
Dialogic® D/42 Series
Software API Library

Reference

Copyright © 2000-2008 Dialogic Corporation

05-1158-003

Copyright and Legal Notice
Copyright © 2000-2008 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole
or in part without permission in writing from Dialogic Corporation at the address provided below.
All contents of this document are furnished for informational use only and are subject to change without notice and
do not represent a commitment on the part of Dialogic Corporation or its subsidiaries (“Dialogic”). Reasonable
effort is made to ensure the accuracy of the information contained in the document. However, Dialogic does not
warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that
may be contained in this document.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT
BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A
THIRD PARTY.
Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems,
or in nuclear facility applications.
Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use
only in specific countries, and thus may not function properly in other countries. You are responsible for ensuring
that your use of such products occurs only in the countries where such use is suitable. For information on specific
products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.
It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this
document, in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more
patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual
property licenses with the sale of Dialogic products other than a license to use such product in accordance with
intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a
signed agreement with Dialogic. More detailed information about such intellectual property is available from
Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic
encourages all users of its products to procure all necessary intellectual property licenses required to
implement any concepts or applications and does not condone or encourage any intellectual property
infringement and disclaims any responsibility related thereto. These intellectual property licenses may differ
from country to country and it is the responsibility of those who develop the concepts or applications to be
aware of and comply with different national license requirements.
Dialogic, Dialogic Pro, Brooktrout, Cantata, SnowShore, Eicon, Eicon Networks, Eiconcard, Diva, SIPcontrol, Diva
ISDN, TruFax, Realblocs, Realcomm 100, NetAccess, Instant ISDN, TRXStream, Exnet, Exnet Connect, EXS,
ExchangePlus VSE, Switchkit, N20, Powering The Service-Ready Network, Vantage, Making Innovation Thrive,
Connecting People to Information, Connecting to Growth and Shiva, among others as well as related logos, are
either registered trademarks or trademarks of Dialogic Corporation or its subsidiaries. Dialogic's trademarks may be
used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal
department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of
Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to
time and any use of Dialogic’s trademarks requires proper acknowledgement.
Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Other
names of actual companies and product mentioned herein are the trademarks of their respective owners.

Publication Date: November 2008

Document Number: 05-1158-003

2

Table of Contents
1. How To Use This Manual ... 9
1.1. Audience .. 9
1.2. Voice Hardware Covered by This Manual... 9

1.2.1. Voice Hardware Model Names ... 10
1.3. When To Use This Manual .. 11
1.4. Documentation Conventions.. 11
1.5. How This Manual Is Organized ... 12
2. Using the PBX Functions.. 13
2.1. The Dialogic® Unified API .. 13
2.2. Switch-Specific Support .. 14
3. Dialogic® Unified API Function Reference ... 17
ATD4_BDTYPE() - returns the D/42-xx board type.. 18
ATD4_CHTYPE() - returns the D/42-xx channel type 20
d42_brdstatus() - retrieves the current D/42-xx board status.............................. 22
d42_chnstatus() - retrieves the current D/42-xx channel status 24
d42_closefeaturesession() - closes an open feature session 26
d42_display() - retrieves the current LCD/LED display 28
d42_flags() - retrieves current D/42D-SX LCD Features Display data 32
d42_getparm() - retrieves a D/42-xx channel or board parameter 36
d42_getver() - retrieves the D/42-xx board firmware or library version 39
d42_gtcallid() - retrieves the called/calling number ID 42
d42_indicators() - retrieves the status of LCD/LED indicators 45
d42_lcdprompt() - retrieves the current LCD prompt data of the D/42D-SX..... 57
d42_openfeaturesession() - opens a phone extension feature session................. 62
d42_setparm() - sets a D/42-xx board or channel parameter 65
d42_writetodisplay() - writes to the phone set display 71
4. Programming Considerations .. 73
4.1. Opening a Channel on a Dialogic® D/42-xx Board 73
4.2. Accessing PBX Features on a PBX Using Dial Strings............................... 75

4.2.1. Turn On the Message Waiting Indicator ... 76
4.2.2. Turn Off the Message Indicator .. 79
4.2.3. Dial Programmable Keys .. 82
4.2.4. Transferring a Call... 96
4.2.5. In-Band/Out-of-Band Signaling .. 97

4.3. Disconnect Supervision.. 98

3

Dialogic® D/42 Series Software API Library Reference

4.4. Converting Existing Dialogic® D/4x Applications 99
Appendix A - Dialogic® D/42 Series Software Quick Reference 101
Appendix B - Dialogic® D/42 Series Software Demonstration Program.... 109

Requirements.. 109
Setup... 109
Documentation Conventions .. 110
Running the Demo.. 110

Appendix C - Error and Event Definitions.. 119
Glossary .. 121
Index.. 129

4

List of Tables
Table 1. MITEL SUPERSET 4 Features Display Descriptions 33
Table 2. D/42-NE2 Indicator Status Definitions... 52
Table 3. MITEL SUPERSET 4 Prompt Descriptions ... 59
Table 4. Dialogic® D/42 Board Parameters for d42_getparm() and

d42_setparm() Functions .. 67
Table 5. Dialogic® D/42 Channel Parameters for d42_getparm() and

d42_setparm() Functions .. 68
Table 6. MITEL Direct Key Dialing Sequences ... 84
Table 7. Northern Telecom SL-1 Direct Key Dialing Sequences 87
Table 8. Northern Telecom Norstar Direct Key Dialing Sequences 89
Table 9. NEC KTS/PBX Direct Key Dialing Sequences.................................... 92
Table 10. Setting In-Band and Out-of-Band Signaling....................................... 98
Table 11. Demo Indicator Definitions .. 117
Table 12. List of Error Codes.. 119
Table 13. List of Event Codes... 120

5

Dialogic® D/42 Series Software API Library Reference

6

List of Figures
Figure 1. Contents of the Features Display Application Buffer.......................... 33
Figure 2. MITEL SUPERSET 4 Telephone Indicators....................................... 47
Figure 3. Northern Telecom Digit Display Telephone Indicators....................... 49
Figure 4. Northern Telecom Model 7310 Telephone Indicators......................... 51
Figure 5. NEC Dterm Series III Telephone Indicators.. 54
Figure 6. MITEL SUPERSET 4 Prompt Display ... 58
Figure 7. MITEL SUPERSET 4 Telephone.. 83
Figure 8. Northern Telecom Digit Display Telephone.. 86
Figure 9. Northern Telecom Model 7310 Telephone.. 88
Figure 10. NEC Dterm III Telephone ... 91
Figure 11. Dialogic® D42 Demo Window .. 111
Figure 12. D42 Options Window.. 111
Figure 13. Select Your D/42 Channel ... 112
Figure 14. Select a D/42 Channel ... 113
Figure 15. Northern Telecom M7310 Window... 114
Figure 16. NEC Dterm Series III Window.. 115

7

Dialogic® D/42 Series Software API Library Reference

8

1. How To Use This Manual

1.1. Audience

This manual is written for programmers and engineers who are interested in using
the Dialogic® D/42 Series Software, together with standard Dialogic® D/4x Voice
Software, to develop voice and call processing applications for a PBX system.

When this manual addresses “you,” it means “you, the programmer,” and when
this manual refers to the “user,” it means the end-user of your application
program.

If you are experienced with voice technology and Dialogic® products, you may
prefer to deal strictly with information found in Sections 3 and 4 in this manual.
These sections contain information for programming an application with C
language library functions and data structures.

If you are new to Dialogic® products and voice technology, you may prefer to
start with the Dialogic® Voice API Programming Guide. The Dialogic® Voice API
Programming Guide provides an introduction to the Dialogic® voice products,
with explanations and help beyond a strictly technical level so that you can
quickly learn the Dialogic® Voice Software. This includes descriptions of how to
use the voice processing, signaling, and call progress analysis features, and how
to design a multi-line voice application.

1.2. Voice Hardware Covered by This Manual

The Dialogic® D/42 Series voice hardware (also referred to as Dialogic® D/42-
xx) is designed to provide a set of cost-effective tools for implementing
computerized, voice and call processing applications for private branch exchange
(PBX) systems and key telephone systems (KTSs). It provides the basic voice and
call processing capabilities of Dialogic® D/4x voice hardware and adds hardware
and firmware required to integrate with PBXs and KTSs. Refer to the Dialogic®

Voice API Programming Guide for more information about voice and call
processing. For convenience, the terms private branch exchange (PBX), key
system unit (KSU), and key telephone system (KTS) will be referred to as PBX.

9

Dialogic® D/42 Series Software API Library Reference

The Dialogic® voice hardware models covered by this manual include the
following:

NOTE: Although the Dialogic® D/42D-SX and Dialogic® D/42D-SL Boards are
documented in this manual, they are not supported in this release.

Dialogic® D/42D-SX– a 4-channel voice board with station interfaces for
connecting directly to a MITEL SUPERSET 4 Line Circuit card
in a MITEL SUPERSWITCH PBX.

Dialogic® D/42D-SL– a 4-channel voice board with station interfaces for
connecting to a Northern Telecom Digit Display (QPC 451 or
QPC 61) Line Circuit card in a Northern Telecom SL-1 PBX.

Dialogic® D/42-NS– a 4-channel voice board with station interfaces for
connecting to a Northern Telecom NORSTAR key system unit
(KSU).

Dialogic® D/42-NE2– a 4-channel voice board with digital interfaces for
connecting to NEC Electra Professional Level II telephone
systems, as well as NEAX 2000 IVS and NEAX 2400 IMS PBX
series switches. Throughout this manual, the NEC Electra
Professional Level II is referred to as the NEC KTS, while the
NEAX 2000 IVS and NEAX 2400 IMS are referred to as the
NEC PBX.

1.2.1. Voice Hardware Model Names

Model names for voice boards other than the Dialogic® HD series are based upon
the following pattern:

D / x x x y

where:
D/ identifies the board as voice hardware
xxx identifies the number of channels (2, 4, 8, 12, etc.), followed by a code

indicating whether call progress analysis is supported
0 indicates no support for call progress analysis
1 indicates support for call progress analysis
2 indicates PBX support
y if present, identifies a hardware version (A, B, C, D, etc.)

10

1. How To Use This Manual

Sometimes it is necessary to refer to a group of voice boards rather than specific
models, in which case an “x” is used to replace the part of the model name that is
generic. For example, Dialogic® D/xxx refers to all models of the voice hardware,
and Dialogic® D/4x refers to all 4-channel models.

1.3. When To Use This Manual

This Dialogic® D/42 Series Software API Library Reference contains
programming information for developing applications in the Windows® operating
system environment using the Dialogic® Unified API and Dialogic® D/42
Runtime Library. The Dialogic® Unified API provides a single, basic set of high-
level calls used to develop applications across a variety of manufacturer’s
switches. The Dialogic® D/42 Runtime Library supports the Dialogic® Unified
API and works in conjunction with the standard Dialogic® Voice Library to
enable applications to set up calls and perform PBX call functions using
Dialogic® D/42-xx Boards.

This manual also includes instructions for using the Dialogic® D/42
demonstration program in the Windows® operating system environment.

Refer to this manual, the Dialogic® D/42 Series Boards User’s Guide, Dialogic®

Voice API Library Reference, and Dialogic® Voice API Programming Guide to
develop application programs.

1.4. Documentation Conventions

The following documentation conventions are used throughout this manual:
• When terms are first introduced, they are shown in italic text.
• Data structure field names and function parameter names are shown in

boldface, as in maxsec.
• Function names are shown in boldface with parentheses, such as dx_dial().

Names of defines or equates are shown in uppercase, such as T_DTMF. File
names are also shown in uppercase, such as D42DRV.EXE.

11

Dialogic® D/42 Series Software API Library Reference

1.5. How This Manual Is Organized

Chapter 1 – How To Use This Manual describes the Dialogic® D/42 Series
Software API Library Reference.

Chapter 2 – Using the PBX Functions provides information on using the voice
library functions with Dialogic® D/42-xx products.

Chapter 3 – Dialogic® Unified API Function Reference provides technical
information on the voice software C language voice library functions.

Chapter 4 – Programming Considerations contains programming information
about developing applications for the MITEL PBX, Northern Telecom SL-1
PBX, Northern Telecom Norstar KSU, and the NEC Electra Professional Level II
KTS, NEAX 2000 IVS, and NEAX 2400 IMS PBX.

Appendix A – Dialogic® D/42 Series Software Quick Reference provides
summary information on the voice software C language voice library functions.

Appendix B – Dialogic® D/42 Series Software Demonstration Program
provides instructions for running this demonstration program.

Appendix C – Error and Event Definitions lists error codes and event codes.

Glossary contains a list of definitions for commonly used terms.

12

2. Using the PBX Functions

The PBX circuitry on the Dialogic® D/42-xx Boards provides functions specific
to a PBX. These functions are implemented using the Dialogic® D/42 Runtime
Library (LIBD42MT.DLL). The Dialogic® D/42 Runtime Library is used in
addition to the standard Dialogic® Voice Library when tight integration and
control of the PBX and Dialogic® D/42-xx Boards are required.

The Dialogic® Voice Library is an interface between the application program and
the Dialogic® D/42 Series voice hardware. The Voice Library is used to access
standard voice functions such as voice play/record and call progress analysis.
Refer to the Dialogic® Voice API Library Reference for information about using
voice functions.

2.1. The Dialogic® Unified API

The Dialogic® Unified API (Application Programming Interface) enables the
development of applications across a variety of manufacturers’ switches (both
Key and PBX systems) through a single interface. The Dialogic® Unified API
provides a single set of basic functions (refer to Chapter 3) that can be used for
any supported switch and are sent directly to the switch through the Dialogic®
D/42 Series Board, without additional hardware. Functioning as an extension to
the Dialogic® Voice API, the Dialogic® Unified API offers a single design model
that allows developers to take advantage of advanced PBX features (such as
called/calling number ID and ASCII display information).

Using the Dialogic® Unified API can shorten development time by eliminating
the need to learn separate APIs for each switch. It enables you to create
applications with a common set of functions, which operate with switches
produced by different manufacturers, thereby widening your product’s support
beyond the traditional single-switch focus.

Developers who wish to continue designing switch-specific applications can
continue to do so, as the Dialogic® Unified API also provides access to lower-
level function calls made available through each individual switch protocol. And
for customers unwilling to shift from older PBX integration development models,

13

Dialogic® D/42 Series Software API Library Reference

the Dialogic® Unified API provides for backward compatibility, preserving their
development investment.

Utility functions included in the Dialogic® Unified API allow programmers to
control the Dialogic® D/42 Series Board. The application can retrieve the
Dialogic® D/42-xx channel type, obtain and set Dialogic® D/42-xx channel
parameters, start and stop the Dialogic® D/42 driver, and retrieve Dialogic® D/42
firmware/driver/library version numbers. The application can retrieve error
information using the ATDV_LASTERR() and ATDV_ERRMSGP()
functions in the standard Dialogic® Voice API.

The Dialogic® D/42 Runtime Library works in conjunction with the standard
Dialogic® Voice Library to enable applications to set up calls and perform PBX
call functions using Dialogic® D/42-xx Boards. In addition, the Dialogic® D/42
Runtime Library supports the Dialogic® Unified API.

