
Call Logging API
Software Reference

for Windows

Copyright © 2003 Intel Corporation

05-1591-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This document as well as the software described in it is furnished under license and may only be used
or copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear in this document or any software that may be provided in
association with this document. Except as permitted by such license, no part of this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means without express
written consent of Intel Corporation.

Copyright © 2003 Intel Corporation.

AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel
Centrino, Intel Centrino logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel
InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink,
Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium,
Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, SmartDie,
Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.

Publication Date: November, 2003

Intel Converged Communications, Inc.
1515 Route 10
Parsippany NJ 07054
For Technical Support, visit the Intel Telecom Support Resources website:
http://developer.intel.com/design/telecom/support/
For Products and Services Information, visit the Intel Communications Systems Products website:
http://www.intel.com/design/network/products/telecom/
For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page:
http://www.intel.com/buy/wtb/wtb1028.htm

iii

Table of Contents
Revision History .. viii

Preface... 1
Intended Audience.. 1
Organization of this Guide ... 1
How to Use This Guide .. 1
Documentation Conventions .. 2
Related Documentation .. 2
1. Product Description .. 3
1.1. Call Logging API Overview... 3
1.2. Digital High Impedance (HiZ) Hardware Configuration................................ 4
1.3. Analog High Impedance (HiZ) Hardware Configuration 5
1.4. Supported Configurations... 6
1.5. Supported Protocols ... 6
1.6. External Interfaces.. 6

1.6.1. Standard Runtime Library ... 7
1.6.2. Global Call Library.. 7
1.6.3. Voice Library... 8

1.7. Call Logging System Operation ... 9
1.7.1. Generating Call Logging Events.. 10
1.7.2. Retrieving Event Data.. 11

1.8. Call Logging Scenarios .. 13
1.8.1. Application Start-Up.. 13
1.8.2. Application Termination.. 15
1.8.3. Event Handling .. 16

1.9. Device Enumeration ... 18
2. Call Logging Demos .. 21
2.1. HiZDemo Application.. 21

2.1.1. HiZDemo Description ... 21
2.1.2. HiZDemo Requirements .. 22
2.1.3. Starting the HiZDemo.. 22
2.1.4. HiZDemo Menus ... 23
2.1.5. Running the HiZDemo on Analog HiZ Boards 28
2.1.6. Running the HiZDemo on Digital HiZ Boards 30
2.1.7. Functions Used by the HiZDemo .. 32
2.1.8. Files Used by the HiZDemo .. 32

Call Logging API Software Reference for Windows

iv

2.2. SnifferMFC Demo.. 33
2.2.1. SnifferMFC Demo Description ... 34
2.2.2. SnifferMFC Demo Requirements .. 35
2.2.3. Starting the SnifferMFC Demo.. 35
2.2.4. Running the SnifferMFC Demo on Analog HiZ Boards...................... 35
2.2.5. Running the SnifferMFC Demo on Digital HiZ Boards 37
2.2.6. Functions Used by the SnifferMFC Demo... 39
2.2.7. Files Used by the SnifferMFC Demo .. 40

3. Call Logging Function Overview ... 43
3.1. Call Logging Function Categories.. 43
3.2. Error Handling ... 45
4. Call Logging Function Reference .. 49
4.1. Function Documentation .. 49
4.2. General Function Syntax .. 50
cl_Close() � closes a previously opened call logging device 51
cl_DecodeTrace() � decodes a previously recorded L2 frames trace file 53
cl_GetCalled() � gets the called party number, at event time 56
cl_GetCalling() � gets the calling party number, at event time 59
cl_GetChannel() � gets the channel number, at event time 62
cl_GetMessage() � returns the ID of a message .. 65
cl_GetMessageDetails() � returns the ID and details of a message 68
cl_GetOrdinalChannel() � gets the ordinal channel number, at event time 72
cl_GetSemanticsStateCount() � returns the number of semantics states 75
cl_GetSemanticsStateName() � returns the name of a semantics state................ 77
cl_GetTransaction() � returns the ID of a call logging transaction...................... 80
cl_GetTransactionDetails() � returns the ID and details of a transaction 84
cl_GetTransactionUsrAttr() � returns the user-defined transaction attribute....... 88
cl_GetUsrAttr() � returns the user-defined attribute for a call logging device 91
cl_GetVariable() � returns the semantics-defined variable 93
cl_Open() � opens a call logging device ... 97
cl_PeekCalled() � gets the called party number .. 104
cl_PeekCalling() � gets the calling party number.. 107
cl_PeekChannel() � gets the channel number.. 110
cl_PeekOrdinalChannel() � gets the ordinal channel number 113
cl_PeekVariable() � gets the value of a semantics-defined variable.................. 116
cl_ReleaseTransaction() � releases a call logging transaction 120
cl_SetTransactionUsrAttr() � sets the user-defined transaction attribute 124
cl_SetUsrAttr() � sets the user-defined attribute for a call logging device 127

v

cl_StartTrace() � starts recording an L2 frames trace file 129
cl_StopTrace() � stops recording an L2 frames trace file 131
Appendix A � Call Logging Sample Code .. 133

Glossary... 137

Index.. 141

vii

List of Tables
Table 1. Call Logging Events.. 10
Table 2. CL_EVENTDATA Data Structure Fields ... 11
Table 3. Application Start-Up Scenario .. 14
Table 4. Application Termination Scenario .. 15
Table 5. Event Handling Scenario... 16
Table 6. Event Handling: CLEV_MESSAGE Scenario 17
Table 7. Call Logging Functions Used by HiZDemo.. 32
Table 8. Files Used by HiZDemo.. 33
Table 9. Call Logging Functions Used by the SnifferMFC Demo 39
Table 10. Files Used by SnifferMFC Demo.. 41
Table 11. Device-based Call Logging Functions... 43
Table 12. Transaction-based Call Logging Functions ... 44
Table 13. Event-based Call Logging Functions... 45
Table 14. Call Logging Function Errors.. 46
Table 15. pszDeviceName Field Values (Digital HiZ).. 98
Table 16. pszDeviceName Field Values (Analog HiZ) 99

List of Figures
Figure 1. Typical Digital High Impedance (HiZ) Configuration 5
Figure 2. Typical Analog High Impedance (HiZ) Configuration 6
Figure 3. Call Logging API Interfaces ... 7

viii

Revision History

This revision history summarizes the changes made in each published version of
this document.

Document No. Publication
Date

Description of Revisions

05-1591-002 November 2003 Chapter 1: updated all sections and
added sections to reflect newly
supported analog HiZ boards. Revised
Figure 1 and Figure 2.

Chapter 2: added new chapter and new
content on Call Logging HiZDemo and
SnifferMFC demos.

cl_GetOrdinalChannel(): new
function.

cl_Open(): updated to reflect newly
supported analog HiZ boards.

cl_PeekOrdinalChannel(): new
function.

cl_StartTrace(): previously
documented in System Release 5.1 for
Windows Release Update.

cl_StopTrace(): previously documented
in System Release 5.1 for Windows
Release Update.

