameters, 6

code example
extended logging, 52

connection types, 28

country dependent parameter, 39

D

debugging, 43
cclib_data fields and values, 45
enabling for PDK protocols, 44
log_cachedump values, 48
log_level values, 46
log_service values, 47
PDK protocols, 43
sample log_channel values, 49

dedicated voice resources, 37
example, 37

delete tones, 10
destination CO, 7, 8
devicename, 31, 32
devicename parameter, 40
diaed digits, 8

dialing code
case-sensitive, 30

55

Global Call Analog Technology User’s Guide for Linux and Windows

dialing mode, 30
digit detection accuracy, 9

directory number
DN, 28

disconnect tones, 6

disconnection
reason, 17

DN
directory number, 28

DTMF digits, 9

DTMF signdling, 7, 8

DX_CAP data structure, 6, 7
dx_setevtmsk(), 23

dx_setparm(), 6

E

enhanced call analysis, 7

enhanced call analysis parameters, 6
event mask settings, 23

extended logging, 50
code example, 52

F

fax machine
detect, 7

fax machine detection, 28
frequency overlap, 9

G

gc_AcceptCal(), 26
gc_AnswerCall(), 6, 26
gc_Attach(), 26

56

gc_AttachResource(), 26
gc_BlindTransfer(), 27
gc_CallAck(), 6

gc_Detach(), 27
gc_DropCall(), 27, 33
gc_ExtensionFunction(), 51
gc_GetANI(), 28
gc_GetCallinfo(), 12, 14, 28
gc_GetParm(), 29
gc_GetVoiceH(), 37
gc_LoadDxParm(), 5, 7, 41
gc_MakeCall(), 6, 12, 29, 38
gc_Open(), 38

gc_OpenEx(), 5, 31, 37, 40
gc_ReleaseCall(), 33
gc_ReleaseCallEx(), 33
gc_ResetLineDev(), 34
gc_ResultValue(), 12, 13
gc_SetParm(), 12, 34, 35
gc_Start(), 35

gc_StartTrace(), 35
gc_WaitCall(), 6, 33, 35
GCEV_ALERTING, 11
GCEV_DISCONNECTED, 17
GCEV_OFFERED, 6
GCEV_RESETLINEDEV, 34
GCPR_CALLPROGRESS, 12, 34
GCPR_MEDIADETECT, 12, 14, 34

global tone detection, 10
GTD, 10

I

inbound call, 6, 8, 33
info_id parameter, 28
international networks, 8
L

LDID
linedevice D, 16

linedevice ID
LDID, 16

local CO, 7, 8, 39
log file, 43

logging
extended, 50

loop current, 28
loop current change, 6

loop current detection
analog signaling, 16, 37

M

MF digits, 9

MF signaling, 8

MF tone signaling, 7
multifrequency code, 8

multifrequency combinations, 8

N

naming convention
protocol, 40

national networks, 9

Index

network device independence, 10
network handle, 37
number of rings, 6

numberstr parameter
diaing string, 30

O

options
protocol, 39

outbound call, 6, 8

P

PDK protocols
debugging, 43
enabling debugging, 44
programming guideline, 23

PDK_XTEN_LOG_FUNC, 51

PDKRT protocols
cal anaysis, 15

PerfectCall, 7
pre-existing tones, 10

protocol, 39
naming convention, 40
service layer parameters, 19
troubleshooting, 43

protocol module, 41
ICAPI, 19
PDK, 19

pulse dialing, 7, 8
R

remote end, 26
resource sharing, 16

ring detection
analog signaling, 16, 37

57

Global Call Analog Technology User’s Guide for Linux and Windows

ringback tone, 8, 11

rings parameter, 6, 26
rotary dialing, 8

S

SChus, 38

service layer parameters, 19
signaling frequencies, 9
signaling information, 7

SIT, 10
specia information tones, 10

special information tones
SIT, 10

T

telephone number
caled party, 8

timeout, 29

tone definition, 10
tone D, 10

tone resource, 37
tones downloaded, 10
troubleshooting, 43

U

unblock analog line, 8

Vv

voice channel, 10

voice channel parameter (.vcp)
ASCI| text file, 6

voice detection, 28

voice device, 37

58

voice handle, 37

voice resource, 37
dedicated, 37

	Table of Contents
	List of Tables
	1. How to Use This Guide
	1.1. Organization of this Guide
	1.2. Intel® Dialogic® Products That Support Analog Interfaces
	1.3. Related Information

	2. Developing Global Call Analog Loop Start Applications
	2.1. Analog Telephone Calls
	2.1.1. Inbound Analog Calls
	2.1.2. Outbound Analog Calls

	2.2. Enhanced Call Analysis Concepts
	2.3. Analog Signaling
	2.4. Global Tone Detection Considerations
	2.5. Call Progress and Call Analysis
	2.5.1. Call Analysis with DM3 Boards
	2.5.2. Call Analysis for PDKRT Protocols

	2.6. Header Files
	2.7. Resource Association
	2.8. Alarm Handling
	2.9. Network Call Termination
	2.10. Run Time Configuration of the PDKRT Call Control Library
	2.11. Run Time Configuration of PDK Protocol Parameters
	2.12. Determining Protocol Version
	2.13. Programming Guidelines for PDK Analog Applications

	3. Applying Global Call Functions to Analog Loop Start Applications
	3.1. gc_AcceptCall()
	3.2. gc_AnswerCall()
	3.3. gc_Attach() and gc_AttachResource()
	3.4. gc_BlindTransfer()
	3.5. gc_Detach()
	3.6. gc_DropCall()
	3.7. gc_GetANI()
	3.8. gc_GetCallInfo()
	3.9. gc_GetParm()
	3.10. gc_MakeCall()
	3.10.1. Use of the timeout Parameter
	3.10.2. Other gc_MakeCall() Considerations

	3.11. gc_OpenEx()
	3.11.1. gc_OpenEx() with Springware Boards
	3.11.2. gc_OpenEx() with DM3 Boards

	3.12. gc_ReleaseCall() and gc_ReleaseCallEx()
	3.13. gc_ResetLineDev()
	3.14. gc_SetParm()
	3.15. gc_Start()
	3.16. gc_StartTrace()
	3.17. gc_WaitCall()

	4. Resource Allocation and Routing
	5. Analog Protocols
	5.1. Protocols Supported
	5.2. Protocol File Naming Conventions
	5.3. Protocol Components
	5.3.1. Protocol Modules
	5.3.2. Country Dependent Parameter (.cdp) Files

	6. Debug Utilities
	6.1. Enabling and Disabling the Logging
	6.2. Populating and Using a CCLIB_START_STRUCT
	6.3. Defining the GC_PDK_START_LOG Environment Variable
	6.4. Extended Logging
	6.4.1. gc_ExtensionFunction()
	6.4.2. PDK_XTEN_LOG_FUNC
	6.4.3. Extended Logging Code Example

	Index