NOTE: The Dialogic® Unified API contains both synchronous and
asynchronous functions. These terms, along with programming models,
callback, and event handlers, are discussed in the Dialogic® Standard
Runtime Library API Programming Guide.

The Dialogic® D/42 Runtime Library treats boards and channels as separate
devices, even though channels are physically part of a board. A channel device is
an individual PBX line connection, and a board device is a Dialogic® D/42-xx
Board that contains channels. Most functions are performed at the channel level,
such as getting called/calling number ID. Certain functions, such as setting board
parameters, can occur at the board level and affect all channels on that board.

NOTE: Since boards and channels are considered separate devices under
Windows®, it is possible to open and use a channel without opening the
board where the channel is located. There is no board-channel hierarchy
imposed by the Dialogic® D/42 Runtime Library.

2.2. Switch-Specific Support

PBX station set phones come with both standard and programmable keys that
give access to switch-specific functions. The most common of these features
include:

• Transfer
• Conference

14

2. Using the PBX Functions

• Hold
• Trunk line select
• Message waiting indication
• Hands-free operation

Refer to the Dialogic® D/42 Series Boards User’s Guide for information about
PBX and KTS features. Because the Dialogic® D/42-xx Boards have the
capability to emulate a PBX station set, they can also emulate any standard or
programmable function for your application. Applications can take advantage of
the most common features listed here, as well as less frequently used features like
overhead paging. In addition, your application can reprogram keys as needed.
Refer to Chapter 4 for details about switch-specific programming.

15

Dialogic® D/42 Series Software API Library Reference

16

3. Dialogic® Unified API Function
Reference

This chapter provides technical information on the PBX interface software C
language library functions (the Dialogic® Unified API). The library functions are
prototyped in D42LIB.H.

See the Table of Contents for a list of functions. Appendix A provides a quick
reference containing a compact description of the functions that are described in
this chapter.

Each function is listed in alphabetical order and provides the following
information:

Function Header Located at the beginning of each function and contains the

following information: function name, function syntax,
input parameters, output or returns, includes (header files
required to be included), and mode. The function syntax
and inputs include the data type and are shown using
standard C language syntax.

Description Provides a description of the function operation, including
parameter descriptions.

Cautions Provides warnings and reminders.
Example Provides one or more C language coding examples showing

how the function can be used.
Errors Lists the error codes that could be returned by the function.

17

ATD4_BDTYPE() returns the D/42-xx board type

Name: int ATD4_BDTYPE(devh)
Inputs: int devh • board descriptor

Returns: board type • returns board type information if success (see
below)

-1 • if error (see Errors list)
Includes: D42LIB.H

Mode: synchronous
Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

 Description

The ATD4_BDTYPE() function returns the D/42-xx board type of the queried
device.

Board Type Description
TYP_SL for the Dialogic® D/42D-SL
TYP_SX for the Dialogic® D/42D-SX
TYP_NS for the Dialogic® D/42-NS
TYP_NE2PBX for the Dialogic® D/42-NE2 used with the NEC NEAX

2000 IVS or NEAX 2400 IMS PBX
TYP_NE2KTS for the Dialogic® D/42-NE2 used with the NEC Electra

Professional Level II KTS
TYP_NE2 for other or unknown Dialogic® D/42-NE2 Boards
TYP_NONE for non-Dialogic® D/42 Boards

Parameter Description

devh specifies the valid board device descriptor obtained by a
call to dx_open()

 Cautions

None.

18

returns the D/42-xx board type ATD4_BDTYPE()

 Example

void main(void)
 {
 int devh;
 int rc = 0;

 /* Open Board Device */
 if ((devh = dx_open("dxxxB1",NULL))==-1)

 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Check Board Type */
 if ((rc = ATD4_BDTYPE(devh)) == -1)
 {
 printf(“Error ATD4_BDTYPE()\n”);
 dx_close(devh);
 exit(-1);
 }

 printf(“Board Type = %d\n”,rc);

 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
DXLIB_INVNRB Internal voice library error

19

ATD4_CHTYPE() returns the D/42-xx channel type

Name: int ATD4_CHTYPE(devh)
Inputs: int devh • channel descriptor

Returns: channel type • channel type information if success (see
below)

-1 • if error (see Errors list)
Includes: D42LIB.H

Mode: synchronous
Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

 Description

The ATD4_CHTYPE() function returns the D/42-xx channel type of the queried
device.

Channel Type Description
TYP_SL for the Dialogic® D/42D-SL
TYP_SX for the Dialogic® D/42D-SX
TYP_NS for the Dialogic® D/42-NS
TYP_NE2PBX for the Dialogic® D/42-NE2 used with the NEC NEAX

2000 IVS or NEAX 2400 IMS PBX
TYP_NE2KTS for the Dialogic® D/42-NE2 used with the NEC Electra

Professional Level II KTS
TYP_NE2 for other or unknown Dialogic® D/42-NE2 Boards
TYP_NONE for non-Dialogic® D/42 Boards

Parameter Description

devh specifies the valid channel device descriptor obtained
by a call to dx_open()

 Cautions

None.

20

returns the D/42-xx channel type ATD4_CHTYPE()

 Example

void main(void)
 {
 int devh;
 int rc = 0;

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)

 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Check Channel Type */
 if ((rc = ATD4_CHTYPE(devh))== -1)
 {
 printf(“Error ATD4_CHTYPE()\n”);
 dx_close(devh);
 exit(-1);
 }

 printf(“Channel Type = %d\n”,rc);

 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_BADDEVICE Invalid or wrong device handle
ED42_INVALARG Illegal argument in function
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
DXLIB_INVNRB Internal voice library error

21

d42_brdstatus() retrieves the current D/42-xx board status

Name: int d42_brdstatus(devh, buffstatus, bufferp)
Inputs: int devh • board descriptor

 char *buffstatus • pointer to buffer containing board
status information

 char *bufferp • reserved for future use
Returns: ED42_NOERROR • if success

 -1 • if error (see Errors list)
Includes: D42LIB.H

Mode: synchronous
Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

 Description

The d42_brdstatus() function retrieves the current D/42-xx board status and
places it in an application buffer. The board status is a bit mask representing the
status of the board (see below) on a per board basis. The application buffer
(buffstatus) that will contain the board status information must be 1 byte.

Bit 7 6 5 4 3 2 1 0
Channel x x x x 4 3 2 1
Example* 0 0 0 0 1 1 1 1

* Data shows that all channels on the
board have communication.

bit0 first channel on board 1=OK, 0=no communication
bit1 second channel on board 1=OK, 0=no communication
bit2 third channel on board 1=OK, 0=no communication
bit3 fourth channel on board 1=OK, 0=no communication
bits 4-7 reserved for future use

Parameter Description

devh specifies the valid board device descriptor obtained by a call to
dx_open()

buffstatus pointer to the 1-byte application buffer where the board status
is placed

bufferp pointer to an additional 48-byte plus 1 NULL byte application
buffer (reserved for future use)

22

retrieves the current D/42-xx board status d42_brdstatus()

 Cautions

The character pointer bufferp is required. The associated buffer must be 49
bytes.

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char buffstatus;
 char bufferp[49];

 /* Open Board Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Get the board status Information */
 if ((rc = d42_brdstatus(devh, &buffstatus, bufferp)) == -1)
 {
 printf(“Error d42_brdstatus()\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_brdstatus*/

 printf(“Board Status = %X\n”,buffstatus);

 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_INVALARG Invalid argument passed to function
DXLIB_INVNRB Internal voice library error

23

d42_chnstatus() retrieves the current D/42-xx channel status

Name: int d42_chnstatus(devh, statusp, bufferp)
Inputs: int devh • channel descriptor

 char *statusp • pointer to buffer containing channel
status information

 char *bufferp • reserved for future use
Returns: ED42_NOERROR • if success

 -1 • if error (see Errors list)
Includes: D42LIB.H

Mode: synchronous
Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

 Description

The d42_chnstatus() function retrieves the current D/42-xx channel status and
places it in an application buffer. The application buffer (statusp) that will
contain the channel status information must be 1 byte. The channel status is a
single bit (bit 0) representing the status of the channel device.

Parameter Description

devh specifies the valid channel device descriptor obtained by a
call to dx_open()

statusp pointer to a 1-byte application buffer. The application
buffer will contain a non-zero value if the channel is
communicating with the switch:
non-zero = OK
0 = no communications

bufferp pointer to an additional 48-byte plus 1 NULL byte
application buffer (reserved for future use)

 Cautions

The character pointer bufferp is required. The associated buffer must be 49
bytes.

24

retrieves the current D/42-xx channel status d42_chnstatus()

 Example

void main(void)
 {
 int devh;
 int rc = 0;

char bufferp[49];
 char status;

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Get the channel status Information */
 if ((rc = d42_chnstatus(devh, &status, bufferp)) == -1)
 {
 printf(“Error d42_chnstatus():\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_brdstatus*/

 if (status)
 {
 printf(“Channel Communication OK\n”);
 }
 else
 {
 printf(“No Channel Communication\n”);
 }

 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_BADDEVICE Invalid or wrong device handle
ED42_INVALARG Invalid argument passed to function
DXLIB_INVNRB Internal voice library error

25

d42_closefeaturesession() closes an open feature session

Name: int d42_closefeaturesession(devh)
Inputs: int devh • channel descriptor

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-NS

 Description

The d42_closefeaturesession() function closes an open feature session on the
specified channel, terminating the association between the telephone extension
and the channel number. It also disables the asynchronous events that were
enabled for the feature session and disallows the use of any functions that require
an open feature session, such as d42_writetodisplay(). The
d42_closefeaturesession() function requires that the feature session be
previously opened.

Parameter Description

devh specifies the valid channel device descriptor obtained by a call
to dx_open() and on which the feature session is open

 Cautions

This function requires an open feature session.

 Example

void D42_FeatureSession()
{
char szExt[5];
char *cpNull = NULL;
char cpErrStr[MAX_PATH];
int TermType;
int eventMask;

 // extension fpr which we are opening a feature session
 sprintf(szExt, "1234");

26

closes an open feature session d42_closefeaturesession()

 eventMask = D42_EVT_SOFTKEY | D42_EVT_ASYNCCLOSEFEATSESSION;
 if (d42_openfeaturesession(G_d42chdev, szExt, &TermType, eventMask) == -1)
 {
 printf(“Error d42_openfeaturesession()\n”);
 }

 if (d42_writetodisplay(G_d42chdev, "FtrSs Open") == -1)
 {
 printf(“Error d42_writetodisplay()\n”);
 }

 if (d42_closefeaturesession(G_d42chdev) == -1)
 {
 printf(“Error d42_closefeaturesession()\n”);
 }

} // endof D42_FeatureSession

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_NOFEATURE
 SESSION

Function requires an open feature session

ED42_FWREQFAILURE Firmware error
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_UNSUPPORTED Function not supported on this board
DXLIB_INVNRB Internal voice library error

27

d42_display() retrieves the current LCD/LED display

Name: int d42_display(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer. The
buffer will contain display data for
the selected channel.

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

 Description

The d42_display() function retrieves the current LCD/LED display
(alphanumeric) data and places it in an application buffer. The application buffer
must be 49 bytes, and will hold the entire data string (see below) plus a NULL
character. The length of the data string is variable. Byte 0 of the display data
corresponds to the top, left-most display element. The display data is stored as a
null-terminated ASCII string. Refer to the Dialogic® D/42 Series Boards User’s
Guide for more information specific to your PBX. Examples showing the
contents of the application buffer for each supported switch are as follows:

 MITEL PBX (Dialogic® D/42D-SX Board) - 16-digit display

Data 20 20 4E 4F 4E 45 20 41 43 54 49 56 45 20 20 20 00 xx xx xx xx xx xx xx
Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Data xx
Byte 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

28

retrieves the current LCD/LED display d42_display()

 Northern Telecom SL-1 (Dialogic® D/42D-SL Board) - 16-digit
display

data 20 30 34 20 31 35 20 20 31 30 2D 30 38 2D 39 36 00 xx xx xx xx xx xx xx
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

data xx
byte 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 Northern Telecom Norstar (Dialogic® D/42-NS Board) - 32-digit
display

data 54 72 61 6E 73 66 65 72 20 20 20 20 20 20 20 20
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
byte 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

data 00 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
byte 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 NEC KTS/PBX (Dialogic® D/42-NE2 Board) - 32-digit display

data 20 50 52 4F 47 52 41 4D 00 4D 4F 44 45 20 20 20
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
byte 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

data 00 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
byte 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

29

d42_display() retrieves the current LCD/LED display

Parameter Description

devh specifies the valid channel device descriptor obtained by a call
to dx_open()

bufferp pointer to the application buffer. The buffer will contain the
display data in ASCII format.

 Cautions

The application buffer must be 49 bytes. The length of the LCD display data is
variable (currently 16 or 32 bytes), and is stored as a null-terminated ASCII
string. The 49 byte buffer size is for future expansion. An application that passes
anything smaller will not be backward compatible in future releases.

If you execute a function that updates the display (e.g., set the message waiting
indicator, or show the calling number ID), ensure that you allow time for the
switch to update the display before using d42_display(), or you can call the
d42_display() function until valid display data is returned.

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char bufferp[49];

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Wait for incoming call */
 if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1))==-1)
 {
 printf(“Error dx_wtring()\n”);
 dx_close(devh);
 exit(-1);
 }

 /* Get the Display Information */
 if ((rc = d42_display(devh, bufferp)) == -1)
 {
 printf(“Error d42_display()\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_display */

 printf(“Display = %s\n”,bufferp);

30

retrieves the current LCD/LED display d42_display()

 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_BADDEVICE Invalid or wrong device handle
ED42_INVALARG Invalid argument passed to function
DXLIB_INVNRB Internal voice library error

31

d42_flags() retrieves current D/42D-SX LCD Features Display data

Name: int d42_flags(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer. The
buffer will contain the Features
Display data.

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SX

 Description

The d42_flags() function retrieves current D/42D-SX LCD Features Display
data and places it in the application buffer. The application buffer must be 49
bytes, and will contain a bit mask representing the status of each flag in the
Features Display. Refer to the Dialogic® D/42 Series Boards User’s Guide for
more information.

Parameter Description

devh specifies the valid channel device descriptor obtained by
a call to dx_open()

bufferp pointer to the application buffer. The buffer will contain
the Features Display data.

The Features Display data stored in the application buffer is 16 bytes long. Each
byte represents a specific flag on the SUPERSET 4 Feature Display. Refer to
Table 1 for a description of each Feature Display LCD flag. The value of each
byte can be 0x00 (off), 0x01 (on), or 0x02 (flashing). Figure 1 shows the
contents of the application buffer when the Features Display illuminates
“3:AUTO ANS”.