05-1591-001 August 2001 Initial version of document.

1

Preface

Intended Audience

This guide is for application developers who wish to use the Intel® Call Logging
application programming interface (API) to build call monitoring or call recording
applications.

Organization of this Guide

This guide is organized as follows:

• Chapter 1 provides an overview of the functionality of the Call Logging API,
including a typical hardware configuration, interfaces with other libraries,
system operation, and call logging events.

• Chapter 2 provides information on Call Logging demos.

• Chapter 3 provides an overview of the Call Logging API functions.

• Chapter 4 provides detailed descriptions of the Call Logging API functions.

• Appendix A provides sample code for developing a call logging application.

A Glossary and an Index are also included.

How to Use This Guide

This guide provides detailed information about Call Logging API functions,
parameters, and events. Other APIs, such as the R4 Voice library, are used to
develop call logging applications. Please refer to the appropriate API
documentation for information about other API functions.

Call Logging API Software Reference for Windows

2

Documentation Conventions

The following conventions are used in this document:

• Function Names - are shown in bold with the name of the function followed
by parentheses, for example, cl_Close().

• Function Parameters - are shown in bold, for example, linedev.

• Events - are shown in uppercase, for example, CLEV_MESSAGE.

• Data Structures - are shown in uppercase, for example, CL_EVENTDATA.

• Error Codes - are shown in uppercase, for example,
ECL_OUT_OF_MEMORY.

• Result Values - are shown in uppercase, for example,
ECL_CONNECT_MESSAGE.

Related Documentation

Refer to the following documents in addition to the Call Logging API Software
Reference when developing a Call Logging application:

• Global Call API Library Reference

• Global Call API Programming Guide

• the Global Call Technology User�s Guide for the protocol you are using

• Voice API Library Reference

• Voice API Programming Guide

• Standard Runtime Library API Library Reference

• Standard Runtime Library API Programming Guide

3

1. Product Description

The Call Logging API is the software companion of the HiZ family of products,
which provide high impedance interfaces for non-intrusive line monitoring. This
chapter describes the Call Logging API under the following topics:

• 1.1. Call Logging API Overview

• 1.2. Digital High Impedance (HiZ) Hardware Configuration

• 1.3. Analog High Impedance (HiZ) Hardware Configuration

• 1.4. Supported Configurations

• 1.5. Supported Protocols

• 1.6. External Interfaces

• 1.7. Call Logging System Operation

• 1.8. Call Logging Scenarios

• 1.9. Device Enumeration

1.1. Call Logging API Overview

The Call Logging API enables the development of applications to monitor the
traffic on analog or digital lines between the network side and the user side. The
network side refers to the central office (CO) public switched telephone network
(PSTN), and the user side refers to the customer premises equipment (CPE)
private branch exchange (PBX).

In addition, the Call Logging API together with the Voice library can be used to
build call recording applications to record conversations on analog or digital lines
that connect the user side and the network side.

The Call Logging API handles transactions and reports transaction events for an
analog or digital line so that call monitoring or call recording applications can be
developed seamlessly for either line type.

Call Logging API Software Reference for Windows

4

On digital HiZ products, the Call Logging API can be used to create call
monitoring applications that monitor Layer 1 (L1) alarms, Layer 2 (L2) events,
and Layer 3 (L3) messages. More specifically, the Call Logging API offers the
following features for the development of call monitoring applications:

• handling L1 alarms, such as �Loss of Sync�, L2 events, including lost frames,
and L3 messages, such as state changes, and reporting the alarms, events, as
well as messages to the application

• gathering L3 messages and handling transaction state transitions, such as
dialing, connected, or disconnected, according to the L3 messages received

• querying previously received L3 messages when a transaction event is
triggered

• retrieving protocol-specific information from L3 messages

On analog HiZ products, all pertinent signaling and supervision events are
available to call logging applications.

1.2. Digital High Impedance (HiZ) Hardware
Configuration

As shown in Figure 1, a digital line connecting the CPE PBX (user side) to a CO
PSTN (network side) can be monitored using two HiZ connectors on a HiZ board.
One of these HiZ connectors receives the voice and signaling data transmitted by
the CO PSTN, while the other receives the data transmitted by the CPE PBX.
This typical HiZ configuration constitutes the hardware part of a call logging
system. The Call Logging API simplifies the implementation of the software in
such a system.

1. Product Description

5

Public
Switched
Telephone
Network

Customer
Premises

Equipment
PBX

PC

HiZ Board

Digital Line

Figure 1. Typical Digital High Impedance (HiZ) Configuration

For more detailed information about connecting HiZ cable assemblies, see the
Quick Install Card that is included with the board.

1.3. Analog High Impedance (HiZ) Hardware
Configuration

Unlike the digital HiZ hardware configuration, a call logging system for analog
HiZ boards uses one connector for each channel being monitored. The cl_Open()
function has been extended to support the specification of several analog HiZ
devices in one function call. The lines connected to these HiZ devices can
subsequently be monitored using a single call logging device handle.

As shown in Figure 2, an analog CO PSTN line connecting to a customer
premises PBX/KTS or analog phone can be monitored using a single connector on
an analog HiZ board. The analog HiZ board receives the ringing, loop signaling,
caller ID tones, and voice passing between the network and the phone user. With
an analog HiZ board such as the DMV160LPHIZ, up to 16 analog lines can be
monitored.

In an environment without a PBX/KTS, the HiZ board taps into the analog line
between the CO PSTN and the phone user.

Call Logging API Software Reference for Windows

6

Public
Switched
Telephone
Network

Customer
Premises

Equipment
PBX or KTS

PC

HiZ Board

Digital or
Analog

Line
Analog

Line

Figure 2. Typical Analog High Impedance (HiZ) Configuration

1.4. Supported Configurations

The Call Logging API supports high impedance boards, including the HiZ family
of products. Refer to the Release Guide accompanying the software release you
installed for a list of supported board models.

1.5. Supported Protocols

The Call Logging API provides a protocol-independent API and can be used with
analog HiZ boards, or with digital HiZ boards on lines using a common channel
signaling (CCS) protocol. Refer to the Release Guide accompanying the software
release for a list of supported protocols.

1.6. External Interfaces

Figure 3 illustrates how the Call Logging API interacts with other R4 libraries and
the application.

1. Product Description

7

APPLICATION

STANDARD
RUNTIME
LIBRARY

GLOBAL CALL
LIBRARY

VOICE
LIBRARY

CALL LOGGING
LIBRARY

Figure 3. Call Logging API Interfaces

A description of how the other libraries interact with the Call Logging API
follows.

1.6.1. Standard Runtime Library

The Call Logging API registers the call logging device with the Standard Runtime
Library (SRL). Call logging events are posted to the SRL, which then delivers
these events to the application. You must either call the sr_enbhdlr() function to
install an event handler or call the sr_waitevt() function to retrieve and process
the call logging events posted by the Call Logging API. See section 1.8. Call
Logging Scenarios for more information on using SRL library functions in your
application. For more information about SRL functions, see the Standard Runtime
Library API Library Reference.

