GDK Version 5.0
Programming Reference
Manual for Windows

Copyright © 2000 Dialogic Corporation
05-6025-002

COPYRIGHT NOTICE

Copyright © 2000 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described in this document
or on Web pages maintained by Dialogic-may infringe one or more patents or other intellectual
property rights owned by third parties. Dialogic does not condone or encourage such infringement.
Dialogic makes no warranty with respect to such infringement, nor does Dialogic waive any of its
own intellectual property rights which may cover systems implementing one or more of the ideas
contained herein. Procurement of appropriate intellectual property rights and licenses is solely the
responsibility of the system implementer. The software referred to in this document is provided under
a Software License Agreement. Refer to the Software License Agreement for complete details
governing the use of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo), DTI/124, and SpringBoard are registered trademarks of Dialogic
Corporation. A detailed trademark listing can be found at: http://www.dialogic.com/legal.htm.

Publication Date: August, 2000
Part Number: 05-6025-002

Dialogic, an Intel Company
1515 Route 10

Parsippany NJ 07054
U.S.A.

ForTechnical Support, visit the Dialogic support website at:
http://support.dialogic.com

For Sales Offices and other contact information, visit the main Dialogic website at:
http://www.dialogic.com

OPERATING SYSTEM SUPPORT

The term Windows refers to both the Windows NT® and Windows® 2000
operating systems. For a complete list of supported Windows operating systems,
refer to the Release Guide that came with your Diaogic System Release for
Windows, or to the Dialogic support site at http://support.dial ogic.com/rel eases.

iff

Table of Contents

PrEfACE.ottt e b e 1
PUIMPOSE.......oi s 1
AUGIENCE. ...ttt et et e e e et e et e et e et e satesaeesbaesbeesesnnesanas 1
USING TS GUIE.......ceeuiiieieeierieeete ettt 1
CONVENTIONS......ccui ittt et ae e e s te e teeneesaeesaeesreeasesaeesaeeseensesnsenseenes 1
Reference DOCUMENALIONc.eccviiieciece et 2
1. Introduction to Fax TeChNOIOgYccccverererineneneeeeee e 3
OVEIVIBIW ..ottt sttt bbb et se et bt e sttt senbetenes 3
[TS0 YRS 3
Understanding Fax TeChNOIOGYcocereveriereienesesieseseeeses e e sesaesaesee e e 4
Elements of @aFaX Call......ccooeiiireiieeeese e 4
(003107 =-5 o] o RSSO 5
[STo] 11110 OSSOSO 5
010111 o 5
Advantages of Computer-Based FaxXing........ccccevveiueieeiereneereseeseeseseseese e seenee s 6
High-QuUality OQULPUL........cceieieeeiieeeeeee e 6
(000011 g 11= oo PSR 6
Progress MONITONNGc.eceieieeieieeeeeeseeseeseesses e see e s e e e e e eeeseeaeseessessesns 7
Saves Time and EffOrtcooeiiiriresee s 7
SEANAAIAS ... e eenes 7
[N AN o] [T o) 1TSS 8
2. GDK System ArChitECIUIE....ccueveee et st 9
ADBOoUt GDK fOFr WINAOWS......c..iciiitieiecie ettt sttt be et saee 9
Minimum System REQUITEMENLS........cciiiririeiriieesieeses et 10
About the Dialogic CP Fax Series HardwWareccceveeereenineneneesieeseenes 11
FirmMWare FEALUIES.........eciecie ettt re e be et ens 11
GDK System COMPONENES.......cccuerieeiererrisrese s 11
Device Driversfor ISA and PCl ... 11
Firmware Download ULHITYcccverineireeeeee e 12
The GDK System Service (the DiSpatCher)coeeveerieeneneeneeseeeseene 12
NEIWOIK DIVE ACCESS......eecticieceeecteeete e ete et et stee e et besraesre e beetesaeesreas 14
ADOUL thE FITMWAEIE.......cvicieciee ettt e 15
ADbOUL the QUEUE FlE......ceeieicieeieeee e 15
GDK System FEALUINES........cciireriiiriiririeeteees e 15
TIFF Capability ...ccoveeeiiiciieieereee e 15

GDK Version 5.0 Programming Reference Manual

Binary FI e TranSfer.....ooiieie et 23
010111 o [24
ReCOrdiNg LiNE NOISE....uciiiieieeciirieee et see et st ne s 27
Transparent PRI SUPPOITocviiiiiiienie e 27
GDK System Configuration...........cccerereiesesesesesesesseeseesaessessessesseseeseessessessens 28
Control Panel Configuration ULtycceveiereierererere e e 28
Setting the Country Code Properlycccvvcevevecesence e 28
3. Configuration CoOMMANASccceeeiereriererese e neens 37
Configuration Commands SUMIMEIY.........c.ccerereerererereneeeseeesrenesreseesessesesseseesens 37
Configuration COMMANGS.........c.ccerueririerieereeee et seene 40
NeW Parameter SUMMBTYc.cooiieriiineni e s 71
Management Parameters............ccooveeiiriiiiiinicsii e 72
ISDIN ParaMetersS......cooeiiiiieiie ettt ee s 75
ErrorMapping Parameters..........ccoeveerinieiriesesieesesee e 83
DEDUQY Parameters........cc.ceeuirieiriieriee et 89
4. Queue ReCord ProgrammMing........c.ceoeereerereeereeeseseseseeesseseeseseeessesesseseas 95
Queue File Database COMPONENLccccvvieiieirese e see e e e saeseeseeseens 95
ADOUL thE QUEUE FlE......c.ee ettt st 95
QUEUE FITE LISES ..o iviiiteeie ettt ettt ettt et et s s sreere e sns 96
QUEUE FIIE POINLENS......ccviiiviiteeeteecre ettt et ettt sraesbe e besnnesaeesreeresneesaas 97
USINg GFQRESET.EXE-......ccoiiiiriirinerenie e 97
Pre-allocating Queue File RECOIAScccveveeereeecere e 98
Purging the Control List and Control Done List........ccccceveveeveeiieneeieeieeieeeenns 99
Checking and Repairing the QuUeUE File........cccevveeeieveree e 99
Record QUeUiNg and ProCESSING.......coevererreriereseseseesesessessesessesesseesssssesssssenes 99
BUFfEriNg RECOISocueceeeeeeeee e 100
BUSY RECOITS.......cveiiieitisieite ettt st et e ettt s resae e ene e e enean 100
Fax Transaction Programmingccccceeeeereruereeseseseesesssssessessessesessessesessessens 101
Quele RECOId Data TYPES....ccveueeeeeeeeieseesiesesrestestesrestessesressessesseseeeesaeseesenes 101
QUEUE RECOI FIEIASc.viciictiecteecte ettt re b eans 102
Queue Record Field DESCIIPtiONS........ccveeeeeeeeeeeie e seee e eeee e 102
Alphabetical Listing of Queue Record Felds.........ccccoovvvvenieienenevescins 104
5. Programming MOEIS.........ccccirieiiicieccesee e 129
GDK SUDSYSIEIM ...ttt sttt st se et st sa e st se s st ens 129
Phases Of @FaX SESSION........coiiiiierie e eneas 130
Fax Programming MOGEIS..........ccoiiririiriceee s 131
Batch Programming Mode] ..o 132
GFQ APIs — Alphabetized List of the GFQ Functionsccccccceeeennnie

vi

Table of Contents

Interactive Programming MOGEccce v iennne e 161
Sample GRT APPIICAIONS.ccueiieieiereerese e eneas 163
GRT APl Data SLIUCLUIES ...t 166
GFD APl FUNCHIONS ..ottt 196
OBSOIELE APIS ...ttt e 224

6. Developing With PEB ... 227

PEB (Pulse Code Modulation [PCM] EXpansion BUS)c.ccccveeererenenenennne, 227

BasiCS Of @PEB SYSIEMoiiiiiiieiereeene ettt 228

PEB APIS ...t e s 229

7. Developing With SCDUScceiiiieieeee s 237

SChus Connectivity ParadigMm........ccccccevevenievenese e 237

Basics of SChus COMPIIENCY.......ccoueieierereresesese et 237

SChus APIsfor the CP Fax SC BOAIUSccoceererieinieisienesesee e 238

SCBUS APISWith DM3 BOAIASc.eoveuiieiiriesiecrieiees s 239

o oTU S AN o TS o] o4 o] o = 244

8. FaX SEALUS FIlES....eciiiiiiieer e e 255

(O Y TR 255

Status Tables and StAtUS FIlEScvovvirieieiiecee e 255

Creating aStAtUS File........oovciieieee e 258

Refreshing the StAtUS File........ccoiiiiiicee e 258

Monitoring Status With gFXSEALUS.........ccvereieireirineree s 259

Monitoring Status With CP_State.........ccovveerierinereerieeee e 261

GDK System Information APl Function Calls..........cooeveeineinenneneiseeseee 262

APPENAIX A .ottt bbbt ene 289

TECHNICEl SUPPOIT ...ttt st s sb e seeneas 289

FaY o] o = T LD = TSP 291

LS U 1] OSSR 291

APPENAIX C .ottt bbb e e ene 295

F Y o] o= T LD QI OSSPSR 297

FUIl ASCI CharaCter SEL........coeieeiieeieeieiee e sees et 297

COUNEPY COUES.......cueeveieeieete ettt sttt sttt 297

T [PSR 299

vii

GDK Version 5.0 Programming Reference Manual

viii

Table of Contents

List of Tables

Tabhle 1. GDK TIFF TAOS .cveieirierieierienesie et sie sttt st st s sne e 16
Table 2. Filename Formats for Receiving Multiple Pages.........cccccoevevnvvvnennnnnn. 20
Table 3. Next File Send OptionS.......cccccceveverevesese s 22
Table 4. Mask Values for DEBUG Parameter 1.........cccovveeneneneenneseenenennenens 31
Table 5. Mask Values for DEBUG Parameter 2.........cccccvveenneneenneseenesnsnenens 32
Table 6. Mask Values for SRAMMask and LogFileMaskc.cccevvevvvrnienennnn. 32
Table 7. Summary of Configuration Commands...........cccceeerievereneresesieseseennns 37
Table 8. Terminating Digit Parameterscocevvevveieveeieieseesese e e seese e 48
Table 9. Variables, Field Widths, and TeXtcccoreeinneeinneeeeseeeseeneenes 57
Table 10. Management ParamMetersSccvovveveieseseseseseeee e e sseseesseseeneas 72
Table 11. ISDN Par@mEterS.......cccoeerrrereerereeessieese e 76
Table 12. ErrorMapping Parameterscooveeveeeeereeeeeeseeseesieseesee e seesee e e 84
Table 13. DEDUY Parameterscccoveveieiiesesesesese s neeeas 89
Table 14. GFQRESET Palr@mMEerS.......cccvvirireeeriiesenieesieesiesiesesseessesessesseeess 98
Table 15. GFQ.H DAtaTYPES.......cvereereerreereeseeseeseeeseeesseesseesseseseseseesseeseesseens 101
Table 16. Summary of Fieldsin the Queue Record.............ccocvvvvvneievesesennns 102
Table 17. Queue Record Field Description FOrmatsccccvevvvveveiesesnseneens 104

ix

GDK Version 5.0 Programming Reference Manual

Table 18. Values Reported in i€ NOISE......cccvveveieereereeereesese e seese s 111
Table 19. list_typesin the Queue RECOrd..........ccevvveeerereeesere e 112
Table 20. Queue-Record OPErationsScccvvereeeresesenesesese e eese e eseeneens 115
Table 21. Charactersin phone NO Field........cooeeieieieie e 116
Table 22. Transmission Steps and record_control Field Values............ccccceueene 120
Table 23. Values and Flags of the record_control Field.........ccccoovvvviviviiniennne 121
Table 24. Values of thesignal_quality Field........ccccooeveievenese e 124
Table 25. Values of thesignal_strength Field ... 125
Table 26. Facsimile Session PhESeS ... 130
Table 27. Queue Record Default VAIUEScccceevveeceeiee et 134
Table 28. Symbolic Constants for gfqGetPath().........cccovvevvrieiieveninse e 141
Table 29. List Names Used with gfginsertONne()cccevvveveenesevenesievesieseseens 143
Table 30. gfglnsertPlist Phone Number Record Structure............ccoovevvvvniennnne 146
Table 31. List Names Used with gfginsertPlist()........ccoevvvvenivieseninsieseneneneens 147
Table 32. Environment Variables for gfgSearch()......ccccvvvvvvievevencenceseseneseens 154
Table 33. Values Written by gfqSubmit() to Queue Record Field 156
Table 34. Events and Data Associated with GRT_EVENTccccocvevvivviviennne 167
Table 35. Event BreakpOiNtScccoceveverieiesese et eee e seense e 197
Table 36. Fieldsin the Status-File Header ... 212
Table 37. gfdRemoteRequest COMMANGS...........ccveveieerieriereereereeseereeeeseeseesee s 221

Table of Contents

Table 38. Event Identifiers and Default ACtIONSccovveennncenncec e 224
Table 39. Status ReCOrd FieldS.cccviviirrreienieeseesese s 256
Table 40. Status-Table FUNCLIONS.........cvoereieeers s 259
TADIE AL, CP_SEALESeveueeveieeeerie ettt sttt sttt s n b nne s 262
Table 42. Fieldsin the Status-File Header ... 270
Table 43. GFSH COMMANGS........coeirerrereereeee e 291

Xi

GDK Version 5.0 Programming Reference Manual

Xii

Table of Contents

List of Figures

Figure 1. GDK ArChItECIUIE......ccueiveie ettt et 10
Figure 2. System Services Control Pan€l...........cccceeeveveeeiecieieseece e 12
Figure 3. GRT EVENES......ccicicieeiese ettt st st eneas 162
Figure 4. GRT APl SHUCIUIE........cceeeeceieeeseee e sies ettt eenen 163
Figure 5. Event BreakpoiNtS........ccveeeeeiiereeresesesesee e e sre e sse s seseeaeneeneas 196
Figure 6. Bitsinthe gfxStatus Field..........ccccoovvenivienecineceee e 260
FIQUIE 7. CP_ SEAESecueeeeeeeieseese e st te sttt e e se et e st st tesresresresneeneas 261

Xiii

Preface

Purpose

The purpose of this manual is to describe Dialogic's GDK system architecture,
detail the programming models and their associated Application Programming
Interface (API) function calls, and provide instruction on fax application
programming.

Audience

This manual is designed for fax and voice software programmers developing on
the Microsoft Windows platform. Familiarity with computer telephony,

C-language programming and Microsoft Windows software development is highly
recommended.

Using This Guide

If you are new to fax application development, read Chapter 1 for an overview of
fax technology and Chapter 2 for an introduction to the fax architecture.

If you are a fax developer new to Dialogic CP Fax technology, read Chapter 2
before reading Chapters 4 and 5.

If you are already developing fax software using the DOS, OS/2 or UNIX versions

of GDK, read Chapter 5 for programming model information and function call
descriptions.

Conventions

The conventions used in this manual follow:

e Code fragments are shown in courier text:

gfgFindFirst()

GDK Version 5.0 Programming Reference Manual
e Function callsare shownin Arial text:

gfgFindFirst()

Notes and cautions are shown as follows:

NOTE: Text of note

CAUTION: Text of caution

Reference Documentation
e Error and Satus Codes Manual

* GDK Installation and Configuration Guide for Windows

1. Introduction to Fax Technology

Overview

This chapter provides a brief overview of fax technology. This chapter discusses
the following:

* History of fax

e Understanding fax technology

« Advantages of computer-based faxing
+ Standards

« Fax applications

History

Although the first successful fax was actually patented in 1843, it wasn’t until the
1930s that fax systems had evolved into the form we recognize today. In 1966 the
first fax standard was adoptdflA Sandard RS-328, Message Facsimile

Equipment for Operation on Switched Voice Facilities Using Data

Communication Equipment. This standard made more generalized business use of
the fax possible. It became known as the Group 1 standard.

In 1978, the Consultative Committee for International Telephone and Telegraph
(CCITT) came out with the Group 2 recommendation. The fax had achieved
worldwide compatibility, and this led to a more generalized use of fax machines
by businesses and the government.

By the time the Group 3 standard arrived in 1980, fax was well on its way to
becoming the everyday tool it is today. This digital fax standard opened the door
to reliable high-speed transmission over telephone lines.

GDK Version 5.0 Programming Reference Manual
Understanding Fax Technology

The major elements of fax technology include:
* Elementsof afax call

e Compression

* Resolution

* Routing

Elements of a Fax Call

The fax call elements consist of five phases:

e Establishing the call

e Pre-message procedure

e In-message procedure and message transmission
e Post-message procedure

* Releasing thecall

Establishing the Call (Phase A)

The first stage occurs when the transmitting and receiving units connect over the
telephone line, recognizing each other as fax machines.

Pre-Message Procedure (Phase B)

In this stage, the answering machine identifiesitself in a burst of digital
information packed in frames conforming to the High-Level Data-Link Control
(HDLC) standard. The caller then responds with information about itself.

In-Message Procedure and Message Transmission (Phase C)

Thisisthe actual fax transmission part of the procedure. The in-message
procedure and message transmission occur simultaneously. The in-message
procedure deals with synchronization, line monitoring, and problem detection.
Message transmission is the actual data transmission. Once a page/file has been
transmitted, the next phase begins.

1. Introduction to Fax Technology
Post-Message Procedure (Phase D)

After a page has been transmitted, the sender and receiver revert to the pre-
message procedure modulation rate. If the sender has more pages to transmit, the
in-message procedure and message transmission (Phase C) begins again for the
next page. After the last page is sent, the sender transmits either an End of
Message (EOM) frame, or an End Of Procedure (EOP) frame to show it is ready
to end the call. The receiver then sends a confirmation.

Releasing the Call (Phase E)

Oncethe call is complete, the side that transmitted the last message sends a
Disconnect (DCN) frame and hangs up without waiting for a response.

Compression

One of the most important components of a successful modern fax call is
compression technology. The various compression encoding schemes used for fax
remove redundancy from scanned material and restore the data at the receiving
end. Using any of the compression schemes shortens transmission times and
reduces errors.

Resolution

Fax images are made up of dots. Resolution refers to the size and density of the
dots used to portray an image. There are two resolutions widely used by fax
machines and fax boards: standard and fine. Fine mode contains twice as many
dots per inch than the standard mode, which means the quality of the image on the
receiving end is clearer. However, with more dots per inch, the file is bigger, and
it takes longer to transmit the file across the telephone line.

Routing

Recent enhancements such as fax security and private mailboxes have created a
need for a routing mechanism. Three types of routing mechanisms include:

e Dua-Tone Multi-Frequency (DTMF)
» Direct Inward Dialing (DID)
e T.30 subaddress

GDK Version 5.0 Programming Reference Manual
DTMF Routing

DTMF routing uses the buttons on a touch-tone telephone. The disadvantage of
DTMF isthat the sender needs an extension number as well as a telephone
number.

Direct Inward Dialing

DID is generally considered the most fool proof, transparent routing alternative.
All the sender doesis dial asingle telephone number, and the fax is sent directly
to the recipient’s workstation.

T.30 Subaddressing

A subaddress encodes a numeric string identifying the recipient into the
information exchange that occurs in Phase B of the fax call.

Advantages of Computer-Based Faxing

Computer-based faxing (CBF) allows PC users to send and receive faxes using
graphic and text files. Advantages of computer-based fax include:

e High-quality output

» Convenience

« Progress monitoring

« Time and effort savings

High-Quality Output

CBF generally provides a higher quality document than the traditional fax
machine. With CBF, the computer can convert the document into an image

without degrading the sharpness, which can occur with the scanners in fax
machines. This conversion improves the faxed image’s appearance.

Convenience

CBF is more convenient to use than fax machines, especially for documents
created or stored in computer systems. It is easier to send a fax directly from the

1. Introduction to Fax Technology

computer than to print a copy of the document and manually send it from afax
machine.

Progress Monitoring

CBF can monitor the progress of the outgoing fax transmission, and give you
status on each transmission depending on the outcome of the call (i.e., sent, busy,
failed, etc.).

Saves Time and Effort

Computer-based fax saves valuable time and effort. The name and fax numbers of
recipients only need to be entered once in the computer. Then, any time you want

to send a document to someone whose “fax address” is stored in the computer,
you can easily select the name in the computer instead of re-entering the phone
number into the fax machine. This feature is especially useful when sending out
multiple copies of documents; no more standing at the fax machine sending faxes
one at a time.

Standards

The ITU-T is one of four permanent parts of the International
Telecommunications Union (ITU), based in Switzerland. It issues
recommendations for standards applicable to modems and other areas. The
standards it recommends are generally accepted and adopted by the faxmodem
industry.

In order for a fax device to be allowed to connect to the public telephone system
in another country, it must first be approved by the national Post Telephone and
Telegraph (PTT) administration. Standards are available from this website:

http://www.itu.ch/.

GDK Version 5.0 Programming Reference Manual

Fax Applications

Asfax technology continues to develop, new applications appear to fill the needs
of users. The major growth areas for CBF include:

e E-mail Fax Gateways

¢ Mini/Mainframe Fax Servers

* Fax Store-and-Forward Systems

¢ |mage Systems

* Integrated Voice/Fax Systems

e Vertical Fax Applications

* Public Fax Services

2. GDK System Architecture

About GDK for Windows

GDK consists of afax channel and communication software, which provides many
features and capabilities for fast, convenient fax transactions. Some of the
standard features include:

Sending one or more faxes to multiple locations (broadcasting)

Sending files using binary file transfer (T.434)

Recording the status of incoming and outgoing faxes

Sending and receiving afax on the same phone call (turnaround polling)
Setting the fax transmission rate

Delaying fax transmission

Using T.30 subaddressing

The GDK system software provides the subsystems required to develop afax
application. The system software includes a fax subsystem compatible with
Windows NT. The fax subsystem consists of the Dispatcher, the Queuefile, the
firmware, and the programming tools to control these components. The GDK
contains the functions you need to build afax application.

GDK Version 5.0 Programming Reference Manual

Applications Application Layer
GFQ GRT Gammalink API
A
h 4
GammaLink Fax Subsystem
Queue File
A
v v

Dispatcher

‘ ‘ Hardware
GammalLink GammalLink GammaLink
Board Board Board

Figure 1. GDK Architecture

Refer to Chapter 5, “Programming Models”, for a complete description of the
base GDK functions.

Refer to Chapter 6, “Developing with PEB”, for a description of the functions
needed for PEB routing.

Refer to Chapter 7, “Developing with SCbus”, for a description of the functions
needed for SCbus routing.

Refer to Chapter 8, “Fax Status Files”, for a description of GDK system status and
configuration functions.

Minimum System Requirements

The following hardware and software are required:
« Dialogic CP Fax Series board (s)

* GDK for Windows software, version 5.0 or later

10

2. GDK System Architecture

« Pentium® system

e Microsoft Windows NT operating system, (workstation or server) version 4.0
or later, or Microsoft Windows 2000

About the Dialogic CP Fax Series Hardware

Each fax channel (or cell) consists of a microprocessor-based facsimile modem,
RAM, CPU, and a telephone network interface. These components allow each
channel to function as an independent, computer-based subsystem interfacing with
the host computer.

There are two types of CP hardware: analog and digital. The analog CP boards
have lower channel density and contain on-board tel ephone network connectors.
The digital CP boards have much higher channel density, but require a separate
telephone network interface device to communicate with the PTT system.

Most of the analog CP product line is available internationally, depending on the

homol ogation status of the hardware model. The digital boards do not need
homol ogation certification, as they do not have an on-board telephone connector.

Firmware Features
The faxcell firmware included with the software is for usein the US and in

international countries. Refer to the Documentation directory of the product CD
for additional updated information about the firmware.

GDK System Components

Device Drivers for ISA and PCI

The software contains two kernel-mode device drivers. The | SA bus device driver,
glfxisa.sys, only communicates with the Dialogic CP Fax Series | SA boards; and
the PCI bus device driver, glfxpci.sys, only communicates with the Dialogic CP
Fax Series PCI boards.

11

GDK Version 5.0 Programming Reference Manual
Firmware Download Utility

The firmware download utility, %gfax%\glfxdldr.exe, is used by the Dispatcher

during service startup to download the GDK fax channels. This utility can also be

run from the command-line in a console window. For trouble-shooting purposes,

the option ‘-v’' can be appended to the utility name to see verbose output when
running from a console window. The filename stored for the firmware command
can be configured with the Dialogic GDK Configurator utility. Refer toGBK
Installation and Configuration Guide for Windows for more information.

The GDK System Service (the Dispatcher)

The GDK System Service (also called the Dispatcher Service) is the operating
system dependent interface to both the fax channels and to the API library. This
service can be configured from the Control Panel Services Applet (Figure 2).

Services |
Service Status Startup Close
Computer Browser Marwial ;I
DHCF Client Dizabled Start
Dialogic System Service bl arwaal
Directary Replicator [GEGUE]
EventLog Started Automatic
Eanse

FTP Publizhing Service Started Automatic

‘GammaLink m Service ERE] Gl
Gopher Publizhing Service Started Automatic —
Licenze Logging Service Started Automatic

. Startup...
Mezzenger Started Automatic ;I

Hw Prafiles. .
Startup Parameters:

WUddRR)

Figure 2. System Services Control Panel
You can start and stop the GDK System Service from the Control Panel Services

Applet, the Start GDK System Service Program in the GDK program group, or
from a Command Prompt console window.

12

2. GDK System Architecture

The GDK System Service outputs information to the following files:

%GFAX%\gfdNT.log Provides startup and shutdown status information, as
well as automatic board detect results and
configuration files created.

%GFAX%\gfax.$co Dispatcher "stdout" output. Thisfileis kept open until
the Dispatcher exits.

GDK Dispatcher as a Windows System Service

There are two processing models; batch processing mode and interactive
processing mode. The Dispatcher acts as afax scheduler in the batch processing
mode, finding an available line on any GDK port in the chassis and sending
records to the CP Fax board for transmission.

In the interactive processing model, the Dispatcher is the intermediary between
the application and the GDK ports. The application is the fax scheduler. It can be
programmed to NOT post the compl eted queue record to the queue file.

The Dispatcher supplies queue records to the firmware. It also can reserve buffer
spacein RAM for these records to improve system performance. The number of
record buffersin a system is configured by the BUFFERS command. The
recommended buffer number istwo per fax channel, and each record requires 516
bytes.

The QUEUET command determines the time in seconds that the Dispatcher scans

the Pending List for new jobs. When the QUEUET timer expires, the Dispatcher
starts at the beginning of the Pending List. It then loads and marks “BUSY” as
many queue records that are ready for transmission as it has buffers available.

When the record is passed onto the channel, an additional bit is set indicating that
the record is off host. When the system sees a record with this bit setting, it does
not disturb the record while it is in a buffer or being processed by the firmware.
Several records can be marked BUSY even when there is only one fax channel in
the system.

Although the original record may be undisturbed in the Queue File, a record
marked “BUSY” indicates that a copy of the original is in the record buffer of the

13

GDK Version 5.0 Programming Reference Manual

Dispatcher or is held by the firmware. The Dispatcher overwrites the original
record with updated information when the transaction compl etes.

Once aremote site confirms a transmission, the Dispatcher sends a confirmation
to the Queuefile. If atransmission fails, the dispatcher notifies the Queuefile,
which records the appropriate error message for the failed transaction.

Network Drive Access

The GDK System Service must be configured to provide access to network drives
using drive letter notation (i.e., "p:\public\fax\received\..."). These network drives
can be on either Novell or Microsoft servers. For the network drive accessto
work, the Dispatcher has to be logged into the server where files are located (for
sending), and where they will be located (for receiving). This task must be
performed after the installation completes. Follow these steps to log the
Dispatcher into the server:

1. Activate the Control Panel icon and select Services.

2. Select GDK System Service. After pushing the Startup button, a dialog box
appears, alowing the user to select the Startup Type (Automatic, Manual or
Disabled). Below these choices is the section called Log On As. The default
install specifies “System Account.”

3. Choose the radio button for “This account.” This activates the three entry
boxes. Type in a user name whose account allows access to the server in the
first box. The second box requires the password, and the third is password
confirmation box.

The GDK System Service

The GDK Service depends on the successful start of the device driver service and,
in certain configurations, the Dialogic service. The GDK System Service
configures the fax channel and the GDK system using the information stored in
the registry.

GDK Service Dependencies
The GDK will configure the GDK System Service dependencies based on the CP

Fax Series hardware detected in the system. The GDK System Service depends
on:

14

2. GDK System Architecture

* ISA driver service, glfxisa, if ISA fax hardware is detected
e PCI driver service, glfxpci, if PCI fax hardware is detected

» Didlogic service, if digital fax boards (i.e. fax hardware with CP4/SC,
CP6/SC or CP12/SC board types) are detected

The hardware driver service dependencies are required for communication with
the CP Fax Series hardware. The Dialogic service dependency is required for an
SCbus-system configuration.

About the Firmware

The firmware is the on-board software that manages the fax transactions and
image conversions for each fax channel. The firmware drives the GDK system,
telling the GDK System Service when it is ready for more work and when it needs
to be serviced. The firmware is downloaded on to each fax channel during GDK
system startup.

About the Queue File

The Queue File operates as the database for the Fax subsystem in the batch
processing mode. It stores the fax transmission(s) until the Dispatcher requestsit.
The Queue File stores future transactions as well as results of past transactions.
Transmission statistics regarding each completed transaction are stored in the
gueue record. For more information about the Queue file, see Chapter 4.

GDK System Features

TIFF Capability

GDK supports Group 3 1-D and 2-D T.4, and Group 4 T.6 compression. The type
of compression may be selected for both sending and receiving fax files on each
fax channel individually. The selection is controlled by the following:
GFXFORM, GFXSTWOD, GFXRT6, GFXRTWOD, GFXST6.

15

GDK Version 5.0 Programming Reference Manual

When sending files, GDK supports these formats:

e« ASCII text
 TIFFType3

« TIFFType32-D
o TIFFType4

+ PCX

Thefile format is determined by the header of the data.

Tag Fields Supported

GDK currently supports and produces the tags for the TIFF fieldslisted in

Table 1.

NOTE: Only one TIFF strip is generated per fax page. Each page may be a

separate, sequentially-named file or amultiple-image TIFF file.

Table 1. GDK TIFF Tags

Tag No. | Name Data Type |Description
-1 ByteOrder int? Order of bytes:
Il (0x4949) = Intel; required for
GDK
MM (0x4D4D) = Motorola
254 NewSubFileType |long® A 32-hit flag indicating the type of
data contained in this subfile.
256 ImageWidth long? Number of pixels per scanline.
1728 for A4 or letter
2432 for A3
2048 for B4
257 ImagelLength long? Number of scanlinesin image.
258 BitsPerSample unsigned? Number of bits per pixel sample;

only “1” for fax.

16

2. GDK System Architecture

Tag No. | Name Data Type |Description

259 Compression unsigned? Type of compression. Possible
values:
1 = no compression
(not supported)
2=CCITT G31-D, no EOL
(not supported)
3=CCITT 1-D, with EOL or
1-D/2-D combined
4=CCITT G4
5=LZW compression
(not supported)
32773 = PackBits (not supported)

262 Photolnterpret unsigned® Photometric interpretation.
Possible values:

0 = black on white (Default)
1 =white on black
2 = RGB scheme (not supported)

266 FillOrder unsigned? Order of the image bits, in bytes.
Possible values:

1 = most significant bits arefilled
first

2 = least significant bits arefilled
first (Default)

269 DocName char® The name of the document from
which thisimage was scanned.

270 Description char A comment about the image.

273 StripOffset long? For each strip, the byte offset of
that strip with respect to the
beginning of the TIFFfile.

277 SamplesPerPixel | int? Number of samples need to define
apixel. Possible values:

1 = monochromatic data (Default)
3 = color data (not supported)

17

GDK Version 5.0 Programming Reference Manual

Tag No.

Name

Data Type

Description

278

RowsPerStrip

long?

Number of scanlines per strip.
Multiple strips are not supported.

279

StripByteCounts

long?

Length of astrip.

282

X_Resolution

int?

Pixels per resolution unit in the
horizontal direction. Default = 204.

283

Y _Resolution

int?

Pixels per resolution unit in the
vertical direction. Default values:

98 = standard resolution
196 = fine resolution

286

OffsetX

long®

Offset of the left side of the image,
with respect to the left side of the
page, in Resolution Units.

287

OffsetY

long®

Offset of the top of the image, with
respect to the top of the page, in
Resolution Units.

292

Group3Options

long*

32-bit flag describing options.
Possible bit values:

0=1-D compression used
(Default)

1 =2-D compression used

2 = uncompressed data may be
used (not supported)

4 = guaranteed byte alignment

293

Group4Options

long®

32-bit flag describing options.
Value must be zero.

296

ResolutionUnit

int®

Unit of measurement to be used
with X_Resolution and
Y _Resolution. Possible values:

1 = no unit of measurement (not
supported)

2 = inches (Default)
3 = centimeters

18

2. GDK System Architecture

Tag No. | Name

Data Type

Description

297 CurrPageNum int®

Page number and number of pages
in amultiple-pagefile.

326 BadFaxLines long®

Number of scanlines with an
incorrect number of pixels (TIFF
ClassF).

327 CleanFaxData int®

Describes how the data was
cleaned. Possible values (TIFF
ClassF):

0 = data contains no lines with
incorrect pixel counts or
regenerated lines (Default)

1 = lines with incorrect pixel count
were regenerated on receipt

2 =lineswith incorrect pixel count
existed, but were not
regenerated by receiving device

328 ConsecutiveBad | long®
FaxLines

Maximum number of consecutive
fax lines that contain an incorrect
number of pixels (TIFF

ClassF).

Not defined as a tag
Required for GDK
Optional

a A~ W N P

Filenaming Convention

Recommended for compression 3 only (see TIFF Tag No. 259)

Recommended for compression 4 only (see TIFF Tag No. 259)

GDK has a number of filenaming conventions, which depend on the type of file.

The following discusses these conventions.

19

GDK Version 5.0 Programming Reference Manual

Received Faxes
A received fax file is given the following default name:
a001p00L.tif, where “a001” is the fax-call number, “p001” is the page number of

the document, and the extension “tif” indicates that this is a TIFF file. For
example:

a004p008.tif indicates the fourth call received and the eighth fax page
a002p001.tif indicates the second call received and the first fax page
a004p004.tif indicates the fourth call received and the fourth fax page

In multiple-channel systems, the first letter will be an “a” for channel 1, “b” for
channel 2, and so on. Depending on the filename format, multiple pages can be
received per call (Table 2). The default filename format can be set by the
GFXRECVPATH command or through the queue record filename and operation
fields. The operation field must be set to ANSWER_DEFAULT. For more
information, see Chapter 4.

Table 2. Filename Formats for Receiving Multiple Pages

Filename Format | No. of Page/Call
f0001p01.tif Up to 99
f001p001.tif Up to 999
f01p0001.tif Up to 9999

Receive Faxes in Multiple-lmage TIFF Files
Multiple-page faxes may also be saved in one multi-page TIFF file. This option is

turned on using the gfccontrol 36 command. For more information, refer to
Chapter 3.

Multiple-Page Documents
The GDK channels automatically sends any filename and includes sequentially-

numbered pages without them being explicitly specified. For example, to fax a
three-page document named:

20

2. GDK System Architecture

fileOOL.tif
fileOO2.tif
fileOO3.tif

only the filename of the first page (file001.tif) should be specified for the filename
to send.

If the filenames of all three pages are specified, the recipient will first receive
these pages:

fileOOL.tif

fileOO2.tif
file003.tif

then:

fileOO2.tif
fileO03.tif

and finally:
file003.tif

Thisis because GDK automatically looks for subsequently named files.

Controlling Next File Send Option

Thisfeature lets you indicate whether to send the next file in the file sequence.
When files are stored, each page associated with thefile is saved using a
numbering sequence (i.e., fax001.TIF, fax002.TIF, or dataO01.DAT,
data002.DAT etc.).

Y ou can specify whether or not to send the next file in the sequence by appending
a command-line option to the end of the filename. This featureis enabled or
disabled on ajob-by-job basis.

21

GDK Version 5.0 Programming Reference Manual

Table 3 shows the next file send command options.

Table 3. Next File Send Options

File Type

Command Line
Options

Description

Default Setting

Single-page Fax
File Sequence

-NPO

Disables sending
of the next file in
the sequence

Single-page Fax
File Sequence

-NP1

Enables sending
of the next single-
page file in the
sequence.
Specifies that
other files in the
sequence will be
sent (if any others
exist).

Default single-
page fax file
setting

Multi-page Fax
File Sequence

-NPO

Disables sending
of the next file in
the sequence

Default multi-page
fax file setting

Multi-page Fax
File Sequence

-NP1

Enables sending
of the next file in
the sequence.
Specifies that
other files in the
sequence will be
sent (if any others
exist

BFT File
Sequence

-NPO

Disables sending
of the next file in
the sequence

Default BFT file
sequence setting

22

2. GDK System Architecture

File Type Command Line | Description Default Setting
Options

BFT File -NP1 Enables sending

Sequence of the next file in

the sequence.
Specifies that all
other file in the
sequence will be
sent (if any others
exist).

Binary File Transfer

GDK supports Binary File Transfer, which conformsto the T.434 BFT standard
protocol. BFT reception can be enabled for T.434 BFT on a per-channel basis
with the following command:

GFXFAXCONTRCL 1020 1
or on a per-job basis by setting the queue record protocol field.

BFT transmission can be enabled per channel with the following command:

GFXFAXQONTRCL 1021 2

or on a per-job basis by setting the queue record protocol field.

NOTE: The GFXECM command must be set in order for BFT to work. If file
transfer is used, the received filename will be alist of filesin the format
xxXXXFER.FLS. Thislist will contain the name of the file that was
received, which will be the same asthe original sent filename, aslong as
the DOS xxxxxxx.yyy format is observed, and the filename does not
already exist on the target drive. The “f001p001” filenaming style is used
if the sent filename already exists, but the original filename will be
included in parentheses next to the filename that was written in the list.
For example, AOO1XFER.FLS could contain:

C\RECW\TEST.TXT
c:\RECV\A001P001.TIF (TEST.PCX)

23

GDK Version 5.0 Programming Reference Manual
Routing

Recent enhancements such as fax security and private mailboxes have created a
need for arouting mechanism. Four types of routing mechanismsinclude: Dual-
Tone Multi-Frequency (DTMF), Direct Inward Dialing (DID), T-1 digit
collection, and a T.30 subaddress.

About the DTMF Capability

Most CP Fax Series boards have the ahility to decode and store incoming touch-
tone (DTMF) digits. With the ability to capture incoming DTMF digits,
applications can be built to utilize this information for specialized tasks, such as
sending out information in response to incoming calls.

For example, if an information service wanted to fax weather maps on request, it

could assign DTMF digits to specific geographic areas. A client wanting a weather

map of Northern California, for example, would be instructed to call a certain fax
number and, at the tone, enter the assigned DTMF digits. GDK would receive the

call and record the digits. The application would check the GDK records, load the
transaction, and send the map to the caller’s fax machine. Additionally,
applications such as a network fax server can use this feature to provide security
of information, because a workstation may be assigned specific digits. For
example, only the intended recipient can view faxes sent to these digits; thus,
access to incoming information can be controlled.

How GDK Works With DTMF

When a call is made to a CP Fax Series board that can detect DTMF tones, the
board responds with a tone that is different from the fax tone, which signals the
caller to enter the DTMF digits. After the DTMF digits are entered, the board
responds with the fax tone, which signals the caller to activate the fax machine to
send the fax. The CP Fax board receives the fax, and terminates the connection. If
no tones are received, it waits for a designated time period and then continues
with fax tone, assuming that a fax is on the other end.

After the connection is terminated, the fax board creates a queue record containing
details of the transaction, including the DTMF digits. If the Dispatcher is running

in batch processing mode, the queue record is then filed in a database called the
Queue File. If the Dispatcher is running in interactive processing mode, the queue
record is sent directly to the application. From there, an application takes over and
uses the information stored in the queue record to carry out the next task.

24

2. GDK System Architecture

To take advantage of the DTMF digits, callers must be instructed to use the
appropriate digits at the DTMF tone. However, if a caller or an unattended fax
machine transmits at the DTMF tone, GDK will accept the transmission and post
the transaction without digits to a queue record. If this occurs, the fax must be
routed manually.

Using the DTMF Capability

DTMF digit collection is a channel-specific feature. The following commands
need to be set for each channel to enable the use of DTMF:

GFXDIGITS Sets the number of DTMF tones that can be entered by
a sender

GFXDTMFTIMEOUT Setsthe timeouts for waiting for DTMF input

GFXDTMFTONE Specifies DTMF tone to issue when answering a call

Storing Routing Digits

When afax isreceived, GDK storesthe DTMF digitsin the user_id field of the
corresponding queue record in the Queue File. Then, an application can use this
information for specialized tasks. A network fax server, for example, could use
these digits to route incoming faxes.

The user_id field can contain atotal of 34 characters. However, storage for only

24 charactersis available, because other information, such as the user

identification, may be stored in thisfield. (If no user identification is specified,

“SYSOP” is used as the default.) GDK can handle up to 63 incoming digits;
however, this will not be necessary in most cases. When it is necessary to store a
large number of routing digits (such as a credit card number or a security code),
this information will be stored on disk as a file. If the number of digits received is
larger than the queue record can hold, a file will be created containing the digits
followed by a null character. The decision to create a file is made on a call-by-call
basis, because terminated input may not contain the quantity of digits specified by
the GFXDIGITS command.