32

retrieves current D/42D-SX LCD Features Display data d42_flags()

Table 1. MITEL SUPERSET 4 Features Display Descriptions

Byte Flag Byte Flag Byte Flag
0 Undefined 6 5: 12 1:
1 MIC ON 7 Undefined 13 2:
2 ACC CODE 8 Undefined 14 3:
3 MSG 9 FWD 15 Undefined
4 → 10 NO DIST’B
5 4: 11 AUTO

ANS

Figure 1. Contents of the Features Display Application Buffer

 Cautions

The application buffer must be 49 bytes. The Features Display is stored as a
binary data (16 bytes). The 49 byte buffer size is for future expansion. An
application that passes anything smaller will not be backward compatible in
future releases.

33

d42_flags() retrieves current D/42D-SX LCD Features Display data

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char bufferp[49];

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Wait for incoming call */
 if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1))==-1)
 {
 printf(“Error dx_wtring()\n”);
 dx_close(devh);
 exit(-1);
 }

 /* Get the LCD Flags Information */
 if ((rc = d42_flags(devh, bufferp)) == -1)
 {
 printf(“Error d42_flags()\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_flags*/

 /* Test 1 Flag */
 if (buffer[1] == 1)
 {
 printf(“Microphone is ON”);
 }

 else if (buffer[1] == 0)
 {
 printf(“Microphone is OFF”);
 }

 else /* must be flashing */
 {
 printf(“Microphone is FLASHING”);
 } /* End Test 1 Flag */

 dx_close(devh);
 } /* End main */

34

retrieves current D/42D-SX LCD Features Display data d42_flags()

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_BADDEVICE Invalid or wrong device handle
ED42_INVALARG Invalid argument passed to function
DXLIB_INVNRB Internal voice library error

35

d42_getparm() retrieves a D/42-xx channel or board parameter

Name: int d42_getparm(devh, parmnum, parmvalp)
Inputs: int devh • board or channel descriptor

 int parmnum • parameter name
 void *parmvalp • pointer to parameter value

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

 Description

The d42_getparm() function retrieves a D/42-xx channel or board parameter
and places it in the application buffer (parmvalp). Depending on the parameter
retrieved, the data returned can be either a character string or an integer.

Additional notes and a list of board and channel parameters that can be retrieved
for parmnum are provided under the d42_setparm() function.

Parameter Description

devh specifies the valid board device or channel device descriptor
obtained by a call to dx_open()

parmnum specifies the define for the parameter type whose value is to be
returned in the variable pointed to by parmvalp (see Table 4
and Table 5 under the d42_setparm() function)

parmvalp pointer to the application variable that will receive the
parameter value

 Cautions

When retrieving a parameter, the application passes a pointer to a variable that
will contain the actual parameter value. This variable should be treated as an
unsigned integer for all parameters except D4BD_MSGACCESSON and
D4BD_MSGACCESSOFF. Both D4BD_MSGACCESSON and
D4BD_MSGACCESSOFF should be treated as ASCIIZ strings (char *). The
application should cast the parmvalp parameter to a (void *) to avoid compiler
warnings.

36

retrieves a D/42-xx channel or board parameter d42_getparm()

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 unsigned int parmvalp;

 /* Open Board Device */
 if ((devh = dx_open("dxxxB1",NULL))==-1)
 {
 printf("Error dx_open()\n”);
 exit(-1);
 } /* End dx_open */

 if ((ATD4_BDTYPE (devh)) == TYP_SX)
 {
 /* Get the Board Parameter To See if Speakerphone Mode is Enabled */
 if ((rc = d42_getparm(devh, D4BD_SPMODE, (void *)&parmval)) == -1)
 {
 printf(“Error d42_getparm(D4BD_SPMODE)\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_setparm */

 /* Check if Speakerphone is enabled */
 if (parmval == 1)
 {
 printf(“Speakerphone Mode is ENABLED”);
 }

 else if (parmvalp == 0)
 {
 printf(“Speakerphone Mode is DISABLED”);
 } /* End Check if Speakerphone is enabled */

 } /* end ATD4_BDTYPE */

 dx_close(devh);

 } /* End main */

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_BADPARM Invalid value for parameter
ED42_BADDEVICE Invalid or wrong device handle

37

d42_getparm() retrieves a D/42-xx channel or board parameter

ED42_INVALARG Invalid argument passed to function
DXLIB_INVNRB Internal voice library error

38

retrieves the D/42-xx board firmware or library version d42_getver()

Name: int d42_getver(devh, bufferp, flag)
Inputs: int devh • board descriptor

 char *bufferp • pointer to an application buffer
containing the version information

 int flag • determines if firmware or library
version is retrieved

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: all Dialogic® D/42 Boards

 Description

The d42_getver() function retrieves the D/42-xx board firmware or library
version and places it in an application buffer pointed to by bufferp. The flag
specifies what should be returned (firmware or library version number).The
application buffer is at least 100 bytes long and returns version number
information in the following formats:

Firmware Firmware Version: X.XX <type> YYYY
 or
Firmware Version: X.XX <type> Y.YY

where: X.XX represents the version number
<type> represents the type of release (Production, Beta,
Alpha, Experimental, Special, Build, Unknown)
Y.YY or YYYY represents a special release number (e.g.,
experimental number)

Library File Version: YY.MM.XX.XX Product Version: YY.MM.XX.XX

where: YY represents the year
MM represents the month
XX.XX represents a version number

39

d42_getver() retrieves the D/42-xx board firmware or library version

Parameter Description

devh specifies the valid board device descriptor obtained by a call to
dx_open()

bufferp pointer to the application buffer that will contain the version data
as a null-terminated ASCII string

flag determines if the firmware or library version number is placed in
the application buffer.
VER_D42FIRMWARE - returns the Dialogic® D/42-xx
firmware version
VER_D42LIB - returns the Dialogic® D42 library
(LIBD42MT.DLL) version

 Cautions

The application buffer must be at least 100 bytes long.

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char bufferp[100];

 /* Open Board Device */
 if ((devh = dx_open("dxxxB1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Get the Firmware Version */
 if ((rc = d42_getver(devh, bufferp, VER_D42FIRMWARE)) == -1)
 {
 printf(“Error d42_getver()\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_getver */

 /* Print the Firmware Version /*
 printf(“%s”,bufferp);

 dx_close(devh);
 } /* End main */

40

retrieves the D/42-xx board firmware or library version d42_getver()

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_RDFWVER Error reading firmware version
ED42_INVALARG Invalid argument passed to function
EDX_SYSTEM System level error
DXLIB_INVNRB Internal voice library error

41

d42_gtcallid() retrieves the called/calling number ID

Name: int d42_gtcallid(devh, bufferp)
Inputs: int devh • channel descriptor

char *bufferp • pointer to an application buffer
containing called/calling number ID data

Returns: ED42_NOERROR • if success
-1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

 Description

The d42_gtcallid() function retrieves the called/calling number ID of the
incoming call and places it in an application buffer. The application buffer must
be 49 bytes, and will hold the entire data string (see below) plus a null. The
length of the data string is variable. Refer to the Dialogic® D/42 Series Boards
User’s Guide for more information specific to your PBX. Examples showing the
contents of the application buffer for each supported switch are as follows:

 MITEL PBX (Dialogic® D/42D-SX Board)

text bb 2 2 1 _ C A L L I N G
data 20 32 32 31 5F 43 41 4C 4C 49 4E 47 00 xx xx xx xx xx xx xx xx xx xx xx
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

data xx
byte 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 Northern Telecom SL-1 (Dialogic® D/42D-SL Board)

text bb bb bb bb bb bb bb bb bb bb bb bb bb 2 2 1
data 20 20 20 20 20 20 20 20 20 20 20 20 20 32 32 31 00 xx xx xx xx xx xx xx
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

text
data xx
byte 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

42

retrieves the called/calling number ID d42_gtcallid()

 Northern Telecom Norstar (Dialogic® D/42-NS Board)

text bb 2 2 1 _ 2 2 4
data 20 32 32 31 5F 32 32 34 00 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

text
data xx
byte 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 NEC KTS/PBX (Dialogic® D/42-NE2 Board)

text bb 2 0 0 _ 2 0 3
data 20 32 30 30 5F 32 30 33 00 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

text
data xx
byte 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Parameter Description

devh specifies the valid channel device descriptor obtained by a
call to dx_open()

bufferp pointer to the application buffer. The called/calling number
ID is placed here.

 Cautions

The application buffer must be 49 bytes. The length of the called/calling number
ID data is variable (not exceeding 48 bytes), and is stored as a null-terminated
ASCII string (total length 49 bytes).

NOTE: During testing of the Dialogic® D/42D-SX Board, it was determined that
called/calling number ID data was not always sent by the PBX prior to
the ring event. To ensure that the correct called/calling ID data is
obtained, the application should be set up to answer a call only after the
second ring.

43

d42_gtcallid() retrieves the called/calling number ID

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char bufferp[49];

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Wait for incoming call */
 if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1))==-1)
 {
 printf(“Error dx_wtring()\n”);
 dx_close(devh);
 exit(-1);
 }

 /* Get the Calling/Caller Id */
 if ((rc = d42_gtcallid(devh, bufferp)) == -1)
 {
 printf(“Error d42_gtcallid()\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_gtcallid */

 printf(“Caller Id = %s\n”,bufferp);

 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_INVALARG Invalid argument passed to function
DXLIB_INVNRB Internal voice library error

44

retrieves the status of LCD/LED indicators d42_indicators()

Name: int d42_indicators(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer
containing the indicators data

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

 Description

The d42_indicators() function retrieves the status of LCD/LED indicators and
places it in an application buffer. The application buffer must be 49 bytes, and
will hold the entire bit mask (see below) representing the status of each indicator.
Refer to the Dialogic® D/42 Series Boards User’s Guide for more information
specific to your switch. Examples showing the contents of the application buffer
for each supported switch are as follows:

D/42D-SL 8 indicators
D/42D-SX 16 indicators
D/42-NS 10 indicators
D/42-NE2 24 indicators

Parameter Description

devh specifies the valid channel device descriptor obtained by a
call to dx_open()

bufferp pointer to the application buffer; the indicator is placed here

 Cautions

The application buffer must be 49 bytes. The length of the line indicator data is
variable (currently 8, 10, 16, and 24 bytes), and is stored as bit mask. The 49 byte
buffer size is for future expansion. An application that passes anything smaller
will not be backward compatible in future releases.

45

d42_indicators() retrieves the status of LCD/LED indicators

 MITEL PBX (Dialogic® D/42D-SX Board)

There are 16 LCD Line Indicators (each containing two segments; a square and a
circle) located on the left side of line keys 00-15 on the MITEL SUPERSET 4
telephone - see Figure 2. The line indicator status data stored in the application
buffer is 16 bytes long. Byte 0 contains the status for Hold. Bytes 1-15 contain
the indicator status for line keys 01-15, respectively. Each byte (8 bits) contains
data for both segments of an indicator (bits 0-3 represent the square, bits 4-7
represent the circle). The status data for each byte is defined as follows:

Data for bits 0-3 Description

0x?0 square off
0x?1 square on
0x?2 square flashing 250 ms off, 250 ms on
0x?3 square flashing 500 ms off, 500 ms on
0x?4 square flashing 438 ms off, 62 ms on
0x?5 square flashing 62 ms off, 438 ms on
0x?F (square only) inverse flash rate of circle

Data for bits 4-7 Description

0x0? circle off
0x1? circle on
0x2? circle flashing 250 ms off, 250 ms on
0x3? circle flashing 500 ms off, 500 ms on
0x4? circle flashing 438 ms off, 62 ms on
0x5? circle flashing 62 ms off, 438 ms on

 Example

If the data for byte 7 is 0x02, the circle segment for Line Key 7 is off and the
square segment is flashing at 250 ms. The contents of the application buffer are
shown below.

46

retrieves the status of LCD/LED indicators d42_indicators()

Line Keys
0-15

Line
Indicators

Figure 2. MITEL SUPERSET 4 Telephone Indicators

47

d42_indicators() retrieves the status of LCD/LED indicators

 Northern Telecom SL-1 (Dialogic® D/42D-SL Board)

There are eight LED Line Indicators located on the top-right of the Digit Display
telephone - see Figure 3. There are no indicators for Feature Keys 8 and 9. The
line indicator status data stored in the application buffer is 8 bytes long. Bytes 0-7
contain the indicator status of Feature Keys 0-7, respectively. The status data for
each byte is defined as follows:

Value (in HEX) State

0x00 off
0x01 wink (flash 120 Hz)
0x02 flash (flash 60 Hz)
0x03 on

 Example

If the data for byte 1 is 0x03 and byte 2 is 0x02, the indicator for Feature Key 1 is
on and the indicator for Feature Key 2 is flashing at 60 Hz. The contents of the
application buffer are shown below.

48

retrieves the status of LCD/LED indicators d42_indicators()

Digit Display

Feature
Keys 0-9

Line
Indicators 0-7

Figure 3. Northern Telecom Digit Display Telephone Indicators

49

d42_indicators() retrieves the status of LCD/LED indicators

 Northern Telecom Norstar (Dialogic® D/42-NS Board)

There are 10 LCD Line Indicators located between Programmable Memory
Buttons 0-9 on the Model 7310 telephone - see Figure 4. The indicator status data
stored in the application buffer is 10 bytes long. Bytes 0-9 contain the indicator
status of Memory Buttons 0-9, respectively. The status data for each byte is
defined as follows:

Value (in HEX) State

0x00 off
0x01 on
0x02 alerting (flashing)
0x03 Ihold
0x04 Uhold

 Example

If the data for byte 1 is 0x01 and byte 8 is 0x02, the indicator for Memory Button
1 is on and the indicator for Memory Button 8 is alerting. The contents of the
application buffer are shown below.

50

retrieves the status of LCD/LED indicators d42_indicators()

9

8

7

6

5

3

2

1

0

4

Memory
Buttons 00-04

Memory
Buttons 05-09

LCD Indicators

S W a

b

c

d

T

U Y

V

9

8

K

H

E

B

A

I

F

C

L

J

G

D

O

NM

7

6

5

3

2

1

0

4

P Q R

Z

X

Figure 4. Northern Telecom Model 7310 Telephone Indicators

 NEC KTS/PBX (Dialogic® D/42-NE2 Board)

The Dterm Series III telephone has 24 LED indicators located as follows - see
Figure 5:

NOTE: The Dterm Series III telephones for the NEC KTS and PBX look and
function identically. Model EWT-16DD-1 is used on the KTS. Model
ETJ-16DC-1 is used on the PBX.

• 16 CO/PBX two-color indicators located on Flexible Line keys 1-16.

51

d42_indicators() retrieves the status of LCD/LED indicators

• Five 2-color indicators located on the FNC, CNF, LNR/SPD, SPKR, and
ANS keys.

• Two indicators, MIC and ICM, located below the line keys .

The indicator status data stored in the application buffer is 32 bytes long. Each
byte represents a specific indicator on the Dterm Series III telephone - see
Table 2.