1.6.2. Global Call Library

The Call Logging API uses the Global Call gc_GetFrame() function or
gc_Extension() function to collect signaling data.

In all applications on analog HiZ boards, you must either call the gc_OpenEx()
function (with network interface and voice resource) or the gc_AttachResource()

Call Logging API Software Reference for Windows

8

function to associate the network interface devices with voice resource devices.
For more information about Global Call API functions, see the Global Call API
Library Reference.

In call monitoring applications on digital HiZ boards, there is no need to use
gc_OpenEx() or gc_AttachResource() because all of the relevant information is
provided by the Call Logging API.

However, in call recording applications on digital HiZ boards, you need to know
the time slot on which the voice data is being transmitted. Therefore, you must
open the devices by calling either the gc_OpenEx() function (with network
interface and voice resource) or the gc_AttachResource() function to associate
the network interface devices with voice resource devices.

See section 1.8. Call Logging Scenarios for more information on using
Global Call library functions in your application.

1.6.3. Voice Library

When the Call Logging API is used for call recording applications, the Voice
dx_mreciottdata() function (for digital HiZ) or dx_reciottdata() function (for
analog HiZ) is called to perform the transaction recording.

The RM_NOTIFY flag in the mode parameter of various Voice record functions
is used to instruct these functions to generate a record notification beep tone.

The dx_SetRecordNotifyBeepTone() function specifies the template of the
cadenced tone to be used as the record notification beep tone during subsequent
calls to the Voice record functions. This function overwrites the default template
used on DM3 boards. If no template is specified, the default beep tone has these
specifications: 1400 Hz, -18 dB, 420 msecs on, 15 secs off.

See section 1.8. Call Logging Scenarios for more information on using Voice
library functions in your application. For details on Voice API functions, see the
Voice API Library Reference.

1. Product Description

9

1.7. Call Logging System Operation

The primary function of a call logging system is to observe the activity on analog
or digital lines. When a call is established on a monitored line, the call logging
system receives the voice and signaling data from both the outbound and inbound
parties. In order to indicate this dual source of data, the Call Logging API refers
to calls as call logging transactions.

The Call Logging API analyzes the signaling data and manages the call logging
transactions according to semantics rules, which consist of:

• a list of semantics states, such as dialing (or ringing), alerting (or seizing the
line), connected or disconnected, that a call logging transaction can use to
represent the current status of the monitored call. The number, index, and
names of the semantics states are retrieved using the cl_GetSemanticsState
functions.

• a list of semantics variables, such as calling party number, called party
number, interface identifier, digital bearer channel (B channel) or analog
channel number, and ordinal channel number. The semantics variables are
assigned from the contents of the signaling data and can be queried by the
application. The variables can be queried on an event basis when an event is
received or on a polling basis:

• Event basis � use the �Get� functions cl_GetCalled(), cl_GetCalling(),
cl_GetChannel(), cl_GetOrdinalChannel(), and cl_GetVariable().

• Polling basis � use the �Peek� functions cl_PeekCalled(),
cl_PeekCalling(), cl_PeekChannel(), cl_PeekOrdinalChannel(), and
cl_PeekVariable().

• a list of the specific events that the Call Logging API must monitor to
identify signaling data (analog HiZ) or the first and the last L3 messages
(digital HiZ) related to a call logging transaction. The list of events is also
used to determine when the monitored call is connected and later on
disconnected. This list allows the Call Logging API to report those key
events to the application. Information about specific events is retrieved using
the cl_GetTransaction() and cl_GetTransactionDetails() functions along
with other call logging functions depending on the information required. (See
section 1.8.3. Event Handling for a sample scenario.)

Call Logging API Software Reference for Windows

10

For more information on Call Logging API functions, see Chapter 4. Call
Logging Function Reference .

1.7.1. Generating Call Logging Events

Because of the high impedance nature of its configuration, the call logging system
is only an observer; it never has to make outbound calls or answer inbound calls.
Instead, the call logging system receives unsolicited events, such as analog line
events, digital L1 alarms, and digital L2 frames that may contain L3 messages.

When an analog line event is received, the Call Logging API:

1. identifies the line event and the channel on which it occurred.

2. converts the line event into a call logging message.

3. changes the state of the related call logging transaction according to the
semantics rules.

4. sends an unsolicited call logging event to the application.

When a digital L2 frame containing a digital L3 message is received, the Call
Logging API:

1. extracts the L3 message from the L2 frame.

2. decodes the L3 message.

3. changes the state of the related call logging transaction according to the
semantics rules.

4. sends an unsolicited call logging event to the application.

Table 1. Call Logging Events describes the call logging events that the Call
Logging API can generate:

Table 1. Call Logging Events

Event Description

CLEV_MESSAGE An analog line event is received, or the monitored
L2 frame contains an L3 message about a call
logging transaction.

1. Product Description

11

Event Description

CLEV_ALARM An analog line event was received, or an L1 alarm
was detected.

CLEV_ERROR An error occurred.

1.7.2. Retrieving Event Data

Information about events received by the application is contained in an event data
block. This information includes the time the initial unsolicited event was
observed by the Call Logging API. You obtain the event data block by calling the
sr_getevtdatap() function while processing a call logging event.

You obtain the type of event by calling the sr_getevttype() function. As
described in Table 1, the type of event indicates whether a message was received
(CLEV_MESSAGE), an alarm was detected (CLEV_ALARM), or an error
occurred (CLEV_ERROR).

CL_EVENTDATA Data Structure

The event data block associated with call logging events is based on the
CL_EVENTDATA data structure:

{
 int iResult;
 time_t timeEvent;
} CL_EVENTDATA;

Table 2. CL_EVENTDATA Data Structure Fields describes the fields in the
CL_EVENTDATA data structure.

Table 2. CL_EVENTDATA Data Structure Fields

Field Meaning/Values

iResult A bitset of result codes and error codes. The field
can contain several of the following symbolic values:

CLEV_MESSAGE events:

• ECL_CONNECT_MESSAGE

Call Logging API Software Reference for Windows

12

Field Meaning/Values

• ECL_DISCONNECT_MESSAGE

• ECL_FIRST_MESSAGE

• ECL_LAST_MESSAGE

• ECL_NOERR � The value of ECL_NOERR is 0.
This value means that no error was detected and
because no bit is set, the message received is not the
first or last message, not a connect or disconnect
message, and that this message has not triggered a
semantics state change. You can ignore it unless
you want to log every message. Note that digital L3
messages and analog line events are reported to the
application as call logging messages by means of
CLEV_MESSAGE.

• ECL_STATE_HAS_CHANGED

• ECL_WRONG_FIRST_MESSAGE � This bit is set
(together with the ECL_FIRST_MESSAGE bit) to
indicate that the received message is the first
message received about the call logging transaction,
but this message is unexpected according to the
semantics rules. This situation happens when there
are already calls in progress when the call logging
application starts and the received message is about
one of these other calls. This situation can also
occur if the expected first message was missed or
incorrectly received by the call logging system
because of bad cables, poor connections, or glitches
on the line.