The name of the file that is created is appended to the user_id field as follows:

:D=@<filename>

25

GDK Version 5.0 Programming Reference Manual

where “@” signifies that a filename is being given. The filename will be in the
form:

FO00001.DGT

where “F” is the channel number. The filename digits increment for each
subsequent transaction.

Direct Inward Dialing (DID)

Direct Inward Dial (DID) capability is only available to CP Fax Series hardware
with a DID interface. Refer to the CPD/220 hardware installation manual for
further information on configuring your system for use with DID lines and about
DID lines in general. The major advantage of routing using DID service is
simplicity for the caller. The caller dials a single number and the central office
(CO) extracts the routing digits from the inputted number, rather than have the
caller input the digits at the DTMF tone after dialing the fax number. Enabling
DTMF capability and the process of storing the routing digits are the same as
described above, with the exception of no tone being needed to prompt the user.
The GFXDTMFTONE command should not be used with DID setups.

T-1 Digit Collection

The CP Fax Series board is also capable of collecting digits automatically from
the telephone company using a T-1 trunk. A CP4/SC, CP6/SC, or CP12/SC board
is connected to a T-1 interface board via a PEB in a fax-only system (i.e., no voice
boards on the PEB). The most common telephone interface board for this
configuration is the Dianatel EA24. The commands to set up digit collection are
the same as for the DID, including not using the GFXDTMFTONE command.

T.30 Subaddressing

T.30 subaddressing allows a string of characters and numbers to be sent with the
fax. This string is known as the subaddress. It also allows fax servers to do routing
based on this subaddress.

GDK supports T.30 subaddressing, but it is disabled by default. Add the following
command to enable T.30 subaddressing for each channel requiring this routing
capability:

GFXFAXCONTRCL 71 1

26

2. GDK System Architecture

Sending a Subaddress
The subaddress is appended to the end of the dialing string starting with a#.

NOTE: The# isthe default string delimiter. The start string delimiter can be
configured using the GFXFAXCONTROL 73 command.

For example, to send afax to 555-1212 with a subaddress of 9873, the appropriate
dialing string should be: 555-1212#9873.

Receiving a Subaddress

The subaddress is stored in the USERID field of the queue record. To indicate
that the USERID field contains a subaddress, the USERID field will start with
S=.

For example, if afax was received with a subaddress of 9876, it would be
represented in the USERID field as SY SOP;S:=9876.

Recording Line Noise

In the Answer-and-Receive mode, GDK can record the line noise and the status of
telephone-line signals received during training. This information can then be used
to determine the quality of atelephoneline. If thereis any fluctuation in the
readings, be sure to receive a sufficient number of faxes to determine whether a
problem istransitory or chronic.

Transparent PRI Support

Transparent PRI Support is an easy way to support the High-Density PRI
solutions. This alows FSP developersto create ISDN PRI solutions to handle the
PRI interfaces and the FAX resources without re-writing application code. The
registry parameters that have been added to provide the Transparent PRI Support
are defined in the New Parameters section in Chapter 3, Configuration Commands
of this guide.

27

GDK Version 5.0 Programming Reference Manual
GDK System Configuration

The configuration parameters for the GDK software are now stored in the registry.
The configuration can be changed using the Dialogic GDK Configuration utility.

Control Panel Configuration Utility

The automatic board detection and configuration processes are controlled by the
services control panel applet. For more information, refer to the GDK Installation
and Configuration Guide for Windows.

Setting the Country Code Properly

The COUNTRY command is required by the GDK firmware for proper operation
of the fax channel. The COUNTRY parameter defines the country where the fax
board has been designed to operate in, not the country where the board is
currently installed. The firmware needs this information to select the correct
electrical characteristics and PTT modem parameters.

NOTE: The correct COUNTRY parameter code should be the country or
countries specified on the hardware packaging materials. If the packaging
materials specify more than one country, set the COUNTRY parameter
code to the country in which the board is installed (the country must be
one of the approved countries).

If the fax board is connected to a programmable PBX, the correct COUNTRY
parameter code will depend on the following:

« theline characteristics generated by the PBX

e thecountry or countries for which the board has been designed

If the fax board has not been designed to recognize the line characteristics of the
telephone network connection, it will not function properly.

Country Codes and Call-Progress Error Codes

Country codes are the prefixes used for international calls. They also serve as
configuration values for the GDK software, setting up the date stringsthat arein
the correct format for the specified country and activating country-specific dialing
schemes in the software. GDK provides call-progress error codes that can help

28

2. GDK System Architecture

debug international calls. Refer to the Error and Status Codes Manual for alist of
error codes.

Enabling Debug

Traditionally the GDK System Service has only allowed debug logging to atext
file caled %GFAX%\GFAX.$DL. Enabling debug is accomplished by the
following command:

HKEY_LOCAL_MACH NE\ SCFTWARE\ GanmraLi nk\ _gl obal

DEBUG

The DEBUG command is configured by one or two parameters whose mask
values are defined in Table 4 and Table 5.

In addition to the DEBUG command, more options are available. With this
release, the GDK System Service logs debug trace information to shared memory
and only saves debug log information to file, if configured to do so. The level of
trace information logged to shared memory and the level of trace information
logged to atext file is separately configurable through various bit mask values. In
Transparent PRI mode, the GDK system also provides access to Dialogic’s PRI
Trace logging functionality.

In addition to the existing DEBUG command, logging is now enabled and
configured by setting the following commands:

HKEY_LOCAL_MACH NE\ SCFTWARE\ O al ogi ¢\ Gammal i nk\ Debug
UseSRAM
SRAMVask
LogFil e
LogFi | eMask
DebugToSRAM

UseG-AX$DL

29

GDK Version 5.0 Programming Reference Manual

Debugging is enabled by first setting the UseSRAM command to a string value of

either "yes" or "no".

NOTE: If UseSRAM isset to "no", none of the other debug commands,
including the existing DEBUG command, are enabled.

Thelevel of debug information sent to shared memory is configured by setting
SRAMMask to a bit mask whose value is defined by OR’ing the bits specified in
Table 6. Saving debug trace information to atext file is enabled by setting the
LogFile command to afull path and filename. The level of debug information
written to the text file is configured by setting the LogFileMask to a bit mask
whose value is defined by OR'’ing the bits specified in Table 6. See GDK 5.0 New
Parameter Summary for more information about these commands.

NOTE: Do not save log information to atext file during normal operations; asit
isdisk intensive and will grow too large.

The functionality of the DebugToSRAM and UseGFAX$DL commands depend
on the traditional DEBUG command being enabled. Setting the DebugToSRAM
command to "yes" will include traditional DEBUG information in shared memory.
Setting UseGFAX$DL to "yes" will save only traditional DEBUG information to
atext file called %GFAX%\GFAX.$DL. These two commands are provided to
maintain backward compatibility with the traditional DEBUG mechanism of
logging to atext file.

Thetraditional DEBUG command provides system level and fax call progress
diagnostic information. The level of detail and category of information provided is
determined by the DEBUG command’'s mask value. The DEBUG command can
contain two parameters; the second is optional. The first parameter specifies
system leve trace information; the second parameter specifies channel (or
firmware) level trace information.

The debug mask value specifies the type and level information written to the log
file. Table 4 defines the mask values for the DEBUG command’ s first parameter.
Table 5 defines the mask values for the DEBUG command’ s optional second
parameter.

NOTE: The DEBUG command requires the high-order byte and the low-order
byte of each parameter to be the same.

30

2. GDK System Architecture

Table 4. Mask Values for DEBUG Parameter 1

Category Mask Description
Global diagnostics 0x01 Enables the logging of
SErious error messages.
Board messages 0x02 Enables board debug
messages.
Polling diagnostics 0x04 = Type only Reports every request the
board makes of the
stem Service.
0x08 = Type and ¥ .
parameters Reports additional
parameters for each
transaction.

0x0C = Full trace

Reports every poll along
with details of internal
packet.

Messaging diagnostics

0x10 = Connections
0x20 = Transactions
0x30 = Full trace

Reports the results of
event netification and
remote status and control
operations. (Itis
recommended that 0x30
not be used.)

Queuefile diagnostics

0x40 = Transactions
0x80 = All messages
0xCO = Full trace

Reports accesses to the
Queuefile.

31

GDK Version 5.0 Programming Reference Manual

Table 5. Mask Values for DEBUG Parameter 2

Category

Mask

Description

Global diagnostics

0x0100

Enables error messages
from the card and from
failed faxes. Shows sent
and received CSID
values, aswell asthe
phone number dialed.

T.30 diagnostics

0x0400

Enables all the above
plus DIS bitsand DCS
bits sent and received.
Also logs messages about
image compressions and
conversions written to
disk.

Total diagnostics

0x0800

Enables all the above
plusinformation in the
gueue record before
being processed. Also
logs information on the
file and image being sent.

Table 6. Mask Values for SRAMMask and LogFileMask

M nemonic

Bit

Description

DMASK_ERROR

A critical error occurred
either at FAX or PRI
level

DMASK_DIALERROR

Failures on Dialogic
functions

DMASK_GENERAL

Genera Information
(e.g. Number of
channels, Version
numbers)

32

2. GDK System Architecture

[

Mnemonic Bit Description
DMASK_REGISTRY 3 Registry (read / write)
related activity
DMASK_ERR REGISTRY | 3 Registry error related
info
DMASK_GLCOMMAND 4 GDK related commands
(e
GFXSHUTDOWN,
GFXRECORD, ...)
DMASK_GLQSUBMQREC | 5 On-hold, Free related
activity
DMASK_GLPIPEOP 6 Pipe related activity
DMASK_ GLMSG 7 Device related activity
DMASK_ SCBUS 8 SCbus related activity
DMASK_SCMANAG 9 Resource managemen
activity
DMASK_DIALMSG 10 Dialogic General
information (ISDN
frame, D-Channel, ...)
DMASK_DIALCMD 11 Dialogic commands
related information
DMASK_SPECIAL 12 Dialogic special
functions
DMASK_DIALEVENT 13 ISDN Event related
information (all ccev
events)
DMASK_DIALCC 14 Call control related
information (all cc
commands)
DMASK_DIALINFO 15 Dialogic / GDK
interaction and board
handles info.
DMASK_FIRMWARE 16 Debug information

specific to Firmware

33

GDK Version 5.0 Programming Reference Manual

Mnemonic Bit Description
DMASK_DISPATCHER 17 Debug information
specific to Dispatcher

NOTE: Thereare 32 possible Debug Levels. Undefined Debug levels are
reserved for future use.

Enabling Transparent PRI Debug

When Transparent PRI mode is enabled in the GDK System Service, the
UseSRAM command is automatically enabled. Trace information about the ISDN
and FAX resourcesis provided during system startup and initialization (this
information is not outputted in non-ISDN mode).

In addition, the Dialogic ISDN cc_Trace logging mechanism is available by
setting the following commands:
HKEY_LQOCAL_MACH NBE\ SCFTWARE\ Di al ogi ¢\ Gammal i nk\ Debug
TraceTr unkNunber

Tr aceFi | eNane

ISDN trace is enabled by setting TraceFileNameto afull path and filename and
by setting TraceTrunkNumber to avalid ISDN trunk. The resultant file from the
TraceFileName command can be used asinput to Dialogic’s PRITRACEtool.

Debug Command Examples

To obtain debugging information for two categories, use the logical OR to
combine the hex values. For example, to get polling diagnostics for type only, the
first four digits of the mask are 0x04. Then, to get polling diagnostics for both
type and parameters, the mask is 0x08. A full trace of polling diagnostics would
be as follows:

0x04 OR 0x08 = 0x0C

where: the first byte isto file and the second byte isto screen.

34

2. GDK System Architecture

Logging of general trace information and serious error messages can be enabled
with the following parameter:

DEBUG 0x0101

The recommended debug level for most diagnostic purposes is the following mask
value:

DEBUG Oxb7b7

To obtain additional fax protocol diagnostics, also set the second DEBUG
parameter:

DEBUG 0xb7b7 0xc0OcO

Debug Setting Dependencies

Two parameters have been added that control how the Debug information is
logged:

e UseSRAM
e DebugToSRAM

The UseSRAM parameter |ets you specify whether to log Debug levels with a bit
setting of 1 to the Shared Memory. If the parameter is set to “yes” only the debug
levels having a corresponding mask set to 1 in the bit mask SRAMMask are
passed to Shared Memory.

The DebugToSRAM parameter lets you specify whether to send debug
information with Debug level DMASK_FIRMWARE if the information is
originated by the firmware (XXX_put), or DMASK_DISPATCHER if the
information is originated by the dispatcher to Shared Memory.

For more information about these parameters, refer to the New Parameters section
in Chapter 3.

35

3. Configuration Commands

Not al commands are available with every CP Fax board. For the capabilities
available on the boards installed in the host system, see the appropriate hardware
installation guide for the specific board.

The Dispatcher and the firmware may be customized with commandsin the
registry. The GDK configuration commands used in the registry and their
functions are summarized in Table 7. The remainder of this chapter isan
alphabetical list of configuration commands.

Configuration Commands Summary

NOTE: In the following table, the term “on-the-fly” refers to files converted
automatically at the time of transmission on the CP Fax board.
Table 7. Summary of Configuration Commands

Command Function

BUFFERS Sets the maximum number of queue record buf

CHANNELID Defines logical-to-physical mapping of a fax
channel.

CHASSIS Defines the number of the host machine. (alway

CONTROLT Sets the interval for checking the Control List.

COUNTRY Defines the country code for each fax channel.

CSID Sets the CSID for a fax channel.

DEBUG Sets the debug level.

FIRMWARE Downloads the onboard software for a fax chanr]

GFCCONTROL 36 Specifies that all pages of a multi-page fax be s
into one, multi-page TIFF file.

GFCCONTROL 37 Sets up flexible naming, such that the file name
provided by the application is the one used.

GFXBOTTOMMARGIN | Sets the bottom margin of the fax page for on-th
fly ASCII conversions.

ers.

s 1)

el.
aved

37

GDK Version 5.0 Programming Reference Manual

GFXCARRYON Sets the number of unacceptable pages sent before
termination.

GFXCHARSET Setsthe font dot for the default on-the-fly ASCII
CONVErsions.

GFXDID Specifies the trunk type connected to afax channel.

GFXDIGITS Sets the number of digitsto be received.

GFXDTMFTIMEOUT Sets timeout interval when waiting for digit input.

GFXDTMFTONE Specifies the tone to issue when answering acall.

GFXECM Sets the error correction mode.

GFXEXTEND Selects the ASCII character set used for on-the-fly

ASCII conversions.

GFXFAXCONTROL 29
GFXFAXCONTROL 28

Both commands, in order, allow GDK to collect
DTMF digitsimmediately after going off-hook on
an analog line.

GFXFAXCONTROL 40
GFXFAXCONTROL 41
GFXFAXCONTROL 42
GFXFAXCONTROL 43
GFEXFAXCONTROL 44

The function controls GFXFAXCONTROL 40
through GFXFAXCONTROL 44 enable the board
to send two frequencies at onetime, for agiven
duration.

GFXFAXCONTROL 71

Enables T.30 subaddressing, which allows a string
of characters and numbers to be sent with the fax.

GFXFAXCONTROL 72

Changes the wink duration when using GFXDID set
to 1 or 6 for DID wink or T1 wink respectively.

GFXFAXCONTROL 73

Specifies the T.30 subaddressing (sending) field
delimiter. Used in conjunction with
GFXFAXCONTROL 71.

GFXFAXCONTROL 74

Turns off T.30 password collection if it is not
needed by the application.

GFXFAXCONTROL 1020

Allows the reception of Binary File Transfer (BFT)
between other systems that support the
transmission of BFT.

GFXFAXCONTROL 1021

Enables the transmission of BFT transactions to
other systems capable of receiving BFT.

GFXFINE

Accepts only fine resolution incoming faxes.

38

3. Configuration Commands

GFXFORM Selects the image format of areceived fax and
sanitization of faulty scanlines.
GFXHEADER Customizes the header on outgoing faxes.

GFXLEFTMARGIN

Sets the left margin of the page for on-the-fly ASCII
CONVersions.

GFXOVERLAY Controls the overlay header feature.

GFXPAGELENGTH Sets the number of character lines per page for
on-the-fly ASCII conversions.

GFXRECM Controls receive ECM.

GFXRECVPATH Sets the directory path used for afax channel to
receive faxes.

GFXREJBURST Sets maximum number of consecutive bad scanlines
that will be tolerated before a page is rejected.

GFXREJCOUNT Sets absolute number of bad scanlines that will be
tolerated before a page is rejected.

GFXREJPERCENT Sets percent of bad scanlines that will be tolerated

before apage is rejected.

GFXRIGHTMARGIN

Sets the right margin of the page in characters for
on-the-fly ASCII conversions.

GFXRLENGTH

Selects the page length of areceived fax.

GFXRTNRETRAIN

Specifies action to be taken when anillegible page
has been sent.

GFXRTPRETRAIN

Specifies action to be taken when requiring a higher
speed or change in resolution.

GFXRT6 Controls reception of T.6 encoding.

GFXRTWOD Controls reception of Group 3 2-D line
compression.

GFXRWIDTH Selects the page width of areceived fax.

GFXSCANTIME Sets the scanline timing for incoming calls.

GFXSECM Controls send ECM.

GFXSHUTDOWN Specifies fax channel state, such as Dial only or
Answer only.

GFXSPEAKER Controls the speaker.

39

GDK Version 5.0 Programming Reference Manual

GFXST6

Controls transmission of T.6 encoding.

GFXSTWOD

Controls transmission of Group 3 2-D line
compression.

GFXTOPMARGIN

Sets the top margin of the fax page for on-the-fly
ASCII conversions.

GFXWAIT Sets the wait-for-answer time in seconds for afax
channel.

INIT Initializes the fax channel.

LOADFONT Downloads afont for on-the-fly ASCII conversions.

MODEMCTRL 1024

Changes the default dialing type when placing a
cal.

MODEMCTRL 2054

Sets the number of rings before answering.

MODEMCTRL 2066

The dial string may contain the character “;" to
indicate a pause while dialing. This command se
the time value for this character.

ts

NUMCHAN Defines number of fax channels in the system.

QUEUET Sets the time between Dispatcher checks of the
Pending List.

STATUST Sets the interval between writes of status table t
disk.

UPDATET Sets the maximum time between writes to the lo

file.

Configuration Commands

Brief descriptions of the configuration commands used by the software are listed
alphabetically on the following pages. In these descriptions, arguments that appear

in brackets ([]) are optional.

40

3. Configuration Commands

BUFFERS
DESCRIPTION Specifies the maximum number of queue-record buffers
to allocate for the Dispatcher buffer pool.
SYNTAX BUFFERS <n>
VALUE n A value twice the number of channels.
CHANNELID
DESCRIPTION Definesthe logical-to-physical mapping for each fax
channel in the system and, optionally, gives the channel a
symbolic name or a “modem_id.”
A modem_id in the form “GFAX<n>.<m>."
<n> The number of the chassis (see CHASSIS <n>).
<m> The channel number.
CHANNELID <string> <n>
CHASSIS
DESCRIPTION Defines the number of the chassis on which the
Dispatcher is executing.
SYNTAX CHASSIS <n>
VALUE n The chassis number. <n> = 1 is the only value
currently supported.
CONTROLT
DESCRIPTION Specifies the time in seconds between Dispatcher checks
of the Control List.
SYNTAX CONTROLT <n>
VALUE n A number of seconds. Reasonable numbers are
between 30 seconds and 60 seconds. The default
is <n> = 60.

41

GDK Version 5.0 Programming Reference Manual

COUNTRY
DESCRIPTION Definesthe country code, which is used for the country-
specific modem operating parameters.
SYNTAX COUNTRY <n>
VALUE n This code must be specified for the fax channel
to function correctly. The country code for the
United Statesis 1. Thereis no default value. For
alist of country codes, see Appendix D. Refer to
the “Setting the Country Code Properly” section.
CSID
DESCRIPTION Specifies the default customer subscriber identification
(CSID) number for each fax channel.
SYNTAX CSID <phonenumber>
VALUE phonenumber For a host system with multiple

42

outgoing fax lines, the CSID should
reflect the phone number of an
incoming fax line. If this command is
absent, a blank CSID is transmitted.
The ITU recommends that the CSID be
set to the international phone number of
the fax channel.

To ensure the greatest compatibility

with remote fax machines, do not
include spaces or alpha characters in the
phonenumber parameter.

The maximum length of the CSID is 20
characters.

3. Configuration Commands

DEBUG

DESCRIPTION Sets the Debug mask.

SYNTAX DEBUG <n>

VALUE n Refer to the tables in the Using the Debug

Masks section of Chapter 2.

FIRMWARE

DESCRIPTION Downloads the on-board software so that the channel can
be used.

SYNTAX FIRMWARE C:\FAX\GFXCX.BIN

GFCCONTROL 36

DESCRIPTION

SYNTAX
VALUE

This command specifies that all pages of a multi-page fax
be saved into one, multi-page TIFF file. This command
changes the GDK default, which is that each page of a
multi-page fax received is saved into a separate file.

GFCCONTROL 36 <n>
n Is one of the following values:
0 All pages arereceived into onefile.

1 Eachpageisstored in a separate file.
(Default)

n Stores aspecified number of pages per
file, and then opens anew file. Use a
value other than 1.

43

GDK Version 5.0 Programming Reference Manual

GFCCONTROL 37

DESCRIPTION

SYNTAX
VALUE

By default, GDK generates a new filename for each
received fax. Thisfilenameis generated by using the
channel, fax job number, and page number. This
command sets up flexible naming, such that the file name
provided by the application is the one used. This only
worksif:

* Multi-page receive is enabled

 An application is running to provide its own unique
received file name

This command al so sets a page flush in multi-page TIFF
receive, meaning that each successfully received pageis
flushed to disk during the page break.

GFCCONTROL 37 <n>
n Is one of the following values:

0 Specifiesdefault page naming. Use this
setting with single page TIFF receive.
(Default)

1 Specifiesto flush each page to disk
received. If an error occurs, all pages are
saved.

2 Enablesflexible naming convention.

3 Specifies 1 and 2 together. Thisoptionis
recommended for multi-page TIFF
receive when using GFCCONTROL 36 0
or 1.

GFXBOTTOMMARGIN

DESCRIPTION

SYNTAX
VALUE

44

Sets the number of text lines from the bottom of the page.
Used for the bottom margin of afax page for on-the-fly
ASCII conversions.

GFXBOTTOMMARGIN <n>

n Specifies the number of lines. The rangeis0to
65 lines; the default is 3.

3. Configuration Commands

GFXCARRYON

DESCRIPTION Specifies the number of unacceptable pages that may be
sent before the call is terminated.

A remote fax machine may send a RetrainNegative

(RTN) signal between pages to indicate that part of the
transmission it isreceiving is faulty. GDK continuesto

send pages even after receiving an RTN. The
GFXCARRY ON command permitsacall to be
terminated, so a “retraining” command can take control
when the remote machine rejects a page.

SYNTAX GFXCARRYON <n>
VALUE n Is one of the following:
0 Is an infinite number of pages. The default
value is 0.
n Is the number of RTN before terminating the
call.
SEE ALSO GFXRTNRETRAIN
GFXCHARSET

DESCRIPTION Selects the font style used for on-the-fly ASCII
conversions.

SYNTAX GFXCHARSET <n>
VALUE n Is one of the following values:
0 System font (used for page headers)
1 Standard font — Sans Serif 12 pt. (Default)
2 Auxiliary font — Courier 12 pt.
3 Compressible font (line printer)
SEE ALSO LOADFONT, GFXEXTEND

45

GDK Version 5.0 Programming Reference Manual

GFXDID

DESCRIPTION Specifies the signaling and digit type (DTMF or pulse)
for agiven channel.

SYNTAX GFXDID <did_type> <digit_type>

VALUE did_type Isoneof thefollowing values:
Analog loop start (Default)
DID wink-start

Reserved for future use
Reserved for future use
Reserved for future use
Reserved for future use
T.1wink start

digit_type Isone of the following values.
0 DTMF (Touch-Tone)

O wWNPEO

1 Reserved
2 Loop pulse
EXAMPLE This example isfor a system with one CPD board:
GFXDID 10

This instructs the channel to receive DTMF digits and
have a DID wink-start line interface.

46

GFXDIGITS

3. Configuration Commands

DESCRIPTION

SYNTAX
VALUE

EXAMPLE

SEE ALSO

Sets the number of digits to be received when answering a
cal. The terminating digit sends asignal to the channel
that input is finished.

GFXDIGITS <quantity> <terminating>

quantity Specifies the number of digits. Enter the
maximum number of digits to process,
including any terminating digits.
Terminating digits are only used if the
digits received may vary in length.

terminating To specify the terminating digit, enter the
parameter for the specific terminating
digit. Use “0” to indicate no terminating
digit. The acceptable parameter range for
terminating digits is 0 to 65,535. The
terminating digits and their parameters are
listed in Table 8.

This command is an example of using the “#” character to
terminate input of a string of four digits:

GFXDIGITS 5 2048

where “5” designates the maximum number of digits to
expect. The “2048” signifies that the “#” character is
desired as a terminator.

Multiple terminating digits also can be used. For
example, if “*,” “7,” or “1” are the terminating digits, the
number entered would be 1089, which is the sum of the
parameters, that is, 1024 + 64 + 1 = 1089.

GFXDTMFTIMEOUT, GFXDTMFTONE

47

GDK Version 5.0 Programming Reference Manual

Table 8. Terminating Digit Parameters

Digits Parameter
1

2

4

8

16

32

64

128

256

512

* (star) 1024

(number sign) | 2048

A 4096

B 8192
C 16384
D 32768

O ([© |0 ([N (O |0 [~ |[W N [k

48

3. Configuration Commands

GFXDTMFTIMEOUT

DESCRIPTION

SYNTAX

VALUE

EXAMPLE

SEE ALSO

Sets the timeout interval when waiting for DTMF input. A
timeout for DTMF input must be established or the
channel will not wait for any digits to be inputted.

GFXDTMFTIMEOUT <interdigit_timeout>
<total _timeout>

interdigit_timeout Isthe waiting time between digits.
The minimum value is one second,
and any value between 1 and
32,767 isvalid.

total_timeout Isthe length of the wait to receive
al digits. The minimum valueis
one second, and any value between
1and 32,767 isvdlid.

For athree-digit DTMF input, thiscommand is
recommended:

GFXDTMFTIMEOUT 5 10

This instructs the channel to wait no more than five
seconds between each digit it receives, and to wait no
more than ten seconds to receive all the digits. If only
three digits are received, a five-second timeout between
digitsis ample. For more than a three-digit input, the total
timeout may have to be increased, for example, by one
second per digit over three.

GFXDTMFTONE, GFXDIGITS

49

GDK Version 5.0 Programming Reference Manual

GFXDTMFTONE

DESCRIPTION

SYNTAX
VALUE

EXAMPLE

SEE ALSO

50

Specifies the tone to issue when answering acal. This
featureis useful for unattended DTMF (dual-tone multi-
frequency) operation.

This command is used to prompt a calling party to enter
tones. This command only emits a single frequency tone.
If atrue DTMF tone is needed, please refer to the
GFXFAX commands.

This command is not used with DID trunk interface
boards, such asthe CPD or CPD/220.

GFXDTMFTONE <frequency> <duration>
frequency Specify avaluein Hertz, up to 3000.

duration Enter, in milliseconds, the length of time for
the tone to sound.

These are the recommended parameters:
GFXDTMFTONE 440 1000

With this command, the channel sounds the musical note
“A” (440 Hz) for one second (1000 milliseconds). That
is, after the channel has gone off-hook, it sends one “A”
note for one second to prompt for tones from the calling
party.

GFXDTMFTIMEOUT, GFXDIGITS

3. Configuration Commands

GFXECM

DESCRIPTION Setsthe Error Correction Mode (ECM), which can be set
to operate in three modes.

SYNTAX GFXECM <send> <receive>

VALUE send Is one of the following settings:

0 Turned off so the ECM feature is not
used. (Default)

1 Send from any ECM-capable fax machine
or board.

2 Send from any ECM-capable fax machine
or board only.

receive Isone of the following settings:

0 Turned off so the ECM feature is not
used. (Default)

1 Receivesfrom any ECM-capable fax
machine or board.

2 Receivesfrom any ECM-capable fax
machine or board only, and rejects all
other transmissions.

EXAMPLE For example, to instruct board one to send and receivein

the ECM mode whenever possible, use this command:
GFXECM 11

To turn it off, use this command:

GFXECM 00

51

GDK Version 5.0 Programming Reference Manual

GFXEXTEND

DESCRIPTION Selectsthe ASCII character subset used for on-the-fly
ASCII conversion. Any character codes outside the
specified range are ignored.

SYNTAX GFXEXTEND <n>

VALUE n Is one of the following values:

0 Character set 32 to 127ASCI|I text only.
These are the alphabetic characters used
for composition in English. (Default)

1 Character set 32 to 255 extended ASCI|
text only.

2 Character set 0to 255 full ASCII text.

GFXFAXCONTROL 29
GFXFAXCONTROL 28

DESCRIPTION In an analog environment, digits are able to be collected
two seconds after the channel goes off-hook. For digits
that are being passed automatically from a switch, this
time is too long. These commands — in this order —
allow GDK to collect DTMF digits immediately after
going off-hook on an analog line.

SYNTAX GFXFAXCONTROL 29 2000
GFXFAXCONTROL 28 0

NOTE: The GFXFAXCONTROL 28 and 29 commands
must be used together in order to provide the
expected results.

52

3. Configuration Commands

GFXFAXCONTROL 71

DESCRIPTION

SYNTAX
VALUE

This command enables T.30 subaddressing, which allows
astring of characters and numbers to be sent with the fax.
This string is known as the subaddress. It allows fax
servers to do routing based on this subaddress.

GFXFAXCONTROL 71 <n>

n Indicates whether T.30 subaddressing is
enabled. Specifying a default value of 0
disables the T.30 subaddressing option and a
value of 1 enables the option.

GFXFAXCONTROL 72

DESCRIPTION

SYNTAX
VALUE

This command changes the wink duration when using
GFXDID setto 1 or 6 for DID wink or T1 wink
respectively.

Adding this command unnecessarily can cause
communication problems between the CP Fax board and
the service provider.

GFXFAXCONTROL 72 <n>

n Is the number of milliseconds recommended
by the service provider. The default is 150
milliseconds. Most installations operate well
using the defaullt.

53

GDK Version 5.0 Programming Reference Manual

GFXFAXCONTROL 73

DESCRIPTION Thiscommand is used in conjunction with the
GFXFAXCONTROL 71 command. When using
GFXFAXCONTROL 71, use GFXFAXCONTROL 73 to
specify the T.30 subaddressing (sending) field delimiter.

SYNTAX GFXFAXCONTROL 73 <n>

VALUE n Is one of the following values:
2 Is “

Is # (Default)

$

Is %

Is &

o 0 b~ w
n

GFXFAXCONTROL 74

DESCRIPTION If a T.30 password is sent, GDK collects it and places it
in the user_id field for routing purposes. The
GFXFAXCONTROL 74 command turns off T.30
password collection if it is not needed by the application.

SYNTAX GFXFAXCONTROL 74 <n>
VALUE n Is one of the following values:
0 Disables password collection
2 Enables password collection (Default)

54

3. Configuration Commands

GFXFAXCONTROL 1020

DESCRIPTION Allowsthe reception of Binary File Transfer (BFT)
between other systems that support the transmission of
BFT.

The only field in the BFT header that is honored is the
filename. All other fields are ignored and discarded. The
fileis stored in the %6GFAXR% directory with the same
name as the send file, if possible.

SYNTAX GFXFAXCONTROL 1020 <n>

VALUE n Is one of the following values:
0 Disables T.434 BFT reception (Default)
1 Enables T.434 BFT reception

GFXFAXCONTROL 1021

DESCRIPTION Enablesthe transmission of Binary File Transfer (BFT)
transactions to other systems capable of receiving BFT.
BFT (T.434) isdisabled by default. ECM must also be
enabled for BFT transmission.

SYNTAX GFXFAXCONTROL 1021 <n>

VALUE n Is one of the following values:
0 Disables all BFT transmission (Default)
1 Not supported
2 Enables T.434 BFT transmission

55

GDK Version 5.0 Programming Reference Manual

GFXFINE

DESCRIPTION Acceptsincoming faxes in fine-resolution mode only and
failsall callsthat are not in fine-resolution mode.

SYNTAX GFXFINE <n>

VALUE n Is one of the following values:

0 Turnsoff receiving of fine-only resolution
faxes. (Default)

1 Turnson receiving of fine-only resolution
faxes. Rejectsincoming faxesin standard
resolution.

GFXFORM

DESCRIPTION Acceptsincoming faxes in fine-resolution mode only and
failsall callsthat are not in fine-resolution mode.

SYNTAX GFXFORM <n>

VALUE n Is one of the following values:

0 Sameformat that isused for transmission
(Default)

3 TIFF Type 3 1-D; with sanitization

4 TIFFType32-D

5 TIFFType4

EXAMPLE GFXFORM 3

56

If nissetto 0, no valueis set. Theimage iswritten to
disk in the same format it is received. For example, if the
fileistransmitted in TIFF Type 3 2-D format, it is
received and written to disk as TIFF Type 3 2-D.

3. Configuration Commands

GFXHEADER

DESCRIPTION Customizes the header on outgoing faxes to contain user-

SYNTAX
VALUE

EXAMPLE

defined information.
GFXHEADER <format>

format Isinformation to be replaced. Table 9 lists the
variables, the field widths, and the text to be
replaced. Up to 95 characters can be printed
on the header.

For example, a customized header written with these

variables:

& day& abmon& year & 12hr:& min& ampm From:& from

To:&to Page & page

would appear as follows:

25Aug97 1:30pm From:408-969-5200 To:1-203-359-

9203 Page 1

To display a header, the header bit must be set in the

queue record. To turn on the header in a queue record,

see the transmit_control field description in Chapter 4.

Table 9. Variables, Field Widths, and Text

Variable

Field Width | Text

& header

20 The header field from the queue record.

& user

32 The user field of the current queue record.

&from

20 The sent CSID; that is, the CSID from which
the fax is sent.

&to

20 Thereceive CSID; that is, the CSID to which
the fax is sent. &to isright-justified.

& phone

20 The phone no field of the queue record.

& page

3 The current page number in decimal number
format (1 to 999). The number isright justified;
thefieldis zero filled (001).

57

GDK Version 5.0 Programming Reference Manual

Variable Field Width | Text

&time 9 The current time in country-dependent format.

In the U.S.A,, the format is “hh:mm:ss”; in
other countries, the format may vary.

&12hr 2 The hour based on a 12-hour clock in decimal-
number format
(01to 12).

&24hr 2 The hour based on a 24-hour clock in decimal-
number format
(00 to 23).

&m 2 Designation to indicate before or after noon
The values are “AM” and “PM”.

&min 2 The minute in decimal-number format (00 to
59).

&sec 2 The second in decimal-number format (00 tp
59).

&date 9 The date in country-dependent format. In the
U.S.A,, the format is “mm/dd/yy”; in other
countries, the format may vary.

&abmon 3 An abbreviation of the month. The values are
“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”,

“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, and “Dec”,
which are unchangeable.

&month 2 The month in decimal-number format (01 to
12).

&strmon 10 The month of the year. The values are
“January”, “February”, “March”, “April”,

“May”, “June”, “July”, “August”, “September”
“October”, “November”, and “December”,
which are unchangeable.

&day 2 The day of the month in decimal-number
format (01 to 31).

&year 2 The year without century in decimal-number
format (00 to 99).

&lyear 4 The year with century in decimal-number

format (0000 to 9999).

58

3. Configuration Commands

GFXLEFTMARGIN

DESCRIPTION This command sets the left margin of the pagein
characters for on-the-fly ASCII conversion.
SYNTAX GFXLEFTMARGIN <n>
VALUE n Isavaueintherange 0to 215. The default is 14.
GFXPAGELENGTH
DESCRIPTION Setsthe number of lines per page used for on-the-fly
ASCII conversion.
SYNTAX GFXPAGELENGTH <n>
VALUE n Isthe number of text lines per page. The default is
n=66. Usen =0 for variable-length documentsin
which the ASCII file equals one fax page.

NOTE: Wohen converting ASCII files on the channel, to
accommodate more lines per page for the A4
paper size, add the following line to the registry:
GFXPAGELENGTH <n>
Where n isthe number of text lines per page.

GFXRECM
DESCRIPTION Controls the Error Correction Mode (ECM) for incoming
faxes.
SYNTAX GFXRECM <n>
VALUE n Is one of the following values:
0 Turnsoff the ECM feature. (Default)
1 Receivesfrom any ECM-capable fax
machine or board.
2 Receivesonly ECM transmissions, and
rejects al other transmissions.
EXAMPLE For example, to instruct the channel to receive in the

ECM mode whenever possible, use this command:
GFXRECM 1

59

GDK Version 5.0 Programming Reference Manual

GFXRECVPATH

DESCRIPTION

Sets the fully-qualified path and filename template used
for afax channel to receive faxes. This command defines
both the directory in which received files will be placed
and the filename templ ate to be used.

SYNTAX GFXRECVPATH <path> <filename>

VALUE path Isthe path to the directory.
filename Isthe filename template for the filesthat are

received.

EXAMPLE For example, the following command could be used to
put all the received filesinto the \RECVD\BD1 directory
on the E: drive:

GFXRECVPATH E\\RECVD\BD1\FOO1POO1.TIF

GFXREJBURST

DESCRIPTION Setsthe maximum number of consecutive bad scanlines
that are tolerated before a page is rejected. This helpsto
control the quality of incoming faxes. This command
works only if sanitization is enabled with the GFXFORM
command.

SYNTAX GFXREJBURST <n>

VALUE n Specifies the number of allowable, consecutive

60

bad scanlines. By default, thisvalue is-1 (off).

3. Configuration Commands

GFXREJCOUNT

DESCRIPTION Setsthe total number of bad scanlines that are tolerated
before a page is rejected. This helpsto control the quality
of incoming faxes. This command works only if
sanitization is enabled with the GFXFORM command.

SYNTAX GFXREJCOUNT <n>

VALUE n Specifiesthe total number of allowable bad

scanlines. By default, thisvalueis-1 (off). The
rangeis0to 32,767.

GFXREJPERCENT

DESCRIPTION Setsthe percentage of bad scanlines that are tolerated
before apageis rgected. This helpsto control the quality
of incoming faxes. It specifies the number of bad
scanlines per 100 scanlines. This command works only if
sanitization is enabled with the GFXFORM command.

SYNTAX GFXREJPERCENT <n>

VALUE n Specifies the total percent of allowable bad
scanlines. By default, thisvalueis -1 (off). The
rangeis 0 to 100.

GFXRIGHTMARGIN

DESCRIPTION Setstheright margin of the page in characters, relative to
the left edge, for on-the-fly ASCII conversions.

SYNTAX GFXRIGHTMARGIN <n>

VALUE n Specifies the right margin of the page in characters.
The default is94. Therangeis
Oto 215.

61

GDK Version 5.0 Programming Reference Manual

GFXRLENGTH
DESCRIPTION Selects the page length of incoming faxes.
SYNTAX GFXRLENGTH <n>
VALUE n Is one of the following values:
0 Adsize
1 AdandB4size
2 Unlimited length (Default)
Thisisarequest to the sending fax machine. If the remote
machine till sends a page longer than A4, the
transmission will not fail. The image information will be
written to disk along the length of the transmission.
SEE ALSO GFXRWIDTH

GFXRTNRETRAIN

DESCRIPTION

SYNTAX
VALUE

SEE ALSO

62

Selects an action to be taken when an illegible page has
been sent. The valid rates are the transmission rates for
the modem, such as 14400.

GFXRTNRETRAIN <n>
n Is one of the following values:

0 Dispatcher resumes transmission at the
current rate. (Default)

<0 Retraining starts at the next lower rate.
>0 Containsthe retraining rate.
GFXMAXRATE

3. Configuration Commands

GFXRTPRETRAIN

DESCRIPTION Specifiesan action to retrain (in hopes of a higher speed
or change in resolution) for pages received correctly.
SYNTAX GFXRTPRETRAIN <n>
VALUE n Is one of the following values:
0 Dispatcher resumes transmission at the
current rate. (Default)
<0 Retraining starts at the next lower rate.
>0 Containsthe retraining rate.
GFXRT6
DESCRIPTION Controls the reception of T.6 encoding. T.6 encoding
requires Error Correction Mode (ECM). ECM must be
enabled to receive any T.6 encoded faxes.
SYNTAX GFXRT6 <n>
VALUE n Is one of the following values:
0 Turnsoff; cannot receive T.6 encoding.
(Default)
1 ReceivesT.6 encoding if sender has
capability.
2 Receivesonly T.6 encoding; refuses all
others.

63

GDK Version 5.0 Programming Reference Manual

GFXRTWOD
DESCRIPTION Controls TIFF Type 3 2-D line or transmission
compression of received faxes, and writes a 2-D image to
disk unless otherwise set by GFXFORM.
SYNTAX GFXRTWOD <n>
VALUE n Is one of the following values:
0 Turnsoff; cannot receive TIFF Type 3 2-D
compression.
1 RecevesTIFF Type 3 2-D compression if
sender has capability. (Default)
2 Receives TIFF Type 3 2-D compression;
refuse al other formats.
GFXRWIDTH
DESCRIPTION Selects the page width of incoming faxes.
SYNTAX GFXRWIDTH <n>
VALUE n Is one of the following values:
0 Ad4size (Default)
1 AdandB4size
2 Any width
SEE ALSO GFXRLENGTH

64

GFXSCANTIME

3. Configuration Commands

DESCRIPTION Setsthe scanline timing in milliseconds for incoming
calls. When receiving from a remote fax machine, GDK
specifiesin the DISfield that it is capable of accepting
scanlines at a certain rate.

