
GDK Version 5.0
Programming Reference

Manual for Windows

Copyright © 2000 Dialogic Corporation
05-6025-002

COPYRIGHT NOTICE

Copyright © 2000 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described in this document
or on Web pages maintained by Dialogic-may infringe one or more patents or other intellectual
property rights owned by third parties. Dialogic does not condone or encourage such infringement.
Dialogic makes no warranty with respect to such infringement, nor does Dialogic waive any of its
own intellectual property rights which may cover systems implementing one or more of the ideas
contained herein. Procurement of appropriate intellectual property rights and licenses is solely the
responsibility of the system implementer. The software referred to in this document is provided under
a Software License Agreement. Refer to the Software License Agreement for complete details
governing the use of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo), DTI/124, and SpringBoard are registered trademarks of Dialogic
Corporation. A detailed trademark listing can be found at: http://www.dialogic.com/legal.htm.

Publication Date: August, 2000

Part Number: 05-6025-002

Dialogic, an Intel Company
1515 Route 10
Parsippany NJ 07054
U.S.A.

For Technical Support, visit the Dialogic support website at:
http://support.dialogic.com

For Sales Offices and other contact information, visit the main Dialogic website at:
http://www.dialogic.com

iii

OPERATING SYSTEM SUPPORT

The term Windows refers to both the Windows NT® and Windows® 2000
operating systems. For a complete list of supported Windows operating systems,
refer to the Release Guide that came with your Dialogic System Release for
Windows, or to the Dialogic support site at http://support.dialogic.com/releases.

v

Table of Contents

Preface ... 1
Purpose ... 1
Audience... 1
Using This Guide.. 1
Conventions.. 1
Reference Documentation .. 2

1. Introduction to Fax Technology .. 3
Overview .. 3
History.. 3
Understanding Fax Technology.. 4

Elements of a Fax Call.. 4
Compression ... 5
Resolution... 5
Routing ... 5

Advantages of Computer-Based Faxing ... 6
High-Quality Output ... 6
Convenience ... 6
Progress Monitoring ... 7
Saves Time and Effort .. 7

Standards .. 7
Fax Applications... 8

2. GDK System Architecture ... 9
About GDK for Windows... 9
Minimum System Requirements... 10
About the Dialogic CP Fax Series Hardware ... 11
Firmware Features .. 11
GDK System Components.. 11

Device Drivers for ISA and PCI ... 11
Firmware Download Utility.. 12
The GDK System Service (the Dispatcher) .. 12
Network Drive Access .. 14
About the Firmware.. 15
About the Queue File.. 15

GDK System Features .. 15
TIFF Capability .. 15

GDK Version 5.0 Programming Reference Manual

vi

Binary File Transfer.. 23
Routing ... 24
Recording Line Noise ... 27
Transparent PRI Support .. 27

GDK System Configuration.. 28
Control Panel Configuration Utility.. 28
Setting the Country Code Properly ... 28

3. Configuration Commands ... 37
Configuration Commands Summary... 37
Configuration Commands... 40
New Parameter Summary... 71

Management Parameters... 72
ISDN Parameters .. 75
ErrorMapping Parameters... 83
Debug Parameters... 89

4. Queue Record Programming... 95
Queue File Database Component ... 95
About the Queue File.. 95

Queue File Lists.. 96
Queue File Pointers... 97
Using GFQRESET.EXE... 97
Pre-allocating Queue File Records ... 98
Purging the Control List and Control Done List ... 99
Checking and Repairing the Queue File ... 99

Record Queuing and Processing... 99
Buffering Records .. 100
Busy Records.. 100
Fax Transaction Programming ... 101
Queue Record Data Types.. 101
Queue Record Fields .. 102

Queue Record Field Descriptions ... 102
Alphabetical Listing of Queue Record Fields ... 104

5. Programming Models... 129
GDK Subsystem... 129
Phases of a Fax Session.. 130

Fax Programming Models... 131
Batch Programming Model .. 132

GFQ APIs — Alphabetized List of the GFQ Functions 133

Table of Contents

vii

Interactive Programming Model... 161
Sample GRT Applications .. 163
GRT API Data Structures ... 166
GFD API Functions .. 196
Obsolete APIs ... 224

6. Developing with PEB ... 227
PEB (Pulse Code Modulation [PCM] Expansion Bus) 227
Basics of a PEB System ... 228
PEB APIs ... 229

7. Developing with SCbus .. 237
SCbus Connectivity Paradigm.. 237
Basics of SCbus Compliancy.. 237
SCbus APIs for the CP Fax SC Boards .. 238
ScBus APIs With DM3 Boards .. 239
Scbus API Descriptions.. 244

8. Fax Status Files ... 255
Overview .. 255
Status Tables and Status Files .. 255
Creating a Status File.. 258
Refreshing the Status File... 258
Monitoring Status with gfxStatus ... 259
Monitoring Status with cp_state ... 261
GDK System Information API Function Calls ... 262

Appendix A ... 289
Technical Support .. 289

Appendix B.. 291
GFSH Utility .. 291

Appendix C ... 295

Appendix D ... 297
Full ASCII Character Set.. 297
Country Codes.. 297

Index .. 299

GDK Version 5.0 Programming Reference Manual

viii

Table of Contents

ix

List of Tables

Table 1. GDK TIFF Tags ... 16

Table 2. Filename Formats for Receiving Multiple Pages.................................... 20

Table 3. Next File Send Options ... 22

Table 4. Mask Values for DEBUG Parameter 1... 31

Table 5. Mask Values for DEBUG Parameter 2... 32

Table 6. Mask Values for SRAMMask and LogFileMask 32

Table 7. Summary of Configuration Commands.. 37

Table 8. Terminating Digit Parameters .. 48

Table 9. Variables, Field Widths, and Text .. 57

Table 10. Management Parameters .. 72

Table 11. ISDN Parameters .. 76

Table 12. ErrorMapping Parameters .. 84

Table 13. Debug Parameters .. 89

Table 14. GFQRESET Parameters ... 98

Table 15. GFQ.H Data Types... 101

Table 16. Summary of Fields in the Queue Record.. 102

Table 17. Queue Record Field Description Formats .. 104

GDK Version 5.0 Programming Reference Manual

x

Table 18. Values Reported in line_noise .. 111

Table 19. list_types in the Queue Record ... 112

Table 20. Queue-Record Operations .. 115

Table 21. Characters in phone_no Field ... 116

Table 22. Transmission Steps and record_control Field Values......................... 120

Table 23. Values and Flags of the record_control Field 121

Table 24. Values of the signal_quality Field .. 124

Table 25. Values of the signal_strength Field .. 125

Table 26. Facsimile Session Phases ... 130

Table 27. Queue Record Default Values .. 134

Table 28. Symbolic Constants for gfqGetPath()... 141

Table 29. List Names Used with gfqInsertOne() .. 143

Table 30. gfqInsertPlist Phone Number Record Structure.................................. 146

Table 31. List Names Used with gfqInsertPlist().. 147

Table 32. Environment Variables for gfqSearch().. 154

Table 33. Values Written by gfqSubmit() to Queue Record Field 156

Table 34. Events and Data Associated with GRT_EVENT 167

Table 35. Event Breakpoints .. 197

Table 36. Fields in the Status-File Header.. 212

Table 37. gfdRemoteRequest Commands... 221

Table of Contents

xi

Table 38. Event Identifiers and Default Actions .. 224

Table 39. Status Record Fields ... 256

Table 40. Status-Table Functions ... 259

Table 41. CP_States ... 262

Table 42. Fields in the Status-File Header.. 270

Table 43. GFSH Commands... 291

GDK Version 5.0 Programming Reference Manual

xii

Table of Contents

xiii

List of Figures

Figure 1. GDK Architecture ... 10

Figure 2. System Services Control Panel.. 12

Figure 3. GRT Events... 162

Figure 4. GRT API Structure.. 163

Figure 5. Event Breakpoints ... 196

Figure 6. Bits in the gfxStatus Field ... 260

Figure 7. CP_ States ... 261

1

Preface

Purpose

The purpose of this manual is to describe Dialogic’s GDK system architecture,
detail the programming models and their associated Application Programming
Interface (API) function calls, and provide instruction on fax application
programming.

Audience

This manual is designed for fax and voice software programmers developing on
the Microsoft Windows platform. Familiarity with computer telephony,
C-language programming and Microsoft Windows software development is highly
recommended.

Using This Guide

If you are new to fax application development, read Chapter 1 for an overview of
fax technology and Chapter 2 for an introduction to the fax architecture.

If you are a fax developer new to Dialogic CP Fax technology, read Chapter 2
before reading Chapters 4 and 5.

If you are already developing fax software using the DOS, OS/2 or UNIX versions
of GDK, read Chapter 5 for programming model information and function call
descriptions.

Conventions

The conventions used in this manual follow:

• Code fragments are shown in courier text:

 gfqFindFirst()

GDK Version 5.0 Programming Reference Manual

2

• Function calls are shown in Arial text:

gfqFindFirst()

Notes and cautions are shown as follows:

NOTE: Text of note

CAUTION: Text of caution

Reference Documentation

• Error and Status Codes Manual

• GDK Installation and Configuration Guide for Windows

3

 1. Introduction to Fax Technology

 Overview

 This chapter provides a brief overview of fax technology. This chapter discusses
the following:

• History of fax

• Understanding fax technology

• Advantages of computer-based faxing

• Standards

• Fax applications

 History

 Although the first successful fax was actually patented in 1843, it wasn’t until the
1930s that fax systems had evolved into the form we recognize today. In 1966 the
first fax standard was adopted: EIA Standard RS-328, Message Facsimile
Equipment for Operation on Switched Voice Facilities Using Data
Communication Equipment. This standard made more generalized business use of
the fax possible. It became known as the Group 1 standard.

 In 1978, the Consultative Committee for International Telephone and Telegraph
(CCITT) came out with the Group 2 recommendation. The fax had achieved
worldwide compatibility, and this led to a more generalized use of fax machines
by businesses and the government.

 By the time the Group 3 standard arrived in 1980, fax was well on its way to
becoming the everyday tool it is today. This digital fax standard opened the door
to reliable high-speed transmission over telephone lines.

GDK Version 5.0 Programming Reference Manual

4

 Understanding Fax Technology

 The major elements of fax technology include:

• Elements of a fax call

• Compression

• Resolution

• Routing

 Elements of a Fax Call

 The fax call elements consist of five phases:

• Establishing the call

• Pre-message procedure

• In-message procedure and message transmission

• Post-message procedure

• Releasing the call

 Establishing the Call (Phase A)

 The first stage occurs when the transmitting and receiving units connect over the
telephone line, recognizing each other as fax machines.

 Pre-Message Procedure (Phase B)

 In this stage, the answering machine identifies itself in a burst of digital
information packed in frames conforming to the High-Level Data-Link Control
(HDLC) standard. The caller then responds with information about itself.

 In-Message Procedure and Message Transmission (Phase C)

 This is the actual fax transmission part of the procedure. The in-message
procedure and message transmission occur simultaneously. The in-message
procedure deals with synchronization, line monitoring, and problem detection.
Message transmission is the actual data transmission. Once a page/file has been
transmitted, the next phase begins.

1. Introduction to Fax Technology

5

 Post-Message Procedure (Phase D)

 After a page has been transmitted, the sender and receiver revert to the pre-
message procedure modulation rate. If the sender has more pages to transmit, the
in-message procedure and message transmission (Phase C) begins again for the
next page. After the last page is sent, the sender transmits either an End of
Message (EOM) frame, or an End Of Procedure (EOP) frame to show it is ready
to end the call. The receiver then sends a confirmation.

 Releasing the Call (Phase E)

 Once the call is complete, the side that transmitted the last message sends a
Disconnect (DCN) frame and hangs up without waiting for a response.

 Compression

 One of the most important components of a successful modern fax call is
compression technology. The various compression encoding schemes used for fax
remove redundancy from scanned material and restore the data at the receiving
end. Using any of the compression schemes shortens transmission times and
reduces errors.

 Resolution

 Fax images are made up of dots. Resolution refers to the size and density of the
dots used to portray an image. There are two resolutions widely used by fax
machines and fax boards: standard and fine. Fine mode contains twice as many
dots per inch than the standard mode, which means the quality of the image on the
receiving end is clearer. However, with more dots per inch, the file is bigger, and
it takes longer to transmit the file across the telephone line.

 Routing

 Recent enhancements such as fax security and private mailboxes have created a
need for a routing mechanism. Three types of routing mechanisms include:

• Dual-Tone Multi-Frequency (DTMF)

• Direct Inward Dialing (DID)

• T.30 subaddress

GDK Version 5.0 Programming Reference Manual

6

 DTMF Routing

 DTMF routing uses the buttons on a touch-tone telephone. The disadvantage of
DTMF is that the sender needs an extension number as well as a telephone
number.

 Direct Inward Dialing

 DID is generally considered the most foolproof, transparent routing alternative.
All the sender does is dial a single telephone number, and the fax is sent directly
to the recipient’s workstation.

 T.30 Subaddressing

 A subaddress encodes a numeric string identifying the recipient into the
information exchange that occurs in Phase B of the fax call.

 Advantages of Computer-Based Faxing

 Computer-based faxing (CBF) allows PC users to send and receive faxes using
graphic and text files. Advantages of computer-based fax include:

• High-quality output

• Convenience

• Progress monitoring

• Time and effort savings

 High-Quality Output

 CBF generally provides a higher quality document than the traditional fax
machine. With CBF, the computer can convert the document into an image
without degrading the sharpness, which can occur with the scanners in fax
machines. This conversion improves the faxed image’s appearance.

 Convenience

 CBF is more convenient to use than fax machines, especially for documents
created or stored in computer systems. It is easier to send a fax directly from the

1. Introduction to Fax Technology

7

computer than to print a copy of the document and manually send it from a fax
machine.

 Progress Monitoring

 CBF can monitor the progress of the outgoing fax transmission, and give you
status on each transmission depending on the outcome of the call (i.e., sent, busy,
failed, etc.).

 Saves Time and Effort

 Computer-based fax saves valuable time and effort. The name and fax numbers of
recipients only need to be entered once in the computer. Then, any time you want
to send a document to someone whose “fax address” is stored in the computer,
you can easily select the name in the computer instead of re-entering the phone
number into the fax machine. This feature is especially useful when sending out
multiple copies of documents; no more standing at the fax machine sending faxes
one at a time.

 Standards

 The ITU-T is one of four permanent parts of the International
Telecommunications Union (ITU), based in Switzerland. It issues
recommendations for standards applicable to modems and other areas. The
standards it recommends are generally accepted and adopted by the fax/modem
industry.

 In order for a fax device to be allowed to connect to the public telephone system
in another country, it must first be approved by the national Post Telephone and
Telegraph (PTT) administration. Standards are available from this website:

 http://www.itu.ch/.

GDK Version 5.0 Programming Reference Manual

8

 Fax Applications

 As fax technology continues to develop, new applications appear to fill the needs
of users. The major growth areas for CBF include:

• E-mail Fax Gateways

• Mini/Mainframe Fax Servers

• Fax Store-and-Forward Systems

• Image Systems

• Integrated Voice/Fax Systems

• Vertical Fax Applications

• Public Fax Services

9

 2. GDK System Architecture

 About GDK for Windows

 GDK consists of a fax channel and communication software, which provides many
features and capabilities for fast, convenient fax transactions. Some of the
standard features include:

• Sending one or more faxes to multiple locations (broadcasting)

• Sending files using binary file transfer (T.434)

• Recording the status of incoming and outgoing faxes

• Sending and receiving a fax on the same phone call (turnaround polling)

• Setting the fax transmission rate

• Delaying fax transmission

• Using T.30 subaddressing

 The GDK system software provides the subsystems required to develop a fax
application. The system software includes a fax subsystem compatible with
Windows NT. The fax subsystem consists of the Dispatcher, the Queue file, the
firmware, and the programming tools to control these components. The GDK
contains the functions you need to build a fax application.

GDK Version 5.0 Programming Reference Manual

10

GFQ GRT

Dispatcher

Applications

GammaLink
Queue File

Application Layer

GammaLink API

Fax Subsystem

Hardware
GammaLink

Board
GammaLink

Board
GammaLink

Board

Figure 1. GDK Architecture

 Refer to Chapter 5, “Programming Models”, for a complete description of the
base GDK functions.

 Refer to Chapter 6, “Developing with PEB”, for a description of the functions
needed for PEB routing.

 Refer to Chapter 7, “Developing with SCbus”, for a description of the functions
needed for SCbus routing.

 Refer to Chapter 8, “Fax Status Files”, for a description of GDK system status and
configuration functions.

 Minimum System Requirements

 The following hardware and software are required:

• Dialogic CP Fax Series board (s)

• GDK for Windows software, version 5.0 or later

2. GDK System Architecture

11

• Pentium® system

• Microsoft Windows NT operating system, (workstation or server) version 4.0
or later, or Microsoft Windows 2000

About the Dialogic CP Fax Series Hardware

Each fax channel (or cell) consists of a microprocessor-based facsimile modem,
RAM, CPU, and a telephone network interface. These components allow each
channel to function as an independent, computer-based subsystem interfacing with
the host computer.

There are two types of CP hardware: analog and digital. The analog CP boards
have lower channel density and contain on-board telephone network connectors.
The digital CP boards have much higher channel density, but require a separate
telephone network interface device to communicate with the PTT system.

Most of the analog CP product line is available internationally, depending on the
homologation status of the hardware model. The digital boards do not need
homologation certification, as they do not have an on-board telephone connector.

Firmware Features

The faxcell firmware included with the software is for use in the US and in
international countries. Refer to the Documentation directory of the product CD
for additional updated information about the firmware.

GDK System Components

Device Drivers for ISA and PCI

The software contains two kernel-mode device drivers. The ISA bus device driver,
glfxisa.sys, only communicates with the Dialogic CP Fax Series ISA boards; and
the PCI bus device driver, glfxpci.sys, only communicates with the Dialogic CP
Fax Series PCI boards.

GDK Version 5.0 Programming Reference Manual

12

Firmware Download Utility

The firmware download utility, %gfax%\glfxdldr.exe, is used by the Dispatcher
during service startup to download the GDK fax channels. This utility can also be
run from the command-line in a console window. For trouble-shooting purposes,
the option ‘-v’ can be appended to the utility name to see verbose output when
running from a console window. The filename stored for the firmware command
can be configured with the Dialogic GDK Configurator utility. Refer to the GDK
Installation and Configuration Guide for Windows for more information.

The GDK System Service (the Dispatcher)

The GDK System Service (also called the Dispatcher Service) is the operating
system dependent interface to both the fax channels and to the API library. This
service can be configured from the Control Panel Services Applet (Figure 2).

Figure 2. System Services Control Panel

You can start and stop the GDK System Service from the Control Panel Services
Applet, the Start GDK System Service Program in the GDK program group, or
from a Command Prompt console window.

2. GDK System Architecture

13

The GDK System Service outputs information to the following files:

%GFAX%\gfdNT.log Provides startup and shutdown status information, as
well as automatic board detect results and
configuration files created.

%GFAX%\gfax.$co Dispatcher "stdout" output. This file is kept open until
the Dispatcher exits.

GDK Dispatcher as a Windows System Service

There are two processing models: batch processing mode and interactive
processing mode. The Dispatcher acts as a fax scheduler in the batch processing
mode, finding an available line on any GDK port in the chassis and sending
records to the CP Fax board for transmission.

In the interactive processing model, the Dispatcher is the intermediary between
the application and the GDK ports. The application is the fax scheduler. It can be
programmed to NOT post the completed queue record to the queue file.

The Dispatcher supplies queue records to the firmware. It also can reserve buffer
space in RAM for these records to improve system performance. The number of
record buffers in a system is configured by the BUFFERS command. The
recommended buffer number is two per fax channel, and each record requires 516
bytes.

The QUEUET command determines the time in seconds that the Dispatcher scans
the Pending List for new jobs. When the QUEUET timer expires, the Dispatcher
starts at the beginning of the Pending List. It then loads and marks “BUSY” as
many queue records that are ready for transmission as it has buffers available.

When the record is passed onto the channel, an additional bit is set indicating that
the record is off host. When the system sees a record with this bit setting, it does
not disturb the record while it is in a buffer or being processed by the firmware.
Several records can be marked BUSY even when there is only one fax channel in
the system.

Although the original record may be undisturbed in the Queue File, a record
marked “BUSY” indicates that a copy of the original is in the record buffer of the

GDK Version 5.0 Programming Reference Manual

14

Dispatcher or is held by the firmware. The Dispatcher overwrites the original
record with updated information when the transaction completes.

Once a remote site confirms a transmission, the Dispatcher sends a confirmation
to the Queue file. If a transmission fails, the dispatcher notifies the Queue file,
which records the appropriate error message for the failed transaction.

Network Drive Access

The GDK System Service must be configured to provide access to network drives
using drive letter notation (i.e., "p:\public\fax\received\..."). These network drives
can be on either Novell or Microsoft servers. For the network drive access to
work, the Dispatcher has to be logged into the server where files are located (for
sending), and where they will be located (for receiving). This task must be
performed after the installation completes. Follow these steps to log the
Dispatcher into the server:

1. Activate the Control Panel icon and select Services.

2. Select GDK System Service. After pushing the Startup button, a dialog box
appears, allowing the user to select the Startup Type (Automatic, Manual or
Disabled). Below these choices is the section called Log On As. The default
install specifies “System Account.”

3. Choose the radio button for “This account.” This activates the three entry
boxes. Type in a user name whose account allows access to the server in the
first box. The second box requires the password, and the third is password
confirmation box.

The GDK System Service

The GDK Service depends on the successful start of the device driver service and,
in certain configurations, the Dialogic service. The GDK System Service
configures the fax channel and the GDK system using the information stored in
the registry.

GDK Service Dependencies

The GDK will configure the GDK System Service dependencies based on the CP
Fax Series hardware detected in the system. The GDK System Service depends
on:

2. GDK System Architecture

15

• ISA driver service, glfxisa, if ISA fax hardware is detected

• PCI driver service, glfxpci, if PCI fax hardware is detected

• Dialogic service, if digital fax boards (i.e. fax hardware with CP4/SC,
CP6/SC or CP12/SC board types) are detected

 The hardware driver service dependencies are required for communication with
the CP Fax Series hardware. The Dialogic service dependency is required for an
SCbus-system configuration.

 About the Firmware

 The firmware is the on-board software that manages the fax transactions and
image conversions for each fax channel. The firmware drives the GDK system,
telling the GDK System Service when it is ready for more work and when it needs
to be serviced. The firmware is downloaded on to each fax channel during GDK
system startup.

 About the Queue File

 The Queue File operates as the database for the Fax subsystem in the batch
processing mode. It stores the fax transmission(s) until the Dispatcher requests it.
The Queue File stores future transactions as well as results of past transactions.
Transmission statistics regarding each completed transaction are stored in the
queue record. For more information about the Queue file, see Chapter 4.

 GDK System Features

 TIFF Capability

 GDK supports Group 3 1-D and 2-D T.4, and Group 4 T.6 compression. The type
of compression may be selected for both sending and receiving fax files on each
fax channel individually. The selection is controlled by the following:
GFXFORM, GFXSTWOD, GFXRT6, GFXRTWOD, GFXST6.

GDK Version 5.0 Programming Reference Manual

16

 When sending files, GDK supports these formats:

• ASCII text

• TIFF Type 3

• TIFF Type 3 2-D

• TIFF Type 4

• PCX

The file format is determined by the header of the data.

Tag Fields Supported

GDK currently supports and produces the tags for the TIFF fields listed in
Table 1.

NOTE: Only one TIFF strip is generated per fax page. Each page may be a
separate, sequentially-named file or a multiple-image TIFF file.

Table 1. GDK TIFF Tags

Tag No. Name Data Type Description

---1 ByteOrder int2 Order of bytes:

II (0x4949) = Intel; required for
GDK

MM (0x4D4D) = Motorola

254 NewSubFileType long3 A 32-bit flag indicating the type of
data contained in this subfile.

256 ImageWidth long2 Number of pixels per scanline.

1728 for A4 or letter

2432 for A3

2048 for B4

257 ImageLength long2 Number of scanlines in image.

258 BitsPerSample unsigned2 Number of bits per pixel sample;
only “1” for fax.

2. GDK System Architecture

17

Tag No. Name Data Type Description

259 Compression unsigned2 Type of compression. Possible
values:

1 = no compression
(not supported)

2 = CCITT G3 1-D, no EOL
(not supported)

3 = CCITT 1-D, with EOL or
1-D/2-D combined

4 = CCITT G4

5 = LZW compression
(not supported)

32773 = PackBits (not supported)

262 PhotoInterpret unsigned3 Photometric interpretation.
Possible values:

0 = black on white (Default)

1 = white on black

2 = RGB scheme (not supported)

266 FillOrder unsigned2 Order of the image bits, in bytes.
Possible values:

1 = most significant bits are filled
first

2 = least significant bits are filled
first (Default)

269 DocName char3 The name of the document from
which this image was scanned.

270 Description char3 A comment about the image.

273 StripOffset long2 For each strip, the byte offset of
that strip with respect to the
beginning of the TIFF file.

277 SamplesPerPixel int2 Number of samples need to define
a pixel. Possible values:

1 = monochromatic data (Default)

3 = color data (not supported)

GDK Version 5.0 Programming Reference Manual

18

Tag No. Name Data Type Description

278 RowsPerStrip long2 Number of scanlines per strip.
Multiple strips are not supported.

279 StripByteCounts long2 Length of a strip.

282 X_Resolution int2 Pixels per resolution unit in the
horizontal direction. Default = 204.

283 Y_Resolution int2 Pixels per resolution unit in the
vertical direction. Default values:

98 = standard resolution

196 = fine resolution

286 OffsetX long3 Offset of the left side of the image,
with respect to the left side of the
page, in Resolution Units.

287 OffsetY long3 Offset of the top of the image, with
respect to the top of the page, in
Resolution Units.

292 Group3Options long4 32-bit flag describing options.
Possible bit values:

0 = 1-D compression used
(Default)

1 = 2-D compression used

2 = uncompressed data may be
used (not supported)

4 = guaranteed byte alignment

293 Group4Options long5 32-bit flag describing options.
Value must be zero.

296 ResolutionUnit int3 Unit of measurement to be used
with X_Resolution and
Y_Resolution. Possible values:

1 = no unit of measurement (not
supported)

2 = inches (Default)

3 = centimeters

2. GDK System Architecture

19

Tag No. Name Data Type Description

297 CurrPageNum int3 Page number and number of pages
in a multiple-page file.

326 BadFaxLines long3 Number of scanlines with an
incorrect number of pixels (TIFF
Class F).

327 CleanFaxData int3 Describes how the data was
cleaned. Possible values (TIFF
Class F):

0 = data contains no lines with
incorrect pixel counts or
regenerated lines (Default)

1 = lines with incorrect pixel count
were regenerated on receipt

2 = lines with incorrect pixel count
existed, but were not
regenerated by receiving device

328 ConsecutiveBad
FaxLines

long3 Maximum number of consecutive
fax lines that contain an incorrect
number of pixels (TIFF
Class F).

1 Not defined as a tag

2 Required for GDK

3 Optional

4 Recommended for compression 3 only (see TIFF Tag No. 259)

5 Recommended for compression 4 only (see TIFF Tag No. 259)

Filenaming Convention

GDK has a number of filenaming conventions, which depend on the type of file.
The following discusses these conventions.

GDK Version 5.0 Programming Reference Manual

20

Received Faxes

A received fax file is given the following default name:

a001p001.tif, where “a001” is the fax-call number, “p001” is the page number of
the document, and the extension “tif” indicates that this is a TIFF file. For
example:

a004p008.tif indicates the fourth call received and the eighth fax page

a002p001.tif indicates the second call received and the first fax page

a004p004.tif indicates the fourth call received and the fourth fax page

In multiple-channel systems, the first letter will be an “a” for channel 1, “b” for
channel 2, and so on. Depending on the filename format, multiple pages can be
received per call (Table 2). The default filename format can be set by the
GFXRECVPATH command or through the queue record filename and operation
fields. The operation field must be set to ANSWER_DEFAULT. For more
information, see Chapter 4.

Table 2. Filename Formats for Receiving Multiple Pages

Filename Format No. of Page/Call

f0001p01.tif Up to 99

f001p001.tif Up to 999

f01p0001.tif Up to 9999

Receive Faxes in Multiple-Image TIFF Files

Multiple-page faxes may also be saved in one multi-page TIFF file. This option is
turned on using the gfccontrol 36 command. For more information, refer to
Chapter 3.

Multiple-Page Documents

The GDK channels automatically sends any filename and includes sequentially-
numbered pages without them being explicitly specified. For example, to fax a
three-page document named:

2. GDK System Architecture

21

file001.tif
file002.tif
file003.tif

only the filename of the first page (file001.tif) should be specified for the filename
to send.

If the filenames of all three pages are specified, the recipient will first receive
these pages:

file001.tif
file002.tif
file003.tif

then:

file002.tif
file003.tif

and finally:

file003.tif

This is because GDK automatically looks for subsequently named files.

Controlling Next File Send Option

This feature lets you indicate whether to send the next file in the file sequence.
When files are stored, each page associated with the file is saved using a
numbering sequence (i.e., fax001.TIF, fax002.TIF, or data001.DAT,
data002.DAT etc.).

You can specify whether or not to send the next file in the sequence by appending
a command-line option to the end of the filename. This feature is enabled or
disabled on a job-by-job basis.

GDK Version 5.0 Programming Reference Manual

22

Table 3 shows the next file send command options.

Table 3. Next File Send Options

File Type Command Line
Options

Description Default Setting

Single-page Fax
File Sequence

-NP0 Disables sending
of the next file in
the sequence

Single-page Fax
File Sequence

-NP1 Enables sending
of the next single-
page file in the
sequence.
Specifies that
other files in the
sequence will be
sent (if any others
exist).

Default single-
page fax file
setting

Multi-page Fax
File Sequence

-NP0 Disables sending
of the next file in
the sequence

Default multi-page
fax file setting

Multi-page Fax
File Sequence

-NP1 Enables sending
of the next file in
the sequence.
Specifies that
other files in the
sequence will be
sent (if any others
exist

BFT File
Sequence

-NP0 Disables sending
of the next file in
the sequence

Default BFT file
sequence setting

2. GDK System Architecture

23

File Type Command Line
Options

Description Default Setting

BFT File
Sequence

-NP1 Enables sending
of the next file in
the sequence.
Specifies that all
other file in the
sequence will be
sent (if any others
exist).

Binary File Transfer

GDK supports Binary File Transfer, which conforms to the T.434 BFT standard
protocol. BFT reception can be enabled for T.434 BFT on a per-channel basis
with the following command:

GFXFAXCONTROL 1020 1

or on a per-job basis by setting the queue record protocol field.

BFT transmission can be enabled per channel with the following command:

GFXFAXCONTROL 1021 2

or on a per-job basis by setting the queue record protocol field.

NOTE: The GFXECM command must be set in order for BFT to work. If file
transfer is used, the received filename will be a list of files in the format
xxxxXFER.FLS. This list will contain the name of the file that was
received, which will be the same as the original sent filename, as long as
the DOS xxxxxxx.yyy format is observed, and the filename does not
already exist on the target drive. The “f001p001” filenaming style is used
if the sent filename already exists, but the original filename will be
included in parentheses next to the filename that was written in the list.
For example, A001XFER.FLS could contain:

c:\RECV\TEST.TXT
c:\RECV\A001P001.TIF (TEST.PCX)

GDK Version 5.0 Programming Reference Manual

24

Routing

Recent enhancements such as fax security and private mailboxes have created a
need for a routing mechanism. Four types of routing mechanisms include: Dual-
Tone Multi-Frequency (DTMF), Direct Inward Dialing (DID), T-1 digit
collection, and a T.30 subaddress.

About the DTMF Capability

Most CP Fax Series boards have the ability to decode and store incoming touch-
tone (DTMF) digits. With the ability to capture incoming DTMF digits,
applications can be built to utilize this information for specialized tasks, such as
sending out information in response to incoming calls.

For example, if an information service wanted to fax weather maps on request, it
could assign DTMF digits to specific geographic areas. A client wanting a weather
map of Northern California, for example, would be instructed to call a certain fax
number and, at the tone, enter the assigned DTMF digits. GDK would receive the
call and record the digits. The application would check the GDK records, load the
transaction, and send the map to the caller’s fax machine. Additionally,
applications such as a network fax server can use this feature to provide security
of information, because a workstation may be assigned specific digits. For
example, only the intended recipient can view faxes sent to these digits; thus,
access to incoming information can be controlled.

How GDK Works With DTMF

When a call is made to a CP Fax Series board that can detect DTMF tones, the
board responds with a tone that is different from the fax tone, which signals the
caller to enter the DTMF digits. After the DTMF digits are entered, the board
responds with the fax tone, which signals the caller to activate the fax machine to
send the fax. The CP Fax board receives the fax, and terminates the connection. If
no tones are received, it waits for a designated time period and then continues
with fax tone, assuming that a fax is on the other end.

After the connection is terminated, the fax board creates a queue record containing
details of the transaction, including the DTMF digits. If the Dispatcher is running
in batch processing mode, the queue record is then filed in a database called the
Queue File. If the Dispatcher is running in interactive processing mode, the queue
record is sent directly to the application. From there, an application takes over and
uses the information stored in the queue record to carry out the next task.

2. GDK System Architecture

25

To take advantage of the DTMF digits, callers must be instructed to use the
appropriate digits at the DTMF tone. However, if a caller or an unattended fax
machine transmits at the DTMF tone, GDK will accept the transmission and post
the transaction without digits to a queue record. If this occurs, the fax must be
routed manually.

Using the DTMF Capability

DTMF digit collection is a channel-specific feature. The following commands
need to be set for each channel to enable the use of DTMF:

GFXDIGITS Sets the number of DTMF tones that can be entered by
a sender

GFXDTMFTIMEOUT Sets the timeouts for waiting for DTMF input

GFXDTMFTONE Specifies DTMF tone to issue when answering a call

Storing Routing Digits

When a fax is received, GDK stores the DTMF digits in the user_id field of the
corresponding queue record in the Queue File. Then, an application can use this
information for specialized tasks. A network fax server, for example, could use
these digits to route incoming faxes.

The user_id field can contain a total of 34 characters. However, storage for only
24 characters is available, because other information, such as the user
identification, may be stored in this field. (If no user identification is specified,
“SYSOP” is used as the default.) GDK can handle up to 63 incoming digits;
however, this will not be necessary in most cases. When it is necessary to store a
large number of routing digits (such as a credit card number or a security code),
this information will be stored on disk as a file. If the number of digits received is
larger than the queue record can hold, a file will be created containing the digits
followed by a null character. The decision to create a file is made on a call-by-call
basis, because terminated input may not contain the quantity of digits specified by
the GFXDIGITS command.

The name of the file that is created is appended to the user_id field as follows:

;D=@<filename>

GDK Version 5.0 Programming Reference Manual

26

where “@” signifies that a filename is being given. The filename will be in the
form:

F000001.DGT

where “F” is the channel number. The filename digits increment for each
subsequent transaction.

Direct Inward Dialing (DID)

Direct Inward Dial (DID) capability is only available to CP Fax Series hardware
with a DID interface. Refer to the CPD/220 hardware installation manual for
further information on configuring your system for use with DID lines and about
DID lines in general. The major advantage of routing using DID service is
simplicity for the caller. The caller dials a single number and the central office
(CO) extracts the routing digits from the inputted number, rather than have the
caller input the digits at the DTMF tone after dialing the fax number. Enabling
DTMF capability and the process of storing the routing digits are the same as
described above, with the exception of no tone being needed to prompt the user.
The GFXDTMFTONE command should not be used with DID setups.

T-1 Digit Collection

The CP Fax Series board is also capable of collecting digits automatically from
the telephone company using a T-1 trunk. A CP4/SC, CP6/SC, or CP12/SC board
is connected to a T-1 interface board via a PEB in a fax-only system (i.e., no voice
boards on the PEB). The most common telephone interface board for this
configuration is the Dianatel EA24. The commands to set up digit collection are
the same as for the DID, including not using the GFXDTMFTONE command.

T.30 Subaddressing

T.30 subaddressing allows a string of characters and numbers to be sent with the
fax. This string is known as the subaddress. It also allows fax servers to do routing
based on this subaddress.

GDK supports T.30 subaddressing, but it is disabled by default. Add the following
command to enable T.30 subaddressing for each channel requiring this routing
capability:

GFXFAXCONTROL 71 1

2. GDK System Architecture

27

Sending a Subaddress

The subaddress is appended to the end of the dialing string starting with a #.

NOTE: The # is the default string delimiter. The start string delimiter can be
configured using the GFXFAXCONTROL 73 command.

For example, to send a fax to 555-1212 with a subaddress of 9873, the appropriate
dialing string should be: 555-1212#9873.

Receiving a Subaddress

The subaddress is stored in the USERID field of the queue record. To indicate
that the USERID field contains a subaddress, the USERID field will start with
S:=.

For example, if a fax was received with a subaddress of 9876, it would be
represented in the USERID field as SYSOP;S:=9876.

Recording Line Noise

In the Answer-and-Receive mode, GDK can record the line noise and the status of
telephone-line signals received during training. This information can then be used
to determine the quality of a telephone line. If there is any fluctuation in the
readings, be sure to receive a sufficient number of faxes to determine whether a
problem is transitory or chronic.

Transparent PRI Support

Transparent PRI Support is an easy way to support the High-Density PRI
solutions. This allows FSP developers to create ISDN PRI solutions to handle the
PRI interfaces and the FAX resources without re-writing application code. The
registry parameters that have been added to provide the Transparent PRI Support
are defined in the New Parameters section in Chapter 3, Configuration Commands
of this guide.

GDK Version 5.0 Programming Reference Manual

28

GDK System Configuration

The configuration parameters for the GDK software are now stored in the registry.
The configuration can be changed using the Dialogic GDK Configuration utility.

Control Panel Configuration Utility

The automatic board detection and configuration processes are controlled by the
services control panel applet. For more information, refer to the GDK Installation
and Configuration Guide for Windows.

Setting the Country Code Properly

The COUNTRY command is required by the GDK firmware for proper operation
of the fax channel. The COUNTRY parameter defines the country where the fax
board has been designed to operate in, not the country where the board is
currently installed. The firmware needs this information to select the correct
electrical characteristics and PTT modem parameters.

NOTE: The correct COUNTRY parameter code should be the country or
countries specified on the hardware packaging materials. If the packaging
materials specify more than one country, set the COUNTRY parameter
code to the country in which the board is installed (the country must be
one of the approved countries).

If the fax board is connected to a programmable PBX, the correct COUNTRY
parameter code will depend on the following:

• the line characteristics generated by the PBX

• the country or countries for which the board has been designed

If the fax board has not been designed to recognize the line characteristics of the
telephone network connection, it will not function properly.

Country Codes and Call-Progress Error Codes

Country codes are the prefixes used for international calls. They also serve as
configuration values for the GDK software, setting up the date strings that are in
the correct format for the specified country and activating country-specific dialing
schemes in the software. GDK provides call-progress error codes that can help

2. GDK System Architecture

29

debug international calls. Refer to the Error and Status Codes Manual for a list of
error codes.

Enabling Debug

Traditionally the GDK System Service has only allowed debug logging to a text
file called %GFAX%\GFAX.$DL. Enabling debug is accomplished by the
following command:

HKEY_LOCAL_MACHINE\SOFTWARE\GammaLink_global

DEBUG

The DEBUG command is configured by one or two parameters whose mask
values are defined in Table 4 and Table 5.

In addition to the DEBUG command, more options are available. With this
release, the GDK System Service logs debug trace information to shared memory
and only saves debug log information to file, if configured to do so. The level of
trace information logged to shared memory and the level of trace information
logged to a text file is separately configurable through various bit mask values. In
Transparent PRI mode, the GDK system also provides access to Dialogic’s PRI
Trace logging functionality.

In addition to the existing DEBUG command, logging is now enabled and
configured by setting the following commands:

HKEY_LOCAL_MACHINE\SOFTWARE\Dialogic\Gammalink\Debug

UseSRAM

SRAMMask

LogFile

LogFileMask

DebugToSRAM

UseGFAX$DL

GDK Version 5.0 Programming Reference Manual

30

Debugging is enabled by first setting the UseSRAM command to a string value of
either "yes" or "no".

NOTE: If UseSRAM is set to "no", none of the other debug commands,
including the existing DEBUG command, are enabled.