CLEV_ERROR events:

• ECL_L2FRAMES_WERE_LOST

• ECL_L2LAYER_WAS_RESTARTED

1. Product Description

13

Field Meaning/Values

• ECL_OUT_OF_MEMORY � This bit means there
is no more memory left to store transactions. You
can get this error event if the application does not
use cl_ReleaseTransaction().

• ECL_UNRECOGNIZED_L2FRAME

• ECL_UNRECOGNIZED_L3MESSAGE

timeEvent The time when the analog line event was received, the
digital L2 frame was monitored on the line (that is,
when the message was received or the error
occurred), or the digital L1 alarm event was detected.

1.8. Call Logging Scenarios

This section provides scenarios for typical call logging applications. The scenarios
include Call Logging API functions and functions from other libraries, such as the
Global Call API, the SRL and the Voice API. For more information about Call
Logging API functions, see Chapter 4. Call Logging Function Reference . For
more on functions from other APIs, refer to the Global Call API Library Reference
or the Standard Runtime Library API Library Reference, as appropriate.

Refer also to Appendix A for sample code demonstrating the use of various call
logging functions and other API functions in a network monitoring application.

NOTE: Because the Call Logging API is not multithread safe and call logging
functions must be called in the same thread, asynchronous is the only
programming model to use for call logging applications.

1.8.1. Application Start-Up

Table 3. Application Start-Up Scenario provides the start-up scenario for a
typical call logging application. For information on gc_ functions, see the
Global Call API Library Reference. For information on sr_ functions, see the
Standard Runtime Library API Library Reference .

Call Logging API Software Reference for Windows

14

Table 3. Application Start-Up Scenario

Function Description

gc_Start() Starts the call logging application using the
Global Call API.
gc_Start() must be called before
cl_Open() once per process.

gc_OpenEx() In a loop, opens a Global Call device. The
function also returns a unique line device ID
to identify the physical device or devices
that carry the call.

On analog HiZ boards for all applications,
you must attach a voice resource device to
each network interface device used to
monitor analog lines. To do so, call
gc_OpenEx() and specify the network
interface device name with the �:N_� key
and the voice resource device name with the
�:V� key.

On digital HiZ boards, use this function for
call recording applications. There is no need
to use this function for call monitoring
applications.

gc_GetVoiceH() In a loop, if you have called gc_OpenEx(),
gc_GetVoiceH() retrieves the voice
resource device handle that can be
subsequently used to record conversations.

sr_enbhdlr() Optional. If desired, enables the event
handler for the voice device opened using
gc_OpenEx().

1. Product Description

15

Function Description

gc_GetXmitSlot() In a loop, if you have called gc_OpenEx(),
gc_GetXmitSlot() retrieves the transmit
time slot number of the network interface
devices. These transmit time slot numbers
can subsequently be used to record
conversations using dx_mreciottdata()
(digital HiZ) or dx_reciottdata() (analog
HiZ).

cl_Open() Opens the call logging device, loads the
semantics rules, and returns the call logging
device handle. Several analog HiZ devices
are gathered and specified in this single
device handle. Thus, you will likely call
gc_OpenEx() several times in your
application and cl_Open() only once.

sr_enbhdlr() Enables the call logging event handler for
the call logging device.

cl_GetSemanticsStateCount() Optional. Gets the number of semantics
states.

cl_GetSemanticsStateName() Optional in a loop. Gets the names of the
semantics states.

1.8.2. Application Termination

Table 4. Application Termination Scenario provides the termination scenario for
a typical call logging application.

Table 4. Application Termination Scenario

Function Description

sr_dishdlr() Disables the call logging event handler.

cl_Close() Closes the call logging device.

Call Logging API Software Reference for Windows

16

Function Description

sr_dishdlr() If desired, disables the event handler for the voice
device at application termination time.

gc_Close() In a loop. Call logging applications based on analog
HiZ boards and call recording applications should
close the Global Call devices at application
termination time. This function also closes any voice
devices that may have been opened using
gc_OpenEx().

gc_Stop() Stops the Global Call application.

1.8.3. Event Handling

Table 5. Event Handling Scenario provides an event handling scenario of a
typical call logging application. Table 6. Event Handling: CLEV_MESSAGE
Scenario provides an event handling scenario in which a CLEV_MESSAGE event
is received and call recording takes place.

Table 5. Event Handling Scenario

Function Description

sr_getevtdev() Gets the call logging device handle associated with
the current event.

sr_getevttype() Identifies the kind of call logging event:
CLEV_MESSAGE, CLEV_ALARM or
CLEV_ERROR.

sr_getevtdatap() Obtains the call logging event data block,
CL_EVENTDATA (see section 1.7.2. Retrieving
Event Data).

cl_GetUsrAttr() Gets the user-defined attribute associated with the call
logging device.

1. Product Description

17

Table 6. Event Handling: CLEV_MESSAGE Scenario

Function Description

cl_GetTransaction() or
cl_GetTransactionDetails()

Gets the call logging transaction ID and other
details.

cl_SetTransactionUsrAttr() If the ECL_FIRST_MESSAGE bit is set in the
iResult field of the call logging event data
block*, use this function to associate the user-
defined attribute with the transaction.

cl_GetTransactionUsrAttr() If the ECL_FIRST_MESSAGE bit is not set in
the iResult field of the call logging event data
block*, use this function to retrieve the user-
defined attribute associated with the
transaction.

cl_GetMessage() or
cl_GetMessageDetails()

If needed, gets the message ID and other
details, such as the source of the message, the
name of the message, or the human-readable
decoded text version of the L3 message
(available for digital HiZ only).

cl_GetCalling() If needed, gets the calling party number.

cl_GetCalled() If needed, gets the called party number.

cl_GetChannel() or
cl_GetOrdinalChannel()

If needed, gets the digital bearer channel (B
channel) or analog channel number, or
preferably the ordinal channel number.

Call Logging API Software Reference for Windows

18

Function Description

dx_mreciottdata() or
dx_reciottdata()

If the ECL_CONNECT_MESSAGE bit is set
in the iResult field of the call logging event
data block*, use one of these functions to start
call recording. On analog lines, use
dx_reciottdata(). On digital lines, use
dx_mreciottdata().

To generate record notification beep tone
while recording, bitwise-or the RM_NOTIFY
value in the mode parameter of the
dx_reciottdata() function.

dx_stopch() If the ECL_DISCONNECT_MESSAGE bit is
set in the iResult field of the call logging event
data block*, use this function to complete call
recording.

cl_ReleaseTransaction() If the ECL_LAST_MESSAGE bit is set in the
iResult field of the call logging event data
block*, use this function to release the call
logging transaction.

* See section 1.7.2. Retrieving Event Data for more on the call logging event data
block.

1.9. Device Enumeration

The analog loop start interfaces on the analog HiZ board are treated as a separate
device from the voice resource. The dti devices represent the loop start interfaces,
and the dxxx devices represent the voice resources.

The following scenario assumes that the analog HiZ board is the only board in the
system.