SYNTAX GFXSCANTIME <n>

VALUE n Is one of the following values:

0 0-msec fax machine (Default)
5 5-msec fax machine

10 10-msec fax machine

20 20-msec fax machine

40 40-msec fax machine

GFXSECM

DESCRIPTION Controlsthe ECM for outgoing faxes.

SYNTAX GFXSECM <n>

VALUE n Is one of the following values:

0 Turnsoff sothe ECM feature is not used.
(Default)

1 Sendsto any ECM-capable fax machine or
board.

2 Sendsto an ECM-capable fax machine or
board only, and fails al other transmissions.

EXAMPLE To instruct board one to send in the ECM mode whenever

possible, enter the following:
GFXSECM 1

65

GDK Version 5.0 Programming Reference Manual

GFXSHUTDOWN

DESCRIPTION Specifiesthe state of each fax channel.
SYNTAX GFXSHUTDOWN <n>

VALUE n Is one of the following values:

0 Answersincoming calls and checks for
Pending queue requests.

or one or a combination of the following bit
masks:

1 Ignoresfutureincoming calls. For Dial-only
operation.

2 Ignores future Pending queue requests. For
Answer-only operation.

3 Doesnot send or receive.

4 Busiesout theline; that is, makes the phone
line busy by staying off- hook.

The GFXSHUTDOWN values 0 and 2 are also controlled
by the AutoReceive registry flag configuration.

If the AutoReceive registry flag is set to “yes” when the
GFXSHUTDOWN value is set to O or 2, the channels
receive incoming faxes automatically. The associated
gueue record is stored in the queue file. This occurs even
if there is no application controlling that channel.

If the AutoReceive registry flag is set to “no” when the
GFXSHUTDOWN value is set to 0 or 2, the channels do
not receive incoming faxes when there is no application
using the channel. The transmission fails and the sender
receives an error indicated that the fax was not received.
The default setting for the AutoReceive registry flag is

no-.

EXAMPLE These control bits may be combined. Thus, if n = 3, the
second and third bits are in effect; if n = 7, the second,
third, and fourth bits are in effect. The value of n can also
be 5 or 6.

66

GFXSPEAKER

3. Configuration Commands

DESCRIPTION

SYNTAX
VALUE

GFXST6

Disables and enables the speaker on the CP Fax board.

Not all CP fax boards have speakers. See the hardware
manual for the board installed in the host system to
determine whether or not the board has a speaker.

GFXSPEAKER <n>
n Is one of the following values:
0 No speaker. (Default)

1 Enables speaker during wait for answer
tone.

2 Enables speaker during dial tone dialing.
3 Enables speaker continuously.

DESCRIPTION

SYNTAX
VALUE

Controls the transmission of T.6 encoding. T.6 encoding
requires ECM. Therefore, ECM must be turned on first
before the T.6 setting, or the firmware will reject the T.6
transmission.

GFXST6 <n>
n Is one of the following values:

0 Turnsoff; cannot send T.6 encoding.
(Default)

1 SendsT.6 encoding if recipient has
capability.

2 Sendsonly T.6 encoding; fails transmission
if recipient does not have capability.

67

GDK Version 5.0 Programming Reference Manual

GFXSTWOD
DESCRIPTION Controls TIFF Type 3 2-D line compression of fax
transmissions.
SYNTAX GFXSTWOD <n>
VALUE n Is one of the following values:
0 Turnsoff; cannot send TIFF Type 3 2-D
compression.

1 SendsTIFF Type 3 2-D compression if
recipient has capability. (Default)

2 SendsTIFF Type 3 2-D compression; fails
transmission if recipient does not have
capability.

GFXTOPMARGIN

DESCRIPTION Setsthetop margin of the fax pagein text lines for
on-the-fly ASCII conversions.

SYNTAX GFXTOPMARGIN <n>

VALUE n Isavalue from O to 65. The default is 3.

GFXWAIT

DESCRIPTION Setsthe wait-for-answer time in seconds for each fax
channel; that is, the length of time the channel will stay
idle waiting for an incoming call to arrive before
searching for something to send in the default answer
State.

SYNTAX GFXWAIT <n>

VALUE n Istime in seconds.

68

3. Configuration Commands

INIT

DESCRIPTION Initializes the specified fax channel. Each channel must
be initialized with INIT beforeit can be used.

SYNTAX INIT

LOADFONT

DESCRIPTION Downloads a font into the one of the font dots used for
on-the-fly ASCII conversions. The GFXCHARSET
command is used to select the font number.

SYNTAX LOADFONT <n> <filename>
VALUE n Isafont number, from0to 3.
filename Isthefile containing the font.

MODEMCTRL 1024

DESCRIPTION Changes the default dialing type when placing a call.

The default is dependent upon the country code and
version of the software that you are using. In the United
States and Canada, pulse is the default setting for GDK
5.0 and earlier. Toneis the default setting for GDK 4.0 or

later.
SYNTAX MODEMCTRL 1024 <n>
VALUE n Is one of the following values:
0 Isfor pulse diaing
1 Isfor tone dialing

MODEMCTRL 2054

DESCRIPTION Setsthe number of rings before answering.
SYNTAX MODEMCTRL 2054 <n>
VALUE n Is the number of rings. The default is 1.

69

GDK Version 5.0 Programming Reference Manual

MODEMCTRL 2066

DESCRIPTION The dial string may contain the character “;” to indicate a
pause while dialing. This command sets the time value for
the “;” character.

SYNTAX MODEMCTRL 2066 <n>

VALUE n Is the time in milliseconds. The default is 1500

milliseconds.

NUMCHAN

DESCRIPTION Defines the number of fax channels in the system. This
must be defined before the channels can be addressed.

SYNTAX NUMCHAN <n>

VALUE n Is the number of fax channels in the system.

QUEUET

DESCRIPTION Sets the time in seconds and milliseconds between
Dispatcher checks of the Pending List.

SYNTAX QUEUET <m> <n>

VALUE m Is the time in seconds. The range is 0 to 32,767

seconds; reasonable settings are between 5 and
120. The default is 45.
n Is the time in milliseconds. The default is 0.

STATUST

DESCRIPTION Sets the interval between writes of the status table to the
status file on disk.

SYNTAX STATUST <m> <n>

VALUE m Is the time in seconds. The default is 0. The

70

range is 0 to 32,767 seconds.

n Is the time in milliseconds. The default is 0. A
reasonable number is 5.

3. Configuration Commands

UPDATET

DESCRIPTION Sets the maximum time in seconds and milliseconds

between writes to the log file. The log file may be written
more frequently if significant transactions take place.

SYNTAX UPDATET <m> <n>
VALUE m Isthetimein seconds. Therangeis0to 32,767

seconds. The default is 300. Reasonable numbers
are between 15 seconds and 600 seconds.

n Isthe time in milliseconds. The default is 0.

New Parameter Summary

The new parameters that have been added are grouped into four categories:

Management
ISDN
ErrorMapping
Debug

Each parameter category has a specific registry key path.

Management
KEY_LOCAL_MACHINE\SOFTWARE\Dialogic\Gammalink\M anagement

ISDN

HKEY_LOCAL_MACHINE\SOFTWARE\Dial ogic\Gammalink\|SDN
ErrorMapping

HKEY_LOCAL_MACHINE\SOFTWARE\Dial ogic\Gammalink\ErrorMapping
Debug

HKEY_LOCAL_MACHINE\SOFTWARE\Dial ogic\Gammalink\Debug

To modify the default settings of the any of the parameters, use aregistry editing

tool.

71

GDK Version 5.0 Programming Reference Manual

CAUTION

Using aregistry editor application incorrectly can cause serious, system-
wide problems that may require you to reinstall Windows to correct
them. Dialogic cannot guarantee that any problems resulting from the use
of aregistry editor can be solved. Use these tools at your own risk.

The following section contains summary tables and parameter definitions for each
category of the new parameters.

Management Parameters
These parameters control the management of the fax and I1SDN features.

Table 10. Management Parameters

Parameter Description

PRILayerEnable Specifies whether to use the “Transparent PRI Support”
or not.

NumberOfTrunks Indicates the number of PRI trunks in the chassis.

ChannelsPerTrunk Indicates the number of ISDN channels per PRI trunk.

FaxDistribution Specifies which Fax resource will be receiving the fgx
for a particular incoming call.

ISDNDistribution Specifies which ISDN channel will be used for an
outgoing call.

Management Parameter Definitions

Brief descriptions of the new Management parameters are listed alphabetically on
the following pages.

72

3. Configuration Commands

AutoReceive

DESCRIPTION Specifies whether inbound fax call should be
automatically received if the GFXSHUTDOWN state
valuesaresetto O or 2.
If the AutoReceive parameter is set to “yes”, inbound
faxes are automatically received even when there is no
application running of the channel to receive the fax.
Inbound faxes received in this mode are stored as a queue
record in the queue file.
If the AutoReceive parameter is set to “no”, inbound
faxes received when there are no applications running on
the channel to receive them fail. The sender receives an
error message indicating that the fax was not received.

SYNTAX “yes” or “no”

DEFAULT “no”

DATA TYPE REG_SZ

REFERENCE None

PriLayer Enable

DESCRIPTION

SYNTAX
DEFAULT

DATATYPE
REFERENCE

Specifies whether Transparent PRI support is enabled.

If the parameter is set to “yes”, the Transparent PRI
Support is enabled.

If the parameter is set to “no”, the Transparent PRI
Support is disabled.

“yes” or “no”

“ ”

no
REG_Sz
None

73

GDK Version 5.0 Programming Reference Manual

Number Of Trunks

DESCRIPTION Indicates the number of PRI trunksin the chassis.
This parameter setting isignored if the
PriLayerEnable parameter is set to “no”.

SYNTAX Numeric

DEFAULT 1

DATA TYPE REG_DWORD

REFERENCE None

ChannelsPer Trunk

DESCRIPTION Indicates the number of ISDN channels per PRI trunk.
This parameter setting is ignored if the
PriLayerEnable parameter is set to “no”.

SYNTAX Numeric

DEFAULT 30

DATA TYPE REG_DWORD

REFERENCE None

FaxDistribution

DESCRIPTION

SYNTAX

74

Determines the selection of which Fax resource will be
receiving the fax on a specific incoming call. The
setting values include:

0 First free Fax resource starting with channel 1
1 Circular Fax resource assignment

2 First free Fax resource starting with the last
channel

3 Same Fax channel as ISDN channel

This parameter setting is ignored if the PriLayerEnable
parameter is set to “no”.

Numeric

3. Configuration Commands

FaxDistribution

DEFAULT 0
DATA TYPE REG_DWORD
REFERENCE None

I SDNDistribution

DESCRIPTION Determines the selection of which ISDN channel will
be used on a specific outgoing call. The setting values
include:

0 First free ISDN channel counting from O
1 Circular ISDN channel assignment
2 First free ISDN channel starting with the last

channel
3 Same |SDN channel than Fax channel
4 TBD

This parameter setting isignored if the PriLayerEnable
parameter is set to “no”.

SYNTAX Numeric
DEFAULT 1

DATA TYPE REG_DWORD
REFERENCE None

ISDN Parameters

These parameters control the ISDN features. These parameter features are ignored
if the PriLayerEnable parameter is set to “no”.

75

GDK Version 5.0 Programming Reference Manual

Table 11. ISDN Parameters

Parameter Description

BC_xfer_cap ISDN Make Call Block parameter.
Layerl protocol ISDN Make Call Block parameter.
BC xfer rate ISDN Make Call Block parameter.

BC xfer_mode

ISDN Make Call Block parameter.

origination_number_type

ISDN Make Call Block parameter.

origination_number_plan

ISDN Make Call Block parameter.

destination_number_type

ISDN Make Call Block parameter.

destination_number_plan

ISDN Make Call Block parameter.

origination_subnumber_type

ISDN Make Call Block parameter.

origination_subnumber_plan

ISDN Make Call Block parameter.

origination_phone_number

ISDN Make Call Block parameter.

destination_phone_number

ISDN Make Call Block parameter.

destination_subphone_number

ISDN Make Call Block parameter.

origination_subphone_number

ISDN Make Call Block parameter.

AcceptCall State

Determines whether to use ISDN Accept Call
State or not.

PRI_Overlap P1 Defines minimum number of digits needed
before the board acceptsincoming call in
Overlap Receive mode.

PRI_Overlap P2 Defines maximum wait time between ISDN

SETUP pack and the first ISDN INFO packet.

ChecklnBearer

Specifies whether to check the Bearer
Compatibility during inbound SETUP.

76

3. Configuration Commands

Parameter

Description

BC xfer_cap

ISDN Make Call Block parameter.

ChecklnSetupFrame

Specifies whether to check the incoming
SETUP packet.

ISDN Parameter Definitions

Brief descriptions of the new ISDN parameters are listed alphabetically on the

following pages.

BC_xfer_cap

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT BEAR_CAP_SPEECH

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

Layer1 protocol

DESCRIPTION ISDN Make Call Block parameter.

SYNTAX Mnemonic value defined in the Dialogic DNA 3 online
help.

DEFAULT ISDN_UILI_G711ALAW

DATA TYPE REG_DWORD

REFERENCE Refer to the Dialogic DNA3 Online Help for more

information about the parameter settings.

77

GDK Version 5.0 Programming Reference Manual

BC xfer_rate

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

BC xfer_mode

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

BEAR_RATE_64KBPS

REG_DWORD

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

ISDN_ITM_CIRCUIT
REG_DWORD

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

originate_number_type

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

78

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

ISDN_NOTUSED

REG_DWORD

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

3. Configuration Commands

originate_number_plan

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

ISDN_NOTUSED

REG_DWORD

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

destination_number_type

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

EN_BLOCK_NUMBER
REG_DWORD

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

destination_number_plan

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

UNKNOWN_NUMBER_PLAN

REG_DWORD

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

79

GDK Version 5.0 Programming Reference Manual

destination_subnumber_type

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

ISDN_NOTUSED
REG_DWORD

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

origination_subnumber_type

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

ISDN_NOTUSED
REG_DWORD

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

origination_phone_number

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

80

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

ISDN_NOTUSED
REG_DWORD

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

3. Configuration Commands

destination_sub_phone_number

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

ISDN_NOTUSED
REG_SZ

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

origination_subphone _number

DESCRIPTION
SYNTAX

DEFAULT
DATA TYPE
REFERENCE

AcceptCallState

ISDN Make Call Block parameter.

Mnemonic value defined in the Dialogic DNA 3 online
help.

ISDN_NOTUSED
REG_Sz

Refer to the Dialogic DNA3 Online Help for more
information about the parameter settings.

DESCRIPTION

SYNTAX
DEFAULT

DATATYPE
REFERENCE

Specifies whether or not to use the ISDN Accept Call
State.

“yes” or “no”
‘yes
REG_SZ
None

81

GDK Version 5.0 Programming Reference Manual

PRI_Overlap_Digits

DESCRIPTION

SYNTAX
DEFAULT

DATA TYPE
REFERENCE

PRI _Overlap T1

Defines the minimum number of digits needed before
the board will accept the incoming call in Overlap
Receiving mode.

0
REG_DWORD
None

DESCRIPTION

SYNTAX
DEFAULT

DATA TYPE
REFERENCE

PRI _Overlap T2

Defines the maximum time period to pause (in
milliseconds) between sending the ISDN SETUP
packet and the first ISDN INFO packet.

Setting this parameter disables the Overlap Receiving
parameter setting.

2000
REG_DWORD
None

DESCRIPTION

SYNTAX
DEFAULT

DATA TYPE
REFERENCE

82

Defines the maximum time period to pause (in
milliseconds) between sending a second ISDN INFO
packet which contains additional routing digitsin
Overlap Receiving.

2000
REG_DWORD
None

3. Configuration Commands

ChecklnBearer

DESCRIPTION Indicates whether to check for compatible bearer
capabilities in the incoming setup.

If “yes”, checks for compatible bearer capabilities.

If “no”, does not check bearer capability during
inbound SETUP. Any bearer capability is accepted.

SYNTAX

DEFAULT ‘yes”
DATA TYPE REG_SZ
REFERENCE None

ChecklnSetupFrame

DESCRIPTION Indicates whether to check the incoming setup packet.
If “yes”, checks the incoming setup packet.

If “no”, does not check the incoming setup packet. Any
setup packet is accepted.

SYNTAX

DEFAULT ‘yes”
DATA TYPE REG_SZ
REFERENCE None

ErrorMapping Parameters

These parameters control the ErrorMapping features. These parameter features are
ignored if the PriLayerEnable parameter is set to “no”.

83

GDK Version 5.0 Programming Reference Manual

Table 12. ErrorMapping Parameters

Parameter

Description

ReservedByDialogic

Fax channel incoming/outgoing collision error.

OfferedOnMakeCall

ISDN channel incoming/outgoing collision error.

MakeCallFail

PRI is not able to complete the outgoing call
operation error.

NoPhonelnQrec

Phone number field not correctly entered by
application error, or is missing.

NoDialogicFree

Can not find PRI channel error.

Call Disconnected

Undefined ISDN connection error.

ConnectAttemptFail

Call released before connect state is reached error.

WrongCRNAIlocated

Serious ISDN error.

NoFaxResource Rejected call dueto lack of an available Fax resource
ISDN error.

FaxNotReady Rejected call dueto system not being initialized or in
shutdown mode ISDN error.

Normal Cause Default ISDN error sent when releasing acall.

WrongBearer Rejected call dueto incompatibility in Bearer

Compatibility ISDN error.

ErrorMapping Parameter Definitions

Brief descriptions of the new ErrorMapping parameters are listed al phabetically

on the following pages.

84

ReservedByDialogic

3. Configuration Commands

DESCRIPTION Error code that isreturned if the application triesto
place an outgoing call on a Fax channel that is reserved
by the Dispatcher to accept an incoming fax.

SYNTAX Any numeric value.

DEFAULT 3072

DATA TYPE REG_DWORD

REFERENCE None

OfferedOnM akeCall

DESCRIPTION Error code that isreturned if the application triesto
place an outgoing call on alSDN channel that is
reserved to accept an incoming call.

SYNTAX Any numeric value.

DEFAULT 3072

DATA TYPE REG_DWORD

REFERENCE None

M akeCallFail

DESCRIPTION Error code that isreturned if the PRI is not ableto
complete the outgoing call.

SYNTAX Any numeric value.

DEFAULT 3932

DATA TYPE REG_DWORD

REFERENCE None

85

GDK Version 5.0 Programming Reference Manual

NoPhonel nQrec

DESCRIPTION

SYNTAX
DEFAULT

DATA TYPE
REFERENCE

NoDialogicFree

Error code that isreturned if the phone number field is
not entered correctly by the application, or is missing.

Any numeric value.
3933

REG_DWORD
None

DESCRIPTION

SYNTAX
DEFAULT

DATA TYPE
REFERENCE

CallDisconnected

Error code that is returned if a PRI channel can not be
found.

Any numeric value.
3932

REG_DWORD
None

DESCRIPTION

SYNTAX
DEFAULT

DATA TYPE
REFERENCE

86

Error code that is returned when an undefined ISDN
disconnection is encountered.

Any numeric value.
3936

REG_DWORD
None

3. Configuration Commands

ConnectAttemptFail

DESCRIPTION Error code that is returned when a call isreleased
before reaching the connect state.

SYNTAX Any numeric value.

DEFAULT 3935

DATA TYPE REG_DWORD

REFERENCE None

WrongCRNAllocated

DESCRIPTION Error code that is returned when there is a serious
ISDN issue. Causes the Dialogic channel to be
restarted.

SYNTAX Any numeric value.

DEFAULT 3933

DATA TYPE REG_DWORD

REFERENCE None

NoFaxResour ce

DESCRIPTION ISDN error returned when acall is rejected because
there was no available Fax resource to receiveit.

SYNTAX Any numeric value.

DEFAULT USER _BUSY

DATA TYPE REG_DWORD

REFERENCE None

87

GDK Version 5.0 Programming Reference Manual

FaxNotReady

DESCRIPTION ISDN error returned when acall is rejected because
the system is not initialized, or isin shutdown mode.

SYNTAX Any numeric value.

DEFAULT NORMAL_CLEARING

DATA TYPE REG_DWORD

REFERENCE None

NormalCause

DESCRIPTION The default ISDN error returned when releasing the
call.

SYNTAX Any numeric value.

DEFAULT NORMAL_CLEARING

DATA TYPE REG_DWORD

REFERENCE None

WrongBear er

DESCRIPTION ISDN error returned when rejecting the incoming call
because of an incompatibility in Bearer Capabilities.

SYNTAX Any numeric value.

DEFAULT CAP_NOT_IMPLEMENTED

DATA TYPE REG_DWORD

REFERENCE None

88

Debug Parameters

3. Configuration Commands

These parameters control the Debug features.

Table 13. Debug Parameters

Parameter Description

UseSRAM Specifies whether or not to enable Debug logging to
Shared Memory in the GDK System Service.

SRAMMask Mask value that specifies type of information logged to
Shared Memory.

LogFile Specifies file name to store Shared Memory Debug log
information.

LogFileMask Mask value that specifies type of information written to
the file named by the Log File parameter.

DebugToSRAM Specifies whether to allow DEBUG command
information to be logged into shared RAM.

UseGFAX$DL Specifies whether or not to create alog file named
%GFAX%\GFAX.$DL.

TraceTrunkNumber Defines the trunk number used for the ISDN tracing.

TraceFileName

Filename where all ISDN trace information is logged.

Debug Parameter Definitions

Brief descriptions of the new Debug parameters are listed al phabetically on the

following pages.

89

GDK Version 5.0 Programming Reference Manual

UseSRAM

DESCRIPTION Specifies whether or not to enable Debug logging to
Shared Memory in the GDK System Service.
If “yes” Shared RAM is used.
If “no” Shared RAM is not used.
This parameter setting is ignored if the
PRILayerEnable parameter is set to “no”.
This parameter is global across the CP Fax product
line.

SYNTAX “yes” or “no”

DEFAULT “yes” if PRILayerEnable parameter is set to “yes”,
“no” if the PRILayerEnable parameter is set to “no”

DATA TYPE REG_Sz

REFERENCE None

SRAMM ask

DESCRIPTION Mask value that specifies type of information logged to
Shared Memory. This parameter setting is ignored if
the UseSRAM parameter is set to “no”.
This parameter is global across the CP Fax product
line.

SYNTAX bit mask value

DEFAULT OXFFFFFFFF

DATA TYPE REG_DWORD

REFERENCE None

90

3. Configuration Commands

LogFile

DESCRIPTION Specifies file name to store Shared Memory Debug log
information.
This parameter setting isignored if the UseSRAM
parameter is set to “no”.
This parameter is global across the CP Fax product
line.

SYNTAX full path and filename.

DEFAULT

DATA TYPE REG_SZ

REFERENCE None

L ogFileM ask

DESCRIPTION Mask value that specifies type of information to file
named by the Log File parameter. This mask does not
affect the other information logged in Shared Memory.
This parameter setting is ignored if the UseSRAM
parameter is set to “no”.
This parameter is global across the CP Fax product
line.

SYNTAX bit mask value

DEFAULT OxFFFFFFFF

DATA TYPE REG_DWORD

REFERENCE None

91

GDK Version 5.0 Programming Reference Manual

DebugToSRAM

DESCRIPTION Specifies whether DEBUG command information is
logged to Shared Memory. The functionality of this
parameter depends on the DEBUG command being
Set.
If “yes” allows Debug information to be logged into
Shared RAM (dependent on the GDK DEBUG Mask.)
If “no” firmware information is not logged into the
Shared RAM. When the set to “no”, the UseSRAM
parameter settings are ignored.
This parameter setting is ignored if the UseSRAM
parameter is set to “no”.
This parameter is global across the CP Fax product
line.

SYNTAX “yes” or “no”

DEFAULT “no”

DATA TYPE REG_SZ

REFERENCE Refer to the Enabling Debug section in Chapter 2 of
this guide

UseGFAX$DL

DESCRIPTION Specifies whether or not to log Debug information to a

92

text file called %GFAX%\GFAX.$DL. The
functionality of this parameter depends on the DEBUG
command being set.

If “yes” Debug information is logged in GFAX.$DL
(dependent of the GDK Debug mask.)

If “no” debug information is not logged in the
GFAX.$DL.

This parameter setting is ignored if the UseSRAM
parameter is set to “no”.

This parameter is global across the CP Fax product
line.

3. Configuration Commands

UseGFAXS$DL

SYNTAX “yes” or “no”

DEFAULT “no”

DATA TYPE REG_SZ

REFERENCE Refer to the Enabling Debug section in Chapter 2 of
this guide

TraceTrunkNumber

DESCRIPTION Defines the trunk number (board handle) used for the
ISDN tracing.
This parameter setting is ignored if the
PRILayerEnable parameter is set to “no”.

SYNTAX numeric

DEFAULT 1

DATA TYPE REG_DWORD

REFERENCE See Dialogic DNA 3 online manuals for more

information on ISDN trace debugging.

93

GDK Version 5.0 Programming Reference Manual

TraceFileName

DESCRIPTION File where the ISDN trace (cc_StartTrace function)
information will be logged. If the filenameisaNULL
string, isinvalid or has an invalid path, no ISDN path
is provided.
This parameter setting isignored if the
PRILayerEnable parameter is set to “no”.

SYNTAX full path and filename

DEFAULT

DATA TYPE REG_SZ

REFERENCE See Dialogic DNA 3 online manuals for more

information on ISDN trace logging.

94

4. Queue Record Programming

Queue File Database Component

This section discusses the Queue File database component of the GDK system
software. This section discusses the following:

e Overview of the Queue File

* Handling the Queue File

« Record queuing and processing

* Buffering records

e Busy records

* Fax transaction programming

e Queuerecord data types

e Queuerecord fields

About the Queue File

The Queue File, GFAX.$QU, is the database that contains a detailed record of
information on each incoming and outgoing transaction. It is made up of a header
and seven linked lists of records, and islocated in the subdirectory defined by the
GFAX environment variable.

A queue record is a data structure in the Queue File that permits an application
program to communicate with thefirmware. The fields in a queue record provide
information about the image to be sent and where and how to send it, or when and
how an image was received. Some diagnostic information is also stored in the
gueue record.

95

GDK Version 5.0 Programming Reference Manual
Queue File Lists

The Queue File contains seven linked lists:

o FreelList

e Pending List
* Received List
e SentList

* Conversion List
e Control List
e Control DoneList

Free List

The Free List collects deleted and unused records for future use and re-allocation.

When a new transaction isinserted into the Queue File, the Free List is checked

for available records. If a record is available, it is overwritten, and “linked” into

the appropriate linked list. Whenever records from the Free List are used, the
Queue File does not grow in size. If there are no records available in the Free List,
a new record is appended to the Queue File, and linked to the appropriate list —
expanding the size of the Queue File. When a record is deleted from a linked list,
it is placed in the Free List, and the size of the Queue File remains the same.

Pending List
The Pending List stores records submitted to the Queue File for transmission.

Records waiting for processing are sorted first by time, and then by the priority
level.

Received List
The Received List stores all completed incoming transmissions. Records in the

Received List have a status code that indicates whether or not the operation was
successful.

96

4. Queue Record Programming

Sent List

The Sent List is used to store completed outgoing transactions. Once a
transmission record on the Pending List has finished processing, it is moved from
the Pending List to the Sent List. Recordsin the Sent List have status codes
indicating whether or not the operation was successful.

Conversion List

The Conversion List isintended to be used by applications as a holding areafor

those queue records needing additional processing before being submitted to the
Pending List. Thisisagood place to put non-TIFF files needing to be converted
to TIFF format. The application is responsible for checking thislist for jobs and

submitting the file to be converted to a third-party conversion utility.

Control and Control Done Lists

When the GDK System Service processes certain configuration commands, it
generates records in the Control List for each fax channel. These recordsinitialize
the system, and are moved to the Control Done List when initialization is
complete.

Queue File Pointers

The functions, gfgFindFirst() and gfgFindNext(), access the linked lists in the
Queue File and allow you to traverse the Queue File lists and read information
from the records. These functions are described in Chapter 5.

Using GFQRESET.EXE

The GFAX environment variable is always used to determine the path for the
Queue File; the default filename is “GFAX.$QU.” If a Queue File does not exist,
the program GFQRESET.EXE creates one.

In addition to creating a Queue File, the GFQRESET.EXE program performs the
following:

e Clears all busy records

e Pre-allocates records to a Queue File

97

GDK Version 5.0 Programming Reference Manual

* Purgesold records from the Control and Control Done lists

e Checksor repairs the Queue File link lists
Thisisthe usage for GFQRESET:
GFQRESET -pn -gn -rn <gueue nane>

The parameters are listed in Table 14 , and are described in more detail in the
following section.

Table 14. GFQRESET Parameters

Option Function

-pn The purge flag option; these are the values for “n”:

0 = No purging. (Default)

1 = Purge Control Done List.

2 = Purge Control List.

3 = Purge Control Done and Control Lists.

-qn The Queue File check option; these are the values for “n”:
0 = No queue file check. (Default)

1 = Queue file is checked and not repaired.

2 = Queue file is checked and repaired.

- The pre-allocation and prevent-collapse flag. The range for “n
0to 32,767.

0 = Queue file may be collapsed.
<gqueue name> The name of the Queue File to create or reset.

is

Pre-allocating Queue File Records

Space can be reserved in the Queue File by pre-allocating Queue File records with
the -r option. Preallocated records are stored in the Free List of the Queue File,
which holds “empty” records available for transaction data. Preallocation is used

to allocate contiguous queue record storage to avoid file fragmentation.

NOTE: Each record requires 516 bytes.

98

4. Queue Record Programming

If aQueue File does not exigt, it is created and the specified number of recordsis
inserted into the Free List. If a Queue File aready exists, the queue records are
counted and the program adds more records if needed. If the Freelist of
preallocated records is exhausted, the next record is appended to the Queue File.

Purging the Control List and Control Done List

Records in the Control List and Control Done List are not needed after the GDK
system has been initialized. To purge these lists so the Queue File does not
become too large, use this command:

GFQRESET - p3

NOTE: The GDK Service runs GFQRESET with a -p3 option automatically
upon startup. GFQRESET does not need to be called manually, unless
other options are desired. If desired, GFQRESET should be called before
the GDK Serviceis started.

Checking and Repairing the Queue File

With the -q option (Table 14), the Queue File can be checked and repaired if any
records have been damaged. If an error isreturned by the -q option, backup or
delete the Queue File and restart the system.

CAUTION

Using the -g2 option may not always work and should not be attempted
with the Dispatcher service running.

Record Queuing and Processing

Theinitial channel state depends on the GFXSHUTDOWN command. With the
GFXSHUTDOWN command parameter set to 3, afax channel ignores queue
recordsin the Pending List and ignoresincoming calls. The application must
submit reception/transmission requests using the GRT programming model.

99

GDK Version 5.0 Programming Reference Manual

With the GFXSHUTDOWN command parameter set to 0, a fax channel may
become ready for reception/transmission at any time, depending on the number of
channelsin the system and how busy they are at any given moment.

When afax channel becomes idle, the firmware requests work through the
Dispatcher. The Dispatcher retrieves the queue file records from the queuefile. If
aqueue record exists, it is given to the target channel, and the queue record on
disk is updated with the new status. If no record is available, a message indicating
that nothing is pending is sent to the fax channel.

The fax channel performs the task specified by the operation field of the record.
The firmware communicates with the Dispatcher about the files or other
information it may need, and the Dispatcher provides details to the firmware. The
firmware then transmits the fax and provides an updated record to the Dispatcher.
The Dispatcher posts the updated record to the Queue File, which stores a history
of the fax transmission — received, sent, failed, or awaiting retransmission.

Buffering Records

The current implementation utilizes buffering of the queue records.

Recommended buffers setting is two times the number of fax channels. Buffers are
used for storing queue records in RAM before being requested by an idle fax
channel. Buffering queue records reduces the number of disk accesses to the
Queue File.

Busy Records

When the QUEUET timer expires, the Dispatcher starts at the beginning of the
Pending List. The Dispatcher then loads and marks “BUSY” as many ready-to-go
queue records as it has fax channels available.

CAUTION

If a “BUSY” Pending List record is deleted, results may be
unpredictable.

100

4. Queue Record Programming

Although the original record is undisturbed in the Queue File, arecord marked
“BUSY” indicates that a copy of the original record is in the record buffer of the
Dispatcher or is held by the firmware.

Fax Transaction Programming

This section discusses fax transaction programming with GDK queue records. A
gueue record is a C data structure that can be manipulated by the application
program. The fields in a queue record provide complete information about the
image to be sent or received. These fields also contain information on where and
how to send the image or when and how it was received. In addition, many of the
fields also provide diagnostic information.

Each queue record contains information on a single telephone call. The records
can also be used to install default communication settings for answer operations,

such as Answer and Send or Answer and Send/Receive. In this case, the original
record is then used as a template to post new records for incoming calls.

Queue Record Data Types

The GFQ.H queue record header file contains preprocessor directives, data-type
definitions, and error codes for the GDK system.

Table 15. GFQ.H Data Types

Mnemonic Data Type Length Purpose

GFQOFFSET unsigned long| 4 bytes Offset from beginhing
of file.

GFQLONG unsigned long | 4 bytes

GFQTIME unsigned long | 4 bytes Date/time stamps |n
seconds.

GFQBYTE unsigned char | 1 byte Characters.

GFQINT unsigned short| 2 bytes

GFQFILENAME_SIZE | N/A 64 + 2 bytes| For filenames.

GFQCSID_SIZE N/A 20 + 2 bytes| For phone numbers.

101

GDK Version 5.0 Programming Reference Manual

Mnemonic Data Type Length Purpose
GFQUSER_FIELD_SIZE |N/A 32+ 2 bytes | For (network)
addresses.

N/A = not applicable

Queue Record Fields

This section summarizes all of the queue record fields. It also provides an
overview table and an alphabetic listing of the queue record fields with a
description of their parameters.

Queue Record Field Descriptions

Table 16 provides a synopsis of the queue record fields.

NOTES: 1. Only afew fields need to be changed from the default values set by
gfgClearRec().

2. All queue record fields which contain filenames must conform to the
MS-DOS naming convention (eight characters separated by a dot,
and then followed by athree-character extension).

Table 16. Summary of Fields in the Queue Record

Field Sizein Bytes | Data Types Use

cd timeout 2 GFQINT Optional

completed retries |2 GFQINT Managed by GDK*

completed time 4 GFQTIME Managed by GDK*

control 2 GFQINT Optional

csid 20+ 2° GFQBYTE Optional

curr 4 GFQOFFSET | Managed by the
libraries?

duration 2 GFQINT Managed by GDK*

fn_cover 64 + 2° GFQBYTE | Optional

fn_received 64 + 2° GFQBYTE Managed by GDK*

fn_send 64 + 2° GFQBYTE Required (for sending)

102

4. Queue Record Programming

Field Sizein Bytes | Data Types Use

header 20 GFQBYTE Optional

items received 2 GFQINT Managed by GDK*

items_sent 2 GFQINT Managed by GDK*

line noise 2 GFQINT Managed by GDK*

list_type 2 GFQINT Managed by GDK*

message_speed 2 GFQINT Managed by GDK*

modem id 32+2° GFQBYTE | Optional

next 4 GFQOFFSET | Managed by the
libraries®

notify 2 GFQINT Managed by GDK*

nsf_field 32+2° GFQBYTE | Optional

nsf_length 2 GFQINT Optional

number_calls 2 GFQINT Optional

operation 2 GFQINT Required

phone_no 20+2° GFQBYTE Required (for sending),
with call control

prev 4 GFQOFFSET | Managed by the
libraries®

priority level 2 GFQINT Optional

protocol 2 GFQINT Optional

rate 2 GFQINT Optional

received csid 20+2° GFQBYTE |Managed by GDK*

received filetype |2 GFQINT Managed by GDK*

received nsf 32+2° GFQBYTE Managed by GDK*

received nsf_length |2 GFQINT Managed by GDK*

record_control 2 GFQINT Managed by GDK*

retry counter 2 GFQINT Optional

retry_delay 2 GFQINT Optional

retry end time 4 GFQTIME Optional

retry_strategy 2 GFQINT Optional

103

GDK Version 5.0 Programming Reference Manual

Field Sizein Bytes | Data Types Use

security 4 GFQLONG Optional
signal_quality 2 GFQINT Managed by GDK*
signal_strength 2 GFQINT Managed by GDK*
source_type 2 GFQINT Optional

status 2 GFQINT Managed by GDK*
submission retries |2 GFQINT Managed by GDK*
submission time |4 GFQTIME Managed by GDK*
time 4 GFQTIME Optional
transmit_control 2 GFQINT Optional

user_id 32+2° GFQBYTE | Optional

1 This field is filled in by the firmware after it processes the job. However, it may also be
read from or written to by the GDK functions.

2 Both the firmware and the GDK functions manage the values in these fields, and you
should not write directly to them.

3 Two bytes are used for terminating null characters for the string.

Alphabetical Listing of Queue Record Fields
The field descriptions are presented in the format shown in Table 17.

Table 17. Queue Record Field Description Formats

Function Name

DATA TYPE The GDK data type description.

DESCRIPTION | An overview of the purpose of the field.

VALUE Indicates the values required by the field.
USAGE Provides an example of how to use thisfield in the GDK.
SEE ALSO Refers to other queue record fields that contain additional

or related information.

104

4. Queue Record Programming

cd_timeout

DATA TYPE GFQINT

DESCRIPTION Thisfield specifies the number of secondsto wait after
dialing for answer-tone carrier detect. It cannot have a
value of zero; the default is 30 seconds. On overseas
calls, the connect time may be 60 to 90 seconds. Local
calls might connect in 10 seconds.

VALUE Positive integersto 32767.

USAGE grec->cd_timeout = 45;

completed retries

DATA TYPE
DESCRIPTION

VALUE
USAGE

completed_time

GFQINT

This field contains the number of completed retriesand is
managed by GDK firmware. For example, if the
submission_retriesis 3 and the retry_counter is 2, the
completed retriesvalueis 1.

Positive integersto 32767.
attempts = grec->completed retries;

DATA TYPE
DESCRIPTION

VALUE
USAGE

GFQTIME

Thisfield tells when arecord was completed and posted
to alist. For example, after arecord in the Pending List
has been processed, it is posted to the Sent List and the
completed timeisrecorded in seconds. It is managed by
GDK firmware.

Positive long integer.

ptr = ctime(& (grec->compl eted_time));

105

GDK Version 5.0 Programming Reference Manual

control

DATA TYPE GFQINT

DESCRIPTION Thisfield isused for Answer & Send, Answer & Receive,
and Answer Default records only. A record waits for the
phone to ring for the specified amount of time before it
expires with a status code of 3033. The record is posted
to the queue or application notification pipe after the

specified time.
The valueisgiven in seconds; zero can be used. The
default is 60.

VALUE Positive integersto 32767.

USAGE grec->control = 20;

csid

DATA TYPE GFQBYTE[GFQCSID_SIZE]

DESCRIPTION Thisfield istransmitted as the Customer Subscriber
Identification (CSID) number during T.30-protocol
handshaking. Usually, it contains the telephone number of
the station or installation. It holds a maximum of 20
characters, or it can be empty. If the CSID field has
spaces, it remains blank. Writing more than 20 characters
to thisfield may produce unexpected results.

If the CSID field is null and does not have spaces, the

CSID from the user’s configuration file corresponding to
the fax channel processing the record is placed into the
field.

PTT administrations in some countries may restrict
characters in this field to the numbers 0 through 9 and the

plus (+).
VALUE Up to 20 alphanumeric characters.
USAGE strcpy (grec->csid,"408-744-1549");

106

4. Queue Record Programming

curr

DATA TYPE GFQOFFSET

DESCRIPTION Thisfield contains a pointer to the current queue record
inalinked list, and is managed by GDK firmware. When
aqueue record is inserted into the Queue File, the current
record pointer is “assigned.”

VALUE Positive integer.

USAGE This field is managed by GDK software and should not be
modified by user programs.

duration

DATA TYPE GFQINT

DESCRIPTION This field can be used to determine the length of time it
took to complete a phone call. It records the number of
seconds of phone-connect time used for transmission or
reception. In a Dial-and-Send-type operation, the timer
starts at the end of the answer tone. This field is managed
by the GDK communication programs.

VALUE Positive integers to 32767.

USAGE phone_time = grec->duration;

fn_cover

DATA TYPE GFQBYTE[GFQFILENAME_SIZE]

DESCRIPTION This 64-byte field contains the name of the file
comprising the cover page, if desired. It must be used in
conjunction with the field (transmit_control |=
GFQUSE_COVERSHEET).

VALUE A character array of type GFQFILENAME_SIZE; always
a full path to the cover-page file.

USAGE strcpy (grec->fn_cover,"c:\\fax\\cover.tif");

SEE ALSO transmit_control

107

GDK Version 5.0 Programming Reference Manual

fn_received
DATA TYPE GFQBY TE[GFQFILENAME_SIZE]
DESCRIPTION Thisfield contains the filename of areceived fax file. The

108

filename can be up to 64 bytesin length.

The communication program initializes this field after the
fax isreceived. A default filenameis given to received
transmissions — “f001p001.tif,” in which the numerals
increment with the transmission and page numbers.

The first character indicates the fax channel that received
the file. The first group of digits is a “call number,” which
provides a unique number for the fax. The character “p”
refers to page, and the second group of digits indicates
the page number of the fax.

The default filename can be changed when a queue record
is submitted with an Answer-operation parameter and by
filling in this field. It may also be changed by using the
GFXRECVPATH command. However, the first character
always represents the fax channel that received the fax.