The level of debug information sent to shared memory is configured by setting
SRAMMask to a bit mask whose value is defined by OR’ing the bits specified in
Table 6. Saving debug trace information to a text file is enabled by setting the
LogFile command to a full path and filename. The level of debug information
written to the text file is configured by setting the LogFileMask to a bit mask
whose value is defined by OR’ing the bits specified in Table 6. See GDK 5.0 New
Parameter Summary for more information about these commands.

NOTE: Do not save log information to a text file during normal operations; as it
is disk intensive and will grow too large.

The functionality of the DebugToSRAM and UseGFAX$DL commands depend
on the traditional DEBUG command being enabled. Setting the DebugToSRAM
command to "yes" will include traditional DEBUG information in shared memory.
Setting UseGFAX$DL to "yes" will save only traditional DEBUG information to
a text file called %GFAX%\GFAX.$DL. These two commands are provided to
maintain backward compatibility with the traditional DEBUG mechanism of
logging to a text file.

The traditional DEBUG command provides system level and fax call progress
diagnostic information. The level of detail and category of information provided is
determined by the DEBUG command’s mask value. The DEBUG command can
contain two parameters; the second is optional. The first parameter specifies
system level trace information; the second parameter specifies channel (or
firmware) level trace information.

The debug mask value specifies the type and level information written to the log
file. Table 4 defines the mask values for the DEBUG command’s first parameter.
Table 5 defines the mask values for the DEBUG command’s optional second
parameter.

NOTE: The DEBUG command requires the high-order byte and the low-order
byte of each parameter to be the same.

2. GDK System Architecture

31

Table 4. Mask Values for DEBUG Parameter 1

Category Mask Description

Global diagnostics 0x01 Enables the logging of
serious error messages.

Board messages 0x02 Enables board debug
messages.

Polling diagnostics 0x04 = Type only

0x08 = Type and
parameters

0x0C = Full trace

Reports every request the
board makes of the
System Service.

Reports additional
parameters for each
transaction.

Reports every poll along
with details of internal
packet.

Messaging diagnostics 0x10 = Connections

0x20 = Transactions

0x30 = Full trace

Reports the results of
event notification and
remote status and control
operations. (It is
recommended that 0x30
not be used.)

Queue file diagnostics 0x40 = Transactions

0x80 = All messages

0xC0 = Full trace

Reports accesses to the
Queue file.

GDK Version 5.0 Programming Reference Manual

32

Table 5. Mask Values for DEBUG Parameter 2

Category Mask Description

Global diagnostics 0x0100 Enables error messages
from the card and from
failed faxes. Shows sent
and received CSID
values, as well as the
phone number dialed.

T.30 diagnostics 0x0400 Enables all the above
plus DIS bits and DCS
bits sent and received.
Also logs messages about
image compressions and
conversions written to
disk.

Total diagnostics 0x0800 Enables all the above
plus information in the
queue record before
being processed. Also
logs information on the
file and image being sent.

Table 6. Mask Values for SRAMMask and LogFileMask

Mnemonic Bit Description

DMASK_ERROR 1 A critical error occurred
either at FAX or PRI
level

DMASK_DIALERROR 1 Failures on Dialogic
functions

DMASK_GENERAL 2 General Information
(e.g. Number of
channels, Version
numbers)

2. GDK System Architecture

33

Mnemonic Bit Description

DMASK_REGISTRY 3 Registry (read / write)
related activity

DMASK_ERR_REGISTRY 3 Registry error related
info

DMASK_GLCOMMAND 4 GDK related commands
(e.g.
GFXSHUTDOWN,
GFXRECORD, …)

DMASK_GLQSUBMQREC 5 On-hold, Free related
activity

DMASK_GLPIPEOP 6 Pipe related activity

DMASK_GLMSG 7 Device related activity

DMASK_SCBUS 8 SCbus related activity

DMASK_SCMANAG 9 Resource management
activity

DMASK_DIALMSG 10 Dialogic General
information (ISDN
frame, D-Channel, …)

DMASK_DIALCMD 11 Dialogic commands
related information

DMASK_SPECIAL 12 Dialogic special
functions

DMASK_DIALEVENT 13 ISDN Event related
information (all ccev
events)

DMASK_DIALCC 14 Call control related
information (all cc
commands)

DMASK_DIALINFO 15 Dialogic / GDK
interaction and board
handles info.

DMASK_FIRMWARE 16 Debug information
specific to Firmware

GDK Version 5.0 Programming Reference Manual

34

Mnemonic Bit Description

DMASK_DISPATCHER 17 Debug information
specific to Dispatcher

NOTE: There are 32 possible Debug Levels. Undefined Debug levels are
reserved for future use.

Enabling Transparent PRI Debug

When Transparent PRI mode is enabled in the GDK System Service, the
UseSRAM command is automatically enabled. Trace information about the ISDN
and FAX resources is provided during system startup and initialization (this
information is not outputted in non-ISDN mode).

In addition, the Dialogic ISDN cc_Trace logging mechanism is available by
setting the following commands:

HKEY_LOCAL_MACHINE\SOFTWARE\Dialogic\Gammalink\Debug

TraceTrunkNumber

TraceFileName

ISDN trace is enabled by setting TraceFileName to a full path and filename and
by setting TraceTrunkNumber to a valid ISDN trunk. The resultant file from the
TraceFileName command can be used as input to Dialogic’s PRITRACE tool.

Debug Command Examples

To obtain debugging information for two categories, use the logical OR to
combine the hex values. For example, to get polling diagnostics for type only, the
first four digits of the mask are 0x04. Then, to get polling diagnostics for both
type and parameters, the mask is 0x08. A full trace of polling diagnostics would
be as follows:

0x04 OR 0x08 = 0x0C

where: the first byte is to file and the second byte is to screen.

2. GDK System Architecture

35

Logging of general trace information and serious error messages can be enabled
with the following parameter:

DEBUG 0x0101

The recommended debug level for most diagnostic purposes is the following mask
value:

DEBUG 0xb7b7

To obtain additional fax protocol diagnostics, also set the second DEBUG
parameter:

DEBUG 0xb7b7 0xc0c0

Debug Setting Dependencies

Two parameters have been added that control how the Debug information is
logged:

• UseSRAM

• DebugToSRAM

The UseSRAM parameter lets you specify whether to log Debug levels with a bit
setting of 1 to the Shared Memory. If the parameter is set to “yes” only the debug
levels having a corresponding mask set to 1 in the bit mask SRAMMask are
passed to Shared Memory.

The DebugToSRAM parameter lets you specify whether to send debug
information with Debug level DMASK_FIRMWARE if the information is
originated by the firmware (XXX_put), or DMASK_DISPATCHER if the
information is originated by the dispatcher to Shared Memory.

For more information about these parameters, refer to the New Parameters section
in Chapter 3.

 37

3. Configuration Commands

Not all commands are available with every CP Fax board. For the capabilities
available on the boards installed in the host system, see the appropriate hardware
installation guide for the specific board.

The Dispatcher and the firmware may be customized with commands in the
registry. The GDK configuration commands used in the registry and their
functions are summarized in Table 7. The remainder of this chapter is an
alphabetical list of configuration commands.

Configuration Commands Summary

NOTE: In the following table, the term “on-the-fly” refers to files converted
automatically at the time of transmission on the CP Fax board.

Table 7. Summary of Configuration Commands

Command Function

BUFFERS Sets the maximum number of queue record buffers.

CHANNELID Defines logical-to-physical mapping of a fax
channel.

CHASSIS Defines the number of the host machine. (always 1)

CONTROLT Sets the interval for checking the Control List.

COUNTRY Defines the country code for each fax channel.

CSID Sets the CSID for a fax channel.

DEBUG Sets the debug level.

FIRMWARE Downloads the onboard software for a fax channel.

GFCCONTROL 36 Specifies that all pages of a multi-page fax be saved
into one, multi-page TIFF file.

GFCCONTROL 37 Sets up flexible naming, such that the file name
provided by the application is the one used.

GFXBOTTOMMARGIN Sets the bottom margin of the fax page for on-the-
fly ASCII conversions.

GDK Version 5.0 Programming Reference Manual

38

GFXCARRYON Sets the number of unacceptable pages sent before
termination.

GFXCHARSET Sets the font slot for the default on-the-fly ASCII
conversions.

GFXDID Specifies the trunk type connected to a fax channel.

GFXDIGITS Sets the number of digits to be received.

GFXDTMFTIMEOUT Sets timeout interval when waiting for digit input.

GFXDTMFTONE Specifies the tone to issue when answering a call.

GFXECM Sets the error correction mode.

GFXEXTEND Selects the ASCII character set used for on-the-fly
ASCII conversions.

GFXFAXCONTROL 29

GFXFAXCONTROL 28

Both commands, in order, allow GDK to collect
DTMF digits immediately after going off-hook on
an analog line.

GFXFAXCONTROL 40

GFXFAXCONTROL 41

GFXFAXCONTROL 42

GFXFAXCONTROL 43

GFXFAXCONTROL 44

The function controls GFXFAXCONTROL 40
through GFXFAXCONTROL 44 enable the board
to send two frequencies at one time, for a given
duration.

GFXFAXCONTROL 71 Enables T.30 subaddressing, which allows a string
of characters and numbers to be sent with the fax.

GFXFAXCONTROL 72 Changes the wink duration when using GFXDID set
to 1 or 6 for DID wink or T1 wink respectively.

GFXFAXCONTROL 73 Specifies the T.30 subaddressing (sending) field
delimiter. Used in conjunction with
GFXFAXCONTROL 71.

GFXFAXCONTROL 74 Turns off T.30 password collection if it is not
needed by the application.

GFXFAXCONTROL 1020 Allows the reception of Binary File Transfer (BFT)
between other systems that support the
transmission of BFT.

GFXFAXCONTROL 1021 Enables the transmission of BFT transactions to
other systems capable of receiving BFT.

GFXFINE Accepts only fine resolution incoming faxes.

3. Configuration Commands

39

GFXFORM Selects the image format of a received fax and
sanitization of faulty scanlines.

GFXHEADER Customizes the header on outgoing faxes.

GFXLEFTMARGIN Sets the left margin of the page for on-the-fly ASCII
conversions.

GFXOVERLAY Controls the overlay header feature.

GFXPAGELENGTH Sets the number of character lines per page for
on-the-fly ASCII conversions.

GFXRECM Controls receive ECM.

GFXRECVPATH Sets the directory path used for a fax channel to
receive faxes.

GFXREJBURST Sets maximum number of consecutive bad scanlines
that will be tolerated before a page is rejected.

GFXREJCOUNT Sets absolute number of bad scanlines that will be
tolerated before a page is rejected.

GFXREJPERCENT Sets percent of bad scanlines that will be tolerated
before a page is rejected.

GFXRIGHTMARGIN Sets the right margin of the page in characters for
on-the-fly ASCII conversions.

GFXRLENGTH Selects the page length of a received fax.

GFXRTNRETRAIN Specifies action to be taken when an illegible page
has been sent.

GFXRTPRETRAIN Specifies action to be taken when requiring a higher
speed or change in resolution.

GFXRT6 Controls reception of T.6 encoding.

GFXRTWOD Controls reception of Group 3 2-D line
compression.

GFXRWIDTH Selects the page width of a received fax.

GFXSCANTIME Sets the scanline timing for incoming calls.

GFXSECM Controls send ECM.

GFXSHUTDOWN Specifies fax channel state, such as Dial only or
Answer only.

GFXSPEAKER Controls the speaker.

GDK Version 5.0 Programming Reference Manual

40

GFXST6 Controls transmission of T.6 encoding.

GFXSTWOD Controls transmission of Group 3 2-D line
compression.

GFXTOPMARGIN Sets the top margin of the fax page for on-the-fly
ASCII conversions.

GFXWAIT Sets the wait-for-answer time in seconds for a fax
channel.

INIT Initializes the fax channel.

LOADFONT Downloads a font for on-the-fly ASCII conversions.

MODEMCTRL 1024 Changes the default dialing type when placing a
call.

MODEMCTRL 2054 Sets the number of rings before answering.

MODEMCTRL 2066 The dial string may contain the character “;” to
indicate a pause while dialing. This command sets
the time value for this character.

NUMCHAN Defines number of fax channels in the system.

QUEUET Sets the time between Dispatcher checks of the
Pending List.

STATUST Sets the interval between writes of status table to
disk.

UPDATET Sets the maximum time between writes to the log
file.

Configuration Commands

Brief descriptions of the configuration commands used by the software are listed
alphabetically on the following pages. In these descriptions, arguments that appear
in brackets ([]) are optional.

3. Configuration Commands

41

BUFFERS

DESCRIPTION Specifies the maximum number of queue-record buffers
to allocate for the Dispatcher buffer pool.

SYNTAX BUFFERS <n>

VALUE n A value twice the number of channels.

CHANNELID

DESCRIPTION Defines the logical-to-physical mapping for each fax
channel in the system and, optionally, gives the channel a
symbolic name or a “modem_id.”

A modem_id in the form “GFAX<n>.<m>.”
 <n> The number of the chassis (see CHASSIS <n>).

<m> The channel number.

CHANNELID <string> <n>

CHASSIS

DESCRIPTION Defines the number of the chassis on which the
Dispatcher is executing.

SYNTAX CHASSIS <n>

VALUE n The chassis number. <n> = 1 is the only value
currently supported.

CONTROLT

DESCRIPTION Specifies the time in seconds between Dispatcher checks
of the Control List.

SYNTAX CONTROLT <n>

VALUE n A number of seconds. Reasonable numbers are
between 30 seconds and 60 seconds. The default
is <n> = 60.

GDK Version 5.0 Programming Reference Manual

42

COUNTRY

DESCRIPTION Defines the country code, which is used for the country-
specific modem operating parameters.

SYNTAX COUNTRY <n>

VALUE n This code must be specified for the fax channel
to function correctly. The country code for the
United States is 1. There is no default value. For
a list of country codes, see Appendix D. Refer to
the “Setting the Country Code Properly” section.

CSID

DESCRIPTION Specifies the default customer subscriber identification
(CSID) number for each fax channel.

SYNTAX CSID <phonenumber>

VALUE phonenumber For a host system with multiple
outgoing fax lines, the CSID should
reflect the phone number of an
incoming fax line. If this command is
absent, a blank CSID is transmitted.
The ITU recommends that the CSID be
set to the international phone number of
the fax channel.

To ensure the greatest compatibility
with remote fax machines, do not
include spaces or alpha characters in the
phonenumber parameter.

The maximum length of the CSID is 20
characters.

3. Configuration Commands

43

DEBUG

DESCRIPTION Sets the Debug mask.

SYNTAX DEBUG <n>

VALUE n Refer to the tables in the Using the Debug
Masks section of Chapter 2.

FIRMWARE

DESCRIPTION Downloads the on-board software so that the channel can
be used.

SYNTAX FIRMWARE C:\FAX\GFXCX.BIN

GFCCONTROL 36

DESCRIPTION This command specifies that all pages of a multi-page fax
be saved into one, multi-page TIFF file. This command
changes the GDK default, which is that each page of a
multi-page fax received is saved into a separate file.

SYNTAX GFCCONTROL 36 <n>

VALUE n Is one of the following values:

0 All pages are received into one file.

1 Each page is stored in a separate file.
(Default)

n Stores a specified number of pages per
file, and then opens a new file. Use a
value other than 1.

GDK Version 5.0 Programming Reference Manual

44

GFCCONTROL 37

DESCRIPTION By default, GDK generates a new filename for each
received fax. This filename is generated by using the
channel, fax job number, and page number. This
command sets up flexible naming, such that the file name
provided by the application is the one used. This only
works if:

• Multi-page receive is enabled

• An application is running to provide its own unique
received file name

This command also sets a page flush in multi-page TIFF
receive, meaning that each successfully received page is
flushed to disk during the page break.

SYNTAX GFCCONTROL 37 <n>

VALUE n Is one of the following values:

0 Specifies default page naming. Use this
setting with single page TIFF receive.
(Default)

1 Specifies to flush each page to disk
received. If an error occurs, all pages are
saved.

2 Enables flexible naming convention.

3 Specifies 1 and 2 together. This option is
recommended for multi-page TIFF
receive when using GFCCONTROL 36 0
or 1.

GFXBOTTOMMARGIN

DESCRIPTION Sets the number of text lines from the bottom of the page.
Used for the bottom margin of a fax page for on-the-fly
ASCII conversions.

SYNTAX GFXBOTTOMMARGIN <n>

VALUE n Specifies the number of lines. The range is 0 to
65 lines; the default is 3.

3. Configuration Commands

45

GFXCARRYON

DESCRIPTION Specifies the number of unacceptable pages that may be
sent before the call is terminated.

A remote fax machine may send a RetrainNegative
(RTN) signal between pages to indicate that part of the
transmission it is receiving is faulty. GDK continues to
send pages even after receiving an RTN. The
GFXCARRYON command permits a call to be
terminated, so a “retraining” command can take control
when the remote machine rejects a page.

SYNTAX GFXCARRYON <n>

VALUE n Is one of the following:

0 Is an infinite number of pages. The default
value is 0.

n Is the number of RTN before terminating the
call.

SEE ALSO GFXRTNRETRAIN

GFXCHARSET

DESCRIPTION Selects the font style used for on-the-fly ASCII
conversions.

SYNTAX GFXCHARSET <n>

VALUE n Is one of the following values:

0 System font (used for page headers)

1 Standard font — Sans Serif 12 pt. (Default)

2 Auxiliary font — Courier 12 pt.

3 Compressible font (line printer)

SEE ALSO LOADFONT, GFXEXTEND

GDK Version 5.0 Programming Reference Manual

46

GFXDID

DESCRIPTION Specifies the signaling and digit type (DTMF or pulse)
for a given channel.

SYNTAX GFXDID <did_type> <digit_type>

VALUE did_type Is one of the following values:
0 Analog loop start (Default)
1 DID wink-start
2 Reserved for future use
3 Reserved for future use
4 Reserved for future use
5 Reserved for future use
6 T.1 wink start

digit_type Is one of the following values.
0 DTMF (Touch-Tone)
1 Reserved
2 Loop pulse

EXAMPLE This example is for a system with one CPD board:

GFXDID 1 0

This instructs the channel to receive DTMF digits and
have a DID wink-start line interface.

3. Configuration Commands

47

GFXDIGITS

DESCRIPTION Sets the number of digits to be received when answering a
call. The terminating digit sends a signal to the channel
that input is finished.

SYNTAX GFXDIGITS <quantity> <terminating>

VALUE quantity Specifies the number of digits. Enter the
maximum number of digits to process,
including any terminating digits.
Terminating digits are only used if the
digits received may vary in length.

terminating To specify the terminating digit, enter the
parameter for the specific terminating
digit. Use “0” to indicate no terminating
digit. The acceptable parameter range for
terminating digits is 0 to 65,535. The
terminating digits and their parameters are
listed in Table 8.

EXAMPLE This command is an example of using the “#” character to
terminate input of a string of four digits:

GFXDIGITS 5 2048

where “5” designates the maximum number of digits to
expect. The “2048” signifies that the “#” character is
desired as a terminator.

Multiple terminating digits also can be used. For
example, if “*,” “7,” or “1” are the terminating digits, the
number entered would be 1089, which is the sum of the
parameters, that is, 1024 + 64 + 1 = 1089.

SEE ALSO GFXDTMFTIMEOUT, GFXDTMFTONE

GDK Version 5.0 Programming Reference Manual

48

Table 8. Terminating Digit Parameters

Digits Parameter

1 1

2 2

3 4

4 8

5 16

6 32

7 64

8 128

9 256

0 512

* (star) 1024

(number sign) 2048

A 4096

B 8192

C 16384

D 32768

3. Configuration Commands

49

GFXDTMFTIMEOUT

DESCRIPTION Sets the timeout interval when waiting for DTMF input. A
timeout for DTMF input must be established or the
channel will not wait for any digits to be inputted.

SYNTAX GFXDTMFTIMEOUT <interdigit_timeout>
<total_timeout>

VALUE interdigit_timeout Is the waiting time between digits.
The minimum value is one second,
and any value between 1 and
32,767 is valid.

total_timeout Is the length of the wait to receive
all digits. The minimum value is
one second, and any value between
1 and 32,767 is valid.

EXAMPLE For a three-digit DTMF input, this command is
recommended:

GFXDTMFTIMEOUT 5 10

This instructs the channel to wait no more than five
seconds between each digit it receives, and to wait no
more than ten seconds to receive all the digits. If only
three digits are received, a five-second timeout between
digits is ample. For more than a three-digit input, the total
timeout may have to be increased, for example, by one
second per digit over three.

SEE ALSO GFXDTMFTONE, GFXDIGITS

GDK Version 5.0 Programming Reference Manual

50

GFXDTMFTONE

DESCRIPTION Specifies the tone to issue when answering a call. This
feature is useful for unattended DTMF (dual-tone multi-
frequency) operation.

This command is used to prompt a calling party to enter
tones. This command only emits a single frequency tone.
If a true DTMF tone is needed, please refer to the
GFXFAX commands.

This command is not used with DID trunk interface
boards, such as the CPD or CPD/220.

SYNTAX GFXDTMFTONE <frequency> <duration>

VALUE frequency Specify a value in Hertz, up to 3000.

duration Enter, in milliseconds, the length of time for
the tone to sound.

EXAMPLE These are the recommended parameters:

GFXDTMFTONE 440 1000

With this command, the channel sounds the musical note
“A” (440 Hz) for one second (1000 milliseconds). That
is, after the channel has gone off-hook, it sends one “A”
note for one second to prompt for tones from the calling
party.

SEE ALSO GFXDTMFTIMEOUT, GFXDIGITS

3. Configuration Commands

51

GFXECM

DESCRIPTION Sets the Error Correction Mode (ECM), which can be set
to operate in three modes.

SYNTAX GFXECM <send> <receive>

VALUE send Is one of the following settings:
0 Turned off so the ECM feature is not

used. (Default)
1 Send from any ECM-capable fax machine

or board.
2 Send from any ECM-capable fax machine

or board only.

receive Is one of the following settings:
0 Turned off so the ECM feature is not

used. (Default)
1 Receives from any ECM-capable fax

machine or board.
2 Receives from any ECM-capable fax

machine or board only, and rejects all
other transmissions.

EXAMPLE For example, to instruct board one to send and receive in
the ECM mode whenever possible, use this command:

GFXECM 1 1

To turn it off, use this command:

GFXECM 0 0

GDK Version 5.0 Programming Reference Manual

52

GFXEXTEND

DESCRIPTION Selects the ASCII character subset used for on-the-fly
ASCII conversion. Any character codes outside the
specified range are ignored.

SYNTAX GFXEXTEND <n>

VALUE n Is one of the following values:

0 Character set 32 to 127ASCII text only.
These are the alphabetic characters used
for composition in English. (Default)

1 Character set 32 to 255 extended ASCII
text only.

2 Character set 0 to 255 full ASCII text.

GFXFAXCONTROL 29
GFXFAXCONTROL 28

DESCRIPTION In an analog environment, digits are able to be collected
two seconds after the channel goes off-hook. For digits
that are being passed automatically from a switch, this
time is too long. These commands — in this order —
allow GDK to collect DTMF digits immediately after
going off-hook on an analog line.

SYNTAX GFXFAXCONTROL 29 2000

GFXFAXCONTROL 28 0

NOTE: The GFXFAXCONTROL 28 and 29 commands
must be used together in order to provide the
expected results.

3. Configuration Commands

53

GFXFAXCONTROL 71

DESCRIPTION This command enables T.30 subaddressing, which allows
a string of characters and numbers to be sent with the fax.
This string is known as the subaddress. It allows fax
servers to do routing based on this subaddress.

SYNTAX GFXFAXCONTROL 71 <n>

VALUE n Indicates whether T.30 subaddressing is
enabled. Specifying a default value of 0
disables the T.30 subaddressing option and a
value of 1 enables the option.

GFXFAXCONTROL 72

DESCRIPTION This command changes the wink duration when using
GFXDID set to 1 or 6 for DID wink or T1 wink
respectively.

Adding this command unnecessarily can cause
communication problems between the CP Fax board and
the service provider.

SYNTAX GFXFAXCONTROL 72 <n>

VALUE n Is the number of milliseconds recommended
by the service provider. The default is 150
milliseconds. Most installations operate well
using the default.

GDK Version 5.0 Programming Reference Manual

54

GFXFAXCONTROL 73

DESCRIPTION This command is used in conjunction with the
GFXFAXCONTROL 71 command. When using
GFXFAXCONTROL 71, use GFXFAXCONTROL 73 to
specify the T.30 subaddressing (sending) field delimiter.

SYNTAX GFXFAXCONTROL 73 <n>

VALUE n Is one of the following values:

2 Is “

3 Is # (Default)

4 Is $

5 Is %

6 Is &

GFXFAXCONTROL 74

DESCRIPTION If a T.30 password is sent, GDK collects it and places it
in the user_id field for routing purposes. The
GFXFAXCONTROL 74 command turns off T.30
password collection if it is not needed by the application.

SYNTAX GFXFAXCONTROL 74 <n>

VALUE n Is one of the following values:

0 Disables password collection

2 Enables password collection (Default)

3. Configuration Commands

55

GFXFAXCONTROL 1020

DESCRIPTION Allows the reception of Binary File Transfer (BFT)
between other systems that support the transmission of
BFT.

The only field in the BFT header that is honored is the
filename. All other fields are ignored and discarded. The
file is stored in the %GFAXR% directory with the same
name as the send file, if possible.

SYNTAX GFXFAXCONTROL 1020 <n>

VALUE n Is one of the following values:

0 Disables T.434 BFT reception (Default)

1 Enables T.434 BFT reception

GFXFAXCONTROL 1021

DESCRIPTION Enables the transmission of Binary File Transfer (BFT)
transactions to other systems capable of receiving BFT.
BFT (T.434) is disabled by default. ECM must also be
enabled for BFT transmission.

SYNTAX GFXFAXCONTROL 1021 <n>

VALUE n Is one of the following values:

0 Disables all BFT transmission (Default)

1 Not supported

2 Enables T.434 BFT transmission

GDK Version 5.0 Programming Reference Manual

56

GFXFINE

DESCRIPTION Accepts incoming faxes in fine-resolution mode only and
fails all calls that are not in fine-resolution mode.

SYNTAX GFXFINE <n>

VALUE n Is one of the following values:

0 Turns off receiving of fine-only resolution
faxes. (Default)

1 Turns on receiving of fine-only resolution
faxes. Rejects incoming faxes in standard
resolution.

GFXFORM

DESCRIPTION Accepts incoming faxes in fine-resolution mode only and
fails all calls that are not in fine-resolution mode.

SYNTAX GFXFORM <n>

VALUE n Is one of the following values:

0 Same format that is used for transmission
(Default)

3 TIFF Type 3 1-D; with sanitization

4 TIFF Type 3 2-D

5 TIFF Type 4

EXAMPLE GFXFORM 3

If n is set to 0, no value is set. The image is written to
disk in the same format it is received. For example, if the
file is transmitted in TIFF Type 3 2-D format, it is
received and written to disk as TIFF Type 3 2-D.

3. Configuration Commands

57

GFXHEADER

DESCRIPTION Customizes the header on outgoing faxes to contain user-
defined information.

SYNTAX GFXHEADER <format>

VALUE format Is information to be replaced. Table 9 lists the
variables, the field widths, and the text to be
replaced. Up to 95 characters can be printed
on the header.

EXAMPLE For example, a customized header written with these
variables:

&day&abmon&year &12hr:&min&m From:&from
To:&to Page &page

would appear as follows:

25Aug97 1:30pm From:408-969-5200 To:1-203-359-
9203 Page 1

To display a header, the header bit must be set in the
queue record. To turn on the header in a queue record,
see the transmit_control field description in Chapter 4.

Table 9. Variables, Field Widths, and Text

Variable Field Width Text

&header 20 The header field from the queue record.

&user 32 The user field of the current queue record.

&from 20 The sent CSID; that is, the CSID from which
the fax is sent.

&to 20 The receive CSID; that is, the CSID to which
the fax is sent. &to is right-justified.

&phone 20 The phone_no field of the queue record.

&page 3 The current page number in decimal number
format (1 to 999). The number is right justified;
the field is zero filled (001).

GDK Version 5.0 Programming Reference Manual

58

Variable Field Width Text

&time 9 The current time in country-dependent format.
In the U.S.A., the format is “hh:mm:ss”; in
other countries, the format may vary.

&12hr 2 The hour based on a 12-hour clock in decimal-
number format
(01 to 12).

&24hr 2 The hour based on a 24-hour clock in decimal-
number format
(00 to 23).

&m 2 Designation to indicate before or after noon.
The values are “AM” and “PM”.

&min 2 The minute in decimal-number format (00 to
59).

&sec 2 The second in decimal-number format (00 to
59).

&date 9 The date in country-dependent format. In the
U.S.A., the format is “mm/dd/yy”; in other
countries, the format may vary.

&abmon 3 An abbreviation of the month. The values are
“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”,
“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, and “Dec”,
which are unchangeable.

&month 2 The month in decimal-number format (01 to
12).

&strmon 10 The month of the year. The values are
“January”, “February”, “March”, “April”,
“May”, “June”, “July”, “August”, “September”,
“October”, “November”, and “December”,
which are unchangeable.

&day 2 The day of the month in decimal-number
format (01 to 31).

&year 2 The year without century in decimal-number
format (00 to 99).

&lyear 4 The year with century in decimal-number
format (0000 to 9999).

3. Configuration Commands

59

GFXLEFTMARGIN

DESCRIPTION This command sets the left margin of the page in
characters for on-the-fly ASCII conversion.

SYNTAX GFXLEFTMARGIN <n>

VALUE n Is a value in the range 0 to 215. The default is 14.

GFXPAGELENGTH

DESCRIPTION Sets the number of lines per page used for on-the-fly
ASCII conversion.

SYNTAX GFXPAGELENGTH <n>

VALUE n Is the number of text lines per page. The default is
n = 66. Use n = 0 for variable-length documents in
which the ASCII file equals one fax page.

NOTE: When converting ASCII files on the channel, to
accommodate more lines per page for the A4
paper size, add the following line to the registry:

GFXPAGELENGTH <n>

Where n is the number of text lines per page.

GFXRECM

DESCRIPTION Controls the Error Correction Mode (ECM) for incoming
faxes.

SYNTAX GFXRECM <n>

VALUE n Is one of the following values:

0 Turns off the ECM feature. (Default)

1 Receives from any ECM-capable fax
machine or board.

2 Receives only ECM transmissions, and
rejects all other transmissions.

EXAMPLE For example, to instruct the channel to receive in the
ECM mode whenever possible, use this command:

GFXRECM 1

GDK Version 5.0 Programming Reference Manual

60

GFXRECVPATH

DESCRIPTION Sets the fully-qualified path and filename template used
for a fax channel to receive faxes. This command defines
both the directory in which received files will be placed
and the filename template to be used.

SYNTAX GFXRECVPATH <path> <filename>

VALUE path Is the path to the directory.

filename Is the filename template for the files that are
received.

EXAMPLE For example, the following command could be used to
put all the received files into the \RECVD\BD1 directory
on the E: drive:

GFXRECVPATH E:\RECVD\BD1\F001P001.TIF

GFXREJBURST

DESCRIPTION Sets the maximum number of consecutive bad scanlines
that are tolerated before a page is rejected. This helps to
control the quality of incoming faxes. This command
works only if sanitization is enabled with the GFXFORM
command.

SYNTAX GFXREJBURST <n>

VALUE n Specifies the number of allowable, consecutive
bad scanlines. By default, this value is -1 (off).

3. Configuration Commands

61

GFXREJCOUNT

DESCRIPTION Sets the total number of bad scanlines that are tolerated
before a page is rejected. This helps to control the quality
of incoming faxes. This command works only if
sanitization is enabled with the GFXFORM command.

SYNTAX GFXREJCOUNT <n>

VALUE n Specifies the total number of allowable bad
scanlines. By default, this value is -1 (off). The
range is 0 to 32,767.

GFXREJPERCENT

DESCRIPTION Sets the percentage of bad scanlines that are tolerated
before a page is rejected. This helps to control the quality
of incoming faxes. It specifies the number of bad
scanlines per 100 scanlines. This command works only if
sanitization is enabled with the GFXFORM command.

SYNTAX GFXREJPERCENT <n>

VALUE n Specifies the total percent of allowable bad
scanlines. By default, this value is -1 (off). The
range is 0 to 100.

GFXRIGHTMARGIN

DESCRIPTION Sets the right margin of the page in characters, relative to
the left edge, for on-the-fly ASCII conversions.

SYNTAX GFXRIGHTMARGIN <n>

VALUE n Specifies the right margin of the page in characters.
The default is 94. The range is
0 to 215.

GDK Version 5.0 Programming Reference Manual

62

GFXRLENGTH

DESCRIPTION Selects the page length of incoming faxes.

SYNTAX GFXRLENGTH <n>

VALUE n Is one of the following values:

0 A4 size

1 A4 and B4 size

2 Unlimited length (Default)

This is a request to the sending fax machine. If the remote
machine still sends a page longer than A4, the
transmission will not fail. The image information will be
written to disk along the length of the transmission.

SEE ALSO GFXRWIDTH

GFXRTNRETRAIN

DESCRIPTION Selects an action to be taken when an illegible page has
been sent. The valid rates are the transmission rates for
the modem, such as 14400.

SYNTAX GFXRTNRETRAIN <n>

VALUE n Is one of the following values:

0 Dispatcher resumes transmission at the
current rate. (Default)

<0 Retraining starts at the next lower rate.

>0 Contains the retraining rate.

SEE ALSO GFXMAXRATE

3. Configuration Commands

63

GFXRTPRETRAIN

DESCRIPTION Specifies an action to retrain (in hopes of a higher speed
or change in resolution) for pages received correctly.

SYNTAX GFXRTPRETRAIN <n>

VALUE n Is one of the following values:

0 Dispatcher resumes transmission at the
current rate. (Default)

<0 Retraining starts at the next lower rate.

>0 Contains the retraining rate.

GFXRT6

DESCRIPTION Controls the reception of T.6 encoding. T.6 encoding
requires Error Correction Mode (ECM). ECM must be
enabled to receive any T.6 encoded faxes.

SYNTAX GFXRT6 <n>

VALUE n Is one of the following values:

0 Turns off; cannot receive T.6 encoding.
(Default)

1 Receives T.6 encoding if sender has
capability.

2 Receives only T.6 encoding; refuses all
others.

GDK Version 5.0 Programming Reference Manual

64

GFXRTWOD

DESCRIPTION Controls TIFF Type 3 2-D line or transmission
compression of received faxes, and writes a 2-D image to
disk unless otherwise set by GFXFORM.

SYNTAX GFXRTWOD <n>

VALUE n Is one of the following values:

0 Turns off; cannot receive TIFF Type 3 2-D
compression.

1 Receives TIFF Type 3 2-D compression if
sender has capability. (Default)

2 Receives TIFF Type 3 2-D compression;
refuse all other formats.

GFXRWIDTH

DESCRIPTION Selects the page width of incoming faxes.

SYNTAX GFXRWIDTH <n>

VALUE n Is one of the following values:

0 A4 size (Default)

1 A4 and B4 size

2 Any width

SEE ALSO GFXRLENGTH

3. Configuration Commands

65

GFXSCANTIME

DESCRIPTION Sets the scanline timing in milliseconds for incoming
calls. When receiving from a remote fax machine, GDK
specifies in the DIS field that it is capable of accepting
scanlines at a certain rate.

SYNTAX GFXSCANTIME <n>

VALUE n Is one of the following values:

 0 0-msec fax machine (Default)

 5 5-msec fax machine

10 10-msec fax machine

20 20-msec fax machine

40 40-msec fax machine

GFXSECM

DESCRIPTION Controls the ECM for outgoing faxes.

SYNTAX GFXSECM <n>

VALUE n Is one of the following values:

0 Turns off so the ECM feature is not used.
(Default)

1 Sends to any ECM-capable fax machine or
board.

2 Sends to an ECM-capable fax machine or
board only, and fails all other transmissions.

EXAMPLE To instruct board one to send in the ECM mode whenever
possible, enter the following:

GFXSECM 1

GDK Version 5.0 Programming Reference Manual

66

GFXSHUTDOWN

DESCRIPTION Specifies the state of each fax channel.

SYNTAX GFXSHUTDOWN <n>

VALUE n Is one of the following values:

0 Answers incoming calls and checks for
Pending queue requests.

or one or a combination of the following bit
masks:

1 Ignores future incoming calls. For Dial-only
operation.

2 Ignores future Pending queue requests. For
Answer-only operation.

3 Does not send or receive.

4 Busies out the line; that is, makes the phone
line busy by staying off- hook.

The GFXSHUTDOWN values 0 and 2 are also controlled
by the AutoReceive registry flag configuration.

If the AutoReceive registry flag is set to “yes” when the
GFXSHUTDOWN value is set to 0 or 2, the channels
receive incoming faxes automatically. The associated
queue record is stored in the queue file. This occurs even
if there is no application controlling that channel.

If the AutoReceive registry flag is set to “no” when the
GFXSHUTDOWN value is set to 0 or 2, the channels do
not receive incoming faxes when there is no application
using the channel. The transmission fails and the sender
receives an error indicated that the fax was not received.

The default setting for the AutoReceive registry flag is
“no”.

EXAMPLE These control bits may be combined. Thus, if n = 3, the
second and third bits are in effect; if n = 7, the second,
third, and fourth bits are in effect. The value of n can also
be 5 or 6.

3. Configuration Commands

67

GFXSPEAKER

DESCRIPTION Disables and enables the speaker on the CP Fax board.

Not all CP fax boards have speakers. See the hardware
manual for the board installed in the host system to
determine whether or not the board has a speaker.

SYNTAX GFXSPEAKER <n>

VALUE n Is one of the following values:

0 No speaker. (Default)

1 Enables speaker during wait for answer
tone.

2 Enables speaker during dial tone dialing.

3 Enables speaker continuously.

GFXST6

DESCRIPTION Controls the transmission of T.6 encoding. T.6 encoding
requires ECM. Therefore, ECM must be turned on first
before the T.6 setting, or the firmware will reject the T.6
transmission.

SYNTAX GFXST6 <n>

VALUE n Is one of the following values:

0 Turns off; cannot send T.6 encoding.
(Default)

1 Sends T.6 encoding if recipient has
capability.

2 Sends only T.6 encoding; fails transmission
if recipient does not have capability.

GDK Version 5.0 Programming Reference Manual

68

GFXSTWOD

DESCRIPTION Controls TIFF Type 3 2-D line compression of fax
transmissions.

SYNTAX GFXSTWOD <n>

VALUE n Is one of the following values:

0 Turns off; cannot send TIFF Type 3 2-D
compression.

1 Sends TIFF Type 3 2-D compression if
recipient has capability. (Default)

2 Sends TIFF Type 3 2-D compression; fails
transmission if recipient does not have
capability.

GFXTOPMARGIN

DESCRIPTION Sets the top margin of the fax page in text lines for
on-the-fly ASCII conversions.

SYNTAX GFXTOPMARGIN <n>

VALUE n Is a value from 0 to 65. The default is 3.

GFXWAIT

DESCRIPTION Sets the wait-for-answer time in seconds for each fax
channel; that is, the length of time the channel will stay
idle waiting for an incoming call to arrive before
searching for something to send in the default answer
state.

SYNTAX GFXWAIT <n>

VALUE n Is time in seconds.

3. Configuration Commands

69

INIT

DESCRIPTION Initializes the specified fax channel. Each channel must
be initialized with INIT before it can be used.

SYNTAX INIT

LOADFONT

DESCRIPTION Downloads a font into the one of the font slots used for
on-the-fly ASCII conversions. The GFXCHARSET
command is used to select the font number.

SYNTAX LOADFONT <n> <filename>

VALUE n Is a font number, from 0 to 3.

filename Is the file containing the font.

MODEMCTRL 1024

DESCRIPTION Changes the default dialing type when placing a call.

The default is dependent upon the country code and
version of the software that you are using. In the United
States and Canada, pulse is the default setting for GDK
5.0 and earlier. Tone is the default setting for GDK 4.0 or
later.

SYNTAX MODEMCTRL 1024 <n>

VALUE n Is one of the following values:

0 Is for pulse dialing

1 Is for tone dialing

MODEMCTRL 2054

DESCRIPTION Sets the number of rings before answering.

SYNTAX MODEMCTRL 2054 <n>

VALUE n Is the number of rings. The default is 1.

GDK Version 5.0 Programming Reference Manual

70

MODEMCTRL 2066

DESCRIPTION The dial string may contain the character “;” to indicate a
pause while dialing. This command sets the time value for
the “;” character.