For the analog HiZ board, such as the DMV160LPHIZ board, device enumeration
follows the rules listed below:

• The 16 loop start analog interfaces are enumerated as:

1. Product Description

19

dtiB1T1 to dtiB4T4

Each virtual board has four time slots.

• The 16 voice resource devices are enumerated as:

dxxxB1C1 to dxxxB4C4

NOTE: In Windows, in a system with DM3 and Springware boards, all DM3
board devices are numbered in sequential order after Springware devices
are numbered.

Call Logging API Software Reference for Windows

20

21

2. Call Logging Demos
This chapter describes the Call Logging demos and provides instructions for
running these demos.

• 2.1. HiZDemo Application

• 2.2. SnifferMFC Demo

2.1. HiZDemo Application

The HiZDemo application is described in the following topics:

• 2.1.1. HiZDemo Description

• 2.1.2. HiZDemo Requirements

• 2.1.3. Starting the HiZDemo

• 2.1.4. HiZDemo Menus

• 2.1.5. Running the HiZDemo on Analog HiZ Boards

• 2.1.6. Running the HiZDemo on Digital HiZ Boards

• 2.1.7. Functions Used by the HiZDemo

• 2.1.8. Files Used by the HiZDemo

2.1.1. HiZDemo Description

The HiZDemo application is a text-based (command line) demo that illustrates
call monitoring and call recording functionality on analog HiZ boards and on
digital HiZ boards. This demo can be a useful tool for discovering all devices in
the system, both HiZ devices and non-HiZ devices.

Using this demo, you can do the following:

• discover all devices available in the system

• select analog HiZ and/or digital HiZ devices to monitor and record calls

Call Logging API Software Reference for Windows

22

• monitor calls (monitoring activity is not displayed on the screen but occurs in
the background)

• record calls and save the recordings

• generate record notification beep tone on capable devices

2.1.2. HiZDemo Requirements

The following hardware, software, and equipment requirements must be met
before running the HiZDemo application:

• A supported Intel® analog and/or digital HiZ board has been installed in your
system.

• For analog HiZ boards, a telephone is connected to a Central Office (CO) or
PBX, and this connection is tapped. For an example of hardware
configuration, see Figure 2. Typical Analog High Impedance (HiZ)
Configuration.

• For digital HiZ boards, a T-1 or E-1 connection between a network side and a
user side is available, and this connection is tapped. For an example of
hardware configuration, see Figure 1. Typical Digital High Impedance (HiZ)
Configuration.

• The Intel® Dialogic® system release software has been installed and the
system requirements for this system release have been met. For more
information, see the System Requirements section in the Release Guide for
the system release you are using.

2.1.3. Starting the HiZDemo

To start the HiZDemo application, follow these instructions:

1. Open a command prompt window and go to the directory where the demo is
located.

2. At the command prompt, type:

hizdemo

Alternatively, you can double-click on hizdemo.exe from Windows Explorer.

2. Call Logging Demos

23

The HiZDemo main menu is then displayed.

2.1.4. HiZDemo Menus

This section provides a reference to the high-level HiZDemo menus. Note that
every menu has an option to cancel (select 0) and return to a previous menu or if
you are at the main menu to exit the application. For information on running the
demo, see section 2.1.5. Running the HiZDemo on Analog HiZ Boards and
section 2.1.6. Running the HiZDemo on Digital HiZ Boards .

HiZDemo Main Menu

The HiZDemo main menu has the following menu options:

HiZDemo main menu
 1 : Discover and select devices
 2 : Start monitoring and recording calls
 0 : Exit HiZDemo application

These choices are described as follows:

• Discover and select devices: Select this menu option to discover all devices
available on the system. The Devices menu is then displayed.

• Start monitoring and recording calls: Select this menu option after you
have discovered and selected devices.

• Exit HiZDemo application: Select this menu option when you are ready to
exit the demo application.

Devices Menu

The Devices menu has the following menu options:

Devices menu
 1 : Discover devices available on this system
 2 : Select devices used to monitor and record calls
 3 : Display the current list of selected devices
 0 : Return to HiZDemo main menu

Call Logging API Software Reference for Windows

24

These choices are described as follows:

• Discover devices available on this system: This menu option discovers all
devices available on the system, including analog HiZ boards, digital HiZ
boards, and non-HiZ boards. This option retrieves the number of network
interface devices and the number of voice devices. It also checks the
properties of each device. If a device is a HiZ device, the board, its network
interfaces and voice resources will be available for selection in subsequent
menus.

The demo displays messages on the screen about the devices that have been
discovered and usable devices. A usable device means that it can be used for
call logging purposes. The discovery process distinguishes between HiZ
devices and non-HiZ devices, allowing you to run the demo in a chassis with
many kinds of boards installed. Voice resources without recording capability
are also sorted out as they cannot be used for call recording.

• Select devices used to monitor and record calls: Select this menu option
after you have discovered devices. The Select Devices menu is displayed.

• Display the current list of selected devices: This menu option displays the
list of devices that you have selected. The selected devices are listed using the
syntax for the pszDeviceName parameter of the cl_Open() function.

• Return to HiZDemo main menu: Select this menu option to return to the
main menu.

Select Devices Menu

The Select Devices menu has the following menu options:

Select Devices menu
 1 : Select Analog devices
 2 : Select Digital devices
 0 : Cancel

These choices are described as follows:

• Select Analog devices: Select this menu option when running the demo on an
analog HiZ board.

2. Call Logging Demos

25

• Select Digital devices: Select this menu option when running the demo on a
digital HiZ board.

Select Analog Devices Menu

The Select Analog Devices menu has the following menu options:

Select Analog Devices menu
 1 : Select all network interface devices from a range of boards
 2 : Select all network interface devices from a single board
 3 : Select a range of network interface devices
 4 : Select a single network interface device
 5 : Select the voice resources for call recording
 6 : Display the currently selected devices and resources
 7 : Validate the selected devices and resources
 0 : Cancel

These choices are described as follows:

• Select all network interface devices from a range of boards: Select this
menu option to perform call recording on all network interface devices from a
range of boards. After you select this option, a series of prompts will appear
asking you to:

Select first analog board in range
Select analog board range

• Select all network interface devices from a single board: Select this menu
option to perform call recording on all network interface devices from a
single board. After you select this option, a prompt will appear asking you to:

Select analog board

• Select a range of network interface devices: Select this menu option to
perform call recording on a range of network interface devices. After you
select this option, a series of prompts will appear asking you to:

Select first analog device in range
Select analog device range

• Select a single network interface device: Select this menu option to perform
call recording on a single network interface device. After you select this

Call Logging API Software Reference for Windows

26

option, a prompt will appear asking you to:

Select analog device

• Select the voice resources for call recording: Select this menu option to
choose the voice resources to be used for call recording. After you select this
option, a message informs you that voice resources will be reserved for the
selected network interfaces in sequential order, starting from the selected one.

• Display the currently selected devices and resources: This menu option
displays the HiZ devices and voice resources that you have selected in
previous menus.