The type of file it contains is indicated in the
received_filetype field. Usually, the received_filetype is
GFQSINGLE_DOC; however, for file transfer, the
fn_received field generates a received_filetype of
GFQLIST_OF_DOCS.

If file transfer is used, the received filename is a list of
files in the format xxxxXFER. FLS. This list contains the
name of the file that was received, which is the same as
the original sent filename (as long as the DOS
XXXXXXXX.yyy format is observed and the filename does
not already exist on the target drive). The “f001p001”
filenaming style is used if the sent filename already exists;
the original filename is included in parentheses next to
the filename that was written in the list.

4. Queue Record Programming

fn_received (cont.)

For example, AOOLXFER.FLS could contain:

TEST.TXT

AO001POOL.TIF (TEST.PCX)
VALUE A character array of type [GFQFILENAME_SIZE];.
USAGE strepy (grec->fn_received, "c:\\fax\\fOO1pOO1.tif");
SEE ALSO received_filetype

fn_send

DATA TYPE GFQBY TE[GFQFILENAME_SIZE]

DESCRIPTION Thisfield, which can be up to 64 bytesin length, contains
the name of afileto be sent.

The type of file to be sent should be put in the

source typefield. If it isasinglefile or a sequence of
pagesin the GDK filename format FOO1PO01.TIF, the
source_typeis GFQSINGLE_DOC. If itisalist of files,
the source_typeis GFQLIST_OF DOCS. A list of files
must be an ASCI| file, with every line containing a path
to afileto send. Each line must be separated by a

<CR><LP>.
VALUE A character array of type [GFQFILENAME_SIZE];.
USAGE strepy (grec->fn_send, "c:\\fax\\f001pOOL.tif");
SEE ALSO source_type

109

GDK Version 5.0 Programming Reference Manual

header

DATA TYPE GFQBY TE[GFQCSID_SIZE]

DESCRIPTION Thisfield contains the text that is included in a header,
which is printed at the top of each sent fax. It islimited to
20 aphanumeric characters, but also can be empty. This
field must be used in conjunction with (transmit_control
|= GFQUSE_HEADER). The following is the default
format of the header line on the printed page:
date & time calling CSID -> called CSID text page#
The information in this field fills the “text” field in the
header file.

VALUE A character array of type [GFQCSID_SIZE].

USAGE strcpy (grec->header,"Fax from GDK");

SEE ALSO transmit_control

items received

DATATYPE
DESCRIPTION

VALUE
USAGE

110

GFQINT

This field contains the number of pages or files correctly
received. If nothing is received because of an error, this
field contains zero.

Positive integers to 32767.
number_pages = qrec->items_received,;

4. Queue Record Programming

items_sent

DATA TYPE GFQINT

DESCRIPTION Thisfield contains the number of pages or files actually
sent during the transmission, and it is managed by GDK
firmware. If nothing is sent because of an error, thisfield
contains zero.

VALUE Positive integersto 32767.

USAGE number_pages = grec->items_sent;

line_noise

DATA TYPE GFQINT

DESCRIPTION Theline noise, which is measured by the modem during
quiet periods of the handshaking process, is recorded
here. It isfilled by GDK firmware when amessageis
received. Thisfield is useful for determining if afailurein
transmission is due to line problems.

VALUE See Table 18.

USAGE noise = grec->line_noise

Table 18. Values Reported in line_noise

Value| dBm|Meaning
18 -65 | Extremely quiet
50 -60| Very quiet
135 -55| Quiet
461 -50| Acceptable
1390 -45| Noisy
2300 -40| Unusable

111

GDK Version 5.0 Programming Reference Manual

list_type
DATA TYPE GFQINT
DESCRIPTION Thisfield indicates the list to which a queue record
belongs; it is managed by GDK firmware.
VALUE See Table 19.
USAGE if (grec->list_type == GFQPEND_LIST)
printf ("Pending Log");
Table 19. list_types in the Queue Record
Mnemonic Meaning
GFQPEND_LIST Pending List
GFQRECV_LIST Received List
GFQSENT_LIST Sent List
GFQCONV _LIST Conversion List
GFQCTRL_LIST Control List
GFQCPST _LIST Control Done List
GFQFREE LIST Free (deleted) Records
GFQALL_LISTS All Lists
message speed
DATA TYPE GFQINT
DESCRIPTION Thisfield records the transmission rate in bits per second
(BPS) during transmission or reception. It is managed by
GDK firmware.
VALUE 14400, 12000, 9600, 7200, 4800, and 2400 bps or
GFQMAX_RATE for maximum default rate.
USAGE speed = grec->message_speed;

112

4. Queue Record Programming

modem _id

DATA TYPE GFQBYTE[GFQUSER_FIELD_SIZE]

DESCRIPTION This 32-byte field is used for a multiple-fax channel
chassis. It holds a string in the form “GFAXX.yy,” where
“X" represents the chassis number and “yy” is the channel
number. (For more than nine channels, numbers in the
form of “01,” and so on, should be used.) This string
should match the one used with the channel command in
the ChannellD key in the registry file. When a queue
record is submitted, the modem_id indicates the channel
to which the task should be assigned. If this field is
empty, the task goes to the first available channel.

VALUE A character array of size [GFQUSER_FIELD_SIZE].

USAGE strcpy (grec->modem_id,"GFAX1.01");
strcpy (grec->modem_id,"GFAX1.10");

next

DATA TYPE GFQOFFSET

DESCRIPTION This field contains a pointer to the next queue record in a
linked list and is managed by GDK firmware. The last
record in a linked list contains NULL.

VALUE Positive integer.

USAGE This field is managed by GDK software and should not be

modified by user programs.

113

GDK Version 5.0 Programming Reference Manual

notify

DATA TYPE GFQINT

DESCRIPTION Thisfield is evaluated by gfqClearReq(); otherwise, itis
unused. If your application writes to thisfield, it is not
evaluated.

VALUE None.

USAGE Thisfield is managed by the GDK software and should
not be modified by user programs.

nsf_field

DATA TYPE GFQBYTE[GFQUSER_FIELD_SIZE]

DESCRIPTION Thisisthe non-standard-facilities (NSF) field to be
transmitted during T.30 handshaking. It can hold up to 32
bytes and is reserved for facsimile machines that support
NSF.

The ITU specifies that the first octet of the
NSF/NSS/NSC frame must contain an ITU country code.
The next two octets contain a provider code. The GDK
provider code is 0x00,0x64.

VALUE A character array of size[GFQUSER_FIELD_SIZE].

USAGE grec->nsf_field[0] = OXAE;

SEE ALSO nsf_length

nsf_length

DATA TYPE GFQINT

DESCRIPTION This field contains the number of bytes to be transmitted
in the non-standard-facilities (NSF) field. It is sent to
facsimile machines that support NSF.

VALUE Positive integer of size 0 to GFQUSER_FIELD_SIZE.

USAGE grec->nsf_length = 20;

SEE ALSO nsf_field

114

number_calls

4. Queue Record Programming

DATA TYPE GFQINT
DESCRIPTION Thisfield specifies the number of dial attemptsto be
made for each “retry.” For example, if number_calls is
equal to 3 for a queue record with 3 retries, the board will
attempt to dial up to 9 times. If this field is not specified
when a queue record is submitted, the default
is 1.
VALUE Positive integers to 32767.
USAGE grec->number_calls = 3;
operation
DATA TYPE GFQINT
DESCRIPTION When a record is submitted, this field must specify the
operation to be performed. The operation tells the on-
board software how to process a queue record.
VALUE See Table 20.
USAGE grec->operation = GFQDIAL_SEND;
Table 20. Queue-Record Operations
Operation Transaction | Send DIS Wait for DIS
DIAL Send GFQDIAL_SEND
Receive GFQDIAL_RECEIVE
Both GFQDIAL_SEND_
RECEIVE
ANSWER Send GFQANSWER_SEND
Receive GFQANSWER_RECEIVE
Both GFQANSWER_RECEIVH
_SEND
IMMEDIATE |Either GFQANSWER _
IMMEDIATELY

115

GDK Version 5.0 Programming Reference Manual

phone_no
DATA TYPE GFQBYTE[GFQCSID_SIZE]
DESCRIPTION This field contains the telephone number to be dialed. It is
limited to 20 characters (Table 20); no spaces are
permitted. Characters such as “-”, “(", and “)” count
toward the 20-character limit, but are not evaluated.
For additional dialing features, see the Routing section in
Chapter 2.
For dial strings with more than 20 digits, put the dial string
into an ASCII file. The first character of the phone_no
field is checked for the character “@." If an “@” is found,
the remainder of the field (up to the first white space) is
used as the name of the file from which the phone digits
are to be read. The file to be used must be a fully-qualified
path name. If the file specified cannot be found, or if it
appears to be a non-ASCI! file, the call is terminated with
no retries. If the characters “P” or “T” are used, the
modem changes to pulse or tone, respectively.
VALUE A character array of size [GFQCSID_SIZE]. See Table 21.
USAGE strcpy (grec->phone_no,"408-744-1549").
Table 21. Characters in phone_no Field
Character(s) M eaning
0 through 9 Phone numbers and access numbers
A through D Phone numbers and access numbers
, (comma) 1.5-second pause
; (semicolon) 15-second wait for second dial tone
P Pulse dialing
T Tone dialing (default)
! Flash-hook signal
Notifies international operator that the dialing
sequence is finished
* PBX-specific information

116

4. Queue Record Programming

prev

DATA TYPE GFQOFFSET

DESCRIPTION Thisfield contains a pointer to the previous queue
record in alinked list. It is managed by GDK firmware.
The first record contains NULL.

VALUE Any positive integer.

USAGE Thisfield is managed by the GDK software and should
not be modified by user programs.

priority level

DATA TYPE GFQINT

DESCRIPTION The records in the Queue File are sorted first by date and
time stamp (specified in the time data field), then by
priority, then processed sequentially. Although records
may be inserted non-sequentially, those submitted with
the same date and time stamp are processed in the order
of submission, unless priority is specified. Records with
the priority date and time specified are processed first.
Zero isthe lowest priority; 32767 isthe highest. The
default is zero.

VALUE Positive integersto 32767.

USAGE grec->priority_level = 99;

protocol

DATA TYPE GFQINT

DESCRIPTION Two modes of communication are available on CP Fax
Series boards: sending an image file to afax machine
(GFQT30_PROTOCOL) and sending adatafile.
GFQT30_PROTOCOL isthe default; it should be changed
only if file-transfer mode is desired. The method used for
datatransfer is GFQBFTS BFT T.434 protocol. To use
BFT, additional configuration commands must be placed
intheregistry. See the GFXFAXCONTROL 1020.

VALUE GFQT30_PROTOCOL, GFQFILE_TRANSFER,

117

GDK Version 5.0 Programming Reference Manual

protocol

DATA TYPE GFQINT
GFQBFT

USAGE grec->protocol = GFQBFT;

rate

DATA TYPE GFQINT

DESCRIPTION Thisfield is used to initialize the rate of transmissionin
bits per second (bps). If it isset to GFQMAX_RATE, the
message is to be sent at the highest rate possible. Change
the value only if aslower rate is required; for example,
when a phone lineis known to have poor quality.

VALUE GFQMAX_RATE, 14400, 12000, 9600, 7200, 4800, and
2400 bps.

USAGE grec->rate = 4800;

received csid

DATA TYPE GFQBYTE[GFQCSID_SIZE]

DESCRIPTION This field records the Customer Subscriber Identification
(CSID) number of the remote machine. It isup to 20
characters long, can contain any alphanumeric character,
and is managed by GDK firmware.

VALUE A character array of size [GFQCSID_SIZE].

USAGE strepy (station_id,grec->received _csid);

118

received filetype

4. Queue Record Programming

DATA TYPE GFQINT

DESCRIPTION Thisfield contains a description of the file named in
fn_received. When atransmission is received, it isused to
indicate whether the operation involves asingle fax, alist
of files, or afiletransfer. Thefield is managed by GDK
firmware.

VALUE GFQSINGLE_DOC or GFQLIST_OF_DOCS.

USAGE if (grec->received_filetype == GFQLIST_OF_DOCYS)
printf ("List of fileswas received.\n")

SEE ALSO fn_received

received_nsf

DATA TYPE GFQBY TE[GFQUSER_FIELD_SIZE]

DESCRIPTION This 32-byte field contains the value of the non-standard-
facilities (NSF) field received from the sending facsimile
machine. It is managed by GDK firmware.

VALUE A character array of type [GFQUSER_FIELD_SIZE].

USAGE for (i = 0; i < grec->received_nsf_length; i++)
printf ("%02x", grec->received_nsf);

SEE ALSO received_nsf_length

received_nsf_length

DATA TYPE
DESCRIPTION

VALUE
USAGE

SEE ALSO

GFQINT

Thisfield contains the length of the non-standard-facilities
(NSF) field that was received. It is reserved for
communication with facsimile machines that support NSF.
It is managed by GDK firmware.

Integers from 0 to GFQUSER_FIELD_SIZE.

Thisfield is managed by the GDK software and should not
be modified by user programs.

received_nsf

119

GDK Version 5.0 Programming Reference Manual

record_control

DATA TYPE GFQINT

DESCRIPTION Thisisa 16-hit field used for management of the queue

VALUE
USAGE

SEE ALSO

120

record. The bits used by GDK functionsare 0, 1, 2, 4, 5,

6, and 7. Bit 0 is “0” (zero) when the record is not busy
and “1” when the record is busy. Bit 2 is “0” (zero)
when the record is not “off the host” and “1” when the
record is “off the host.”

When a record is submitted to the Pending List for
transmission, its record_control value is “0” (zero).
When it is moved by the Dispatcher into a buffer, it is
“1.” When the Dispatcher sends it to the on-board
software for transmission, it changes to “5.” When the
record is posted and the transmission is complete, the
record_control value is “0” (zero).

During the course of a fax transmission, the
record_control field goes through a series of steps. At
each step, the values in this field change. See Table 22.

See Table 23.

This field is managed by the GDK software and should
not be modified by user programs.

“Busy Records” section.

Table 22. Transmission Steps and record_control Field Values

Step Values
A record is submitted to the Pending List. Xxxx X0x0
The Dispatcher moves the record into a buffer. XXXX XOx1

The Dispatcher sends the record to the fax chanhel. xxxx x1x1

The record is posted. Xxxx X0x0

4. Queue Record Programming

Table 23. Values and Flags of the record_control Field

Bit Bit Valueof 0 Bit Valueof 1 Flag Name
b0 Queue record not Queue record GFQRECORD_BUSY
busy busy
bl Template Transaction GFQTEMPLATE RECORD
b2 On host Off host GFQRECORD_ON_HOST
b3 (Reserved)
b4 No post Post GFQPOST_RECORD
b5 Resubmit of f Resubmit on GFQRESUBMIT _ON
b6 Not viewed/printed | Viewed/printed GFQRECORD_ VIEWED
b7 Not routed Routed GFQRECORD_ROUTED
b15 (Reserved)
retry_counter
DATA TYPE GFQINT
DESCRIPTION This field counts the call-processing submissions, even
though it is called a “retry” field. It specifies the total
number of calls to be attempted, and not the number of
“retries.” However, if the value of the field is set to zero, a
file gets one transmission attempt by default. Because
every record gets at least one transmission attempt, this
field counts that first attempt as a “retry.” A value does not
have to be assigned to retry_counter, unless a number other
than the default is desired.
If the -1 option is selected, retrying continues indefinitely,
or for a specified period of time. However, the maximum
value of the retry_counter may be restricted by PTT
requirements in certain countries. This is only used in the
Queue Programming model.
VALUE -1, positive integers to 32767.
USAGE grec->retry_counter = 3;

121

GDK Version 5.0 Programming Reference Manual

retry_delay

DATA TYPE GFQINT

DESCRIPTION Thisfield specifies the number of minutes that must elapse
before another retry is attempted. The default is 30
minutes. This field does not have to be initialized unless
thisvalue isto be changed. PTT requirementsin some
countries may specify aminimum retry_delay time. Thisis
only used in the Queue Programming model .

VALUE Positive integersto 32767.

USAGE grec->retry_delay = 30;

retry_end_time

DATA TYPE
DESCRIPTION

VALUE
USAGE
SEE ALSO

122

GFQTIME

When a queue record is submitted for polling operations, it
must have a start and stop time. This field indicates the
stop time in seconds. If the record has not been processed
successfully by its stop time, processing is discontinued,
and the record is posted to the appropriate completion list.
In that event, theretry_counter isset to -1. Thisisonly
used in the Queue Programming model. To specify await
time for answer-operations in the GRT-based
programming model, use the “control” field.

Positive integers to 32767.
grec->retry_end_time = grec->time + 3600;
retry_counter

4. Queue Record Programming

retry_strategy

DATA TYPE GFQINT

DESCRIPTION If arecord fails, the Queue Manager uses the type of retry
strategy specified in thisfield
The only retry strategy implemented at thistimeis
specified with the parameter GFQFULL_RETRY .

VALUE GFQFULL_RETRY.

USAGE grec->retry_strategy = GFQFULL_RETRY;;

security

DATA TYPE GFQLONG

DESCRIPTION Thisfield isused for checking the answering Customer
Subscriber Identification (CSID) against the telephone
number that was dialed. It contains the number of digitsto
be checked. One or al digits dialed, except for dashes and
commas, can be checked against the CSID supplied by the
called party to verify that the correct number was reached.
A match of “n” numbers is performed; if there is no match,
your system disconnects. If logging is enabled at the
appropriate level, the message “Security check failed” is
returned. A value of zero indicates no security.

VALUE None.

USAGE grec->security = 3;

signal_quality

DATA TYPE GFQINT

DESCRIPTION This field contains the signal quality, which is measured by
the modem during handshaking procedures. This field is
useful for determining if a failure in transmission is due to
line problems.

VALUE See Table 24.

USAGE This field is managed by the GDK software and should not

123

GDK Version 5.0 Programming Reference Manual

signal_quality

DATA TYPE

GFQINT
be modified by user programs.

Table 24. Values of the signal_quality Field

Speed| Mode | High | Average| Marginal
14400| V.17 0 768 1024
12000| V.17 0 1792 2560
9600 V.17 0 4608 5632
7200 V.17 0 7168 10240
9600 V.29 0 960 2048
7200 V.29 0 2112 4352
4800 V.27 0 1600 3328
2400 V.27 0 9408 18944
signal_strength
DATA TYPE GFQINT
DESCRIPTION Thisfield holds the signal strength, which is measured by
the modem during handshaking. It is useful for determining
if afailurein transmission is due to line problems.
VALUE See Table 25.
USAGE Thisfield is managed by GDK software and should not be

124

modified by user programs.

4. Queue Record Programming

Table 25. Values of the signal_strength Field

Value| dBm | Strength

6750| -40 |Marginal

10000| -35 |Wesak

13250| -30 | Acceptable

16250| -25 | Good

19750(-20 | Strong

23000| -15 |Very strong

source_type

DATA TYPE GFQINT

DESCRIPTION When afileto be sent is submitted to the Queue File, the
user must specify whether the operation involves asingle
fax or alist of documents. Thisfield contains a description
of thefile named infn_send. It must befilled if afileisto
be sent.

VALUE GFQSINGLE_DOC or GFQLIST_OF DOCS.

USAGE grec->source_type = GFQLIST_OF _DOCS;

SEE ALSO fn_send

status

DATA TYPE GFQINT

DESCRIPTION Thisfield contains a code indicating the success or failure
of the transaction. A list of error and status codes is given
in the Error and Satus Codes Manual . Although the
function libraries write the status field, codes can be
written to it easily for your application.

VALUE Positive integersto 32767.

USAGE result = grec->status;

SEE ALSO Error and Satus Codes Manual

125

GDK Version 5.0 Programming Reference Manual

submission_retries

DATA TYPE
DESCRIPTION

VALUE
USAGE

submission_time

GFQINT

Thisfield is used to manipulate retries, and contains the
initial value of theretry_counter field. It records the
number of retry attempts to be made when atransmission
fails. Thisfield is managed by GDK firmware.

Positive integersto 32767.

Thisfield is managed by the GDK software and should not
be modified by user programs.

DATA TYPE GFQTIME

DESCRIPTION Thisfield is used to manipulate submission times. It
records the time at which a queue record was first
submitted to the Queue File. The value in the field isthe
time in seconds from January 1, 1970. Thisfieldis
managed by GDK firmware.

VALUE A date/time stamp comprised of positive integers.

USAGE Thisfield is managed by GDK software and should not be
modified by user programs.

time

DATA TYPE GFQTIME

DESCRIPTION When arecord is submitted to the Queue File, it must
contain thetimeit is to be processed or was processed,
which is specified by thisfield.

VALUE None.

USAGE time (& (qrec->time)); /*for immediate processing*/

126

transmit_control

4. Queue Record Programming

DATA TYPE GFQINT

DESCRIPTION Thisfield isa 16-bit switch that controls various aspects of
the Send operation. If all bits are set to 0, no special
features will be included. Setting the first bit allows a
cover page to be sent. Setting the second bit allows a
header to be sent. Setting the third bit turns on the non-
standard-facilities (NSF) field during transmission. This
field must be specified when used in conjunction with the
various controls.

VALUE GFQUSE_COVERSHEET, GFQUSE_HEADER,
GFQUSE_NSF, GFQUSE_OVERLAY_HEADER,
GFQUSE_OVERLAY_HEADER_OR.

USAGE grec->transmit_control|= GFQUSE_HEADER,;
grec->transmit_control|= GFQUSE_NSF;

SEE ALSO nsf_field and fn_cover field descriptions.

user_id

DATA TYPE GFQBY TE[GFQUSER_FIELD_SIZE]

DESCRIPTION This 32-byte field indicates the submitter of the record, a

network address, and a password. It can contain any
alphanumeric characters; it also can be empty. Records
may be submitted to the Queue File by specifying thisfield
and using a function such as gfqSubmit.

If the fax channel receives any routing information, it will
post the results in as a coded field.

For example:
SY SOP;D=XXXX

where “SYSOP” is the name generated by the
communications program “;D” is a separator, and
“XXXX" represents the DID (direct inward dialing) or
DTMF (dual-tone multi-frequency) digits; or
SYSOP;S:=YYYY...

where “;S:” is a separator and “YYYY...” represents a

127

GDK Version 5.0 Programming Reference Manual

user_id
DATA TYPE GFQBY TE[GFQUSER_FIELD_SIZE]
received subaddress.
Or
P=Z77...
where “;P:” is a separator and “ZZZ..."” represents a T.30
password.
VALUE A character array of size [GFQUSER_FIELD_SIZE].
USAGE strcpy (grec->user_id,"John");
SEE ALSO “Routing” section in Chapter 2.

128

5. Programming Models

GDK Subsystem

Didogic has developed afax subsystem optimized for mission critical, high
volume, fax applications. CP Fax hardware channels are integrated through direct
connection to the Public Switched Telephone Network (PSTN) or as a shared
resource in atelephony bus environment such as Pulse Code Modulation
Expansion Bus (PEB) or Signal Computing Bus (SChus). All the details, critical
timings, fax machine compatibility, on-line image conversions, High-Level Data-
Link Control (HDLC) and signal quality measurements occur on-card viafield
upgradable, soft loadable firmware.

Architecturally, a GDK channel functions as a client-server to the host computer.
Communication between the fax channel server and the host application client is
through an operating-system dependent driver (the GDK system service
dispatcher) and a GDK APl messaging interface. This method differs greatly from
traditional (Class 1 or Class 2) fax-data modems.

The GDK APIs provide fax communications in two ways — passive batch mode
and runtime interactive mode. These two modes are described in more detail later
in this chapter.

During fax transactions, the Dispatcher is a server to the fax channels executing
proprietary remote procedure call requests for files, data, system time, or other
host services. The application can participate in fax communication through event
monitoring using the run-time API, or can ignore the details of the fax protocols
by using the batch-programming model.

The GDK architecture shields the application from critical protocol timings,
allowing the development of very high-density systems with inexpensive host
chassis hardware. A fax transaction can withstand up to 30-second delay in host
service. This delay can occur in Local Area Networks (LANs) and Wide Area
Networks (WANS) used to connect mission critical, integrated fax solutions in
businesses and service bureaus.

129

GDK Version 5.0 Programming Reference Manual

This architecture also protects the T.30 protocol from misuse in foreign countries
where the fax protocol may be restricted by government approval requirements.
Didogic CP Fax products are approved for many countries.

Phases of a Fax Session

A facsimile session between two fax devices consists of five distinct phases (see
Table 26). The ITU T.30 recommendation describes the interaction between two

fax devices in more detai

Table 26. Facsimile Session Phases

ITU T.30 Phase

Description

Fax Modem

Phase A — Call Setuj

This phase establishes a ¢
connection between the two
devices, which includes
dialing, call progress, answe
and supervision (start the
billing).

D

&alling fax device
transmits CNG 1100 Hz
tone, .5 second ON, 3

rseconds OFF

Answering fax device
transmits CED 2100 Hz
tone, 3 second duration

Phase B —
Pre-Message
Procedure

This phase consists of the
mutual recognition of the fax
devices (known as a
handshake). It is a negotiatid
procedure that identifies thei
respective capabilities,
identities and any non-
standard facilities. This phas
selects the session paramet
for the message transmissio
including speed, compressig
and error correction.

V.21 mode, HDLC
300 bps

n

=

Phase C — Message
Transmission

This phase is where the data
transmitted. The fax devices
send/receive page files of th
document, at the selected
speeds performing T.4, T.6
and/or ECM as negotiated in

\Wsl7, v.29, v.27, v.33

14400, 12000, 9600,
£7200,4800, 2400 bps

optional HDLC (ECM
mode)

Phase B.

130

5. Programming Models

ITU T.30 Phase

Description

Fax Modem

Phase D —
Post-Message

Procedure

After sending/receiving a pa
file of the document, a
message exchange occurs
between the fax devices
indicating the success or
failure to receive the page fil
continue to next page file
under same conditions, retrg
to new conditions or to
confirm the document
transmission is complete.

jé/.21 mode, HDLC

D

in

Phase E —
Call Release

In this phase the fax
transaction is complete, goo
or failed, and the call is
released (OFF-HOOK)
terminating the billing and th
connection.

(inactive)
3|

[

Fax Programming Models

Dialogic CP Fax Series products define and support two programming models for
facsimile communications — batch mode and run-time interactive models. The
GFQ functions are used with the batch programming model, and the GRT
functions are used with the run-time interactive programming model.

131

GDK Version 5.0 Programming Reference Manual

Batch Programming Model

The batch programming model relieves the developer of monitoring the fax
transaction phases. This programming model is designed for applications such as
automated transmission between two fax machines with no human intervention.
The batch mode also minimizes the loading on the host computer.

A batch application cannot perform resource sharing or call switching. An
additional limitation isthat it is restricted to CP Fax hardware, which can perform
direct call control (e.g. CP Fax cards with direct connection to the PSTN (analog
boards or AEB connections, or direct control of signaling bitsin digital
environments such as PEB). As aresult of the limitations of batch programming,
developers generally prefer the interactive programming model, which is
discussed later in this chapter.

NOTE: The batch programming model does NOT support the "transparent
ISDN" or "transparent DM 3 support” features.

In the batch programming model, the fax channel performs al five phases of afax
transaction. This APl model can be used in the following types of applications:

e Fax broadcast
e E-mail fax gateways

» Two-call fax-on-demand applications

Batch mode programming deals with the submission and retrieval of queue

records (Chapter 4). A queue record is simply a data structure that is stored in a
database (the Queue File). This “database record” describes the fax transaction
from start to finish.

For example, to send a fax, a queue record is filled in with the file name of the
image and the phone number. The record is then submitted to the database using
gfgSubmit() for processing. The GDK subsystem processes the fax transaction
and updates the queue record with the status, duration, and completion time of the
job. The completed record can then be retrieved by the application using
gfgFindFirst() to update its local records.

This description demonstrates the simplicity of the batch mode model. Note,
however, that the queue record is a comprehensive data structure, which provides

132

5. Programming Models

detailed transmission or receiving characteristics. Additionally, a completed queue
record contains detailed measurements of line quality, fax machine characteristics,
and call duration.

Thelevel to which you program the queue record determines the sophistication of
your fax application in the batch mode programming model. Conversions, fonts,
headers, speeds, file transfers, retries, and specia information exchanges are all
available using the fields of the queue record.

NOTE: The batch programming model is an outdated paradigm with many
limitations; Dialogic recommends the interactive programming model for
most applications and environments.

GFQ APIs — Alphabetized List of the GFQ Functions

Thefollowing is an aphabetized list of the GFQ functions. These functions
submit and retrieve transactions within the GDK Queue File (database). Any
gueue record that is not marked busy can be created, read, modified, or deleted
from the Queue File by using the GFQ functions. For a detailed discussion of the
Queue File’s structure, please see Chapter 4.

133

GDK Version 5.0 Programming Reference Manual

Name: void gfqClearRec (GFQRECORD *qgrec);

Inputs: GFQRECORD *qrec
Outputs: GFQRECORD *qgrec

Returns: None
Includes: gfg.h

e A pointer to a queue record.

e A pointer to aqueue record.

B Description

The gfqClear Rec() function clears and initializes arecord to the default settings

listed in Table 27.

Table 27. Queue Record Default Values

Queue-Record Field Default
grec->time time
grec->notify GFQNOTIFY_ONERROR

grec->retry_strategy

GFQFULL_RETRY

grec->retry_counter

3

grec->retry _delay

30

grec->rate

GFQMAX_RATE

grec->protocol

GFQT30_PROTOCOL

grec->number_calls

1

grec->cd_timeout

30

grec->source type

GFQSINGLE_DOC

B Example
#incl ude "gfq. h"

GFQRECCRD qr ec;
of qd ear Rec (&grec);

134

5. Programming Models

Name: int gfgFindFirst (GFQCHAR *gfgFileName, GFQRECORD
*pQRec, GFQINT Link, GFQINT End, GFQCHAR * User);

. * i
Inputs: GFQCHAR *dfqFileName Name of Queue File

access.
GFQRECORD *pQRec

GFQINT Link
GFQINT End

* Queue record buffer.
e Linklistto beread.

e Theendfromwhichto
begin —
GFQLIST_START or
GFQLIST_END.

*
GFQCHAR *User e Valid queue record, if

return is GFQSUCCESS.

Outputs: GFQRECORD *pQRec . Valid queue record, i

return is GFQSUCCESS.
Returns: GFQSUCCESS

GFQLIST_NOTFOUND

« Avalid record was found.

e The link specified was not
valid.

GFQLIST_EOF e No records matching the

search values were found.

GFQRECORD_NOTFOUND L
e Listis empty.

Includes: gfg.h

B Description
ThegfqFindFirst() function locates the first item in a list using the user ID, and

the direction it was passed to determine which record is the first. That record is
then read into the buffer pointed to by pQRec.

135

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "gf q. h"

#i ncl ude "gf gpat h. h"

int status;

GFQRECCRD qr ec;

GFQCHAR gf gFi | eNarre[GFQFI LENAME_SI ZE] ;

int i=0;

if (gf gSearch(GFQD R QUEUE, "gf ax. $qu”, gf gFil eNane)){
printf("Error getting path to queue file.\n");
exit(1);

}

status = gfgFi ndFirst (gfqFi | eNane, &grec, GFQPEND LI ST,

GFQLI ST_START, "");

if (status == GFQBUCCESS){
printf("Record % on Pending list\n", ++);
printf("\t Phone = %\n", qrec.phone_no);
printf("\t Send file = %\n", qgrec.fn_send);

136

5. Programming Models

Name: int gfgFindNext (GFQCHAR *gfgFileName, GFQRECORD
*pQRec, GFQINT Direction, GFQCHAR *User)

Inputs: GFQCHAR *gfqFileName « Nameof queuefile

to access.
GFQRECORD *pQRec

GFQINT Direction

* Queuerecord buffer.

* Directionto read
from current. Values
are
GDQREAD_FWD
and
GFQREAD_BWD

GFQCHAR *User

e Userid string or
for all.
Outputs: None

Returns: GFQSUCCESS « Avalid record was

found.

GFQLIST_NOTFOUND * The link specified

was not valid.

GFQLIST_EOF e No records matching

the search values
were found.
GFQRECORD_NOT_FOUND

GFQRECORD_KEY_ERROR

* The list is empty.

e The key information
in the queue record
has been modified
since it was
retrieved.

GFQRECORD_INV_READ_DIR Direction specified

was unrecognized.
Includes: gfg.h

137

GDK Version 5.0 Programming Reference Manual

B Description

The gfqFindNext() function reads the next record in the specified direction,
verifies the record passed in from the application has not changed, then it finds the
next record in alist. Using the User parameter will limit the search of valid
records.

M Example

#i ncl ude "gf q. h"

#i ncl ude "gf gpat h. h"

int status;

GFQRECCRD qr ec;

GFQCHAR gf gFi | eNarre[GFQFI LENAME_SI ZE] ;

int i=0;

if (gf gSearch(GFQD R QUEUE, "gf ax. $qu”, gf gFil eNane)){
printf("Error getting path to queue file.\n");
exit(1);

}
status = gfgFi ndFirst (gfqFi | eNane, &grec, GFQPEND LI ST,
GFQLI ST_START, "");
while (status == GFQBUCCESS) {
printf("Record % on Pending list\n", ++);
printf("\t Phone = %\n", qrec.phone_no);
printf("\t Send file = %\n", qgrec.fn_send);
status = gf gFi ndNext (gf gFi | eNane, &grec, GFQREAD FWD, "");

138

5. Programming Models

Name:
Inputs:

Outputs:

Returns:

Includes:

int gfqGetPath (int ft, char *fn, char *fullfn);

int ft

char *fn

char *fullfn

char *fullfn

GFQSUCCESS

GFQPATH_NOT_SET

GFQPATH_INVALID

GFQPATH_NO_FILE

GFQPATH_BAD_TYPE

GFQPATH_BAD_FILE
gfq.h path.h

Selects the symbolic
constant. See Table 27.

A pointer to afile, such as

the queue file, “gfax.$qu”, or
a file to send, such as
test001.tif.

A pointer to a character
buffer that is large enough to
hold a fully qualified file
path.

A pointer to a fully-qualified
filename when a file does
exist or may be created.

The function completed
successfully; the “path”
points to the desired file.

The file could not be found
because the configuration
information was not present.
This is a fatal error.

The file could not be found
because the configuration
information was in error.
This is a fatal error.

The file could not be found,
but the configuration
information seemed correct.
The “path” points to the full
filename where the file
should exist.

The file type specified was
invalid.

The file specified is null.

139

GDK Version 5.0 Programming Reference Manual

B Description

The gfqGetPath() function can be used to construct the path to a subdirectory
where afile should be written, and can be used to locate the place to put afile that
may not exist. It always returns afully qualified filename, even if thefileis not
found. The function gfgSearchPath() should be used to locate a file that must
exist.

gfgGetPath() uses the symbolic constants defined in Table 28. When a specific

file type is sought, the function looks for an environment variable, such asthosein

the “Initial Search Target” column of Table 28. If an environment variable exists
and is correct, the function uses it to create a full filename. If the environment
variable was not specified, the function looks for an alternate environment
variable or the current directory. If everything is proper, it returns a full filename.
In the example that follows, GFQDIR_SEND is one of the basic file types
(symbolic constants) defined. “path” in the example is a pointer to the full name of
the file returned by gfgGetPath().

M Example

#i ncl ude "gf q. h"

#i ncl ude "gf gpat h. h"

char path[64];

if (gfgCGetPath(GFQDI R SEND, "testQ01.tif", path) == GFQBUOCESS)
printf ("The path is %\n", path);

140

5. Programming Models

Table 28. Symbolic Constants for gfqGetPath()

Symbolic Constant | Initial Search Second Target | Meaning
Target
GFQDIR_QUEUE GFAXQ GFAX L ocate the Queue
File.
GFQDIR_UTILITY | GFAXU GFAX Locate the utility
programs.
GFQDIR_SEND GFAXS current L ocate the send
directory files.
GFQDIR_RECEIVE | GFAXR current Locate the
directory received files.
GFQDIR_LOG GFAXL GFAX Locate the log
files.
GFQDIR_CONFIG | GFAXC current Locate the config
directory files.

141

GDK Version 5.0 Programming Reference Manual

Name:

Inputs:

Outputs:
Returns:

Includes:

void gfglnsertOne (char * gfgFileName, GFQRECORD *qrec,

int list);
Char *gfgFileName

GFQRECORD *qgrec

intlist

None

GFQSUCCESS
GFQFILE_BUSY
GFQFILE_CREATE_ERROR

GFQFILE_INCOMPATIBLE

GFQFILE_NOTFOUND
GFQFILE_OPEN_ERROR
GFQRECORD_WRITE_ERROR

GFQLIST_NOTFOUND

gfg.h

A pointer to the name
of the Queue File.

A pointer to the Queue
File record to be
inserted.

The specified linked
list of the Queue File.

The record was added.
The QueueFileis
locked by another
task.

Unableto create the
new Queue File.

The Queue File
versionis
incompatible with this
version of the GDK
software.

The Queue File was
not found.

Unable to open the
QueueFile.

Unableto create a new
queue record.
Unable to find the
specified list.

142

5. Programming Models

B Description

The gfqlnsertOne() function adds one record into the desired linked list of the
Queue File. It is a general-purpose function that can be used to submit records to

any linked list specified by the parameter “link.” Table 29 lists the names used
with gfginsertOne().

Each linked list in the Queue File is kept sorted, in descending order, by a time
stamp and priority. This means that events to be processed “now” are at the end of
the linked list and “future” events are at the beginning. A pointer to a record and a
linked-list number are passed into this function. If the linked list is out of range,

the function returns GFQLIST_NOTFOUND.

Table 29. List Names Used with gfginsertOne()

Mnemonic M eaning
GFQPEND _LIST Pending List
GFQRECV_LIST Received List
GFQSENT _LIST Sent List
GFQCONV_LIST Conversion List
GFQCTRL_LIST Control List
GFQCPST _LIST Control Done List

M Example

#i ncl ude "gf q. h"
#i ncl ude "gf gpat h. h"

GFQRECCRD qr ec;
char queuefile[128] = “\0”;
int status;

[* get fully qualified path to queue file */
if (gfgGetPath(GFQDIR_QUEUE, "gfax.$qu", queuefile) = GFQSUCCESS)

{
fprintf(stderr, "GFAX environment variable not defined\n");

exit(1);
}

143

GDK Version 5.0 Programming Reference Manual
[* initialize and fill in queue record */

status = gfgl nsert One(queuefile, &rec, GFQPEND LI ST);
if (status != GFQBUCCESS)
{

printf("gfglnsertGne to GFQPEND LI ST failed, %l\n", status);
nyError Rout i ne(status);
}

el se
printf("Queue Record successfully subnitted to Pendi ng

Li st\n");

144

5. Programming Models

Name:

Inputs:

Outputs:
Returns:

Includes:

int gfglnsertPlist (GFQCHAR *gfgFileName, GFQRECORD
*grec, int list, GFQCHAR *phonelist);

GFQCHAR *gfgFileName
GFQRECORD *qgrec

intlist

GFQCHAR *phonelist

None

GFQSUCCESS
GFQFILE_BUSY
GFQFILE_CREATE_ERROR

GFQFILE_INCOMPATIBLE

GFQFILE_NOTFOUND
GFQFILE_OPEN_ERROR
RECORD_WRITE_ERROR

GFQPHONE_FILE_ERROR

gfg.h

A pointer to the name of
the Queue File.

A pointer to aqueue
record.

The specified linked list
of the QueueFile.

A pointer to the name of
the file containing the list
of phone numbers.

The record(s) were
inserted.

The Queue Fileislocked
by another task.

Unable to create the new
QueueFile.

The Queue Fileversionis
incompatible with this
version of the GDK
software.

The Queue File was not
found.

Unable to open the Queue
File.

Unable to create a new
queue record.

The phone-list file could
not be opened.

145

GDK Version 5.0 Programming Reference Manual

B Description

The gfqlnsertPlist() function inserts one record into alist for every phone
number in the phone list. It writes a queue record for each entry in the phone list
into the specified list of the Queue File. The phone-list file is automatically
opened, processed, and closed.

The structure of arecord inside a phone list is shown below, and followed by the
maximum length of each field:

Table 30. gfginsertPlist Phone Number Record Structure

Field Maximum Length
phone_number 20

rate 4

cd_timeout 4

last_name 20

first_name 12

company 20

category 10

class 10

voice 20

Each field must be delimited by a space. Each linein thefileis arecord and must
be separated by a control line feed (CR LF).

The minimum requirement for avalid phone-list record is the phone_no field. If
therate and cd_timeout are missing, the values from the queue record are taken. If
the rate specified in the queue record is different from the phone-list record, the
lower of the two valuesis used. If the phone list is not specified

(NULL or ""), gfglnsertPlist() calls gfglnsertOne().

Table 31 lists the names used with gfglnsertPlist().

146

5. Programming Models

The user isresponsible for verifying the following:

* A phone-list file exists, and that it was correctly created.

« Fiddsof the queue record, such ascd_timeout and trans _rate, are set to their
defaults.