SYNTAX MODEMCTRL 2066 <n>

VALUE n Is the time in milliseconds. The default is 1500
milliseconds.

NUMCHAN

DESCRIPTION Defines the number of fax channels in the system. This
must be defined before the channels can be addressed.

SYNTAX NUMCHAN <n>

VALUE n Is the number of fax channels in the system.

QUEUET

DESCRIPTION Sets the time in seconds and milliseconds between
Dispatcher checks of the Pending List.

SYNTAX QUEUET <m> <n>

VALUE m Is the time in seconds. The range is 0 to 32,767
seconds; reasonable settings are between 5 and
120. The default is 45.

n Is the time in milliseconds. The default is 0.

STATUST

DESCRIPTION Sets the interval between writes of the status table to the
status file on disk.

SYNTAX STATUST <m> <n>

VALUE m Is the time in seconds. The default is 0. The
range is 0 to 32,767 seconds.

n Is the time in milliseconds. The default is 0. A
reasonable number is 5.

3. Configuration Commands

71

UPDATET

DESCRIPTION Sets the maximum time in seconds and milliseconds
between writes to the log file. The log file may be written
more frequently if significant transactions take place.

SYNTAX UPDATET <m> <n>

VALUE m Is the time in seconds. The range is 0 to 32,767
seconds. The default is 300. Reasonable numbers
are between 15 seconds and 600 seconds.

n Is the time in milliseconds. The default is 0.

New Parameter Summary

The new parameters that have been added are grouped into four categories:

• Management

• ISDN

• ErrorMapping

• Debug

Each parameter category has a specific registry key path.

• Management
KEY_LOCAL_MACHINE\SOFTWARE\Dialogic\Gammalink\Management

• ISDN

HKEY_LOCAL_MACHINE\SOFTWARE\Dialogic\Gammalink\ISDN

• ErrorMapping

HKEY_LOCAL_MACHINE\SOFTWARE\Dialogic\Gammalink\ErrorMapping

• Debug

HKEY_LOCAL_MACHINE\SOFTWARE\Dialogic\Gammalink\Debug

To modify the default settings of the any of the parameters, use a registry editing
tool.

GDK Version 5.0 Programming Reference Manual

72

CAUTION

Using a registry editor application incorrectly can cause serious, system-
wide problems that may require you to reinstall Windows to correct
them. Dialogic cannot guarantee that any problems resulting from the use
of a registry editor can be solved. Use these tools at your own risk.

The following section contains summary tables and parameter definitions for each
category of the new parameters.

Management Parameters

These parameters control the management of the fax and ISDN features.

Table 10. Management Parameters

Parameter Description

PRILayerEnable Specifies whether to use the “Transparent PRI Support”
or not.

NumberOfTrunks Indicates the number of PRI trunks in the chassis.

ChannelsPerTrunk Indicates the number of ISDN channels per PRI trunk.

FaxDistribution Specifies which Fax resource will be receiving the fax
for a particular incoming call.

ISDNDistribution Specifies which ISDN channel will be used for an
outgoing call.

Management Parameter Definitions

Brief descriptions of the new Management parameters are listed alphabetically on
the following pages.

3. Configuration Commands

73

AutoReceive

DESCRIPTION Specifies whether inbound fax call should be
automatically received if the GFXSHUTDOWN state
values are set to 0 or 2.

If the AutoReceive parameter is set to “yes”, inbound
faxes are automatically received even when there is no
application running of the channel to receive the fax.
Inbound faxes received in this mode are stored as a queue
record in the queue file.

If the AutoReceive parameter is set to “no”, inbound
faxes received when there are no applications running on
the channel to receive them fail. The sender receives an
error message indicating that the fax was not received.

SYNTAX “yes” or “no”

DEFAULT “no”

DATA TYPE REG_SZ

REFERENCE None

PriLayerEnable

DESCRIPTION Specifies whether Transparent PRI support is enabled.

If the parameter is set to “yes”, the Transparent PRI
Support is enabled.

If the parameter is set to “no”, the Transparent PRI
Support is disabled.

SYNTAX “yes” or “no”

DEFAULT “no”

DATA TYPE REG_SZ

REFERENCE None

GDK Version 5.0 Programming Reference Manual

74

NumberOfTrunks

DESCRIPTION Indicates the number of PRI trunks in the chassis.

This parameter setting is ignored if the
PriLayerEnable parameter is set to “no”.

SYNTAX Numeric

DEFAULT 1

DATA TYPE REG_DWORD

REFERENCE None

ChannelsPerTrunk

DESCRIPTION Indicates the number of ISDN channels per PRI trunk.

This parameter setting is ignored if the
PriLayerEnable parameter is set to “no”.

SYNTAX Numeric

DEFAULT 30

DATA TYPE REG_DWORD

REFERENCE None

FaxDistribution

DESCRIPTION Determines the selection of which Fax resource will be
receiving the fax on a specific incoming call. The
setting values include:

0 First free Fax resource starting with channel 1

1 Circular Fax resource assignment

2 First free Fax resource starting with the last
channel

3 Same Fax channel as ISDN channel

This parameter setting is ignored if the PriLayerEnable
parameter is set to “no”.

SYNTAX Numeric

3. Configuration Commands

75

FaxDistribution

DEFAULT 0

DATA TYPE REG_DWORD

REFERENCE None

ISDNDistribution

DESCRIPTION Determines the selection of which ISDN channel will
be used on a specific outgoing call. The setting values
include:

0 First free ISDN channel counting from 0

1 Circular ISDN channel assignment

2 First free ISDN channel starting with the last
channel

3 Same ISDN channel than Fax channel

4 TBD

This parameter setting is ignored if the PriLayerEnable
parameter is set to “no”.

SYNTAX Numeric

DEFAULT 1

DATA TYPE REG_DWORD

REFERENCE None

ISDN Parameters

These parameters control the ISDN features. These parameter features are ignored
if the PriLayerEnable parameter is set to “no”.

GDK Version 5.0 Programming Reference Manual

76

Table 11. ISDN Parameters

Parameter Description

BC_xfer_cap ISDN Make Call Block parameter.

Layer1_protocol ISDN Make Call Block parameter.

BC_xfer_rate ISDN Make Call Block parameter.

BC_xfer_mode ISDN Make Call Block parameter.

origination_number_type ISDN Make Call Block parameter.

origination_number_plan ISDN Make Call Block parameter.

destination_number_type ISDN Make Call Block parameter.

destination_number_plan ISDN Make Call Block parameter.

origination_subnumber_type ISDN Make Call Block parameter.

origination_subnumber_plan ISDN Make Call Block parameter.

origination_phone_number ISDN Make Call Block parameter.

destination_phone_number ISDN Make Call Block parameter.

destination_subphone_number ISDN Make Call Block parameter.

origination_subphone_number ISDN Make Call Block parameter.

AcceptCallState Determines whether to use ISDN Accept Call
State or not.

PRI_Overlap_P1 Defines minimum number of digits needed
before the board accepts incoming call in
Overlap Receive mode.

PRI_Overlap_P2 Defines maximum wait time between ISDN
SETUP pack and the first ISDN INFO packet.

CheckInBearer Specifies whether to check the Bearer
Compatibility during inbound SETUP.

3. Configuration Commands

77

Parameter Description

BC_xfer_cap ISDN Make Call Block parameter.

CheckInSetupFrame Specifies whether to check the incoming
SETUP packet.

ISDN Parameter Definitions

Brief descriptions of the new ISDN parameters are listed alphabetically on the
following pages.

BC_xfer_cap

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT BEAR_CAP_SPEECH

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

Layer1_protocol

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_UILI_G711ALAW

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

GDK Version 5.0 Programming Reference Manual

78

BC_xfer_rate

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT BEAR_RATE_64KBPS

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

BC_xfer_mode

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_ITM_CIRCUIT

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

originate_number_type

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_NOTUSED

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

3. Configuration Commands

79

originate_number_plan

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_NOTUSED

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

destination_number_type

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT EN_BLOCK_NUMBER

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

destination_number_plan

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT UNKNOWN_NUMBER_PLAN

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

GDK Version 5.0 Programming Reference Manual

80

destination_subnumber_type

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_NOTUSED

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

origination_subnumber_type

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_NOTUSED

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

origination_phone_number

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_NOTUSED

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

3. Configuration Commands

81

destination_sub_phone_number

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_NOTUSED

DATA TYPE REG_SZ

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

origination_subphone_number

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_NOTUSED

DATA TYPE REG_SZ

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

AcceptCallState

DESCRIPTION Specifies whether or not to use the ISDN Accept Call
State.

SYNTAX “yes” or “no”

DEFAULT “yes”

DATA TYPE REG_SZ

REFERENCE None

GDK Version 5.0 Programming Reference Manual

82

PRI_Overlap_Digits

DESCRIPTION Defines the minimum number of digits needed before
the board will accept the incoming call in Overlap
Receiving mode.

SYNTAX

DEFAULT 0

DATA TYPE REG_DWORD

REFERENCE None

PRI_Overlap_T1

DESCRIPTION Defines the maximum time period to pause (in
milliseconds) between sending the ISDN SETUP
packet and the first ISDN INFO packet.

Setting this parameter disables the Overlap Receiving
parameter setting.

SYNTAX

DEFAULT 2000

DATA TYPE REG_DWORD

REFERENCE None

PRI_Overlap_T2

DESCRIPTION Defines the maximum time period to pause (in
milliseconds) between sending a second ISDN INFO
packet which contains additional routing digits in
Overlap Receiving.

SYNTAX

DEFAULT 2000

DATA TYPE REG_DWORD

REFERENCE None

3. Configuration Commands

83

CheckInBearer

DESCRIPTION Indicates whether to check for compatible bearer
capabilities in the incoming setup.

If “yes”, checks for compatible bearer capabilities.

If “no”, does not check bearer capability during
inbound SETUP. Any bearer capability is accepted.

SYNTAX

DEFAULT “yes”

DATA TYPE REG_SZ

REFERENCE None

CheckInSetupFrame

DESCRIPTION Indicates whether to check the incoming setup packet.

If “yes”, checks the incoming setup packet.

If “no”, does not check the incoming setup packet. Any
setup packet is accepted.

SYNTAX

DEFAULT “yes”

DATA TYPE REG_SZ

REFERENCE None

ErrorMapping Parameters

These parameters control the ErrorMapping features. These parameter features are
ignored if the PriLayerEnable parameter is set to “no”.

GDK Version 5.0 Programming Reference Manual

84

Table 12. ErrorMapping Parameters

Parameter Description

ReservedByDialogic Fax channel incoming/outgoing collision error.

OfferedOnMakeCall ISDN channel incoming/outgoing collision error.

MakeCallFail PRI is not able to complete the outgoing call
operation error.

NoPhoneInQrec Phone number field not correctly entered by
application error, or is missing.

NoDialogicFree Can not find PRI channel error.

CallDisconnected Undefined ISDN connection error.

ConnectAttemptFail Call released before connect state is reached error.

WrongCRNAllocated Serious ISDN error.

NoFaxResource Rejected call due to lack of an available Fax resource
ISDN error.

FaxNotReady Rejected call due to system not being initialized or in
shutdown mode ISDN error.

NormalCause Default ISDN error sent when releasing a call.

WrongBearer Rejected call due to incompatibility in Bearer
Compatibility ISDN error.

ErrorMapping Parameter Definitions

Brief descriptions of the new ErrorMapping parameters are listed alphabetically
on the following pages.

3. Configuration Commands

85

ReservedByDialogic

DESCRIPTION Error code that is returned if the application tries to
place an outgoing call on a Fax channel that is reserved
by the Dispatcher to accept an incoming fax.

SYNTAX Any numeric value.

DEFAULT 3072

DATA TYPE REG_DWORD

REFERENCE None

OfferedOnMakeCall

DESCRIPTION Error code that is returned if the application tries to
place an outgoing call on a ISDN channel that is
reserved to accept an incoming call.

SYNTAX Any numeric value.

DEFAULT 3072

DATA TYPE REG_DWORD

REFERENCE None

MakeCallFail

DESCRIPTION Error code that is returned if the PRI is not able to
complete the outgoing call.

SYNTAX Any numeric value.

DEFAULT 3932

DATA TYPE REG_DWORD

REFERENCE None

GDK Version 5.0 Programming Reference Manual

86

NoPhoneInQrec

DESCRIPTION Error code that is returned if the phone number field is
not entered correctly by the application, or is missing.

SYNTAX Any numeric value.

DEFAULT 3933

DATA TYPE REG_DWORD

REFERENCE None

NoDialogicFree

DESCRIPTION Error code that is returned if a PRI channel can not be
found.

SYNTAX Any numeric value.

DEFAULT 3932

DATA TYPE REG_DWORD

REFERENCE None

CallDisconnected

DESCRIPTION Error code that is returned when an undefined ISDN
disconnection is encountered.

SYNTAX Any numeric value.

DEFAULT 3936

DATA TYPE REG_DWORD

REFERENCE None

3. Configuration Commands

87

ConnectAttemptFail

DESCRIPTION Error code that is returned when a call is released
before reaching the connect state.

SYNTAX Any numeric value.

DEFAULT 3935

DATA TYPE REG_DWORD

REFERENCE None

WrongCRNAllocated

DESCRIPTION Error code that is returned when there is a serious
ISDN issue. Causes the Dialogic channel to be
restarted.

SYNTAX Any numeric value.

DEFAULT 3933

DATA TYPE REG_DWORD

REFERENCE None

NoFaxResource

DESCRIPTION ISDN error returned when a call is rejected because
there was no available Fax resource to receive it.

SYNTAX Any numeric value.

DEFAULT USER_BUSY

DATA TYPE REG_DWORD

REFERENCE None

GDK Version 5.0 Programming Reference Manual

88

FaxNotReady

DESCRIPTION ISDN error returned when a call is rejected because
the system is not initialized, or is in shutdown mode.

SYNTAX Any numeric value.

DEFAULT NORMAL_CLEARING

DATA TYPE REG_DWORD

REFERENCE None

NormalCause

DESCRIPTION The default ISDN error returned when releasing the
call.

SYNTAX Any numeric value.

DEFAULT NORMAL_CLEARING

DATA TYPE REG_DWORD

REFERENCE None

WrongBearer

DESCRIPTION ISDN error returned when rejecting the incoming call
because of an incompatibility in Bearer Capabilities.

SYNTAX Any numeric value.

DEFAULT CAP_NOT_IMPLEMENTED

DATA TYPE REG_DWORD

REFERENCE None

3. Configuration Commands

89

Debug Parameters

These parameters control the Debug features.

Table 13. Debug Parameters

Parameter Description

UseSRAM Specifies whether or not to enable Debug logging to
Shared Memory in the GDK System Service.

SRAMMask Mask value that specifies type of information logged to
Shared Memory.

LogFile Specifies file name to store Shared Memory Debug log
information.

LogFileMask Mask value that specifies type of information written to
the file named by the Log File parameter.

DebugToSRAM Specifies whether to allow DEBUG command
information to be logged into shared RAM.

UseGFAX$DL Specifies whether or not to create a log file named
%GFAX%\GFAX.$DL.

TraceTrunkNumber Defines the trunk number used for the ISDN tracing.

TraceFileName Filename where all ISDN trace information is logged.

Debug Parameter Definitions

Brief descriptions of the new Debug parameters are listed alphabetically on the
following pages.

GDK Version 5.0 Programming Reference Manual

90

UseSRAM

DESCRIPTION Specifies whether or not to enable Debug logging to
Shared Memory in the GDK System Service.

If “yes” Shared RAM is used.

If “no” Shared RAM is not used.

This parameter setting is ignored if the
PRILayerEnable parameter is set to “no”.

This parameter is global across the CP Fax product
line.

SYNTAX “yes” or “no”

DEFAULT “yes” if PRILayerEnable parameter is set to “yes”,
“no” if the PRILayerEnable parameter is set to “no”

DATA TYPE REG_SZ

REFERENCE None

SRAMMask

DESCRIPTION Mask value that specifies type of information logged to
Shared Memory. This parameter setting is ignored if
the UseSRAM parameter is set to “no”.

This parameter is global across the CP Fax product
line.

SYNTAX bit mask value

DEFAULT 0xFFFFFFFF

DATA TYPE REG_DWORD

REFERENCE None

3. Configuration Commands

91

LogFile

DESCRIPTION Specifies file name to store Shared Memory Debug log
information.

This parameter setting is ignored if the UseSRAM
parameter is set to “no”.

This parameter is global across the CP Fax product
line.

SYNTAX full path and filename.

DEFAULT “”

DATA TYPE REG_SZ

REFERENCE None

LogFileMask

DESCRIPTION Mask value that specifies type of information to file
named by the Log File parameter. This mask does not
affect the other information logged in Shared Memory.

This parameter setting is ignored if the UseSRAM
parameter is set to “no”.

This parameter is global across the CP Fax product
line.

SYNTAX bit mask value

DEFAULT 0xFFFFFFFF

DATA TYPE REG_DWORD

REFERENCE None

GDK Version 5.0 Programming Reference Manual

92

DebugToSRAM

DESCRIPTION Specifies whether DEBUG command information is
logged to Shared Memory. The functionality of this
parameter depends on the DEBUG command being
set.

If “yes” allows Debug information to be logged into
Shared RAM (dependent on the GDK DEBUG Mask.)

If “no” firmware information is not logged into the
Shared RAM. When the set to “no”, the UseSRAM
parameter settings are ignored.

This parameter setting is ignored if the UseSRAM
parameter is set to “no”.

This parameter is global across the CP Fax product
line.

SYNTAX “yes” or “no”

DEFAULT “no”

DATA TYPE REG_SZ

REFERENCE Refer to the Enabling Debug section in Chapter 2 of
this guide

UseGFAX$DL

DESCRIPTION Specifies whether or not to log Debug information to a
text file called %GFAX%\GFAX.$DL. The
functionality of this parameter depends on the DEBUG
command being set.

If “yes” Debug information is logged in GFAX.$DL
(dependent of the GDK Debug mask.)

If “no” debug information is not logged in the
GFAX.$DL.

This parameter setting is ignored if the UseSRAM
parameter is set to “no”.

This parameter is global across the CP Fax product
line.

3. Configuration Commands

93

UseGFAX$DL

SYNTAX “yes” or “no”

DEFAULT “no”

DATA TYPE REG_SZ

REFERENCE Refer to the Enabling Debug section in Chapter 2 of
this guide

TraceTrunkNumber

DESCRIPTION Defines the trunk number (board handle) used for the
ISDN tracing.

This parameter setting is ignored if the
PRILayerEnable parameter is set to “no”.

SYNTAX numeric

DEFAULT 1

DATA TYPE REG_DWORD

REFERENCE See Dialogic DNA 3 online manuals for more
information on ISDN trace debugging.

GDK Version 5.0 Programming Reference Manual

94

TraceFileName

DESCRIPTION File where the ISDN trace (cc_StartTrace function)
information will be logged. If the filename is a NULL
string, is invalid or has an invalid path, no ISDN path
is provided.

This parameter setting is ignored if the
PRILayerEnable parameter is set to “no”.

SYNTAX full path and filename

DEFAULT “”

DATA TYPE REG_SZ

REFERENCE See Dialogic DNA 3 online manuals for more
information on ISDN trace logging.

 95

4. Queue Record Programming

Queue File Database Component

This section discusses the Queue File database component of the GDK system
software. This section discusses the following:

• Overview of the Queue File

• Handling the Queue File

• Record queuing and processing

• Buffering records

• Busy records

• Fax transaction programming

• Queue record data types

• Queue record fields

 About the Queue File

 The Queue File, GFAX.$QU, is the database that contains a detailed record of
information on each incoming and outgoing transaction. It is made up of a header
and seven linked lists of records, and is located in the subdirectory defined by the
GFAX environment variable.

 A queue record is a data structure in the Queue File that permits an application
program to communicate with the firmware. The fields in a queue record provide
information about the image to be sent and where and how to send it, or when and
how an image was received. Some diagnostic information is also stored in the
queue record.

GDK Version 5.0 Programming Reference Manual

96

 Queue File Lists

 The Queue File contains seven linked lists:

• Free List

• Pending List

• Received List

• Sent List

• Conversion List

• Control List

• Control Done List

 Free List

 The Free List collects deleted and unused records for future use and re-allocation.
When a new transaction is inserted into the Queue File, the Free List is checked
for available records. If a record is available, it is overwritten, and “linked” into
the appropriate linked list. Whenever records from the Free List are used, the
Queue File does not grow in size. If there are no records available in the Free List,
a new record is appended to the Queue File, and linked to the appropriate list —
expanding the size of the Queue File. When a record is deleted from a linked list,
it is placed in the Free List, and the size of the Queue File remains the same.

 Pending List

 The Pending List stores records submitted to the Queue File for transmission.
Records waiting for processing are sorted first by time, and then by the priority
level.

 Received List

 The Received List stores all completed incoming transmissions. Records in the
Received List have a status code that indicates whether or not the operation was
successful.

4. Queue Record Programming

97

 Sent List

 The Sent List is used to store completed outgoing transactions. Once a
transmission record on the Pending List has finished processing, it is moved from
the Pending List to the Sent List. Records in the Sent List have status codes
indicating whether or not the operation was successful.

 Conversion List

 The Conversion List is intended to be used by applications as a holding area for
those queue records needing additional processing before being submitted to the
Pending List. This is a good place to put non-TIFF files needing to be converted
to TIFF format. The application is responsible for checking this list for jobs and
submitting the file to be converted to a third-party conversion utility.

 Control and Control Done Lists

 When the GDK System Service processes certain configuration commands, it
generates records in the Control List for each fax channel. These records initialize
the system, and are moved to the Control Done List when initialization is
complete.

 Queue File Pointers

 The functions, gfqFindFirst() and gfqFindNext(), access the linked lists in the
Queue File and allow you to traverse the Queue File lists and read information
from the records. These functions are described in Chapter 5.

 Using GFQRESET.EXE

 The GFAX environment variable is always used to determine the path for the
Queue File; the default filename is “GFAX.$QU.” If a Queue File does not exist,
the program GFQRESET.EXE creates one.

 In addition to creating a Queue File, the GFQRESET.EXE program performs the
following:

• Clears all busy records

• Pre-allocates records to a Queue File

GDK Version 5.0 Programming Reference Manual

98

• Purges old records from the Control and Control Done lists

• Checks or repairs the Queue File link lists

This is the usage for GFQRESET:

GFQRESET -pn -qn -rn <queue name>

The parameters are listed in Table 14 , and are described in more detail in the
following section.

Table 14. GFQRESET Parameters

Option Function

-pn The purge flag option; these are the values for “n”:

0 = No purging. (Default)

1 = Purge Control Done List.

2 = Purge Control List.

3 = Purge Control Done and Control Lists.

-qn The Queue File check option; these are the values for “n”:

0 = No queue file check. (Default)

1 = Queue file is checked and not repaired.

2 = Queue file is checked and repaired.

-rn The pre-allocation and prevent-collapse flag. The range for “n” is
0 to 32,767.

0 = Queue file may be collapsed.

<queue name> The name of the Queue File to create or reset.

Pre-allocating Queue File Records

Space can be reserved in the Queue File by pre-allocating Queue File records with
the -r option. Preallocated records are stored in the Free List of the Queue File,
which holds “empty” records available for transaction data. Preallocation is used
to allocate contiguous queue record storage to avoid file fragmentation.

NOTE: Each record requires 516 bytes.

4. Queue Record Programming

99

If a Queue File does not exist, it is created and the specified number of records is
inserted into the Free List. If a Queue File already exists, the queue records are
counted and the program adds more records if needed. If the Free list of
preallocated records is exhausted, the next record is appended to the Queue File.

Purging the Control List and Control Done List

Records in the Control List and Control Done List are not needed after the GDK
system has been initialized. To purge these lists so the Queue File does not
become too large, use this command:

GFQRESET -p3

NOTE: The GDK Service runs GFQRESET with a -p3 option automatically
upon startup. GFQRESET does not need to be called manually, unless
other options are desired. If desired, GFQRESET should be called before
the GDK Service is started.

Checking and Repairing the Queue File

With the -q option (Table 14), the Queue File can be checked and repaired if any
records have been damaged. If an error is returned by the -q option, backup or
delete the Queue File and restart the system.

CAUTION

Using the -q2 option may not always work and should not be attempted
with the Dispatcher service running.

Record Queuing and Processing

The initial channel state depends on the GFXSHUTDOWN command. With the
GFXSHUTDOWN command parameter set to 3, a fax channel ignores queue
records in the Pending List and ignores incoming calls. The application must
submit reception/transmission requests using the GRT programming model.

GDK Version 5.0 Programming Reference Manual

100

With the GFXSHUTDOWN command parameter set to 0, a fax channel may
become ready for reception/transmission at any time, depending on the number of
channels in the system and how busy they are at any given moment.

When a fax channel becomes idle, the firmware requests work through the
Dispatcher. The Dispatcher retrieves the queue file records from the queue file. If
a queue record exists, it is given to the target channel, and the queue record on
disk is updated with the new status. If no record is available, a message indicating
that nothing is pending is sent to the fax channel.

The fax channel performs the task specified by the operation field of the record.
The firmware communicates with the Dispatcher about the files or other
information it may need, and the Dispatcher provides details to the firmware. The
firmware then transmits the fax and provides an updated record to the Dispatcher.
The Dispatcher posts the updated record to the Queue File, which stores a history
of the fax transmission — received, sent, failed, or awaiting retransmission.

Buffering Records

The current implementation utilizes buffering of the queue records.
Recommended buffers setting is two times the number of fax channels. Buffers are
used for storing queue records in RAM before being requested by an idle fax
channel. Buffering queue records reduces the number of disk accesses to the
Queue File.

Busy Records

When the QUEUET timer expires, the Dispatcher starts at the beginning of the
Pending List. The Dispatcher then loads and marks “BUSY” as many ready-to-go
queue records as it has fax channels available.

CAUTION

If a “BUSY” Pending List record is deleted, results may be
unpredictable.

4. Queue Record Programming

101

Although the original record is undisturbed in the Queue File, a record marked
“BUSY” indicates that a copy of the original record is in the record buffer of the
Dispatcher or is held by the firmware.

Fax Transaction Programming

This section discusses fax transaction programming with GDK queue records. A
queue record is a C data structure that can be manipulated by the application
program. The fields in a queue record provide complete information about the
image to be sent or received. These fields also contain information on where and
how to send the image or when and how it was received. In addition, many of the
fields also provide diagnostic information.

Each queue record contains information on a single telephone call. The records
can also be used to install default communication settings for answer operations,
such as Answer and Send or Answer and Send/Receive. In this case, the original
record is then used as a template to post new records for incoming calls.

Queue Record Data Types

The GFQ.H queue record header file contains preprocessor directives, data-type
definitions, and error codes for the GDK system.

Table 15. GFQ.H Data Types

Mnemonic Data Type Length Purpose

GFQOFFSET unsigned long 4 bytes Offset from beginning
of file.

GFQLONG unsigned long 4 bytes

GFQTIME unsigned long 4 bytes Date/time stamps in
seconds.

GFQBYTE unsigned char 1 byte Characters.

GFQINT unsigned short 2 bytes

GFQFILENAME_SIZE N/A 64 + 2 bytes For filenames.

GFQCSID_SIZE N/A 20 + 2 bytes For phone numbers.

GDK Version 5.0 Programming Reference Manual

102

Mnemonic Data Type Length Purpose

GFQUSER_FIELD_SIZE N/A 32 + 2 bytes For (network)
addresses.

N/A = not applicable

Queue Record Fields

This section summarizes all of the queue record fields. It also provides an
overview table and an alphabetic listing of the queue record fields with a
description of their parameters.

Queue Record Field Descriptions

Table 16 provides a synopsis of the queue record fields.

NOTES: 1. Only a few fields need to be changed from the default values set by
gfqClearRec().

2. All queue record fields which contain filenames must conform to the
MS-DOS naming convention (eight characters separated by a dot,
and then followed by a three-character extension).

Table 16. Summary of Fields in the Queue Record

Field Size in Bytes Data Types Use

cd_timeout 2 GFQINT Optional

completed_retries 2 GFQINT Managed by GDK1

completed_time 4 GFQTIME Managed by GDK1

control 2 GFQINT Optional

csid 20 + 23 GFQBYTE Optional

curr 4 GFQOFFSET Managed by the
libraries2

duration 2 GFQINT Managed by GDK1

fn_cover 64 + 23 GFQBYTE Optional

fn_received 64 + 23 GFQBYTE Managed by GDK1

fn_send 64 + 23 GFQBYTE Required (for sending)

4. Queue Record Programming

103

Field Size in Bytes Data Types Use

header 20 GFQBYTE Optional

items_received 2 GFQINT Managed by GDK1

items_sent 2 GFQINT Managed by GDK1

line_noise 2 GFQINT Managed by GDK1

list_type 2 GFQINT Managed by GDK1

message_speed 2 GFQINT Managed by GDK1

modem_id 32+23 GFQBYTE Optional

next 4 GFQOFFSET Managed by the
libraries2

notify 2 GFQINT Managed by GDK1

nsf_field 32+23 GFQBYTE Optional

nsf_length 2 GFQINT Optional

number_calls 2 GFQINT Optional

operation 2 GFQINT Required

phone_no 20+23 GFQBYTE Required (for sending),
with call control

prev 4 GFQOFFSET Managed by the
libraries2

priority_level 2 GFQINT Optional

protocol 2 GFQINT Optional

rate 2 GFQINT Optional

received_csid 20+23 GFQBYTE Managed by GDK1

received_filetype 2 GFQINT Managed by GDK1

received_nsf 32+23 GFQBYTE Managed by GDK1

received_nsf_length 2 GFQINT Managed by GDK1

record_control 2 GFQINT Managed by GDK1

retry_counter 2 GFQINT Optional

retry_delay 2 GFQINT Optional

retry_end_time 4 GFQTIME Optional

retry_strategy 2 GFQINT Optional

GDK Version 5.0 Programming Reference Manual

104

Field Size in Bytes Data Types Use

security 4 GFQLONG Optional

signal_quality 2 GFQINT Managed by GDK1

signal_strength 2 GFQINT Managed by GDK1

source_type 2 GFQINT Optional

status 2 GFQINT Managed by GDK1

submission_retries 2 GFQINT Managed by GDK1

submission_time 4 GFQTIME Managed by GDK1

time 4 GFQTIME Optional

transmit_control 2 GFQINT Optional

user_id 32+23 GFQBYTE Optional

1 This field is filled in by the firmware after it processes the job. However, it may also be
read from or written to by the GDK functions.

2 Both the firmware and the GDK functions manage the values in these fields, and you
should not write directly to them.

3 Two bytes are used for terminating null characters for the string.

Alphabetical Listing of Queue Record Fields

The field descriptions are presented in the format shown in Table 17.

Table 17. Queue Record Field Description Formats

Function Name

DATA TYPE The GDK data type description.

DESCRIPTION An overview of the purpose of the field.

VALUE Indicates the values required by the field.

USAGE Provides an example of how to use this field in the GDK.

SEE ALSO Refers to other queue record fields that contain additional
or related information.

4. Queue Record Programming

105

cd_timeout

DATA TYPE GFQINT

DESCRIPTION This field specifies the number of seconds to wait after
dialing for answer-tone carrier detect. It cannot have a
value of zero; the default is 30 seconds. On overseas
calls, the connect time may be 60 to 90 seconds. Local
calls might connect in 10 seconds.

VALUE Positive integers to 32767.

USAGE qrec->cd_timeout = 45;

completed_retries

DATA TYPE GFQINT

DESCRIPTION This field contains the number of completed retries and is
managed by GDK firmware. For example, if the
submission_retries is 3 and the retry_counter is 2, the
completed_retries value is 1.

VALUE Positive integers to 32767.

USAGE attempts = qrec->completed_retries;

completed_time

DATA TYPE GFQTIME

DESCRIPTION This field tells when a record was completed and posted
to a list. For example, after a record in the Pending List
has been processed, it is posted to the Sent List and the
completed_time is recorded in seconds. It is managed by
GDK firmware.

VALUE Positive long integer.

USAGE ptr = ctime(&(qrec->completed_time));

GDK Version 5.0 Programming Reference Manual

106

control

DATA TYPE GFQINT

DESCRIPTION This field is used for Answer & Send, Answer & Receive,
and Answer Default records only. A record waits for the
phone to ring for the specified amount of time before it
expires with a status code of 3033. The record is posted
to the queue or application notification pipe after the
specified time.

 The value is given in seconds; zero can be used. The
default is 60.

VALUE Positive integers to 32767.

USAGE qrec->control = 20;

csid

DATA TYPE GFQBYTE[GFQCSID_SIZE]

DESCRIPTION This field is transmitted as the Customer Subscriber
Identification (CSID) number during T.30-protocol
handshaking. Usually, it contains the telephone number of
the station or installation. It holds a maximum of 20
characters, or it can be empty. If the CSID field has
spaces, it remains blank. Writing more than 20 characters
to this field may produce unexpected results.

 If the CSID field is null and does not have spaces, the
CSID from the user’s configuration file corresponding to
the fax channel processing the record is placed into the
field.

 PTT administrations in some countries may restrict
characters in this field to the numbers 0 through 9 and the
plus (+).

VALUE Up to 20 alphanumeric characters.

USAGE strcpy (qrec->csid,"408-744-1549");

4. Queue Record Programming

107

curr

DATA TYPE GFQOFFSET

DESCRIPTION This field contains a pointer to the current queue record
in a linked list, and is managed by GDK firmware. When
a queue record is inserted into the Queue File, the current
record pointer is “assigned.”

VALUE Positive integer.

USAGE This field is managed by GDK software and should not be
modified by user programs.

duration

DATA TYPE GFQINT

DESCRIPTION This field can be used to determine the length of time it
took to complete a phone call. It records the number of
seconds of phone-connect time used for transmission or
reception. In a Dial-and-Send-type operation, the timer
starts at the end of the answer tone. This field is managed
by the GDK communication programs.

VALUE Positive integers to 32767.

USAGE phone_time = qrec->duration;

fn_cover

DATA TYPE GFQBYTE[GFQFILENAME_SIZE]

DESCRIPTION This 64-byte field contains the name of the file
comprising the cover page, if desired. It must be used in
conjunction with the field (transmit_control |=
GFQUSE_COVERSHEET).

VALUE A character array of type GFQFILENAME_SIZE; always
a full path to the cover-page file.

USAGE strcpy (qrec->fn_cover,"c:\\fax\\cover.tif");

SEE ALSO transmit_control

GDK Version 5.0 Programming Reference Manual

108

fn_received

DATA TYPE GFQBYTE[GFQFILENAME_SIZE]

DESCRIPTION This field contains the filename of a received fax file. The
filename can be up to 64 bytes in length.

 The communication program initializes this field after the
fax is received. A default filename is given to received
transmissions — “f001p001.tif,” in which the numerals
increment with the transmission and page numbers.

 The first character indicates the fax channel that received
the file. The first group of digits is a “call number,” which
provides a unique number for the fax. The character “p”
refers to page, and the second group of digits indicates
the page number of the fax.

 The default filename can be changed when a queue record
is submitted with an Answer-operation parameter and by
filling in this field. It may also be changed by using the
GFXRECVPATH command. However, the first character
always represents the fax channel that received the fax.

 The type of file it contains is indicated in the
received_filetype field. Usually, the received_filetype is
GFQSINGLE_DOC; however, for file transfer, the
fn_received field generates a received_filetype of
GFQLIST_OF_DOCS.

 If file transfer is used, the received filename is a list of
files in the format xxxxXFER. FLS. This list contains the
name of the file that was received, which is the same as
the original sent filename (as long as the DOS
xxxxxxxx.yyy format is observed and the filename does
not already exist on the target drive). The “f001p001”
filenaming style is used if the sent filename already exists;
the original filename is included in parentheses next to
the filename that was written in the list.

4. Queue Record Programming

109

fn_received (cont.)

 For example, A001XFER.FLS could contain:

TEST.TXT

A001P001.TIF (TEST.PCX)

VALUE A character array of type [GFQFILENAME_SIZE];.

USAGE strcpy (qrec->fn_received, "c:\\fax\\f001p001.tif");

SEE ALSO received_filetype

fn_send

DATA TYPE GFQBYTE[GFQFILENAME_SIZE]

DESCRIPTION This field, which can be up to 64 bytes in length, contains
the name of a file to be sent.

 The type of file to be sent should be put in the
source_type field. If it is a single file or a sequence of
pages in the GDK filename format F001P001.TIF, the
source_type is GFQSINGLE_DOC. If it is a list of files,
the source_type is GFQLIST_OF_DOCS. A list of files
must be an ASCII file, with every line containing a path
to a file to send. Each line must be separated by a
<CR><LF>.

VALUE A character array of type [GFQFILENAME_SIZE];.

USAGE strcpy (qrec->fn_send, "c:\\fax\\f001p001.tif");

SEE ALSO source_type

GDK Version 5.0 Programming Reference Manual

110

header

DATA TYPE GFQBYTE[GFQCSID_SIZE]

DESCRIPTION This field contains the text that is included in a header,
which is printed at the top of each sent fax. It is limited to
20 alphanumeric characters, but also can be empty. This
field must be used in conjunction with (transmit_control
|= GFQUSE_HEADER). The following is the default
format of the header line on the printed page:

 date & time calling CSID -> called CSID text page #

The information in this field fills the “text” field in the
header file.

VALUE A character array of type [GFQCSID_SIZE].

USAGE strcpy (qrec->header,"Fax from GDK");

SEE ALSO transmit_control

items_received

DATA TYPE GFQINT

DESCRIPTION This field contains the number of pages or files correctly
received. If nothing is received because of an error, this
field contains zero.

VALUE Positive integers to 32767.

USAGE number_pages = qrec->items_received;

4. Queue Record Programming

111

items_sent

DATA TYPE GFQINT

DESCRIPTION This field contains the number of pages or files actually
sent during the transmission, and it is managed by GDK
firmware. If nothing is sent because of an error, this field
contains zero.

VALUE Positive integers to 32767.

USAGE number_pages = qrec->items_sent;

line_noise

DATA TYPE GFQINT

DESCRIPTION The line noise, which is measured by the modem during
quiet periods of the handshaking process, is recorded
here. It is filled by GDK firmware when a message is
received. This field is useful for determining if a failure in
transmission is due to line problems.

VALUE See Table 18.

USAGE noise = qrec->line_noise

Table 18. Values Reported in line_noise

Value dBm Meaning

18 -65 Extremely quiet

50 -60 Very quiet

135 -55 Quiet

461 -50 Acceptable

1390 -45 Noisy

2300 -40 Unusable

GDK Version 5.0 Programming Reference Manual

112

list_type

DATA TYPE GFQINT

DESCRIPTION This field indicates the list to which a queue record
belongs; it is managed by GDK firmware.

VALUE See Table 19.

USAGE if (qrec->list_type == GFQPEND_LIST)

 printf ("Pending Log");

Table 19. list_types in the Queue Record

Mnemonic Meaning

GFQPEND_LIST Pending List

GFQRECV_LIST Received List

GFQSENT_LIST Sent List

GFQCONV_LIST Conversion List

GFQCTRL_LIST Control List

GFQCPST_LIST Control Done List

GFQFREE_LIST Free (deleted) Records

GFQALL_LISTS All Lists

message_speed

DATA TYPE GFQINT

DESCRIPTION This field records the transmission rate in bits per second
(BPS) during transmission or reception. It is managed by
GDK firmware.

VALUE 14400, 12000, 9600, 7200, 4800, and 2400 bps or
GFQMAX_RATE for maximum default rate.

USAGE speed = qrec->message_speed;

4. Queue Record Programming

113

modem_id

DATA TYPE GFQBYTE[GFQUSER_FIELD_SIZE]

DESCRIPTION This 32-byte field is used for a multiple-fax channel
chassis. It holds a string in the form “GFAXx.yy,” where
“x” represents the chassis number and “yy” is the channel
number. (For more than nine channels, numbers in the
form of “01,” and so on, should be used.) This string
should match the one used with the channel command in
the ChannelID key in the registry file. When a queue
record is submitted, the modem_id indicates the channel
to which the task should be assigned. If this field is
empty, the task goes to the first available channel.

VALUE A character array of size [GFQUSER_FIELD_SIZE].

USAGE strcpy (qrec->modem_id,"GFAX1.01");
strcpy (qrec->modem_id,"GFAX1.10");

next

DATA TYPE GFQOFFSET

DESCRIPTION This field contains a pointer to the next queue record in a
linked list and is managed by GDK firmware. The last
record in a linked list contains NULL.