• Validate the selected devices and resources: This menu option checks that
you have selected at least one HiZ network interface device and a voice
resource. If validation fails, a message is displayed indicating what�s missing.

• Cancel: This menu option cancels the current selection and returns you to the
previous menu.

Select Digital Devices Menu

The Select Digital Devices menu has the following menu options:

Select Digital Devices menu
 1 : Select the Protocol
 2 : Select the Network side network interface board
 3 : Select the User side network interface board
 4 : Select the voice resources for call recording
 5 : Display the currently selected protocol, boards and resources
 6 : Validate the selected protocol, boards and resources
 0 : Cancel

These choices are described as follows:

• Select the Protocol: This menu option selects the protocol that the tapped
digital line is using. After you select this option, the Select Digital Protocol
menu is displayed.

• Select the Network side network interface board: This menu option selects
the network interface board for the network side (PSTN). After you select this
option, a list of HiZ network interface boards is displayed.

2. Call Logging Demos

27

• Select the User side network interface board: This menu option selects the
network interface board for the user side (CPE). After you select this option,
a list of HiZ network interface boards is displayed.

• Select the voice resources for call recording: Select this menu option to
choose the voice resources to be used for call recording. After you select this
option, a message informs you that voice resources will be allocated
sequentially, starting from the selected one.

• Display the currently selected protocol, boards and resources: This menu
option displays the protocol, HiZ boards, and voice resources that you have
selected in previous menus.

• Validate the selected protocol, boards and resources: This menu option
checks that you have selected a protocol, two HiZ network interface boards,
and a voice resource. If validation fails, a message is displayed indicating
what�s missing.

• Cancel: This menu option cancels the current selection and returns you to the
previous menu.

Select Digital Protocol Menu

The Select Digital Protocol menu has the following menu options:

Select Digital Protocol menu
 1 : ISDN
 2 : NET5
 3 : QSIGE1
 4 : 4ESS
 5 : 5ESS
 6 : DMS
 7 : NI2
 8 : NTT
 9 : QSIGT1
 0 : Cancel

Choose the appropriate protocol that is being used on the tapped digital line.

Call Logging API Software Reference for Windows

28

2.1.5. Running the HiZDemo on Analog HiZ Boards

The following steps describe one way to run the HiZDemo application on an
analog HiZ board.

1. After starting the HiZDemo application, the HiZDemo main menu is
displayed. Enter 1 to discover and select devices.

2. The Devices menu is displayed. Enter 1 to discover devices available on this
system. This option retrieves and lists the number of network interface
devices and the number of voice devices on the system. It also checks the
properties of each device. If a device is a HiZ device, the board, its network
interfaces and voice resources will be available for selection in subsequent
menus. For information on device enumeration on the analog HiZ board, see
section 1.9. Device Enumeration.

3. The Devices menu is displayed. Enter 2 to select devices used to monitor and
record calls.

4. The Select Devices menu is displayed. Enter 1 to select analog devices.

5. The Select Analog Devices menu is displayed. In this example, enter 4 to
select a single network interface device.

Note that from the Select Analog Devices menu, you can select all network
interface devices from a range of boards, or all network interface devices
from a single board, or a range of network interface devices. In this example,
select a single network interface device.

6. The Select Analog Device prompt is displayed. This prompt lists the analog
HiZ devices that were discovered in step 2. Make your selection, such as 1 for
dtiB1T1.

7. The Select Analog Devices menu is displayed. Enter 5 to select the voice
resources for call recording.

8. A message informs you that voice resources will be allocated sequentially,
starting from the selected one. Select the first voice resource for call
recording, such as dxxxB1C1.

9. The Select Analog Devices menu is displayed. Enter 6 to display the currently
selected devices and resources for call recording.

A message informs you of the selected devices and resources.

2. Call Logging Demos

29

10. The Select Analog Devices menu is displayed. Enter 7 to validate the selected
devices and resources. Note that you must perform the validation step before
you can start monitoring and recording calls.

If validation fails, a message is displayed indicating what�s missing; for
example, no voice resource was selected. Correct the error until validation is
successful. If validation is successful, the current selection process is
completed and the Devices menu is displayed.

11. After validation is successful, the Devices menu is displayed. Enter 0 to
return to the HiZDemo main menu.

12. The HiZDemo main menu is displayed. Enter 2 to start monitoring and
recording calls.

13. You are asked if you want record notification beep tone to be generated on
capable devices. If yes, enter 1. If no, enter 0.

14. Several messages are displayed informing you of the status of the demo run,
such as:

Preparing to monitor and record calls…
Starting Global Call…
Opening channels and call logging devices…

Currently monitoring and recording calls

From this point on, new calls observed on the tapped line will be recorded.
Note that calls already in progress won�t be recorded, because the HiZDemo
must first detect that a connection was made. Also note that nothing happens
on the screen while calls are being monitored and recorded. Record files are
silently created in the demo directory and can be noticed by means of another
command prompt window or the Windows Explorer.

15. After call monitoring and recording has begun, you are given an opportunity
to stop the process. When you are ready, enter 0 to stop the process.

16. After you have stopped the process, the HiZDemo main menu is displayed.
Enter 0 to exit the HiZDemo application. You can review the files that
contain the recordings. Look for cxxryyyy.wav in the demo directory where xx
represents the ordinal channel number and yyyy represents the sequence
number.

Call Logging API Software Reference for Windows

30

2.1.6. Running the HiZDemo on Digital HiZ Boards

The following steps describe one way to run the HiZDemo application on a digital
HiZ board.

1. After starting the HiZDemo application, the HiZDemo main menu is
displayed. Enter 1 to discover and select devices.

2. The Devices menu is displayed. Enter 1 to discover devices available on this
system. This option retrieves and lists the number of network interface
devices and the number of voice devices on the system. It also checks the
properties of each device. If a device is a HiZ device, the board, its network
interfaces and voice resources will be available for selection in subsequent
menus.

3. The Devices menu is displayed. Enter 2 to select devices used to monitor and
record calls.

4. The Select Devices menu is displayed. Enter 2 to select digital devices.

5. The Select Digital Devices menu is displayed. Enter 1 to select the protocol
in use with this board.

6. The Select Digital Protocol menu is displayed. This prompt lists the
supported protocols. Make your selection, such as 1 for ISDN.

7. The Select Digital Devices menu is displayed. Enter 2 to specify the network
interface board that receives the voice and signaling data transmitted by the
network side (CO PSTN).

8. The Select Network side network interface board prompt is displayed. Make
your selection from the list of network interface boards.

9. The Select Digital Devices menu is displayed. Enter 3 to specify the network
interface board that receives the voice and signaling data transmitted by the
user side (CPE PBX).

10. The Select User side network interface board prompt is displayed. Make your
selection from the list of network interface boards.

11. The Select Digital Devices menu is displayed. Enter 4 to select the voice
resources for call recording.

2. Call Logging Demos

31

12. A message informs you that voice resources will be allocated sequentially,
starting from the selected one. Select the first voice resource for call
recording such as dxxxB1C1.

13. The Select Digital Devices menu is displayed. Enter 5 to display the currently
selected protocol, boards, and resources for call recording.