Table 31. List Names Used with gfginsertPlist()

Mnemonic M eaning
GFQPEND _LIST Pending List
GFQRECV_LIST Received List
GFQSENT _LIST Sent List
GFQCONV _LIST Conversion List
GFQCTRL_LIST Control List
GFQCPST _LIST Control Done List

M Example

#i ncl ude "gf q. h"
#i ncl ude "gf gpat h. h"

GFQRECCRD qr ec;
char queuefil e[128]
char phonel i st[128]
"c:\\broadcst\\phonel st.txt";
int status;

"\ 0";

/* get fully qualified path to queue file */
if (ofqGetPath(GFQD R QUEUE, "gfax.$qu", queuefile) != GQBUICESS)
{

fprintf(stderr, "GFAX environment variable not defined\n");
exit(1);

147

GDK Version 5.0 Programming Reference Manual

/[* initialize and fill in queue record */

status = gfglnsertPlist(queuefile, &rec, G-QPEND LI ST, phonelist);
if (status !'= GFCBUCCESS)
{

printf("gfglnsertPist failed, %l\n", status);
nyError Rout i ne(status);
}

el se
printf("Fax broadcast successfully submtted to Pending

Li st\n");

148

5. Programming Models

Name: int gfgPurgeAll (char *gfgFileName, GFQRECORD *qrec, int

list, char *user);
Inputs: char *gfgFileName * A pointer to the name of
the Queue File.
GFQRECORD *qgrec e A pointer to the queue
record.
int list ¢ Alinkedlistin the Queue
File.
char *user ¢ A pointer to a user’s
identification.
Outputs: None
Returns: GFQSUCCESS ¢ The purge was executed.
GFQFILE_BUSY e The Queue File is locked

by another task.

Unable to create the

Queue File.

GFQFILE_INCOMPATIBLE « The Queue File version is
incompatible with this
version of the GDK

GFQFILE_CREATE_ERROR

software.
GFQFILE_NOTFOUND ¢ The Queue File was not

found.
GFQFILE_OPEN_ERROR « Unable to open the Queue

File.
GFQRECORD_ACTIVE * The record is active; i.e.,

being processed by
another task.
GFQLIST_NOTFOUND e Thelistis not a valid
Queue File List.
Includes: gfg.h

B Description

ThegfgPurgeAll() function purges from one of the Queue Files lists all records

for a specific user that are not active or BUSY. If the user is NULL or ", all

records on the list that are not busy are purged. If the purge succeeds, the function
returns GFQSUCCESS, even when the list had no records.

149

GDK Version 5.0 Programming Reference Manual

To make disk space available, gfgPurgeAll() also automatically shrinks the
Queue Fileto its minimum size of 78 bytes, leaving only the Queue File header,
but under two conditions:

* Automatic shrinking has been allowed. When using the GFQRESET program,
automatic shrinking can be enabled with the -r0 option after preallocating
records for the Queue File.

* None of the linked lists contain records.

M Example

#i ncl ude "gf q. h"
#i ncl ude "gf gpat h. h"

GFQRECCRD qr ec;
char queuefile[128] = "\0";
int status;

/* get fully qualified path to queue file */
if (gfqGetPath(GFQD R QUEUE, "gfax.$qu”, queuefile) != GQBUICESS)

fprintf(stderr, "GFAX environment variable not defined\n");
exit(1);
}

status = gfgPurgeA | (queuefile, &rec, G-QSENT LI ST, Delete M");
if (status != GFQBUCCESS)
{

printf("gfgPurgeAl Sending List failed, %l\n", status);
nyError Rout i ne(status);
}

el se
printf("All ‘Delete_Me’ records purged from Sending List\n");

150

5. Programming Models

Name: int gfgPurgeOne (char * gfgFileName, GFQRECORD *grec);

Inputs: char *gfgFileName;
GFQRECORD *grec

Outputs: None
Returns: GFQSUCCESS

GFQFILE_BUSY
GFQFILE_CREATE_ERROR

GFQFILE_INCOMPATIBLE

GFQFILE_NOTFOUND
GFQFILE_OPEN_ERROR

GFQRECORD_ACTIVE

GFQRECORD_KEY_ERROR

Includes: gdfg.h

Pointer to the name of
the Queue File.
Pointer to the queue
record to be purged.

The deletion was
successful.

The Queue Fileislocked
by another task.

Unable to create the new
Queue File.

The Queue File version
isincompatible with this
version of the GDK
software.

The Queue File was not
found.

Unable to open the
Queue File.

Therecord is active; that
is, being processed by
another task.

Key values were
changed.

B Description

The gfgPurgeOne() function deletes non-busy records from the Queue File.
Before using this function, a queue record must have been successfully read using
gfgFindFirst() or gfgFindNext(). Both of these functions determines whether
another task has changed the key values of the queue record (linked list, time, or
priority). If the key values have been changed, gfqPurgeOne() returns the error
GFQRECORD_KEY_ERROR. If aqueue record is marked BUSY, the function

returns the error GFQRECORD_ACTIVE.

151

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "gf q. h"
GFQRECCRD qr ec;
char gf gFi | eNare[GFQFI LENAME_SI ZF] ;
int status;
strcpy (gfgFi | eNane, "c:\\fax\\gfax. $qu");
if ((status = gfqFindFirst (gfqFileNane, &rec, GFQPEND LI ST,
GFQLI ST_START, "")) == GFQBUOCESS)
if (grec->user_id == "DELETE ME")
return (gf gPurgeCne (gf gFi | eNane, &grec));

152

5. Programming Models

Name:

Inputs:

Outputs:

Returns:

Includes:

int gfgSearch (int ft, char *fn, char *fullfn);

int ft

char *fn

char *fullfn

GFQSUCCESS

GFQPATH_NOT_SET

GFQPATH_INVALID

GFQPATH_NO_FILE

GFQPATH_BAD_TYPE

ofg.h
gfgpath.h

Select the file type (symbolic
constant) listed in Table 27.
The name of a user-specific
file, such as “GFAX.$QU" or
test001.tif.

A fully qualified filename of
an existing file is returned
only if the function is
successful. A null string is
returned if the function is not
successful.

The function completed
successfully; the “path”
points to the desired file, and
it does exist.

The file could not be found
because the environment
information was not present.
This is a fatal error.

The file could not be found
because the environment
information was in error. This
is a fatal error.

The file could not be found,
but the environment
information seemed correct.
No filename is returned.

The file type specified was
invalid.

B Description

ThegfgSearch() function returns a fully qualified filenamk verifies that a file

of the given name and type does exist. It is used to locate existing GDK files, such

as the Queue File and configuration files.

153

GDK Version 5.0 Programming Reference Manual

The environment variablesfor gfqSearch() arelisted in
Table 32. The symbolic constants used in this function are in the gfgpath.h file.

Table 32. Environment Variables for gfqSearch()

Symbolic Constant | Initial Second Target | Meaning
Search Target

GFQDIR_QUEUE GFAXQ GFAX L ocate the Queue
File.

GFQDIR_UTILITY | GFAXU GFAX Locate the utility
programs.

GFQDIR_SEND GFAXS current directory | Locate the send
files.

GFQDIR_RECEIVE | GFAXR current directory | Locate the received
files.

GFQDIR LOG GFAXL GFAX Locate the log files.

GFQDIR_CONFIG GFAXC GFAX Locate the
configuration files.

B Example

#include "gfq. h"
#i ncl ude "gf gpat h. h"
char path[64];
if ((status = gfgSearch (GFQD R QEUE, "gfax.$qu", path)) ==
{G:QSLBCESS)
printf ("Queue file path is %s\n”, path);
}
else

printf ("gfgSearch failed, status = %d\n", status);

154

5. Programming Models

Name:
Inputs:

Outputs:
Returns:

Includes:

int gfqSubmit (char * gfgFilename, GFQRECORD *qrec);

char *gfgFileName
GFQRECORD *qgrec

None

GFQSUCCESS
GFQFILE_BUSY
GFQFILE_CREATE_ERROR

GFQFILE_INCOMPATIBLE

GFQFILE_NOTFOUND
GFQFILE_OPEN_ERROR

GFQRECORD_WRITE_ERROR

ofg.h
gfgpath.h

A pointer to the name

of the Queue File.

A pointer to the queue
record to be submitted.

The record was added.
The QueueFileis
locked by another task.
Unableto create the
new Queue File.

The Queue File
versionis
incompatible with this
version of the GDK
software.

The Queue File was
not found.

Unable to open the
QueueFile.

Unableto create a new
queue record.

155

GDK Version 5.0 Programming Reference Manual

B Description

The gfqSubmit() function adds one record to the Pending List. Because thislist

is sorted in descending order by time stamp and priority, events to be processed in

the future are at the beginning of the list and events to be processed “now” are at
the end. Unlike gfginsertOne(), which can be used to submit recoadyg to

linked list, gfgSubmit() is used to submit queue records only to the Pending List.

The queue record is inserted into the Pending List, if the operation field of the
record has the values between GFQDIAL_SEND and GFQLAST_OPERATION.
Table 33 lists the values that gfqSubmit() automatically writes to queue-record
fields.

Table 33. Values Written by gfqSubmit() to Queue Record Field

Field Value
submission_time The current time
record_control Not marked busy
submission_retries retry counter
duration

status 0

M Example

#i ncl ude "gf q. h"
#i ncl ude "gf gpat h. h"

GFQRECCRD qr ec;
char queuefile[128] = "\0";
int status;

/* get fully qualified path to queue file */
if (gfqGetPath(G-QD R QEUE, "gfax. $qu",
queuefile) = GFQBUOCESS)

{

fprintf(stderr, "GFAX environment variable not defined\n");

exit(1);
}

156

/* initialize queue record */
of qd ear Rec(&grec) ;

grec.operation = G-QDI AL_SEND;
strcpy(grec. fn_send, "c:\\fax\\test001l.tif");
strcpy(grec. phone_no, "1-408-555-1212");

status = gf gSubm t (queuefile, &grec);
if (status != GFQBUCCESS)

printf("gfgSubmt error %l\n", status);
nyError Routi ne(status);
}

el se
printf("fax subnmtted successfully\n");

5. Programming Models

157

GDK Version 5.0 Programming Reference Manual

Name:

Inputs:

Outputs:
Returns:

Includes:

int gfqSubmitPlist (char *gfgFileName, GFQRECORD *grec,

char * phonelist);
char *gfgFileName

GFQRECORD *qgrec

char *phonelist

None

GFQSUCCESS
GFQFILE_BUSY
GFQFILE_CREATE_ERROR

GFQFILE_INCOMPATIBLE

GFQFILE_NOTFOUND
GFQSUCCESS
GFQFILE_BUSY

GFQFILE_CREATE_ERROR

gfg.h

A pointer to the name of
the Queue File.

A pointersto aqueue
record.

A pointer to the name of
the file containing the list
of phone numbers.

The submission was
successful.

The Queue Fileislocked
by another task.
Unableto create the new
Queue File.

The Queue Fileversion is
incompatible with this
version of the GDK
software.

The Queue File was not
found.

Unable to open the Queue
File.

Unable to create a new
queue record.

The phone list cannot be
opened.

158

5. Programming Models

B Description
The gfqSubmitPlist() function submits afax for each entry in a phone list.

This function starts fax broadcasting by submitting records to the Pending List for
an entire phone list. The phone-list file is automatically opened, processed, and
closed. gfgSubmitPlist() writes arecord for each phone number from the phone
list into the Pending List of the Queue File.

The operation field of the queue record determines the action to be taken on each
record submitted, such as Dia and Send, Dia and Receive, or Answer
Immediately. The queue record isinserted into the Pending List if the operation
field of the record has the values between GFQDIAL_SEND and
GFQLAST_OPERATION. If the operation for arecord is appropriate,
gfgSubmitPlist() calls gfglnsertPlist() and passes the record, specifying the
Pending List asthe target. The caller should verify that the phone-list file exists
and is correctly formatted. See gfglnsertPlist() for the phone-record format.

These fields of the queue record are set to their defaultsin the phonelist: 30
seconds for cd_timeout and GFQMAX_RATE bpsfor trans rate.

M Example

#i ncl ude "gf q. h"
#i ncl ude "gf gpat h. h"

GFQRECCRD qr ec;
char queuefil e[128]
char phonel i st[128]
int status;

"\ 0";
"c:\\broadcst\\phonel st.txt";

/* get fully qualified path to queue file */
if (gfqGetPath(GFQDI R QUEUE, "gfax.$qu", queuefile)
I = GFQBUCCESS)

fprintf(stderr, "GFAX environment variable not defined\n");

exit(1);
}

159

GDK Version 5.0 Programming Reference Manual

/* initialize queue record */

of qd ear Rec(&gr ec) ;

grec.operation = GFQDI AL_SEND,

strcpy(grec. fn_send, "c:\\faxsend\\broadcst.tif");
status = gfgSubmtPlist(queuefile, &jrec, phonelist);
if (status != GFQBUCCESS)

{

printf("gfqgSubmtMist error %\ n", status);
nyError Rout i ne(status);

}
el se
printf("fax broadcast submtted successfully\n");

160

5. Programming Models

Interactive Programming Model

Theinteractive programming model, which is recommended for fax-only
applications, separates and provides distinct control at all phases of afax
transaction. In general, the call setup and call release phases are handled by the
application using other telephony resources in the system such as network
interface cards, voice boards or PBX APIs. The fax channel in this configuration
only performs the pre-message, message transmission and post-message
procedures (Phases B, C and D).

In this model, the application must monitor the call and decide when to start the
fax resource. In contrast to the batch mode, the application can continue to
monitor the call through the entire fax transaction, electing to change session
parameters, interrupt the call or just abort all together. The monitoring activity is

accomplished by examining “Events” — distinct points in the fax protocol where

the fax channel notifies the application a fax event has occurred.

This programming model is a powerful feature of the GDK system but requires

more knowledge of fax, more host computer resources and has timing

requirements that are not present in the batch mode model. Figure 3 illustrates the

GRT event natification phases.

NOTE: The TESTFAX sample code, which uses the interactive programming

model, is located on the GDK product CD-ROM.

161

GDK Version 5.0 Programming Reference Manual

Gammalink Gammalink
Notification . Notification Event
Event Received Calling T.30 ACTION Called Received by
by Sending Receiving
Application Application

Phase A------v ceeiiiiiiiiiiiiiiiiiis el Phase A
GRT_DIAL -<DIAL> transmit CNG——————>

<TONES> <RING>,<OFF HOOK>

GRT_CALL_PENDING

Phase B------- soeoseeiciieiiiiiiiiee ceee Phase B
v.21 Rx &=z = (NSF)(CSI)DIS v.21 Tx

GRT_RECV pIs 2+ Tx (TSPDCSseremmmssmseeemmasessy > V2R GRT_RECV_DCS
V-ATV.83V.29, 00 ining, TOF sssssssssssmssd V-17:V-33V.29, GRT_INFO_EXCHANGE
V.27 TX orv.27 Rx
V.21 Rx S

Phase C------- -eeennnn e Phase C

v.17,v.33,v.29, or Fax Message == v.17,v.33,v.29,
v.27 Tx orv.27 Rx

PhaseD----vvr e Phase D
GRT_PAGE_BREAK
v.21 Tx v.21 Rx GRT_PAGE_BREAK
v.21 Rx v.21 Tx
GRT_CALL_TERM Y21 TX V.21 Rx GRT_CALL_TERM
Phas@ E------+ sececrerericiiiieniies ennnn Phase E
<ONHOOK> <ONHOOK>

Figure 3. GRT Events

The GDK interactive, runtime APl (GRT) events shown in Table 34 notify the fax
application of the fax transaction’s progress and provide opportunity for the
application to get information generated during the transaction and, optionally,
alter the course of the call based on that information.

Each event can be “armed” in one of two ways: by using the No Response
Required method to simply receive notification, or using the Armed-Requires
Response method so the application must respond to the event. In the case of
response required, the application has choices such as GRT_CONTINUE,
GRT_END_CALL, or use a GRT_QREC. For the case of responding with a new

162

5. Programming Models

gueue record, see Chapter 4 for detailed information on queue record fields and
their effects.

A simpleinteractive fax session is outlined below:
* initialize the run-time interface (grtinit())
+ START

* establish the starting parameters for the fax transaction by programming a
gueue record (see Chapter 4)

» establish a connection to afax machine (by dialing or answering) with a
telephony network interface card in your system (i.e., analog, T1, E1, ISDN,
etc.)

e dtart the fax session (grtSubmitFax())

e monitor for call completion (grtGetEvent())
e process event (grtProcessCall TermEvent())
e another call?goto START

e program complete (grtStop())

Sample GRT Applications
The GRT APIs provide multi-threaded support on a per-channel basis. An

application can assign threads of control for one or more fax channels
dynamically. A channel can only be controlled by one GRT thread.

GRT Thread 1 GRT Thread 2 GRT Thread 1 GRT Thread 2

Channel 1 Channel 2 Channels 1-4 Channels 5-8

Figure 4. GRT API Structure

163

GDK Version 5.0 Programming Reference Manual

A simple GRT application consists of three major components: initialization,
polling for an event, and termination.

Initialization

A GRT thread isinitialized using the grtInit() function. This function accepts a
range of channels, the same thread can control several channels. The function can
be called multiple times in the same thread, as long as a GRT thread doesn't
already control the channel range given.

NOTE: grtInit() will not create a new threag it initializes existing internal
structures that maintain GRT state information. A C function must be
called to create a new thread.

Hereisan example of how to initialize the first two fax channels for processing
GRT_CALL_TERM events:

#i ncl ude "genra. h"
int status;
status = grtinit(1, 2, GRT_CALL TERM ENABLE) ;

Polling for an Event

Polling is used to check event status to determine whether an event has occurred.
To check for an event, use the grtGetEvent() function. This function checks the
channel range for a given event.

Here is an example of how to poll for a GRT event on the first two channelsin a
fax system:

CRT_EVENT event;
for(;:)
if (grtCGetEvent (1,2, &vent) == GRT_SUCCESS)

br eak;
Sl eep(1000L);

164

5. Programming Models

Termination

GRT API processing is terminated using the grtStop() function. This function
stops any GRT processing in the given range of channels. This function allows for
dynamic allocation of channels and threads as the system load changes.

The following is an example of how to stop GRT processing on channels 1 and 2
in afax system:;

#i ncl ude "genra. h"

int status;

status = grtStop(1,2);
printf("status = %\ n", status);

NOTE: grtStop() must be called before exiting the application. Otherwise,
grtinit() for the same channel range will return error code 103.

Advanced GRT Applications

Advanced GRT applications have an additional component: responding to an
event (i.e. grtRespond, grtRespondEndCall, grtRespondContinue,
grtRespondQueueRec). Responding to an event allows the application to change
the default action for the fax channel. The fax channel default action for each
event, listed in Table 34, is to continue the fax transaction through each phase,
until GRT_CALL_TERM (Phase E), then post the completed queue record to the
queuefile.

If an application wants to change the default action of an event, event notification
and event response enable must be specified for that event when initializing the
GRT interface for the fax channel. At each fax channel event notification, if event
response is enabled, the application can respond to end the call
(grtRespondEndCall) or to continue the call (grtRespondContinue).

For the GRT_CALL_PENDING event, the application has an additional response
available (grtRespondQueueRec), with which the characteristics of the fax
transmission can be changed through the submission of another queue record.

For example, turn-around polling can be accomplished by responding to the
GRT_CALL_PENDING event with a queue record whose operation field is set to
the GFQANSWER_RECEIVE_SEND value. Other queue record operation field
values are listed in Chapter 4.

165

GDK Version 5.0 Programming Reference Manual

GRT API Data Structures

An alphabetized list of the GRT API data structures appears in the following
section.

166

5. Programming Models

Name: typedef struct {

int chan;

int event_type;
char pdatal GRT_MESSAGE];
int num_bytes;

} GRT_EVENT;

Includes: genrah

B Description

The GRT_EVENT structure is used to store an event that has occurred on a given
channel. The GRT_EVENT data structure contains the following information:

1. The channel on which the event occurred.

2. Thetype of event that has occurred. (See Table 34.)
3. Datathat is associated with the event. (See Table 34.)
4

Number of bytes of event data.

The definition of the GRT_EVENT structure follows:

Table 34. Events and Data Associated with GRT_EVENT

Mnemonic

Associated Data

GRT CALL_TERM

Queue record

GRT_INFO_EXCHANGE

GRT_INFO _DATA

GRT DIAL

20 character null-terminated string

GRT RECV DCS

Unsigned char array of size DCS LENGTH

GRT CALL_PENDING

None

GRT_RECV_DIS

Unsigned char array of size DIS L ENGTH

GRT_PAGE_BREAK

None

167

GDK Version 5.0 Programming Reference Manual

Name: typedef struct {
unsigned char rcsid[22];
unsigned char nsf[226];
} GRT_INFO_DATA;
Includes: genrah

B Description

The GRT_INFO_DATA data structure stores event information for
GRT_INFO_EXCHANGE(). The structure contains the following information:;

1. The Customer Subscriber Identification (CSID) of the receiving fax machine.
The CSID isthe string of characters that identify the remote fax machine (this
string is usually the phone number of the remote fax machine).

2. The NSF data. NSF datais optional information that can be sent and received
by fax machines.

Name: typedef struct {
int response_type;
char pdatal GRT_MESSAGE]; int num_bytes;
} GRT_RESPONSE;
Includes: genrah

B Description

The GRT_RESPONSE structure storesinformation that is used to send a
response to afax channel once an event has occurred. The structure contains the
following information:

e Type of response
» Dataassociated with the response
« Number of bytes of response data

B Response Types
« GRT_END CALL

168

« GRT_CONTINUE

5. Programming Models

e GRT_QREC
Name: int grtGetEvent (int start_chan, int end_chan,
GRT_EVENT *event)

Inputs: int start_chan * Integer representing
the first channel to
control.

int end_chan e Integer representing
the last channel to
control.
GRT_EVENT *event e Pointer to
GRT_EVENT.
Outputs: GRT_EVENT *event » Pointer to
GRT_EVENT.
Returns: GRT_SUCCESS e Successful.
GRT_INVALID _START _ e Starting channel isout
CHANNEL of range.
GRT_INVALID_END_ « Ending channdl is out
CHANNEL of range.
GRT_NO_DISPATCHER « Dispatcher is not
running.
GRT_NO_EVENT * No event has occurred.
GRT_UNKNOWN_EVENT e Unknown event polled
from board.
GRT_NOT_INIT * The specified channel
has not been grtinit by
any process or thread.
GRT_ANOTHER_THREAD e The specified channel
has been grtlnit by
another process or
thread (not this one).
GRT_CONTROL_BUSY e Timed out while
waiting to set the
mutex on the control
record. Another thread
failed to release the
mutex. Retry.
Includes: genrah

169

GDK Version 5.0 Programming Reference Manual

B Description

The grtGetEvent() function checks if an event has occurred on any channel in
the range of channels given. The function returns after the first event occurs and
the other channels are not checked.

M Example

#i ncl ude "genra. h"

CRT_EVENT event ;
int status, chan = 1;

/* block for any event */

while ((status = grtGet Event (chan, chan, &event)) == GRT_NO EVENI)
Sl eep(1000L) ;

170

5. Programming Models

Name:
Inputs:

Outputs:
Returns:

int grtinit (int start_chan, int end_chan, int attributes)

int start_chan

int end chan

int attribute

None

GRT_SUCCESS
GRT_INVALID_START_CHANNEL
GRT_INVALID _END_ CHANNEL
GRT_NO_DISPATCHER

GRT_ALREADY_CONTROLLED

GRT_CONTROL_BUSY

GRT_UNLOCK_FAIL

Integer
representing the
first channel to
control.

Integer
representing the
last channel to
control.
Attributes
associated with
the given
channel range.
The attributes
include
programming
model, event
notification and
response.

Successful.
Starting channel
isout of range.
Ending channel
isout of range.
Dispatcher is not
running.

If any channel in
therangeis
controlled by
another thread.
Semaphore
could not be
locked.
Semaphore
could not be
unlocked.

171

GDK Version 5.0 Programming Reference Manual

GRT_LOCK_FAILED * Semaphore
could not be
locked.

GRT_PROCESS ATTRIBUTE_FAIL « Could not
enable
notification or
response on the
fax channel.

GRT_OPEN_FAIL ¢ Could not open
notification or
response pipe to
fax channel.

Includes: genrah

B Description

The grtinit() function initializes the GRT interface. To initialize internal data
structure with the proper value to control the given range of channels.

This function can be called multiple timesin athread as long as different ranges of
channels are used.

These are the attributes that are currently supported.

+ GRT_CALL_TERM_ENABLE

* GRT_INFO_EXCHANGE_ENABLE

+ GRT_RECV_DIS ENABLE

« GRT_RECV_DCS ENABLE

+ GRT_PAGE_BREAK_ENABLE

* GRT_DIAL_ENABLE

« GRT_CALL_PENDING ENABLE

« GRT_CALL_TERM_RESPONSE_ENABLE

¢ GRT_INFO_EXCHANGE_RESPONSE ENABLE
e GRT_CALL_PENDING_RESPONSE ENABLE

172

5. Programming Models
M Behavior

grtlnit() has been enhanced to prevent automatic posting of the completed queue
record to the queuefile. This action is usually not necessary as most applications
also receive a copy of the same queue record when the
GRT_CALL_TERM_ENABLE attribute is specified in grtlnit().

However, you can restore the ability of the GDK to automatically post the
completed queue record to the queue file with the following gfdRemoteRequest()
command as demonstrated in the code fragment:

#i ncl ude <genra. h>

int grtAttributes = GRT_CALL_TERV ENABLE:
int chan = 1, status, rresult;

st at us é.értlnit(chan, chan, grtAttributes);
if (GRT_SUCCESS == status)

/1 allow posting of results to queue file
status = gf dRermot eRequest (

chan,

GFXRTACTI ON,
GFXRTBP_CALLTERV
GFXRT_CONTI NUE,
NULL,

0,

&result

)

if (0==status) {
printf("Success: Posting enabl ed'\n");
}

}

The gfdRemoteRequest command must be issued on a per-channel basis.

173

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "genra. h"

int status, chan = 1;

/* initialize GRT pipes interface for fax

channel 1 */

status = grtlnit(chan, chan, GRT_CALL_TERM ENABLE) ;
if (status != GRT_SUGCESS)

fprintf(stderr, "[%d] grtlnit failed\n", chan);
nyError Rout i ne(status);

174

5. Programming Models

Name: int grtProcessCallTermEvent (GRT_EVENT *event,

GFQRECORD *qrec)
Inputs: GRT_EVENT *event .
GFQRECORD *qrec .
Outputs: GFQRECORD *qgrec .
Returns: GRT_SUCCESS .

GRT_UNKNOWN_EVENT «
Includes: genrah

Pointer to an event
record.

Pointer to a queue
record.

Pointer to a queue
record.

Successful.
Otherwise.

B Description

The grtProcessCall TermEvent() function processes acall term event.

Thisfunction is a high-level function that provides the data that is associated with

aGRT_CALL_TERM event to the user. The datawill be a queue record. The
function returns GRT_SUCCESS if the event isaGRT_CALL_TERM and the

gueue record pointer points to valid queue record data.

M Example

#i ncl ude "gf q. h"

#i ncl ude "genra. h"
CRT_EVENT event ;
GFQRECCRD qr ec;

int status, chan = 1;

/* block for any event */

while ((status = grtGetEvent(chan, chan, &event)) == GRT_NO EVENI)

Sl eep(1000L) ;
if (event.event type == GRT_CALL_TERV)
{

if (status = grtProcessCal | Ter nEvent (&vent, &grec))

printf("[%d] grtProcessCall TernEvent error"

" %\ n", event.chan, status);
return -1;

}

175

GDK Version 5.0 Programming Reference Manual

Name: int grtProcessDialEvent (GRT_EVENT *event, char

*dial_string)
Inputs: GRT_EVENT *event e Pointer to an event
record.
char *dia_string e Pointer to a20-
character string.
Outputs: char *dia_string e Pointer to a20-
character string.
Returns: GRT_SUCCESS * Successful.

GRT_UNKNOWN_EVENT e Otherwise.
Includes: genrah

B Description
The grtProcessDialEvent() function processes adial event.

Thisfunction is ahigh-level function that provides the data that is associated with
aGRT_DIAL event to the user. The datawill be a 20-character string representing
the dialing string. The function returns GRT_SUCCESS if theevent isa
GRT_DIAL event and dia_string pointsto avalid dialing string. If the event is
not GRT_DIAL, then thedial_string pointsto invalid data.

M Example

#i ncl ude "genra. h"

CRT_EVENT event ;
char dialstring[20] = "\0";
int status, chan = 1;

/* block for any event */

while ((status = grtGet Event(chan, chan, &event)) == GRT_NO EVENI)
Sl eep(1000L) ;

176

5. Programming Models

if (event.event_type == GRT_D AL)

{
if (status = grtProcessD al Event (&vent, dialstring))

fprintf(stderr, "[%d] grtProcessD al Event"
" failed: %\n", event.chan, status);
return -1;

}

printf("[%d] conpleted dialing to \"%\"", event.chan,
dialstring);

177

GDK Version 5.0 Programming Reference Manual

Name: int grtProcessinfoEvent (GRT_EVENT *event,
GRT_INFO_DATA *info)
Inputs: GRT_EVENT *event » Pointer to an event
record.
GRT_INFO_DATA *info « Pointer to
GRT_INFO_DATA
structure.

Outputs: GRT_INFO_DATA *info ¢ Pointer to
GRT_INFO_DATA
structure.

Returns: GRT_SUCCESS e Successful.

GRT_UNKNOWN_EVENT « Otherwise.

Includes: genrah

B Description
The grtProcessl nfoEvent() function processes an info exchange event.

Thisfunction is ahigh-level function that provides the data that is associated with
aGRT_INFO_EXCHANGE event to the user. The datais a structure of type
GRT_INFO_DATA. The function returns GRT_SUCCESS if the eventisa
GRT_INFO_EXCHANGE event and info pointsto avalid GRT_INFO_DATA
structure.

M Example

#i ncl ude "genra. h"

CRT_EVENT event;
CGRT_|I NFO DATA i nf o_dat a;
int status, chan = 1;

/* block for any event */
while ((status = grtGet Event (chan, chan, &event))
== GRT_NO _EVENT)

Sl eep(1000L);

178

5. Programming Models
if (event.event_type == GRT_| NFO_EXCHANGE)
if (status = grtProcessl nfoEvent (&vent, & nfo_data))
fprintf(stderr, "[%d] grtProcesslnfoEvent"

" failed: %\n", event.chan, status);
return -1;

}

printf("[%d] | NFO EXCHANGE Data:\n"
"\tRCSID NtV 9B\ "\ N\t NFS \ E\ " OB\ " ",
event.chan, info_data.rcsid, info_data.nsf);

179

GDK Version 5.0 Programming Reference Manual

Name: int grtProcessRecvDCSEvent (GRT_EVENT *event,
unsigned char *dcs)

Inputs: GRT_EVENT *event « Pointer to an event record.
unsigned char *dcs e Pointer to an array of
unsigned char of size
DCS_LENGTH.
Outputs: unsigned char *dcs e Pointer to an array of
unsigned char of size
DCS LENGTH.
Returns: GRT_SUCCESS e Successful.

GRT_UNKNOWN_EVENT « Otherwise.
Includes: genrah

B Description
The grtProcessRecvDCSEvent() function processes areceived DCS event.

Thisfunction is ahigh-level function that provides the data that is associated with
aGRT_RECV_DCSevent to the user. The datais an array of unsigned characters
representing the received DCS. The function returns GRT_SUCCESS if the event
isaGRT_RECV_DCS event and DCS frame pointsto valid DCS data. If the
eventisnot GRT_RECV_DCS, then the DCS_frame pointsto invalid data.

M Example

#i ncl ude "genra. h"

CRT_EVENT event ;

unsi gned char dcs[DCS LENGTH = "\0";

const int count = sizeof (dcs)/sizeof (*(dcs));
int status, chan = 1;

/* block for any event */
while ((status = grtGet Event (chan, chan, &event))
== GRT_NO _EVENT)
Sl eep(1000L);
if (event.event type == GRT_RECV_DCS)
{

i f(status=grtProcessRecvDCSEvent (&event, dcs))

180

5. Programming Models

fprintf(stderr, "[%d] grtProcessRecvDCSEvent fail ed:
%\ n", event.chan, status);

return -1;
}
printf("[%d] DCS received:", event.chan);
for (i =0; i <count; ++)

fprintf(stdout, "92x ", dcs[i]);
fprintf(stdout, "\n");

181

GDK Version 5.0 Programming Reference Manual

Name: int grtProcessRecvDISEvent (GRT_EVENT *event,
unsigned char *dis)

Inputs: GRT_EVENT *event « Pointer to an event record.
unsigned char *dis e Pointer to an array of
unsigned char of size
DIS LENGTH.
Outputs: unsigned char *dis * Pointer to an array of
unsigned char of size
DIS LENGTH.
Returns: GRT_SUCCESS * Successful.

GRT_UNKNOWN_EVENT e Otherwise.
Includes: genrah

B Description
The grtProcessRecvDI SEvent() function processes areceived DIS event.

Thisfunction is ahigh-level function that provides the data that is associated with
aGRT_RECV_DIS event to the user. The datais an array of unsigned characters
representing the received DIS. The function returns GRT_SUCCESS if the event

isaGRT_RECV_DISevent and DIS frame pointsto valid DIS data. If the event

isnot GRT_RECV_DIS, then the DIS frame pointsto invalid data.

M Example

#i ncl ude "genra. h"

CRT_EVENT event ;

unsi gned char dis[D S LENGTH = "\0";

const int count = sizeof (dis)/sizeof(*(dis));
int status, i, chan = 1;

/* block for any event */
while ((status = grtGet Event (chan, chan, &event))
== GRT_NO _EVENT)
Sl eep(1000L);
if (event.event _type == GRT_RECV. D 9

i f(status=grtProcessRecvD SEvent (&vent, dis))

182

5. Programming Models

fprintf(stderr, "[%d] grtProcessRecvD SEvent failed:"
" 9%\ n", event.chan, status);

return -1;
}
printf("[%d] DS received:", event.chan);
for (i =0; i <count; ++)

fprintf(stdout, "9®2x ", dis[i]);
fprintf(stdout, "\n");

183

GDK Version 5.0 Programming Reference Manual

Name:

Inputs:

Outputs:
Returns:

Includes:

int grtRespond (GRT_EVENT *event,

GRT_RESPONSE *response)
GRT_EVENT *event

GRT_RESPONSE *response
None

GRT_SUCCESS
GRT_ANOTHER_THREAD
GRT_INVALID_RESPONSE
GRT_RESPONSE_FAIL

GRT_INVALID_CHAN

GRT_CONTROL_BUSY
GRT_UNLOCK_FAIL
GRT_LOCK_FAILED
GRT_NOT_INIT
GFD_BROKEN_PIPE
GFD_INVALID_HANDLE

genra.h

Pointer to an event
structure.

Pointer to a response
structure.

Successful.

Channel is controlled
by another thread.
Type of response to be
sentisinvalid.

Send of response
message failed.
Channel that event
occurred upon is not the
same channel the
response is being sent
to.

The semaphore could
not be set.

The semaphore could
not be released.

The semaphore could
not be set.

The specified channel
has not been grtinit'ed.
The response pipe is
broken.

The response pipe is
corrupted.

B Description

ThegrtRespond() function responds to an event.

184

5. Programming Models

This function responds to the given event. The response structure must have the
response_type (GRT_CONTINUE, GRT_END_CALL, etc.) initialized before
thisfunction is called.

M Example

#i ncl ude "genra. h"

CRT_EVENT event;

CRT_RESPCNSE r esponse;

int status, chan = 1;

int grtAttributes = GRT_CALL_TERM ENABLE |
GRT_CALL_TERM RESPONSE _ENABLE;

/* initialize GRT pipes interface for fax channel 1 */
status = grtinit(chan, chan, grtAttributes);
if (status != GRT_SUGCESS)

fprintf(stderr, "[%d] grtlnit failed, %\ n", chan, status);
return -1,

}

/* submt queue record */

/* block for any event */
while ((status = grtGet Event (chan, chan, &event))
== GRT_NO _EVENT)

Sl eep(1000L);

if (event.event type == GRT_CALL_TERV

{
/* fill in response structure */
response. response_type = GRT_END CALL;
/* respond to event (do not post queue record to file) */
if (status = grtRespond(&event, & esponse))
printf("[%d] grtRespond error %\ n", event.chan, status);
return -1;
}
}

185

GDK Version 5.0 Programming Reference Manual

Name: int grtRespondContinue (GRT_EVENT *event)

Inputs: GRT_EVENT *event » Pointer to an event record.
Outputs: None
Returns: GRT_SUCCESS e Successful.
GRT_ANOTHER_THREAD « Channel is controlled by
another thread.
GRT_RESPONSE_FAIL * Responseto event failed.
GRT_CONTROL_BUSY e The semaphore could not
be set.
GRT_UNLOCK_FAIL ¢ The semaphore could not
be released.
GRT_LOCK_FAILED ¢ The semaphore could not
be set.
GRT_NOT_INIT e The specified channel has
not been grtinit'ed.
GFD_BROKEN_PIPE e The response pipe is
broken.
GFD_INVALID_HANDLE ¢ The response pipe is
corrupted.

Includes: genra.h

B Description
ThegrtRespondContinue() function responds to an event with a continue

message. This function responds to the given event with a GRT_CONTINUE
response message.

186

5. Programming Models

M Example

#i ncl ude "genra. h"

CRT_EVENT event;

int status, chan = 1;

int grtAttributes = GRT_CALL_TERM ENABLE |
GRT_CALL_TERM RESPONSE _ENABLE;

/* initialize GRT pipes interface for fax
channel 1 */

status = grtinit(chan, chan, grtAttributes);
if (status != GRT_SUGCESS)

fprintf(stderr, "[%d] grtlnit failed, %l\n", chan, status);
return -1,

}

/* submt queue record */

/* block for any event */
while ((status = grtGet Event (chan, chan, &event))
== GRT_NO _EVENT)

Sl eep(1000L);

if (event.event type == GRT_CALL_TERV)

/* respond to event (do default action, post queue record to
file) */
if (status = grtRespondConti nue(&event))

printf("[%d] grtRespondContinue error” " %l\n",
event.chan, status);
return -1,
}
}

187

GDK Version 5.0 Programming Reference Manual

Name:
Inputs:
Outputs:
Returns:

Includes:

int grtRespondEndCall (GRT_EVENT *event)

GRT_EVENT *event

None

GRT_SUCCESS
GRT_ANOTHER_THREAD

GRT_RESPONSE_FAIL
GRT_CONTROL_BUSY

GRT_UNLOCK_FAIL
GRT_LOCK_FAILED
GRT_NOT_INIT

GFD_BROKEN_PIPE
GFD_INVALID_HANDLE

genra.h

Pointer to an event record.

Successful.

Channel is controlled by
another thread.

Response to event failed.
The semaphore could not be
Set.

The semaphore could not be
released.

The semaphore could not be
Set.

The specified channel has
not been grtinit'ed.

The response pipe is broken.
The response pipe is
corrupted.

B Description

ThegrtRespondEndCall() function responds to an event with an end call
message. This function responds to the given event with a GRT_END_CALL
response message.

188

5. Programming Models

M Example

#i ncl ude "genra. h"

CRT_EVENT event;

int status, chan = 1;

int grtAttributes = GRT_RECV_DCS ENABLE |
GRT_RECV_DCS RESPONSE ENABLE;

/* initialize GRT pipes interface for fax channel 1 */
status = grtinit(chan, chan, grtAttributes);
if (status != GRT_SUGCCESS)

fprintf(stderr, "[%d] grtlnit failed, %l\n", chan, status);
return -1,

}

/* submt queue record */

/* block for any event */
while ((status = grtGet Event (chan, chan, &event))
= GRT_NO_

Sl eep(1000L);

if (event.event type == GRT_RECV_DCS)
{

/* respond to event (disconnect call after receiving DCS) */
if (status = grtRespondEndCal | (&event))

fprintf(stderr, "[%d] grtRespondEndCall™"

" failed, %", event.chan, status);
return -1;

189

GDK Version 5.0 Programming Reference Manual

Name: int grtRespondQueueRec (GRT_EVENT *event,

GFQRECORD *qrec)
Inputs: GRT_EVENT *event » Pointer to an event record.
GFQRECORD *grec « Pointer to aqueue record.
Outputs: None
Returns: GRT_SUCCESS e Successful.
GRT_ANOTHER_THREAD « Channel is controlled by
another thread.
GRT_RESPONSE_FAIL * Responseto event failed.
GRT_CONTROL_BUSY e The semaphore could not
be set.
GRT_UNLOCK_FAIL ¢ The semaphore could not
be released.
GRT_LOCK_FAILED ¢ The semaphore could not
be set.
GRT_NOT_INIT ¢ The specified channel has

not been grtinit'ed.
The response pipe is
broken.

The response pipe is
corrupted.

GFD_BROKEN_PIPE

GFD_INVALID_HANDLE

Includes: genra.h

B Description
ThegrtRespondQueueRec() function responds to an event with a queue record.

This function responds to the given event by sending a queue record to the
channel on which the event occurred.

190

5. Programming Models

M Example

#i ncl ude "gf q. h"
#i ncl ude "genra. h"

CRT_EVENT event;

GFQRECCRD qr ec;

int status, chan = 1;

int grtAttributes = GRT_CALL_PENDI NG ENABLE |
GRT_CALL_PENDI NG RESPONSE _ENABLE;

/* initialize GRT pipes interface for fax channel 1 */
status = grtinit(chan, chan, grtAttributes);
if (status != GRT_SUGCESS)

fprintf(stderr, "[%d] grtlnit failed, %l\n", chan, status);
return -1

}
/* initialize, fill in, and submt queue record */

/* block for any event */
while ((status = grtGet Event (chan, chan, &event))

== GRT_NO _EVENT)
Sl eep(1000L);

if (event.event_type == GRT_CALL_PEND NG

{
/* respond to event */
/* perform ANSWER- RECEI VE- SEND oper ation (turn-around polling)
*/
i f (status=grtRespondQueueRec(&event, &grec))
fprintf(stderr, "[%d] grtRespondQieueRec"
" failed, %", event.chan, status);
return -1;
}
}

191

GDK Version 5.0 Programming Reference Manual

Name:
Inputs:

Outputs:
Returns:

Includes:

int grtStop (int start_chan, int end_chan)

int start_chan .
int end chan .
None

GRT_SUCCESS .
GRT_INVALID_START_ .
CHANNEL

GRT_INVALID_END_CHANNEL

GRT_NO_DISPATCHER .
GRT_ANOTHER_THREAD .
GRT_CONTROL_BUSY .
GRT_UNLOCK_FAIL .
GRT_LOCK_FAILED .
GRT_PROCESS ATTRIBUTE_ .
FAIL

GRT_CLOSE_FAIL .
genra.h

Starting channel in
range of channels.
Ending channel in
range of channels.