Table 2. D/42-NE2 Indicator Status Definitions

Byte Description Byte Description

0 line LED 1 16 not used
1 line LED 2 17 message waiting indicator
2 line LED 3 18 CNF key LED
3 line LED 4 19 FCN key LED
4 line LED 5 20 not used
5 line LED 6 21 LNR/SPD key LED
6 line LED 7 22 ANS key LED
7 line LED 8 23 SPKR key LED
8 line LED 9 24 ICM key LED
9 line LED 10 25 MIC key LED
10 line LED 11 26 not used
11 line LED 12 27 not used
12 line LED 13 28 not used
13 line LED 14 29 not used
14 line LED 15 30 not used
15 line LED 16 31 not used

The two-color LEDs can take on one of the states listed below. The MIC and
ICM indicators use only the red states.

Binary Hex Description
0000 0000 0x00 off
0000 0001 0x01 flutter (red)
0000 0010 0x02 wink (red)
0000 0011 0x03 rapid wink (red)
0000 0100 0x04 interrupted rapid wink (red)

52

retrieves the status of LCD/LED indicators d42_indicators()

0000 0101 0x05 interrupted wink (red)
0000 0110 0x06 interrupted unlit (red)
0000 0111 0x07 steady on (red)
0000 1001 0x09 flutter (green)
0000 1010 0x0A wink (green)
0000 1011 0x0B rapid wink (green)
0000 1100 0x0C interrupted rapid wink (green)
0000 1101 0x0D interrupted wink (green)
0000 1110 0x0E interrupted unlit (green)
0000 1111 0x0F steady on (green)

 Example

If the data for byte 1 is 0x07 and byte 12 is 0x0F, the LED indicator for Line Key
2 is on (red) and the LED indicator for Line Key 13 is on (green). The contents of
the application buffer are shown below.

NOTE: You can determine if an indicator is red or green by checking if bit 3 is 0

(red) or 1 (green). The example below shows the binary data for On and
Wink.

 Bit 7 6 5 4 3 2 1 0
On (0x07 red) 0 0 0 0 0 1 1 1
On (0x0F green) 0 0 0 0 1 1 1 1

Wink (0x02 red) 0 0 0 0 0 0 1 0
Wink (0x0A green) 0 0 0 0 1 0 1 0

53

d42_indicators() retrieves the status of LCD/LED indicators

Message
Waiting
Indicator

16 Line
Indicators

MIC/ICM
Indicators

5 Function
Indicators

Figure 5. NEC Dterm Series III Telephone Indicators

54

retrieves the status of LCD/LED indicators d42_indicators()

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 int count;
 char bufferp[49];

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Wait for incoming call */
 if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1))==-1)
 {
 printf(“Error dx_wtring()\n”);
 dx_close(devh);
 exit(-1);
 }

 /* Get the Calling/Caller Id */
 if ((rc = d42_gtcallid(devh, bufferp)) == -1)
 {
 printf(“Error d42_gtcallid()\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_gtcallid */

 printf(“Caller Id = %s\n”,bufferp);

 /* Get the Indicator Information */
 if ((rc = d42_indicators(devh, bufferp)) == -1)
 {
 printf(“Error d42_indicators(): Error Code: %hX\n”,ATDV_LASTERR(devh));
 dx_close(devh);
 exit(-1);
 } /* End d42_indicators*/

 for (count = 0; count < 49; count++)
 {
 printf(“Indicator %d = %X\n”,count, bufferp[count]);
 }

 dx_close(devh);
 } /* End main */

55

d42_indicators() retrieves the status of LCD/LED indicators

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_INVALARG Invalid argument passed to function
DXLIB_INVNRB Internal voice library error

56

retrieves the current LCD prompt data of the D/42D-SX d42_lcdprompt()

Name: int d42_lcdprompt(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer
containing Dialogic® D/42-SX LCD
prompt data

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SX

 Description

The d42_lcdprompt() function retrieves the current LCD prompt data of the
D/42D-SX Board and places it in an application buffer. The application buffer
must be 49 bytes, and will hold the entire bit mask representing the status of each
prompt.

Parameter Description

devh specifies the valid channel device descriptor obtained by a call
to dx_open()

bufferp pointer to the application buffer; the LCD prompt data is placed
here

The LCD prompt data stored in the application buffer is 48 bytes long. Each byte
represents a specific prompt on the SUPERSET 4 Feature Display (see Figure 6).
Each byte will be either 0x00 (off) or 0x01 (on). Refer to Table 3 for a
description of MITEL SUPERSET 4 Feature Display LCD prompts.

For example, if the data for bytes 4, 23, and 29 is 0x01, the prompts for
PROGRAM, FWD, and MSG are on. The contents of the application buffer are
shown below.

57

d42_lcdprompt() retrieves the current LCD prompt data of the D/42D-SX

Feature
Display

Prompts

Figure 6. MITEL SUPERSET 4 Prompt Display

58

retrieves the current LCD prompt data of the D/42D-SX d42_lcdprompt()

Table 3. MITEL SUPERSET 4 Prompt Descriptions

Soft Key Byte Prompt Soft Key Byte Prompt

1 0 PROGRAM 4 24 HELP
 1 CAMP 25 SEND
 2 SWAP 26 ADD
 3 PAGE 27 REMINDER
 4 PROGRAM 28 CALL
 5 ON 29 MSG
 6 SPLIT 30 HELD
 7 EXIT 31 REMINDER

2 8 NIGHT 5 32 REDIAL
 9 CALL 33 CANCEL
 10 ON 34 PRIVACY
 11 NAME 35 READ
 12 ANS 36 ←

 13 BACK 37 NO
 14 OFF 38 REL
 15 SAVE 39 MSG

3 16 PICKUP 6 40 RELEASE
 17 OVERRIDE 41 HANG
 18 TRANS 42 NEXT
 19 CALL 43 SPEED
 20 44 →

 21 OVERRIDE 45 UP
 22 CONF 46 YES
 23 FWD 47 CALL

59

d42_lcdprompt() retrieves the current LCD prompt data of the D/42D-SX

 Cautions

This function is only for the Dialogic® D/42D-SX Board. The application buffer
must be 49 bytes. The length of the LCD prompt data is 48 bytes and is stored as
a bit mask.

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char bufferp[49];

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Wait for incoming call */
 if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1))==-1)
 {
 printf(“Error dx_wtring()\n”);
 dx_close(devh);
 exit(-1);
 }

 /* Get the LCD Prompt Information */
 if ((rc = d42_lcdprompt(devh, bufferp)) == -1)
 {
 printf(“Error d42_lcdprompt()\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_lcdprompt*/
 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_INVALARG Invalid argument passed to function

60

retrieves the current LCD prompt data of the D/42D-SX d42_lcdprompt()

DXLIB_INVNRB Internal voice library error

61

d42_openfeaturesession() opens a phone extension feature session

Name: int d42_openfeaturesession(devh, bufferp, termtype, evtmask)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to a buffer specifying a
valid phone extension number in
ASCII character string format

 int *termtype • pointer to memory location that
receives the type of phone display

 int evtmask • specifies the events to enable for
the feature session

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-NS

 Description

The d42_openfeaturesession() function opens a phone extension feature session
on a specified channel, associating the telephone extension with the channel
number. It returns information about the display used by the telephone set. It also
enables for the feature session the asynchronous events specified in evtmask and
allows the use of any functions that require an open feature session, such as
d42_writetodisplay() and d42_closefeaturesession().

Parameter Description

devh specifies the valid channel device descriptor obtained by a call
to dx_open()

bufferp pointer to ASCII character string application buffer where the
NULL terminated phone extension number is placed

termtype pointer to the application variable that will receive information
on the type of phone display that is associated with the
extension. The information is used in the
d42_writetodisplay() function. Values returned are:
0x00 No display available
0x01 No display available
0x02 16-byte display
0x03 32-byte display

62

opens a phone extension feature session d42_openfeaturesession()

Parameter Description

evtmask specifies in a bit mask the events to enable for the feature
session. Values are (can be ORed):

D42_EVT_SOFTKEY
Enables the asynchronous event TD42_SOFTKEYINPUT,
which reports on the completion of softkey input.

D42_EVT_ASYNCCLOSEFEATSESSION
Enables the asynchronous event
TD42_ASYNCCLOSEFEATSESSION, which reports on
the close of a feature session.

 Cautions

Only one feature session can be open on a channel at any time.

 Example

void D42_Test_FeatureSession()
{
char szExt[5];
char *cpNull = NULL;
char cpErrStr[MAX_PATH];
int TermType;
int eventMask;

 // extension fpr which we are opening a feature session
 sprintf(szExt, "1234");

 eventMask = D42_EVT_SOFTKEY | D42_EVT_ASYNCCLOSEFEATSESSION;
 if (d42_openfeaturesession(G_d42chdev, szExt, &TermType, eventMask) == -1)
 {
 printf(“Error d42_openfeaturesession()\n”);
 }

 if (d42_writetodisplay(G_d42chdev, "FtrSs Open") == -1)
 {
 printf(“Error d42_writetodisplay()\n”);
 }

 if (d42_closefeaturesession(G_d42chdev) == -1)
 {
 printf(“Error d42_closefeaturesession()\n”);
 }

} // endof D42_Test_FeatureSession

63

d42_openfeaturesession() opens a phone extension feature session

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FEATSESSION
 ALREADYOPEN

Attempt to open more than one feature
session per channel

ED42_FWREQFAILURE Firmware error
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_UNSUPPORTED Function not supported on this board
ED42_INVALARG Invalid argument passed to function
DXLIB_INVNRB Internal voice library error

64

sets a D/42-xx board or channel parameter d42_setparm()

Name: int d42_setparm(devh, parmnum, parmvalp)
Inputs: int devh • board or channel descriptor

 int parmnum • parameter name
 void *parmvalp • pointer to an application buffer

containing the parameter value
Returns: ED42_NOERROR • if success

 -1 • if error (see Errors list)
Includes: D42LIB.H

Mode: synchronous
Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

 Description

The d42_setparm() function sets a D/42-xx board or channel parameter.
Depending on the parameter to be set, the value can be either a character string or
an integer. A list of the board and channel parameters that can be set for
parmnum can be found in Table 4 and Table 5.

Parameter Description

devh specifies the valid board device or channel device descriptor
obtained by a call to dx_open()

parmnum specifies the define for the parameter that is to be updated with
the value in the variable pointed to by parmvalp (see Table 4
and Table 5)

parmvalp pointer to the application buffer containing the parameter value

NOTE: Setting board parameters affects all the channels on the board, but
setting channel parameters affects only the specified channel.

To set board parameters, the following requirements must be met:
• the board must be open
• all channels on the board must be closed

To set channel parameters, the following requirements must be met:
• the channel must be open
• the channel must be idle

65

d42_setparm() sets a D/42-xx board or channel parameter

This function will return a failure if:
• the board or channel descriptor is invalid
• any channels are open when setting board parameters
• when setting channel parameters, the channel is not open and idle
• a read-only parameter is specified
• the value of parmnum is invalid
• parmnum is not supported on the specified board
• an MF parameter is specified while MF detection is enabled

 NEC PBX (Dialogic® D/42-NE2 Board)

The D4BD_MSGACCESSON and D4BD_MSGACCESSOFF parameter values
must be character strings. The string cannot exceed 7 characters plus a null.
Characters must be 0-9, #, and *.

The D4BD_RESETRINGCNT parameter is used to enable or disable the ring
counter. On the Dialogic® D/42-NE2 Board, the ring counter is used to count the
number of ring signals received from the PBX. Your application will answer a
call after the ring counter reaches a certain value (that you set). The ring counter
automatically resets to zero when the Dialogic® D/42-NE2 Board detects that the
call is abandoned or there is sufficient delay between ring events (set to 8 seconds
by default).

The NEAX 2400 IMS does not send call abandoned messages, therefore the ring
counter will only be reset when the ring event delay is exceeded. Be aware that if
a call is abandoned and a new call comes in before the 8-second delay, the ring
counter will not be reset before the second call and will indicate the number of
rings from both calls, possibly resulting in inaccurate data being reported to the
application. For example, an application using a NEAX 2400 is set to answer a
call after two rings. An incoming call is abandoned after the first ring and a new
call comes in immediately following the abandoned call (less than 8 seconds
apart). The application will answer the new call after the first ring because the
ring counter was not reset after the first call was abandoned (it was incremented
from one to two). This may result in inaccurate data being returned to the
application, such as calling/called number ID or display data.

When using a Dialogic® D/42-NE2 Board with a NEAX 2400 IMS, the
D4BD_RESETRINGCNT parameter must be set to 0 (which is the default). If
enabled, the Dialogic® D/42-NE2 Board may intermittently reset the ring counter
and your application will not answer calls reliably.

66

sets a D/42-xx board or channel parameter d42_setparm()

When using a Dialogic® D/42-NE2 Board with the NEAX 2000 IVS, you should
set the D4BD_RESETRINGCNT parameter to 1. This will enable the Dialogic®
D/42-NE2 Board to reset the ring counter when it detects that a call is abandoned,
allowing your application to retrieve accurate called/calling number ID and
display data.

 Cautions

When setting a parameter, the user passes a pointer to a variable containing the
new parameter value. This variable should be treated as an unsigned integer for
all parameters except D4BD_MSGACCESSON and D4BD_MSGACCESSOFF.
Both D4BD_MSGACCESSON and D4BD_MSGACCESSOFF should be treated
as ASCIIZ strings (char *). The application should cast the parmvalp parameter
to a (void *) to avoid compiler warnings.

Table 4. Dialogic® D/42 Board Parameters for d42_getparm() and
d42_setparm() Functions

Board Parameters Description
Dialogic® D/42D-SX Board

D4BD_SPMODE Set speaker phone mode.
Values: 0 - enable (default)
 1 - disable

Dialogic® D/42D-SL Board
D4BD_RINGON Set ring on duration.

Values: 0 - 1000 x 10 ms. (default: 400)
D4BD_RINGOFF Set ring off duration.

Values: 0 - 1000 x 10 ms. (default: 200)
Dialogic® D/42-NS Board
(no parameters)
Dialogic® D/42-NE2 Board (PBX only)
D4BD_MSGACCESSON Set message access code on.

Values: string (default: **9)
D4BD_MSGACCESSOFF Set message access code off.