VALUE Positive integer.

USAGE This field is managed by GDK software and should not be
modified by user programs.

GDK Version 5.0 Programming Reference Manual

114

notify

DATA TYPE GFQINT

DESCRIPTION This field is evaluated by gfqClearReq(); otherwise, it is
unused. If your application writes to this field, it is not
evaluated.

VALUE None.

USAGE This field is managed by the GDK software and should
not be modified by user programs.

nsf_field

DATA TYPE GFQBYTE[GFQUSER_FIELD_SIZE]

DESCRIPTION This is the non-standard-facilities (NSF) field to be
transmitted during T.30 handshaking. It can hold up to 32
bytes and is reserved for facsimile machines that support
NSF.

 The ITU specifies that the first octet of the
NSF/NSS/NSC frame must contain an ITU country code.
The next two octets contain a provider code. The GDK
provider code is 0x00,0x64.

VALUE A character array of size [GFQUSER_FIELD_SIZE].

USAGE qrec->nsf_field[0] = 0xAE;

SEE ALSO nsf_length

nsf_length

DATA TYPE GFQINT

DESCRIPTION This field contains the number of bytes to be transmitted
in the non-standard-facilities (NSF) field. It is sent to
facsimile machines that support NSF.

VALUE Positive integer of size 0 to GFQUSER_FIELD_SIZE.

USAGE qrec->nsf_length = 20;

SEE ALSO nsf_field

4. Queue Record Programming

115

number_calls

DATA TYPE GFQINT

DESCRIPTION This field specifies the number of dial attempts to be
made for each “retry.” For example, if number_calls is
equal to 3 for a queue record with 3 retries, the board will
attempt to dial up to 9 times. If this field is not specified
when a queue record is submitted, the default
is 1.

VALUE Positive integers to 32767.

USAGE qrec->number_calls = 3;

operation

DATA TYPE GFQINT

DESCRIPTION When a record is submitted, this field must specify the
operation to be performed. The operation tells the on-
board software how to process a queue record.

VALUE See Table 20.

USAGE qrec->operation = GFQDIAL_SEND;

Table 20. Queue-Record Operations

Operation Transaction Send DIS Wait for DIS

DIAL Send GFQDIAL_SEND

 Receive GFQDIAL_RECEIVE

 Both GFQDIAL_SEND_
RECEIVE

ANSWER Send GFQANSWER_SEND

 Receive GFQANSWER_RECEIVE

 Both GFQANSWER_RECEIVE
_SEND

IMMEDIATE Either GFQANSWER_
IMMEDIATELY

GDK Version 5.0 Programming Reference Manual

116

phone_no

DATA TYPE GFQBYTE[GFQCSID_SIZE]

DESCRIPTION This field contains the telephone number to be dialed. It is
limited to 20 characters (Table 20); no spaces are
permitted. Characters such as “-”, “(”, and “)” count
toward the 20-character limit, but are not evaluated.

 For additional dialing features, see the Routing section in
Chapter 2.

 For dial strings with more than 20 digits, put the dial string
into an ASCII file. The first character of the phone_no
field is checked for the character “@.” If an “@” is found,
the remainder of the field (up to the first white space) is
used as the name of the file from which the phone digits
are to be read. The file to be used must be a fully-qualified
path name. If the file specified cannot be found, or if it
appears to be a non-ASCII file, the call is terminated with
no retries. If the characters “P” or “T” are used, the
modem changes to pulse or tone, respectively.

VALUE A character array of size [GFQCSID_SIZE]. See Table 21.

USAGE strcpy (qrec->phone_no,"408-744-1549").

Table 21. Characters in phone_no Field

Character(s) Meaning

0 through 9 Phone numbers and access numbers

A through D Phone numbers and access numbers

, (comma) 1.5-second pause

; (semicolon) 15-second wait for second dial tone

P Pulse dialing

T Tone dialing (default)

! Flash-hook signal

Notifies international operator that the dialing
sequence is finished

* PBX-specific information

4. Queue Record Programming

117

prev

DATA TYPE GFQOFFSET

DESCRIPTION This field contains a pointer to the previous queue
record in a linked list. It is managed by GDK firmware.
The first record contains NULL.

VALUE Any positive integer.

USAGE This field is managed by the GDK software and should
not be modified by user programs.

priority_level

DATA TYPE GFQINT

DESCRIPTION The records in the Queue File are sorted first by date and
time stamp (specified in the time data field), then by
priority, then processed sequentially. Although records
may be inserted non-sequentially, those submitted with
the same date and time stamp are processed in the order
of submission, unless priority is specified. Records with
the priority date and time specified are processed first.
Zero is the lowest priority; 32767 is the highest. The
default is zero.

VALUE Positive integers to 32767.

USAGE qrec->priority_level = 99;

protocol

DATA TYPE GFQINT

DESCRIPTION Two modes of communication are available on CP Fax
Series boards: sending an image file to a fax machine
(GFQT30_PROTOCOL) and sending a data file.
GFQT30_PROTOCOL is the default; it should be changed
only if file-transfer mode is desired.The method used for
data transfer is GFQBFTS BFT T.434 protocol. To use
BFT, additional configuration commands must be placed
in the registry. See the GFXFAXCONTROL 1020.

VALUE GFQT30_PROTOCOL, GFQFILE_TRANSFER,

GDK Version 5.0 Programming Reference Manual

118

protocol

DATA TYPE GFQINT
GFQBFT

USAGE qrec->protocol = GFQBFT;

rate

DATA TYPE GFQINT

DESCRIPTION This field is used to initialize the rate of transmission in
bits per second (bps). If it is set to GFQMAX_RATE, the
message is to be sent at the highest rate possible. Change
the value only if a slower rate is required; for example,
when a phone line is known to have poor quality.

VALUE GFQMAX_RATE, 14400, 12000, 9600, 7200, 4800, and
2400 bps.

USAGE qrec->rate = 4800;

received_csid

DATA TYPE GFQBYTE[GFQCSID_SIZE]

DESCRIPTION This field records the Customer Subscriber Identification
(CSID) number of the remote machine. It is up to 20
characters long, can contain any alphanumeric character,
and is managed by GDK firmware.

VALUE A character array of size [GFQCSID_SIZE].

USAGE strcpy (station_id,qrec->received_csid);

4. Queue Record Programming

119

received_filetype

DATA TYPE GFQINT

DESCRIPTION This field contains a description of the file named in
fn_received. When a transmission is received, it is used to
indicate whether the operation involves a single fax, a list
of files, or a file transfer. The field is managed by GDK
firmware.

VALUE GFQSINGLE_DOC or GFQLIST_OF_DOCS.

USAGE if (qrec->received_filetype == GFQLIST_OF_DOCS)

printf ("List of files was received.\n")

SEE ALSO fn_received

received_nsf

DATA TYPE GFQBYTE[GFQUSER_FIELD_SIZE]

DESCRIPTION This 32-byte field contains the value of the non-standard-
facilities (NSF) field received from the sending facsimile
machine. It is managed by GDK firmware.

VALUE A character array of type [GFQUSER_FIELD_SIZE].

USAGE for (i = 0; i < qrec->received_nsf_length; i++)

printf ("%02x", qrec->received_nsf);

SEE ALSO received_nsf_length

received_nsf_length

DATA TYPE GFQINT

DESCRIPTION This field contains the length of the non-standard-facilities
(NSF) field that was received. It is reserved for
communication with facsimile machines that support NSF.
It is managed by GDK firmware.

VALUE Integers from 0 to GFQUSER_FIELD_SIZE.

USAGE This field is managed by the GDK software and should not
be modified by user programs.

SEE ALSO received_nsf

GDK Version 5.0 Programming Reference Manual

120

record_control

DATA TYPE GFQINT

DESCRIPTION This is a 16-bit field used for management of the queue
record. The bits used by GDK functions are 0, 1, 2, 4, 5,
6, and 7. Bit 0 is “0” (zero) when the record is not busy
and “1” when the record is busy. Bit 2 is “0” (zero)
when the record is not “off the host” and “1” when the
record is “off the host.”

 When a record is submitted to the Pending List for
transmission, its record_control value is “0” (zero).
When it is moved by the Dispatcher into a buffer, it is
“1.” When the Dispatcher sends it to the on-board
software for transmission, it changes to “5.” When the
record is posted and the transmission is complete, the
record_control value is “0” (zero).

 During the course of a fax transmission, the
record_control field goes through a series of steps. At
each step, the values in this field change. See Table 22.

VALUE See Table 23.

USAGE This field is managed by the GDK software and should
not be modified by user programs.

SEE ALSO “Busy Records” section.

Table 22. Transmission Steps and record_control Field Values

Step Values

A record is submitted to the Pending List. xxxx x0x0

The Dispatcher moves the record into a buffer. xxxx x0x1

The Dispatcher sends the record to the fax channel. xxxx x1x1

The record is posted. xxxx x0x0

4. Queue Record Programming

121

Table 23. Values and Flags of the record_control Field

Bit Bit Value of 0 Bit Value of 1 Flag Name

b0 Queue record not
busy

Queue record
busy

GFQRECORD_BUSY

b1 Template Transaction GFQTEMPLATE_RECORD

b2 On host Off host GFQRECORD_ON_HOST

b3 (Reserved)

b4 No post Post GFQPOST_RECORD

b5 Resubmit off Resubmit on GFQRESUBMIT_ON

b6 Not viewed/printed Viewed/printed GFQRECORD_VIEWED

b7 Not routed Routed GFQRECORD_ROUTED

...

b15 (Reserved)

retry_counter

DATA TYPE GFQINT

DESCRIPTION This field counts the call-processing submissions, even
though it is called a “retry” field. It specifies the total
number of calls to be attempted, and not the number of
“retries.” However, if the value of the field is set to zero, a
file gets one transmission attempt by default. Because
every record gets at least one transmission attempt, this
field counts that first attempt as a “retry.” A value does not
have to be assigned to retry_counter, unless a number other
than the default is desired.

 If the -1 option is selected, retrying continues indefinitely,
or for a specified period of time. However, the maximum
value of the retry_counter may be restricted by PTT
requirements in certain countries. This is only used in the
Queue Programming model.

VALUE -1, positive integers to 32767.

USAGE qrec->retry_counter = 3;

GDK Version 5.0 Programming Reference Manual

122

retry_delay

DATA TYPE GFQINT

DESCRIPTION This field specifies the number of minutes that must elapse
before another retry is attempted. The default is 30
minutes. This field does not have to be initialized unless
this value is to be changed. PTT requirements in some
countries may specify a minimum retry_delay time. This is
only used in the Queue Programming model.

VALUE Positive integers to 32767.

USAGE qrec->retry_delay = 30;

retry_end_time

DATA TYPE GFQTIME

DESCRIPTION When a queue record is submitted for polling operations, it
must have a start and stop time. This field indicates the
stop time in seconds. If the record has not been processed
successfully by its stop time, processing is discontinued,
and the record is posted to the appropriate completion list.
In that event, the retry_counter is set to -1. This is only
used in the Queue Programming model. To specify a wait
time for answer-operations in the GRT-based
programming model, use the “control” field.

VALUE Positive integers to 32767.

USAGE qrec->retry_end_time = qrec->time + 3600;

SEE ALSO retry_counter

4. Queue Record Programming

123

retry_strategy

DATA TYPE GFQINT

DESCRIPTION If a record fails, the Queue Manager uses the type of retry
strategy specified in this field

 The only retry strategy implemented at this time is
specified with the parameter GFQFULL_RETRY.

VALUE GFQFULL_RETRY.

USAGE qrec->retry_strategy = GFQFULL_RETRY;

security

DATA TYPE GFQLONG

DESCRIPTION This field is used for checking the answering Customer
Subscriber Identification (CSID) against the telephone
number that was dialed. It contains the number of digits to
be checked. One or all digits dialed, except for dashes and
commas, can be checked against the CSID supplied by the
called party to verify that the correct number was reached.

 A match of “n” numbers is performed; if there is no match,
your system disconnects. If logging is enabled at the
appropriate level, the message “Security check failed” is
returned. A value of zero indicates no security.

VALUE None.

USAGE qrec->security = 3;

signal_quality

DATA TYPE GFQINT

DESCRIPTION This field contains the signal quality, which is measured by
the modem during handshaking procedures. This field is
useful for determining if a failure in transmission is due to
line problems.

VALUE See Table 24.

USAGE This field is managed by the GDK software and should not

GDK Version 5.0 Programming Reference Manual

124

signal_quality

DATA TYPE GFQINT
be modified by user programs.

Table 24. Values of the signal_quality Field

Speed Mode High Average Marginal

14400 V.17 0 768 1024

12000 V.17 0 1792 2560

9600 V.17 0 4608 5632

7200 V.17 0 7168 10240

9600 V.29 0 960 2048

7200 V.29 0 2112 4352

4800 V.27 0 1600 3328

2400 V.27 0 9408 18944

signal_strength

DATA TYPE GFQINT

DESCRIPTION This field holds the signal strength, which is measured by
the modem during handshaking. It is useful for determining
if a failure in transmission is due to line problems.

VALUE See Table 25.

USAGE This field is managed by GDK software and should not be
modified by user programs.

4. Queue Record Programming

125

Table 25. Values of the signal_strength Field

Value dBm Strength

6750 -40 Marginal

10000 -35 Weak

13250 -30 Acceptable

16250 -25 Good

19750 -20 Strong

23000 -15 Very strong

source_type

DATA TYPE GFQINT

DESCRIPTION When a file to be sent is submitted to the Queue File, the
user must specify whether the operation involves a single
fax or a list of documents. This field contains a description
of the file named in fn_send. It must be filled if a file is to
be sent.

VALUE GFQSINGLE_DOC or GFQLIST_OF_DOCS.

USAGE qrec->source_type = GFQLIST_OF_DOCS;

 SEE ALSO fn_send

status

DATA TYPE GFQINT

DESCRIPTION This field contains a code indicating the success or failure
of the transaction. A list of error and status codes is given
in the Error and Status Codes Manual. Although the
function libraries write the status field, codes can be
written to it easily for your application.

VALUE Positive integers to 32767.

USAGE result = qrec->status;

SEE ALSO Error and Status Codes Manual

GDK Version 5.0 Programming Reference Manual

126

submission_retries

DATA TYPE GFQINT

DESCRIPTION This field is used to manipulate retries, and contains the
initial value of the retry_counter field. It records the
number of retry attempts to be made when a transmission
fails. This field is managed by GDK firmware.

VALUE Positive integers to 32767.

USAGE This field is managed by the GDK software and should not
be modified by user programs.

submission_time

DATA TYPE GFQTIME

DESCRIPTION This field is used to manipulate submission times. It
records the time at which a queue record was first
submitted to the Queue File. The value in the field is the
time in seconds from January 1, 1970. This field is
managed by GDK firmware.

VALUE A date/time stamp comprised of positive integers.

USAGE This field is managed by GDK software and should not be
modified by user programs.

time

DATA TYPE GFQTIME

DESCRIPTION When a record is submitted to the Queue File, it must
contain the time it is to be processed or was processed,
which is specified by this field.

VALUE None.

USAGE time (&(qrec->time)); /*for immediate processing*/

4. Queue Record Programming

127

transmit_control

DATA TYPE GFQINT

DESCRIPTION This field is a 16-bit switch that controls various aspects of
the Send operation. If all bits are set to 0, no special
features will be included. Setting the first bit allows a
cover page to be sent. Setting the second bit allows a
header to be sent. Setting the third bit turns on the non-
standard-facilities (NSF) field during transmission. This
field must be specified when used in conjunction with the
various controls.

VALUE GFQUSE_COVERSHEET, GFQUSE_HEADER,
GFQUSE_NSF, GFQUSE_OVERLAY_HEADER,
GFQUSE_OVERLAY_HEADER_OR.

USAGE qrec->transmit_control|= GFQUSE_HEADER;

qrec->transmit_control|= GFQUSE_NSF;

SEE ALSO nsf_field and fn_cover field descriptions.

user_id

DATA TYPE GFQBYTE[GFQUSER_FIELD_SIZE]

DESCRIPTION This 32-byte field indicates the submitter of the record, a
network address, and a password. It can contain any
alphanumeric characters; it also can be empty. Records
may be submitted to the Queue File by specifying this field
and using a function such as gfqSubmit.

 If the fax channel receives any routing information, it will
post the results in as a coded field.

For example:

 SYSOP;D=XXXX

 where “SYSOP” is the name generated by the
communications program “;D” is a separator, and
“XXXX” represents the DID (direct inward dialing) or
DTMF (dual-tone multi-frequency) digits; or
SYSOP;S:=YYYY...

where “;S:” is a separator and “YYYY...” represents a

GDK Version 5.0 Programming Reference Manual

128

user_id

DATA TYPE GFQBYTE[GFQUSER_FIELD_SIZE]
received subaddress.

Or

;P:=ZZZ…

where “;P:” is a separator and “ZZZ…” represents a T.30
password.

VALUE A character array of size [GFQUSER_FIELD_SIZE].

USAGE strcpy (qrec->user_id,"John");

SEE ALSO “Routing” section in Chapter 2.

 129

5. Programming Models

GDK Subsystem

Dialogic has developed a fax subsystem optimized for mission critical, high
volume, fax applications. CP Fax hardware channels are integrated through direct
connection to the Public Switched Telephone Network (PSTN) or as a shared
resource in a telephony bus environment such as Pulse Code Modulation
Expansion Bus (PEB) or Signal Computing Bus (SCbus). All the details, critical
timings, fax machine compatibility, on-line image conversions, High-Level Data-
Link Control (HDLC) and signal quality measurements occur on-card via field
upgradable, soft loadable firmware.

Architecturally, a GDK channel functions as a client-server to the host computer.
Communication between the fax channel server and the host application client is
through an operating-system dependent driver (the GDK system service
dispatcher) and a GDK API messaging interface. This method differs greatly from
traditional (Class 1 or Class 2) fax-data modems.

The GDK APIs provide fax communications in two ways — passive batch mode
and runtime interactive mode. These two modes are described in more detail later
in this chapter.

During fax transactions, the Dispatcher is a server to the fax channels executing
proprietary remote procedure call requests for files, data, system time, or other
host services. The application can participate in fax communication through event
monitoring using the run-time API, or can ignore the details of the fax protocols
by using the batch-programming model.

The GDK architecture shields the application from critical protocol timings,
allowing the development of very high-density systems with inexpensive host
chassis hardware. A fax transaction can withstand up to 30-second delay in host
service. This delay can occur in Local Area Networks (LANs) and Wide Area
Networks (WANs) used to connect mission critical, integrated fax solutions in
businesses and service bureaus.

GDK Version 5.0 Programming Reference Manual

130

This architecture also protects the T.30 protocol from misuse in foreign countries
where the fax protocol may be restricted by government approval requirements.
Dialogic CP Fax products are approved for many countries.

Phases of a Fax Session

A facsimile session between two fax devices consists of five distinct phases (see
Table 26). The ITU T.30 recommendation describes the interaction between two
fax devices in more detail.

Table 26. Facsimile Session Phases

ITU T.30 Phase Description Fax Modem

Phase A — Call Setup This phase establishes a call
connection between the two
devices, which includes
dialing, call progress, answer
and supervision (start the
billing).

Calling fax device
transmits CNG 1100 Hz
tone, .5 second ON, 3
seconds OFF

Answering fax device
transmits CED 2100 Hz
tone, 3 second duration

Phase B —
Pre-Message
Procedure

This phase consists of the
mutual recognition of the fax
devices (known as a
handshake). It is a negotiation
procedure that identifies their
respective capabilities,
identities and any non-
standard facilities. This phase
selects the session parameters
for the message transmission
including speed, compression
and error correction.

V.21 mode, HDLC

300 bps

Phase C — Message
Transmission

This phase is where the data is
transmitted. The fax devices
send/receive page files of the
document, at the selected
speeds performing T.4, T.6
and/or ECM as negotiated in
Phase B.

v.17, v.29, v.27, v.33

14400, 12000, 9600,
7200,4800, 2400 bps

optional HDLC (ECM
mode)

5. Programming Models

131

ITU T.30 Phase Description Fax Modem

Phase D —
Post-Message

Procedure

After sending/receiving a page
file of the document, a
message exchange occurs
between the fax devices
indicating the success or
failure to receive the page file,
continue to next page file
under same conditions, retrain
to new conditions or to
confirm the document
transmission is complete.

 V.21 mode, HDLC

Phase E —
Call Release

In this phase the fax
transaction is complete, good
or failed, and the call is
released (OFF-HOOK)
terminating the billing and the
connection.

(inactive)

Fax Programming Models

Dialogic CP Fax Series products define and support two programming models for
facsimile communications — batch mode and run-time interactive models. The
GFQ functions are used with the batch programming model, and the GRT
functions are used with the run-time interactive programming model.

GDK Version 5.0 Programming Reference Manual

132

Batch Programming Model

 The batch programming model relieves the developer of monitoring the fax
transaction phases. This programming model is designed for applications such as
automated transmission between two fax machines with no human intervention.
The batch mode also minimizes the loading on the host computer.

A batch application cannot perform resource sharing or call switching. An
additional limitation is that it is restricted to CP Fax hardware, which can perform
direct call control (e.g. CP Fax cards with direct connection to the PSTN (analog
boards or AEB connections, or direct control of signaling bits in digital
environments such as PEB). As a result of the limitations of batch programming,
developers generally prefer the interactive programming model, which is
discussed later in this chapter.

NOTE: The batch programming model does NOT support the "transparent
ISDN" or "transparent DM3 support" features.

In the batch programming model, the fax channel performs all five phases of a fax
transaction. This API model can be used in the following types of applications:

• Fax broadcast

• E-mail fax gateways

• Two-call fax-on-demand applications

 Batch mode programming deals with the submission and retrieval of queue
records (Chapter 4). A queue record is simply a data structure that is stored in a
database (the Queue File). This “database record” describes the fax transaction
from start to finish.

 For example, to send a fax, a queue record is filled in with the file name of the
image and the phone number. The record is then submitted to the database using
gfqSubmit() for processing. The GDK subsystem processes the fax transaction
and updates the queue record with the status, duration, and completion time of the
job. The completed record can then be retrieved by the application using
gfqFindFirst() to update its local records.

 This description demonstrates the simplicity of the batch mode model. Note,
however, that the queue record is a comprehensive data structure, which provides

5. Programming Models

133

detailed transmission or receiving characteristics. Additionally, a completed queue
record contains detailed measurements of line quality, fax machine characteristics,
and call duration.

 The level to which you program the queue record determines the sophistication of
your fax application in the batch mode programming model. Conversions, fonts,
headers, speeds, file transfers, retries, and special information exchanges are all
available using the fields of the queue record.

NOTE: The batch programming model is an outdated paradigm with many
limitations; Dialogic recommends the interactive programming model for
most applications and environments.

 GFQ APIs — Alphabetized List of the GFQ Functions

 The following is an alphabetized list of the GFQ functions. These functions
submit and retrieve transactions within the GDK Queue File (database). Any
queue record that is not marked busy can be created, read, modified, or deleted
from the Queue File by using the GFQ functions. For a detailed discussion of the
Queue File’s structure, please see Chapter 4.

GDK Version 5.0 Programming Reference Manual

134

 Name: void gfqClearRec (GFQRECORD *qrec);

 Inputs: GFQRECORD *qrec
• A pointer to a queue record.

 Outputs: GFQRECORD *qrec
• A pointer to a queue record.

 Returns: None
 Includes: gfq.h

n Description

 The gfqClearRec() function clears and initializes a record to the default settings
listed in Table 27.

 Table 27. Queue Record Default Values

 Queue-Record Field Default

 qrec->time time

 qrec->notify GFQNOTIFY_ONERROR

 qrec->retry_strategy GFQFULL_RETRY

 qrec->retry_counter 3

 qrec->retry_delay 30

 qrec->rate GFQMAX_RATE

 qrec->protocol GFQT30_PROTOCOL

 qrec->number_calls 1

 qrec->cd_timeout 30

 qrec->source_type GFQSINGLE_DOC

n Example

 #include "gfq.h"
 GFQRECORD qrec;
 gfqClearRec (&qrec);

5. Programming Models

135

 Name: int gfqFindFirst (GFQCHAR *gfqFileName, GFQRECORD
*pQRec, GFQINT Link, GFQINT End, GFQCHAR *User);

 Inputs: GFQCHAR *gfqFileName
• Name of Queue File

access.
 GFQRECORD *pQRec

• Queue record buffer.
 GFQINT Link

• Link list to be read.
 GFQINT End

• The end from which to
begin —
GFQLIST_START or
GFQLIST_END.

 GFQCHAR *User
• Valid queue record, if

return is GFQSUCCESS.
 Outputs: GFQRECORD *pQRec

• Valid queue record, if
return is GFQSUCCESS.

 Returns: GFQSUCCESS
• A valid record was found.

 GFQLIST_NOTFOUND
• The link specified was not

valid.
 GFQLIST_EOF

• No records matching the
search values were found.

 GFQRECORD_NOTFOUND
• List is empty.

 Includes: gfq.h

n Description

 The gfqFindFirst() function locates the first item in a list using the user ID, and
the direction it was passed to determine which record is the first. That record is
then read into the buffer pointed to by pQRec.

GDK Version 5.0 Programming Reference Manual

136

n Example

 #include "gfq.h"
 #include "gfqpath.h"
 int status;
 GFQRECORD qrec;
 GFQCHAR gfqFileName[GFQFILENAME_SIZE];
 int i=0;
 if (gfqSearch(GFQDIR_QUEUE, "gfax.$qu", gfqFileName)){
 printf("Error getting path to queue file.\n");
 exit(1);
 }
 status = gfqFindFirst(gfqFileName, &qrec, GFQPEND_LIST,
GFQLIST_START,"");
 if (status == GFQSUCCESS){
 printf("Record %d on Pending list\n", ++i);
 printf("\t Phone = %s\n", qrec.phone_no);
 printf("\t Send file = %s\n", qrec.fn_send);
 }

5. Programming Models

137

 Name: int gfqFindNext (GFQCHAR *gfqFileName, GFQRECORD
*pQRec, GFQINT Direction, GFQCHAR *User)

 Inputs: GFQCHAR *gfqFileName
• Name of queue file

to access.
 GFQRECORD *pQRec

• Queue record buffer.
 GFQINT Direction

• Direction to read
from current. Values
are
GDQREAD_FWD
and
GFQREAD_BWD

 GFQCHAR *User
• User id string or ““

for all.
 Outputs: None
 Returns: GFQSUCCESS

• A valid record was
found.

 GFQLIST_NOTFOUND
• The link specified

was not valid.
 GFQLIST_EOF

• No records matching
the search values
were found.

 GFQRECORD_NOT_FOUND
• The list is empty.

 GFQRECORD_KEY_ERROR
• The key information

in the queue record
has been modified
since it was
retrieved.

 GFQRECORD_INV_READ_DIR
• Direction specified

was unrecognized.
 Includes: gfq.h

GDK Version 5.0 Programming Reference Manual

138

n Description

 The gfqFindNext() function reads the next record in the specified direction,
verifies the record passed in from the application has not changed, then it finds the
next record in a list. Using the User parameter will limit the search of valid
records.

n Example

 #include "gfq.h"
 #include "gfqpath.h"
 int status;
 GFQRECORD qrec;
 GFQCHAR gfqFileName[GFQFILENAME_SIZE];
 int i=0;
 if (gfqSearch(GFQDIR_QUEUE, "qfax.$qu", gfqFileName)){
 printf("Error getting path to queue file.\n");
 exit(1);
 }
 status = gfqFindFirst(gfqFileName, &qrec, GFQPEND_LIST,
GFQLIST_START,"");
 while (status == GFQSUCCESS){
 printf("Record %d on Pending list\n", ++i);
 printf("\t Phone = %s\n", qrec.phone_no);
 printf("\t Send file = %s\n", qrec.fn_send);
 status = gfqFindNext(gfqFileName, &qrec, GFQREAD_FWD,"");
 }

5. Programming Models

139

 Name: int gfqGetPath (int ft, char *fn, char *fullfn);
 Inputs: int ft • Selects the symbolic

constant. See Table 27.
 char *fn • A pointer to a file, such as

the queue file, “gfax.$qu”, or
a file to send, such as
test001.tif.

 char *fullfn • A pointer to a character
buffer that is large enough to
hold a fully qualified file
path.

 Outputs: char *fullfn • A pointer to a fully-qualified
filename when a file does
exist or may be created.

 Returns: GFQSUCCESS • The function completed
successfully; the “path”
points to the desired file.

 GFQPATH_NOT_SET • The file could not be found
because the configuration
information was not present.
This is a fatal error.

 GFQPATH_INVALID • The file could not be found
because the configuration
information was in error.
This is a fatal error.

 GFQPATH_NO_FILE • The file could not be found,
but the configuration
information seemed correct.
The “path” points to the full
filename where the file
should exist.

 GFQPATH_BAD_TYPE • The file type specified was
invalid.

 GFQPATH_BAD_FILE • The file specified is null.
 Includes: gfq.h path.h

GDK Version 5.0 Programming Reference Manual

140

n Description

 The gfqGetPath() function can be used to construct the path to a subdirectory
where a file should be written, and can be used to locate the place to put a file that
may not exist. It always returns a fully qualified filename, even if the file is not
found. The function gfqSearchPath() should be used to locate a file that must
exist.

 gfqGetPath() uses the symbolic constants defined in Table 28. When a specific
file type is sought, the function looks for an environment variable, such as those in
the “Initial Search Target” column of Table 28. If an environment variable exists
and is correct, the function uses it to create a full filename. If the environment
variable was not specified, the function looks for an alternate environment
variable or the current directory. If everything is proper, it returns a full filename.
In the example that follows, GFQDIR_SEND is one of the basic file types
(symbolic constants) defined. “path” in the example is a pointer to the full name of
the file returned by gfqGetPath().

n Example

 #include "gfq.h"
 #include "gfqpath.h"
 char path[64];
 if (gfqGetPath(GFQDIR_SEND, "test001.tif", path) == GFQSUCCESS)
 printf ("The path is %s\n", path);

5. Programming Models

141

 Table 28. Symbolic Constants for gfqGetPath()

 Symbolic Constant Initial Search
Target

 Second Target Meaning

 GFQDIR_QUEUE GFAXQ GFAX Locate the Queue
File.

 GFQDIR_UTILITY GFAXU GFAX Locate the utility
programs.

 GFQDIR_SEND GFAXS current
directory

 Locate the send
files.

 GFQDIR_RECEIVE GFAXR current
directory

 Locate the
received files.

 GFQDIR_LOG GFAXL GFAX Locate the log
files.

 GFQDIR_CONFIG GFAXC current
directory

 Locate the config
files.

GDK Version 5.0 Programming Reference Manual

142

 Name: void gfqInsertOne (char *gfqFileName, GFQRECORD *qrec,
int list);

 Inputs: Char *gfqFileName • A pointer to the name
of the Queue File.

 GFQRECORD *qrec • A pointer to the Queue
File record to be
inserted.

 int list • The specified linked
list of the Queue File.

 Outputs: None
 Returns: GFQSUCCESS • The record was added.

 GFQFILE_BUSY • The Queue File is
locked by another
task.

 GFQFILE_CREATE_ERROR • Unable to create the
new Queue File.

 GFQFILE_INCOMPATIBLE • The Queue File
version is
incompatible with this
version of the GDK
software.

 GFQFILE_NOTFOUND • The Queue File was
not found.

 GFQFILE_OPEN_ERROR • Unable to open the
Queue File.

 GFQRECORD_WRITE_ERROR • Unable to create a new
queue record.

 GFQLIST_NOTFOUND • Unable to find the
specified list.

 Includes: gfq.h

5. Programming Models

143

n Description

 The gfqInsertOne() function adds one record into the desired linked list of the
Queue File. It is a general-purpose function that can be used to submit records to
any linked list specified by the parameter “link.” Table 29 lists the names used
with gfqInsertOne().

 Each linked list in the Queue File is kept sorted, in descending order, by a time
stamp and priority. This means that events to be processed “now” are at the end of
the linked list and “future” events are at the beginning. A pointer to a record and a
linked-list number are passed into this function. If the linked list is out of range,
the function returns GFQLIST_NOTFOUND.

 Table 29. List Names Used with gfqInsertOne()

 Mnemonic Meaning

 GFQPEND_LIST Pending List

 GFQRECV_LIST Received List

 GFQSENT_LIST Sent List

 GFQCONV_LIST Conversion List

 GFQCTRL_LIST Control List

 GFQCPST_LIST Control Done List

n Example

 #include "gfq.h"
 #include "gfqpath.h"

 GFQRECORD qrec;
 char queuefile[128] = “\0”;
 int status;

 /* get fully qualified path to queue file */
 if (gfqGetPath(GFQDIR_QUEUE, "gfax.$qu", queuefile) != GFQSUCCESS)
 {
 fprintf(stderr, "GFAX environment variable not defined\n");
 exit(1);
 }

GDK Version 5.0 Programming Reference Manual

144

 /* initialize and fill in queue record */
 ...

 status = gfqInsertOne(queuefile, &qrec, GFQPEND_LIST);
 if (status != GFQSUCCESS)
 {
 printf("gfqInsertOne to GFQPEND_LIST failed, %d\n", status);
 myErrorRoutine(status);
 }
 else
 printf("Queue Record successfully submitted to Pending
List\n");

5. Programming Models

145

 Name: int gfqInsertPlist (GFQCHAR *gfqFileName, GFQRECORD
*qrec, int list, GFQCHAR *phonelist);

 Inputs: GFQCHAR *gfqFileName • A pointer to the name of
the Queue File.

 GFQRECORD *qrec • A pointer to a queue
record.

 int list • The specified linked list
of the Queue File.

 GFQCHAR *phonelist • A pointer to the name of
the file containing the list
of phone numbers.

 Outputs: None
 Returns: GFQSUCCESS • The record(s) were

inserted.
 GFQFILE_BUSY • The Queue File is locked

by another task.
 GFQFILE_CREATE_ERROR • Unable to create the new

Queue File.
 GFQFILE_INCOMPATIBLE • The Queue File version is

incompatible with this
version of the GDK
software.

 GFQFILE_NOTFOUND • The Queue File was not
found.

 GFQFILE_OPEN_ERROR • Unable to open the Queue
File.

 RECORD_WRITE_ERROR • Unable to create a new
queue record.

 GFQPHONE_FILE_ERROR • The phone-list file could
not be opened.

 Includes: gfq.h

GDK Version 5.0 Programming Reference Manual

146

n Description

 The gfqInsertPlist() function inserts one record into a list for every phone
number in the phone list. It writes a queue record for each entry in the phone list
into the specified list of the Queue File. The phone-list file is automatically
opened, processed, and closed.

 The structure of a record inside a phone list is shown below, and followed by the
maximum length of each field:

Table 30. gfqInsertPlist Phone Number Record Structure

Field Maximum Length

phone_number 20

rate 4

cd_timeout 4

last_name 20

first_name 12

company 20

category 10

class 10

voice 20

 Each field must be delimited by a space. Each line in the file is a record and must
be separated by a control line feed (CR LF).

 The minimum requirement for a valid phone-list record is the phone_no field. If
the rate and cd_timeout are missing, the values from the queue record are taken. If
the rate specified in the queue record is different from the phone-list record, the
lower of the two values is used. If the phone list is not specified
(NULL or ""), gfqInsertPlist() calls gfqInsertOne().

 Table 31 lists the names used with gfqInsertPlist().

5. Programming Models

147

 The user is responsible for verifying the following:

• A phone-list file exists, and that it was correctly created.

• Fields of the queue record, such as cd_timeout and trans_rate, are set to their
defaults.

 Table 31. List Names Used with gfqInsertPlist()

 Mnemonic Meaning

 GFQPEND_LIST Pending List

 GFQRECV_LIST Received List

 GFQSENT_LIST Sent List

 GFQCONV_LIST Conversion List

 GFQCTRL_LIST Control List

 GFQCPST_LIST Control Done List

n Example

 #include "gfq.h"
 #include "gfqpath.h"

 GFQRECORD qrec;
 char queuefile[128] = "\0";
 char phonelist[128] =
"c:\\broadcst\\phonelst.txt";
 int status;

 /* get fully qualified path to queue file */
 if (gfqGetPath(GFQDIR_QUEUE, "gfax.$qu", queuefile) != GFQSUCCESS)
 {
 fprintf(stderr, "GFAX environment variable not defined\n");
 exit(1);
 }

GDK Version 5.0 Programming Reference Manual

148

 /* initialize and fill in queue record */
 ...

 status = gfqInsertPlist(queuefile, &qrec, GFQPEND_LIST, phonelist);
 if (status != GFQSUCCESS)
 {
 printf("gfqInsertPlist failed, %d\n", status);
 myErrorRoutine(status);
 }
 else
 printf("Fax broadcast successfully submitted to Pending

List\n");

5. Programming Models

149

 Name: int gfqPurgeAll (char *gfqFileName, GFQRECORD *qrec, int
list, char *user);

 Inputs: char *gfqFileName • A pointer to the name of
the Queue File.

 GFQRECORD *qrec • A pointer to the queue
record.

 int list • A linked list in the Queue
File.

 char *user • A pointer to a user’s
identification.

 Outputs: None
 Returns: GFQSUCCESS • The purge was executed.

 GFQFILE_BUSY • The Queue File is locked
by another task.

 GFQFILE_CREATE_ERROR • Unable to create the
Queue File.

 GFQFILE_INCOMPATIBLE • The Queue File version is
incompatible with this
version of the GDK
software.

 GFQFILE_NOTFOUND • The Queue File was not
found.

 GFQFILE_OPEN_ERROR • Unable to open the Queue
File.

 GFQRECORD_ACTIVE • The record is active; i.e.,
being processed by
another task.

 GFQLIST_NOTFOUND • The list is not a valid
Queue File List.

 Includes: gfq.h

n Description

 The gfqPurgeAll() function purges from one of the Queue Files lists all records
for a specific user that are not active or BUSY. If the user is NULL or "", all
records on the list that are not busy are purged. If the purge succeeds, the function
returns GFQSUCCESS, even when the list had no records.

GDK Version 5.0 Programming Reference Manual

150

 To make disk space available, gfqPurgeAll() also automatically shrinks the
Queue File to its minimum size of 78 bytes, leaving only the Queue File header,
but under two conditions:

• Automatic shrinking has been allowed. When using the GFQRESET program,
automatic shrinking can be enabled with the -r0 option after preallocating
records for the Queue File.

• None of the linked lists contain records.

n Example

 #include "gfq.h"
 #include "gfqpath.h"

 GFQRECORD qrec;
 char queuefile[128] = "\0";
 int status;

 /* get fully qualified path to queue file */
 if (gfqGetPath(GFQDIR_QUEUE, "gfax.$qu", queuefile) != GFQSUCCESS)
 {
 fprintf(stderr, "GFAX environment variable not defined\n");
 exit(1);
 }

 status = gfqPurgeAll(queuefile, &qrec, GFQSENT_LIST, Delete_Me");
 if (status != GFQSUCCESS)
 {
 printf("gfqPurgeAll Sending List failed, %d\n", status);
 myErrorRoutine(status);
 }
 else
 printf("All ‘Delete_Me’ records purged from Sending List\n");

5. Programming Models

151

 Name: int gfqPurgeOne (char *gfqFileName, GFQRECORD *qrec);
 Inputs: char *gfqFileName; • Pointer to the name of

the Queue File.
 GFQRECORD *qrec • Pointer to the queue

record to be purged.
 Outputs: None
 Returns: GFQSUCCESS • The deletion was

successful.
 GFQFILE_BUSY • The Queue File is locked

by another task.
 GFQFILE_CREATE_ERROR • Unable to create the new

Queue File.
 GFQFILE_INCOMPATIBLE • The Queue File version

is incompatible with this
version of the GDK
software.

 GFQFILE_NOTFOUND • The Queue File was not
found.

 GFQFILE_OPEN_ERROR • Unable to open the
Queue File.

 GFQRECORD_ACTIVE • The record is active; that
is, being processed by
another task.

 GFQRECORD_KEY_ERROR • Key values were
changed.

 Includes: gfq.h

n Description

 The gfqPurgeOne() function deletes non-busy records from the Queue File.
Before using this function, a queue record must have been successfully read using
gfqFindFirst() or gfqFindNext(). Both of these functions determines whether
another task has changed the key values of the queue record (linked list, time, or
priority). If the key values have been changed, gfqPurgeOne() returns the error
GFQRECORD_KEY_ERROR. If a queue record is marked BUSY, the function
returns the error GFQRECORD_ACTIVE.