Successful.

Starting channel is
out of range.
Ending channel is
out of range.
Dispatcher is not
running.

Another thread
controls a channel in
the range given.
The semaphore
could not be locked.
The semaphore
could not be
unlocked.

The semaphore
could not be locked.
Could not enable
notification or
response on the fax
channel.

Could not close
notification or
response pipe to fax
channel.

192

5. Programming Models

B Description

The grtStop() function stopsthe GRT API from managing the fax channels. This
function stops control of the given range of channels by the current thread of
execution. Allowing starting and stopping of the GRT allows a thread to add or
delete channels that it controls dynamically.

M Example

#i ncl ude "genra. h"
int status, chan = 1;
if (status = grtStop(chan, chan))

fprintf(stderr, "[%d] grtStop failed\n", chan);
nyError Routi ne(status);
}

193

GDK Version 5.0 Programming Reference Manual

Name: int grtSubmitFax (int chan, GFQRECORD *qrec)

Inputs: int chan * Channel onwhich fax is
to be sent.
GFQRECORD *qgrec ¢ Pointer to aqueue
record.

Outputs none
Returns: GRT_SUCCESS e Successful.
GRT_FAX_SUBMIT_FAIL Fax submission failed.
Includes: genrah

B Description

The grtSubmitFax() function submits a queue record to a channel. This function
sends a queue record to a given channel without using the queue file, to the
dispatcher using the control pipe. If the submission is successful, GRT_SUCCESS
isreturned; otherwise, GRT_FAX_SUBMIT_FAIL isreturned.

194

5. Programming Models

M Example

#i ncl ude "gf q. h"
#i ncl ude "genra. h"

GFQRECCRD qr;
int status, chan = 1;
int application_type = RECV_FAX ALY,

of A ear Rec(&gr) ;
switch (application_type)
{

case SEND CALL PROGRESS:
/* fax channel does dialing and handl es call progress */
gr.operation = GFQD AL_SEND,
strcpy(gr.fn_send, "c:\\fax\\test001l.tif");
strcpy(qr. phone_no, "1-408-555-1212");
br eak;
case SEND NO CALL_ PROGRESS:
/* fax channel goes of f-hook and begins T.30 action at
Phase B */
gr.operation = GFQD AL_SEND,
strcpy(gr.fn_send, "c:\\fax\\test001l.tif");
strcpy(qr. phone_no, "\0");
br eak;
case RECV_FAX QN\LY:
/* fax channel detects incomng ring prior to going
of f - hook */
gr.operati on = GFQANSWER RECH! VE,
strepy(ar.fn_received, "c:\\faxr\\f001p001l.tif");
br eak;
case RECV VA CE FAX
/* fax channel goes off-hook and transmts CED */
gr.operati on = GFQANSVWER | MEDI ATELY;
strepy(ar.fn_received, "c:\\faxr\\f001p001l.tif");
br eak;

}

status = grtSubmtFax(chan, &gr);
if (status == GRT_SUGCCESS

printf("fax submtted successfully\n");
el se

printf("grtSubmtFax error %\ n", status);

195

GDK Version 5.0 Programming Reference Manual
GFD API Functions

The following section alphabetically lists the GFD API functions. These function
calls handle event notification, remote status and control functions.

gfdClose gfdDisconnectNmPipe

gfdConnectNmPipe

Disconnected
Pipe

Listening
Pipe

xxx-gfdOpen

Ready to
enable event
notification
response.

gfdConnectNmPipe

-
-«

Connected to
Channel

xxx-gfdClose

Figure 5. Event Breakpoints

Each event breakpoint may be associated to the sending side or the receiving side
of afax transmission. In the information associated with the event there may be
data. The application attemptsto read the gfx_rt_message, which isthe largest
possible message from the pipe (2048 bytes of data). There will be more or less
data depending on the event. Events that are not able to respond should not be
setup for response. Doing so can cause unpredictable behavior. Of the available
responses, the verb response is not supported in GRT. Aborting at the Call Term
break point does not abort the fax transmission at all; rather it aborts writing the
gueue record in the event data to the queue file on the hard disk.

196

5. Programming Models

Table 35. Event Breakpoints

Event Sending/ | Information with Ableto Available
Receiving | event Respond? | responses
Did Sending Dial string No None
Cdl Receiving | Collected digits Yes Abort,
Pending continue, or
verb
Answer Receiving | Collected digits Yes Abort,
continue,
gueue record
or verb
Info Receiving | gfx_rt_info_sor Yes Abort or
Exchange GRT_INFO_DATA continue
DIS Sending ofx_rt_info_sor DIS No None
Received string
DCS Receiving | gfx_rt_info_sor DCS | No None
Received string
Page Break | Sending None No None
/Receiving
Idle Sending None No None
/Receiving
Call Term Sending GFQRECORD Yes Abort or
/Receiving continue

NOTE: The GRT programming model does not support all break points and all
response types covered in the GFD API. There are two additional event
break points: Answer and Idle. Thereis also the possible response of a
verb. Sincethisis only useful when responding to an Answer event, no
additional functionality islost.

197

GDK Version 5.0 Programming Reference Manual

Name: int gfdClose (int handl€)

Inputs: int handle e Validpipe handle
returned from
gfdMakeNmPipe or
gfdOpen.

Outputs: none

Returns: GFD_INVALID_HANDLE Wrong pipe handle.
GFD_NOT_INSTALLED Dispatcher is not running.
GFD_SUCCESS e Successful.

Includes: gfdmsg.h
gfdipc.h

NOTE: dfidpc.h requiresthat the gfdmsg.h file be included
first.

B Description

The gfdClose function closes a pipe opened with gfdOpen or gfdMakeNmPipe.

M Example

#def i ne XXX _BASE 0x4000

#defi ne XXX gf dd ose (XXX BASE+81)

int faxHandl e; /* fax channel handl e for pipe renote open */
int appHandle; /* application handle for pipe*/

int status;

int result;

/* dose renote/ fax channel side of pipe */

status = gf dRenot eRequest (0, 0, XXX gfdd ose, 0, faxHandle, "", O,
&result);

gf dD sConnect NPi pe(appHandl e) ;
gf dd ose(appHandl e) ;

198

5. Programming Models

Name:
Inputs:

Outputs:
Returns:

Includes:

int gfdConnectNmPipe (int handle)

int handle e Validpipe handle
returned from
gfdMakeNmPipe or
gfdOpen.

none

GFD_ACCESS _DENIED
GFD_BROKEN_PIPE

Pipe is not connected.
Pipe was disconnected.

GFD_INVALID_HANDLE « Wrong pipe handle.

GFD_NOT_INSTALLED e Dispatcher isnot
running.

GFD_SUCCESS e Successful.

gfdmsg.h

gfdipc.h

B Description

The gfdConnectNmPipe function closes the server handle of a named pipe. If the
client end of anamed pipeisopen, this call forces that end of the named pipe
closed. The client receives an error value on the next attempt to access the pipe.

A client that is forced off a pipe by this function must close its end of the pipe
using the gfdClose function.

199

GDK Version 5.0 Programming Reference Manual

M Example

#def i ne XXX _BASE 0x400
#define XXX gfdd ose (XXX Base+81)

intfaxChandl e; /* Fax channel handle fromrenote open */

int AppHandl e

int status;

int result;

/* Aose renote or fax channel side of pipe */

status = gf dMakeNnPi pe (*\\ Pl PE\\ GFAX01i,ppHandle);

status = gfdConnectNmPipe(appHandle);

[+ Will always return a vallue of 1 */

status = gfdRemoteRequest(1,0,XXX_gfdOpen,0,0,
IWPIPENGFAXO01i,size of (\PIPE\GFAXO011),&result);

status = gfdConnectNmPipe (appHandle);

¥ now will retun GFD_SUCCESS*/

200

5. Programming Models

Name:
Inputs:

Outputs:
Returns:

Includes:

int gfdDisConnectNmPipe (int handle)

int handle

none
GFD_ACCESS DENIED
GFD_BROKEN_PIPE
GFD_INVALID_HANDLE
GFD_NOT_INSTALLED
GFD_SUCCESS

gfdmsg.h

gfdipc.h

Valid pipe handle
returned from
gfdMakeNmPipe or
gfdOpen.

Pipe is not connected.
Pipe was disconnected.
Wrong pipe handle.
Dispatcher is not running.
Successful.

B Description

The gfdDisConnectNmPipe function closes the server handle of anamed pipe. If
the client end of anamed pipe is open, this call forcesthat end of the named pipe
closed. The client receives an error value on the next attempt to access the pipe.

A client that is forced off a pipe by this function must close its end of the pipe
using the gfdClose function.

B Example

#def i ne XXX_BASE 0x400
#define XXX _gfdd ose (XXX _Base+81)

int faxHandl e;
int AppHandl e

Int status;
int result;

/* Fax channel handl e fromrenote open */

/* Aose remote or fax channel side of pipe */
status = gf dRermot eRequest (0, 0, XXX_gf dd ose, 0, f axHandl e, 1)),

&result);

gfdDisConnectNmPipe(AppHandle);
gfdClose(AppHandie);

201

GDK Version 5.0 Programming Reference Manual

Name: int gfdGetFileNumChannel (int chassis)

Inputs: intchassis * Thechassis number.
Outputs: none
Returns: Number of activechannels ¢ Successful.

0 *« The statusfile exists, but
no channels are active.
<0 * Anerror occurred.

Includes: gfdstatu.h

B Description

The gfdGetFileNumChannel function returns the number of active channelsin
the chassis. A value less than zero indicates an error. A value of zero indicates that
the status file exists and is valid, but that no fax channels are active.

B Example

#incl ude "gfdstatu. h"
nc = gfdGet Fi | eNunthannel (1);
if (nc >=0)
printf ("Found %l channels.\n", nc);
el se
printf ("Can't open status file.\n");

202

5. Programming Models

Name: int gfdGetMemNumChannel (int chassis)
Inputs: intchassis * Thechassis number.
Outputs: none

Returns: Number of active channels e Successful.

0 ¢ The status table exists,
but no channels are
active.

<0 e Anerror occurred.

Includes: gfdstatu.h

B Description

The gfdGetM emNumChannel function returns the number of active channelsin
the chassis. A value less than zero indicates an error. A value of zero indicates that
the status table exists and is valid, but that no fax channels are active.

B Example

#incl ude "gfdstatu. h"
nc = gf dGet MemN\urrChannel (1);
if (nc >=0)
printf ("Found %l channels.\n", nc);
el se
printf ("status table not available.\n");

203

GDK Version 5.0 Programming Reference Manual

Name: int gfdMakeNmPipe (char *name, int *handle);

Inputs: char *name * Pointstoanull-
terminated string that
identifies the pipe.

int *handle e Pointsto avariable that
receives the handle of
the named pipe for the
application.
Outputs: int*handle ¢ Handle of the named
pipe.
Returns: GFD_ACCESS_DENIED e Unableto create pipe.
GFD_NO_PIPE_HANDLES « Out of file handles when
attempting to create a
pipe.
GFD_NOT_INSTALLED * Dispatcher isnot
running.
GFD_SUCCESS * Successful.
Includes: gfdmsg.h
gfdipc.h

B Description

The gfdM akeNmPipe function creates a named pipe and returns a handle to the
server. The handle can be used in subsequent read, write, and close operations.

M Example

result = gf dvakeNnPi pe ("\\ Pl PE\\ GFAX01", &handl e);

204

5. Programming Models

Name: int gfdOpenStatusFile (int chassis, int mode)
Inputs: intchassis * Thechassis number.
int mode ¢ The access mode of the
file, which isdefined in
the include file fentl.h.

The mode passed must be
O _RDONLY.
Outputs: none
Returns: e Successful.
Handle to the open status
file
-1 e Anerror occurred.

Includes: gfdstatu.h

B Description

The gfdOpenStatuskile function creates the name of the status file and attempts
to openit. The path for the status file is obtained from the GFAX environment
variable. Low-level functions, such asgfdReadStatusFileHeader and
gfdReadStatusFileRecord, cannot be used unless gfdOpenStatusFileis called
first successfully.

M Example

#i ncl ude "gf dstatu. h"

int chassis = 1; /* Default to one chassis*/

int status_fid,;

status_fid = gfdQpenStat usFil e(chassis, O RDONLY);
if (status_fid < 0)

printf ("No status file open.\n");

exit (1);
}

205

GDK Version 5.0 Programming Reference Manual

Name: int gfdQueryStatus (int dummy)

Inputs: int dummy e Isadummy parameter
which isignored. Any
integer valueis OK.

Outputs: none

Returns: g e TheDispatcher is
running.
non-zero e The Dispatcher is not
running.
Includes: gigmsg.h
gfdipc.h
NOTE: dfdipc.h reguires that the gfdmsg.h file be included
first.

B Description

The gfdQueryStatus function checks whether or not the Dispatcher is running.

B Example
if (gf dQueryStatus(0))
{

printf ("Gammalink service not running.\n");
exit (1);

206

5. Programming Models

Name:
Inputs:

Outputs:

Returns:

Includes:

int gfdRead (int handle, char *buffer, int size, int *bytesread)

int handle

int size

int * bytesread

char *buffer
GFD_ACCESS DENIED

GFD_INVALID_HANDLE
GFD_NOT_INSTALLED

GFD_SUCCESS
gfdmsg.h
gfdipc.h

Valid pipe handle
returned from
gfdMakeNmPipe or
gfdOpen and connected
with gfdConnectNmPipe.
Specifies the number of
bytesto be read from the
pipe.

Points to the variable that
receives the number of
bytes read from the pipe.
Points to the buffer that
receives the data.
Pipeisnot in correct
state.

Wrong pipe handle.
Dispatcher is not
running.

Successful.

B Description

The gfdRead function reads bytes of data, up to a specified number, from a pipe
into a buffer. gfdRead may read fewer than the specified number of bytes if fewer
are available. Thereturn valueis GFD_SUCCESS if the function is successful.

207

GDK Version 5.0 Programming Reference Manual

M Example

i nt channel ;
int result;
i nt appHandl ;
struct gfx_rt_nessage dat agram
int |en;
/* Main processing |loop -- never ends. */
while(l) /* Check for data on this pipe. */
{
result = gf dRead(appHandl e, (char *) &at agr am
si zeof (dat agram, & en);
if((result==0) &&(len>0)){
i f (dat agr am header . functi on == G-XRTBP_CALLTERV)
printf("CallTermination on channel”, “ %d\n",
datagram.header.source);
[Fax channel that sent message */

sleep (2);

208

5. Programming Models

Name: int gfdReadStatuskile (CPRECORD *rec, int channel,

int chassis)
Inputs: int channel e Thelogica channel
number.
int chassis e Thechassis number.
Outputs: CPRECORD *rec e The statusrecord

returned if the function
completes successfully.
Returns: GFD_SUCCESS e Successful.
GFDBAD_STATUS FILE The statusfileis corrupt.
GFDNO_STATUS FILE The status file could not

be found.
Includes: gfdstatu.h
gfdmsg.h
gfdipc.h
NOTE: dfdipc.h reguires that the gfdmsg.h file be included
first.

B Description
The gfdReadStatusFile function reads one record from the status file. The status

file is opened, and the record isread by calling gfdReadStatusFileRecord. The
statusfileis then closed.

209

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "gf dstatu. h"

#i ncl ude "gf dnsg. h"

#i ncl ude "gf di pc. h"

i nt channel , nunthannel, chassis = 1,
CPRECCRD cprec;

for (channel =1; channel <=nunthannel ; ++channel)

if (gfdReadStatusFile (&prec, channel, chassis) == G-D_SUCCESS)

printf ("channel %l, status = 9%®21x," " name = %@2x\n",
cprec. cp_channel , cprec.cp_state, cprec.cp_nane);

210

5. Programming Models

Name:
Inputs:

Outputs:

Returns:

Includes:

int gfdReadStatuskileHeader (int fid,

struct cp_status_header_s header)

int fid

struct cp_status _header_s
header

GFD_SUCCESS
GFDBAD_STATUS FILE
GFDNO_STATUS FILE
gfdstatu.h

gfdmsg.h
gfdipc.h

The file handle returned
by gfdOpenStatusFile
Pointer to the data
structure maintained in
memory that holds the
statustable.

Successful.

The statusfileis
corrupted.

The status file could not
be found.

NOTE: dfdipc.h reguires that the gfdmsg.h file be included

first.

B Description

Onefield in the status-file header shows the number of fax channels activein the
chassis. Also in the header fileisacp_status header data-structure definition for a
header of astatusfile. Table 36 lists the fields in a status-file header. A data
structure for the status table isin GFDSTATU.H, which is the header file for status
functionsincluded in GDK. This structure islisted below:

struct cp_status_header_s {

short
short
short
short

cp_status_version; /* version of status file */
cp_header _si ze; /* size of header (bytes) */
cp_record_si ze; /* allocated size for each card */
cp_max_channel ; /* nunber of channels allocated */

tinme_t cp_|l ast_update; /* time of |ast update */

211

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "gf dstatu. h"

#i ncl ude "gf dnsg. h"

#i ncl ude "gf di pc. h"

struct cp_status_header s header;

/*Di spl ay header information*/

gf dReadSt at usFi | eHeader (status_fid, &header);

printf ("Status file is version %l\n", header.cp_status_version);
printf ("Status file reports %l active", " channel s\n",
header . cp_nax_channel);

printf ("Status file last updated %\n", ctine

(&header. cp_| ast _update));

Table 36. Fields in the Status-File Header

Data Type | Field Name Description

int Cp_status version Version of the statusfile.

int cp_header_size Size of the header in bytes.

int cp_record size Allocated size for each fax channel.

int cp_max_channel Number of fax channels active in the chassis.
time t cp_last_update Time of last update.

212

5. Programming Models

Name:

Inputs:

Outputs:

Returns:

Includes:

int gfdReadStatusFileRecord (int status fid,

CPRECORD *rec, int channel)

int status_fid

int channel

CPRECORD *rec
GFD_SUCCESS
GFDBAD_STATUS FILE
GFDNO_STATUS FILE
gfdstatu.h

gfdmsg.h
gfdipc.h

Thefile handle for the
status file (returned by
gfdOpenStatusFile).

The logical-channel
number for which the
statusisto be obtained.
The status record
returned if the functionis
successful.

Successful.

The statusfileis corrupt.

The status file could not
be found.

NOTE: dfdipc.h reguires that the gfdmsg.h file be included

first.

B Description

The gfdReadStatusFileRecor d function that reads arecord from the statusfile if
the file already is open.

213

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "gf dstatu. h"
#i ncl ude "gf dnsg. h"
#i ncl ude "gf di pc. h"
CPRECCRD cpr ec;

int status_fid,;

int i;
int status;
for (i = 1; i <= naxchannel; ++i)
{
status = gf dReadSt at usFi | eRecord
}

214

(status_fid, &prec,i);

5. Programming Models

Name: int gfdReadStatusMem (CPRECORD *rec,
int channel, int chassis)

Inputs: int channel * Thelogical channel
number.
int chassis e Thechassis number.
Outputs: CPRECORD *rec e Thestatusrecord

returned if the function
completes successfully.
Returns: GFD_SUCCESS e Successful.
GFDBAD_STATUS FILE The status tableis

corrupt.

GFDNO_STATUS FILE ¢ The status table could not
be found.

Includes: dfdstatu.h

gfdmsg.h

gfdipc.h

NOTE: dfdipc.h reguires that the gfdmsg.h file be included

first.

B Description

The gfdRead StatusM em function reads one record from the status table. The
status table is opened, and the record is read by calling

gfdReadStatusM emRecor d. The status table is closed without further function
cals.

215

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "gf dstatu. h"

#i ncl ude "gf dnsg. h"

#i ncl ude "gf di pc. h"

int channel, nunthannel, chassis = 1;

CPRECCRD cpr ec;

nuncthannel = gf dGet MemNunChannel (chassi s) ;
for(channel = 1; channel <= nunthannel; ++channel)

{
i f (gf dReadSt at usMem (&cprec, channel, chassis)
GFD_SUCCESS)
printf ("channel %l, status = 9%921x,", " nane = 9%82x\n",
cprec.cp_channel, cprec.cp_state, cprec.cp_nane);

216

5. Programming Models

Name:
Inputs:

Outputs:

Returns:

Includes:

int gfdReclaimNmPipe (char * pipename)

char * pipename e Pointer to null
terminated string that
identifies the pipe

None

GFD_SUCCESS e Thename of the pipe
has been successfully
reclaimed

GFD_INVALID_PIPE_NAME « Thename of the pipe
was never used (not an
error).

gfdmsg.h

gfdipc.h

NOTE: ¢fdipc.h requiresthat the gfdmsg.h file be included
first.

B Description

This function performs clean up and recovers locked system resources if
gfdMakeNmPipe failswitha GFD_INVALID_HANDLE error code (the typical
error code that is generated from an abnormal termination of a previously running
GDK fax application.)

This function can be called prior to a making gfdM akeNmPipe call without
incident, but do not call this function after a successful gfdMakeNmPipe call.

B Example

result = gf dRecl ai M\iPi pe("\\ Pl PE\\ GFAX01");}

217

GDK Version 5.0 Programming Reference Manual

Name: int gfdRemoteRequest (int chassis, int channel, int command,
int func, int parm, char buffer, int buffer_length, int *res)

Inputs: int chassis * Chassis number

(always zero).

int channel * Logical channel
number (use O for
the Dispatcher,
GFDCP).

int command e A command from
Table 37.

int func e First parameter.

int parm e Second parameter.

char *buffer e Command buffer.

int buffer_length « Length of command
buffer.

Outputs: int*res * Result of the
command when itis
processed.

Returns: 0or GFD_SUCCESS * Successful. Check
the result code
passed back (res)

for result of the
actual command.
GFDCHANNEL_FAILED e State of thetarget
channel is “failed.”
GFDINVALID_CHANNEL « Specified channel is
not in the range for
which the
Dispatcher is
configured.
GFDREMOTE_SPARM_ERROR « Buffer length
specified in
gfdRemoteRequest
is greater than
internal buffer size
(currently, 1024).

218

5. Programming Models

GFD_ACCESS DENIED » Failed to properly
open or closethe
remote (fax) handle
of the named pipe.

Includes: gfdmsg.h

gfdipc.h

gfqctl.h

gfg.h

B Description

The gfdRemoteRequest function allows the calling application to send a message
to the fax channel to perform the requested function or operation. “Remote
Request” refers to the fact that the host application is requesting the “remote”
software to execute certain commands or change certain parameters.

The gfdRemoteRequestcall contains the chassis and channel number for the
communication subsystem component to execute the remote function. The channel
number is the logical channel number within a chassis. Channel number 0 is used
to refer to the GDK Dispatcher for that chassis. Channel number 1 is the first
logical fax channel, channel number 2 is the second logical fax channel, and so
forth.

There are several types of functions thatgit#RemoteRequest can issue. You
can usgfdRemoteRequest to issue configuration commands from gffiex.$dc

file. Some configuration commands have only one argument after the channel
number. GFXSHUTDOWN is one such command. A typical GFXSHUTDOWN
setting in thegfax.$dc file is:

GFXSHUTDOM <channel > 3

To change the shutdown state of a fax channel usingfdRemoteRequest, the
following can be used:

status = gfdRemoteRequest (0, channel, GFXSHUTDOWN, 0, 3, *, 0,
&result);

Other configuration commands have two arguments. GFXECM has one argument
to enable ECM (error correction mode) for send mode and another argument to
enable ECM for receive mode. A typical argument to enable ECM for send only
is:

219

GDK Version 5.0 Programming Reference Manual

GFXECM <channel>10

The equivalent gfdRemoteRequest call is:

status = gfdRemoteRequest(0, channel, GFXECMMODE, 1, 0, ", O,
&result);

For the configuration commands that require one argument, that argument is
passed as the fifth argument to gfdRemoteRequest, using the function parameter.
For configuration commands that require two arguments, they are passed in order
as the fourth and fifth parameters to gfdRemoteRequest.

In the section discussing the creation of user-defined pipes and enabling event
notification and response, we saw that the gfdRemoteRequest function is used to
send messages to the fax channel. The following examples show how to use
gfdRemoteRequest to send the most common messages relating to pipe creation,
event notification, and event response.

B Example

int status;
int result;

* To open the remote (fax) end of a pipe already created using
gfdMakeNmPipe():*/

status = gfdRemoteRequest(0, channel, XXX_gfdOpen, 0, 0, pipeName,
strlen(pipename) + 1, faxHhandle):

* To close the remote (fax) end of a pipe:*/

status = gfdRemoteRequest(0, channel, XXX_gfdClose, 0, faxHandle,
NULL, O, &result);

* To enable event natification only for the INFOEXCHANGE event:*/
status = gfdRemoteRequest(0, channel, GFXRTNHANDLE,
GFXRTBP_INFOEXCHANGE, faxHandle, NULL, O, &results);

* To enable event response on a different handle for the
INFOEXCHANGE event:*/

status = gfdRemoteRequest(0, channel, GFXRTRHANDLE,
GFXRTBP_INFOEXCHANGE, responseHandle, NULL, O, &result);
[¥To disable the default action for the CALLTERM event:*/

status = gfdRemoteRequest(0, channel, GFXRTACTION,
GFXRTBP_CALLTERM, GFXRT_ABORT, NULL, 0, &result);

[¥To change the timeout for the INFOEXCHANGE event to 5 seconds:*/
status = gfdRemoteRequest(0, channel, GFXRTTIMEOUT,
GFXRTBP_INFOEXCHANGE, 5, NULL, 0, &result);

220

5. Programming Models
B Additional Information

The gfdRemoteRequest also provides one more capability. When using the
interactive fax programming model, the gfdRemoteRequest is used to submit
gueue records to the fax channel to give the fax channel its operation. To send a
fax, for example, a queue record must be created and filled out, and then
submitted to the fax channel viagfdRemoteRequest as in the code fragment
below:

GFQRECCRD qr ec;

grec.operation = GFQDI AL_SEND,

strcpy(grec.fn_send, "test001.tif");

strcpy(grec. phone_no, "1-408-744-1900");

status = gf dRermot eRequest (0, channel, GFXQRECCRD, 0, O,
(char *)&grec, sizeof (GFQRECCRD), &result);

To send a message to the fax channel telling it to wait for an incoming call, and
then receive afax, asimilar gfdRemoteRequest is used:

GFQRECCRD qr ec;

grec. operati on = GFQANSWER RECHI VE;

strcpy(grec. fn_received, "a001p00l1l.tif");

status = gf dRenot eRequest (0, channel, GFXQRECORD, 0, O,
(char *)&grec, sizeof (GFQRECCRD), &result);

The gfdRemoteRequest is always used to send queue records in the same way as
above. Typically, the only difference is the operation field of the queue record.

NOTE: More message options are specified in GFQCTL.H.

Table 37. gfdRemoteRequest Commands

Command Configuration Channel |[Func |Parm |Buffer
Commands'

Fax-Agent Control M essages

GFXECMMODE GFXECM channel rx tx null
string

GFXFAXCONTROL GFXFAXC channel arg cmd null
string

GFXFINE GFXFINE channel 0 parm null
string

GFXFORMAT GFXFORM channel 0 parm null
string

221

GDK Version 5.0 Programming Reference Manual

Command Configuration Channel [Func |Parm |Buffer
Commands'
GFXGFCONTROL GFCCONTROL channel arg cmd null
string
GFXMDMCONTROL MODEMCTRL channel arg cmd null
string
GFXSCANTIME GFXSCANTIME channel 0 parm null
string
GFXSHUTDOWN GFXSHUTDOWN channel 0 parm null
string
GFXSPEAKER GFXSPEAKER channel 0 parm null
string
GEXWAIT GEXWAIT channel 0 parm null
string
GFXCARRY_ON GFXCARRYON channel 0 parm null
string
GFXREJ_BURST GFXREJBURST channel 0 parm null
string
GFXREJ_COUNT GFXREJCOUNT channel 0 parm null
string
GFXREJ PERCENT GFXREJPERCENT channel 0 parm null
string
GFXRTN_RETRAIN GFXRTNRETRAIN channel 0 parm null
string
GFXRTP_RETRAIN GFXRTPRETRAIN channel 0 parm null
string
Set Receive Directory
GFXRECVPATH GFXRECVPATH channel ‘ 0 | 0 “path”
Output-Conversion-Agent Control M essages
GFXBOTTOMMARGIN GFXBOTTOMMARGIN [channel 0 parm null
string
GFXCHARSET GFXCHARSET channel 0 parm null
string
GFXEXTEND GFXEXTEND channel 0 parm null
string
GFXLEFTMARGIN GFXLEFTMARGIN channel 0 parm null
string
GFXPAGELENGTH GFXPAGELENGTH channel 0 parm null
string

222

5. Programming Models

Command Configuration Channel [Func |Parm |Buffer
Commands'
GFXRIGHTMARGIN GFXRIGHTMARGIN channel 0 parm null
string
GFXSPACING GFXSPACING channel 0 parm null
string
GFXTABSTOP GFXTABSTOP channel 0 parm null
string
GFXTOPMARGIN GFXTOPMARGIN channel 0 parm null
string
Queue Record
GFXQRECORD — channel ‘ 0 | parm | grec
Event Notifications
GFRTACTION — channel event |actiorf [null
id? string
GFXENABLE — channel event |notify/ | null
id? response string
handle
GFXRTNHANDLE — channel event | notify null
id? handle |string
GFXRTRHANDLE — channel event |response null
id? handle |string
GFXRTTIMEOUT — channel event [seconds| null
id? string
Named Pipe
XXX_gfdClosé — 0 0 0 pipe
name
XXX_gfdOper? — 0 0 0 pipe
name

223

GDK Version 5.0 Programming Reference Manual

! See the GDK, Installation and Configuration Guide for Windows for details on the
configuration commands.
2 See Table 38 for values.

% These commands are defined in xxxmsgs.h.

Table 38. Event Identifiers and Default Actions

Category | Symbolic Name

Event ID

Call Answer GFXRTBP_ANSWER

Call Pending GFXRTBP_CALLPENDING
Call Termination GFXRTBP_CALLTERM
DCS Received GFXRTBP_DCS RECV

Dial GFXRTBP_DIAL

DIS Received GFXRTBP_DIS RECV

Information Exchange | GFXRTBP_INFOEXCHANGE

Page Break GFXRTBP_PAGE_BREAK
Action

Abort GFXRT_QUEUE

Continue GFXRT_CONTINUE
Queue GFXRT_QUEUE

Obsolete APIs

The following functions have been removed from the 3.x releases of the GDK
software.

» gfdBoardDetect() has been replaced by glHWDetect().

» gfdGenerateConfig() has been replaced by Control Panel configuration
utility.

224

5. Programming Models

* gfgReadOne() has been replaced by gfgFindNext().
« gfgReport() has been replaced by gfgFindFirst().
» gfdStartDispatcher SVC() isredundant to the Win32 StartService() API.

225

GDK Version 5.0 Programming Reference Manual

226

6. Developing with PEB

PEB (Pulse Code Modulation [PCM] Expansion Bus)

The PEB (Pulse Code Modulation [PCM] Expansion Bus) was introduced by
Dialogic Corporation in 1989. It is a high-speed, digital, Time-Division
Multiplexer (TDM) communication bus for the signal computing environment.
PEB issimilar in concept to a T-1 span; information is transmitted digitally and
divided into several conversations. Each conversation is referred to as a timeslot,
and the alocation of the timeslots determines the functionality of the bus.

The following applications are possible with PEB:

e Fax

* Voice processing

e Speech recognition

* Switching

e Text-to-speech

The PEB environment consists of two primary component types: network

interfaces and resource modules. Network interfaces attach to the telephone

network and generally control the speed of the bus (provides “clock”). Depending
on the type of network interface, PEB can support from 24 to 30 simultaneous

channels. For example, T-1 supports 24 data channels and E-1 supports 30 data
channels.

Resource modules perform some type of signal computing function, such as fax,
by transmitting on and/or receiving data from a designated range of timeslots.

227

GDK Version 5.0 Programming Reference Manual

With the PEB Switching Handler Libraries, fax resources are allocated at runtime,

and connected to active/live telephone calls. Y ou can aso configure fax resources

as “batch processing only,” where jobs are created by the application, and
submitted to the GDK Queue Management processing system. The PEB functions
can be used with either the Batch Programming Model or the Interactive
Programming Model.

Basics of a PEB System

A PEB system requires the utility GFSH.EXE to first program the data bus before
running a PEB application. See Appendix B for more information about this
utility.

Dialogic CP Fax hardware is compatible with Dialogic’'s PEB network interface
cards. Using the PEB APIs, the system can be a fax-only system and control call
progress signaling, when the Dialogic card is configured for transparent mode.
When Dialogic’s card is configured for signal insertion, as in a voice/fax system,
the fax channels can be routed on the PEB bus on an as-needed fax resource.

The following list describes the functions of executable and configuration files
needed for a PEB system, in addition to the base GDK software described in
Chapter 2.

GFSH.CMD Configuration file created by the timeslot
assignment program and used by the GFSH.EXE
program to properly assign timeslots within the
SCbus system.

GFSH.EXE The SC2000 configuration utility. It creates the
GFSH.SAV file when given GFSH.CMD as
input.

GFSH.SAV Configuration file created by the GFSH.EXE

program GFAX.SAV is used by the runtime API
for timeslot record keeping.

228

6. Developing with PEB

PEB APIs

This section provides information about the use of the following PEB APIs:

gl_route Connects and disconnects digital timeslot transmit and
receive to PEB

gl_routerxtx Connects and disconnects independent digital timeslot
transmit and receive to PEB

gl_pebenter Initializes PEB subsystem
gl_pebexit Shuts down PEB subsystem

The following sections list the name, inputs, returns, include files, description, and
example code for each of the PEB APIs.

229

GDK Version 5.0 Programming Reference Manual

Name: int gl_route (int bddev, int chan, int tslot)

Inputs: int bddev e Purpose: Unused — for
compatibility with Dialogic
software.

* Range: Must be -1.
int chan « Purpose: Specifies logical fax
channel.

* Range: 1 - 60, inclusive.
int tslot e Purpose: Specifies transmit and
receive PEB timeslot.

 Range: 1 — 30, inclusive, for E1,
1 — 24, inclusive, for T1 to connect
a timeslot to the fax channel, -1 to
disconnect the timeslot of the fax

channel.
Returns: O e Success.
-1 e Error.

Includes: gfpeb.h

B Description
Thegl_route() function connects and disconnects fax channel to PEB timeslot.

The gl_route function establishes or removes a connection between a logical fax
channel and a PEB timeslot. The timeslot is used by the fax channel for both
transmitting to and receiving from the PEB. If gl_route() is called to establish a
connection and the fax channel is already connected to a PEB timeslot, the
existing connection will be removed before the specified connection is
established.

If gl_route() is called to remove a connection and no connection currently exists

between the fax channel and a PEB timeslot, gl_route() will return an indication
of success.

230

6. Developing with PEB

M Example

#i ncl ude "gf peb. h"

int faxchan, status;

/* disconnect faxchan fromtransmt and receive tineslots on
PEB */

status = gl _route(-1, faxchan, -1);

if (status)

fprintf(stderr, "gl route() disconnect failed: %l\n", status);
return (status);

/* connect faxchan transmt and receive to tineslot 1 on PEB */
status = gl _route(-1, faxchan, 1);
if (status)

fprintf(stderr, "gl _route() connect failed:" " %l\n", status);
return (status);

}

B Errors
e Thisfunction failsif aninvalid channel is specified.
* Thisfunction failsif called on a device in SCbus mode.

» Thisfunction failsif gl_pebenter() has not been previoudly called.

231

GDK Version 5.0 Programming Reference Manual

Name: int gl_routerxtx (int bddev, int chan, int rxslot, int txslot)

Inputs: int bddev

int chan

int rxslot

int txslot

Returns: O

Includes: gfpeb.h

Purpose: unused — for compatibility
with Dialogic software.

Range: Must be -1.
Purpose: logical fax channel.

Range: 1 — 60, inclusive.
Purpose: receive PEB timeslot.

Range: 1 — 30, inclusive, for E1; 1 — 24,
inclusive, for T1 to connect a receive
timeslot to the fax channel; 0 to leave
current receive timeslot configuration
of fax channel unchanged; -1 to
disconnect the receive timeslot of fax
channel.

Purpose: transmit PEB timeslot.

Range: 1 — 30, inclusive, for E1,

1 — 24, inclusive, for T1 to connect a
transmit timeslot to the fax channel; 0
to leave current transmit timeslot
configuration of fax channel
unchanged; -1 to disconnect the
transmit timeslot of fax channel.
Success.

Error.

232

6. Developing with PEB

B Description

Thegl_routerxtx () function connects and disconnects fax channels to transmit
and receive PEB timeslots.

Thegl_routerxtx() function establishes a connection between alogical fax
channel and apair of PEB timeslots. The transmit and receive timeslots are
selected independently. Either or both timeslots can be disconnected. Either or
both timeslots can be left unchanged.

If gl_routerxtx() is being used to establish a connection and the fax channel is
already connected to a PEB timedlat, the existing connection will be removed
before the specified connection is established.

If gl_routerxtx() is being used to remove a connection and no connection
currently exists between the fax channel and a PEB timeslot gl_routerxtx() will
return an indication of success.

M Example

#i ncl ude "gf peb. h"

int faxchan, faxchan2, txslot, rxslot, status;

/* di sconnect faxchan fromtransmt and
receive tineslots fromPEB */

txslot = rxslot = -1;

faxchan = 1;

faxchan = 2;

status = gl _routerxtx(-1, faxchan, rxslot,
txslot);

if (status)

fprintf(stderr, "gl _routerxtx() disconnect” " failed: %l\n",
status);
return (status);

/* connect faxchan transmt to tineslot 0 on PEB */

txslot = 0O;

/* connect faxchan receive to tinmeslot 1 on PEB */

rxslot = 1;

status = gl _routerxtx(-1, faxchan, rxslot,
txslot);

233

GDK Version 5.0 Programming Reference Manual

if (status)

fprintf(stderr, "gl _routerxtx() connect failed: %i\n",

status);
return (status);
/* To full -dupl ex connect faxchan with faxchan2 (e.g. for testing

pur poses) performanother gl_routerxtx() for faxchan2 with the
txslot and rxslot parameters reversed. */

B Errors
e Thisfunction failsif aninvalid channel is specified.
* Thisfunction failsif called on a device in SCbus mode.

e Thisfunction failsif gl_pebenter() has not been previously called.

234

6. Developing with PEB

Name: int gl_pebenter (void)

Inputs: none e A pointer to a queue record.
Returns: O e Success.
-1 e Error.

Includes: gfpeb.h

B Description

The gl_pebenter () function initialize PEB subsystem. The gl_pebenter()
function must be called before using any PEB switching functions.

B Example

#i ncl ude "gf peb. h"

int status;

status = gl _pebenter();
if (status)

fprintf(stderr, "gl _pebenter() failed: %l\n", status);
return (status);

}

B Errors
e Thisfunction failsif the GFSH.SAV file cannot be found and opened
with read and write privileges.
e Thisfunction aso failsif %GFAX% is not defined.

235

GDK Version 5.0 Programming Reference Manual

Name: int gl_pebexit ()

Inputs: none

Returns: O e Success.
-1 e FError.

Includes: gfpeb.h

B Description

The gl_pebexit () function shuts down PEB subsystem. The gl_pebexit()
function must be called before program termination.

B Example

#i ncl ude "gf peb. h"

int status;

status = gl _pebexit();
if (status)

fprintf(stderr, "gl _pebexit() failed: %l\n", status);
return (status);

}

236

7. Developing with SCbus

SCbus Connectivity Paradigm

SChus (Signal Computing) busis an open architectural specification for digital
intra-node communication. SCbus is a high-capacity bus with up to 2,048
time-dots, which will handle most audio/video applications. By using the SCbus
connectivity paradigm, you can focus on other application issues (such as resource
allocation) instead of complex connectivity problems. Each SChus-compliant
product provides virtually the same software interface to its given resource(s).
Another advantage of developing with SCbus is consistency among compliant
products.

While describing the SChus characteristics in general, this section covers GDK
SChbus-specific topics and introduces the SChus Application Program Interfaces

(APIs) for the CP Fax SC boards. Because of SCbus requirements, each compliant
product must assign each of its resources to an unchanging and permanent

transmit timeslot on the bus. The procedures to “nail up” transmit timeslots for its
fax channels are described in detail at the end of this section.

Basics of SCbus Compliancy

Dialogic CP Fax software and programs must interact with an existing, properly
installed Dialogic SCbus system. This is necessary to coordinate timeslot
assignment issues.

The following list describes the functions of the executable and configuration
files:

237

GDK Version 5.0 Programming Reference Manual

GFSH.BAS

GFTSASGN.EXE

GFSH.CMD

GFSH.EXE

GFSH.SAV

GFTSREQ.DAT

Configuration file created by the Configure
SChus utility. Thisfile indicates the number
of CP Fax SC boards in the chassis.