Values: string (default: ##9)
D4BD_RESETRINGCNT Controls the automatic reset of the ring counter

on the Dialogic® D/42-xx Board.
Values: 0 - disable (default)
 1 - enable

67

d42_setparm() sets a D/42-xx board or channel parameter

Table 5. Dialogic® D/42 Channel Parameters for d42_getparm() and

d42_setparm() Functions

Channel Parameters Description
Dialogic® D/42D-SX Board
(no parameters)
Dialogic® D/42D-SL Board
D4CH_PDNKEY Define PDN key feature

Values: 0 - 9 decimal (default: 0)
D4CH_XFERKEY Define transfer feature key

Values: 0 - 9 decimal (default: 1)
D4CH_SENDKEY Define send message feature key

Values: 0 - 9 decimal (default: 2)
D4CH_CANCELKEY Define cancel message feature key

Values: 0 - 9 decimal (default: 3)
D4CH_DNKEY Define DN feature key

Values: 0 - 9 decimal (default: 4)
D4CH_RELEASEKEY Define release feature key

Values: 0 - 9 decimal (default: 9)
Dialogic® D/42-NS Board
D4CH_ASYNCCALLID Control caller ID reporting through the

asynchronous TD42_ASYNCCALLID event.
Values:
 0 - disable caller ID reporting (default)
 1 - enable caller ID reporting

D4CH_ASYNCCHSTAT
US

Control channel synchronization status reporting
through the asynchronous
TD42_ASYNCCHSTATUS event. Values:
 0 - disable channel status reporting (default)
 1 - enable channel status reporting
Data values returned with the
TD42_ASYNCCHSTATUS event are:
 D42_CH_STATUS_OFF - communication off
 D42_CH_STATUS_ON - communication on

68

sets a D/42-xx board or channel parameter d42_setparm()

Channel Parameters Description
D4CH_ASYNCCLOSEFE
ATSESSION

Control feature session reporting through the
TD42_ASYNCCLOSEFEATURESESSION
event. Note that this parameter is not normally
manipulated through the d42_setparm()
function because it is built into the
d42_openfeaturesession() and
d42_closefeaturesession() functions, which can
automatically enable and disable this parameter,
respectively. This parameter requires an open
feature session. Values:
 1 - enable feature session reporting
 0 - disable feature session reporting (default)

D4CH_SOFTKEYINPUT Control softkey input reporting through the
TD42_SOFTKEYINPUT event. Note that this
parameter is not normally manipulated through
the d42_setparm() function because it is built
into the d42_openfeaturesession() and
d42_closefeaturesession() functions, which can
automatically enable and disable this parameter,
respectively. Values:
 0 - disable softkey input reporting (default)
 1 - enable softkey input reporting

Dialogic® D/42-NE2 Board
(no parameters)

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 unsigned int parmvalp = 1;

 /* Open Board Device */
 if ((devh = dx_open("dxxxB1",NULL))==-1)
 {
 printf("Error dx_open()\n”);
 exit(-1);
 } /* End dx_open */

 if ((ATD4_BDTYPE (devh)) == TYP_SX)
 {
 /* Set the Board Parameter To Enable Calling/Caller Id */

69

d42_setparm() sets a D/42-xx board or channel parameter

 if ((rc = d42_setparm(devh, D4BD_SPMODE, (void *)&parmvalp)) == -1)
 {
 printf(“Error d42_setparm(D4BD_SPMODE)\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_setparm */

 } /* end ATD4_BDTYPE */
 dx_close(devh);
 } /* End main */

 Errors
If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_FWREQFAILURE Firmware error
ED42_BADPARM Invalid value for parameter
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_INVALARG Invalid argument passed to function

70

writes to the phone set display d42_writetodisplay()

Name: int d42_writetodisplay(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to a buffer containing
ASCII character string data to be
displayed

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-NS

 Description

The d42_writetodisplay() function writes to the phone set display the ASCII
string contents of bufferp. This function requires that a phone extension feature
session be previously opened on the channel through the
d42_openfeaturesession() function, which associates a telephone extension with
a channel number and provides information about the display used by the phone
set.

Parameter Description

devh specifies the valid channel device descriptor obtained by a call
to dx_open() and on which a feature session is has been
opened

bufferp pointer to an application buffer containing a NULL terminated
ASCII data string that is to be displayed on the telephone set
display. The buffer size is determined by the maximum amount
of data that can be sent to the telephone set display, which was
returned by the d42_openfeaturesession() function, plus one
NULL byte.

 Cautions

Only one feature session can be open on a channel at any time.

71

d42_writetodisplay() writes to the phone set display

 Example

void D42_Test_FeatureSession()
{
char szExt[5];
char *cpNull = NULL;
char cpErrStr[MAX_PATH];
int TermType;
int eventMask;

 // extension fpr which we are opening a feature session
 sprintf(szExt, "1234");

 eventMask = D42_EVT_SOFTKEY | D42_EVT_ASYNCCLOSEFEATSESSION;
 if (d42_openfeaturesession(G_d42chdev, szExt, &TermType, eventMask) == -1)
 {
 printf(“Error d42_openfeaturesession()\n”);
 }

 if (d42_writetodisplay(G_d42chdev, "FtrSs Open") == -1)
 {
 printf(“Error d42_writetodisplay()\n”);
 }

 if (d42_closefeaturesession(G_d42chdev) == -1)
 {
 printf(“Error d42_closefeaturesession()\n”);
 }

} // endof D42_Test_FeatureSession

 Errors

If this function returns -1 to indicate a failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following (most common) errors.
For a complete list of error codes and definitions, refer to Appendix C.

ED42_NOFEATURE
 SESSION

Function requires an open feature session

ED42_FWREQFAILURE Firmware error
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNKNOWNBOARD Unknown Dialogic® D/42 board type
ED42_UNSUPPORTED Function not supported on this board
ED42_INVALARG Invalid argument passed to function
DXLIB_INVNRB Internal voice library error

72

4. Programming Considerations

Information about using the Windows® version of the Dialogic® D/42 Runtime
Library to perform PBX functions is included in this chapter. A general
description of the PBX functions and considerations unique to each PBX system
are included for the following:

• Opening a channel on a Dialogic® D/42-xx Board

• Accessing PBX features using dial strings

• turn on/off message waiting indicators
• dial programmable keys
• call transfer
• in-band/out-of-band signaling

• Disconnect supervision

• Converting existing Dialogic® D/4x Board applications into Dialogic® D/42
Board applications

4.1. Opening a Channel on a Dialogic® D/42-xx Board

 Description

A Dialogic® D/42-xx Board begins to synchronize with the PBX immediately
after the Dialogic® D/42 firmware (D4X.FWL) is downloaded to the board
(assuming that the board is physically connected to the PBX). This process can
take up to 60 seconds to complete. During this time period, the Dialogic® D/42-
xx Board should not receive any calls from the PBX. Before any other functions
are accessed, your application should ensure that the Dialogic® D/42-xx Board is
synchronized by opening the board device and calling the d42_brdstatus()
function. Failure to ensure that the connection is established (synchronized) may
result in unpredictable results.

After synchronization is complete, the dx_open() function is used to open the
channel by using a valid device name to identify the channel you wish to open.

73

Dialogic® D/42 Series Software API Library Reference

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char buffstatus;
 char bufferp[49];

/* open the channel */
 if ((devh = dx_open("dxxxB1C1",NULL)) == -1)
 {
 /* process error */
 exit(1);
 }

 /* Open Board Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Get the board status Information */
 if ((rc = d42_brdstatus(devh, &buffstatus, bufferp)) == -1)
 {
 printf(“Error d42_brdstatus()\n”);
 dx_close(devh);
 exit(-1);
 } /* End d42_brdstatus*/

 printf(“Board Status = %X\n”,buffstatus);

/* wait for 60 seconds for switch */
Sleep(60000L);

 dx_close(devh);

exit(0);

}

74

4. Programming Considerations

4.2. Accessing PBX Features on a PBX Using Dial
Strings

You can access PBX features such as turning on and off a message waiting
indicator, dialing programmable keys, and transferring calls, using dial strings in
the dx_dial() function. dx_dial() is a Dialogic® D/4x Voice API function. For
general information on how to use this function, see the Dialogic® Voice API
Library Reference.

Input parameters for the dx_dial() function are defined as follows:

dx_dial()
Name: int dx_dial(chdev, dialstrp, capp, mode)
Inputs: int chdev channel descriptor
 char *dialstrp pointer to ASCIIZ dial string
 DX_CAP *capp pointer to Call Progress Analysis Parameter

structure
 unsigned short mode asynchronous/synchronous setting and call

analysis flag

The dial string will accept escape sequences that are used to access PBX features.
Acceptable ASCII characters for each dial string are the standard DTMF dialing
and control characters described in the Dialogic® Voice API Library Reference,
and the additional characters described in the following paragraphs.

The procedure for accessing a feature is as follows:

1. Set the hook state (on-hook or off-hook) required for dialing the feature dial
string.

2. Use the appropriate dial string (e.g., <ESC>K).

NOTE: In some cases, a pause (“,”) may be needed after the entire dial string to
give the switch enough time to respond to the command before issuing
the next command.

75

Dialogic® D/42 Series Software API Library Reference

4.2.1. Turn On the Message Waiting Indicator

 Description

A dial string instructs the PBX to light the message waiting indicator on the
specific extension. The dial string contains the following components:

<ESC> the ASCII escape character (0x1B).

command an ASCII character that identifies the “turn on message
waiting indicator” feature.

, pause

<extension> the number of the extension whose message waiting
indicator is to be lit.

 The dial strings for specific PBXs are listed below.

NOTE: The pause in the dial string is sometimes needed to give the PBX time to
activate the feature. The command character is case sensitive. Characters
with the incorrect case will be ignored.

 MITEL PBX (Dialogic® D/42D-SX Board)

,<extension>,<ESC>O

The Dialogic® D/42D-SX channel must be off-hook when dialing this string.

On a SUPERSET 4 telephone, this dial string activates the message indicator on
the specified extension. On a non-SUPERSET 4 telephone, message waiting
indication can be controlled if the phone is equipped with a message waiting
indicator or if it has been assigned to a COS with the Audible Message Waiting
(AMW) feature enabled.

76

4. Programming Considerations

 Northern Telecom SL-1 (Dialogic® D/42D-SL Board)

<ESC>O,<extension>,<ESC>O

The Dialogic® D/42D-SL channel must be on-hook when dialing this string.

On an SL-1 phone, the message indicator is next to the Message Waiting Key
(MWK), a feature key programmed on the telephone. On a non-SL-1 phone, the
message waiting indicator can be turned on if the phone is equipped with a
message waiting indicator or if it has been assigned to a COS with the Audible
Message Waiting (AMW) feature enabled.

 Northern Telecom Norstar (Dialogic® D/42-NS Board)

<ESC>O,<extension>,<ESC>O

The Dialogic® D/42-NS channel must be on-hook when dialing this string.

 NEC KTS (Dialogic® D/42-NE2 Board)

<ESC>O,<extension>,<ESC>O

The Dialogic® D/42-NE2 channel must be on-hook when dialing this string.

 NEC PBX (Dialogic® D/42-NE2 Board)

<ESC>O,<extension>,<ESC>O

The Dialogic® D/42-NE2 channel must be off-hook when dialing this string.

77

Dialogic® D/42 Series Software API Library Reference

 Example

#define ESC 0x1b
unsigned int devh; /* channel descriptor */
char digstr[40];

int turn_on_mwl()
{

/* set up dial string */
switch (ATD4_CHTYPE(devh))
 {
 case TYP_SX:
 sprintf(digstr,",555,%cO",ESC);
 break;
 case TYP_SL:
 case TYP_NS:
 case TYP_NE2KTS:
 sprintf(digstr,"%c0,555,%cO",ESC,ESC);
 break;

 case TYP_NE2PBX:
 sprintf(digstr,"%c0,555,%cO",ESC,ESC);
 /* for the NEC PBX, channel must be off-hook before dialing */
 if(dx_sethook(devh, DX_OFFHOOK, EV_SYNC)==-1)
 {
 /* Process error */
 exit(1);
 }
 Sleep(1000); /* Allow 1 second for offhook to register */
 break;
 }
/* turn on message waiting indicator on ext. 555 */
if (dx_dial(devh,digstr,NULL,EV_SYNC) == -1)
 {
 printf("\nDial failed\n");
 exit (1);
 }

if(ATD4_CHTYPE(devh) == TYP_NE2PBX)

{
if (dx_sethook(devh,DX_ONHOOK, EV_SYNC)==-1)

 {
 /* Process error */
 exit(1);
 }
 }

return (0);

}

78

4. Programming Considerations

4.2.2. Turn Off the Message Indicator

 Description

A dial string instructs the PBX to turn off the message waiting indicator on the
specific extension. The dial string contains the following components:

<ESC> the ASCII escape character (0x1B).

command an ASCII character that identifies the “turn off message
waiting indicator” feature.

, pause

<extension> the number of the extension whose message waiting
indicator is to be turned off.

The dial strings for specific PBXs are listed below.

NOTE: The pause in the dial string is sometimes needed to give the PBX time to
activate the feature. The command character is case sensitive. Characters
with the incorrect case will be ignored.

 MITEL PBX (Dialogic® D/42D-SX Board)

,<extension>,<ESC>F

The Dialogic® D/42D-SX channel must be off-hook when dialing this string.

 Northern Telecom SL-1 (Dialogic® D/42D-SL Board)

<ESC>F,<extension>,<ESC>F

The Dialogic® D/42D-SL channel must be on-hook when dialing this string.

79

Dialogic® D/42 Series Software API Library Reference

 Northern Telecom Norstar (Dialogic® D/42-NS Board)

<ESC>F,<extension>,<ESC>F

The Dialogic® D/42-NS channel must be on-hook when dialing this string. A
message waiting indicator can only be disabled by the extension that enables it.

 NEC KTS (Dialogic® D/42-NE2 Board)

<ESC>F,<extension>,<ESC>F

The Dialogic® D/42-NE2 channel must be on-hook when dialing this string.

 NEC PBX (Dialogic® D/42-NE2 Board)

<ESC>F,<extension>,<ESC>F

The Dialogic® D/42-NE2 channel must be off-hook when dialing this string.

80

4. Programming Considerations

 Example

#define ESC 0x1b
unsigned int devh; /* channel descriptor */
char digstr[40];

int turn_off_mwl()
{

/* set up dial string */
switch (ATD4_CHTYPE(devh))
 {
 case TYP_SX:
 sprintf(digstr,",555,%cF",ESC);
 break;
 case TYP_SL:
 case TYP_NS:
 case TYP_NE2KTS:
 sprintf(digstr,"%cF,555,%cF",ESC,ESC);
 break;

 case TYP_NE2PBX:
 sprintf(digstr,"%cF,555,%cF",ESC,ESC);
 /* for the NEC PBX, channel must be off-hook before dialing */
 if(dx_sethook(devh, DX_OFFHOOK, EV_SYNC)==-1)
 {
 /* Process error */
 exit(1);
 }
 Sleep(1000); /* Allow 1 second for offhook to register */
 break;

}
/* turn off message waiting indicator on ext. 555 */
if (dx_dial(devh,digstr,NULL,EV_SYNC) == -1)
 {
 printf("\nDial failed\n");
 exit (1);
 }

if(ATD4_CHTYPE(devh) == TYP_NE2PBX)

{
if (dx_sethook(devh,DX_ONHOOK, EV_SYNC)==-1)

 {
 /* Process error */
 exit(1);
 }
 }

return (0);

}

81

Dialogic® D/42 Series Software API Library Reference

4.2.3. Dial Programmable Keys

 Description

The dial string <ESC>K<key>, enables the Dialogic® D/42-xx Boards to access
features programmed into the programmable keys available to extensions on the
PBX. The dial string contains the following components:

<ESC> the ASCII escape character (0x1B)

K identifies the Dial Programmable Key feature

<key> indicates which programmable feature key to access

, pause (optional)

NOTE: The pause in the dial string may be needed to give the PBX time to
activate the feature. The “K” and <key> characters are case sensitive.
Dial strings using a lower case “k” will be ignored. Use the correct case
for the <key> characters to ensure the proper function is accessed.