A message informs you of the selected protocol, boards, and resources.

14. The Select Digital Devices menu is displayed. Enter 6 to validate the selected
protocol, boards, and resources. Note that you must perform the validation
step before you can start recording calls.

If validation fails, a message is displayed indicating what�s missing; for
example, no voice resource was selected. Correct the error until validation is
successful. If validation is successful, the current selection process is
completed and the Devices menu is displayed.

15. After validation is successful, the Devices menu is displayed. Enter 0 to
return to the HiZDemo main menu.

16. The HiZDemo main menu is displayed. Enter 2 to start monitoring and
recording calls.

17. You are asked if you want record notification beep tone to be generated on
capable devices. If yes, enter 1. If no, enter 0. Note that digital HiZ devices
are currently not able to transmit the record notification beep tone to the
monitored line.

18. Several messages are displayed informing you of the status of the demo run,
such as:

Preparing to monitor and record calls…
Starting Global Call…
Opening channels and call logging devices…

Currently monitoring and recording calls

From this point on, new calls observed on the tapped line will be recorded.
Note that calls already in progress won�t be recorded, because the HiZDemo
must first detect that a connection was made. Also note that nothing happens
on the screen while calls are being monitored and recorded. Record files are
silently created in the demo directory and can be noticed by means of another
command prompt window or the Windows Explorer.

Call Logging API Software Reference for Windows

32

19. After call monitoring and recording has begun, you are given an opportunity
to stop the process. When you are ready, enter 0 to stop the process.

20. After you have stopped the process, the HiZDemo main menu is displayed.
Enter 0 to exit the HiZDemo application. You can review the files that
contain the recordings. Look for cxxryyyy.wav in the demo directory where xx
represents the ordinal channel number and yyyy represents the sequence
number.

2.1.7. Functions Used by the HiZDemo

Table 7 provides a list of the Call Logging API functions that are called by the
HiZDemo application. The function name and source file name are also specified
for easier reference. The files are located in \program
files\dialogic\demos\hiz\hizdemo.

Table 7. Call Logging Functions Used by HiZDemo

HiZDemo Function name and Source File
Name

Call Logging API Function

StartMonitoring() in monitor.c cl_Open()

StopMonitoring() in monitor.c cl_Close()

CallLoggingEventHandler() in monitor.c cl_GetUsrAttr()
cl_GetOrdinalChannel()
cl_GetTransaction()
cl_ReleaseTransaction()

2.1.8. Files Used by the HiZDemo

Table 8 lists the files used by the HiZDemo application. The files are located in
\program files\dialogic\demos\hiz\hizdemo .

2. Call Logging Demos

33

Table 8. Files Used by HiZDemo

File Name Description

cxxryyyy.wav recording output in wave file format generated after
the demo is run where xx represents the ordinal
channel number (hexadecimal) and yyyy represents the
sequence number (hexadecimal)

channel.c HiZDemo channel handling source code

channel.h HiZDemo channel handling header file

device.c HiZDemo device discovery and select source code

device.h HiZDemo device discovery and select header file

HiZdemo.c HiZDemo main source code

HiZdemo.dsp HiZDemo project file

HiZdemo.dsw HiZDemo work space

HiZdemo.exe HiZDemo executable file

HiZdemo.h HiZDemo main header file

menu.c HiZDemo menus and prompts source code

menu.h HiZDemo menus and prompts header file

monitor.c HiZDemo call monitoring and recording source code

monitor.h HiZDemo call monitoring and recording header file

2.2. SnifferMFC Demo

The SnifferMFC demo application is described in the following topics:

• 2.2.1. SnifferMFC Demo Description

• 2.2.2. SnifferMFC Demo Requirements

• 2.2.3. Starting the SnifferMFC Demo

Call Logging API Software Reference for Windows

34

• 2.2.4. Running the SnifferMFC Demo on Analog HiZ Boards

• 2.2.5. Running the SnifferMFC Demo on Digital HiZ Boards

• 2.2.6. Functions Used by the SnifferMFC Demo

• 2.2.7. Files Used by the SnifferMFC Demo

2.2.1. SnifferMFC Demo Description

The SnifferMFC demo application is built with a graphical user interface (GUI)
based on the Microsoft Foundation Classes (MFC). The SnifferMFC demo
illustrates call monitoring and call logging functionality on analog HiZ boards and
on digital HiZ boards. This demo is a useful debugging tool as every event
observed on the line is reported on the screen.

Using the SnifferMFC demo, you can do the following:

• select analog HiZ or digital HiZ devices to monitor and log calls

• monitor calls

• view the results of call monitoring on the screen

• on digital HiZ boards, generate an ISDN trace file that can be used in
conjunction with cl_DecodeTrace()

• on digital HiZ boards, decode ISDN trace files previously generated on the
board

NOTES: 1. Unlike the HiZDemo, the SnifferMFC demo does not discover all
devices available on the system and distinguish HiZ devices from
non-HiZ devices. You must gather HiZ device information before
you run the SnifferMFC demo.

2. Do not run the SnifferMFC demo for long periods of time, because
the information displayed requires more and more memory.

2. Call Logging Demos

35

2.2.2. SnifferMFC Demo Requirements

The following hardware and software requirements must be met before running
the SnifferMFC demo application:

• A supported Intel® analog and/or digital HiZ board has been installed in your
system.

• For analog HiZ boards, a telephone connected to a Central Office (CO) or
PBX is available, and this connection is tapped.

• For digital HiZ boards, a T-1 or E-1 connection between a network side and a
user side is available, and this connection is tapped.

• The Intel® Dialogic® system release software has been installed and the
system requirements for this system release have been met. For more
information, see the System Requirements section in the Release Guide for
the system release you are using.

2.2.3. Starting the SnifferMFC Demo

To start the SnifferMFC application, follow these instructions:

1. Open Windows Explorer and go to the directory where the demo is located.

2. Double-click on sniffermfc.exe.

The SnifferMFC main window is displayed.

2.2.4. Running the SnifferMFC Demo on Analog HiZ Boards

The following steps describe one way to run the SnifferMFC demo application on
an analog HiZ board.

1. After starting the application, the main menu is displayed.
Select Sniffer > Open.

2. The cl_Open arguments window is displayed.

• Click TSC for method.

• Enter the network-side board such as dtiB1. To monitor calls on a range
of boards, use a dash; for example, specify dtiB1-dtiB4.

Call Logging API Software Reference for Windows

36

You will notice the resulting pszDeviceName string used by the
cl_Open() function.

• When TSC is selected as the method, the Attach voice resources check
box is automatically selected.

• Enter the first voice resource for call logging such as dxxxB1C1.

• Click OK.

3. A dialog box appears asking if you want to see the list of semantics states.
Click Yes or No as desired.

If you click Yes, the list of semantics states is displayed. Click OK to
continue.
If you click No, continue to step 4.

4. The SnifferMFC main window is displayed and call logging transactions are
presented on the screen.

2. Call Logging Demos

37

To stop the SnifferMFC demo, select Sniffer > Close, then File > Exit.