GDK Version 5.0 Programming Reference Manual

152

n Example

 #include "gfq.h"
 GFQRECORD qrec;
 char gfqFileName[GFQFILENAME_SIZE];
 int status;
 strcpy (gfqFileName, "c:\\fax\\gfax.$qu");
 if ((status = gfqFindFirst (gfqFileName, &qrec, GFQPEND_LIST,
GFQLIST_START,"")) == GFQSUCCESS)
 if (qrec->user_id == "DELETE_ME")
 return (gfqPurgeOne (gfqFileName, &qrec));

5. Programming Models

153

 Name: int gfqSearch (int ft, char *fn, char *fullfn);
 Inputs: int ft • Select the file type (symbolic

constant) listed in Table 27.
 char *fn • The name of a user-specific

file, such as “GFAX.$QU” or
test001.tif.

 Outputs: char *fullfn • A fully qualified filename of
an existing file is returned
only if the function is
successful. A null string is
returned if the function is not
successful.

 Returns: GFQSUCCESS • The function completed
successfully; the “path”
points to the desired file, and
it does exist.

 GFQPATH_NOT_SET • The file could not be found
because the environment
information was not present.
This is a fatal error.

 GFQPATH_INVALID • The file could not be found
because the environment
information was in error. This
is a fatal error.

 GFQPATH_NO_FILE • The file could not be found,
but the environment
information seemed correct.
No filename is returned.

 GFQPATH_BAD_TYPE • The file type specified was
invalid.

 Includes: gfq.h
 gfqpath.h

n Description

 The gfqSearch() function returns a fully qualified filename. It verifies that a file
of the given name and type does exist. It is used to locate existing GDK files, such
as the Queue File and configuration files.

GDK Version 5.0 Programming Reference Manual

154

 The environment variables for gfqSearch() are listed in
Table 32. The symbolic constants used in this function are in the gfqpath.h file.

 Table 32. Environment Variables for gfqSearch()

 Symbolic Constant Initial
 Search Target

 Second Target Meaning

 GFQDIR_QUEUE GFAXQ GFAX Locate the Queue
File.

 GFQDIR_UTILITY GFAXU GFAX Locate the utility
programs.

 GFQDIR_SEND GFAXS current directory Locate the send
files.

 GFQDIR_RECEIVE GFAXR current directory Locate the received
files.

 GFQDIR_LOG GFAXL GFAX Locate the log files.

 GFQDIR_CONFIG GFAXC GFAX Locate the
configuration files.

n Example

 #include "gfq.h"
 #include "gfqpath.h"
 char path[64];
 if ((status = gfqSearch (GFQDIR_QUEUE, "gfax.$qu", path)) ==
GFQSUCCESS)
 {
 printf ("Queue file path is %s\n”, path);
 }
 else
 {
 printf ("gfqSearch failed, status = %d\n", status);
 }

5. Programming Models

155

 Name: int gfqSubmit (char *gfqFilename, GFQRECORD *qrec);
 Inputs: char *gfqFileName • A pointer to the name

of the Queue File.
 GFQRECORD *qrec • A pointer to the queue

record to be submitted.
 Outputs: None
 Returns: GFQSUCCESS • The record was added.

 GFQFILE_BUSY • The Queue File is
locked by another task.

 GFQFILE_CREATE_ERROR • Unable to create the
new Queue File.

 GFQFILE_INCOMPATIBLE • The Queue File
version is
incompatible with this
version of the GDK
software.

 GFQFILE_NOTFOUND • The Queue File was
not found.

 GFQFILE_OPEN_ERROR • Unable to open the
Queue File.

 GFQRECORD_WRITE_ERROR • Unable to create a new
queue record.

 Includes: gfq.h
 gfqpath.h

GDK Version 5.0 Programming Reference Manual

156

n Description

 The gfqSubmit() function adds one record to the Pending List. Because this list
is sorted in descending order by time stamp and priority, events to be processed in
the future are at the beginning of the list and events to be processed “now” are at
the end. Unlike gfqInsertOne(), which can be used to submit records to any
linked list, gfqSubmit() is used to submit queue records only to the Pending List.

 The queue record is inserted into the Pending List, if the operation field of the
record has the values between GFQDIAL_SEND and GFQLAST_OPERATION.
Table 33 lists the values that gfqSubmit() automatically writes to queue-record
fields.

 Table 33. Values Written by gfqSubmit() to Queue Record Field

 Field Value

 submission_time The current time

 record_control Not marked busy

 submission_retries retry_counter

 duration 0

 status 0

n Example

 #include "gfq.h"
 #include "gfqpath.h"

 GFQRECORD qrec;
 char queuefile[128] = "\0";
 int status;

 /* get fully qualified path to queue file */
 if (gfqGetPath(GFQDIR_QUEUE, "gfax.$qu",
queuefile) != GFQSUCCESS)
 {
 fprintf(stderr, "GFAX environment variable not defined\n");
 exit(1);
 }

5. Programming Models

157

 /* initialize queue record */
 gfqClearRec(&qrec);

 qrec.operation = GFQDIAL_SEND;
 strcpy(qrec.fn_send, "c:\\fax\\test001.tif");
 strcpy(qrec.phone_no, "1-408-555-1212");

 status = gfqSubmit(queuefile, &qrec);
 if (status != GFQSUCCESS)
 {
 printf("gfqSubmit error %d\n", status);
 myErrorRoutine(status);
 }
 else
 printf("fax submitted successfully\n");

GDK Version 5.0 Programming Reference Manual

158

 Name: int gfqSubmitPlist (char *gfqFileName, GFQRECORD *qrec,
char *phonelist);

 Inputs: char *gfqFileName • A pointer to the name of
the Queue File.

 GFQRECORD *qrec • A pointers to a queue
record.

 char *phonelist • A pointer to the name of
the file containing the list
of phone numbers.

 Outputs: None
 Returns: GFQSUCCESS • The submission was

successful.
 GFQFILE_BUSY • The Queue File is locked

by another task.
 GFQFILE_CREATE_ERROR • Unable to create the new

Queue File.
 GFQFILE_INCOMPATIBLE • The Queue File version is

incompatible with this
version of the GDK
software.

 GFQFILE_NOTFOUND • The Queue File was not
found.

 GFQSUCCESS • Unable to open the Queue
File.

 GFQFILE_BUSY • Unable to create a new
queue record.

 GFQFILE_CREATE_ERROR • The phone list cannot be
opened.

 Includes: gfq.h

5. Programming Models

159

n Description

 The gfqSubmitPlist() function submits a fax for each entry in a phone list.

 This function starts fax broadcasting by submitting records to the Pending List for
an entire phone list. The phone-list file is automatically opened, processed, and
closed. gfqSubmitPlist() writes a record for each phone number from the phone
list into the Pending List of the Queue File.

 The operation field of the queue record determines the action to be taken on each
record submitted, such as Dial and Send, Dial and Receive, or Answer
Immediately. The queue record is inserted into the Pending List if the operation
field of the record has the values between GFQDIAL_SEND and
GFQLAST_OPERATION. If the operation for a record is appropriate,
gfqSubmitPlist() calls gfqInsertPlist() and passes the record, specifying the
Pending List as the target. The caller should verify that the phone-list file exists
and is correctly formatted. See gfqInsertPlist() for the phone-record format.

 These fields of the queue record are set to their defaults in the phone list: 30
seconds for cd_timeout and GFQMAX_RATE bps for trans_rate.

n Example

 #include "gfq.h"
 #include "gfqpath.h"

 GFQRECORD qrec;
 char queuefile[128] = "\0";
 char phonelist[128] = "c:\\broadcst\\phonelst.txt";
 int status;

 /* get fully qualified path to queue file */
 if (gfqGetPath(GFQDIR_QUEUE, "gfax.$qu", queuefile)
!= GFQSUCCESS)
 {
 fprintf(stderr, "GFAX environment variable not defined\n");
 exit(1);
 }

GDK Version 5.0 Programming Reference Manual

160

 /* initialize queue record */
 gfqClearRec(&qrec);
 qrec.operation = GFQDIAL_SEND;
 strcpy(qrec.fn_send, "c:\\faxsend\\broadcst.tif");
 status = gfqSubmitPlist(queuefile, &qrec, phonelist);
 if (status != GFQSUCCESS)
 {
 printf("gfqSubmitPlist error %d\n", status);
 myErrorRoutine(status);
 }
 else
 printf("fax broadcast submitted successfully\n");

5. Programming Models

161

 Interactive Programming Model

 The interactive programming model, which is recommended for fax-only
applications, separates and provides distinct control at all phases of a fax
transaction. In general, the call setup and call release phases are handled by the
application using other telephony resources in the system such as network
interface cards, voice boards or PBX APIs. The fax channel in this configuration
only performs the pre-message, message transmission and post-message
procedures (Phases B, C and D).

 In this model, the application must monitor the call and decide when to start the
fax resource. In contrast to the batch mode, the application can continue to
monitor the call through the entire fax transaction, electing to change session
parameters, interrupt the call or just abort all together. The monitoring activity is
accomplished by examining “Events” — distinct points in the fax protocol where
the fax channel notifies the application a fax event has occurred.

 This programming model is a powerful feature of the GDK system but requires
more knowledge of fax, more host computer resources and has timing
requirements that are not present in the batch mode model. Figure 3 illustrates the
GRT event notification phases.

NOTE: The TESTFAX sample code, which uses the interactive programming
model, is located on the GDK product CD-ROM.

GDK Version 5.0 Programming Reference Manual

162

GammaLink
Notification
Event Received
by Sending
Application

Calling T.30 ACTION Called

GammaLink
Notification Event
Received by
Receiving
Application

GRT_DIAL

GRT_RECV_DIS

GRT_CALL_TERM GRT_CALL_TERM

GRT_RECV_DCS

GRT_CALL_PENDING

GRT_INFO_EXCHANGE

Phase A Phase A

Phase C Phase C

Phase D Phase D

Phase E Phase E

-<DIAL> transmit CNG

<TONES> <RING>,<OFF HOOK>

transmit CED

Phase B Phase B

v.21 Rx (NSF)(CSI)DIS v.21 Tx

v.21 Rx CFR v.21 Tx

v.17,v.33,v.29, or
v.27 Tx

v.17,v.33,v.29,
or v.27 Rx

Fax Message

v.17,v.33,v.29, or

v.27 Tx

v.17,v.33,v.29,
or v.27 Rx

training, TCF

Fax Message

Fax Message
(RTC)

v.21 Tx (TSI)DCS v.21 Rx

v.21 Tx MPS or EOP v.21 Rx

v.21 Rx MCF v.21 Tx

v.21 Tx DCN v.21 Rx

GRT_PAGE_BREAK GRT_PAGE_BREAK

<ONHOOK> <ONHOOK>

Figure 3. GRT Events

 The GDK interactive, runtime API (GRT) events shown in Table 34 notify the fax
application of the fax transaction’s progress and provide opportunity for the
application to get information generated during the transaction and, optionally,
alter the course of the call based on that information.

 Each event can be “armed” in one of two ways: by using the No Response
Required method to simply receive notification, or using the Armed-Requires
Response method so the application must respond to the event. In the case of
response required, the application has choices such as GRT_CONTINUE,
GRT_END_CALL, or use a GRT_QREC. For the case of responding with a new

5. Programming Models

163

queue record, see Chapter 4 for detailed information on queue record fields and
their effects.

 A simple interactive fax session is outlined below:

• initialize the run-time interface (grtInit())

• START

• establish the starting parameters for the fax transaction by programming a
queue record (see Chapter 4)

• establish a connection to a fax machine (by dialing or answering) with a
telephony network interface card in your system (i.e., analog, T1, E1, ISDN,
etc.)

• start the fax session (grtSubmitFax())

• monitor for call completion (grtGetEvent())

• process event (grtProcessCallTermEvent())

• another call? go to START

• program complete (grtStop())

Sample GRT Applications

The GRT APIs provide multi-threaded support on a per-channel basis. An
application can assign threads of control for one or more fax channels
dynamically. A channel can only be controlled by one GRT thread.

Process

Channel 1 Channel 2

GRT Thread 1 GRT Thread 2

Process

Channels 1-4 Channels 5-8

GRT Thread 1 GRT Thread 2

Figure 4. GRT API Structure

GDK Version 5.0 Programming Reference Manual

164

A simple GRT application consists of three major components: initialization,
polling for an event, and termination.

Initialization

A GRT thread is initialized using the grtInit() function. This function accepts a
range of channels, the same thread can control several channels. The function can
be called multiple times in the same thread, as long as a GRT thread doesn’t
already control the channel range given.

NOTE: grtInit() will not create a new thread — it initializes existing internal
structures that maintain GRT state information. A C function must be
called to create a new thread.

Here is an example of how to initialize the first two fax channels for processing
GRT_CALL_TERM events:

#include "genra.h"
int status;
status = grtInit(1,2,GRT_CALL_TERM_ENABLE);

Polling for an Event

Polling is used to check event status to determine whether an event has occurred.
To check for an event, use the grtGetEvent() function. This function checks the
channel range for a given event.

Here is an example of how to poll for a GRT event on the first two channels in a
fax system:

GRT_EVENT event;

for(;;)
{
 if (grtGetEvent(1,2,&event) == GRT_SUCCESS)
 break;
 Sleep(1000L);
}

5. Programming Models

165

Termination

GRT API processing is terminated using the grtStop() function. This function
stops any GRT processing in the given range of channels. This function allows for
dynamic allocation of channels and threads as the system load changes.

The following is an example of how to stop GRT processing on channels 1 and 2
in a fax system:

#include "genra.h"
int status;
status = grtStop(1,2);
printf("status = %d\n",status);

NOTE: grtStop() must be called before exiting the application. Otherwise,
grtInit() for the same channel range will return error code 103.

Advanced GRT Applications

Advanced GRT applications have an additional component: responding to an
event (i.e. grtRespond, grtRespondEndCall, grtRespondContinue,
grtRespondQueueRec). Responding to an event allows the application to change
the default action for the fax channel. The fax channel default action for each
event, listed in Table 34, is to continue the fax transaction through each phase,
until GRT_CALL_TERM (Phase E), then post the completed queue record to the
queue file.

If an application wants to change the default action of an event, event notification
and event response enable must be specified for that event when initializing the
GRT interface for the fax channel. At each fax channel event notification, if event
response is enabled, the application can respond to end the call
(grtRespondEndCall) or to continue the call (grtRespondContinue).

For the GRT_CALL_PENDING event, the application has an additional response
available (grtRespondQueueRec), with which the characteristics of the fax
transmission can be changed through the submission of another queue record.

For example, turn-around polling can be accomplished by responding to the
GRT_CALL_PENDING event with a queue record whose operation field is set to
the GFQANSWER_RECEIVE_SEND value. Other queue record operation field
values are listed in Chapter 4.

GDK Version 5.0 Programming Reference Manual

166

GRT API Data Structures

An alphabetized list of the GRT API data structures appears in the following
section.

5. Programming Models

167

Name: typedef struct {
int chan;
int event_type;
char pdata[GRT_MESSAGE];
int num_bytes;

 } GRT_EVENT;
Includes: genra.h

n Description

The GRT_EVENT structure is used to store an event that has occurred on a given
channel. The GRT_EVENT data structure contains the following information:

1. The channel on which the event occurred.

2. The type of event that has occurred. (See Table 34.)

3. Data that is associated with the event. (See Table 34.)

4. Number of bytes of event data.

The definition of the GRT_EVENT structure follows:

Table 34. Events and Data Associated with GRT_EVENT

Mnemonic Associated Data

GRT_CALL_TERM Queue record

GRT_INFO_EXCHANGE GRT_INFO_DATA

GRT_DIAL 20 character null-terminated string

GRT_RECV_DCS Unsigned char array of size DCS_LENGTH

GRT_CALL_PENDING None

GRT_RECV_DIS Unsigned char array of size DIS_LENGTH

GRT_PAGE_BREAK None

GDK Version 5.0 Programming Reference Manual

168

Name: typedef struct {
unsigned char rcsid[22];
unsigned char nsf[226];

} GRT_INFO_DATA;
Includes: genra.h

n Description

The GRT_INFO_DATA data structure stores event information for
GRT_INFO_EXCHANGE(). The structure contains the following information:

1. The Customer Subscriber Identification (CSID) of the receiving fax machine.
The CSID is the string of characters that identify the remote fax machine (this
string is usually the phone number of the remote fax machine).

2. The NSF data. NSF data is optional information that can be sent and received
by fax machines.

Name: typedef struct {
int response_type;
char pdata[GRT_MESSAGE]; int num_bytes;

} GRT_RESPONSE;
Includes: genra.h

n Description

 The GRT_RESPONSE structure stores information that is used to send a
response to a fax channel once an event has occurred. The structure contains the
following information:

• Type of response

• Data associated with the response

• Number of bytes of response data

n Response Types

• GRT_END_CALL

5. Programming Models

169

• GRT_CONTINUE

• GRT_QREC

 Name: int grtGetEvent (int start_chan, int end_chan,
GRT_EVENT *event)

 Inputs: int start_chan • Integer representing
the first channel to
control.

 int end_chan • Integer representing
the last channel to
control.

 GRT_EVENT *event • Pointer to
GRT_EVENT.

 Outputs: GRT_EVENT *event • Pointer to
GRT_EVENT.

 Returns: GRT_SUCCESS • Successful.
 GRT_INVALID_START_

CHANNEL
• Starting channel is out

of range.
 GRT_INVALID_END_

CHANNEL
• Ending channel is out

of range.
 GRT_NO_DISPATCHER • Dispatcher is not

running.
 GRT_NO_EVENT • No event has occurred.
 GRT_UNKNOWN_EVENT • Unknown event polled

from board.
 GRT_NOT_INIT • The specified channel

has not been grtInit by
any process or thread.

 GRT_ANOTHER_THREAD • The specified channel
has been grtInit by
another process or
thread (not this one).

 GRT_CONTROL_BUSY • Timed out while
waiting to set the
mutex on the control
record. Another thread
failed to release the
mutex. Retry.

 Includes: genra.h

GDK Version 5.0 Programming Reference Manual

170

n Description

 The grtGetEvent() function checks if an event has occurred on any channel in
the range of channels given. The function returns after the first event occurs and
the other channels are not checked.

n Example

 #include "genra.h"

 GRT_EVENT event;
 int status, chan = 1;

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event)) == GRT_NO_EVENT)
 Sleep(1000L);

5. Programming Models

171

 Name: int grtInit (int start_chan, int end_chan, int attributes)
 Inputs: int start_chan • Integer

representing the
first channel to
control.

 int end_chan • Integer
representing the
last channel to
control.

 int attribute • Attributes
associated with
the given
channel range.
The attributes
include
programming
model, event
notification and
response.

 Outputs: None
 Returns: GRT_SUCCESS • Successful.

 GRT_INVALID_START_CHANNEL • Starting channel
is out of range.

 GRT_INVALID_END_CHANNEL • Ending channel
is out of range.

 GRT_NO_DISPATCHER • Dispatcher is not
running.

 GRT_ALREADY_CONTROLLED • If any channel in
the range is
controlled by
another thread.

 GRT_CONTROL_BUSY • Semaphore
could not be
locked.

 GRT_UNLOCK_FAIL • Semaphore
could not be
unlocked.

GDK Version 5.0 Programming Reference Manual

172

 GRT_LOCK_FAILED • Semaphore
could not be
locked.

 GRT_PROCESS_ATTRIBUTE_FAIL • Could not
enable
notification or
response on the
fax channel.

 GRT_OPEN_FAIL • Could not open
notification or
response pipe to
fax channel.

 Includes: genra.h

n Description

 The grtInit() function initializes the GRT interface. To initialize internal data
structure with the proper value to control the given range of channels.

 This function can be called multiple times in a thread as long as different ranges of
channels are used.

 These are the attributes that are currently supported.

• GRT_CALL_TERM_ENABLE

• GRT_INFO_EXCHANGE_ENABLE

• GRT_RECV_DIS_ENABLE

• GRT_RECV_DCS_ENABLE

• GRT_PAGE_BREAK_ENABLE

• GRT_DIAL_ENABLE

• GRT_CALL_PENDING_ENABLE

• GRT_CALL_TERM_RESPONSE_ENABLE

• GRT_INFO_EXCHANGE_RESPONSE_ENABLE

• GRT_CALL_PENDING_RESPONSE_ENABLE

5. Programming Models

173

n Behavior

grtInit() has been enhanced to prevent automatic posting of the completed queue
record to the queue file. This action is usually not necessary as most applications
also receive a copy of the same queue record when the
GRT_CALL_TERM_ENABLE attribute is specified in grtInit().

However, you can restore the ability of the GDK to automatically post the
completed queue record to the queue file with the following gfdRemoteRequest()
command as demonstrated in the code fragment:

#include <genra.h>
...

int grtAttributes = GRT_CALL_TERM_ENABLE;
int chan = 1, status, rresult;

...
status = grtInit(chan, chan, grtAttributes);
if (GRT_SUCCESS == status)
{
 // allow posting of results to queue file
 status = gfdRemoteRequest(

1,
chan,
GFXRTACTION,
GFXRTBP_CALLTERM,
GFXRT_CONTINUE,
NULL,
0,
&rresult

);

 if (0 == status) {
 printf("Success: Posting enabled!\n");
 }
}

...

The gfdRemoteRequest command must be issued on a per-channel basis.

GDK Version 5.0 Programming Reference Manual

174

n Example

 #include "genra.h"

 int status, chan = 1;

 /* initialize GRT pipes interface for fax
channel 1 */
 status = grtInit(chan,chan,GRT_CALL_TERM_ENABLE);
 if (status != GRT_SUCCESS)
 {
 fprintf(stderr, "[%2d] grtInit failed\n", chan);
 myErrorRoutine(status);
 }

5. Programming Models

175

 Name: int grtProcessCallTermEvent (GRT_EVENT *event,
GFQRECORD *qrec)

 Inputs: GRT_EVENT *event • Pointer to an event
record.

 GFQRECORD *qrec • Pointer to a queue
record.

 Outputs: GFQRECORD *qrec • Pointer to a queue
record.

 Returns: GRT_SUCCESS • Successful.
 GRT_UNKNOWN_EVENT • Otherwise.

 Includes: genra.h

n Description

 The grtProcessCallTermEvent() function processes a call term event.

 This function is a high-level function that provides the data that is associated with
a GRT_CALL_TERM event to the user. The data will be a queue record. The
function returns GRT_SUCCESS if the event is a GRT_CALL_TERM and the
queue record pointer points to valid queue record data.

n Example

 #include "gfq.h"
 #include "genra.h"
 GRT_EVENT event;
 GFQRECORD qrec;
 int status, chan = 1;

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event)) == GRT_NO_EVENT)
 Sleep(1000L);
 if (event.event_type == GRT_CALL_TERM)
 {
 if (status = grtProcessCallTermEvent(&event, &qrec))
 {
 printf("[%2d] grtProcessCallTermEvent error"
 " %d\n", event.chan, status);
 return -1;
 }
 }

GDK Version 5.0 Programming Reference Manual

176

 Name: int grtProcessDialEvent (GRT_EVENT *event, char
*dial_string)

 Inputs: GRT_EVENT *event • Pointer to an event
record.

 char *dial_string • Pointer to a 20-
character string.

 Outputs: char *dial_string • Pointer to a 20-
character string.

 Returns: GRT_SUCCESS • Successful.
 GRT_UNKNOWN_EVENT • Otherwise.

 Includes: genra.h

n Description

 The grtProcessDialEvent() function processes a dial event.

 This function is a high-level function that provides the data that is associated with
a GRT_DIAL event to the user. The data will be a 20-character string representing
the dialing string. The function returns GRT_SUCCESS if the event is a
GRT_DIAL event and dial_string points to a valid dialing string. If the event is
not GRT_DIAL, then the dial_string points to invalid data.

n Example

 #include "genra.h"

 GRT_EVENT event;
 char dialstring[20] = "\0";
 int status, chan = 1;

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event)) == GRT_NO_EVENT)
 Sleep(1000L);

5. Programming Models

177

 if (event.event_type == GRT_DIAL)
 {
 if (status = grtProcessDialEvent(&event, dialstring))
 {
 fprintf(stderr, "[%2d] grtProcessDialEvent"
 " failed: %d\n", event.chan, status);
 return -1;
 }

 printf("[%2d] completed dialing to \"%s\"", event.chan,
dialstring);
 }

GDK Version 5.0 Programming Reference Manual

178

 Name: int grtProcessInfoEvent (GRT_EVENT *event,
GRT_INFO_DATA *info)

 Inputs: GRT_EVENT *event • Pointer to an event
record.

 GRT_INFO_DATA *info • Pointer to
GRT_INFO_DATA
structure.

 Outputs: GRT_INFO_DATA *info • Pointer to
GRT_INFO_DATA
structure.

 Returns: GRT_SUCCESS • Successful.
 GRT_UNKNOWN_EVENT • Otherwise.

 Includes: genra.h

n Description

 The grtProcessInfoEvent() function processes an info exchange event.

 This function is a high-level function that provides the data that is associated with
a GRT_INFO_EXCHANGE event to the user. The data is a structure of type
GRT_INFO_DATA. The function returns GRT_SUCCESS if the event is a
GRT_INFO_EXCHANGE event and info points to a valid GRT_INFO_DATA
structure.

n Example

 #include "genra.h"

 GRT_EVENT event;
 GRT_INFO_DATA info_data;
 int status, chan = 1;

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event))
== GRT_NO_EVENT)
 Sleep(1000L);

5. Programming Models

179

 if (event.event_type == GRT_INFO_EXCHANGE)
 {
 if (status = grtProcessInfoEvent(&event, &info_data))
 {
 fprintf(stderr, "[%2d] grtProcessInfoEvent"
 " failed: %d\n", event.chan, status);
 return -1;
 }

 printf("[%2d] INFO EXCHANGE Data:\n"
 "\tRCSID:\t\"%s\"\n\tNFS:\t\"%s\"",
 event.chan, info_data.rcsid, info_data.nsf);
 }

GDK Version 5.0 Programming Reference Manual

180

 Name: int grtProcessRecvDCSEvent (GRT_EVENT *event,
unsigned char *dcs)

 Inputs: GRT_EVENT *event • Pointer to an event record.
 unsigned char *dcs • Pointer to an array of

unsigned char of size
DCS_LENGTH.

 Outputs: unsigned char *dcs • Pointer to an array of
unsigned char of size
DCS_LENGTH.

 Returns: GRT_SUCCESS • Successful.
 GRT_UNKNOWN_EVENT • Otherwise.

 Includes: genra.h

n Description

 The grtProcessRecvDCSEvent() function processes a received DCS event.

 This function is a high-level function that provides the data that is associated with
a GRT_RECV_DCS event to the user. The data is an array of unsigned characters
representing the received DCS. The function returns GRT_SUCCESS if the event
is a GRT_RECV_DCS event and DCS_frame points to valid DCS data. If the
event is not GRT_RECV_DCS, then the DCS_frame points to invalid data.

n Example

 #include "genra.h"

 GRT_EVENT event;
 unsigned char dcs[DCS_LENGTH] = "\0";
 const int count = sizeof(dcs)/sizeof(*(dcs));
 int status, chan = 1;

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event))
== GRT_NO_EVENT)
 Sleep(1000L);

 if (event.event_type == GRT_RECV_DCS)
 {
 if(status=grtProcessRecvDCSEvent(&event, dcs))

5. Programming Models

181

 {
 fprintf(stderr, "[%2d] grtProcessRecvDCSEvent failed:
 %d\n", event.chan, status);
 return -1;
 }

 printf("[%2d] DCS received:", event.chan);
 for (i = 0; i < count; ++i)
 fprintf(stdout, "%02x ", dcs[i]);
 fprintf(stdout, "\n");
 }

GDK Version 5.0 Programming Reference Manual

182

 Name: int grtProcessRecvDISEvent (GRT_EVENT *event,
unsigned char *dis)

 Inputs: GRT_EVENT *event • Pointer to an event record.
 unsigned char *dis • Pointer to an array of

unsigned char of size
DIS_LENGTH.

 Outputs: unsigned char *dis • Pointer to an array of
unsigned char of size
DIS_LENGTH.

 Returns: GRT_SUCCESS • Successful.
 GRT_UNKNOWN_EVENT • Otherwise.

 Includes: genra.h

n Description

 The grtProcessRecvDISEvent() function processes a received DIS event.

 This function is a high-level function that provides the data that is associated with
a GRT_RECV_DIS event to the user. The data is an array of unsigned characters
representing the received DIS. The function returns GRT_SUCCESS if the event
is a GRT_RECV_DIS event and DIS_frame points to valid DIS data. If the event
is not GRT_RECV_DIS, then the DIS_frame points to invalid data.

n Example

 #include "genra.h"

 GRT_EVENT event;
 unsigned char dis[DIS_LENGTH] = "\0";
 const int count = sizeof(dis)/sizeof(*(dis));
 int status, i, chan = 1;

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event))
== GRT_NO_EVENT)
 Sleep(1000L);

 if (event.event_type == GRT_RECV_DIS)
 {
 if(status=grtProcessRecvDISEvent(&event, dis))

5. Programming Models

183

 {
 fprintf(stderr, "[%2d] grtProcessRecvDISEvent failed:"
 " %d\n", event.chan, status);
 return -1;
 }

 printf("[%2d] DIS received:", event.chan);
 for (i = 0; i < count; ++i)
 fprintf(stdout, "%02x ", dis[i]);
 fprintf(stdout, "\n");
 }

GDK Version 5.0 Programming Reference Manual

184

 Name: int grtRespond (GRT_EVENT *event,
GRT_RESPONSE *response)

 Inputs: GRT_EVENT *event • Pointer to an event
structure.

 GRT_RESPONSE *response • Pointer to a response
structure.

 Outputs: None
 Returns: GRT_SUCCESS • Successful.

 GRT_ANOTHER_THREAD • Channel is controlled
by another thread.

 GRT_INVALID_RESPONSE • Type of response to be
sent is invalid.

 GRT_RESPONSE_FAIL • Send of response
message failed.

 GRT_INVALID_CHAN • Channel that event
occurred upon is not the
same channel the
response is being sent
to.

 GRT_CONTROL_BUSY • The semaphore could
not be set.

 GRT_UNLOCK_FAIL • The semaphore could
not be released.

 GRT_LOCK_FAILED • The semaphore could
not be set.

 GRT_NOT_INIT • The specified channel
has not been grtInit’ed.

 GFD_BROKEN_PIPE • The response pipe is
broken.

 GFD_INVALID_HANDLE • The response pipe is
corrupted.

 Includes: genra.h

n Description

 The grtRespond() function responds to an event.

5. Programming Models

185

 This function responds to the given event. The response structure must have the
response_type (GRT_CONTINUE, GRT_END_CALL, etc.) initialized before
this function is called.

n Example

 #include "genra.h"

 GRT_EVENT event;
 GRT_RESPONSE response;
 int status, chan = 1;
 int grtAttributes = GRT_CALL_TERM_ENABLE |
 GRT_CALL_TERM_RESPONSE_ENABLE;

 /* initialize GRT pipes interface for fax channel 1 */
 status = grtInit(chan, chan, grtAttributes);
 if (status != GRT_SUCCESS)
 {
 fprintf(stderr, "[%2d] grtInit failed, %d\n", chan, status);
 return -1;
 }

 /* submit queue record */
 ...

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event))
== GRT_NO_EVENT)
 Sleep(1000L);

 if (event.event_type == GRT_CALL_TERM)
 {
 /* fill in response structure */
 response.response_type = GRT_END_CALL;

 /* respond to event (do not post queue record to file) */
 if (status = grtRespond(&event, &response))
 {
 printf("[%2d] grtRespond error %d\n", event.chan, status);
 return -1;
 }
 }

GDK Version 5.0 Programming Reference Manual

186

 Name: int grtRespondContinue (GRT_EVENT *event)
 Inputs: GRT_EVENT *event • Pointer to an event record.

 Outputs: None
 Returns: GRT_SUCCESS • Successful.

 GRT_ANOTHER_THREAD • Channel is controlled by
another thread.

 GRT_RESPONSE_FAIL • Response to event failed.
 GRT_CONTROL_BUSY • The semaphore could not

be set.
 GRT_UNLOCK_FAIL • The semaphore could not

be released.
 GRT_LOCK_FAILED • The semaphore could not

be set.
 GRT_NOT_INIT • The specified channel has

not been grtInit’ed.
 GFD_BROKEN_PIPE • The response pipe is

broken.
 GFD_INVALID_HANDLE • The response pipe is

corrupted.
 Includes: genra.h

n Description

 The grtRespondContinue() function responds to an event with a continue
message. This function responds to the given event with a GRT_CONTINUE
response message.

5. Programming Models

187

n Example

 #include "genra.h"

 GRT_EVENT event;
 int status, chan = 1;
 int grtAttributes = GRT_CALL_TERM_ENABLE |
 GRT_CALL_TERM_RESPONSE_ENABLE;

 /* initialize GRT pipes interface for fax
channel 1 */
 status = grtInit(chan, chan, grtAttributes);
 if (status != GRT_SUCCESS)
 {
 fprintf(stderr, "[%2d] grtInit failed, %d\n", chan, status);
 return -1;
 }

 /* submit queue record */
 ...

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event))
== GRT_NO_EVENT)
 Sleep(1000L);

 if (event.event_type == GRT_CALL_TERM)
 {
 /* respond to event (do default action, post queue record to
 file) */
 if (status = grtRespondContinue(&event))
 {
 printf("[%2d] grtRespondContinue error" " %d\n",
 event.chan, status);
 return -1;
 }
 }

GDK Version 5.0 Programming Reference Manual

188

 Name: int grtRespondEndCall (GRT_EVENT *event)
 Inputs: GRT_EVENT *event • Pointer to an event record.

 Outputs: None
 Returns: GRT_SUCCESS • Successful.

 GRT_ANOTHER_THREAD • Channel is controlled by
another thread.

 GRT_RESPONSE_FAIL • Response to event failed.
 GRT_CONTROL_BUSY • The semaphore could not be

set.
 GRT_UNLOCK_FAIL • The semaphore could not be

released.
 GRT_LOCK_FAILED • The semaphore could not be

set.
 GRT_NOT_INIT • The specified channel has

not been grtInit’ed.
 GFD_BROKEN_PIPE • The response pipe is broken.
 GFD_INVALID_HANDLE • The response pipe is

corrupted.
 Includes: genra.h

n Description

 The grtRespondEndCall() function responds to an event with an end call
message. This function responds to the given event with a GRT_END_CALL
response message.

5. Programming Models

189

n Example

 #include "genra.h"

 GRT_EVENT event;
 int status, chan = 1;
 int grtAttributes = GRT_RECV_DCS_ENABLE |
GRT_RECV_DCS_RESPONSE_ENABLE;

 /* initialize GRT pipes interface for fax channel 1 */
 status = grtInit(chan, chan, grtAttributes);
 if (status != GRT_SUCCESS)
 {
 fprintf(stderr, "[%2d] grtInit failed, %d\n", chan, status);
 return -1;
 }

 /* submit queue record */
 ...

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event))
== GRT_NO_EVENT)
 Sleep(1000L);

 if (event.event_type == GRT_RECV_DCS)
 {
 /* respond to event (disconnect call after receiving DCS) */
 if (status = grtRespondEndCall(&event))
 {
 fprintf(stderr, "[%2d] grtRespondEndCall"
 " failed, %d", event.chan, status);
 return -1;
 }
 }

GDK Version 5.0 Programming Reference Manual

190

 Name: int grtRespondQueueRec (GRT_EVENT *event,
GFQRECORD *qrec)

 Inputs: GRT_EVENT *event • Pointer to an event record.
 GFQRECORD *qrec • Pointer to a queue record.

 Outputs: None
 Returns: GRT_SUCCESS • Successful.

 GRT_ANOTHER_THREAD • Channel is controlled by
another thread.

 GRT_RESPONSE_FAIL • Response to event failed.
 GRT_CONTROL_BUSY • The semaphore could not

be set.
 GRT_UNLOCK_FAIL • The semaphore could not

be released.
 GRT_LOCK_FAILED • The semaphore could not

be set.
 GRT_NOT_INIT • The specified channel has

not been grtInit’ed.
 GFD_BROKEN_PIPE • The response pipe is

broken.
 GFD_INVALID_HANDLE • The response pipe is

corrupted.
 Includes: genra.h

n Description

 The grtRespondQueueRec() function responds to an event with a queue record.
This function responds to the given event by sending a queue record to the
channel on which the event occurred.

5. Programming Models

191

n Example

 #include "gfq.h"
 #include "genra.h"

 GRT_EVENT event;
 GFQRECORD qrec;
 int status, chan = 1;
 int grtAttributes = GRT_CALL_PENDING_ENABLE |
 GRT_CALL_PENDING_RESPONSE_ENABLE;

 /* initialize GRT pipes interface for fax channel 1 */
 status = grtInit(chan, chan, grtAttributes);
 if (status != GRT_SUCCESS)
 {
 fprintf(stderr, "[%2d] grtInit failed, %d\n", chan, status);
 return -1;
 }

 /* initialize, fill in, and submit queue record */
 ...

 /* block for any event */
 while ((status = grtGetEvent(chan, chan, &event))
== GRT_NO_EVENT)
 Sleep(1000L);

 if (event.event_type == GRT_CALL_PENDING)
 {
 /* respond to event */
 /* perform ANSWER-RECEIVE-SEND operation (turn-around polling)
*/
 if (status=grtRespondQueueRec(&event, &qrec))
 {
 fprintf(stderr, "[%2d] grtRespondQueueRec"
 " failed, %d", event.chan, status);
 return -1;
 }
 }

GDK Version 5.0 Programming Reference Manual

192

 Name: int grtStop (int start_chan, int end_chan)
 Inputs: int start_chan • Starting channel in

range of channels.
 int end_chan • Ending channel in

range of channels.
 Outputs: None
 Returns: GRT_SUCCESS • Successful.

 GRT_INVALID_START_
CHANNEL

• Starting channel is
out of range.

 GRT_INVALID_END_CHANNEL • Ending channel is
out of range.

 GRT_NO_DISPATCHER • Dispatcher is not
running.

 GRT_ANOTHER_THREAD • Another thread
controls a channel in
the range given.

 GRT_CONTROL_BUSY • The semaphore
could not be locked.

 GRT_UNLOCK_FAIL • The semaphore
could not be
unlocked.

 GRT_LOCK_FAILED • The semaphore
could not be locked.

 GRT_PROCESS_ATTRIBUTE_
FAIL

• Could not enable
notification or
response on the fax
channel.

 GRT_CLOSE_FAIL • Could not close
notification or
response pipe to fax
channel.

 Includes: genra.h

5. Programming Models

193

n Description

 The grtStop() function stops the GRT API from managing the fax channels. This
function stops control of the given range of channels by the current thread of
execution. Allowing starting and stopping of the GRT allows a thread to add or
delete channels that it controls dynamically.

n Example

 #include "genra.h"

 int status, chan = 1;

 if (status = grtStop(chan, chan))
 {
 fprintf(stderr, "[%2d] grtStop failed\n", chan);
 myErrorRoutine(status);
 }

GDK Version 5.0 Programming Reference Manual

194

 Name: int grtSubmitFax (int chan, GFQRECORD *qrec)
 Inputs: int chan • Channel on which fax is

to be sent.
 GFQRECORD *qrec • Pointer to a queue

record.
 Outputs none
 Returns: GRT_SUCCESS • Successful.

 GRT_FAX_SUBMIT_FAIL • Fax submission failed.
 Includes: genra.h

n Description

 The grtSubmitFax() function submits a queue record to a channel. This function
sends a queue record to a given channel without using the queue file, to the
dispatcher using the control pipe. If the submission is successful, GRT_SUCCESS
is returned; otherwise, GRT_FAX_SUBMIT_FAIL is returned.