GDK'’s timeslot assignment program. This
program is called by Dialogic's master
timeslot assignment program during the
Dialogic system startup. GFTSASGN
creates GFSH.CMD, given the total number
of consecutive timeslots assigned to the
GDK system and the starting timeslot
number.

Configuration file created by the timeslot
assignment program and used by the
GFSH.EXE program to properly assign
timeslots within the CP Fax SChus system.

The SC2000 configuration utility. It creates
the GFSH.SAV file when given
GFSH.CMD as input.

Configuration file created by the
GFSH.EXE program GFAX.SAV is used by
the runtime API for timeslot record keeping.

This file is created by the Configure SChus
utility. It contains the timeslot requirements
and the name of the assignment program
(GFTSASGN.EXE).

SCbus APIs for the CP Fax SC Boards

GDK supports all SCbus APIs for the CP Fax SC boards as follows:

gl_getctinfo
gl_getxmitdot

gl_listen

238

Returns SCbhus device information

Returns specified fax channel’s transmit timeslot on the

Connects the fax receive channel to the SCbhus timeslot

7. Developing with SCbus

gl_unlisten Disconnects the fax receive channel from the SChus
timeslot

gl_scenter Initializes the SCbus subsystem

gl_scexit Shuts down the SChus subsystem

ScBus APIs With DM3 Boards

Using SCBus mode with DM 3 boards requires special function calls (Ex

functions). The CP SCBus API bypasses the dispatcher by accessing afile and
communicating directly with the driver. These _Ex functions “remap” the existing
CP/ScBus API function calls to redirect the SC Bus back to the Dispatcher.

GDK developers must recomplile their applications after using the _Ex functions.

NOTE: You must allocate the ScBus timegboior to starting a fax session.
Perform these steps:

1. Call the gl_listen function prior to submitting a queue record (Qrec)
using GFQANSWER_IMMEDIATELY or GFQDIAL_SEND. This
eliminates error code 3830 (GX0_NODIAL or no dial tone detected
prior to dialing).

2. Use the gl_unlisten function call to free the ScBus timeslot when the line
is disconnected. Please note that gl_listen and gl_unlisten will always
return a —1 (not in the sample provided, but in the original file included
in the install).

The _Ex functions are available under \fax\gl_scbus.cpp. These five macros
should be defined in your header file before they can be remapped to the
appropriate function:

#define gl _getxmtslot gl _getxmtslotEx
#define gl _listen gl _|istenEx

#define gl __unlisten gl _unlistenEx
#define gl _scenter gl _scenterEx
#define gl _scexit gl _scexitEx

The following is an example of a header file defining the _Ex functions:

239

GDK Version 5.0 Programming Reference Manual

I Gammal i nk Header files
#i fdef __ cpl uspl us
extern "C' {

#endi f

#i ncl ude "ganmma. h"

#i ncl ude "gf dboard. h"
#include "gfq. h"

#i ncl ude "gf gpat h. h"
#i ncl ude "genra. h"

#i ncl ude "gf xevent . h"
#include "gfqctl.h"
#i ncl ude "gf dnsg. h"

#include "gfdipc.h" // <--- contai n gf dRenot eFuncti on
definition

#incl ude "gfdstatu. h"

#include "gf xstate. h"

#include "gfsc.h" // <--- contain the original gl _listen,...
#i fdef __ cpl uspl us

b

#endi f

The following isthe gl_scbus.ccp source code:

#def i ne GFDLI STEN GFDBASE+100

240

#def i ne

#def i ne

#def i ne

#def i ne

#def i ne

#def i ne

#def i ne

#def i ne

#def i ne

int gl_getxmtslotEx(int chan, SC TSINFO* tsinfop)

{

esult);

GFDUNLI STEN

GFDCGETTI MESLOT

GFDSCENTER

GFDSCEX T

GFDBASE+101

GFDBASE+102

GFDBASE+103

GFDBASE+104

gl _getxmtslot gl_getxmtslotEx

gl _listen gl _IistenEx

gl _unlisten gl _unlistenEx

gl _scenter gl _scenterEx

gl _scexit gl _scexitEx

int status, result;

7. Developing with SCbus

st at us=gf dRenot eRequest (0, chan, G-DGETTI MESLQT, 0, 0, NULL, 0, &

if (status)

{

t si nf op- >sc_t sarrayp|[0]

return -1;

} else {

t si nf op- >sc_t sarrayp[0]

return O;

result;

241

GDK Version 5.0 Programming Reference Manual

}

int gl_listenEx(int chan, SC TSINFO" tsinfop)
{

i nt status, result;

int timeslot = tsinfop->sc_tsarrayp[O0];

st at us=gf dRenot eRequest (0, chan, G-DLI STEN,
timeslot,timeslot, NLL, O, & esult);

if (status)
{

return -1;
} else {

return O;
}

int gl_unlistenEx(int chan)
{
i nt status, result;

st at us=gf dRenot eRequest (0, chan, G-DUNLI STEN,
0, 0, NULL, O, &resul t);

if (status)

{

return -1;

242

7. Developing with SCbus
} else {

return O;

int gl_scenterEx(void)
{
i nt status, result;

st at us=gf dRenot eRequest (0, 0, G-DSCENTER 0,
0, NULL, O, & esul t);

if (status || result)

{

return -1;
}
return O;

int gl_scexitEx(void)
{
i nt status, result;

st at us=gf dRenot eRequest (0, 0, G-DSCEXI T, O,
0, NULL, O, & esul t);

if (status || result)

{

243

GDK Version 5.0 Programming Reference Manual

return -1;

}

return O;

Scbus API Descriptions

The following sections list the name, inputs, outputs, returns, include files,
description, and example code for each of the SCbus APIs.

244

7. Developing with SCbus

Name: int gl_getctinfo (int chan, CT_DEVINFO *ct_devinfop)
Inputs: int chan * Purpose: CP fax channel.

* Range: 1-n, wherenisthe number
of installed channels.
CT_DEVINFO » Purpose: Pointer to SCbus

*ct_devinfop timeslots information structure.
* Range: N/A.
Returns: O e Success.
-1 e FError.

Includes: gfsch

B Description
Thegl_getctinfo() function returns digital timeslot device information.

This function retrieves the device information related to a channel on a CP Fax SC
board. On return from the function, the CT_DEVINFO structure contains the
relevant information. The CT_DEVINFO structure is declared as follows:

typedef struct {

unsi gned | ongct _prodi d;

unsi gned charct _devfam |y
unsi gned char ct _devnode;
unsi gned char ct _nettype;
unsi gned char ct _busnode;
unsi gned char ct _busencodi ng;
unsi gned charct _rful7];

} CT_DEVINFQ

The valid values for each member of the CT_DEVINFO structure are defined in
gfsc.h.

Thect_prodid field contains avalid CP Fax product identification number for the

device. The ct_devfamily field specifies the device family and will contain one of
the following values:

245

GDK Version 5.0 Programming Reference Manual

CT_DFCPA4 /* GammaLink CP -4 family */
CT_DFCP6 /* GammaLink CP -6 family */
CT_DFCP12 /* GammaLink CP -12 family */

The ct_devmode field is not valid for the CP Fax Series card.

The ct_nettype field may contain either of the following values:

CT_NTT1 /* T1 configuration */
CT_NTE1 /* E1 configuration */
CT_NTNONE

The ct_busmode field may contain either of the following values:
CT_BMPEB /* PCM Expansion Bus architecture */
CT_BMSCBUS [* SChbus architecture */

The ct_busencoding field may contain either of the following values:

CT_BEULAW [*Mu-law PCM encoding */
CT_BEALAW /*A-law PCM encoding */
M Example

#i ncl ude "gf sc. h"
CT_DEVI NFO devi nf op;

st at us' = gl _getctinfo(gl_devh, &devinfop)
if(status == 0)
printf("Fax channel %l: product id=%l, bus node=%l\n",
gl _devh, devinfop.ct_prodid, devinfop.ct_busnode);
el se
printf("Error %l\n", status);

246

7. Developing with SCbus

Name: int gl_getxmitslot (int chan, SC_TSINFO *tsinfop)
Inputs: int chan e Purpose: GDK channel.

* Range: 1 —n, where n is the number of
installed fax channels.
SC_TSINFO « Purpose: Pointer to SChus timeslots

* tsinfop information.
* Range: N/A.
Returns: O e Success.
-1 e Error.

Includes: gfsc.h

B Description

Thegl_getxmitslot() function returns SCbus timeslot connected to digital
timeslot transmit.

This function connects the external SChus timeslot to the transmit of a channel on
a CP Fax SC board. On return from the function, the SC_TSINFO structure
contains the number of SCbus timeslots that are connected to the transmit of the
local fax timeslot and a pointer to the array that contains the SCbus timeslots
(between 1 and 1024). The SC_TSINFO structure is declared as follows:

typedef struct {
unsi gned | ongnunt s;
| ong*t sarr ay;

} SC TSINFQ

This function fails if an invalid channel is specified. This function fails if called on
a device in PEB mode.

NOTE: A CP Fax SC fax channel can only transmit on one external SChus
timeslot. The SC_TSINFO structure is used to provide uniformity among
SCbus timeslot access functions for all SCSA devices.

247

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "gf sc. h"

SC TSINFO sc_tsinfo; /* SChus tineslot info
structure */

long scts; /* SCous tineslot */

int devhl, status;

devhl = 1;

sc_tsinfo.sc_nums = 1; /* always one tineslot */
sc_tsinfo.sc_tsarrayp = &scts;

status = gl _getxmtslot(devhl, &sc tsinfo);

if (status)

fprintf(stderr, "gl _getxmtslot() error %l\n", status);
return (status);
}
el se
fprintf(stdout,"chan %l is transmtting on tineslot %\ n",
devhl, scts);

248

7. Developing with SCbus

Name: int gl_listen (int chan, SC_TSINFOP *tsinfop)
Inputs: int chan * Purpose: CP Fax SC channel.

e Range: 1-n, where nis the
number of installed fax
channels.

Purpose: Pointer to SChus
timeslots information structure.

* Range: N/A.
Outputs: GFQRECORD *grec A pointer to a queue record.
Returns: O * Success.
-1 e Error.
Includes: gfsc.h

SC_TSINFO * tsinfop

B Description
Thegl_listen(') function connects the fax channel to receive timeslot on SCbus

This function connects the receive data stream of a fax channel to a timeslot on the
external SCbus. The SC_TSINFO structure contains two fields. The first field
specifies the total number of SChus timeslots to connect. The second field is a
pointer to an array that contains the SCbus timeslots (from 1 and 1024) necessary
to connect the receive data stream of the channel. If gl_listen() is called to
establish a connection for a CP Fax SC fax channel that is already connected, the
existing connection will be broken before the specified connection is established.

The SC_TSINFO structure is declared as follows:

typedef struct {
unsi gned | ongnunt s;
| ong*tsarray;

} SC TSI NFQ

Multiple fax channels may listen to a single SCbus timeslot, although the transmit
data stream of a single SC channel can be connected to only one SChus timeslot.
The SC_TSINFO structure is used to provide uniformity among SCbus timeslot
access functions for all SCSA devices.

249

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "gf sc. h"

SCTSINFO sc_tsinfo; /* SCohus tineslot info structure */
| ong scts; /* SCous tineslot */

int devhl, devh2, status;

devhl = 1;

devh2 = 2;

sc_tsinfo.sc_nunis = 1; /* always one tinmeslot */
sc_tsinfo.sc_tsarrayp = &scts;

status = gl _getxmtslot(devhl, &sc _tsinfo);

if (status)

fprintf(stderr, "gl _getxmtslot() error %l\n", status);
return (status);
}
el se
fprintf(stdout, "chan %l is transmtting on tineslot %\ n",
devhl, scts);
/* connect devh2 rxslot to devhl txslot */
status = gl _listen(devh2, &sc tsinfo);
if (status)

fprintf(stderr, "gl listen() error %\ n", status);
return (status);

}

el se
fprintf(stdout, "chan %l is receiving on tineslot %\ n",
devh2, scts);
/* devh2 is connected hal f-dupl ex with devhl. For a full-duplex
connection, repeat the above steps to connect devhl rxslot to devh2
txslot */

B Error
e Thisfunction failsif aninvalid channel is specified.
» Thisfunction failsif the SCbus timeslot number isinvalid.

 Thisfunction failsif caled on adevicein PEB mode.

250

7. Developing with SCbus

Name; int gl_unlisten (int chan)

Inputs: int chan e Purpose: Specifies CP Fax
SC board channel.
Returns: O e Success.
-1 e Error.

Includes: gfsc.h

B Description

The gl_unlisten() function disconnects fax channel receive data stream from
SChus. This function disconnects the receive data stream of afax channel from
the SCbus. If gl_unlisten() is called to disconnect afax channel that has no
existing connection, no operation will be performed and the function will return an
indication of success.

B Example

#i ncl ude "gf sc. h"
i nt devhl, status;

devhl = 1;
/* disconnect devhl rxslot */
status = gl _unlisten(devhl);
if (status)

fprintf(stderr, "gl_unlisten() error %\ n", status);
return (status);

}

B Error
e Thisfunction failsif aninvalid channel is specified.

* Thisfunction failsif caled on adevicein PEB mode.

251

GDK Version 5.0 Programming Reference Manual

Name: int gl_scenter (void)
Inputs: None
Returns: O e Success.
-1 e FError.
Includes: gfsc.h

B Description

The gl_scenter () function must be called once before using any SCbus switching
functions.

B Example

#include "gfsc. h"

[* initialize SCbhus system*/
status = gl _scenter();

if (status)

fprintf(stderr, "gl_scenter() error %\ n", status);
return (status);

}

B Error

e Thisfunction failsif the GFSH.SAV file cannot be found and opened with
read and write privileges.

¢ Thisfunction also failsif %6GFAX% is not defined.

252

7. Developing with SCbus

Name: int gl_scexit ()
Inputs: None
Returns: O e Success.
-1 e FError.
Includes: gfsc.h

B Description

The gl_scexit() function must be called before program termination.

B Example

#incl ude "gfsc. h"
status = gl _scexit();
if (status !'=0)

fprintf(stderr,"failed gl _scexit:"
" %\ n",status);

return (status);

B Error
e Thisfunction failsif the gfsh.sav file cannot be closed.

253

GDK Version 5.0 Programming Reference Manual

254

8. Fax Status Files

8. Fax Status Files

Overview

This chapter discusses status tables and status files. It covers these main topics:
+ Statustables and status files

e Creating astatusfile

* Refreshing the statusfile

e Monitoring status with gfxStatus

* Monitoring status with cp_state

e Systeminformation API function calls

Status Tables and Status Files

The Dispatcher maintains in memory astatus table that records the hardware
setup of aspecific fax channel and the processing status of fax files directed to
that channel. Using the information on the status table, a status file can be created
on disk that checks the state of the fax channelsin a multiple-channel chassisor in
multiple-chassis systems. Real-time status information can be obtained, and
applications capable of response in real time can be built, using the status
information.

Each chassis has only one status table and only one status file. Each fax channel in
achassisisrepresented by only one record in the status table or status file. When
the status table is used on the chassis in which the boards are installed, the table
should be used with the function gfdReadStatusM em for faster operation. The
status table in memory and the status file on disk are a collection of records, one
for each fax channel. That is, a chassis with four fax channels will have four
records.

255

GDK Version 5.0 Programming Reference Manual

The format of a status record is listed in Table 39.

Table 39. Status Record Fields

256

"z

j®N

D

nas

ax

x

Field Name Data Type | Description

cp_channel int The physical-channel number.

cp_name [32] char The modem id of afax channel.

cp list int The internal-buffer list number for
transactions addressed to this fax
channel.

cp_state int Indicates the state of the fax channel.
The states include “idle,” “sending,”
“receive,” “offline,” “dead,” “reset,”
and “failed.”

Cp_pass int Not used; reserved for future use.

capabilities unsigned Not used; reserved for future use.

ProgramFile [64] char Not used; reserved for future use.

ProgramOptions unsigned Not used; reserved for future use

numOpenFiles int The number of files a fax channel
open.

cp_fid [8] int The system-file numbers for the file
the fax channel has open. Unopene
files have a 0 or -1 here.

LastFileName [64] char The filename of the last file that was
successfully opened.

gfxStatus int The last gfxStatus returned by the f
channel.

gfxState int The last gfxState returned by the fa
channel. See values in gfxstate.h.

country int The country code for the fax channgl.
(This information is requested on
startup.)

gfixDebug int Not used; reserved for future use.

8. Fax Status Files

Field Name

Data Type

Description

ActiveHandle

int

Contains the queue record handle for
the transaction currently on the fax
channel.

ActiveQueueld

long

Not used; reserved for future use.

LastUserld[32]

char

Theuser_id field for the transaction
currently on the fax channel.

numSend

long

Counts the number of outgoing
transactions the fax channel has
processed since the Dispatcher was
last restarted.

TotalSend

long

The number of outgoing transactions
the fax channel has processed since
the status file was last reset. Thisfield
isrestored from the status file when
status-file processing is enabled.

numReceive

long

Counts the number of incoming
transactions the fax channel has
processed since the Dispatcher was
last restarted.

TotalReceive

long

Counts the number of incoming
transactions the fax channel has
processed since the status file was last
reset. Thisfield isrestored from the
status file when status-file processing
is enabled.

numFailed

long

Counts the number of failed
transactions the fax channel has
processed since the Dispatcher was
last restarted. Failed transactions are
also counted in numSend or
numReceive as appropriate.

257

GDK Version 5.0 Programming Reference Manual

Field Name Data Type | Description

TotalFailed long Counts the number of failed
transactions that the fax channel has
processed since the log file was last
reset. Thisvalueisrestored from the
status file when status-file processing
is enabled. Failed transactions also are
counted in Total Send or TotalReceive,
as appropriate.

ItemsSent long Counts the number of items (pages)
sent since the Dispatcher was last
restarted.

itemsReceived long Counts the number of items (pages)
received since the Dispatcher was last
restarted.

ConnectSeconds long Counts the number of seconds the
phone line has been off hook since the
on-board software was last restarted.

LastSpeed int Records the speed at which the last
transaction took place. Thisfield may
be useful for locating bad phone lines.

LastError int Not used; reserved for future use.

Creating a Status File

The status file should be used on remote workstations connected by aLAN. The

name of the status file is “GFAXn.$DS,” where the “n” indicates the chassis
number defined in the chassis command and “DS” stands for Dispatcher status.
The status file is created by the STATUST.

Refreshing the Status File
Status information is n@ppended to the status file; it isverwritten. When the

status records are updated in the status file, the record for a particular fax channel
is overwritten with the latest status information for that channel.

258

8. Fax Status Files

The STATUST command parameter specifiesthe interval (in seconds and
milliseconds) between the posting of status records to disk. The range for the
parameter valueis between 0 and 32,767, with 0 being disabling; areasonable
number is 5.

NOTE: The STATUST command isfor an entire chassis, and not just for one fax
channel in the chassis.

Table 40. Status-Table Functions

High-Level Functions* Purpose

gfdReadStatusFile To read one status record and close the status
file.

gfdGetFileNumChannel To get the number of channels and close the
statusfile.

gfdReadStatusMem To read arecord from the status tablein
memory.

gfdGetMemNumChannel To get the number of channels by reading the
status table in memory.
L ow-L evel Functions** Purpose

gfdOpenStatusFile To open the shared status file.
gfdReadStatuskFileHeader To read a header from an opened statusfile.
gfdReadStatuskFileRecord To read arecord from an opened statusfile.

* High-level functions close the status file after processing.

** | ow-level functions do not close the status file after processing.

Monitoring Status with gfxStatus

An important element in the status-table data structure is the variable gfxStatus.
Bitsin thisfield are shown in Figure 6. Bits in the gfixStatus Field. Thefirst four
bits reveal the fax channel shutdown states, which are an extension of the
shutdown status.

259

GDK Version 5.0 Programming Reference Manual

The term “shutdown” describes some options that are set with the
GFXSHUTDOWN command. For example, the shutdown option 0 means that a
fax channel polls the Queue File Pending List for outgoing jobs and answers
incoming calls. GFXSHUTDOWN 2 tells the channel to stop transmitting,
although it still can receive. That is a useful arrangement in a multi-fax channel
chassis in which some fax channels are dedicated to transmitting and others to
receiving. An operator who wished to confirm that a channel is only receiving,
and not sending, would expect bit 1 of gfxStatus to be turned on. Bits 4 to 9 of
gfxStatus are theapabilities flags, which list the receive and transmission options
that have been enabled.

The last six bits of gfxStatus are read-only. By monitoring the gfxStatus bits
within the status table in memory, an application can show when each channel is
receiving, sending, on-line, off-hook, or ringing.

DCBA 0
| Shutdown States
+ Answer shut down
-> I gnore pending requests
-> Busy Line out
---> Reserved for future shutdown val ues
Capabilities Flags
+ ————=a > Fill on
tmmmm————- ? Reject standard node
[S > Turnaround polling enabl ed
Fmmmm - > Al'l ow reception of 2D conpression
+ —-----------> Reserved for future expansion
4o - > Reserved for furure expansion
Pr ot ocol States
b > Recei vi ng
R > Sendi ng
4+ ————m—mme—————————-> n-line
+mmmmme - === O f-hook

———————

F
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
|
|

Figure 6. Bits in the gfxStatus Field

260

8. Fax Status Files

Monitoring Status with cp_state

The diagram in Figure 7 shows the various cp_states of afax channel. “INIT” is

the command used to reset and recognize a fax channel, and “LOAD” is the
command issued during firmware download to the fax channel. Only INIT or
LOAD can be performed on a channel where cp_ state has a value less than
CP_IDLE.

The cp_state of a fax channel is listed in Table 41. These values are defined in
GFDSTATU.H.

Queue record
Successful “LOAD" from Buffer or

"INIT" N / \ / Pending List \

Unsuccessful "INIT" / \ Posted queue
"INIT" record
Fax channel
not respondlng
“INIT Fax Channel

\ not respondmg

Figure 7. CP_ States

261

GDK Version 5.0 Programming Reference Manual

The following table defines the CP_ states.

Table 41. CP_States

State Explanation

CP _DEAD The fax channel has not yet been initialized successfully.

CP_RESET The fax channel has been successfully initialized.

CP_IDLE The on-board software has been successfully loaded, but no queue
record is currently active on the fax channel.

CP_SENDING A queue record from the Pending List is active on the fax channel.

CP _FAILED The fax channel is not longer responding.

GDK System Information API Function Calls

The following APIs provide information about the CP product hardware and
Dispatcher status. The alphabetized list of these functions follows.

262

8. Fax Status Files

Name: int gfdGetFileNumChannel (int chassis)

Inputs: intchassis * Thechassis number.
Outputs: None
Returns: Number of active e The function was successful.

channels

0 * Thestatusfile exists, but no
channels are active.

<0 ¢ Anerror occurred.

Includes: gfdstatu.h

B Description

The gfdGetFileNumChannel() function gets the number of channels from the
statusfile. Thisis a high-level status function will return the number of active
channelsin the chassis. A value less than zero indicates an error. A value of zero
indicates that the status file exists and is valid, but that no fax channels are active.

M Example

#i ncl ude "gf dstatu. h"
nc = gf dGet Fi | eNunChannel (1);

if (nc >=0)
printf ("Found %l channel s\n", nc);
el se

printf ("can't open status file\n");

263

GDK Version 5.0 Programming Reference Manual

Name: int gfdGetMemNumChannel (int chassis)
Inputs: intchassis * Thechassis number.
Outputs: None
Returns: Number of active e Thefunction was successful.
channels
0 * Thestatusfile exists, but no
channels are active.
<0 e Anerror occurred.
Includes: gfdstatu.h

B Description

The gfdGetM emNumChannel () function gets the number of channels from the
status table. Thisis a high-level status function will return the number of active
channelsin the chassis. A value less than zero indicates an error. A value of zero
indicates that the status table exists and is valid, but that no fax channels are

active.

M Example

#i ncl ude "gf dstatu. h"
nc = gf dGet MemN\unChannel (1);

if (nc >=0)

printf ("Found %l channel s\n", nc);

el se

printf ("status table not available\n");

264

8. Fax Status Files

Name: int gfdOpenStatusFile (int chassis, int mode)
Inputs: intchassis * Thechassis number.
int mode ¢ Theaccess mode of thefile,
which is defined in the
include file fentl.h. The
mode passed must be
O _RDONLY.
Outputs: None
Returns: Handletotheopenstatus « Successful.
file
-1 ¢ Anerror occurred.
Includes: gfdstatu.h

B Description

The gfdOpenStatuskile() function prepares a status file for reading by other
functions. This routine creates the name of the status file and attempts to open it.
The path for the status file is obtained from the GFAX environment variable.
Low-level functions such as gfdReadStatusFileHeader and
gfdReadStatuskileRecord, cannot be used unless gfdOpenStatuskile is called first
successfully.

M Example

#i ncl ude "gf dstatu. h"

int chassis = 1; /* Default to one chassis*/

int status_fid,;

status_fid = gf dQpenSt at usFi |l e(chassi s, O RDAOLY);
if (status_fid < 0)

printf ("No status file open\n");

exit (1);
}

265

GDK Version 5.0 Programming Reference Manual

Name: int gfdQueryStatus (int dummy)

Inputs: int dummy e Dummy parameter -
ignored. Any integer value
isOK.

Outputs: None
Returns: O e Dispatcher isrunning.
non-zero * Dispatcher isnot running.
Includes: gfdmsg.h
gfdipc.h

B Description

The gfdQueryStatus() function checksif the Dispatcher isrunning. This function
checks whether or not the Dispatcher is running.

B Example

if (gf dQueryStatus(0))
{
printf ("Gamrali nk service not running\n");

exit (1);
}

266

8. Fax Status Files

Name:
Inputs:

Outputs:

Returns:

Includes:

int gfdReadStatusFile (CPRECORD *rec, int channel,

int chassis)
int channel
int chassis
CPRECORD *rec

GFD_SUCCESS

GFDBAD_STATUS FILE
GFDNO_STATUS FILE

gfdstatu.h
gfdmsg.h
gfdipc.h

The logical channel number.
The chassis number.

The status record returned if
the function completes
successfully.

The status record was
successfully read.

The statusfileis corrupt.
The status file could not be
found.

gfdipc.h requires that the
file gfdmsg.h beincluded
first.

B Description

The gfdReadStatusFile() function reads one record from the statusfile. This
high-level status function reads one record from the status file. The statusfileis
opened, and the record is read by calling gfdReadStatusFileRecord. The status file

is then closed.

267

GDK Version 5.0 Programming Reference Manual

M Example

#i ncl ude "gf dstatu. h"

#i ncl ude "gf dnsg. h"

#i ncl ude "gf di pc. h"

i nt channel, nunthannel, chassis = 1,
CPRECCRD cprec;

for (channel =1; channel <=nunthannel ; ++channel)

if (gf dReadStatusFile (&cprec, channel,
chassis) == GFD_SUGCESS)
printf ("channel %l, status = %921x, nane = %32x\n",
cprec. cp_channel , cprec.cp_state, cprec.cp_nane);

268

8. Fax Status Files

Name:
Inputs:

Outputs:

Returns:

Includes:

int gfdReadStatuskileHeader (int fid,

struct cp_status _header_s header)

int fid

struct cp_status _header_s
header

GFD_SUCCESS

GFDBAD_STATUS FILE
GFDNO_STATUS FILE

ofdstatu.h
gfdmsg.h
gfdipc.h

The file handle returned by
gfdOpenStatuskile.

Pointer to the data structure
maintained in memory that
holds the status table.

The status record was
successfully read.

The statusfile is corrupted.
The status file could not be
found.

gfdipc.h requires that the
file gfdmsg.h be included
first.

B Description

The gfdReadStatusFileHeader () function reads version, size, and date
information from a status file.

Onefield in the status-file header shows the number of fax channels activein the
chassis. Also in the header fileisacp_status header data-structure definition for a
header of astatusfile. Table 42 lists the fieldsin a status-file header. A data
structure for the status table isin GFDSTATU.H, which is the header file for
status functionsincluded in GDK. This structure follows:;

269

GDK Version 5.0 Programming Reference Manual

struct cp_status_header_s {
short cp_status_version; /* version of status file */
short cp_header_si ze; /* size of header (bytes) */
short cp_record_si ze; /* allocated size for each card */
short cp_max_channel ; /* nunber of channels allocated */
tinme_t cp_last_update; /* tine of last update */

b
Table 42. Fields in the Status-File Header

Data Type |Field Name Description

int Cp_status version Version of the statusfile.

int cp_header_size Size of the header in bytes.

int cp_record size Allocated size for each fax channel.

int cp_max_channel Number of fax channels active in the chassis.
time t cp last update Time of last update.

M Example

#i ncl ude "gf dstatu. h"
#i ncl ude "gf dnsg. h"
#i ncl ude "gf di pc. h"
struct cp_status_header s header;
/*Di splay header inforrmation*/
gf dReadSt at usFi | eHeader (status_fid, &header);
printf ("Status file is version %l\n", header.cp_status_version);
printf ("Status file reports %l active channel s\n",
header . cp_nmax_channel) ;
printf ("Status file last updated %\n",
cti me(&header. cp_| ast_update));

270

8. Fax Status Files

Name: int gfdReadStatusFileRecord (int status fid,
CPRECORD *rec, int channel)
Inputs: int status fid « Thefile handle for the status
file (returned by
gfdOpenStatuskile).

int channel e The statusfor the logical-
channel number.
Outputs: CPRECORD *rec e The statusrecord returned if
the function is successful.
Returns: GFD_SUCCESS * Thefunction executed.

GFDBAD_STATUS FILE The statusfileis corrupt.
GFDNO_STATUS FILE e Thestatusfile could not be

found.
Includes: gfdstatu.h
gfdmsg.h
gfdipc.h o gfdipc.h requiresthat the
file gfdmsg.h beincluded
first.

B Description

The gfdReadStatusFileRecor d() function reads a record from the statusfile.
Thisisalow-level statusfunction that reads arecord from the statusfile if the file
already is open.

B Example

#incl ude "gfdstatu. h"
#i ncl ude "gf dnsg. h"
#i ncl ude "gfdipc. h"

CPRECCRD cpr ec;
int status_fid,;
int i;

int status;

271

GDK Version 5.0 Programming Reference Manual

for (i =1, i <= maxchannel; ++i)
{
status = ¢gf dReadSt at usFi | eRecor d
(status_fid, &prec,i);
}

272

8. Fax Status Files

Name: int gfdReadStatusMem (CPRECORD *rec, int channel,

int chassis)
Inputs: int channel * Thelogica channel
number.
int chassis e Thechassis number.
Outputs: CPRECORD *rec e The status record returned
if the function completes
successfully.
Returns: GFD_SUCCESS * Thefunction executed.

GFDBAD_STATUS FILE The status table is corrupt.
GFDNO_STATUS FILE « The status table could not

be found.
Includes: gfdstatu.h
gfdmsg.h
gfdipc.h o gfdipc.h requiresthat the
file gfdmsg.h beincluded
first.

B Description

The gfdReadStatusM em() function reads a record from the status table. This
high-level status function reads one record from the status table. The status tableis
opened, and the record is read by calling gfdReadStatusM emRecord. The status
tableis closed without further function calls.

B Example

#incl ude "gfdstatu. h"

#i ncl ude "gf dnsg. h"

#i ncl ude "gfdipc. h"

int channel, nunthannel, chassis = 1,
CPRECCRD cpr ec;

nurchannel = gf dGet MemNunChannel (chassi s) ;

273

GDK Version 5.0 Programming Reference Manual

for (channel =1; channel <=nunthannel ; ++channel)
if (of dReadSt at usMem (&cprec, channel, chassis) = G-D_SUCCESS)

printf ("channel %, status = %021x, name = 982x\ n",
cprec.cp_channel, cprec.cp_state, cprec.cp_hane);

274

8. Fax Status Files

Name: int giHWDetect (glSystem * gl Sys, glBoardSystem *glBdSys,

int reserve?)
Inputs: glSystem *glISys

glBoardSystem *gIBdSys

int reserve2
Outputs: glSystem *glSys

glBoardSystem *glBdSys

Returns: GL_HWCONFIG_SUCCESS

Pointer to

gl System structure
or NULL if this
information is not
desired.

Pointer to
glBoardSystem
structure or NULL
if thisinformation
is not desired.
Must be O (zero).
Contains channel
information if the
return valueis
GL_HWCONFIG

SUCCESS and the
pointer to

gl System was not
NULL.

Contains CP Fax
board information
if the return value
is
GL_HWCONFIG

SUCCESS and the
pointer to
glBoardSystem
was not NULL.
Successful.

275

GDK Version 5.0 Programming Reference Manual

276

GL_HWDETECT_IN_PROGRESS

GL_SERVICE_RUNNING

GL_SYSTEM_NULL_PTR

GL_SYSTEM_CHANNEL _
OVERLAP

An instance of
glHWDetect is
already running.
Wait until the first
instance

compl etes.

The GDK System
Serviceisrunning.
Stop the service
then run
glHWDetect
again.

Invalid
parameters. The
first and second
parameters cannot
both be NULL.
glHWDetect found
overlapping fax
channelsfor
boardtypes
CP4/SC, CP6/SC,
or CP12/SC.
Check that al
channelsin the
system have
unique I/O
addresses,
reconfigure, and
run glHWDetect

again.

Includes:

GL_HWDRIVER_FAIL

GL_HWDETECT_FAIL

GL_SYSTEM_MALLOCFAILED

gfdboard.h

8. Fax Status Files

The required
devicedrivers
failed to start. Try
starting the GDK
ISA Device Driver
and the GDK PCI
Device Driver
using the Devices
Control Panel
Applet. Cal
Technical Support
for additional
assistance.
Internal failureto
create a system
controlled
resource. Fatal
error, reboot the
system and try
again.

Internal failureto
alocate asystem
controlled
resource. Fatal
error, reboot the
system and try

again.

277

GDK Version 5.0 Programming Reference Manual

B Description

The glHWDetect function provides information about the CP Fax hardware
installed in the system. This function blocks while checking alimited area of 1/0O
space for the presence of CP Fax channels. Upon completion, the GDK System
Service dependency list is updated to depend on the bus types detected in the
system.

If the GDK serviceisnot installed, glHWDetect will not return an error.

The gl System data structure, unchanged from GDK 3.0, provides information
about al working channelsin the system. If thisinformation is not desired, the
first parameter may be NULL.

The glBoardSystem data structure, provides board-level resources and additional

channel attributes. If thisinformation is not desired, the second parameter may be
NULL.

B Example

The following are examples of valid calling conventions:

gl System gl Sys;

gl Boar dSyst em gl Boar d;

int retVal;

retVal = gl HWDetect (&gl Sys, NULL, 0); /1 unchanged

retVal = gl HWDetect (NULL, &gl Board, 0); /1 new usage
= gl Vet ect (&gl Sys, &gl Board, 0); // new usage

ret Val

278

8. Fax Status Files

The gl System and glBoardSystem data structures are defined in the include file
gfdboard.h. More information about these structures follow:

glSystem

This structure contains identification information about the CP Fax Isaand Pci fax
channelsinstalled in the system.

struct _channel {

uni on {
i nt Por t Addr ess; /11SA only
i nt Boar dNunber ; //PA only
}parnd;
uni on {
i nt Physi cal Channel ; /11SA only
int Channel O f set ; //PA only
} par ng;

enum _bust ype BusType;

i nt Boar dType; //type of fax channel
b
typedef struct _channel CHAN

struct system {

CHAN Channel _| O MAX_CHANNELS] ; //length is nunthan +
nunBRI

i nt nunchan;

int nunBR ;
b

typedef struct system gl System

The gl System structure has three fields; numchan, numBRI, and Channel_ID. The
total of numchan and numBRI describe the number of valid elementsin the
Channel_ID array. The Channel_ID array elements contains channel specific
information for each fax channel detected in the system.

Channel_ID elements [0 to numchan-1] describe fax channels; and elements
[numchan to (numchan + numBRI) - 1] describe BRI controller cells.

279

GDK Version 5.0 Programming Reference Manual

NOTE: If numBRI isgreater than zero, there will always be a CPi/200 BRI fax
channel in the Channel _ID structure array.

Each Channel_ID element, CHAN, contains two union fields: parm1 and parm2.
The valid fields within parm1 and parm2 are determined by the value of the
BusType field as shown in the following chart.

BusType Value Valid Parm Fields

g_ISA parml.PortAddress
parm?2.Physical Channel

g_PCI parml1.BoardNumber
parm2.Channel Offset

The CHAN.BoardType member describes the model of the fax channel. This
value is usually the same as the board model.

glBoardSystem

This structure contains detailed identification information about the CP Fax |SA
and PCI fax boards and channelsinstalled in the system.

typedef struct {

unsi gned char Boar dType 4;
unsi gned char C 1
unsi gned char Boar dRevi si on 2;
unsi gned char HasPol | i ngBi t 1;
} Boardinfo_t;
typedef struct {
unsi gned short Count ryCode . 10;
unsi gned short . 6
} Boar dMbdel t;
typedef struct {
unsi gned char MdenType D4
unsi gned char Networkl f D4
} Modeninfo_t;
typedef struct {
unsi gned short M nor © 0 8;

280

unsi gned short Mj or D8
} RonmVersion_t;

typedef struct {
Boardl nfo_t Boar dI nf o;
Modenm nf o_t Modeni nf o;
unsi gned short QCenst anp;
unsi gned char QouSpeed;
unsi gned char Spare;
Boar dMbdel _t Boar d\bdel ;
RomVer si on_t RonVer si on;
char RonmVer si onStri ng[21] ;
unsi gned char RonPersonality;
} Romid_t;

8. Fax Status Files

typedef enum _channel state { gl _NotPresent, gl _Present };

typedef struct _channel ex {
i nt gl Syst enthanl ndex;

uni on {
struct {
i nt Por t Addr ess;
i nt Physi cal Channel ;
} isa;
struct {
i nt Boar dNunber ;
i nt Channel f f set ;
} pci;
} bus;
i nt Boar dType;
Ronmi d_t Ront d;
enum _channel state State;
} Channel _t;
typedef struct _gl Resource {
uni on {
struct {
i nt SHPort Addr ess;
i nt BR Port Address;
i nt BRI Physi cal Channel ;
} isa;
} bus;

} G Resource_t;

Il
I

I
I

281

GDK Version 5.0 Programming Reference Manual

typedef struct _board {
i nt Boar d\bdel ;
i nt Count ryModel ;
Channel _t ChanLi st [MAX_CHANNELS _PER BOARD) ;
i nt NunChanCount ;
i nt BadChanCount ;
(Q_Resource_t Resource;
enum _bust ype BusType;
} Board_t;

typedef struct _boardsystem {
i nt nunBoar d;
Boar d_t Boar dl O MAX_BOARDS] ;
} gl Boar dSyst em

The glBoardSystem structure contains two data members, numBoard and
BoardID. The value of numBoard describes the number of valid elementsin the
BoardID array. Each CP Fax physical hardware entity is represented by a
BoardID element. For example, the CP4/LSI, a4-channel analog board, is
represented by one BoardID element.

Thefieldsin BoardID represent board level information.

Board_t Fields Description

BoardModel Descriptive name of board. Thisvaueis
usually the same as the value for
Channel_t.BoardType, with the exception of
CPD/220.

CountryModel Country code retrieved from ROM that the
board was certified for. If ROM does not
contain thisinformation, thisvaueis zero.

ChanList List of fax channels associated with physical
board.
NumChanCount The number of valid ChanlList elements. It

represents the total number of fax channels
expected for BoardModel, i.e. aCP4/LSl is
always exected to have four fax channels.

282

Board_t Fields
BadChanCount

Resource
BusType

8. Fax Status Files

Description

The number of undetectable fax channels for
BoardModel. The range of thisvalueis
[0..NumChanCount].

Shared resource used by fax channels.

PC Businterface type of BoardModel.
Supported valuesare gl_ISA or gl_PCI.

Thefieldsin Boardl D.Resource represent board level resources, shared by the
associated fax channels specified in the ChanList array.

Resource t Fields
bus.isa.SHPortAddress

bus.isa.BRIPortAddress

bus.isa.BRIPhysical Channel

Description

1/0 address of SC2000 resource, -1 if the
resource does not exist.

1/0 address of BRI controller resource, -1 if
the resource does not exist.

Physical channel of BRI controller resource,
-1if the resource does not exist.

Thefieldsin BoardID.ChanList represent afax channel.

Channel_t fields

gl SystemChanlndex
bus.isa.PortAddress
bus.isa.Physical Channel
bus.pci.BoardNumber

bus.pci.Channel Offset

Description

Zero-based index to glSystem structure.
Valueis-1if the channel is not detected, i.e.
Stateis gl_NotPresent.

For BoardID.BusType equal to gl_ISA, 1/0
address of 1SA fax channel.

For BoardID.BusType equal to gl_ISA,
physical channel of 1SA fax channel.

For BoardID.BusType equal to gl_PClI,
board id of PCI fax channel.

For BoardID.BusType equal to gl_PCI, PCI
channel associated with board id.

283

GDK Version 5.0 Programming Reference Manual

Channel_t fields Description

BoardType Name of fax channel; it may be different
from Boardl D.BoardModel
(i.e. CPD/220).

Romid Raw identification information retrieved from
fax channel’s EPROM.
State Indicates the fax channel’ s physical status. If

the channel was detectable, the State is
gl_Present, if not, the State is gl_NotPresent.

Thefieldsin BoardlD.ChanList.Romld represent the electronic signature of afax
channel.

Romld t fields Description

Boardinfo Name of channel’ s board family and
revision level.

Modeminfo Identifies modem speed (i.e. 9600, 14400,
etc.) and network interface type (i.e. digital
or analog).

OemStamp Vaueisaways zero.