 MITEL PBX (Dialogic® D/42D-SX Board)

To access the dial string features on a MITEL SUPERSET 4 Phone, refer to
Figure 7 and use the direct key dialing sequences listed in Table 6. Also, refer to
the Dialogic® D/42 Series Boards User’s Guide for more information about
programmable keys.

82

4. Programming Considerations

Figure 7. MITEL SUPERSET 4 Telephone

83

Dialogic® D/42 Series Software API Library Reference

Table 6. MITEL Direct Key Dialing Sequences

Dial Code Key Description
<ESC>K0 Soft Key 1
<ESC>K1 Soft Key 2
<ESC>K2 Soft Key 3
<ESC>K3 Soft Key 4
<ESC>K4 Soft Key 5
<ESC>K5 Soft Key 6
<ESC>K6 Feature Key 0 (display)
<ESC>K7 Feature Key 1 (select features)
<ESC>K8 Feature Key 2 (speaker on/off)
<ESC>K9 Feature Key 3 (mic. on/off)
<ESC>KA Line Key 0 (hold)
<ESC>KB Line Key 1 (prime line)
<ESC>KC Line Key 2 (line or speed dial)
<ESC>KD Line Key 3 (line or speed dial)
<ESC>KE Line Key 4 (line or speed dial)
<ESC>KF Line Key 5 (line or speed dial)
<ESC>KG Line Key 6 (line or speed dial)
<ESC>KH Line Key 7 (line or speed dial)
<ESC>KI Line Key 8 (line or speed dial)
<ESC>KJ Line Key 9 (line or speed dial)
<ESC>KK Line Key 10 (line or speed dial)
<ESC>KL Line Key 11 (line or speed dial)
<ESC>KM Line Key 12 (line or speed dial)
<ESC>KN Line Key 13 (line or speed dial)
<ESC>KO Line Key 14 (line or speed dial)
<ESC>KP Line Key 15 (line or speed dial)

84

4. Programming Considerations

 Northern Telecom SL-1 (Dialogic® D/42D-SL Board)

To access the dial string features on a Northern Telecom Digit Display Phone,
refer to Figure 8 and use the direct key dialing sequences listed in Table 7. Also,
refer to the Dialogic® D/42 Series Boards User’s Guide for more information
about programmable keys.

NOTE: For in-band and out-of-band signaling, the default is set to out-of-band.
If you need to invoke in-band signaling, you must use the <ESC>DI dial
string. The signaling will remain in-band until either the dx_sethook()
function is used to go on hook, or the <ESC>DO dial string is used.

85

Dialogic® D/42 Series Software API Library Reference

Digit Display

Figure 8. Northern Telecom Digit Display Telephone

86

4. Programming Considerations

Table 7. Northern Telecom SL-1 Direct Key Dialing Sequences

Dial Code Key Description

<ESC>K0 ACD or SCR - Automatic Call Distribution - This line (port)
will be used for call reception (ACD) or origination (SCR).
Program this key as an ACD agent or as an SCR according to
ACD requirements.

<ESC>K1 TRN - Call Transfer - Enables an extension to transfer calls to
other extensions.

<ESC>K2 MIK - Message Indication - Enables an extension to turn on the
message waiting indicator of another extension.

<ESC>K3 MCK - Message Cancellation - Enables an extension to turn off
the message waiting indicator of another extension.

<ESC>K4 SCR - Single Call Ringing - This is the extension that the
Dialogic® D/42D-SL channel originates calls on if ACD is
enabled.

<ESC>K5 User programmable.
<ESC>K6 User programmable.
<ESC>K7 User programmable.
<ESC>K8 Handsfree - This enable/disables the speaker.
<ESC>K9 RLS - Release - This key allows an extension to release a call.
<ESC>KA Volume up.
<ESC>KB Volume down.
<ESC>KC Hold.
<ESC>DI Enable in-band DTMF signaling.
<ESC>DO Enable out-of-band DTMF signaling.

 Northern Telecom Norstar (Dialogic® D/42-NS Board)

To access the dial string features on a Northern Telecom Model 7310 telephone,
refer to Figure 9 and use the direct key dialing sequences listed in Table 8. Also,
refer to the Dialogic® D/42 Series Boards User’s Guide for more information
about programmable keys.

87

Dialogic® D/42 Series Software API Library Reference

NOTE: For in-band and out-of-band signaling, the default is set to out-of-band.
If you need to invoke in-band signaling, you must use the <ESC>DI dial
string. The signaling will remain in-band until either the dx_sethook()
function is used to go on hook, or the <ESC>DO dial string is used.

S W a

b

c

d

T

U Y

V

9

8

K

H

E

B

A

I

F

C

L

J

G

D

O

NM

7

6

5

3

2

1

0

4

P Q R

Z

X

Figure 9. Northern Telecom Model 7310 Telephone

88

4. Programming Considerations

Table 8. Northern Telecom Norstar Direct Key Dialing Sequences

Dial Code Key Description

<ESC>K0 Memory Button 00 - Handsfree/Mute
<ESC>K1 Memory Button 01 - Intercom
<ESC>K2 Memory Button 02 - Intercom
<ESC>K3 Memory Button 03 - Transfer
<ESC>K4 Memory Button 04
<ESC>K5 Memory Button 05
<ESC>K6 Memory Button 06
<ESC>K7 Memory Button 07
<ESC>K8 Memory Button 08
<ESC>K9 Memory Button 09
<ESC>KA Dialpad 0
<ESC>KB Dialpad 1
<ESC>KC Dialpad 2
<ESC>KD Dialpad 3
<ESC>KE Dialpad 4
<ESC>KF Dialpad 5
<ESC>KG Dialpad 6
<ESC>KH Dialpad 7
<ESC>KI Dialpad 8
<ESC>KJ Dialpad 9
<ESC>KK Dialpad *
<ESC>KL Dialpad #
<ESC>KM Release
<ESC>KN Feature
<ESC>KO Hold
<ESC>KP Display button 00

89

Dialogic® D/42 Series Software API Library Reference

Dial Code Key Description

<ESC>KQ Display button 01
<ESC>KR Display button 02
<ESC>KS Dual Memory button #0
<ESC>KT Dual Memory button #1
<ESC>KU Dual Memory button #2
<ESC>KV Dual Memory button #3
<ESC>KW Dual Memory button #4
<ESC>KX Dual Memory button #5
<ESC>KY Dual Memory button #6
<ESC>KZ Dual Memory button #7
<ESC>Ka Dual Memory button #8
<ESC>Kb Dual Memory button #9
<ESC>Kc Dual Memory button #10
<ESC>Kd Dual Memory button #11
<ESC>Ke Dual Memory button #12 (Shifted button #0)
<ESC>Kf Dual Memory button #13 (Shifted button #1)
<ESC>Kg Dual Memory button #14 (Shifted button #2)
<ESC>Kh Dual Memory button #15 (Shifted button #3)
<ESC>Ki Dual Memory button #16 (Shifted button #4)
<ESC>Kj Dual Memory button #17 (Shifted button #5)
<ESC>Kk Dual Memory button #18 (Shifted button #6)
<ESC>Kl Dual Memory button #19 (Shifted button #7)
<ESC>Km Dual Memory button #20 (Shifted button #8)
<ESC>Kn Dual Memory button #21 (Shifted button #9)
<ESC>Ko Dual Memory button #22 (Shifted button #10)
<ESC>Kp Dual Memory button #23 (Shifted button #11)
<ESC>DI Enable in-band DTMF signaling
<ESC>DO Enable out-of-band DTMF signaling

90

4. Programming Considerations

 NEC KTS/PBX (Dialogic® D/42-NE2 Board)

To access the dial string features on a Dterm Series III telephone, refer to Figure
10 and use the direct key dialing sequences listed in Table 9. Also, refer to the
Dialogic® D/42 Series Boards User’s Guide for more information about
programmable keys.

NOTE: For in-band and out-of-band signaling, the default is set to out-of-band.
If you need to invoke in-band signaling, you must use the <ESC>DI dial
string. The signaling will remain in-band until either the dx_sethook()
function is used to go on hook, or the <ESC>DO dial string is used.

W

a

e

i

1 2 3

4

7 8 9

5 6

K

L

I

B

J G M N

A

U V

C H

X

b

f

Y

c

g

k

Z
m

o

q

s

u

w

y

+

< >

(

n

p

r

t

v

x

z

/

)

d

h

l

Figure 10. NEC Dterm III Telephone

91

Dialogic® D/42 Series Software API Library Reference

Table 9. NEC KTS/PBX Direct Key Dialing Sequences

Dial Code Key Description

<ESC>K1 Dialpad 1
<ESC>K2 Dialpad 2
<ESC>K3 Dialpad 3
<ESC>K4 Dialpad 4
<ESC>K5 Dialpad 5
<ESC>K6 Dialpad 6
<ESC>K7 Dialpad 7
<ESC>K8 Dialpad 8
<ESC>K9 Dialpad 9
<ESC>KA Dialpad 0
<ESC>KB Dialpad *
<ESC>KC Dialpad #
<ESC>KF Key release
<ESC>KG Function key 0 - TRF
<ESC>KH Function key 1 - LNR
<ESC>KI Function key 2 - CNF
<ESC>KJ Function key 3 - HOLD
<ESC>KK Function key 4 - RECALL
<ESC>KL Function key 5 - FNC
<ESC>KM Function key 6 - ANS
<ESC>KN Function key 7 - SPKR
<ESC>KU Volume up
<ESC>KV Volume down
<ESC>KW Line key 1
<ESC>KX Line key 2

92

4. Programming Considerations

Dial Code Key Description

<ESC>KY Line key 3
<ESC>KZ Line key 4
<ESC>Ka Line key 5
<ESC>Kb Line key 6
<ESC>Kc Line key 7
<ESC>Kd Line key 8
<ESC>Ke Line key 9
<ESC>Kf Line key 10
<ESC>Kg Line key 11
<ESC>Kh Line key 12
<ESC>Ki Line key 13
<ESC>Kj Line key 14
<ESC>Kk Line key 15
<ESC>Kl Line key 16
<ESC>Km Direct Station Select (DDS) key 1
<ESC>Kn Direct Station Select (DDS) key 2
<ESC>Ko Direct Station Select (DDS) key 3
<ESC>Kp Direct Station Select (DDS) key 4
<ESC>Kq Direct Station Select (DDS) key 5
<ESC>Kr Direct Station Select (DDS) key 6
<ESC>Ks Direct Station Select (DDS) key 7
<ESC>Kt Direct Station Select (DDS) key 8
<ESC>Ku Direct Station Select (DDS) key 9
<ESC>Kv Direct Station Select (DDS) key 10
<ESC>Kw Direct Station Select (DDS) key 11
<ESC>Kx Direct Station Select (DDS) key 12
<ESC>Ky Direct Station Select (DDS) key 13
<ESC>Kz Direct Station Select (DDS) key 14

93

Dialogic® D/42 Series Software API Library Reference

Dial Code Key Description

<ESC>K(Direct Station Select (DDS) key 15
<ESC>K) Direct Station Select (DDS) key 16
<ESC>K+ Direct Station Select (DDS) key 17
<ESC>K/ Direct Station Select (DDS) key 18
<ESC>K< Direct Station Select (DDS) key 19
<ESC>K> Direct Station Select (DDS) key 20
<ESC>DI Enable in-band DTMF signaling
<ESC>DO Enable out-of-band DTMF signaling

94

4. Programming Considerations

 Example

#define ESC 0x1b
int devh; /* channel descriptor */
char digstr[40];

int set_spk()
{

/* set up dial string to press Speaker key */

 switch (ATD4_CHTYPE(devh))
 {
 case TYP_SX:
 sprintf(digstr,"%cK8",ESC);
 break;
 case TYP_SL:
 case TYP_NS:
 sprintf(digstr,"%cK0",ESC);
 break;
 case TYP_NE2KTS:
 case TYP_NE2PBX:
 sprintf(digstr,"%cKN",ESC);
 break;

}

 /* Program dial programmable key */
 if (dx_dial(devh,digstr,NULL, EV_SYNC))
 {
 printf("\nDial failed\n");
 exit(1);
 }

return(0);

}

95

Dialogic® D/42 Series Software API Library Reference

4.2.4. Transferring a Call

 Description

The hook flash character (“&” by default) is used to initiate a transfer instead of
an escape sequence as in the other feature dial strings. The hook flash is used
because many PBX switches commonly use a hook flash as a transfer key. The
following procedure is used by an application to transfer a call:

1. The channel must be off-hook and connected to an extension or trunk.

2. Use the following dial string to transfer the call to another extension:
 &,<extension>

where “&” is the hook flash character, the comma (“,”) is a pause, and
<extension> is the extension to which the call is being transferred.

3. Go on-hook to complete the transfer or dial a second hook flash to cancel the
transfer.

The pause in the dial string is required. The pause gives the PBX time to activate
the feature. Instead of a pause, you can use Enhanced Call Progress Analysis
(ECPA) to detect a dial tone before dialing an extension. By using the control
character “L” in the dial string, the dx_dial() function will wait for a dial tone
before dialing. For example, to transfer to extension 555:

dx_initcallp(devh)
dx_dial(devh, “&L555”,NULL, EV_SYNC)

You can also use Global Tone Detection (GTD) to detect a dial tone before
dialing an extension. For example, to transfer to extension 555:

dx_dial(devh, “&”,NULL, EV_SYNC)
/ add code here to wait for tone event /
dx_dial (devh, “555” ,NULL, EV_SYNC)

Refer to the Dialogic® Voice API Programming Guide for more information
about using ECPA and GTD.

96

4. Programming Considerations

 Example

int devh; /* channel descriptor */
char digstr[40];

int transfer_call()
{

 /* transfer the call */
 if (dx_dial(devh,"&,555",NULL,EV_SYNC) == -1)
 {
 printf("\nDial failed\n");
 exit (1);
 }

 /* set the channel onhook after the transfer */
 if (dx_sethook(devh, DX_ONHOOK, EV_SYNC) == -1)
 {
 /* process error */
 exit(1);
 }

return (0);

}

4.2.5. In-Band/Out-of-Band Signaling

In-band signaling is a method used by analog (2500) telephones to communicate
with PBXs (e.g., calling into a PBX and using DTMF to respond to voice
prompts). In-band signals use the same band of frequencies as the voice signal.
This method provides limited integration because there are no standards and
different PBXs provide varying levels of control.

Out-of-band signaling is used by PBXs to communicate with their station sets or
a CT computer. Out-of-band signals do not use the band of frequencies use by the
voice signals. The PBX transmits data that can include information such as
called/calling number ID. Because of its versatility, out-of-band signaling is the
preferred method.

In-band signaling must be used when DTMF tones are required to communicate
(e.g., connecting two voice mail systems through a CO using AMIS - Automated
Messaging Interchange Specification). If out-of-band signaling is used, timing
problems may occur because digit data (dial pad) sent from the station set (or
Dialogic® D/42-xx Board) to the PBX are converted to DTMF and then sent to
the CO.

97

Dialogic® D/42 Series Software API Library Reference

Dialogic® D/42-xx Boards can be set to communicate using either in-band or out-
of-band signaling; refer to Table 10.