5. Programming Models

195

n Example

 #include "gfq.h"
 #include "genra.h"

 GFQRECORD qr;
 int status, chan = 1;
 int application_type = RECV_FAX_ONLY;

 gfqClearRec(&qr);
 switch (application_type)
 {
 case SEND_CALL_PROGRESS:
 /* fax channel does dialing and handles call progress */
 qr.operation = GFQDIAL_SEND;
 strcpy(qr.fn_send, "c:\\fax\\test001.tif");
 strcpy(qr.phone_no, "1-408-555-1212");
 break;
 case SEND_NO_CALL_PROGRESS:
 /* fax channel goes off-hook and begins T.30 action at
 Phase B */
 qr.operation = GFQDIAL_SEND;
 strcpy(qr.fn_send, "c:\\fax\\test001.tif");
 strcpy(qr.phone_no, "\0");
 break;
 case RECV_FAX_ONLY:
 /* fax channel detects incoming ring prior to going
 off-hook */
 qr.operation = GFQANSWER_RECEIVE;
 strcpy(qr.fn_received, "c:\\faxr\\f001p001.tif");
 break;
 case RECV_VOICE_FAX:
 /* fax channel goes off-hook and transmits CED */
 qr.operation = GFQANSWER_IMMEDIATELY;
 strcpy(qr.fn_received, "c:\\faxr\\f001p001.tif");
 break;
 }

 status = grtSubmitFax(chan, &qr);
 if (status == GRT_SUCCESS)
 printf("fax submitted successfully\n");
 else
 printf("grtSubmitFax error %d\n", status);

GDK Version 5.0 Programming Reference Manual

196

GFD API Functions

The following section alphabetically lists the GFD API functions. These function
calls handle event notification, remote status and control functions.

Ready to
enable event
notification
response.

Disconnected
Pipe

Listening
Pipe

Connected to
Channel

gfdMakeNmPipe

gfdOpen

gfdConnectNmPipe

xxx-gfdClose

gfdConnectNmPipe

gfdClose gfdDisconnectNmPipe

xxx-gfdOpen

Start

Figure 5. Event Breakpoints

Each event breakpoint may be associated to the sending side or the receiving side
of a fax transmission. In the information associated with the event there may be
data. The application attempts to read the gfx_rt_message, which is the largest
possible message from the pipe (2048 bytes of data). There will be more or less
data depending on the event. Events that are not able to respond should not be
setup for response. Doing so can cause unpredictable behavior. Of the available
responses, the verb response is not supported in GRT. Aborting at the Call Term
break point does not abort the fax transmission at all; rather it aborts writing the
queue record in the event data to the queue file on the hard disk.

5. Programming Models

197

Table 35. Event Breakpoints

Event Sending/
Receiving

Information with
event

Able to
Respond?

Available
responses

Dial Sending Dial string No None

Call
Pending

Receiving Collected digits Yes Abort,
continue, or
verb

Answer Receiving Collected digits Yes Abort,
continue,
queue record
or verb

Info
Exchange

Receiving gfx_rt_info_s or
GRT_INFO_DATA

Yes Abort or
continue

DIS
Received

Sending gfx_rt_info_s or DIS
string

No None

DCS
Received

Receiving gfx_rt_info_s or DCS
string

No None

Page Break Sending
/Receiving

None No None

Idle Sending
/Receiving

None No None

Call Term Sending
/Receiving

GFQRECORD Yes Abort or
continue

NOTE: The GRT programming model does not support all break points and all
response types covered in the GFD API. There are two additional event
break points: Answer and Idle. There is also the possible response of a
verb. Since this is only useful when responding to an Answer event, no
additional functionality is lost.

GDK Version 5.0 Programming Reference Manual

198

 Name: int gfdClose (int handle)
 Inputs: int handle • Valid pipe handle

returned from
gfdMakeNmPipe or
gfdOpen.

 Outputs: none
 Returns: GFD_INVALID_HANDLE • Wrong pipe handle.

 GFD_NOT_INSTALLED • Dispatcher is not running.
 GFD_SUCCESS • Successful.

 Includes: gfdmsg.h
 gfdipc.h

NOTE: gfidpc.h requires that the gfdmsg.h file be included
first.

n Description

The gfdClose function closes a pipe opened with gfdOpen or gfdMakeNmPipe.

n Example

#define XXX_BASE 0x4000
#define XXX_gfdClose (XXX_BASE+81)
int faxHandle; /* fax channel handle for pipe remote open */
int appHandle; /* application handle for pipe*/
int status;
int result;
/* Close remote/fax channel side of pipe */
status = gfdRemoteRequest(0, 0, XXX_gfdClose, 0, faxHandle, "", 0,
&result);
gfdDisConnectNmPipe(appHandle);
gfdClose(appHandle);

5. Programming Models

199

 Name: int gfdConnectNmPipe (int handle)
 Inputs: int handle • Valid pipe handle

returned from
gfdMakeNmPipe or
gfdOpen.

 Outputs: none
 Returns: GFD_ACCESS_DENIED • Pipe is not connected.

 GFD_BROKEN_PIPE • Pipe was disconnected.
 GFD_INVALID_HANDLE • Wrong pipe handle.
 GFD_NOT_INSTALLED • Dispatcher is not

running.
 GFD_SUCCESS • Successful.

 Includes: gfdmsg.h
 gfdipc.h

n Description

The gfdConnectNmPipe function closes the server handle of a named pipe. If the
client end of a named pipe is open, this call forces that end of the named pipe
closed. The client receives an error value on the next attempt to access the pipe.

A client that is forced off a pipe by this function must close its end of the pipe
using the gfdClose function.

GDK Version 5.0 Programming Reference Manual

200

n Example

#define XXX_BASE 0x400
#define XXX_gfdClose (XXX_Base+81)

intfaxChandle; /* Fax channel handle from remote open */
int AppHandle
int status;
int result;
/* Close remote or fax channel side of pipe */
status = gfdMakeNmPipe (*\\PIPE\\GFAX01î,ppHandle);
status = gfdConnectNmPipe(appHandle);
/* Will always return a vallue of 1 */
status = gfdRemoteRequest(1,0,XXX_gfdOpen,0,0,
 ì\\PIPE\\GFAX01î,size of(ì\\PIPE\\GFAX01î),&result);
status = gfdConnectNmPipe (appHandle);
/* now will retun GFD_SUCCESS*/

5. Programming Models

201

 Name: int gfdDisConnectNmPipe (int handle)
 Inputs: int handle • Valid pipe handle

returned from
gfdMakeNmPipe or
gfdOpen.

 Outputs: none
 Returns: GFD_ACCESS_DENIED • Pipe is not connected.

 GFD_BROKEN_PIPE • Pipe was disconnected.
 GFD_INVALID_HANDLE • Wrong pipe handle.
 GFD_NOT_INSTALLED • Dispatcher is not running.
 GFD_SUCCESS • Successful.

 Includes: gfdmsg.h
 gfdipc.h

n Description

The gfdDisConnectNmPipe function closes the server handle of a named pipe. If
the client end of a named pipe is open, this call forces that end of the named pipe
closed. The client receives an error value on the next attempt to access the pipe.

A client that is forced off a pipe by this function must close its end of the pipe
using the gfdClose function.

n Example

#define XXX_BASE 0x400
#define XXX_gfdClose (XXX_Base+81)

int faxHandle; /* Fax channel handle from remote open */
int AppHandle
Int status;
int result;
/* Close remote or fax channel side of pipe */
status = gfdRemoteRequest (0,0,XXX_gfdClose,0,faxHandle,îî,),
&result);
gfdDisConnectNmPipe(AppHandle);
gfdClose(AppHandle);

GDK Version 5.0 Programming Reference Manual

202

 Name: int gfdGetFileNumChannel (int chassis)
 Inputs: int chassis • The chassis number.

 Outputs: none
 Returns: Number of active channels • Successful.

 0 • The status file exists, but
no channels are active.

 <0 • An error occurred.
 Includes: gfdstatu.h

n Description

The gfdGetFileNumChannel function returns the number of active channels in
the chassis. A value less than zero indicates an error. A value of zero indicates that
the status file exists and is valid, but that no fax channels are active.

n Example

#include "gfdstatu.h"
nc = gfdGetFileNumChannel (1);
if (nc > = 0)

printf ("Found %d channels.\n", nc);
else

printf ("Can’t open status file.\n");

5. Programming Models

203

 Name: int gfdGetMemNumChannel (int chassis)
 Inputs: int chassis • The chassis number.

 Outputs: none
 Returns: Number of active channels • Successful.

 0 • The status table exists,
but no channels are
active.

 <0 • An error occurred.
 Includes: gfdstatu.h

n Description

The gfdGetMemNumChannel function returns the number of active channels in
the chassis. A value less than zero indicates an error. A value of zero indicates that
the status table exists and is valid, but that no fax channels are active.

n Example

#include "gfdstatu.h"
nc = gfdGetMemNumChannel (1);
if (nc > = 0)

printf ("Found %d channels.\n", nc);
else

printf ("status table not available.\n");

GDK Version 5.0 Programming Reference Manual

204

 Name: int gfdMakeNmPipe (char *name, int *handle);
 Inputs: char *name • Points to a null-

terminated string that
identifies the pipe.

 int *handle • Points to a variable that
receives the handle of
the named pipe for the
application.

 Outputs: int *handle • Handle of the named
pipe.

 Returns: GFD_ACCESS_DENIED • Unable to create pipe.
 GFD_NO_PIPE_HANDLES • Out of file handles when

attempting to create a
pipe.

 GFD_NOT_INSTALLED • Dispatcher is not
running.

 GFD_SUCCESS • Successful.
 Includes: gfdmsg.h

 gfdipc.h

n Description

The gfdMakeNmPipe function creates a named pipe and returns a handle to the
server. The handle can be used in subsequent read, write, and close operations.

n Example

result = gfdMakeNmPipe ("\\PIPE\\GFAX01", &handle);

5. Programming Models

205

 Name: int gfdOpenStatusFile (int chassis, int mode)
 Inputs: int chassis • The chassis number.

 int mode • The access mode of the
file, which is defined in
the include file fcntl.h.
The mode passed must be
O_RDONLY.

 Outputs: none
 Returns:

Handle to the open status
file

• Successful.

 -1 • An error occurred.
 Includes: gfdstatu.h

n Description

The gfdOpenStatusFile function creates the name of the status file and attempts
to open it. The path for the status file is obtained from the GFAX environment
variable. Low-level functions, such as gfdReadStatusFileHeader and
gfdReadStatusFileRecord, cannot be used unless gfdOpenStatusFile is called
first successfully.

n Example

#include "gfdstatu.h"
int chassis = 1; /* Default to one chassis*/
int status_fid;
status_fid = gfdOpenStatusFile(chassis, O_RDONLY);
if (status_fid < 0)
{
 printf ("No status file open.\n");
 exit (1);
}

GDK Version 5.0 Programming Reference Manual

206

 Name: int gfdQueryStatus (int dummy)
 Inputs: int dummy • Is a dummy parameter

which is ignored. Any
integer value is OK.

 Outputs: none
 Returns: 0 • The Dispatcher is

running.
 non-zero • The Dispatcher is not

running.
 Includes: gfdmsg.h

 gfdipc.h

NOTE: gfdipc.h requires that the gfdmsg.h file be included

first.

n Description

The gfdQueryStatus function checks whether or not the Dispatcher is running.

n Example

if (gfdQueryStatus(0))
{

printf ("GammaLink service not running.\n");
exit (1);

}

5. Programming Models

207

 Name: int gfdRead (int handle, char *buffer, int size, int *bytesread)
 Inputs: int handle • Valid pipe handle

returned from
gfdMakeNmPipe or
gfdOpen and connected
with gfdConnectNmPipe.

 int size • Specifies the number of
bytes to be read from the
pipe.

 Outputs: int *bytesread • Points to the variable that
receives the number of
bytes read from the pipe.

 char *buffer • Points to the buffer that
receives the data.

 Returns: GFD_ACCESS_DENIED • Pipe is not in correct
state.

 GFD_INVALID_HANDLE • Wrong pipe handle.
 GFD_NOT_INSTALLED • Dispatcher is not

running.
 GFD_SUCCESS • Successful.

 Includes: gfdmsg.h
 gfdipc.h

n Description

The gfdRead function reads bytes of data, up to a specified number, from a pipe
into a buffer. gfdRead may read fewer than the specified number of bytes if fewer
are available. The return value is GFD_SUCCESS if the function is successful.

GDK Version 5.0 Programming Reference Manual

208

n Example

int channel;
int result;
int appHandle;
struct gfx_rt_message datagram;
int len;
/* Main processing loop -- never ends. */
while(1) /* Check for data on this pipe. */
{
 result = gfdRead(appHandle,(char*)&datagram,
 sizeof(datagram),&len);
 if((result==0) &&(len>0)){
 if(datagram.header.function == GFXRTBP_CALLTERM)
 printf("CallTermination on channel”, “ %d\n",
 datagram.header.source);
 /*Fax channel that sent message */
 }

sleep (2);
 }

5. Programming Models

209

 Name: int gfdReadStatusFile (CPRECORD *rec, int channel,
int chassis)

 Inputs: int channel • The logical channel
number.

 int chassis • The chassis number.
 Outputs: CPRECORD *rec • The status record

returned if the function
completes successfully.

 Returns: GFD_SUCCESS • Successful.
 GFDBAD_STATUS_FILE • The status file is corrupt.
 GFDNO_STATUS_FILE • The status file could not

be found.
 Includes: gfdstatu.h

 gfdmsg.h
 gfdipc.h

NOTE: gfdipc.h requires that the gfdmsg.h file be included
first.

n Description

The gfdReadStatusFile function reads one record from the status file. The status
file is opened, and the record is read by calling gfdReadStatusFileRecord. The
status file is then closed.

GDK Version 5.0 Programming Reference Manual

210

n Example

#include "gfdstatu.h"
#include "gfdmsg.h"
#include "gfdipc.h"
int channel, numchannel, chassis = 1;
CPRECORD cprec;
for(channel=1; channel<=numchannel; ++channel)
{
 if (gfdReadStatusFile (&cprec, channel, chassis) == GFD_SUCCESS)

printf ("channel %d, status = %021x," " name = %32x\n",
cprec.cp_channel,cprec.cp_state, cprec.cp_name);

}

5. Programming Models

211

 Name: int gfdReadStatusFileHeader (int fid,
struct cp_status_header_s header)

 Inputs: int fid • The file handle returned
by gfdOpenStatusFile

 Outputs: struct cp_status_header_s
header

• Pointer to the data
structure maintained in
memory that holds the
status table.

 Returns: GFD_SUCCESS • Successful.
 GFDBAD_STATUS_FILE • The status file is

corrupted.
 GFDNO_STATUS_FILE • The status file could not

be found.
 Includes: gfdstatu.h

 gfdmsg.h
 gfdipc.h

NOTE: gfdipc.h requires that the gfdmsg.h file be included
first.

n Description

One field in the status-file header shows the number of fax channels active in the
chassis. Also in the header file is a cp_status_header data-structure definition for a
header of a status file. Table 36 lists the fields in a status-file header. A data
structure for the status table is in GFDSTATU.H, which is the header file for status
functions included in GDK. This structure is listed below:

struct cp_status_header_s {
short cp_status_version; /* version of status file */
short cp_header_size; /* size of header (bytes) */
short cp_record_size; /* allocated size for each card */
short cp_max_channel; /* number of channels allocated */
time_t cp_last_update; /* time of last update */

};

GDK Version 5.0 Programming Reference Manual

212

n Example

#include "gfdstatu.h"
#include "gfdmsg.h"
#include "gfdipc.h"
struct cp_status_header_s header;
/*Display header information*/
gfdReadStatusFileHeader (status_fid, &header);
printf ("Status file is version %d\n", header.cp_status_version);
printf ("Status file reports %d active", " channels\n",
header.cp_max_channel);
printf ("Status file last updated %s\n", ctime
(&header.cp_last_update));

Table 36. Fields in the Status-File Header

Data Type Field Name Description

int cp_status_version Version of the status file.

int cp_header_size Size of the header in bytes.

int cp_record_size Allocated size for each fax channel.

int cp_max_channel Number of fax channels active in the chassis.

time_t cp_last_update Time of last update.

5. Programming Models

213

 Name: int gfdReadStatusFileRecord (int status_fid,
CPRECORD *rec, int channel)

 Inputs: int status_fid • The file handle for the
status file (returned by
gfdOpenStatusFile).

 int channel • The logical-channel
number for which the
status is to be obtained.

 Outputs: CPRECORD *rec • The status record
returned if the function is
successful.

 Returns: GFD_SUCCESS • Successful.
 GFDBAD_STATUS_FILE • The status file is corrupt.

 GFDNO_STATUS_FILE • The status file could not
be found.

 Includes: gfdstatu.h
 gfdmsg.h
 gfdipc.h

NOTE: gfdipc.h requires that the gfdmsg.h file be included
first.

n Description

The gfdReadStatusFileRecord function that reads a record from the status file if
the file already is open.

GDK Version 5.0 Programming Reference Manual

214

n Example

#include "gfdstatu.h"
#include "gfdmsg.h"
#include "gfdipc.h"
CPRECORD cprec;
int status_fid;
int i;
int status;
for (i = 1; i <= maxchannel; ++i)
{

status = gfdReadStatusFileRecord (status_fid,&cprec,i);
}

5. Programming Models

215

 Name: int gfdReadStatusMem (CPRECORD *rec,
int channel, int chassis)

 Inputs: int channel • The logical channel
number.

 int chassis • The chassis number.
 Outputs: CPRECORD *rec • The status record

returned if the function
completes successfully.

 Returns: GFD_SUCCESS • Successful.
 GFDBAD_STATUS_FILE • The status table is

corrupt.
 GFDNO_STATUS_FILE • The status table could not

be found.
 Includes: gfdstatu.h

 gfdmsg.h
 gfdipc.h

NOTE: gfdipc.h requires that the gfdmsg.h file be included

first.

n Description

The gfdReadStatusMem function reads one record from the status table. The
status table is opened, and the record is read by calling
gfdReadStatusMemRecord. The status table is closed without further function
calls.

GDK Version 5.0 Programming Reference Manual

216

n Example

#include "gfdstatu.h"
#include "gfdmsg.h"
#include "gfdipc.h"
int channel, numchannel, chassis = 1;
CPRECORD cprec;
numchannel = gfdGetMemNumChannel(chassis);
for(channel = 1; channel <= numchannel; ++channel)
{

if (gfdReadStatusMem (&cprec, channel, chassis) =
GFD_SUCCESS)

 printf ("channel %d, status = %021x,", " name = %32x\n",
 cprec.cp_channel, cprec.cp_state, cprec.cp_name);
}

5. Programming Models

217

 Name: int gfdReclaimNmPipe (char *pipename)
 Inputs: char *pipename • Pointer to null

terminated string that
identifies the pipe

 Outputs: None

 Returns: GFD_SUCCESS • The name of the pipe
has been successfully
reclaimed

 GFD_INVALID_PIPE_NAME • The name of the pipe
was never used (not an
error).

 Includes: gfdmsg.h
 gfdipc.h

NOTE: gfdipc.h requires that the gfdmsg.h file be included
first.

n Description

This function performs clean up and recovers locked system resources if
gfdMakeNmPipe fails with a GFD_INVALID_HANDLE error code (the typical
error code that is generated from an abnormal termination of a previously running
GDK fax application.)

This function can be called prior to a making gfdMakeNmPipe call without
incident, but do not call this function after a successful gfdMakeNmPipe call.

n Example
result = gfdReclaimNmPipe("\\PIPE\\GFAX01");}

GDK Version 5.0 Programming Reference Manual

218

 Name: int gfdRemoteRequest (int chassis, int channel, int command,
int func, int parm, char buffer, int buffer_length, int *res)

 Inputs: int chassis • Chassis number
(always zero).

 int channel • Logical channel
number (use 0 for
the Dispatcher,
GFDCP).

 int command • A command from
Table 37.

 int func • First parameter.
 int parm • Second parameter.
 char *buffer • Command buffer.
 int buffer_length • Length of command

buffer.
 Outputs: int *res • Result of the

command when it is
processed.

 Returns: 0 or GFD_SUCCESS • Successful. Check
the result code
passed back (res)
for result of the
actual command.

 GFDCHANNEL_FAILED • State of the target
channel is “failed.”

 GFDINVALID_CHANNEL • Specified channel is
not in the range for
which the
Dispatcher is
configured.

 GFDREMOTE_SPARM_ERROR • Buffer length
specified in
gfdRemoteRequest
is greater than
internal buffer size
(currently, 1024).

5. Programming Models

219

 GFD_ACCESS_DENIED • Failed to properly
open or close the
remote (fax) handle
of the named pipe.

 Includes: gfdmsg.h
 gfdipc.h
 gfqctl.h
 gfq.h

n Description

The gfdRemoteRequest function allows the calling application to send a message
to the fax channel to perform the requested function or operation. “Remote
Request” refers to the fact that the host application is requesting the “remote”
software to execute certain commands or change certain parameters.

The gfdRemoteRequestcall contains the chassis and channel number for the
communication subsystem component to execute the remote function. The channel
number is the logical channel number within a chassis. Channel number 0 is used
to refer to the GDK Dispatcher for that chassis. Channel number 1 is the first
logical fax channel, channel number 2 is the second logical fax channel, and so
forth.

There are several types of functions that the gfdRemoteRequest can issue. You
can use gfdRemoteRequest to issue configuration commands from the gfax.$dc
file. Some configuration commands have only one argument after the channel
number. GFXSHUTDOWN is one such command. A typical GFXSHUTDOWN
setting in the gfax.$dc file is:

GFXSHUTDOWN <channel> 3

To change the shutdown state of a fax channel using the gfdRemoteRequest, the
following can be used:

status = gfdRemoteRequest (0, channel,GFXSHUTDOWN, 0, 3, ““, 0,
&result);

Other configuration commands have two arguments. GFXECM has one argument
to enable ECM (error correction mode) for send mode and another argument to
enable ECM for receive mode. A typical argument to enable ECM for send only
is:

GDK Version 5.0 Programming Reference Manual

220

GFXECM <channel> 1 0

The equivalent gfdRemoteRequest call is:

status = gfdRemoteRequest(0, channel, GFXECMMODE, 1, 0, “”, 0,
&result);

For the configuration commands that require one argument, that argument is
passed as the fifth argument to gfdRemoteRequest, using the function parameter.
For configuration commands that require two arguments, they are passed in order
as the fourth and fifth parameters to gfdRemoteRequest.

In the section discussing the creation of user-defined pipes and enabling event
notification and response, we saw that the gfdRemoteRequest function is used to
send messages to the fax channel. The following examples show how to use
gfdRemoteRequest to send the most common messages relating to pipe creation,
event notification, and event response.

n Example

int status;
int result;

/* To open the remote (fax) end of a pipe already created using
gfdMakeNmPipe():*/
status = gfdRemoteRequest(0, channel, XXX_gfdOpen, 0, 0, pipeName,
strlen(pipename) + 1, faxHhandle):
/* To close the remote (fax) end of a pipe:*/
status = gfdRemoteRequest(0, channel, XXX_gfdClose, 0, faxHandle,
NULL, 0, &result);
/* To enable event notification only for the INFOEXCHANGE event:*/
status = gfdRemoteRequest(0, channel, GFXRTNHANDLE,
GFXRTBP_INFOEXCHANGE, faxHandle, NULL, 0, &results);
/* To enable event response on a different handle for the
INFOEXCHANGE event:*/
status = gfdRemoteRequest(0, channel, GFXRTRHANDLE,
GFXRTBP_INFOEXCHANGE, responseHandle, NULL, 0, &result);
/*To disable the default action for the CALLTERM event:*/
status = gfdRemoteRequest(0, channel, GFXRTACTION,
GFXRTBP_CALLTERM, GFXRT_ABORT, NULL, 0, &result);
/*To change the timeout for the INFOEXCHANGE event to 5 seconds:*/
status = gfdRemoteRequest(0, channel, GFXRTTIMEOUT,
GFXRTBP_INFOEXCHANGE, 5, NULL, 0, &result);

5. Programming Models

221

n Additional Information

The gfdRemoteRequest also provides one more capability. When using the
interactive fax programming model, the gfdRemoteRequest is used to submit
queue records to the fax channel to give the fax channel its operation. To send a
fax, for example, a queue record must be created and filled out, and then
submitted to the fax channel via gfdRemoteRequest as in the code fragment
below:

GFQRECORD qrec;
qrec.operation = GFQDIAL_SEND;
strcpy(qrec.fn_send, "test001.tif");
strcpy(qrec.phone_no, "1-408-744-1900");
status = gfdRemoteRequest(0, channel, GFXQRECORD, 0, 0,
(char *)&qrec, sizeof(GFQRECORD), &result);

To send a message to the fax channel telling it to wait for an incoming call, and
then receive a fax, a similar gfdRemoteRequest is used:

GFQRECORD qrec;
qrec.operation = GFQANSWER_RECEIVE;
strcpy(qrec.fn_received, "a001p001.tif");
status = gfdRemoteRequest(0, channel, GFXQRECORD, 0, 0,
(char *)&qrec, sizeof(GFQRECORD), &result);

The gfdRemoteRequest is always used to send queue records in the same way as
above. Typically, the only difference is the operation field of the queue record.

NOTE: More message options are specified in GFQCTL.H.

Table 37. gfdRemoteRequest Commands

Command Configuration
Commands1

Channel Func Parm Buffer

Fax-Agent Control Messages

GFXECMMODE GFXECM channel rx tx null
string

GFXFAXCONTROL GFXFAXC channel arg cmd null
string

GFXFINE GFXFINE channel 0 parm null
string

GFXFORMAT GFXFORM channel 0 parm null
string

GDK Version 5.0 Programming Reference Manual

222

Command Configuration
Commands1

Channel Func Parm Buffer

GFXGFCONTROL GFCCONTROL channel arg cmd null
string

GFXMDMCONTROL MODEMCTRL channel arg cmd null
string

GFXSCANTIME GFXSCANTIME channel 0 parm null
string

GFXSHUTDOWN GFXSHUTDOWN channel 0 parm null
string

GFXSPEAKER GFXSPEAKER channel 0 parm null
string

GFXWAIT GFXWAIT channel 0 parm null
string

GFXCARRY_ON GFXCARRYON channel 0 parm null
string

GFXREJ_BURST GFXREJBURST channel 0 parm null
string

GFXREJ_COUNT GFXREJCOUNT channel 0 parm null
string

GFXREJ_PERCENT GFXREJPERCENT channel 0 parm null
string

GFXRTN_RETRAIN GFXRTNRETRAIN channel 0 parm null
string

GFXRTP_RETRAIN GFXRTPRETRAIN channel 0 parm null
string

Set Receive Directory

GFXRECVPATH GFXRECVPATH channel 0 0 “path”

Output-Conversion-Agent Control Messages

GFXBOTTOMMARGIN GFXBOTTOMMARGIN channel 0 parm null
string

GFXCHARSET GFXCHARSET channel 0 parm null
string

GFXEXTEND GFXEXTEND channel 0 parm null
string

GFXLEFTMARGIN GFXLEFTMARGIN channel 0 parm null
string

GFXPAGELENGTH GFXPAGELENGTH channel 0 parm null
string

5. Programming Models

223

Command Configuration
Commands1

Channel Func Parm Buffer

GFXRIGHTMARGIN GFXRIGHTMARGIN channel 0 parm null
string

GFXSPACING GFXSPACING channel 0 parm null
string

GFXTABSTOP GFXTABSTOP channel 0 parm null
string

GFXTOPMARGIN GFXTOPMARGIN channel 0 parm null
string

Queue Record

GFXQRECORD — channel 0 parm qrec

Event Notifications

GFRTACTION — channel event
id2

action2 null
string

GFXENABLE — channel event
id2

notify/
response
handle

null
string

GFXRTNHANDLE — channel event
id2

notify
handle

null
string

GFXRTRHANDLE — channel event
id2

response
handle

null
string

GFXRTTIMEOUT — channel event
id2

seconds null
string

Named Pipe

XXX_gfdClose3 — 0 0 0 pipe
name

XXX_gfdOpen3 — 0 0 0 pipe
name

GDK Version 5.0 Programming Reference Manual

224

1 See the GDK, Installation and Configuration Guide for Windows for details on the
configuration commands.

2 See Table 38 for values.
3 These commands are defined in xxxmsgs.h.

Table 38. Event Identifiers and Default Actions

Category Symbolic Name

Event ID

Call Answer GFXRTBP_ANSWER

Call Pending GFXRTBP_CALLPENDING

Call Termination GFXRTBP_CALLTERM

DCS Received GFXRTBP_DCS_RECV

Dial GFXRTBP_DIAL

DIS Received GFXRTBP_DIS_RECV

Information Exchange GFXRTBP_INFOEXCHANGE

Page Break GFXRTBP_PAGE_BREAK

Action

Abort GFXRT_QUEUE

Continue GFXRT_CONTINUE

Queue GFXRT_QUEUE

Obsolete APIs

The following functions have been removed from the 3.x releases of the GDK
software.

• gfdBoardDetect() has been replaced by glHWDetect().

• gfdGenerateConfig() has been replaced by Control Panel configuration
utility.

5. Programming Models

225

• gfqReadOne() has been replaced by gfqFindNext().

• gfqReport() has been replaced by gfqFindFirst().

• gfdStartDispatcherSVC() is redundant to the Win32 StartService() API.

GDK Version 5.0 Programming Reference Manual

226

 227

6. Developing with PEB

 PEB (Pulse Code Modulation [PCM] Expansion Bus)

 The PEB (Pulse Code Modulation [PCM] Expansion Bus) was introduced by
Dialogic Corporation in 1989. It is a high-speed, digital, Time-Division
Multiplexer (TDM) communication bus for the signal computing environment.
PEB is similar in concept to a T-1 span; information is transmitted digitally and
divided into several conversations. Each conversation is referred to as a timeslot,
and the allocation of the timeslots determines the functionality of the bus.

 The following applications are possible with PEB:

• Fax

• Voice processing

• Speech recognition

• Switching

• Text-to-speech

 The PEB environment consists of two primary component types: network
interfaces and resource modules. Network interfaces attach to the telephone
network and generally control the speed of the bus (provides “clock”). Depending
on the type of network interface, PEB can support from 24 to 30 simultaneous
channels. For example, T-1 supports 24 data channels and E-1 supports 30 data
channels.

 Resource modules perform some type of signal computing function, such as fax,
by transmitting on and/or receiving data from a designated range of timeslots.

GDK Version 5.0 Programming Reference Manual

228

 With the PEB Switching Handler Libraries, fax resources are allocated at runtime,
and connected to active/live telephone calls. You can also configure fax resources
as “batch processing only,” where jobs are created by the application, and
submitted to the GDK Queue Management processing system. The PEB functions
can be used with either the Batch Programming Model or the Interactive
Programming Model.

 Basics of a PEB System

 A PEB system requires the utility GFSH.EXE to first program the data bus before
running a PEB application. See Appendix B for more information about this
utility.

 Dialogic CP Fax hardware is compatible with Dialogic’s PEB network interface
cards. Using the PEB APIs, the system can be a fax-only system and control call
progress signaling, when the Dialogic card is configured for transparent mode.
When Dialogic’s card is configured for signal insertion, as in a voice/fax system,
the fax channels can be routed on the PEB bus on an as-needed fax resource.

 The following list describes the functions of executable and configuration files
needed for a PEB system, in addition to the base GDK software described in
Chapter 2.

 GFSH.CMD Configuration file created by the timeslot
assignment program and used by the GFSH.EXE
program to properly assign timeslots within the
SCbus system.

 GFSH.EXE The SC2000 configuration utility. It creates the
GFSH.SAV file when given GFSH.CMD as
input.

 GFSH.SAV Configuration file created by the GFSH.EXE
program GFAX.SAV is used by the runtime API
for timeslot record keeping.

6. Developing with PEB

229

 PEB APIs

 This section provides information about the use of the following PEB APIs:

 gl_route Connects and disconnects digital timeslot transmit and
receive to PEB

 gl_routerxtx Connects and disconnects independent digital timeslot
transmit and receive to PEB

 gl_pebenter Initializes PEB subsystem

 gl_pebexit Shuts down PEB subsystem

 The following sections list the name, inputs, returns, include files, description, and
example code for each of the PEB APIs.

GDK Version 5.0 Programming Reference Manual

230

 Name: int gl_route (int bddev, int chan, int tslot)
 Inputs: int bddev • Purpose: Unused — for

compatibility with Dialogic
software.

• Range: Must be -1.
 int chan • Purpose: Specifies logical fax

channel.

• Range: 1 – 60, inclusive.
 int tslot • Purpose: Specifies transmit and

receive PEB timeslot.

• Range: 1 – 30, inclusive, for E1,
1 – 24, inclusive, for T1 to connect
a timeslot to the fax channel, -1 to
disconnect the timeslot of the fax
channel.

 Returns: 0 • Success.
 -1 • Error.

 Includes: gfpeb.h

n Description

 The gl_route() function connects and disconnects fax channel to PEB timeslot.

 The gl_route function establishes or removes a connection between a logical fax
channel and a PEB timeslot. The timeslot is used by the fax channel for both
transmitting to and receiving from the PEB. If gl_route() is called to establish a
connection and the fax channel is already connected to a PEB timeslot, the
existing connection will be removed before the specified connection is
established.

 If gl_route() is called to remove a connection and no connection currently exists
between the fax channel and a PEB timeslot, gl_route() will return an indication
of success.

6. Developing with PEB

231

n Example

 #include "gfpeb.h"
 int faxchan, status;
 /* disconnect faxchan from transmit and receive timeslots on
 PEB */
 status = gl_route(-1, faxchan, -1);
 if (status)
 {
 fprintf(stderr, "gl_route() disconnect failed: %d\n", status);
 return (status);
 }
 /* connect faxchan transmit and receive to timeslot 1 on PEB */
 status = gl_route(-1, faxchan, 1);
 if (status)
 {
 fprintf(stderr, "gl_route() connect failed:" " %d\n", status);
 return (status);
 }

n Errors

• This function fails if an invalid channel is specified.

• This function fails if called on a device in SCbus mode.

• This function fails if gl_pebenter() has not been previously called.

GDK Version 5.0 Programming Reference Manual

232

 Name: int gl_routerxtx (int bddev, int chan, int rxslot, int txslot)
 Inputs: int bddev • Purpose: unused — for compatibility

with Dialogic software.

• Range: Must be -1.
 int chan • Purpose: logical fax channel.

• Range: 1 – 60, inclusive.
 int rxslot • Purpose: receive PEB timeslot.

• Range: 1 – 30, inclusive, for E1; 1 – 24,
inclusive, for T1 to connect a receive
timeslot to the fax channel; 0 to leave
current receive timeslot configuration
of fax channel unchanged; -1 to
disconnect the receive timeslot of fax
channel.

 int txslot • Purpose: transmit PEB timeslot.

• Range: 1 – 30, inclusive, for E1;
1 – 24, inclusive, for T1 to connect a
transmit timeslot to the fax channel; 0
to leave current transmit timeslot
configuration of fax channel
unchanged; -1 to disconnect the
transmit timeslot of fax channel.

 Returns: 0 • Success.
 -1 • Error.

 Includes: gfpeb.h

6. Developing with PEB

233

n Description

 The gl_routerxtx () function connects and disconnects fax channels to transmit
and receive PEB timeslots.

 The gl_routerxtx() function establishes a connection between a logical fax
channel and a pair of PEB timeslots. The transmit and receive timeslots are
selected independently. Either or both timeslots can be disconnected. Either or
both timeslots can be left unchanged.

 If gl_routerxtx() is being used to establish a connection and the fax channel is
already connected to a PEB timeslot, the existing connection will be removed
before the specified connection is established.

 If gl_routerxtx() is being used to remove a connection and no connection
currently exists between the fax channel and a PEB timeslot gl_routerxtx() will
return an indication of success.

n Example

 #include "gfpeb.h"
 int faxchan, faxchan2, txslot, rxslot, status;
 /* disconnect faxchan from transmit and
 receive timeslots from PEB */
txslot = rxslot = -1;
 faxchan = 1;
faxchan = 2;
 status = gl_routerxtx(-1, faxchan, rxslot,
 txslot);
if (status)
{
 fprintf(stderr, "gl_routerxtx() disconnect" " failed: %d\n",
status);
 return (status);
 }
 /* connect faxchan transmit to timeslot 0 on PEB */
txslot = 0;
 /* connect faxchan receive to timeslot 1 on PEB */
rxslot = 1;
 status = gl_routerxtx(-1, faxchan, rxslot,
 txslot);

GDK Version 5.0 Programming Reference Manual

234

if (status)
{
 fprintf(stderr, "gl_routerxtx() connect failed: %d\n",
status);
 return (status);
}
/* To full-duplex connect faxchan with faxchan2 (e.g. for testing
purposes) perform another gl_routerxtx() for faxchan2 with the
txslot and rxslot parameters reversed. */

n Errors

• This function fails if an invalid channel is specified.

• This function fails if called on a device in SCbus mode.

• This function fails if gl_pebenter() has not been previously called.

6. Developing with PEB

235

 Name: int gl_pebenter (void)
 Inputs: none • A pointer to a queue record.

 Returns: 0 • Success.
 -1 • Error.

 Includes: gfpeb.h

n Description

 The gl_pebenter() function initialize PEB subsystem. The gl_pebenter()
function must be called before using any PEB switching functions.

n Example

 #include "gfpeb.h"
 int status;
 status = gl_pebenter();
if (status)
{
 fprintf(stderr, "gl_pebenter() failed: %d\n", status);
 return (status);
}

n Errors
• This function fails if the GFSH.SAV file cannot be found and opened

with read and write privileges.
• This function also fails if %GFAX% is not defined.

GDK Version 5.0 Programming Reference Manual

236

 Name: int gl_pebexit ()
 Inputs: none

 Returns: 0 • Success.
 -1 • Error.

 Includes: gfpeb.h

n Description

 The gl_pebexit () function shuts down PEB subsystem. The gl_pebexit()
function must be called before program termination.

n Example

 #include "gfpeb.h"
 int status;
 status = gl_pebexit();
if (status)
{
 fprintf(stderr, "gl_pebexit() failed: %d\n", status);
 return (status);
}

 237

 7. Developing with SCbus

 SCbus Connectivity Paradigm

 SCbus (Signal Computing) bus is an open architectural specification for digital
intra-node communication. SCbus is a high-capacity bus with up to 2,048
time-slots, which will handle most audio/video applications. By using the SCbus
connectivity paradigm, you can focus on other application issues (such as resource
allocation) instead of complex connectivity problems. Each SCbus-compliant
product provides virtually the same software interface to its given resource(s).
Another advantage of developing with SCbus is consistency among compliant
products.

 While describing the SCbus characteristics in general, this section covers GDK
SCbus-specific topics and introduces the SCbus Application Program Interfaces
(APIs) for the CP Fax SC boards. Because of SCbus requirements, each compliant
product must assign each of its resources to an unchanging and permanent
transmit timeslot on the bus. The procedures to “nail up” transmit timeslots for its
fax channels are described in detail at the end of this section.

 Basics of SCbus Compliancy

 Dialogic CP Fax software and programs must interact with an existing, properly
installed Dialogic SCbus system. This is necessary to coordinate timeslot
assignment issues.

 The following list describes the functions of the executable and configuration
files:

GDK Version 5.0 Programming Reference Manual

238

 GFSH.BAS Configuration file created by the Configure
SCbus utility. This file indicates the number
of CP Fax SC boards in the chassis.

 GFTSASGN.EXE GDK’s timeslot assignment program. This
program is called by Dialogic’s master
timeslot assignment program during the
Dialogic system startup. GFTSASGN
creates GFSH.CMD, given the total number
of consecutive timeslots assigned to the
GDK system and the starting timeslot
number.

 GFSH.CMD Configuration file created by the timeslot
assignment program and used by the
GFSH.EXE program to properly assign
timeslots within the CP Fax SCbus system.

 GFSH.EXE The SC2000 configuration utility. It creates
the GFSH.SAV file when given
GFSH.CMD as input.

 GFSH.SAV Configuration file created by the
GFSH.EXE program GFAX.SAV is used by
the runtime API for timeslot record keeping.

 GFTSREQ.DAT This file is created by the Configure SCbus
utility. It contains the timeslot requirements
and the name of the assignment program
(GFTSASGN.EXE).

 SCbus APIs for the CP Fax SC Boards

 GDK supports all SCbus APIs for the CP Fax SC boards as follows:

 gl_getctinfo Returns SCbus device information

 gl_getxmitslot Returns specified fax channel’s transmit timeslot on the
SCbus

 gl_listen Connects the fax receive channel to the SCbus timeslot

7. Developing with SCbus

239

 gl_unlisten Disconnects the fax receive channel from the SCbus
timeslot

 gl_scenter Initializes the SCbus subsystem

 gl_scexit Shuts down the SCbus subsystem

ScBus APIs With DM3 Boards

Using SCBus mode with DM3 boards requires special function calls (_Ex
functions). The CP SCBus API bypasses the dispatcher by accessing a file and
communicating directly with the driver. These _Ex functions “remap” the existing
CP/ScBus API function calls to redirect the SC Bus back to the Dispatcher.

GDK developers must recomplile their applications after using the _Ex functions.