CpuSpeed Speed of on-board processor.

Spare Reserved.

BoardModel Country code that board was certified for.

RomVersion Version of Rom.

RomVersionString Descriptive string containing version of
Rom.

RomPersonality Designates programmability of channel (i.e.

toolkit vs. standard).

Example

#i ncl ude <gf dboard. h>
void main(void)

gl Systemgl Sys = { 0 };
gl Boar dSystem gl BdSys = { 0 };

284

8. Fax Status Files

int board = 0, chan = 0;
int maxchan = O;
int retVal = 0;

retVal = gl \WDet ect (&gl Sys, &gl BdSys, 0);
if (retval == @_HWO\FI G SUCCESS)

{
/1 QGLSYSTEM

printf("Fromgl Systemstructure:\n");
printf("Detected %l fax channels and % BR resources.\n",
gl Sys. nunthan, gl Sys. nunBR);
maxchan = gl Sys. nunthan + gl Sys. nunBR ;
for (chan = 0; chan < maxchan; ++chan)
if (gl_ISA == glSys.Channel _I O chan] . BusType)
{

printf("Found Isa channel at PortAddress 0x%03x
(%) \n", gl Sys. Channel _I O chan] . par mL. Por t Addr ess,

gl Sys. Channel _I O chan] . par n2. Physi cal Channel);

elseif (gl_PA ==
gl Sys. Channel _I O chan] . BusType)

printf("Found Pci channel at Board: %X
Channel : %\ n",

gl Sys. Channel _I O chan] . par mL. Boar dNunber ,
gl Sys. Channel _I O chan] . par n2. Channel Cf f set);
}

el se
printf("UWknown BusType %\ n",
gl Sys. Channel _I O chan] . BusType);
}/1 end gl Sys channel | oop

/1 QBOARDSYSTEM
printf("\nFrom gl BoardSystem structure:\n");
printf("Detected %l boards.\n", gl BdSys.nunBoard);

/1 loop for board information
for (board = 0; board < gl BdSys. nunBoard; ++board)

printf("\nBoard %l - CountryMdel is %\ n",

board + 1,
gl BdSys. Boar dl O boar d] . Count r yModel);

285

GDK Version 5.0 Programming Reference Manual

/1 loop for channel infornation
for (chan = 0; chan <
gl BdSys. Boar dl O boar d] . NumChanCount ; ++chan)

if (gl_ISA == glBdSys. Boardl O boar d] . BusType

printf("Channel at PortAddress 0x%03x
(%) is 9%.\n",
gl BdSys. Boar dl 0 boar d] . ChanLi st [chan] . bus. i sa. Port Addr ess,
gl BdSys. Boar dl O boar d] . ChanLi st [chan] . bus. i sa. Physi cal Channel ,
(gl _Present == gl BdSys. Boar dl 0 boar d] . ChanLi st[chan] . State
? "Present" : "Not Present"));

}

elseif (gl_PA ==
gl BdSys. Boar dl O boar d] . BusType)

{

printf("Channel at Board: % Channel : %l is
%.\n",
gl BdSys. Boar dl 0 boar d] . ChanLi st [chan] . bus. pci . Boar dNunber,
gl BdSys. Boar dl O boar d] . ChanLi st [chan] . bus. pci . Channel O f set
(gl _Present ==
gl BdSys. Boar dl 0 boar d] . ChanLi st[chan] . State
? "Present" : "Not Present"));
}
el se
printf("UWknown BusType %\ n",
gl BdSys. Boar dl O boar d] . BusType);
}/1 end gl BdSys channel | oop
}/1 end gl BdSys board | oop
Y/ end if gl HWDet ect successful
else {
printf("gl HWetect failed, error %\n", retVal);

286

8. Fax Status Files

287

Appendix A

Obtaining Additional Product Information

To obtain additional product information, visit the Dialogic web site at the
following address:

www.dialogic.com

Technical Support
To contact Technical Support, visit thisurl:

http://support.dialogic.com

289

GDK Version 5.0 Programming Reference Manual

290

Appendix B

GFSH Commands

GFSH Utility

The primary function of the GFSH utility isto initialize the SC2000 chip, whichis
the CP Fax hardware interface to the data bus, in PEB or SCbus mode. All of the
commands listed in Table 43 are used to configure GFSH.

Theinformation in Table 43 includes the command names, parameters, and
command descriptions.

Table 43. GFSH Commands

Command Parameters Description

setloc <sh count><baseaddr>...<baseaddr9> | Initialize software
with number and
location of SC2000
chips

init <index> Initialize an SC2000
chip

updparm <parm |D><value> Modify certain
SC2000 parameters

readparm <parm |D><value> Read current state of
certain SC2000
parameters

291

GDK Version 5.0 Programming Reference Manual

Command

Parameters

Description

setbuscfg

<index><bus mode><bus speed>
<clock speed>

where <bus mode> is one of the
following:

LISCH Or HOH
“network” or “1”
“resource” or “2”

where <bus speed> is one of the
following:

“1.544” or “0”
“2.048” or “1”
“4.096” or “2”
“8.192" or “3” (currently invalid)

where <clock speed> is one of the
following:

“1.544” or “0”

“2.048” or “1”

“4.096” or “2”

“8.192" or “3” (currently invalid)
“16.384" or “4” (currently invalid)
“32.768" or “5” (currently invalid)

Set SC2000 bus
configuration
parameters

connect

<index><local bus slot><type>
<ext bus slot>

where <type> is one of the following:

utXn or uon
urxn or uln
ubothn or “2"

Establish bus
timeslot assignmen

292

Appendix B. GFSH Commands

Command Parameters Description
disconnect <index><local bus timeslot><type> Delete bus timeslot
where <type> is one of the following: | @SSignments
LItXH Or HOH
“rx” or “1”
ubothn Or “2"
pebassert <index><local bus timeslot><type> Assert TSX
(required after
connect)
writefpga <index><byte value> Write FPGA
configuration
register bits
exit, quit, g, X Exit this program
help, ? Show usage
debug 0,1 Set debug level
echo “on” | “off” Enable/disable echo
mode
verbose “on” | “off” Enable/disable
verbose mode
save GFAX Saves the

configuration file to
the %GFAX% path

293

GDK Version 5.0 Programming Reference Manual

294

Appendix C

TIFF File Format

GDK maintains facsimile datain a TIFF (Tagged Image File Format) compression
format. These files have a TIFF header of no fixed size that describes the datain
the file, and helps to distinguish facsimile image files from other types of image
files.

GDK uses a subset of the available set of image-description tags recommended in
the Microsoft Version 6.0 TIFF specifications.
NOTE: GDK supports send-only faxing of multi-page TIFF files.

A TIFF file format offers these advantages:
* Facsimiledatais stored in acompressed format.
« Graphics data from other sources can be used, after conversion.

* Filesare compatible between GDK and printers, scanners, and other
programs supporting TIFF.

e TIFFisanindustry standard with acceptance from product developers.

GDK supports the following compression formats:
e TIFFType3
 TIFFType4

TIFF Type 3 is compatible with ITU-T Group 3 T.4 recommendation. Either 1-D
or 2-D (two-dimensional) modified Huffman encoding compression can be used.

Eachimageline of a1-D fileis encoded as a TIFF Type 3 1-D line with EOL
codes after each scan line, and the TIFF file is terminated with six EOLsto
indicate the end of the page. Thefill order can be MSBF (most significant bit
first) or LSBF (least significant bit first).

295

GDK Version 5.0 Programming Reference Manual

The 2-D files also are called “Modified READ” (MR) files. The first image line of
these files is encoded as a TIFF 3 1-D line. A certain number of lines, which is
usually one to three, follow the 1-D line and encode only the differences between
the current line and the previous one. Following the 2-D lines is another 1-D line.
Then, there are more 2-D lines based on this new reference line. A flag that
indicates whether a line is complete in itself (a 1-D encoded line) or is based on
the preceding line (a 2-D encoded line) is embedded in the end of line code.

This encoding scheme results in approximately a 15 to 20 percent reduction in file
size over 1-D encoding in most cases. This can vary greatly, depending on the
type of image. A failure in one line affects only a small portion of the document.

TIFF Type 4 files also are called “Modified Modified READ” (MMR) files and
require Error Correction Mode (ECM). This type is compatible with ITU Group 4
T.6 recommendation. An imaginary white line precedes the first line. Every line in
the file is based on the differences between the current line and the line that
preceded it; the first line presumes a blank line preceded it. This byte-oriented
compression scheme results in approximately a 20 to 40 percent reduction in file
size over one-dimensional encoding in most cases. A scan line error can corrupt
an entire image from the point of the error forward.

296

Appendix D

Information for International Users

This appendix includes special information for Dialogic CP Fax customers calling

from outside the United States or |ocated outside North America

will not be available.

In countries that do not have approval for the latest software, all features

Full ASCII Character Set

To use the full character set during file conversion on the boards, add the
following command to each channel in the GDK configuration:

GFXEXTEND 2

Country Codes

The international access codes for a number of countries are in the following

table. These codes can also serve as values for the COUNTRY parameter in the

Code

registry.

Country Code
Australia 61
Austria 43
Bahrain 973
Belgium 32

47
48
351
65

297

GDK Version 5.0 Programming Reference Manual

Country
Canada

Chile

Czech Republic
Denmark
Finland

France
Germany

Hong Kong
Hungary

Code

56
42
45

358
33
49

852
36

Country
Japan

Jordan
Korea
Luxembourg
Malaysia
Mexico
Netherlands
New Zealand

Code
81

962
82
352
60
52
31

Country
South Africa

Spain

Sweden
Switzerland
Thailand

Turkey

United Kingdom
U.SA.

Code
27

46
4
66
%

298

Index

Index

A

AcceptCallState, 81
ActiveHandlefield, 257
ActiveQueueld field, 257
Answer and Send operation, 101

Answer and Send/Receive operation,

101
Answer Default records, 106
Answer Immediately operation, 159
Answer operation, 108
Answer records, 106
Answer-and-Receive operation, 27
answer-tone carrier detect, 105

AutoReceive, 73

B

batch mode, 129

batch programming model, 132
BC xfer_cap, 77
BC_xfer_mode, 78

BC xfer_rate, 78

Bin file, 101

Binary File Transfer (BFT), 38
buffering queue records, 100
BUFFERS, 41

BUFFERS command, 13
BUSY records, 13, 100, 149

byte-oriented compression, 296

C

C data structure, 101
CallDisconnected, 86
call-progress error codes, 28
capabilitiesfield, 256
capabilities flags, 260
cd_timeout field, 102, 105

cd_timeout field:answer-tone carrier
detect, 105

CHANNELID, 41
ChannelsPerTrunk, 74

character array: GFQSINGLE_DOC,
119

character set, 297

CHASSIS, 41

CheckinBearer, 83

checking Queue File, 99
ChecklInSetupFrame, 83
commands.L OAD, 261
communication program, 108
communication settings.default, 101
completed_retriesfield, 102, 105

completed_retriesfield:retries,
completed, 105

completed_timefield, 102, 105

299

GDK Version 5.0 Programming Reference Manual

completed_time field:record completed,

105

completed_time field:record posted, 105

compression, 5

compression formats, 295

compression formats:byte oriented, 296

compression formats.GammalL.ink, 15
compression formats.Group 3:1-D, 15
compression formats.Group 3:2-D, 15
compression formats.Group 4, 296

compression formats:Modified
Modified READ (MMR), 296

compression formats:Modified READ
(MR), 296

compression formats. TIFF Type 3, 295
compression formats. TIFF Type 4, 296

Computer-Based Faxing (CBF), 6

Computer-Based Faxing
(CBF):advantages, 6

configuration and support
files: GFAX.$QU, 95, 97

configuration file, 113
configuration file:gfax.cfg, 106
ConnectAttemptFail, 87
ConnectSeconds field, 258

Consultative Committee for
International Telephone and
Telegraph (CCITT), 3

Control Done List, 99
control field, 102, 106
Control List, 97, 99

300

CONTROLT, 41

Conversion List, 97
COUNTRY, 42

country code, 114

country codes, 28

COUNTRY command, 297
country field, 256

cover pagefile, 127
cp_channdl field, 256

cp_fid field, 256

cp_list field, 256
cp_namefield, 256
cp_passfield, 256
cp_statefield, 256, 261
cp_state field:GFDSTATU.H, 261
CP_states, 261, 262
CP_states:CP_DEAD, 262
CP_states:CP_FAILED, 262
CP_states:CP_IDLE, 261, 262
CP_states:CP_RESET, 262
CP_states:CP_SENDING, 262
CSID, 42, 106, 118, 123, 168
csid field, 102, 106

csid field:Customer Subscriber
Identification (CSID), 106, 168

csid field:handshaking, T.30-protocol,
106

CSID:handshaking, 106
CSID:PTT requirements, 106

curr field, 102, 107
curr field:linked lists, 107
curr field:queue record pointers, 107

Customer Subscriber Identification
(CSID), 106, 118, 123

Customer Subscriber Identification
(CSID):handshaking, 106

Customer Subscriber Identification
(CSID):PTT requirements, 106

D

datafile, sending, 117

data-type definitions, 101

date and time stamp, 117, 151, 156
DEBUG, 43

Debug Command Examples, 34
debug mask:using, 29

Debug Parameter Definitions, 89
Debug Parameters, 89

Debug Setting Dependencies, 35
DebugToSRAM, 92

default communication settings, 101
destination_number_plan, 79
destination_number_type, 79
destination_sub_phone_number, 81
destination_subnumber_type, 80
Developing with PEB, 227

Dial and Receive operation, 159
Dial and Send operation, 107, 159
DID (direct inward dialing), 5, 6, 127

Index

Disconnect (DCN), 5

Dispatcher, 13, 129, 255, 258
Dispatcher:GFDCP.EXE program, 97
Dispatcher:Pending List, 13

DTMF (dual-tone multifrequency), 5, 6,
127

duration field, 102, 107

duration field:Dial and Send operation,
107

duration field:phone-connect time, 107

E

Enabling Debug, 29

Enabling Transparent PRI Debug, 34
encoding schemes, 5

End of Message (EOM), 5

End Of Procedure (EOP), 5
environment variables, 154

error codes/status messages, 101
event status, 164

events:Armed - Requires Response
method, 162

events:No Response Required method,
162

F
fax applications, 8
fax broadcasting, 159
fax call phases, 4

fax call phases:establishing the call
(Phase A), 4, 130

301

GDK Version 5.0 Programming Reference Manual

fax call phases:in-message procedure
and message transmission
(Phase C), 4, 130

fax call phases:post-message procedure
(Phase D), 5, 131

fax call phases:pre-message procedure
(Phase B), 4, 130

fax call phases:releasing the call (Phase
E), 5, 131

fax channel:ready, 100
fax communication:batch mode, 129

fax communication:interactive mode,
129

fax filename, 153

fax session:interactive, 163

fax transaction programming, 101
fax transmission status, 100
FaxDistribution, 74
FaxNotReady, 88

filetransfer, 108, 117

filename format, 108, 109
filenames, 19
filenames:multiple pages, receive 20
filenames:multiple pages, send, 20
file-naming conventions, 19
fineresolution, 5

FIRMWARE, 43

fn_cover field, 102, 107
fn_received field, 102, 108, 119
fn_received field:file transfer, 108

302

fn_received field:filename format, 108

fn_received field:received fax filename
108

fn_received field:received fax
filename:changing, 108

fn_send field, 102, 109, 125
fn_send field:sent filename, 109
FreeList, 96, 99

functions:high-level:GFD library, 259,
263, 264, 267

functions:low-level:GFD library, 259,
265, 269, 271, 273

G

GammalLink compression formats 15
GammalLink programming interface 9
GammalLink subsystem, 129
GammalLink system architecture 9
GFAX environment variable, 95, 97
GFAX.$QU file, 95, 97

GFAX1.$DS (statusfile), 258
GFCCONTROL 36, 43
GFCCONTROL 37, 44

GFD API
functions.gfdGetFileNumCha
nnel, 198, 201, 202

GFD
library:functions.gfdGetFileNu
mChannel, 259

GFD
library:functions.gfdGetMemNu
mChannel, 259

GFD
library:functions.gfdOpenStatus
File, 259

GFD
library:functions.gfdReadStatus
File, 259

GFD
library:functions.gfdReadStatus
FileHeader, 259

GFD
library:functions.gfdReadStatus
FileRecord, 259

GFD
library:functions.gfdReadStatus
Mem, 255, 259

GFD library:high-level functions, 259,
263, 264, 267

GFD library:low-level functions, 259,
265, 269, 271, 273

GFDCP.EXE (Dispatcher program), 97
GFDSTATU.H, 261, 269

GFQ library:functions.gfqClearRec, 102
GFQ library:functions.gfqClearReq, 114
GFQ library:functions.gfgFindFirst, 97
GFQ library:functions:gfgFindNext, 97

GFQ
library:functions.gfqGetPath: sy
mbolic constants, 141

GFQ library:functions.gfglnsertOne,
146

GFQ library:functions.gfglnsertOne:list
names, 143

GFQ library:functions.gfglnsertPlist:list
names, 147

Index

GFQ
library:functions.gfqSearch:envi
ronment variables, 154

GFQ
library:functions.gfgSearch:sym

bolic constants, 154

GFQ library:functions.gfqSubmit, 127,
154

GFQ library:functions.gfgSubmitPlist,
159

GFQ library:functions:GRT_EVENT,
167

GFQ
library:functions.GRT_INFO_D
ATA, 168

GFQ
library:functions.GRT_RESPO
NSE, 168

GFQ library:functions:grtinit, 172

GFQ
library:functions.grtProcessCall
TermEvent, 175

GFQ
library:functions.grtProcessDial
Event, 176

GFQ
library:functions.grtProcessinfo
Event, 178

GFQ
library:functions.grtProcessRec
vDISEvent, 182

GFQ library:functions.grtRespond, 184

GFQ
library:functions.grtRespondCo
ntinue, 186

303

GDK Version 5.0 Programming Reference Manual

GFQ
library:functions.grtRespondEn
dcCall, 188

GFQ.H (Queue File header file):data
types, 101

GFQ.H (Queue File header
file):GFOBYTE, 101

GFQ.H (Queue File header
file):GFQCSID_SIZE, 101

GFQ.H (Queue File header
file): GFQFILENAME_SIZE,
101

GFQ.H (Queue File header
file):GFQINT, 101

GFQ.H (Queue File header
file):GFQLONG, 101

GFQ.H (Queue File header
file): GFQOFFSET, 101

GFQ.H (Queue File header
file):GFQTIME, 101

GFQ.H (Queue File header
file):GFQUSER_FIELD_SIZE,
102

GFQANSWER_IMMEDIATE, 115
GFQANSWER_RECEIVE, 115
GFQANSWER_SEND, 115
GFQANSWER_SEND_RECEIVE, 115
GFQBYTE, 101

GFQCONV_LIST, 112
GFQCSID_SIZE, 101, 110, 116, 118
GFQCTRL_LIST, 112
GFQDIAL_RECEIVE, 115
GFQDIAL_SEND, 115

304

GFQDIAL_SEND_RECEIVE, 115
GFQFILENAME_SIZE, 101, 107, 109
GFQFULL_RETRY, 123

GFQINT, 101

GFQLIST_OF DOC, 125
GFQLIST_OF _DOCS, 108, 109, 119
GFQLONG, 101

GFQMAX_RATE, 118
GFQOFFSET, 101

GFQPATH.H file, 154
GFQPEND_LIST, 112
GFQPOST_RECORD, 121
GFQRECORD_BUSY, 121
GFQRECORD_ON_HOST, 121
GFQRECORD_ROUTED, 121
GFQRECORD_VIEWED, 121
GFQRECV_LIST, 112
GFQRESET.EXE program, 97, 150

GFQRESET.EXE program:parameters,
98

GFQRESUBMIT_ON, 121
GFQSENT_LIST, 112
GFQSINGLE_DOC, 108, 109, 119, 125
GFQT30_PROTOCOL, 117
GFQTEMPLATE_RECORD, 121
GFQTIME, 101
GFQUSE_COVERSHEET, 107, 127
GFQUSE_HEADER, 110, 127

GFQUSE_NSF, 127
GFQUSE_OVERLAY_HEADER, 127

GFQUSE_OVERLAY_HEADER OR,
127

GFQUSER FIELD_SIZE, 102, 113,
114, 119, 128

GFSH.BAS, 238
GFSH.CMD, 228, 238
GFSH.EXE, 228, 238
GFSH.SAV, 228, 238
GFTSASGN.EXE, 238
GFTSREQ.DAT, 238
GFXACTION, 223
GFXBOTTOMMARGIN, 44
GFXCARRYON, 45
GFXCHARSET, 45

gfxDebug field, 256

GFXDID, 46

GFXDIGITS, 47
GFXDTMFTIMEOUT, 49
GFXDTMFTONE, 50
GFXECM, 51

GFXENABLE, 223
GFXEXTEND, 52
GFXFAXCONTROL 1020, 55
GFXFAXCONTROL 1021, 55
GFXFAXCONTROL 28, 52
GFXFAXCONTROL 29, 52
GFXFAXCONTROL 71, 53

Index

GFXFAXCONTROL 72,53
GFXFAXCONTROL 73, 54
GFXFAXCONTROL 74, 54
GFXFINE, 56

GFXFORM, 56
GFXHEADER, 57
GFXLEFTMARGIN, 59
GFXPAGELENGTH, 59
GFXRECM, 59
GFXRECVPATH, 60
GFXRECVPATH command, 20, 108
GFXREJBURST, 60
GFXREJCOUNT, 61
GFXREJPERCENT, 61
GFXRIGHTMARGIN, 61
GFXRLENGTH, 62
GFXRT6, 63
GFXRTNHANDLE, 223
GFXRTNRETRAIN, 62
GFXRTPRETRAIN, 63
GFXRTRHANDLE, 223
GFXRTTIMEOUT, 223
GFXRTWOD, 64
GFXRWIDTH, 64
GFXSCANTIME, 65
GFXSHUTDOWN, 66
GFXSHUTDOWN command, 260
GFXSPEAKER, 67

305

GDK Version 5.0 Programming Reference Manual

GFXST6, 67

gfxState field, 256

gfxStatus field, 256, 259, 260
gfxStatus field:capabilities flags, 260
GFXSTWOD, 68
GFXTOPMARGIN, 68

GFXWAIT, 68

Group 1 standard, 3

Group 2 standard:standards:Group 2, 3
Group 3 standard, 3

Group 3T.4 compression:2-D, 15
Group 3 T.4 compression:1-D, 15
Group 4 T.6 compression, 15

GRT applications:initialization, 164

GRT applications:polling for an event,
164

GRT applications:sample, 163
GRT applications:termination, 165

H

handshaking, 106, 111, 123, 124
handshaking: T.30-protocol, 106, 114
header field, 103, 110

header field:default format, 110
header field:header text, 110
headers. TIFF Type 3, 295

High-Level Data-Link Control (HDLC),

4,129

high-level functions:GFD library, 259,
263, 264, 267

306

history of fax, 3, 227, 237

I

image file, sending, 117

INIT, 69

INIT command:commands:INIT, 261
installation:system requirements, 10
interactive fax session, 163
interactive mode, 129

interactive programming model, 161

international information:ASCII
conversions, 297

international information:character set,
297

International Telecommunications
Union (ITU), 7

ISDN, 27, 72, 74

ISDN frame, 33

ISDN Parameter Definitions, 77

ISDN Parameters, 75

ISDN trace, 94

ISDN tracing, 93

ISDN trunk, 34

ISDNDistribution, 72, 75
items_received field, 103, 110
items_received field:filesreceived, 110
items_received field:pages received, 110
items_sent field, 103, 111

items_sent field:files sent, 111

items_sent field:pages send, 111

itemsReceived field, 258

ItemsSent field, 258

ITU Group 4 T.6 recommendation, 296
ITU requirements, 114

ITU requirements:.country code, 114
ITU requirements:provider code, 114

ITU-T Group 3 T.4 recommendation,
295

L

LastError field, 258
LastFileName field, 256
LastSpeed field, 258

LastUserld field, 257

Layerl protocol, 77

line monitoring, 4
line_noisefield, 103, 111
line_noise field:handshaking, 111

line_noise field:transmission failure,
111

linked lists, 95, 107, 117

linked lists:Control Done List, 97
linked lists:Control List, 97
linked lists:Conversion List, 97
linked lists:Free List, 96

linked lists:Pending List, 96, 97, 100,
105, 120, 156, 159

linked lists:Received List, 96
linked lists:Sent List, 97, 105
list_typefield, 103, 112

Index

list_typefield:linked list type, 112
LOAD command, 261
LOADFONT, 69

LogFile, 30, 91

LogFileMask, 30, 91

low-level functions:GFD library, 259,
265, 269, 271, 273

LSBF (least significant hit first), 295

M
MakeCallFail, 85
message _speed field, 103, 112

message_speed field:transmission rate,
112

Microsoft Version 6.0 TIFF
specifications, 295

modem _id field, 103, 113

modem _id field:multiple-fax channel
chassis, 113

MODEMCTRL 1024, 69
MODEMCTRL 2054, 69
MODEMCTRL 2066, 70

Modified Modified READ (MMR)
compression format, 296

Modified READ (MR) compression
format, 296

modulation rate, 5
MSBF (most significant bit first), 295
multiplefiles, 108

multiple-fax channel chassis, 113

307

GDK Version 5.0 Programming Reference Manual

N

Network Interfaces, 227
next field, 103, 113

next field:linked list, 113
next field:pointer, 113
NoDialogicFree, 86

NoFaxResource, 87

non-standard facilities (NSF) field, 114,

119, 127, 168
NoPhonelnQrec, 86
Normal Cause, 88
notify field, 103, 114
notify field:unused field, 114
NSF (non-standard facilities) field, 119

NSF (non-standard facilities) field, 114,

127, 168
NSF/NSS/NSC frame, 114
nsf_field field, 103, 114
nsf_field field:handshaking, 114

nsf_field field:non-standard facilities
(NSF) field, 114

nsf_field field:provider code, 114
nsf_length field, 103, 114

nsf_length field:non-standard facilities
(NSF) field, 114

NULL pointer, 117
number_callsfield, 103, 115
number_callsfield:retries, 115
NumberOfTrunks, 74

308

NUMCHAN, 70
numFailed field, 257
numOpenFilesfield, 256
numReceivefield, 257
numSend field, 257

O

Obtaining Additional Product
Information, 289

OfferedOnMakeCall, 85
on-board software, 95
operation field, 103, 115

operation field:queue record processing,
115

originate_number_plan, 79
originate_number_type, 78
origination_phone_number, 80
origination_subnumber_type, 80

origination_subphone _number, 81

P
PCM Expansion Bus (PEB), 129
PEB APIs.gl_pebenter(), 229
PEB APIs.gl_pebexit(), 229
PEB APIs.gl_route(), 229

PEB APIs.gl_routerxtx(), 229
PEB:developing, 227

Pending List, 13, 96, 97, 100, 105, 120,
156, 159

phone list, 159
phone_no field, 103, 116

phone_no field:sent fax telephone
number, 116

phone-connect time, 107

pipe handle: GFXENABLE, 223
pointers, 107, 117

polling operations, 122

Post Telephone and Telegraph (PTT), 7
preallocating queue records, 98
preprocessor directives, 101

prev field, 103, 117

prev field:linked lists, 117

prev field:queue record pointers, 117
PRI_Overlap Digits, 82
PRI_Overlap T1, 82
PRI_Overlap T2, 82
PriLayerEnable, 73

priority, 117, 151, 156

priority_level field, 103, 117
priority_level field:record sorting, 117
PRITRACE, 34

ProgramFile field, 256

Programming Models, 129
ProgramOptions field, 256

protocol field, 103, 117

protocol field:sending datafile, 117
protocol field:sending image file, 117
provider code, 114

provider code:GammalL.ink provider
code, 114

Index

PTT requirements, 106, 121, 122

Public Switched Telephone Network
(PSTN), 129

purging Queue File records, 99

Q

QueueFile, 15

Queue File Lists, 96

Queue File Lists:Control Done List, 96
Queue File Lists:Control List, 96
Queue File Lists:Conversion List, 96
Queue File Lists:Free List, 96
Queue File Lists:Pending List, 96
Queue File Lists:Received List, 96
Queue File Lists:Sent List, 96
Queue File:checking, 99

Queue File:Control Done List, 99
Queue File:Control List, 99

Queue FileFree List, 99

Queue File GFAX.$QU file, 95, 97
Queue File:handling, 97

Queue File:header, 150

Queue File:pointers, 97

Queue File:preallocating records, 98
Queue File:purging records, 99
Queue Filerrepairing, 99

Queue Manager, 123

queue record fields, 163

queue record fields:cd_timeout field,
105, 134

309

GDK Version 5.0 Programming Reference Manual

queue record fields:.cd_timeout
field:answer-tone carrier detect,
105

queue record fields:completed _retries
field, 105

gueue record fields:completed _retries
field:completed retries, 105

gueue record fields:completed_time
field, 105

gueue record fields:completed_time
field:record completed, 105

gueue record fields:completed _time
field:record posted, 105

queue record fields:control field, 106
gueue record fields:csid field, 106

queue record fields:csid field: Customer
Subscriber Identification
(CSID), 106

queue record fields:.csid field:PTT
requirements, 106

gueue record fields:csid field: T.30-
protocol handshaking, 106

queue record fields:curr field, 107

queue record fields:curr field:linked
lists, 107

queue record fields:curr field:queue
record pointers, 107

gueue record fields:default values, 134

queue record fields:duration field, 107,
156

gueue record fields:duration field:Dial
and Send operation, 107

queue record fields:duration
field:phone-connect time, 107

310

queue record fields:fn_cover field, 107

queue record fields:fn_received field,
108

gueue record fields:fn_received
field:file transfer, 108

gueue record fields:fn_received
field:received fax filename 108

gueue record fields:fn_send field, 109

queue record fields:fn_send field:sent
filename, 109

gueue record fields:header field, 110

queue record fields:header field:default
format, 110

queue record fields:header field:header
text, 110

gueue record fieldsitems_received field,
110

gueue record fields.items _received
field:files received, 110

gueue record fields.items _received
field:pages received, 110

gueue record fields:items_sent field,
111

gueue record fields.items_sent field:files
sent, 111

queue record fields:items_sent
field:pages send, 111

gueue record fields:line_noisefield, 111

queue record fields:line_noise
field:handshaking, 111

gueue record fields:line_noise
field:transmission failure, 111

queue record fields:list_typefield, 112

queue record fields:list_type field:linked
list type, 112

gueue record fields:message _speed
field, 112

gueue record fields:message _speed
field:transmission rate, 112

gueue record fields:modem_id field,
113

queue record fields:modem_id
field:multiple-fax channel
chassis, 113

gueue record fields:next field, 113

queue record fields:next field:linked list,
113

gueue record fields:next field:pointer,
113

queue record fields:notify field, 114,
134

gueue record fields:notify field:unused
field, 114

queue record fields:nsf_field field, 114

queue record fields:nsf_field
field:handshaking, 114

queue record fields:nsf_field field:non-
standard facilities (NSF) field,
114

gueue record fields:nsf_field
field:provider code, 114

queue record fields:nsf_length field, 114

queue record fields:nsf_length
field:non-standard facilities
(NSF) field, 114

gueue record fields:number_callsfield,
115, 134

Index

queue record fields:number_calls
field:retries, 115

gueue record fields:operation field, 115

gueue record fields:operation
field:queue record processing,
115

gueue record fields:phone_no field, 116

gueue record fields:phone_no field:sent
fax telephone number, 116

queue record fields:prev field, 117

queue record fields:prev field:linked
lists, 117

gueue record fields:prev field:queue
record pointers, 117

queue record fields:priority_level field,
117

gueue record fields:priority_level
field:record sorting, 117

queue record fields:protocol field, 117,
134

gueue record fields:protocol
field:sending datafile, 117

gueue record fields:protocol
field:sending image file, 117

gueue record fields:rate field, 118, 134

queue record fields:rate
field:transmission rate, 118

queue record fields:received_csid field,
118

gueue record fields:received_csid
field:Customer Subscriber
Identification (CSID), 118

queue record fields:received filetype
field, 119

311

GDK Version 5.0 Programming Reference Manual

queue record fields:received filetype
field:received fax filename 119

gueue record fields:received_nsf field,
119

gueue record fields:received nsf
field:non-standard facilities
(NSF) field, 119

gueue record fields:received nsf
field:sending facsimile machine,
119

queue record fields:received_nsf_length
field, 119

gueue record fields:received_nsf_length
field:non-standard facilities
(NSF) field, 119

gueue record fields:record_control field,
120, 156

gueue record fields:record_control
field:queue record management,
120

queue record fields:retry _counter field,
121,134

gueue record fields:retry _counter
field:call-processing
submissions, 121

gueue record fields:retry _counter
field:PTT requirements, 121

gueue record fields:retry_delay field,
122,134

queue record fields:retry _delay
field:elapsed retry time, 122

queue record fields:retry _delay
field:polling operations, 122

queue record fields:retry_end_time
field, 122

312

gueue record fields:retry_strategy field,
123,134

gueue record fields:retry_strategy
field:transmission failure, 123

queue record fields:security field, 123

gueue record fields:security
field:Customer Subscriber
Identification (CSID), 123

queue record fields:signal_quality field,
123

gueue record fields:signal_quality
field:handshaking, 123, 124

queue record fields:signal_quality
field:transmission failure, 123

gueue record fields:signal_strength
field, 124

gueue record fields:signal_strength
field:transmission failure, 124

gueue record fields:source_typefield,
125,134

gueue record fields:status field, 125

gueue record fields:status
field:transaction success or
failure, 125

gueue record fields:submission_retries
field, 126, 156

gueue record fields:submission_retries
field:retries, manipulation, 126

gueue record fields:submission_time
field, 156

gueue record fields:submission_time
field:queue record submission,
126

gueue record fields:summary, 102

queue record fields:time field, 126, 134

queue record fields:time field:record
processing, 126

gueue record fields:transmit_control
field, 127

gueue record fields:transmit_control
field:cover pagefile, 127

gueue record fields:transmit_control
field:non-standard facilities
(NSF) field, 127

gueue record fields:transmit_control
field:Send operation, 127

queue record fields:user_id field, 127

queue record fields;user_id field:DID
(direct inward dialing), 127

queue record fields:user_id field:DTMF
(dual-tone multifrequency), 127

queue record fields:user_id field:record
submission, 127

queue record pointers, 117
gueue record programming, 101
gueue records, 13, 95, 101, 132
gueue records:buffering, 100
gueue records:BUSY, 100
gueue records. data types, 101
gueue records.date and time stamp, 156
gueue records.management, 120
gueue records:priority, 151, 156
gueue records:processing, 99
gueue records.queuing, 99
QUEUET, 70

Index

QUEUET command, 13
QUEUET parameter:timer, 13, 100

R

ratefield, 103, 118

rate field:transmission rate, 118

real time, 255

received fax filename, 108

received fax filename:changing, 108
Received List, 96

received_csid field, 103, 118

received_csid field: Customer Subscriber
Identification (CSID), 118

received filetypefield, 103, 108, 119

received filetype field:received fax
filename, 119

received_nsf field, 103, 119

received nsf field:non-standard
facilities (NSF), 119

received nsf field:sending facsimile
machine, 119

received_nsf_length field, 103, 119

received_nsf_length field:non-standard
facilities (NSF), 119

record status, 100
record_control field, 103, 120

record_control field:queue record
management, 120

registry:BUFFERS command, 13
registry: COUNTRY command, 297
registry:GFXRECVPATH command, 20

313

GDK Version 5.0 Programming Reference Manual

registry:QUEUET command, 13
remote procedure call (RPC), 129
repairing Queue File, 99
ReservedByDialogic, 85
resolution, 5

resolution:fine, 5
resolution:standard, 5

Resource Modules, 227

retries, 115, 116, 121, 126
retries.completed, 105
retries:manipulation, 126
retry_counter field, 103, 105, 121, 122
retry_counter field:-1 option, 121

retry_counter field:call-processing
submissions, 121

retry_delay field, 103, 122

retry_delay field:elapsed retry time 122
retry_end timefield, 103, 122
retry_end timefield:-1 option, 122

retry_end_time field:polling operations,
122

retry_strategy field, 103, 123

retry_strategy field:transmission failure,
123

routing, 5

S

Sample GRT Applications, 163
SChus APIs.gl_getctinfo, 238
SChus APIs.gl_getxmitslot, 238

314

SChus APIs.gl_listen, 238

SChus APIs.gl_scenter, 238

SChus APIs.gl_scexit, 238

SChus APIs.gl_unlisten, 238
SChus.compliancy, 237

security field, 104, 123

security field:answering CSID, 123

security field: Customer Subscriber
Identification (CSID), 123

Send operation, 127

sending a fax:gfvStartFacsimile, GFV
library, 154

sent fax filename, 108

sent filename, 109

Sent List, 97, 105

shutdown states, 259

shutdown status, 259

Signa Computing Bus (SCBus), 129
signal_quality field, 104, 123

signa_quality field:handshaking, 123,
124

signa_quality field:transmission failure,
123

signa_strength field, 104, 124

signal_strength field:transmission
failure, 124

source_typefield, 104, 109, 125
source_typefield:fn_send filename, 125
SRAMMask, 30, 35, 90

standard features, 9

standard resolution, 5
standards, 7
standards.EIA Standard, 3
standards.Group 1, 3
standards.Group 3, 3
status codes, 97

status field, 104, 125

status field:transaction success or
failure, 125

status files, 202, 263, 265, 267
status files (GFAX1.$DS):creating, 258

status files (GFAX1.$DS):refreshing,
258

status record fields:ActiveHandle, 257
status record fields:ActiveQueuel d, 257
status record fields:capabilities, 256

status record fields:ConnectSeconds,
258

status record fields:country, 256
status record fields:cp_channel, 256
status record fields:cp_fid, 256

status record fields:cp_list, 256
status record fields:cp_name, 256
status record fields:.cp_pass, 256
status record fields:.cp_state, 256, 261

status record
fields.cp_state: GFDSTATU.H,
261

status record fields:gfxDebug, 256
status record fields:.gfxState, 256

Index

status record fields:gfxStatus, 256, 259,
260

status record fields.itemsReceived, 258
status record fields:ItemsSent, 258
status record fields:LastError, 258
status record fields:LastFileName, 256
status record fields:L astSpeed, 258
status record fields:LastUserld, 257
status record fields:numFailed, 257
status record fields:numOpenFiles, 256
status record fields:numReceive, 257
status record fields:numSend, 257
status record fields:ProgramFile, 256

status record fields:ProgramOptions,
256

status record fields: Total Failed, 258
status record fields: Total Receive, 257
status record fields: Total Send, 257
status records, 256

status tables, 203, 255, 260, 264, 273
status tables:data structure, 259, 269

status
tables:functions.gfdGetFileNum
Channel, 259

status
tables:functions.gfdGetMemNu
mChannel, 259

status
tables:functions.gfdOpenStatus
File, 259

315

GDK Version 5.0 Programming Reference Manual

status
tables:functions.gfdReadStatusF
ile, 259

status
tables:functions.gfdReadStatusF
ileHeader, 259

status
tables:functions.gfdReadStatusF
ileRecord, 259

status
tables:functions.gfdReadStatus
Mem, 259

status-file header, 269

status-file header:cp_header_sizefield,
270

status-file header:cp_last_update field,
270

status-file header:cp_max_channdl field,
270

status-file header:cp_record_size field,
270

status-file header:cp_status version
field, 270

STATUST, 70
subaddress, 5, 6, 127, 128
submission_retriesfield, 104, 105, 126

submission_retriesfield:retries,
manipulation, 126

submission_time field, 104

submission_time field:queue record
submission, 126

Switch Handler Libraries, 228
SYSOP, 127
system requirements, 10

316

T
T.30 protocol handshaking, 130
T.30 subaddress, 5, 6

T.30-protocol handshaking, 106, 114
T.4 compression, 15

T.6 compression, 15

Table 10. ISDN Parameters, 76
Table 12. Debug Parameters, 89

Table 3. Mask Vauesfor DEBUG
Parameter 1, 31

Table 4. Mask Valuesfor DEBUG
Parameter 2, 32

Table 5. Mask Values for SRAMMask
and LogFileMask, 32

Telecommunications Standardization
Sector (TSS), 7

TIFF (Tagged Image File Format), 295

TIFF (Tagged Image File
Format):advantages, 295

TIFF (Tagged Image File Format): Type
3 compression format, 295

TIFF (Tagged Image File Format): Type
4 compression format, 296

TIFF Type 3 header, 295

Time Division Multiplex (TDM), 227
timefield, 104, 126

time field:record processing, 126
Timeslot, 227

Timeslot assignment, 228, 237, 238
TotalFailed field, 258

TotalReceivefield, 257

TotalSend field, 257

TraceFileName, 94
TraceTrunkNumber, 93

transmission failure, 111, 123, 124, 126
transmission rate, 112, 118
transmit_control field, 104, 127

transmit_control field:cover pagefile,
127

transmit_control field:non-standard
facilities (NSF) field, 127

transmit_control field:Send operation,
127

Transparent PRI Support, 27, 72, 73

U
UPDATET, 71

Index

UseGFAX$DL, 92
user_id field, 104, 127

user_id field:DID (direct inward
dialing), 127

user_id field:DTMF (dual-tone
multifrequency), 127

user_id field:record submission, 127
UseSRAM, 90

using: Dispatcher debug mask, 29
utility programs.GFQRESET.EXE, 97

utility programs.GFQRESET.EXE:
parameters, 98

w

WrongBearer, 88
WrongCRNAIlocated, 87

317

GDK Version 5.0 Programming Reference Manual

318