NOTE: When using <ESC>DI and <ESC>DO to set the DTMF signaling
method, the Dialogic® D/42-xx channel will return to its default state
after a dx_sethook() function is called.

Table 10. Setting In-Band and Out-of-Band Signaling

 DTMF Signaling
Dialogic® D/42-
xx Board

In-Band Out-of-Band Default Signaling

D/42D-SX N/A N/A In-band only
D/42D-SL <ESC>DI <ESC>DO Out-of-band
D/42-NS <ESC>DI <ESC>DO Out-of-band
D/42-NE2 (PBX) <ESC>DI <ESC>DO Out-of-band
D/42-NE2 (KTS) <ESC>DI <ESC>DO Out-of-band

4.3. Disconnect Supervision

 Description

Disconnect supervision for Dialogic® D/42-xx Boards functions the same as other
Dialogic® D/4x Boards. Refer to the Dialogic® Voice API Programming Guide
for a description of using I/O terminations to perform disconnect supervision in
your application.

As part of disconnect supervision, the Dialogc® D/42-xx Boards monitor
communications with the PBX. If communication is lost with the PBX for 60
seconds, the Dialogic® D/42-xx firmware will force a loop current drop condition
until communication is re-established.

 Northern Telecom Norstar (Dialogic® D/42-NS Board)

Not all trunks allow trunk disconnect. Consult your Norstar Hardware Manual to
determine if the trunk used allows trunk disconnect. If it does not provide

98

4. Programming Considerations

disconnect supervision, you will need to use another method to determine
disconnect (e.g., GTD-Global Tone Detection).

 NEC NEAX 2400 IMS and NEAX 2000 IVS PBX (Dialogic® D/42-NE2
Board)

The NEAX 2400 IMS and NEAX 2000 IVS do not support disconnect
supervision (loop current drop). When the calling party hangs up, the PBXs issue
a reorder tone. You will need to use another method (e.g., GTD-Global Tone
Detection) to detect a disconnect.

4.4. Converting Existing Dialogic® D/4x Applications

 Description

The Dialogic® D/42-xx Board and the Dialogic® D/4x Voice Board use the same
Dialogic® D/4x Voice Library and supporting library. Therefore, only minor
modifications are required to convert an existing Dialogic® D/4x application into
a Dialogic® D/42 application. This conversion only includes new functions
provided by the Dialogic® D/42 Runtime Library. Use the following guidelines to
convert an existing Dialogic® D/4x application to an application that uses the
Dialogic® D/42 Runtime Library:

NOTE: All Dialogic® D/42-xx applications must take into account the delay
waiting for loop current to be detected that exists when opening the
Dialogic® D/42-xx Board with the dx_open() library function.

• To convert an existing application without using the Dialogic® Unified API
or called/calling number ID, use the dx_clrdigbuf() function immediately
after the application receives a rings-received event to clear the called/calling
number ID digits from the digit buffer. This will prevent the called/calling
number ID from interfering with what the application expects to find in the
digit buffer. Alternately, use the dx_getdig() function to retrieve the
called/calling number ID and then discard the retrieved string. To access the
other PBX features, the application must use the dial strings in the dx_dial()
function using the format described in Section 4.2. Accessing PBX Features
on a PBX Using Dial Strings.

99

Dialogic® D/42 Series Software API Library Reference

• To convert an existing application without using the Dialogic® Unified API
but access called/calling number ID, use the dx_getdig() function to retrieve
the called/calling number ID digits and place them in the digit buffer. To
access the other PBX features, the application must use the dial strings in the
dx_dial() function using the format described in Section 4.2. Accessing
PBX Features on a PBX Using Dial Strings.

• To convert an existing application using the Dialogic® Unified API to
retrieve the called/calling number ID, use the dx_gtcallid() function to
retrieve the called/calling number ID digits and place them in the application
buffer. Refer to Section 3. Dialogic® Unified API Function Reference. To
access the other PBX features, the application must use the dial strings in the
dx_dial() function using the format described in Section 4.2. Accessing
PBX Features on a PBX Using Dial Strings.

100

Appendix A
Dialogic® D/42 Series Software Quick Reference

ATD4_BDTYPE() returns the D/42-xx board type

Name: int ATD4_BDTYPE(devh)
Inputs: int devh • board descriptor

Returns: board type • returns board type information if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

ATD4_CHTYPE() returns the D/42-xx channel type

Name: int ATD4_CHTYPE(devh)
Inputs: int devh • channel descriptor

Returns: channel type • channel type information if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

101

Dialogic® D/42 Series Software API Library Reference

d42_brdstatus() retrieves the current D/42-xx board status

Name: int d42_brdstatus(devh, buffstatus, bufferp)
Inputs: int devh • board descriptor

 char *buffstatus • pointer to buffer containing board
status information

 char *bufferp • reserved for future use
Returns: ED42_NOERROR • if success

 -1 • if error (see Errors list)
Includes: D42LIB.H

Mode: synchronous
Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

d42_chnstatus() retrieves the current D/42-xx channel status

Name: int d42_chnstatus(devh, statusp, bufferp)
Inputs: int devh • channel descriptor

 char *statusp • pointer to buffer containing channel
status information

 char *bufferp • reserved for future use
Returns: ED42_NOERROR • if success

 -1 • if error (see Errors list)
Includes: D42LIB.H

Mode: synchronous
Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

102

Appendix A

d42_closefeaturesession() closes an open feature session

Name: int d42_closefeaturesession(devh)
Inputs: int devh • channel descriptor

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-NS

d42_display() retrieves the current LCD/LED display

Name: int d42_display(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer. The
buffer will contain display data for
the selected channel.

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

103

Dialogic® D/42 Series Software API Library Reference

d42_flags() retrieves current D/42D-SX LCD Features Display data

Name: int d42_flags(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer. The
buffer will contain the Features
Display data.

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SX

d42_getparm() retrieves a D/42-xx channel or board parameter

Name: int d42_getparm(devh, parmnum, parmvalp)
Inputs: int devh • board or channel descriptor

 int parmnum • parameter name
 void *parmvalp • pointer to parameter value

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

104

Appendix A

d42_getver() retrieves the D/42-xx board firmware or library version

Name: int d42_getver(devh, bufferp, flag)
Inputs: int devh • board descriptor

 char *bufferp • pointer to an application buffer
containing the version information

 int flag • determines if firmware or library
version is retrieved

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: all Dialogic® D/42 boards

d42_gtcallid() retrieves the called/calling number ID

Name: int d42_gtcallid(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer
containing called/calling number ID data

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

105

Dialogic® D/42 Series Software API Library Reference

d42_indicators() retrieves the status of LCD/LED indicators

Name: int d42_indicators(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer
containing the indicators data

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

d42_lcdprompt() retrieves the current LCD prompt data of the D/42D-SX

Name: int d42_lcdprompt(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer
containing Dialogic® D/42-SX LCD
prompt data

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-SX

106

Appendix A

d42_openfeaturesession() opens a phone extension feature session

Name: int d42_openfeaturesession(devh, bufferp, termtype, evtmask)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to a buffer specifying a
valid phone extension number in
ASCII character string format

 int *termtype • pointer to memory location that
receives the type of phone display

 int evtmask • specifies the events to enable for
the feature session

Returns: ED42_NOERROR • if success
 -1 • if error (see Errors list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-NS

d42_setparm() sets a D/42-xx board or channel parameter

Name: int d42_setparm(devh, parmnum, parmvalp)
Inputs: int devh • board or channel descriptor

 int parmnum • parameter name
 void *parmvalp • pointer to an application buffer

containing the parameter value
Returns: ED42_NOERROR • if success

 -1 • if error (see Errors list)
Includes: D42LIB.H

Mode: synchronous
Supports: Dialogic® D/42-SL, D/42-SX, D/42-NS, D/42-NE2

107

Dialogic® D/42 Series Software API Library Reference

d42_writetodisplay() writes to the phone set display

Name: int d42_writetodisplay(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to a buffer containing
ASCII character string data to be
displayed

Returns: ED42_NOERROR • if success
 -1 • if error (see Error list)

Includes: D42LIB.H
Mode: synchronous

Supports: Dialogic® D/42-NS

108

Appendix B
Dialogic® D/42 Series Software Demonstration
Program

This appendix provides instructions for running the Dialogic® D/42 Series
Software demonstration program for Windows®. This program
demonstrates the Dialogic® Unified API functions using the Dialogic®
D/42-NS and D/42-NE2 Boards. Basic operations performed by the
Dialogic® D/42-xx Boards include:

• answer
• dial
• supervised/blind transfer
• play/record messages

Requirements

• 2 phones connected to a PBX
• 1 Dialogic® D/42-NS or D/42-NE2 Board connected to a PBX
• The PBX must be configured according to the Dialogic® D/42 Series

Boards User’s Guide.

Setup

Before running the Dialogic® D/42 Series Software demonstration
program, perform the following procedures:

1. Connect one channel of your Dialogic® D/42-xx Board to an extension
of the PBX.

2. Connect two telephones to two extensions of the PBX.

3. In necessary, start the Dialogic® D/42-xx Board using the Dialogic®
Configuration Manager (DCM).

109

Dialogic® D/42 Series Software API Library Reference

Documentation Conventions

The following conventions and terminology are used throughout the
instructions contained in this section:

• Window titles are in italics.
• Menu items are in bold.
• The extension used to call the Dialogic® D/42-xx channel is called

Phone A.
• The extension used receive the transfer is called Phone B.

Running the Demo

To run the Dialogic® D42 Series Software demonstration program:

1. Go to the Samples\d42 subdirectory under the Dialogic home
directory.

2. Start the Dialogic® D/42 Series Software demonstration program by
double-clicking on D42DEMO.EXE.

3. The Dialogic® D/42 Demo window will open - see Figure 11.

110

Appendix B

Figure 11. Dialogic® D42 Demo Window

4. From the Options menu, choose Properties. The D42 Options
window is displayed - see Figure 12.

Figure 12. D42 Options Window

111

Dialogic® D/42 Series Software API Library Reference

5. Enter the number of extension digits that corresponds to your PBX
configuration.

NOTE: If this option is not set correctly, the demo program will not
perform transfers correctly.

6. If you want to use supervised transfers, check the Supervised
Transfers box.

NOTE: In a supervised transfer, the demo program puts the incoming
call (Phone A) on hold and attempts to establish a connection
with Phone B before the transfer is completed.

In a non-supervised, or blind transfer, the incoming call
(Phone A) is transferred immediately to Phone B. You will
hear the ring signal, and the Dialogic® D/42-xx channel is
ready to accept a new call (indicators are gray).

7. Press OK to close the D42 Options window.

8. From the File menu, choose Open. The Select Your D42 Channel
window will be displayed - see Figure 13.

Figure 13. Select Your D/42 Channel

9. Choose a board listed below the applicable Dialogic® D/42 Series
board (Example: dxxxB1 under the Northern Telecom Norstar). A

112

Appendix B

channel list will be displayed in the right-hand window - see Figure
14.

Figure 14. Select a D/42 Channel

10. Choose a channel connected to the PBX and press OK
(Example: dxxxB1C1). A window will be displayed simulating the
appropriate phone set for your PBX.

NOTE: All four channels are displayed, not just the channel
connected to the PBX.

Figure 15 shows the Norstar M7310 phone set.

Figure 16 shows the NEC Dterm Series III phone set.

113

Dialogic® D/42 Series Software API Library Reference

LCD Indicators

LCD Indicators

Display

Message Waiting
Indicator

Message Waiting
Indicator

Application Status
Messages

Display

Figure 15. Northern Telecom M7310 Window

114

Appendix B

Message Waiting
Indicator

Message Waiting
Indicator

Line Indicators

Line Indicators

Display

Display

Application Status
Messages

Figure 16. NEC Dterm Series III Window

115

Dialogic® D/42 Series Software API Library Reference

11. Observe that the date and time appear in the display. This verifies that
the Dialogic® D/42-xx Board is communicating with the PBX. If the
date and time do not appear, verify that the correct channel is selected
and that the phone line is connected to the proper channel on the
Dialogic® D/42-xx Board.

12. From Phone A, dial the number of the extension connected to the
Dialogic® D/42-xx channel selected in step 10.

13. Listen to the greeting.

14. Enter the extension for Phone B.

NOTE: If you do not enter an extension within five seconds, the
demo will play the message “Thank you for calling Dialogic
Corporation” and hang up.

15. Phone B will ring. Answer the phone.

NOTE: If the demo is performing a supervised transfer, the transfer
will complete immediately after voice is detected on the
“transfer to” extension, or after 30 seconds of silence.

If performing a blind transfer, the transfer is completed
immediately.

16. Observe the indicators, display, caller ID, and status areas in the demo
window.

• Indicators – refer to Table 11.
• Display - shows information sent from the PBX.
• Caller ID - shows the caller ID data sent by the PBX.
• Message Waiting - turns on when a message is recorded.
• Status Area - shows demo application status messages (e.g.,

dialing, ready, playing intro prompt, and message access code).

116

Appendix B

Table 11. Demo Indicator Definitions

 Definition *

Indicator Color M3710 Dterm Series III

gray off off
green on flutter
red flash, Ihold, Uhold wink (and all others)

* Refer to d42_indicators() in Section 3 for a description of the
indicators.

17. You may repeat steps 12 through 15 using different scenarios for
Phone B (e.g., busy, no answer, forward).

NOTE: If you choose busy or no answer, you will be prompted to
leave a message. Recording stops when silence is detected.
When you leave a message, the Message Waiting indicator
will turn on (red). Only one message is saved (any previously
recorded message will be overwritten). The saved message
will be deleted when the channel is closed.

To listen to the message, call back the Dialogic® D/42-xx
extension and press the # key. The access number will be
displayed in the status area.

18. To close the open channel, choose Close from the File menu.

19. To exit the program, choose Exit from the File menu.

117

Dialogic® D/42 Series Software API Library Reference

118

Appendix C
Error and Event Definitions

Table 12. List of Error Codes

Error Code Name Description

ED42_BADDEVICE Invalid or wrong device handle
ED42_BADPARM Invalid value for parameter
ED42_DLLINIT Unable to initialize DLL
ED42_FEATSESSION
 ALREADYOPEN

Attempt to open more than one feature
session per channel

ED42_FWREQFAILURE Firmware error
ED42_INVALARG Illegal argument in function
ED42_MAXCHAN Maximum channel capacity reached
ED42_NOCOMM No communication with switch
ED42_NOERROR Operation completed
ED42_NOFEATURESESSION Function requires an open feature session
ED42_NOTIDLE Device is not idle
ED42_NOTIMP Function is not implemented
ED42_RDFWVER Error reading firmware version
ED42_SYSTEM System level error
ED42_UNKNOWNBOARD Unknown D/42 board type
ED42_UNSUPPORTED Unsupported feature

Voice Errors

DXLIB_INVNRB Internal voice library error
EDX_SYSTEM System level error

119

Dialogic® D/42 Series Software API Library Reference

Table 13. List of Event Codes

NOTE: See the d42_setparm() function in Section 3 for the use and
limitations of these events.