NOTE: You must allocate the ScBus timeslot prior to starting a fax session.
Perform these steps:

1. Call the gl_listen function prior to submitting a queue record (Qrec)
using GFQANSWER_IMMEDIATELY or GFQDIAL_SEND. This
eliminates error code 3830 (GX0_NODIAL or no dial tone detected
prior to dialing).

2. Use the gl_unlisten function call to free the ScBus timeslot when the line
is disconnected. Please note that gl_listen and gl_unlisten will always
return a –1 (not in the sample provided, but in the original file included
in the install).

The _Ex functions are available under \fax\gl_scbus.cpp. These five macros
should be defined in your header file before they can be remapped to the
appropriate function:

#define gl_getxmitslot gl_getxmitslotEx
#define gl_listen gl_listenEx
#define gl_unlisten gl_unlistenEx
#define gl_scenter gl_scenterEx
#define gl_scexit gl_scexitEx

The following is an example of a header file defining the _Ex functions:

GDK Version 5.0 Programming Reference Manual

240

// Gammalink Header files

#ifdef __cplusplus

extern "C" {

#endif

#include "gamma.h"

#include "gfdboard.h"

#include "gfq.h"

#include "gfqpath.h"

#include "genra.h"

#include "gfxevent.h"

#include "gfqctl.h"

#include "gfdmsg.h"

#include "gfdipc.h" // <--- contain gfdRemoteFunction
definition

#include "gfdstatu.h"

#include "gfxstate.h"

#include "gfsc.h" // <--- contain the original gl_listen,...

#ifdef __cplusplus

};

#endif

The following is the gl_scbus.ccp source code:

#define GFDLISTEN GFDBASE+100

7. Developing with SCbus

241

#define GFDUNLISTEN GFDBASE+101

#define GFDGETTIMESLOT GFDBASE+102

#define GFDSCENTER GFDBASE+103

#define GFDSCEXIT GFDBASE+104

#define gl_getxmitslot gl_getxmitslotEx

#define gl_listen gl_listenEx

#define gl_unlisten gl_unlistenEx

#define gl_scenter gl_scenterEx

#define gl_scexit gl_scexitEx

int gl_getxmitslotEx(int chan, SC_TSINFO* tsinfop)

{

int status,result;

status=gfdRemoteRequest(0,chan,GFDGETTIMESLOT,0,0,NULL,0,&r
esult);

if (status)

{

tsinfop->sc_tsarrayp[0] = 0;

return -1;

} else {

tsinfop->sc_tsarrayp[0] = result;

return 0;

}

GDK Version 5.0 Programming Reference Manual

242

}

int gl_listenEx(int chan, SC_TSINFO* tsinfop)

{

int status,result;

int timeslot = tsinfop->sc_tsarrayp[0];

status=gfdRemoteRequest(0,chan,GFDLISTEN,
timeslot,timeslot,NULL,0,&result);

if (status)

{

return -1;

} else {

return 0;

}

}

int gl_unlistenEx(int chan)

{

int status,result;

status=gfdRemoteRequest(0,chan,GFDUNLISTEN,
0,0,NULL,0,&result);

if (status)

{

return -1;

7. Developing with SCbus

243

} else {

return 0;

}

}

int gl_scenterEx(void)

{

int status,result;

status=gfdRemoteRequest(0,0,GFDSCENTER, 0,
0,NULL,0,&result);

if (status || result)

{

return -1;

}

return 0;

}

int gl_scexitEx(void)

{

int status,result;

status=gfdRemoteRequest(0,0,GFDSCEXIT, 0,
0,NULL,0,&result);

if (status || result)

{

GDK Version 5.0 Programming Reference Manual

244

return -1;

}

return 0;

}

Scbus API Descriptions

 The following sections list the name, inputs, outputs, returns, include files,
description, and example code for each of the SCbus APIs.

7. Developing with SCbus

245

 Name: int gl_getctinfo (int chan, CT_DEVINFO *ct_devinfop)
 Inputs: int chan • Purpose: CP fax channel.

• Range: 1 - n, where n is the number
of installed channels.

 CT_DEVINFO
*ct_devinfop

• Purpose: Pointer to SCbus
timeslots information structure.

• Range: N/A.
 Returns: 0 • Success.

 -1 • Error.
 Includes: gfsc.h

n Description

 The gl_getctinfo() function returns digital timeslot device information.

 This function retrieves the device information related to a channel on a CP Fax SC
board. On return from the function, the CT_DEVINFO structure contains the
relevant information. The CT_DEVINFO structure is declared as follows:

 typedef struct {
unsigned longct_prodid;
unsigned charct_devfamily
unsigned charct_devmode;
unsigned charct_nettype;
unsigned charct_busmode;
unsigned charct_busencoding;
unsigned charct_rfu[7];
} CT_DEVINFO;

 The valid values for each member of the CT_DEVINFO structure are defined in
gfsc.h.

 The ct_prodid field contains a valid CP Fax product identification number for the
device. The ct_devfamily field specifies the device family and will contain one of
the following values:

GDK Version 5.0 Programming Reference Manual

246

 CT_DFCP4 /* GammaLink CP -4 family */

 CT_DFCP6 /* GammaLink CP -6 family */

 CT_DFCP12 /* GammaLink CP -12 family */

 The ct_devmode field is not valid for the CP Fax Series card.

 The ct_nettype field may contain either of the following values:

 CT_NTT1 /* T1 configuration */

 CT_NTE1 /* E1 configuration */

 CT_NTNONE

 The ct_busmode field may contain either of the following values:

 CT_BMPEB /* PCM Expansion Bus architecture */

 CT_BMSCBUS /* SCbus architecture */

 The ct_busencoding field may contain either of the following values:

 CT_BEULAW /*Mu-law PCM encoding */

 CT_BEALAW /*A-law PCM encoding */

n Example

 #include "gfsc.h"
CT_DEVINFO devinfop;
 .
 .
 .
status = gl_getctinfo(gl_devh, &devinfop)
if(status == 0)
 printf("Fax channel %d: product id=%d, bus mode=%d\n",
 gl_devh, devinfop.ct_prodid, devinfop.ct_busmode);
else
 printf("Error %d\n", status);

7. Developing with SCbus

247

 Name: int gl_getxmitslot (int chan, SC_TSINFO *tsinfop)
 Inputs: int chan • Purpose: GDK channel.

• Range: 1 – n, where n is the number of
installed fax channels.

 SC_TSINFO
* tsinfop

• Purpose: Pointer to SCbus timeslots
information.

• Range: N/A.
Returns: 0 • Success.

 -1 • Error.
 Includes: gfsc.h

n Description

The gl_getxmitslot() function returns SCbus timeslot connected to digital
timeslot transmit.

This function connects the external SCbus timeslot to the transmit of a channel on
a CP Fax SC board. On return from the function, the SC_TSINFO structure
contains the number of SCbus timeslots that are connected to the transmit of the
local fax timeslot and a pointer to the array that contains the SCbus timeslots
(between 1 and 1024). The SC_TSINFO structure is declared as follows:

typedef struct {
 unsigned longnumts;
 long*tsarray;
} SC_TSINFO;

This function fails if an invalid channel is specified. This function fails if called on
a device in PEB mode.

NOTE: A CP Fax SC fax channel can only transmit on one external SCbus
timeslot. The SC_TSINFO structure is used to provide uniformity among
SCbus timeslot access functions for all SCSA devices.

GDK Version 5.0 Programming Reference Manual

248

n Example

 #include "gfsc.h"
 SC_TSINFO sc_tsinfo; /* SCbus timeslot info
structure */
 long scts; /* SCbus timeslot */
 int devh1, status;

 devh1 = 1;
 sc_tsinfo.sc_numts = 1; /* always one timeslot */
 sc_tsinfo.sc_tsarrayp = &scts;
 status = gl_getxmitslot(devh1, &sc_tsinfo);
 if (status)
 {
 fprintf(stderr, "gl_getxmitslot() error %d\n", status);
 return (status);
 }
 else
 fprintf(stdout,"chan %d is transmitting on timeslot %d\n",
 devh1,scts);

7. Developing with SCbus

249

 Name: int gl_listen (int chan, SC_TSINFOP *tsinfop)
 Inputs: int chan • Purpose: CP Fax SC channel.

• Range: 1 – n, where n is the
number of installed fax
channels.

 SC_TSINFO * tsinfop • Purpose: Pointer to SCbus
timeslots information structure.

• Range: N/A.
 Outputs: GFQRECORD *qrec • A pointer to a queue record.
 Returns: 0 • Success.

 -1 • Error.
 Includes: gfsc.h

n Description

 The gl_listen() function connects the fax channel to receive timeslot on SCbus

 This function connects the receive data stream of a fax channel to a timeslot on the
external SCbus. The SC_TSINFO structure contains two fields. The first field
specifies the total number of SCbus timeslots to connect. The second field is a
pointer to an array that contains the SCbus timeslots (from 1 and 1024) necessary
to connect the receive data stream of the channel. If gl_listen() is called to
establish a connection for a CP Fax SC fax channel that is already connected, the
existing connection will be broken before the specified connection is established.

 The SC_TSINFO structure is declared as follows:

 typedef struct {
 unsigned longnumts;
 long*tsarray;
} SC_TSINFO;

 Multiple fax channels may listen to a single SCbus timeslot, although the transmit
data stream of a single SC channel can be connected to only one SCbus timeslot.
The SC_TSINFO structure is used to provide uniformity among SCbus timeslot
access functions for all SCSA devices.

GDK Version 5.0 Programming Reference Manual

250

n Example

 #include "gfsc.h"
 SC_TSINFO sc_tsinfo; /* SCbus timeslot info structure */
 long scts; /* SCbus timeslot */
 int devh1, devh2, status;

 devh1 = 1;
 devh2 = 2;
 sc_tsinfo.sc_numts = 1; /* always one timeslot */
 sc_tsinfo.sc_tsarrayp = &scts;
 status = gl_getxmitslot(devh1, &sc_tsinfo);
 if (status)
 {
 fprintf(stderr, "gl_getxmitslot() error %d\n", status);
 return (status);
 }
 else
 fprintf(stdout, "chan %d is transmitting on timeslot %d\n",
 devh1, scts);
 /* connect devh2 rxslot to devh1 txslot */
 status = gl_listen(devh2, &sc_tsinfo);
 if (status)
 {
 fprintf(stderr, "gl_listen() error %d\n", status);
 return (status);
 }
 else
 fprintf(stdout, "chan %d is receiving on timeslot %d\n",
 devh2, scts);
 /* devh2 is connected half-duplex with devh1. For a full-duplex
connection, repeat the above steps to connect devh1 rxslot to devh2
txslot */

n Error

• This function fails if an invalid channel is specified.

• This function fails if the SCbus timeslot number is invalid.

• This function fails if called on a device in PEB mode.

7. Developing with SCbus

251

 Name; int gl_unlisten (int chan)
 Inputs: int chan • Purpose: Specifies CP Fax

SC board channel.
 Returns: 0 • Success.

 -1 • Error.
 Includes: gfsc.h

n Description

 The gl_unlisten() function disconnects fax channel receive data stream from
SCbus. This function disconnects the receive data stream of a fax channel from
the SCbus. If gl_unlisten() is called to disconnect a fax channel that has no
existing connection, no operation will be performed and the function will return an
indication of success.

n Example

 #include "gfsc.h"
 int devh1, status;

 devh1 = 1;
 /* disconnect devh1 rxslot */
 status = gl_unlisten(devh1);
 if (status)
 {
 fprintf(stderr, "gl_unlisten() error %d\n", status);
 return (status);
 }

n Error

• This function fails if an invalid channel is specified.

• This function fails if called on a device in PEB mode.

GDK Version 5.0 Programming Reference Manual

252

 Name: int gl_scenter (void)
 Inputs: None

 Returns: 0 • Success.
 -1 • Error.

 Includes: gfsc.h

n Description

 The gl_scenter() function must be called once before using any SCbus switching
functions.

n Example

 #include "gfsc.h"
 /* initialize SCbus system */
 status = gl_scenter();
 if (status)
 {
 fprintf(stderr, "gl_scenter() error %d\n", status);
 return (status);
 }

n Error

• This function fails if the GFSH.SAV file cannot be found and opened with
read and write privileges.

• This function also fails if %GFAX% is not defined.

7. Developing with SCbus

253

 Name: int gl_scexit ()
 Inputs: None

 Returns: 0 • Success.
 -1 • Error.

 Includes: gfsc.h

n Description

 The gl_scexit() function must be called before program termination.

n Example

 #include "gfsc.h"
 status = gl_scexit();
 if (status != 0)
 {
 fprintf(stderr,"failed gl_scexit:"
" %d\n",status);
 }
 return (status);

n Error

• This function fails if the gfsh.sav file cannot be closed.

GDK Version 5.0 Programming Reference Manual

254

8. Fax Status Files

255

 8. Fax Status Files

 Overview

 This chapter discusses status tables and status files. It covers these main topics:

• Status tables and status files

• Creating a status file

• Refreshing the status file

• Monitoring status with gfxStatus

• Monitoring status with cp_state

• System information API function calls

Status Tables and Status Files

The Dispatcher maintains in memory a status table that records the hardware
setup of a specific fax channel and the processing status of fax files directed to
that channel. Using the information on the status table, a status file can be created
on disk that checks the state of the fax channels in a multiple-channel chassis or in
multiple-chassis systems. Real-time status information can be obtained, and
applications capable of response in real time can be built, using the status
information.

Each chassis has only one status table and only one status file. Each fax channel in
a chassis is represented by only one record in the status table or status file. When
the status table is used on the chassis in which the boards are installed, the table
should be used with the function gfdReadStatusMem for faster operation. The
status table in memory and the status file on disk are a collection of records, one
for each fax channel. That is, a chassis with four fax channels will have four
records.

GDK Version 5.0 Programming Reference Manual

256

The format of a status record is listed in Table 39.

Table 39. Status Record Fields

Field Name Data Type Description

cp_channel int The physical-channel number.

cp_name [32] char The modem_id of a fax channel.

cp_list int The internal-buffer list number for
transactions addressed to this fax
channel.

cp_state int Indicates the state of the fax channel.
The states include “idle,” “sending,”
“receive,” “offline,” “dead,” “reset,”
and “failed.”

cp_pass int Not used; reserved for future use.

capabilities unsigned Not used; reserved for future use.

ProgramFile [64] char Not used; reserved for future use.

ProgramOptions unsigned Not used; reserved for future use.

numOpenFiles int The number of files a fax channel has
open.

cp_fid [8] int The system-file numbers for the files
the fax channel has open. Unopened
files have a 0 or -1 here.

LastFileName [64] char The filename of the last file that was
successfully opened.

gfxStatus int The last gfxStatus returned by the fax
channel.

gfxState int The last gfxState returned by the fax
channel. See values in gfxstate.h.

country int The country code for the fax channel.
(This information is requested on
startup.)

gfxDebug int Not used; reserved for future use.

 8. Fax Status Files

257

Field Name Data Type Description

ActiveHandle int Contains the queue record handle for
the transaction currently on the fax
channel.

ActiveQueueId long Not used; reserved for future use.

LastUserId[32] char The user_id field for the transaction
currently on the fax channel.

numSend long Counts the number of outgoing
transactions the fax channel has
processed since the Dispatcher was
last restarted.

TotalSend long The number of outgoing transactions
the fax channel has processed since
the status file was last reset. This field
is restored from the status file when
status-file processing is enabled.

numReceive long Counts the number of incoming
transactions the fax channel has
processed since the Dispatcher was
last restarted.

TotalReceive long Counts the number of incoming
transactions the fax channel has
processed since the status file was last
reset. This field is restored from the
status file when status-file processing
is enabled.

numFailed long Counts the number of failed
transactions the fax channel has
processed since the Dispatcher was
last restarted. Failed transactions are
also counted in numSend or
numReceive as appropriate.

GDK Version 5.0 Programming Reference Manual

258

Field Name Data Type Description

TotalFailed long Counts the number of failed
transactions that the fax channel has
processed since the log file was last
reset. This value is restored from the
status file when status-file processing
is enabled. Failed transactions also are
counted in TotalSend or TotalReceive,
as appropriate.

ItemsSent long Counts the number of items (pages)
sent since the Dispatcher was last
restarted.

itemsReceived long Counts the number of items (pages)
received since the Dispatcher was last
restarted.

ConnectSeconds long Counts the number of seconds the
phone line has been off hook since the
on-board software was last restarted.

LastSpeed int Records the speed at which the last
transaction took place. This field may
be useful for locating bad phone lines.

LastError int Not used; reserved for future use.

Creating a Status File

The status file should be used on remote workstations connected by a LAN. The
name of the status file is “GFAXn.$DS,” where the “n” indicates the chassis
number defined in the chassis command and “DS” stands for Dispatcher status.
The status file is created by the STATUST.

Refreshing the Status File

Status information is not appended to the status file; it is overwritten. When the
status records are updated in the status file, the record for a particular fax channel
is overwritten with the latest status information for that channel.

 8. Fax Status Files

259

The STATUST command parameter specifies the interval (in seconds and
milliseconds) between the posting of status records to disk. The range for the
parameter value is between 0 and 32,767, with 0 being disabling; a reasonable
number is 5.

NOTE: The STATUST command is for an entire chassis, and not just for one fax
channel in the chassis.

Table 40. Status-Table Functions

High-Level Functions* Purpose

gfdReadStatusFile To read one status record and close the status
file.

gfdGetFileNumChannel To get the number of channels and close the
status file.

gfdReadStatusMem To read a record from the status table in
memory.

gfdGetMemNumChannel To get the number of channels by reading the
status table in memory.

Low-Level Functions** Purpose

gfdOpenStatusFile To open the shared status file.

gfdReadStatusFileHeader To read a header from an opened status file.

gfdReadStatusFileRecord To read a record from an opened status file.

* High-level functions close the status file after processing.

** Low-level functions do not close the status file after processing.

Monitoring Status with gfxStatus

An important element in the status-table data structure is the variable gfxStatus.
Bits in this field are shown in Figure 6. Bits in the gfxStatus Field . The first four
bits reveal the fax channel shutdown states, which are an extension of the
shutdown status.

GDK Version 5.0 Programming Reference Manual

260

The term “shutdown” describes some options that are set with the
GFXSHUTDOWN command. For example, the shutdown option 0 means that a
fax channel polls the Queue File Pending List for outgoing jobs and answers
incoming calls. GFXSHUTDOWN 2 tells the channel to stop transmitting,
although it still can receive. That is a useful arrangement in a multi-fax channel
chassis in which some fax channels are dedicated to transmitting and others to
receiving. An operator who wished to confirm that a channel is only receiving,
and not sending, would expect bit 1 of gfxStatus to be turned on. Bits 4 to 9 of
gfxStatus are the capabilities flags, which list the receive and transmission options
that have been enabled.

The last six bits of gfxStatus are read-only. By monitoring the gfxStatus bits
within the status table in memory, an application can show when each channel is
receiving, sending, on-line, off-hook, or ringing.

 F E D C B A 9 8 7 6 5 4 3 2 1 0
 I I I I I I I I I I I I I I I I Shutdown States
 I I I I I I I I I I I I I I I + Answer shutdown
 I I I I I I I I I I I I I I + Ignore pending requests
 I I I I I I I I I I I I I + Busy Line out
 I I I I I I I I I I I I + Reserved for future shutdown values
 I I I I I I I I I I I I Capabilities Flags
 I I I I I I I I I I I + Fill on
 I I I I I I I I I I + Reject standard mode
 I I I I I I I I I + Turnaround polling enabled
 I I I I I I I I + Allow reception of 2D compression
 I I I I I I I + Reserved for future expansion
 I I I I I I + Reserved for furure expansion
 I I I I I I Protocol States
 I I I I I + Receiving
 I I I I + Sending
 I I I + On-line
 I I + Off-hook
 I + Ringing
 + Error

Figure 6. Bits in the gfxStatus Field

 8. Fax Status Files

261

Monitoring Status with cp_state

The diagram in Figure 7 shows the various cp_states of a fax channel. “INIT” is
the command used to reset and recognize a fax channel, and “LOAD” is the
command issued during firmware download to the fax channel. Only INIT or
LOAD can be performed on a channel where cp_ state has a value less than
CP_IDLE.

The cp_state of a fax channel is listed in Table 41. These values are defined in
GFDSTATU.H.

CP_DEAD CP_SENDINGCP_RESET

CP_FAILED

CP_IDLE

Successful
"INIT"

"LOAD"

Queue record
from Buffer or
Pending List

Unsuccessful
"INIT"

"INIT"

"INIT"

Fax channel
not responding

Posted queue
record

Fax Channel
not responding

Figure 7. CP_ States

GDK Version 5.0 Programming Reference Manual

262

The following table defines the CP_ states.

Table 41. CP_States

State Explanation

CP_DEAD The fax channel has not yet been initialized successfully.

CP_RESET The fax channel has been successfully initialized.

CP_IDLE The on-board software has been successfully loaded, but no queue
record is currently active on the fax channel.

CP_SENDING A queue record from the Pending List is active on the fax channel.

CP_FAILED The fax channel is not longer responding.

GDK System Information API Function Calls

The following APIs provide information about the CP product hardware and
Dispatcher status. The alphabetized list of these functions follows.

 8. Fax Status Files

263

Name: int gfdGetFileNumChannel (int chassis)
Inputs: int chassis • The chassis number.

 Outputs: None
 Returns: Number of active

channels
• The function was successful.

 0 • The status file exists, but no
channels are active.

 <0 • An error occurred.
 Includes: gfdstatu.h

n Description

 The gfdGetFileNumChannel() function gets the number of channels from the
status file. This is a high-level status function will return the number of active
channels in the chassis. A value less than zero indicates an error. A value of zero
indicates that the status file exists and is valid, but that no fax channels are active.

n Example

 #include "gfdstatu.h"
 nc = gfdGetFileNumChannel (1);
 if (nc > = 0)
 printf ("Found %d channels\n", nc);
 else
 printf ("can’t open status file\n");

GDK Version 5.0 Programming Reference Manual

264

 Name: int gfdGetMemNumChannel (int chassis)
 Inputs: int chassis • The chassis number.

 Outputs: None
 Returns: Number of active

channels
• The function was successful.

 0 • The status file exists, but no
channels are active.

 <0 • An error occurred.
 Includes: gfdstatu.h

n Description

 The gfdGetMemNumChannel() function gets the number of channels from the
status table. This is a high-level status function will return the number of active
channels in the chassis. A value less than zero indicates an error. A value of zero
indicates that the status table exists and is valid, but that no fax channels are
active.

n Example

 #include "gfdstatu.h"
 nc = gfdGetMemNumChannel (1);
 if (nc > = 0)
 printf ("Found %d channels\n", nc);
 else
 printf ("status table not available\n");

 8. Fax Status Files

265

 Name: int gfdOpenStatusFile (int chassis, int mode)
 Inputs: int chassis • The chassis number.

 int mode • The access mode of the file,
which is defined in the
include file fcntl.h. The
mode passed must be
O_RDONLY.

 Outputs: None
 Returns: Handle to the open status

file
• Successful.

 -1 • An error occurred.
 Includes: gfdstatu.h

n Description

 The gfdOpenStatusFile() function prepares a status file for reading by other
functions. This routine creates the name of the status file and attempts to open it.
The path for the status file is obtained from the GFAX environment variable.
Low-level functions, such as gfdReadStatusFileHeader and
gfdReadStatusFileRecord, cannot be used unless gfdOpenStatusFile is called first
successfully.

n Example

 #include "gfdstatu.h"
 int chassis = 1; /* Default to one chassis*/
 int status_fid;
 status_fid = gfdOpenStatusFile(chassis,O_RDONLY);
 if (status_fid < 0)
 {
 printf ("No status file open\n");
 exit (1);
 }

GDK Version 5.0 Programming Reference Manual

266

 Name: int gfdQueryStatus (int dummy)
 Inputs: int dummy • Dummy parameter -

ignored. Any integer value
is OK.

 Outputs: None
 Returns: 0 • Dispatcher is running.

 non-zero • Dispatcher is not running.
 Includes: gfdmsg.h

 gfdipc.h

n Description

 The gfdQueryStatus() function checks if the Dispatcher is running. This function
checks whether or not the Dispatcher is running.

n Example

 if (gfdQueryStatus(0))
{
 printf ("GammaLink service not running\n");
 exit (1);
}

 8. Fax Status Files

267

 Name: int gfdReadStatusFile (CPRECORD *rec, int channel,
int chassis)

 Inputs: int channel • The logical channel number.
 int chassis • The chassis number.

 Outputs: CPRECORD *rec • The status record returned if
the function completes
successfully.

 Returns: GFD_SUCCESS • The status record was
successfully read.

 GFDBAD_STATUS_FILE • The status file is corrupt.
 GFDNO_STATUS_FILE • The status file could not be

found.
 Includes: gfdstatu.h

 gfdmsg.h
 gfdipc.h • gfdipc.h requires that the

file gfdmsg.h be included
first.

n Description

 The gfdReadStatusFile() function reads one record from the status file. This
high-level status function reads one record from the status file. The status file is
opened, and the record is read by calling gfdReadStatusFileRecord. The status file
is then closed.

GDK Version 5.0 Programming Reference Manual

268

n Example

 #include "gfdstatu.h"
 #include "gfdmsg.h"
 #include "gfdipc.h"
 int channel, numchannel, chassis = 1;
 CPRECORD cprec;
 for(channel=1; channel<=numchannel; ++channel)
 {
 if (gfdReadStatusFile (&cprec, channel,
 chassis) == GFD_SUCCESS)
 printf ("channel %d, status = %021x, name = %32x\n",
 cprec.cp_channel,cprec.cp_state, cprec.cp_name);
 }

 8. Fax Status Files

269

 Name: int gfdReadStatusFileHeader (int fid,
struct cp_status_header_s header)

 Inputs: int fid • The file handle returned by
gfdOpenStatusFile.

 Outputs: struct cp_status_header_s
header

• Pointer to the data structure
maintained in memory that
holds the status table.

 Returns: GFD_SUCCESS • The status record was
successfully read.

 GFDBAD_STATUS_FILE • The status file is corrupted.
 GFDNO_STATUS_FILE • The status file could not be

found.
 Includes: gfdstatu.h

 gfdmsg.h
 gfdipc.h • gfdipc.h requires that the

file gfdmsg.h be included
first.

n Description

 The gfdReadStatusFileHeader() function reads version, size, and date
information from a status file.

 One field in the status-file header shows the number of fax channels active in the
chassis. Also in the header file is a cp_status_header data-structure definition for a
header of a status file. Table 42 lists the fields in a status-file header. A data
structure for the status table is in GFDSTATU.H, which is the header file for
status functions included in GDK. This structure follows:

GDK Version 5.0 Programming Reference Manual

270

 struct cp_status_header_s {
 short cp_status_version; /* version of status file */
 short cp_header_size; /* size of header (bytes) */
 short cp_record_size; /* allocated size for each card */
 short cp_max_channel; /* number of channels allocated */
 time_t cp_last_update; /* time of last update */
 };

 Table 42. Fields in the Status-File Header

 Data Type Field Name Description

 int cp_status_version Version of the status file.

 int cp_header_size Size of the header in bytes.

 int cp_record_size Allocated size for each fax channel.

 int cp_max_channel Number of fax channels active in the chassis.

 time_t cp_last_update Time of last update.

n Example

 #include "gfdstatu.h"
 #include "gfdmsg.h"
 #include "gfdipc.h"
 struct cp_status_header_s header;
 /*Display header inforrmation*/
 gfdReadStatusFileHeader (status_fid, &header);
 printf ("Status file is version %d\n", header.cp_status_version);
 printf ("Status file reports %d active channels\n",
 header.cp_max_channel);
 printf ("Status file last updated %s\n",
 ctime(&header.cp_last_update));

 8. Fax Status Files

271

 Name: int gfdReadStatusFileRecord (int status_fid,
CPRECORD *rec, int channel)

 Inputs: int status_fid • The file handle for the status
file (returned by
gfdOpenStatusFile).

 int channel • The status for the logical-
channel number.

 Outputs: CPRECORD *rec • The status record returned if
the function is successful.

 Returns: GFD_SUCCESS • The function executed.
 GFDBAD_STATUS_FILE • The status file is corrupt.
 GFDNO_STATUS_FILE • The status file could not be

found.
 Includes: gfdstatu.h

 gfdmsg.h
 gfdipc.h • gfdipc.h requires that the

file gfdmsg.h be included
first.

n Description

 The gfdReadStatusFileRecord() function reads a record from the status file.
This is a low-level status function that reads a record from the status file if the file
already is open.

n Example

 #include "gfdstatu.h"
 #include "gfdmsg.h"
 #include "gfdipc.h"

CPRECORD cprec;
 int status_fid;
 int i;
 int status;

GDK Version 5.0 Programming Reference Manual

272

for (i = 1; i <= maxchannel; ++i)
 {
 status = gfdReadStatusFileRecord
 (status_fid,&cprec,i);
 }

 8. Fax Status Files

273

 Name: int gfdReadStatusMem (CPRECORD *rec, int channel,
int chassis)

 Inputs: int channel • The logical channel
number.

 int chassis • The chassis number.
 Outputs: CPRECORD *rec • The status record returned

if the function completes
successfully.

 Returns: GFD_SUCCESS • The function executed.
 GFDBAD_STATUS_FILE • The status table is corrupt.
 GFDNO_STATUS_FILE • The status table could not

be found.
 Includes: gfdstatu.h

 gfdmsg.h
 gfdipc.h • gfdipc.h requires that the

file gfdmsg.h be included
first.

n Description

 The gfdReadStatusMem() function reads a record from the status table. This
high-level status function reads one record from the status table. The status table is
opened, and the record is read by calling gfdReadStatusMemRecord. The status
table is closed without further function calls.

n Example

 #include "gfdstatu.h"
 #include "gfdmsg.h"
 #include "gfdipc.h"
 int channel, numchannel, chassis = 1;
 CPRECORD cprec;
 numchannel = gfdGetMemNumChannel(chassis);

GDK Version 5.0 Programming Reference Manual

274

for(channel=1; channel<=numchannel; ++channel)
 {
 if (gfdReadStatusMem (&cprec, channel, chassis) = GFD_SUCCESS)
 printf ("channel %d, status = %021x, name = %32x\n",
 cprec.cp_channel, cprec.cp_state, cprec.cp_name);
 }

 8. Fax Status Files

275

 Name: int glHWDetect (glSystem *glSys, glBoardSystem *glBdSys,
int reserve2)

 Inputs: glSystem *glSys • Pointer to
glSystem structure
or NULL if this
information is not
desired.

 glBoardSystem *glBdSys • Pointer to
glBoardSystem
structure or NULL
if this information
is not desired.

 int reserve2 • Must be 0 (zero).
 Outputs: glSystem *glSys • Contains channel

information if the
return value is
GL_HWCONFIG
_
SUCCESS and the
pointer to
glSystem was not
NULL.

 glBoardSystem *glBdSys • Contains CP Fax
board information
if the return value
is
GL_HWCONFIG
_
SUCCESS and the
pointer to
glBoardSystem
was not NULL.

 Returns: GL_HWCONFIG_SUCCESS • Successful.

GDK Version 5.0 Programming Reference Manual

276

 GL_HWDETECT_IN_PROGRESS • An instance of
glHWDetect is
already running.
Wait until the first
instance
completes.

 GL_SERVICE_RUNNING • The GDK System
Service is running.
Stop the service
then run
glHWDetect
again.

 GL_SYSTEM_NULL_PTR • Invalid
parameters. The
first and second
parameters cannot
both be NULL.

 GL_SYSTEM_CHANNEL_
OVERLAP

• glHWDetect found
overlapping fax
channels for
boardtypes
CP4/SC, CP6/SC,
or CP12/SC.
Check that all
channels in the
system have
unique I/O
addresses,
reconfigure, and
run glHWDetect
again.

 8. Fax Status Files

277

 GL_HWDRIVER_FAIL • The required
device drivers
failed to start. Try
starting the GDK
ISA Device Driver
and the GDK PCI
Device Driver
using the Devices
Control Panel
Applet. Call
Technical Support
for additional
assistance.

 GL_HWDETECT_FAIL • Internal failure to
create a system
controlled
resource. Fatal
error, reboot the
system and try
again.

 GL_SYSTEM_MALLOCFAILED • Internal failure to
allocate a system
controlled
resource. Fatal
error, reboot the
system and try
again.

 Includes: gfdboard.h

GDK Version 5.0 Programming Reference Manual

278

n Description

The glHWDetect function provides information about the CP Fax hardware
installed in the system. This function blocks while checking a limited area of I/O
space for the presence of CP Fax channels. Upon completion, the GDK System
Service dependency list is updated to depend on the bus types detected in the
system.

If the GDK service is not installed, glHWDetect will not return an error.

The glSystem data structure, unchanged from GDK 3.0, provides information
about all working channels in the system. If this information is not desired, the
first parameter may be NULL.

The glBoardSystem data structure, provides board-level resources and additional
channel attributes. If this information is not desired, the second parameter may be
NULL.

n Example

The following are examples of valid calling conventions:

...
glSystem glSys;
glBoardSystem glBoard;
int retVal;

retVal = glHWDetect(&glSys, NULL, 0); // unchanged
retVal = glHWDetect(NULL, &glBoard, 0); // new usage
retVal = glHWDetect(&glSys, &glBoard, 0); // new usage
...

 8. Fax Status Files

279

The glSystem and glBoardSystem data structures are defined in the include file
gfdboard.h. More information about these structures follow:

glSystem

This structure contains identification information about the CP Fax Isa and Pci fax
channels installed in the system.

struct _channel {
union {

int PortAddress; //ISA only
int BoardNumber; //PCI only

}parm1;

union {
int PhysicalChannel; //ISA only
int ChannelOffset; //PCI only

}parm2;

enum _bustype BusType;

int BoardType; //type of fax channel
};
typedef struct _channel CHAN;

struct system {
CHAN Channel_ID[MAX_CHANNELS]; //length is numchan +

numBRI
int numchan;
int numBRI;

};
typedef struct system glSystem;

The glSystem structure has three fields; numchan, numBRI, and Channel_ID. The
total of numchan and numBRI describe the number of valid elements in the
Channel_ID array. The Channel_ID array elements contains channel specific
information for each fax channel detected in the system.

Channel_ID elements [0 to numchan-1] describe fax channels; and elements
[numchan to (numchan + numBRI) - 1] describe BRI controller cells.

GDK Version 5.0 Programming Reference Manual

280

NOTE: If numBRI is greater than zero, there will always be a CPi/200 BRI fax
channel in the Channel_ID structure array.

Each Channel_ID element, CHAN, contains two union fields: parm1 and parm2.
The valid fields within parm1 and parm2 are determined by the value of the
BusType field as shown in the following chart.

BusType Value Valid Parm Fields

gl_ISA parm1.PortAddress

parm2.PhysicalChannel

gl_PCI parm1.BoardNumber

parm2.ChannelOffset

The CHAN.BoardType member describes the model of the fax channel. This
value is usually the same as the board model.

glBoardSystem

This structure contains detailed identification information about the CP Fax ISA
and PCI fax boards and channels installed in the system.

typedef struct {
unsigned char BoardType : 4;
unsigned char : 1;
unsigned char BoardRevision : 2;
unsigned char HasPollingBit : 1;

} BoardInfo_t;

typedef struct {
unsigned short CountryCode : 10;
unsigned short : 6;

} BoardModel_t;

typedef struct {
unsigned char ModemType : 4;
unsigned char NetworkIf : 4;

} ModemInfo_t;

typedef struct {
unsigned short Minor : 8;

 8. Fax Status Files

281

unsigned short Major : 8;
} RomVersion_t;

typedef struct {
BoardInfo_t BoardInfo;
ModemInfo_t ModemInfo;
unsigned short OemStamp;
unsigned char CpuSpeed;
unsigned char Spare;
BoardModel_t BoardModel;
RomVersion_t RomVersion;
char RomVersionString[21];
unsigned char RomPersonality;

} RomId_t;

typedef enum _channelstate { gl_NotPresent, gl_Present };
typedef struct _channelex {

int glSystemChanIndex;

union {
struct {

int PortAddress; // ISA only
int PhysicalChannel; // ISA only

} isa;

struct {
int BoardNumber; // PCI only
int ChannelOffset; // PCI only

} pci;
} bus;

int BoardType;
RomId_t RomId;
enum _channelstate State;

} Channel_t;

typedef struct _glResource {
union {

struct {
int SHPortAddress;
int BRIPortAddress;
int BRIPhysicalChannel;

} isa;
} bus;

} GLResource_t;

GDK Version 5.0 Programming Reference Manual

282

typedef struct _board {
int BoardModel;
int CountryModel;
Channel_t ChanList[MAX_CHANNELS_PER_BOARD];
int NumChanCount;
int BadChanCount;
GLResource_t Resource;
enum _bustype BusType;

} Board_t;

typedef struct _boardsystem {
int numBoard;
Board_tBoardID[MAX_BOARDS];

} glBoardSystem;

The glBoardSystem structure contains two data members, numBoard and
BoardID. The value of numBoard describes the number of valid elements in the
BoardID array. Each CP Fax physical hardware entity is represented by a
BoardID element. For example, the CP4/LSI, a 4-channel analog board, is
represented by one BoardID element.

The fields in BoardID represent board level information.

Board_t Fields Description

BoardModel Descriptive name of board. This value is
usually the same as the value for
Channel_t.BoardType, with the exception of
CPD/220.

CountryModel Country code retrieved from ROM that the
board was certified for. If ROM does not
contain this information, this value is zero.

ChanList List of fax channels associated with physical
board.

NumChanCount The number of valid ChanList elements. It
represents the total number of fax channels
expected for BoardModel, i.e. a CP4/LSI is
always exected to have four fax channels.

 8. Fax Status Files

283

Board_t Fields Description

BadChanCount The number of undetectable fax channels for
BoardModel. The range of this value is
[0..NumChanCount].

Resource Shared resource used by fax channels.

BusType PC Bus interface type of BoardModel.
Supported values are gl_ISA or gl_PCI.

The fields in BoardID.Resource represent board level resources, shared by the
associated fax channels specified in the ChanList array.

Resource_t Fields Description

bus.isa.SHPortAddress I/O address of SC2000 resource, -1 if the
resource does not exist.

bus.isa.BRIPortAddress I/O address of BRI controller resource, -1 if
the resource does not exist.

bus.isa.BRIPhysicalChannel Physical channel of BRI controller resource,
-1 if the resource does not exist.

The fields in BoardID.ChanList represent a fax channel.

Channel_t fields Description

glSystemChanIndex Zero-based index to glSystem structure.
Value is -1 if the channel is not detected, i.e.
State is gl_NotPresent.

bus.isa.PortAddress For BoardID.BusType equal to gl_ISA, I/O
address of ISA fax channel.

bus.isa.PhysicalChannel For BoardID.BusType equal to gl_ISA,
physical channel of ISA fax channel.

bus.pci.BoardNumber For BoardID.BusType equal to gl_PCI,
board id of PCI fax channel.

bus.pci.ChannelOffset For BoardID.BusType equal to gl_PCI, PCI
channel associated with board id.

GDK Version 5.0 Programming Reference Manual

284

Channel_t fields Description

BoardType Name of fax channel; it may be different
from BoardID.BoardModel
(i.e. CPD/220).

RomId Raw identification information retrieved from
fax channel’s EPROM.

State Indicates the fax channel’s physical status. If
the channel was detectable, the State is
gl_Present, if not, the State is gl_NotPresent.

The fields in BoardID.ChanList.RomId represent the electronic signature of a fax
channel.

RomId_t fields Description

BoardInfo Name of channel’s board family and
revision level.

ModemInfo Identifies modem speed (i.e. 9600, 14400,
etc.) and network interface type (i.e. digital
or analog).

OemStamp Value is always zero.

CpuSpeed Speed of on-board processor.

Spare Reserved.

BoardModel Country code that board was certified for.

RomVersion Version of Rom.

RomVersionString Descriptive string containing version of
Rom.

RomPersonality Designates programmability of channel (i.e.
toolkit vs. standard).

Example

#include <gfdboard.h>
void main(void)
{
 glSystem glSys = { 0 };
 glBoardSystem glBdSys = { 0 };

 8. Fax Status Files

285

 int board = 0, chan = 0;
 int maxchan = 0;
 int retVal = 0;

 retVal = glHWDetect(&glSys, &glBdSys, 0);
 if (retVal == GL_HWCONFIG_SUCCESS)
 {

// GLSYSTEM
printf("From glSystem structure:\n");
printf("Detected %d fax channels and %d BRI resources.\n",

glSys.numchan, glSys.numBRI);

maxchan = glSys.numchan + glSys.numBRI;

for (chan = 0; chan < maxchan; ++chan)
{

 if (gl_ISA == glSys.Channel_ID[chan].BusType)
{
 printf("Found Isa channel at PortAddress 0x%03x

 (%d)\n", glSys.Channel_ID[chan].parm1.PortAddress,

glSys.Channel_ID[chan].parm2.PhysicalChannel);
}
 else if (gl_PCI ==

glSys.Channel_ID[chan].BusType)
 {

printf("Found Pci channel at Board:%X
Channel:%d\n",

glSys.Channel_ID[chan].parm1.BoardNumber,

glSys.Channel_ID[chan].parm2.ChannelOffset);
 }
 else

printf("Unknown BusType %d\n",
glSys.Channel_ID[chan].BusType);

}// end glSys channel loop

// GLBOARDSYSTEM
printf("\nFrom glBoardSystem structure:\n");
printf("Detected %d boards.\n", glBdSys.numBoard);

// loop for board information
for (board = 0; board < glBdSys.numBoard; ++board)
{
 printf("\nBoard %d - CountryModel is %d\n",
 board + 1,

glBdSys.BoardID[board].CountryModel);

GDK Version 5.0 Programming Reference Manual

286

 // loop for channel information
 for (chan = 0; chan <

glBdSys.BoardID[board].NumChanCount; ++chan)
 {
 if (gl_ISA == glBdSys.BoardID[board].BusType

)
{

 printf("Channel at PortAddress 0x%03x
(%d) is %s.\n",
glBdSys.BoardID[board].ChanList[chan].bus.isa.PortAddress,
glBdSys.BoardID[board].ChanList[chan].bus.isa.PhysicalChannel,
(gl_Present == glBdSys.BoardID[board].ChanList[chan].State
 ? "Present" : "Not Present"));

}
else if (gl_PCI ==

glBdSys.BoardID[board].BusType)
{
 printf("Channel at Board:%X Channel:%d is

%s.\n",
 glBdSys.BoardID[board].ChanList[chan].bus.pci.BoardNumber,
 glBdSys.BoardID[board].ChanList[chan].bus.pci.ChannelOffset,

 (gl_Present ==
glBdSys.BoardID[board].ChanList[chan].State

 ? "Present" : "Not Present"));
}
else
printf("Unknown BusType %d\n",

 glBdSys.BoardID[board].BusType);
 }// end glBdSys channel loop

 }// end glBdSys board loop
}// end if glHWDetect successful
else {
 printf("glHWDetect failed, error %d\n", retVal);
}

}

 8. Fax Status Files

287

 289

Appendix A
Obtaining Additional Product Information

To obtain additional product information, visit the Dialogic web site at the
following address:

www.dialogic.com

Technical Support

To contact Technical Support, visit this url:

http://support.dialogic.com

GDK Version 5.0 Programming Reference Manual

290

 291

Appendix B
GFSH Commands

GFSH Utility

The primary function of the GFSH utility is to initialize the SC2000 chip, which is
the CP Fax hardware interface to the data bus, in PEB or SCbus mode. All of the
commands listed in Table 43 are used to configure GFSH.

The information in Table 43 includes the command names, parameters, and
command descriptions.

Table 43. GFSH Commands

Command Parameters Description

setloc <sh count><baseaddr>...<baseaddr9> Initialize software
with number and
location of SC2000
chips

init <index> Initialize an SC2000
chip

updparm <parm ID><value> Modify certain
SC2000 parameters

readparm <parm ID><value> Read current state of
certain SC2000
parameters

GDK Version 5.0 Programming Reference Manual

292

Command Parameters Description

setbuscfg <index><bus mode><bus speed>

<clock speed>

where <bus mode> is one of the
following:

“sc” or “0”

“network” or “1”

“resource” or “2”

where <bus speed> is one of the
following:

“1.544” or “0”

“2.048” or “1”

“4.096” or “2”

“8.192” or “3” (currently invalid)

where <clock speed> is one of the
following:

“1.544” or “0”

“2.048” or “1”

“4.096” or “2”

“8.192” or “3” (currently invalid)

“16.384” or “4” (currently invalid)

“32.768” or “5” (currently invalid)

Set SC2000 bus
configuration
parameters

connect <index><local bus slot><type>

<ext bus slot>

where <type> is one of the following:

“tx” or “0”

“rx” or “1”

“both” or “2”

Establish bus
timeslot assignments

 Appendix B. GFSH Commands

293

Command Parameters Description

disconnect <index><local bus timeslot><type>

where <type> is one of the following:

“tx” or “0”

“rx” or “1”

“both” or “2”

Delete bus timeslot
assignments

pebassert <index><local bus timeslot><type> Assert TSX
(required after
connect)

writefpga <index><byte value> Write FPGA
configuration
register bits

exit, quit, q, x Exit this program

help, ? Show usage

debug 0,1 Set debug level

echo “on” | “off” Enable/disable echo
mode

verbose “on” | “off” Enable/disable
verbose mode

save GFAX Saves the
configuration file to
the %GFAX% path

GDK Version 5.0 Programming Reference Manual

294

 295

Appendix C
TIFF File Format

GDK maintains facsimile data in a TIFF (Tagged Image File Format) compression
format. These files have a TIFF header of no fixed size that describes the data in
the file, and helps to distinguish facsimile image files from other types of image
files.

GDK uses a subset of the available set of image-description tags recommended in
the Microsoft Version 6.0 TIFF specifications.

NOTE: GDK supports send-only faxing of multi-page TIFF files.

A TIFF file format offers these advantages:

• Facsimile data is stored in a compressed format.

• Graphics data from other sources can be used, after conversion.

• Files are compatible between GDK and printers, scanners, and other
programs supporting TIFF.

• TIFF is an industry standard with acceptance from product developers.

 GDK supports the following compression formats:

• TIFF Type 3

• TIFF Type 4

TIFF Type 3 is compatible with ITU-T Group 3 T.4 recommendation. Either 1-D
or 2-D (two-dimensional) modified Huffman encoding compression can be used.

Each image line of a 1-D file is encoded as a TIFF Type 3 1-D line with EOL
codes after each scan line, and the TIFF file is terminated with six EOLs to
indicate the end of the page. The fill order can be MSBF (most significant bit
first) or LSBF (least significant bit first).

GDK Version 5.0 Programming Reference Manual

296

The 2-D files also are called “Modified READ” (MR) files. The first image line of
these files is encoded as a TIFF 3 1-D line. A certain number of lines, which is
usually one to three, follow the 1-D line and encode only the differences between
the current line and the previous one. Following the 2-D lines is another 1-D line.
Then, there are more 2-D lines based on this new reference line. A flag that
indicates whether a line is complete in itself (a 1-D encoded line) or is based on
the preceding line (a 2-D encoded line) is embedded in the end of line code.

This encoding scheme results in approximately a 15 to 20 percent reduction in file
size over 1-D encoding in most cases. This can vary greatly, depending on the
type of image. A failure in one line affects only a small portion of the document.

TIFF Type 4 files also are called “Modified Modified READ” (MMR) files and
require Error Correction Mode (ECM). This type is compatible with ITU Group 4
T.6 recommendation. An imaginary white line precedes the first line. Every line in
the file is based on the differences between the current line and the line that
preceded it; the first line presumes a blank line preceded it. This byte-oriented
compression scheme results in approximately a 20 to 40 percent reduction in file
size over one-dimensional encoding in most cases. A scan line error can corrupt
an entire image from the point of the error forward.

297

Appendix D
Information for International Users

This appendix includes special information for Dialogic CP Fax customers calling
from outside the United States or located outside North America.

CAUTION

In countries that do not have approval for the latest software, all features
will not be available.

Full ASCII Character Set

To use the full character set during file conversion on the boards, add the
following command to each channel in the GDK configuration:

GFXEXTEND 2

Country Codes

The international access codes for a number of countries are in the following
table. These codes can also serve as values for the COUNTRY parameter in the
registry.

Country Code Country Code Country Code

Australia 61 Iceland 354 Norway 47

Austria 43 Indonesia 62 Poland 48

Bahrain 973 Israel 972 Portugal 351

Belgium 32 Italy 39 Singapore 65

GDK Version 5.0 Programming Reference Manual

298

Country Code Country Code Country Code

Canada 1 Japan 81 South Africa 27

Chile 56 Jordan 962 Spain 34

Czech Republic 42 Korea 82 Sweden 46

Denmark 45 Luxembourg 352 Switzerland 41

Finland 358 Malaysia 60 Thailand 66

France 33 Mexico 52 Turkey 90

Germany 49 Netherlands 31 United Kingdom 44

Hong Kong 852 New Zealand 64 U.S.A. 1

Hungary 36

 Index

299

Index

A
AcceptCallState, 81

ActiveHandle field, 257

ActiveQueueId field, 257

Answer and Send operation, 101

Answer and Send/Receive operation,
101

Answer Default records, 106

Answer Immediately operation, 159

Answer operation, 108

Answer records, 106

Answer-and-Receive operation, 27

answer-tone carrier detect, 105

AutoReceive, 73

B
batch mode, 129

batch programming model, 132

BC_xfer_cap, 77

BC_xfer_mode, 78

BC_xfer_rate, 78

Bin file, 101

Binary File Transfer (BFT), 38

buffering queue records, 100

BUFFERS, 41

BUFFERS command, 13

BUSY records, 13, 100, 149

byte-oriented compression, 296

C
C data structure, 101

CallDisconnected, 86

call-progress error codes, 28

capabilities field, 256

capabilities flags, 260

cd_timeout field, 102, 105

cd_timeout field:answer-tone carrier
detect, 105

CHANNELID, 41

ChannelsPerTrunk, 74

character array:GFQSINGLE_DOC,
119

character set, 297

CHASSIS, 41

CheckInBearer, 83

checking Queue File, 99

CheckInSetupFrame, 83

commands:LOAD, 261

communication program, 108

communication settings:default, 101

completed_retries field, 102, 105

completed_retries field:retries,
completed, 105

completed_time field, 102, 105

GDK Version 5.0 Programming Reference Manual

300

completed_time field:record completed,
105

completed_time field:record posted, 105

compression, 5

compression formats, 295

compression formats:byte oriented, 296

compression formats:GammaLink, 15

compression formats:Group 3:1-D, 15

compression formats:Group 3:2-D, 15

compression formats:Group 4, 296

compression formats:Modified
Modified READ (MMR), 296

compression formats:Modified READ
(MR), 296

compression formats:TIFF Type 3, 295

compression formats:TIFF Type 4, 296

Computer-Based Faxing (CBF), 6

Computer-Based Faxing
(CBF):advantages, 6

configuration and support
files:GFAX.$QU, 95, 97

configuration file, 113

configuration file:gfax.cfg, 106

ConnectAttemptFail, 87

ConnectSeconds field, 258

Consultative Committee for
International Telephone and
Telegraph (CCITT), 3

Control Done List, 99

control field, 102, 106

Control List, 97, 99

CONTROLT, 41

Conversion List, 97

COUNTRY, 42

country code, 114

country codes, 28

COUNTRY command, 297

country field, 256

cover page file, 127

cp_channel field, 256

cp_fid field, 256

cp_list field, 256

cp_name field, 256

cp_pass field, 256

cp_state field, 256, 261

cp_state field:GFDSTATU.H, 261

CP_states, 261, 262

CP_states:CP_DEAD, 262

CP_states:CP_FAILED, 262

CP_states:CP_IDLE, 261, 262

CP_states:CP_RESET, 262

CP_states:CP_SENDING, 262

CSID, 42, 106, 118, 123, 168

csid field, 102, 106

csid field:Customer Subscriber
Identification (CSID), 106, 168

csid field:handshaking, T.30-protocol,
106

CSID:handshaking, 106

CSID:PTT requirements, 106

 Index

301

curr field, 102, 107

curr field:linked lists, 107

curr field:queue record pointers, 107

Customer Subscriber Identification
(CSID), 106, 118, 123

Customer Subscriber Identification
(CSID):handshaking, 106

Customer Subscriber Identification
(CSID):PTT requirements, 106

D
data file, sending, 117

data-type definitions, 101

date and time stamp, 117, 151, 156

DEBUG, 43

Debug Command Examples, 34

debug mask:using, 29

Debug Parameter Definitions, 89

Debug Parameters, 89

Debug Setting Dependencies, 35

DebugToSRAM, 92

default communication settings, 101

destination_number_plan, 79

destination_number_type, 79

destination_sub_phone_number, 81

destination_subnumber_type, 80

Developing with PEB, 227

Dial and Receive operation, 159

Dial and Send operation, 107, 159

DID (direct inward dialing), 5, 6, 127

Disconnect (DCN), 5

Dispatcher, 13, 129, 255, 258

Dispatcher:GFDCP.EXE program, 97

Dispatcher:Pending List, 13

DTMF (dual-tone multifrequency), 5, 6,
127

duration field, 102, 107

duration field:Dial and Send operation,
107

duration field:phone-connect time, 107

E
Enabling Debug, 29

Enabling Transparent PRI Debug, 34

encoding schemes, 5

End of Message (EOM), 5

End Of Procedure (EOP), 5

environment variables, 154

error codes/status messages, 101

event status, 164

events:Armed - Requires Response
method, 162

events:No Response Required method,
162

F
fax applications, 8

fax broadcasting, 159

fax call phases, 4

fax call phases:establishing the call
(Phase A), 4, 130

GDK Version 5.0 Programming Reference Manual

302

fax call phases:in-message procedure
and message transmission
(Phase C), 4, 130

fax call phases:post-message procedure
(Phase D), 5, 131

fax call phases:pre-message procedure
(Phase B), 4, 130

fax call phases:releasing the call (Phase
E), 5, 131

fax channel:ready, 100

fax communication:batch mode, 129

fax communication:interactive mode,
129

fax filename, 153

fax session:interactive, 163

fax transaction programming, 101

fax transmission status, 100

FaxDistribution, 74

FaxNotReady, 88

file transfer, 108, 117

filename format, 108, 109

filenames, 19

filenames:multiple pages, receive, 20

filenames:multiple pages, send, 20

file-naming conventions, 19

fine resolution, 5

FIRMWARE, 43

fn_cover field, 102, 107

fn_received field, 102, 108, 119

fn_received field:file transfer, 108

fn_received field:filename format, 108

fn_received field:received fax filename,
108

fn_received field:received fax
filename:changing, 108

fn_send field, 102, 109, 125

fn_send field:sent filename, 109

Free List, 96, 99

functions:high-level:GFD library, 259,
263, 264, 267

functions:low-level:GFD library, 259,
265, 269, 271, 273

G
GammaLink compression formats, 15

GammaLink programming interface, 9

GammaLink subsystem, 129

GammaLink system architecture, 9

GFAX environment variable, 95, 97

GFAX.$QU file, 95, 97

GFAX1.$DS (status file), 258

GFCCONTROL 36, 43

GFCCONTROL 37, 44

GFD API
functions:gfdGetFileNumCha
nnel, 198, 201, 202

GFD
library:functions:gfdGetFileNu
mChannel, 259

GFD
library:functions:gfdGetMemNu
mChannel, 259

 Index

303

GFD
library:functions:gfdOpenStatus
File, 259

GFD
library:functions:gfdReadStatus
File, 259

GFD
library:functions:gfdReadStatus
FileHeader, 259

GFD
library:functions:gfdReadStatus
FileRecord, 259

GFD
library:functions:gfdReadStatus
Mem, 255, 259

GFD library:high-level functions, 259,
263, 264, 267

GFD library:low-level functions, 259,
265, 269, 271, 273

GFDCP.EXE (Dispatcher program), 97

GFDSTATU.H, 261, 269

GFQ library:functions:gfqClearRec, 102

GFQ library:functions:gfqClearReq, 114

GFQ library:functions:gfqFindFirst, 97

GFQ library:functions:gfqFindNext, 97

GFQ
library:functions:gfqGetPath:sy
mbolic constants, 141

GFQ library:functions:gfqInsertOne,
146

GFQ library:functions:gfqInsertOne:list
names, 143

GFQ library:functions:gfqInsertPlist:list
names, 147

GFQ
library:functions:gfqSearch:envi
ronment variables, 154

GFQ
library:functions:gfqSearch:sym
bolic constants, 154

GFQ library:functions:gfqSubmit, 127,
154

GFQ library:functions:gfqSubmitPlist,
159

GFQ library:functions:GRT_EVENT,
167

GFQ
library:functions:GRT_INFO_D
ATA, 168

GFQ
library:functions:GRT_RESPO
NSE, 168

GFQ library:functions:grtInit, 172

GFQ
library:functions:grtProcessCall
TermEvent, 175

GFQ
library:functions:grtProcessDial
Event, 176

GFQ
library:functions:grtProcessInfo
Event, 178

GFQ
library:functions:grtProcessRec
vDISEvent, 182

GFQ library:functions:grtRespond, 184

GFQ
library:functions:grtRespondCo
ntinue, 186

GDK Version 5.0 Programming Reference Manual

304

GFQ
library:functions:grtRespondEn
dCall, 188

GFQ.H (Queue File header file):data
types, 101

GFQ.H (Queue File header
file):GFQBYTE, 101

GFQ.H (Queue File header
file):GFQCSID_SIZE, 101

GFQ.H (Queue File header
file):GFQFILENAME_SIZE,
101

GFQ.H (Queue File header
file):GFQINT, 101

GFQ.H (Queue File header
file):GFQLONG, 101

GFQ.H (Queue File header
file):GFQOFFSET, 101

GFQ.H (Queue File header
file):GFQTIME, 101

GFQ.H (Queue File header
file):GFQUSER_FIELD_SIZE,
102

GFQANSWER_IMMEDIATE, 115

GFQANSWER_RECEIVE, 115

GFQANSWER_SEND, 115

GFQANSWER_SEND_RECEIVE, 115

GFQBYTE, 101

GFQCONV_LIST, 112

GFQCSID_SIZE, 101, 110, 116, 118

GFQCTRL_LIST, 112

GFQDIAL_RECEIVE, 115

GFQDIAL_SEND, 115

GFQDIAL_SEND_RECEIVE, 115

GFQFILENAME_SIZE, 101, 107, 109

GFQFULL_RETRY, 123

GFQINT, 101

GFQLIST_OF_DOC, 125

GFQLIST_OF_DOCS, 108, 109, 119

GFQLONG, 101

GFQMAX_RATE, 118

GFQOFFSET, 101

GFQPATH.H file, 154

GFQPEND_LIST, 112

GFQPOST_RECORD, 121

GFQRECORD_BUSY, 121

GFQRECORD_ON_HOST, 121

GFQRECORD_ROUTED, 121

GFQRECORD_VIEWED, 121

GFQRECV_LIST, 112

GFQRESET.EXE program, 97, 150

GFQRESET.EXE program:parameters,
98

GFQRESUBMIT_ON, 121

GFQSENT_LIST, 112

GFQSINGLE_DOC, 108, 109, 119, 125

GFQT30_PROTOCOL, 117

GFQTEMPLATE_RECORD, 121

GFQTIME, 101

GFQUSE_COVERSHEET, 107, 127

GFQUSE_HEADER, 110, 127

 Index

305

GFQUSE_NSF, 127

GFQUSE_OVERLAY_HEADER, 127

GFQUSE_OVERLAY_HEADER_OR,
127

GFQUSER_FIELD_SIZE, 102, 113,
114, 119, 128

GFSH.BAS, 238

GFSH.CMD, 228, 238

GFSH.EXE, 228, 238

GFSH.SAV, 228, 238

GFTSASGN.EXE, 238

GFTSREQ.DAT, 238

GFXACTION, 223

GFXBOTTOMMARGIN, 44

GFXCARRYON, 45

GFXCHARSET, 45

gfxDebug field, 256

GFXDID, 46

GFXDIGITS, 47

GFXDTMFTIMEOUT, 49

GFXDTMFTONE, 50

GFXECM, 51

GFXENABLE, 223

GFXEXTEND, 52

GFXFAXCONTROL 1020, 55

GFXFAXCONTROL 1021, 55

GFXFAXCONTROL 28, 52

GFXFAXCONTROL 29, 52

GFXFAXCONTROL 71, 53

GFXFAXCONTROL 72, 53

GFXFAXCONTROL 73, 54

GFXFAXCONTROL 74, 54

GFXFINE, 56

GFXFORM, 56

GFXHEADER, 57

GFXLEFTMARGIN, 59

GFXPAGELENGTH, 59

GFXRECM, 59

GFXRECVPATH, 60

GFXRECVPATH command, 20, 108

GFXREJBURST, 60

GFXREJCOUNT, 61

GFXREJPERCENT, 61

GFXRIGHTMARGIN, 61

GFXRLENGTH, 62

GFXRT6, 63

GFXRTNHANDLE, 223

GFXRTNRETRAIN, 62

GFXRTPRETRAIN, 63

GFXRTRHANDLE, 223

GFXRTTIMEOUT, 223

GFXRTWOD, 64

GFXRWIDTH, 64

GFXSCANTIME, 65

GFXSHUTDOWN, 66

GFXSHUTDOWN command, 260

GFXSPEAKER, 67

GDK Version 5.0 Programming Reference Manual

306

GFXST6, 67

gfxState field, 256

gfxStatus field, 256, 259, 260

gfxStatus field:capabilities flags, 260

GFXSTWOD, 68

GFXTOPMARGIN, 68

GFXWAIT, 68

Group 1 standard, 3

Group 2 standard:standards:Group 2, 3

Group 3 standard, 3

Group 3 T.4 compression:2-D, 15

Group 3 T.4 compression:1-D, 15

Group 4 T.6 compression, 15

GRT applications:initialization, 164

GRT applications:polling for an event,
164

GRT applications:sample, 163

GRT applications:termination, 165

H
handshaking, 106, 111, 123, 124

handshaking:T.30-protocol, 106, 114

header field, 103, 110

header field:default format, 110

header field:header text, 110

headers:TIFF Type 3, 295

High-Level Data-Link Control (HDLC),
4, 129

high-level functions:GFD library, 259,
263, 264, 267

history of fax, 3, 227, 237

I
image file, sending, 117

INIT, 69

INIT command:commands:INIT, 261

installation:system requirements, 10

interactive fax session, 163

interactive mode, 129

interactive programming model, 161

international information:ASCII
conversions, 297

international information:character set,
297

International Telecommunications
Union (ITU), 7

ISDN, 27, 72, 74

ISDN frame, 33

ISDN Parameter Definitions, 77

ISDN Parameters, 75

ISDN trace, 94

ISDN tracing, 93

ISDN trunk, 34

ISDNDistribution, 72, 75

items_received field, 103, 110

items_received field:files received, 110

items_received field:pages received, 110

items_sent field, 103, 111

items_sent field:files sent, 111

items_sent field:pages send, 111

 Index

307

itemsReceived field, 258

ItemsSent field, 258

ITU Group 4 T.6 recommendation, 296

ITU requirements, 114

ITU requirements:country code, 114

ITU requirements:provider code, 114

ITU-T Group 3 T.4 recommendation,
295

L
LastError field, 258

LastFileName field, 256

LastSpeed field, 258

LastUserId field, 257

Layer1_protocol, 77

line monitoring, 4

line_noise field, 103, 111

line_noise field:handshaking, 111

line_noise field:transmission failure,
111

linked lists, 95, 107, 117

linked lists:Control Done List, 97

linked lists:Control List, 97

linked lists:Conversion List, 97

linked lists:Free List, 96

linked lists:Pending List, 96, 97, 100,
105, 120, 156, 159

linked lists:Received List, 96

linked lists:Sent List, 97, 105

list_type field, 103, 112

list_type field:linked list type, 112

LOAD command, 261

LOADFONT, 69

LogFile, 30, 91

LogFileMask, 30, 91

low-level functions:GFD library, 259,
265, 269, 271, 273

LSBF (least significant bit first), 295

M
MakeCallFail, 85

message_speed field, 103, 112

message_speed field:transmission rate,
112

Microsoft Version 6.0 TIFF
specifications, 295

modem_id field, 103, 113

modem_id field:multiple-fax channel
chassis, 113

MODEMCTRL 1024, 69

MODEMCTRL 2054, 69

MODEMCTRL 2066, 70

Modified Modified READ (MMR)
compression format, 296

Modified READ (MR) compression
format, 296

modulation rate, 5

MSBF (most significant bit first), 295

multiple files, 108

multiple-fax channel chassis, 113

GDK Version 5.0 Programming Reference Manual

308

N
Network Interfaces, 227

next field, 103, 113

next field:linked list, 113

next field:pointer, 113

NoDialogicFree, 86

NoFaxResource, 87

non-standard facilities (NSF) field, 114,
119, 127, 168

NoPhoneInQrec, 86

NormalCause, 88

notify field, 103, 114

notify field:unused field, 114

NSF (non-standard facilities) field, 119

NSF (non-standard facilities) field, 114,
127, 168

NSF/NSS/NSC frame, 114

nsf_field field, 103, 114

nsf_field field:handshaking, 114

nsf_field field:non-standard facilities
(NSF) field, 114

nsf_field field:provider code, 114

nsf_length field, 103, 114

nsf_length field:non-standard facilities
(NSF) field, 114

NULL pointer, 117

number_calls field, 103, 115

number_calls field:retries, 115

NumberOfTrunks, 74

NUMCHAN, 70

numFailed field, 257

numOpenFiles field, 256

numReceive field, 257

numSend field, 257

O
Obtaining Additional Product

Information, 289

OfferedOnMakeCall, 85

on-board software, 95

operation field, 103, 115

operation field:queue record processing,
115

originate_number_plan, 79

originate_number_type, 78

origination_phone_number, 80

origination_subnumber_type, 80

origination_subphone_number, 81

P
PCM Expansion Bus (PEB), 129

PEB APIs:gl_pebenter(), 229

PEB APIs:gl_pebexit(), 229

PEB APIs:gl_route(), 229

PEB APIs:gl_routerxtx(), 229

PEB:developing, 227

Pending List, 13, 96, 97, 100, 105, 120,
156, 159

phone list, 159

phone_no field, 103, 116

 Index

309

phone_no field:sent fax telephone
number, 116

phone-connect time, 107

pipe handle:GFXENABLE, 223

pointers, 107, 117

polling operations, 122

Post Telephone and Telegraph (PTT), 7

preallocating queue records, 98

preprocessor directives, 101

prev field, 103, 117

prev field:linked lists, 117

prev field:queue record pointers, 117

PRI_Overlap_Digits, 82

PRI_Overlap_T1, 82

PRI_Overlap_T2, 82

PriLayerEnable, 73

priority, 117, 151, 156

priority_level field, 103, 117

priority_level field:record sorting, 117

PRITRACE, 34

ProgramFile field, 256

Programming Models, 129

ProgramOptions field, 256

protocol field, 103, 117

protocol field:sending data file, 117

protocol field:sending image file, 117

provider code, 114

provider code:GammaLink provider
code, 114

PTT requirements, 106, 121, 122

Public Switched Telephone Network
(PSTN), 129

purging Queue File records, 99

Q
Queue File, 15

Queue File Lists, 96

Queue File Lists:Control Done List, 96

Queue File Lists:Control List, 96

Queue File Lists:Conversion List, 96

Queue File Lists:Free List, 96

Queue File Lists:Pending List, 96

Queue File Lists:Received List, 96

Queue File Lists:Sent List, 96

Queue File:checking, 99

Queue File:Control Done List, 99

Queue File:Control List, 99

Queue File:Free List, 99

Queue File:GFAX.$QU file, 95, 97

Queue File:handling, 97

Queue File:header, 150

Queue File:pointers, 97

Queue File:preallocating records, 98

Queue File:purging records, 99

Queue File:repairing, 99

Queue Manager, 123

queue record fields, 163

queue record fields:cd_timeout field,
105, 134

GDK Version 5.0 Programming Reference Manual

310

queue record fields:cd_timeout
field:answer-tone carrier detect,
105

queue record fields:completed_retries
field, 105

queue record fields:completed_retries
field:completed retries, 105

queue record fields:completed_time
field, 105

queue record fields:completed_time
field:record completed, 105

queue record fields:completed_time
field:record posted, 105

queue record fields:control field, 106

queue record fields:csid field, 106

queue record fields:csid field:Customer
Subscriber Identification
(CSID), 106

queue record fields:csid field:PTT
requirements, 106

queue record fields:csid field:T.30-
protocol handshaking, 106

queue record fields:curr field, 107

queue record fields:curr field:linked
lists, 107

queue record fields:curr field:queue
record pointers, 107

queue record fields:default values, 134

queue record fields:duration field, 107,
156

queue record fields:duration field:Dial
and Send operation, 107

queue record fields:duration
field:phone-connect time, 107

queue record fields:fn_cover field, 107

queue record fields:fn_received field,
108

queue record fields:fn_received
field:file transfer, 108

queue record fields:fn_received
field:received fax filename, 108

queue record fields:fn_send field, 109

queue record fields:fn_send field:sent
filename, 109

queue record fields:header field, 110

queue record fields:header field:default
format, 110

queue record fields:header field:header
text, 110

queue record fields:items_received field,
110

queue record fields:items_received
field:files received, 110

queue record fields:items_received
field:pages received, 110

queue record fields:items_sent field,
111

queue record fields:items_sent field:files
sent, 111

queue record fields:items_sent
field:pages send, 111

queue record fields:line_noise field, 111

queue record fields:line_noise
field:handshaking, 111

queue record fields:line_noise
field:transmission failure, 111

queue record fields:list_type field, 112

 Index

311

queue record fields:list_type field:linked
list type, 112

queue record fields:message_speed
field, 112

queue record fields:message_speed
field:transmission rate, 112

queue record fields:modem_id field,
113

queue record fields:modem_id
field:multiple-fax channel
chassis, 113

queue record fields:next field, 113

queue record fields:next field:linked list,
113

queue record fields:next field:pointer,
113

queue record fields:notify field, 114,
134

queue record fields:notify field:unused
field, 114

queue record fields:nsf_field field, 114

queue record fields:nsf_field
field:handshaking, 114

queue record fields:nsf_field field:non-
standard facilities (NSF) field,
114

queue record fields:nsf_field
field:provider code, 114

queue record fields:nsf_length field, 114

queue record fields:nsf_length
field:non-standard facilities
(NSF) field, 114

queue record fields:number_calls field,
115, 134

queue record fields:number_calls
field:retries, 115

queue record fields:operation field, 115

queue record fields:operation
field:queue record processing,
115

queue record fields:phone_no field, 116

queue record fields:phone_no field:sent
fax telephone number, 116

queue record fields:prev field, 117

queue record fields:prev field:linked
lists, 117

queue record fields:prev field:queue
record pointers, 117

queue record fields:priority_level field,
117

queue record fields:priority_level
field:record sorting, 117

queue record fields:protocol field, 117,
134

queue record fields:protocol
field:sending data file, 117

queue record fields:protocol
field:sending image file, 117

queue record fields:rate field, 118, 134

queue record fields:rate
field:transmission rate, 118

queue record fields:received_csid field,
118

queue record fields:received_csid
field:Customer Subscriber
Identification (CSID), 118

queue record fields:received_filetype
field, 119

GDK Version 5.0 Programming Reference Manual

312

queue record fields:received_filetype
field:received fax filename, 119

queue record fields:received_nsf field,
119

queue record fields:received_nsf
field:non-standard facilities
(NSF) field, 119

queue record fields:received_nsf
field:sending facsimile machine,
119

queue record fields:received_nsf_length
field, 119

queue record fields:received_nsf_length
field:non-standard facilities
(NSF) field, 119

queue record fields:record_control field,
120, 156

queue record fields:record_control
field:queue record management,
120

queue record fields:retry_counter field,
121, 134

queue record fields:retry_counter
field:call-processing
submissions, 121

queue record fields:retry_counter
field:PTT requirements, 121

queue record fields:retry_delay field,
122, 134

queue record fields:retry_delay
field:elapsed retry time, 122

queue record fields:retry_delay
field:polling operations, 122

queue record fields:retry_end_time
field, 122

queue record fields:retry_strategy field,
123, 134

queue record fields:retry_strategy
field:transmission failure, 123

queue record fields:security field, 123

queue record fields:security
field:Customer Subscriber
Identification (CSID), 123

queue record fields:signal_quality field,
123

queue record fields:signal_quality
field:handshaking, 123, 124

queue record fields:signal_quality
field:transmission failure, 123

queue record fields:signal_strength
field, 124

queue record fields:signal_strength
field:transmission failure, 124

queue record fields:source_type field,
125, 134

queue record fields:status field, 125

queue record fields:status
field:transaction success or
failure, 125

queue record fields:submission_retries
field, 126, 156

queue record fields:submission_retries
field:retries, manipulation, 126

queue record fields:submission_time
field, 156

queue record fields:submission_time
field:queue record submission,
126

queue record fields:summary, 102

 Index

313

queue record fields:time field, 126, 134

queue record fields:time field:record
processing, 126

queue record fields:transmit_control
field, 127

queue record fields:transmit_control
field:cover page file, 127

queue record fields:transmit_control
field:non-standard facilities
(NSF) field, 127

queue record fields:transmit_control
field:Send operation, 127

queue record fields:user_id field, 127

queue record fields:user_id field:DID
(direct inward dialing), 127

queue record fields:user_id field:DTMF
(dual-tone multifrequency), 127

queue record fields:user_id field:record
submission, 127

queue record pointers, 117

queue record programming, 101

queue records, 13, 95, 101, 132

queue records:buffering, 100

queue records:BUSY, 100

queue records:data types, 101

queue records:date and time stamp, 156

queue records:management, 120

queue records:priority, 151, 156

queue records:processing, 99

queue records:queuing, 99

QUEUET, 70

QUEUET command, 13

QUEUET parameter:timer, 13, 100

R
rate field, 103, 118

rate field:transmission rate, 118

real time, 255

received fax filename, 108

received fax filename:changing, 108

Received List, 96

received_csid field, 103, 118

received_csid field:Customer Subscriber
Identification (CSID), 118

received_filetype field, 103, 108, 119

received_filetype field:received fax
filename, 119

received_nsf field, 103, 119

received_nsf field:non-standard
facilities (NSF), 119

received_nsf field:sending facsimile
machine, 119

received_nsf_length field, 103, 119

received_nsf_length field:non-standard
facilities (NSF), 119

record status, 100

record_control field, 103, 120

record_control field:queue record
management, 120

registry:BUFFERS command, 13

registry:COUNTRY command, 297

registry:GFXRECVPATH command, 20

GDK Version 5.0 Programming Reference Manual

314

registry:QUEUET command, 13

remote procedure call (RPC), 129

repairing Queue File, 99

ReservedByDialogic, 85

resolution, 5

resolution:fine, 5

resolution:standard, 5

Resource Modules, 227

retries, 115, 116, 121, 126

retries:completed, 105

retries:manipulation, 126

retry_counter field, 103, 105, 121, 122

retry_counter field:-1 option, 121

retry_counter field:call-processing
submissions, 121

retry_delay field, 103, 122

retry_delay field:elapsed retry time, 122

retry_end_time field, 103, 122

retry_end_time field:-1 option, 122

retry_end_time field:polling operations,
122

retry_strategy field, 103, 123

retry_strategy field:transmission failure,
123

routing, 5

S
Sample GRT Applications, 163

SCbus APIs:gl_getctinfo, 238

SCbus APIs:gl_getxmitslot, 238

SCbus APIs:gl_listen, 238

SCbus APIs:gl_scenter, 238

SCbus APIs:gl_scexit, 238

SCbus APIs:gl_unlisten, 238

SCbus:compliancy, 237

security field, 104, 123

security field:answering CSID, 123

security field:Customer Subscriber
Identification (CSID), 123

Send operation, 127

sending a fax:gfvStartFacsimile, GFV
library, 154

sent fax filename, 108

sent filename, 109

Sent List, 97, 105

shutdown states, 259

shutdown status, 259

Signal Computing Bus (SCBus), 129

signal_quality field, 104, 123

signal_quality field:handshaking, 123,
124

signal_quality field:transmission failure,
123

signal_strength field, 104, 124

signal_strength field:transmission
failure, 124

source_type field, 104, 109, 125

source_type field:fn_send filename, 125

SRAMMask, 30, 35, 90

standard features, 9

 Index

315

standard resolution, 5

standards, 7

standards:EIA Standard, 3

standards:Group 1, 3

standards:Group 3, 3

status codes, 97

status field, 104, 125

status field:transaction success or
failure, 125

status files, 202, 263, 265, 267

status files (GFAX1.$DS):creating, 258

status files (GFAX1.$DS):refreshing,
258

status record fields:ActiveHandle, 257

status record fields:ActiveQueueId, 257

status record fields:capabilities, 256

status record fields:ConnectSeconds,
258

status record fields:country, 256

status record fields:cp_channel, 256

status record fields:cp_fid, 256

status record fields:cp_list, 256

status record fields:cp_name, 256

status record fields:cp_pass, 256

status record fields:cp_state, 256, 261

status record
fields:cp_state:GFDSTATU.H,
261

status record fields:gfxDebug, 256

status record fields:gfxState, 256

status record fields:gfxStatus, 256, 259,
260

status record fields:itemsReceived, 258

status record fields:ItemsSent, 258

status record fields:LastError, 258

status record fields:LastFileName, 256

status record fields:LastSpeed, 258

status record fields:LastUserId, 257

status record fields:numFailed, 257

status record fields:numOpenFiles, 256

status record fields:numReceive, 257

status record fields:numSend, 257

status record fields:ProgramFile, 256

status record fields:ProgramOptions,
256

status record fields:TotalFailed, 258

status record fields:TotalReceive, 257

status record fields:TotalSend, 257

status records, 256

status tables, 203, 255, 260, 264, 273

status tables:data structure, 259, 269

status
tables:functions:gfdGetFileNum
Channel, 259

status
tables:functions:gfdGetMemNu
mChannel, 259

status
tables:functions:gfdOpenStatus
File, 259

GDK Version 5.0 Programming Reference Manual

316

status
tables:functions:gfdReadStatusF
ile, 259

status
tables:functions:gfdReadStatusF
ileHeader, 259

status
tables:functions:gfdReadStatusF
ileRecord, 259

status
tables:functions:gfdReadStatus
Mem, 259

status-file header, 269

status-file header:cp_header_size field,
270

status-file header:cp_last_update field,
270

status-file header:cp_max_channel field,
270

status-file header:cp_record_size field,
270

status-file header:cp_status_version
field, 270

STATUST, 70

subaddress, 5, 6, 127, 128

submission_retries field, 104, 105, 126

submission_retries field:retries,
manipulation, 126

submission_time field, 104

submission_time field:queue record
submission, 126

Switch Handler Libraries, 228

SYSOP, 127

system requirements, 10

T
T.30 protocol handshaking, 130

T.30 subaddress, 5, 6

T.30-protocol handshaking, 106, 114

T.4 compression, 15

T.6 compression, 15

Table 10. ISDN Parameters, 76

Table 12. Debug Parameters, 89

Table 3. Mask Values for DEBUG
Parameter 1, 31

Table 4. Mask Values for DEBUG
Parameter 2, 32

Table 5. Mask Values for SRAMMask
and LogFileMask, 32

Telecommunications Standardization
Sector (TSS), 7

TIFF (Tagged Image File Format), 295

TIFF (Tagged Image File
Format):advantages, 295

TIFF (Tagged Image File Format):Type
3 compression format, 295

TIFF (Tagged Image File Format):Type
4 compression format, 296

TIFF Type 3 header, 295

Time Division Multiplex (TDM), 227

time field, 104, 126

time field:record processing, 126

Timeslot, 227

Timeslot assignment, 228, 237, 238

TotalFailed field, 258

 Index

317

TotalReceive field, 257

TotalSend field, 257

TraceFileName, 94

TraceTrunkNumber, 93

transmission failure, 111, 123, 124, 126

transmission rate, 112, 118

transmit_control field, 104, 127

transmit_control field:cover page file,
127

transmit_control field:non-standard
facilities (NSF) field, 127

transmit_control field:Send operation,
127

Transparent PRI Support, 27, 72, 73

U
UPDATET, 71

UseGFAX$DL, 92

user_id field, 104, 127

user_id field:DID (direct inward
dialing), 127

user_id field:DTMF (dual-tone
multifrequency), 127

user_id field:record submission, 127

UseSRAM, 90

using:Dispatcher debug mask, 29

utility programs:GFQRESET.EXE, 97

utility programs:GFQRESET.EXE:
parameters, 98

W
WrongBearer, 88

WrongCRNAllocated, 87

GDK Version 5.0 Programming Reference Manual

318