Event Code Name Description

TD42_ASYNCCALLID Caller ID information available
TD42_ASYNCCHSTATUS Change in channel status
TD42_ASYNCCLOSEFEATSESSION End of feature session
TD42_SOFTKEYINPUT Softkey input received

120

Glossary

Adaptive Differential Pulse Code Modulation (ADPCM): A technique for
reducing voice data storage requirements that is used by Dialogic in the
voice boards. With ADPCM, rather than store the value of the speech
sample (i.e., all 8-bits), only the change in the signal level between the
present and the previous sample is stored. Fewer bits are needed to
describe the change from one sample to the next because voice signals
vary relatively slowly.

ADPCM: See Adaptive Differential Pulse Code Modulation.

analog: 1. A method of telephony transmission in which the information
from the source (for example, speech in a human conversation) is
converted into an electrical signal that varies continuously over a range
of amplitude values. 2. Used to refer to applications that use loop start
signaling instead of digital signaling.

answer supervision: A telephone system feature that returns a momentary
drop in loop current when a connection has been established. When
call progress analysis detects a transient loop current drop, it returns a
connect event.

base address: A starting memory location (address) from which other
addresses are referenced.

buffer: A block of memory or temporary storage device that holds data
until it can be processed. It is used to compensate for the difference in
the rate of flow of information (or time occurrence of events) when
transmitting data from one device to another.

bus: An electronic path that allows communication between multiple
points or devices in a system.

called/calling number ID: A PBX feature that identifies the number of the
calling party to the extension that is called.

call progress analysis: A voice software feature that monitors the
progress of an outbound call by detecting the different results that can
occur after dialing, which allows you to process the call based on the

121

Dialogic® D/42 Series Software API Library Reference

outcome. By using call progress analysis, you can determine whether
the line is answered, the line rings but is not answered, the line is busy,
or there is a problem in completing the call.

central office (CO): The telephone company (informally). A local
telephone switching exchange.

channel: A voice I/O port on a voice board. 1. When used in reference to
a Dialogic board that is analog, an audio path, or the activity happening
on that audio path (for example, in “the channel goes off-hook”).
2. When used in reference to a Dialogic board that is digital, a data
path, or the activity happening on that data path. 3. When used in
reference to a bus, an electrical circuit carrying control information and
data.

class of service (COS): A defined group of features. Once an extension is
assigned to a COS, the COS determines which features may be
accessed by that extension.

computer telephony: The extension of computer-based intelligence and
processing over the telephone network to a telephone. Lets you interact
with computer databases or applications from a telephone and also
enables computer-based applications to access the telephone network.
Computer telephony makes computer-based information readily
available over the world-wide telephone network from your telephone.
Computer telephony technology incorporated into PCs supports
applications such as: automatic call processing; automatic speech
recognition; text-to-speech conversion for information-on-demand; call
switching and conferencing; unified messaging that lets you access or
transmit voice, fax, and E-mail messages from a single point; voice
mail and voice messaging; fax systems including fax broadcasting, fax
mailboxes, fax-on-demand, and fax gateways; transaction processing
such as Audiotex and Pay-Per-Call information systems; call centers
handling a large number of agents or telephone operators for
processing requests for products, services, or information; etc.

configuration file: A file used to download voice hardware and software
specifications to a voice board.

connect: A call progress analysis event indicating that the call has been
answered. A connect can be established by cadence detection, loop
current detection, or positive voice detection.

122

Glossary

D/4x: A general term used to refer to Dialogic® 4-channel voice boards
(e.g., Dialogic® D/41D, D/41E, and D/41ESC).

D/xxx: A general term used to refer to all models of Dialogic® voice
boards.

D40CHK: The Dialogic® diagnostic program used to test voice boards for
hardware problems.

digit queue: The location where digits are stored after they are detected.
Digits are processed on a first-in, first-out basis, and can be accessed
by the getdtmfs() function.

disconnect supervision: A feature that detects and acts on the change in
electrical state from off-hook to on-hook.

driver: A software module that provides a defined interface between a
program and the hardware. It directly controls the data transfer to and
from I/O.

DSP: 1. Digital signal processor. A specialized microprocessor designed to
perform speedy and complex operations with digital signals. 2. Digital
signal processing.

DTMF: Dual Tone Multi Frequency. 1. A signaling method. 2. The tone
made by pressing a button on a push-button telephone. This tone is
actually the combination of two tones, one high frequency and one low
frequency.

event: 1. A specific activity that has occurred on a channel. The voice
driver reports channel activity to the application program in the form of
events, which allows the program to identify and respond to a specific
occurrence on a channel. Events provide feedback on the progress and
completion of functions and indicate the occurrence of other channel
activities. Events are sometimes referred to in general as termination
events, because most of them indicate the end of an operation. 2. Any
signal or condition that causes a state transition in a state machine, the
majority of which are usually the physical events produced by the
voice driver.

Event Block (EVTBLK): A data structure that is used as output for the
gtevtblk() function. The gtevtblk() function removes an event from
the queue and places it into an EVTBLK for use by the application
program.

123

Dialogic® D/42 Series Software API Library Reference

FCC: Federal Communications Commission. The governing body for
communications regulations within the U.S.

firmware: Software downloaded to a Dialogic board and stored in semi-
permanent memory.

flash: A signal that consists of a momentary off-hook/on-hook/off-hook
transition that is most often used by a voice board to alert a telephone
switch. This signal usually initiates a call transfer. The dial() function
can generate a hook flash by including the flash character in the dial
string.

hook flash: See flash.

hook switch: The name given to the circuitry that controls the on-hook
and off-hook state of the voice board telephone interface.

idle: The channel state when no multitasking function is in operation on
the channel. The opposite of busy.

IRQ: Interrupt request. A signal sent to a central processing unit (CPU) to
temporarily suspend normal processing and transfer control to an
interrupt handling routine. Interrupts may be generated by conditions
such as completion of an I/O process and detection of an event.

loop current: The current that flows through the circuit from the telephone
switch to the voice board when the channel is off-hook.

loop start: In an analog environment, an electrical circuit consisting of
two wires (or leads) called tip and ring, which are the two conductors
of a telephone cable pair. The CO provides a voltage (called "talk
battery" or just "battery") to power the line. When the circuit is
complete, this voltage produces a current called loop current. The
circuit provides a method of starting (seizing) a telephone line or trunk
by sending a supervisory signal (going off-hook) to the CO.

multitasking functions: Functions that allow the voice software to
perform concurrent operations. After being initiated, multitasking
functions return control to the program so that during the time it takes
the function to complete, the application program can perform other
operations, such as initiating a function on another channel.

no answer: A call progress analysis event indicating that the call has not
been answered. A no answer event is returned after a ring cadence has

124

Glossary

been established by cadence detection and there was no break in the
ring cadence for a specified number of times.

no ringback: A call progress analysis event indicating that there is a
problem in completing the call. Cadence detection has determined that
the signal is continuous silence or nonsilence.

nonsilence: Sound. Used when describing an audio cadence.

off-hook signal: A basic signal used on the telephone network that is
produced when the line loop between the telephone set and the central
office switch is closed and loop current flows, which also powers the
telephone. This term is derived from the position of the old fashioned
telephone set receiver in relation to the mounting hook provided for it.

on-hook signal: A basic signal used on the telephone network that is
produced when the line loop between the telephone set and the central
office (CO) switch is open and no loop current flows. This term is
derived from the position of the old fashioned telephone set receiver in
relation to the mounting hook provided for it.

ring detect: The act of sensing that an incoming call is present by
determining that the telephone switch is providing a ringing signal to
the voice board.

signaling: The transmission of electrical signals on the telephone network.
The voice software supports the following signaling methods: DTMF,
MF, R2 MF, Socotel, Global Tone Detection and Generation, and Dial
Pulse Detection and Generation.

standard voice driver: See voice driver.

system events: Events in a state machine that are generated by relevant
system signals, such as keyboard input, communications adapters, etc.
These generally cause state changes for all channels rather than a
specific channel.

talk off: The false tripping of DTMF receivers caused by speech.

telephone switch: A telephone company central office or a PBX (private
branch exchange).

termination condition: A requirement that, when met, will cause a
multitasking function to terminate. You can enable the termination
conditions by setting parameters in the Read/Write Block and then

125

Dialogic® D/42 Series Software API Library Reference

passing the RWB as one of the function parameters. The termination
conditions are monitored while the multitasking function is in progress.
The function will continue to execute until one of the selected
termination conditions has been met. When the function terminates, an
event is produced, indicating which termination condition caused the
function to terminate.

tone event: A tone-on or tone-off event that is produced by Global Tone
Detection when a GTD tone is detected. A tone event can be accessed
on the event queue by using the gtevtblk() function, which provides
the channel, event code, and GTD tone ID.

Unified API: This Dialogic® API provides a single set of basic, high-level
calls that can be used for any supported switches and are sent directly
to the switch through the Dialogic® D/42 Board, without additional
hardware. Functioning as an extension to Dialogic® Voice API, the
Dialogic® Unified API offers a single design model that is flexible
enough to allow developers to take advantage of the advanced PBX
features (such as called/calling number ID and ASCII display
information).

voice demonstration programs: The programs that are included with the
voice software and which demonstrate voice software features;
provided in both source code and executable formats.

voice driver: The device driver for the voice boards; D40DRV.EXE.
Executes as a terminate-and-stay-resident (TSR) program.

voice hardware diagnostic programs: The D40CHK.EXE,
D41ECHK.EXE, and UDD.EXE programs allow you to test the
features of the voice hardware.

voice library: A C language function library that can be accessed from
assembly language programs or from applications written in a high-
level language.

voice processing: Features of the voice software that provide the ability
to record and play voice messages.

voice software: The Voice Development Package software, which
includes the Voice Installation Programs and Files, Voice
Demonstration Programs and Files, Voice Library (C Language
Functions), and Voice Driver.

126

Glossary

voice store-and-forward: A term used to refer to a voice mail system. An
early term for voice processing.

wink: A signal that consists of a momentary on-hook/off-hook/on-hook
transition, which is used by the voice board as an acknowledgment
signal. The wink() function generates an out-bound wink on a channel
in response to an incoming call.

127

Dialogic® D/42 Series Software API Library Reference

128

Index

D4BD_MSGACCESSOFF, 66, 67 A
D4BD_MSGACCESSON, 66, 67 asynchronous, 14
D4BD_RESETRINGCNT, 67 ATD4_BDTYPE(), 18
D4BD_RINGOFF, 67 ATD4_CHTYPE(), 20
D4BD_RINGON, 67 C
D4BD_SPMODE, 67

Call Progress Analysis, 9, 10, 13, 75,
96, 121 D4CH_ASYNCCALLID, 68

Event, 122, 124, 125 D4CH_ASYNCCHSTATUS, 68
call transfer, 14, 73, 75, 96, 124 D4CH_ASYNCCLOSEFEATURESES

SION, 69 called/calling number ID, 13, 14, 42, 43,
97, 100, 105, 121, 126 D4CH_CANCELKEY, 68

D D4CH_DNKEY, 68

D/42 driver, 11, 14 D4CH_PDNKEY, 68

d42_brdstatus(), 22 D4CH_RELEASEKEY, 68

d42_chnstatus(), 24 D4CH_SENDKEY, 68

d42_closefeaturesession(), 26 D4CH_SOFTKEYINPUT, 69

d42_display(), 28 D4CH_XFERKEY, 68

d42_getflags(), 32 dial programmable keys, 75, 82
Dterm Series III, 91 d42_getparm(), 36
MITEL SUPERSET 4, 82
Northern Telecom Digit Display

Phone, 85
d42_getver(), 39

d42_gtcallid(), 42 Northern Telecom M3710, 87
d42_indicators(), 45 disconnect supervision

NEC NEAX 2400 IMS and NEAX
2000 IMS, 99

d42_lcdprompt(), 57

d42_openfeaturesession(), 62 Northern Telecom Norstar, 98
d42_setparm(), 65 dx_dial(), 99
d42_writetodisplay(), 71

129

Dialogic® D/42 Series Software API Library Reference

G P
Global Tone Detection, 96 PBX configuration, 11

programmable key requirements I
call transfer, 87

in-band signaling, 97
programmable key requirements

indicators, 45 Automatic Call Distribution, 87
MITEL SUPERSET 4, 46

programmable key requirements NEC Dterm Series III, 51
message indication, 87 Northern Telecom Digit Display

Phone, 48 programmable key requirements
Northern Telecom Norstar M7310,

50
message cancellation, 87

programmable key requirements
L release, 87

Programmable key requirements LCD prompts
single call ringing, 87 MITEL SUPERSET 4, 57

S M
standard voice library, 9, 11, 13, 14 message waiting indicator, off

MITEL SUPERSET 4, 79 synchronous, 14 NEC Dterm Series III - KTS, 80
NEC Dterm Series III - PBX, 80 T
Northern Telecom Digit Display

Phone, 79 transfer. See call transfer
Northern Telecom M7310, 80

U
message waiting indicator, on

Unified API, 11, 13, 14, 17, 126 MITEL SUPERSET 4, 76
NEC Dterm Series III - KTS, 77 V NEC Dterm Series III - PBX, 77
Northern Telecom Digit Display

Phone, 77
voice and call processing, 9

voice hardware, 9 Northern Telecom M7310, 77

O
opening a D/42 channel, 73

out-of-band signaling, 97
NEC, 91, 94
Northern Telecom Norstar, 88, 90
Northern Telecom SL-1, 85, 87

130

	Contents
	Tables
	Figures
	1. How To Use This Manual
	1.1. Audience
	1.2. Voice Hardware Covered by This Manual
	1.2.1. Voice Hardware Model Names

	1.3. When To Use This Manual
	1.4. Documentation Conventions
	1.5. How This Manual Is Organized

	2. Using the PBX Functions
	2.1. The Dialogic® Unified API
	2.2. Switch-Specific Support

	3. Dialogic® Unified API Function Reference
	ATD4_BDTYPE()
	ATD4_CHTYPE()
	d42_brdstatus()
	d42_chnstatus()
	d42_closefeaturesession()
	d42_display()
	d42_flags()
	d42_getparm()
	d42_getver()
	d42_gtcallid()
	d42_indicators()
	d42_lcdprompt()
	d42_openfeaturesession()
	d42_setparm()
	d42_writetodisplay()

	4. Programming Considerations
	4.1. Opening a Channel on a Dialogic® D/42-xx Board
	 4.2. Accessing PBX Features on a PBX Using Dial Strings
	4.2.1. Turn On the Message Waiting Indicator
	 4.2.2. Turn Off the Message Indicator
	4.2.3. Dial Programmable Keys
	 4.2.4. Transferring a Call
	4.2.5. In-Band/Out-of-Band Signaling

	4.3. Disconnect Supervision
	4.4. Converting Existing Dialogic® D/4x Applications
	Requirements
	Setup
	 Documentation Conventions
	Running the Demo

	Appendix A. Dialogic® D/42 Series Software Quick Reference
	Appendix B. Dialogic® D/42 Series Software Demonstration Program
	Appendix C. Error and Event Definitions
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