2.2.5. Running the SnifferMFC Demo on Digital HiZ Boards

The following steps describe one way to run the SnifferMFC demo application on
a digital HiZ board.

1. After starting the application, the main menu is displayed.
Select Sniffer > Open.

2. The cl_Open arguments window is displayed.

3. Choose the HDLC method or the FILE method.

HDLC method:

• Click HDLC for method.

• Click the appropriate protocol such as ISDN.

• Enter the network-side board such as dtiB1.

• Enter the user-side board such as dtiB2.

• You will notice the resulting pszDeviceName string used by the
cl_Open() function.

• Click OK.

Call Logging API Software Reference for Windows

38

OR

FILE method:

• Click FILE to decode ISDN trace files previously generated on digital
HiZ boards.

• Click the appropriate protocol.

• You will notice the resulting pszDeviceName string used by the
cl_Open() function.

• The network-side board, the user-side board, and the voice resources
values are not used.

• Click OK.

4. The SnifferMFC main window is displayed and call logging transactions are
presented on the screen.

To stop the demo, select Sniffer > Close, then File > Exit.

2. Call Logging Demos

39

2.2.6. Functions Used by the SnifferMFC Demo

Table 9 provides a list of the Call Logging API functions that are called by the
SnifferMFC demo application. The function name and source file name are also
specified for easier reference.

Table 9. Call Logging Functions Used by the SnifferMFC Demo

SnifferMFC Function name and Source File
Name

Call Logging API Function

CSnifferMFCDoc::OnSnifferOpen()
in SnifferMFCDoc.cpp

cl_GetSemanticsStateCount()

cl_GetSemanticsStateName()

cl_Open()

CSnifferMFCOpenDlg::UpdateDeviceName()
in SnifferMFCOpenDlg.cpp

construction of the
pszDeviceName parameter of
cl_Open()

CSnifferMFCDoc::AttachVoiceResourcesTo
NetworkChannels()
in SnifferMFCDoc.cpp

takes care of attaching voice
resource devices to network
interface devices

CSnifferMFCDoc::OnSnifferClose()
in SnifferMFCDoc.cpp

cl_Close()

Call Logging API Software Reference for Windows

40

SnifferMFC Function name and Source File
Name

Call Logging API Function

CSnifferMFCDoc::EventHandler()
in SnifferMFCDoc.cpp

cl_GetCalled()

cl_GetCalling()

cl_GetChannel()

cl_GetMessage()

cl_GetMessageDetails()

cl_GetTransaction()

cl_GetTransactionDetails()

cl_GetUsrAttr()

cl_GetVariable()

cl_ReleaseTransaction()

CSnifferMFCDoc::OnSnifferDecodetrace()
in SnifferMFCDoc.cpp

cl_DecodeTrace()

CSnifferMFCDoc::OnSnifferStarttrace()
in SnifferMFCDoc.cpp

cl_StartTrace()

CSnifferMFCDoc::OnSnifferStoptrace()
in SnifferMFCDoc.cpp

cl_StopTrace()

2.2.7. Files Used by the SnifferMFC Demo

Table 10 lists the files used by the SnifferMFC demo. The files are located in
\program files\dialogic\demos\hiz\sniffermfc .

2. Call Logging Demos

41

Table 10. Files Used by SnifferMFC Demo

File Name Description

ChildFrm.cpp SnifferMFC child window handling source code

ChildFrm.h SnifferMFC child window handling header file

ISDN.log SnifferMFC sample ISDN trace file

MainFrm.cpp SnifferMFC main window handling source code

MainFrm.h SnifferMFC main window handling header file

resource.h SnifferMFC resource definition header file

SnifferMFC.clw SnifferMFC ClassWizard file

SnifferMFC.cpp SnifferMFC main source code

SnifferMFC.dsp SnifferMFC project file

SnifferMFC.dsw SnifferMFC work space

SnifferMFC.exe SnifferMFC sample program binary

SnifferMFC.h SnifferMFC main header file

SnifferMFC.ico SnifferMFC main icon

SnifferMFC.rc SnifferMFC resource script

SnifferMFC.rc2 SnifferMFC secondary resource script

SnifferMFCDoc.cpp SnifferMFC document handling header file

SnifferMFCDoc.h SnifferMFC document handling header file

SnifferMFCDoc.ico SnifferMFC document icon

SnifferMFCOpenDlg.cpp SnifferMFC open device dialog handling source code

SnifferMFCOpenDlg.h SnifferMFC open device dialog handling header file

SnifferMFCView.cpp SnifferMFC view handling source code

Call Logging API Software Reference for Windows

42

File Name Description

SnifferMFCView.h SnifferMFC view handling header file

StdAfx.cpp SnifferMFC precompilation source code

StdAfx.h SnifferMFC precompilation header file

Toolbar.bmp SnifferMFC toolbar bitmap

43

3. Call Logging Function Overview
This chapter provides an overview of the Call Logging API functions that are used
to develop and run call monitoring and call recording applications and a section
on error handling.

3.1. Call Logging Function Categories

The call logging functions can be divided into three categories:

• Device-based functions � functions that affect the status of a device or that set
or get information related to a particular device

• Transaction-based functions � functions that set or get information related to
a particular call logging transaction

• Event-based functions � functions that get information that has been sent to
and stored in the event data block after a CLEV_MESSAGE event was
generated.

Table 11, Table 12, and Table 13 categorize the functions accordingly and provide
brief descriptions of each of the call logging functions. Some functions that are
specific to common channel signaling (CCS) protocols are not supported on
analog HiZ boards. For detailed descriptions of the functions, see Chapter 4. Call
Logging Function Reference .

Table 11. Device-based Call Logging Functions

Function Description

cl_Close() closes a previously opened call logging
device

cl_DecodeTrace() decodes a previously recorded L2 frame
trace file and posts the call logging events
to the SRL

cl_GetSemanticsStateCount() gets the number of semantics states

Call Logging API Software Reference for Windows

44

Function Description

cl_GetSemanticsStateIndex() gets the index of a semantics state from its
name

cl_GetSemanticsStateName() gets the name of a semantics state from its
index

cl_GetUsrAttr() gets the user-defined attribute for a call
logging device

cl_Open() opens a call logging device

cl_SetUsrAttr() sets the user-defined attribute for a call
logging device

cl_StartTrace() starts recording an L2 frames trace file

cl_StopTrace() stops recording an L2 frames trace file

Table 12. Transaction-based Call Logging Functions

Function Description

cl_GetTransaction() gets the call logging transaction ID

cl_GetTransactionDetails() gets the call logging transaction ID and other
details

cl_GetTransactionUsrAttr() gets the user-defined attribute for a call
logging transaction

cl_PeekCalled() gets the called party number, at function call
time

cl_PeekCalling() gets the calling party number, at function call
time

cl_PeekChannel() gets the channel number, at function call time

cl_PeekOrdinalChannel() gets the ordinal channel number, at function
call time

3. Call Logging Function Overview

45

Function Description

cl_PeekVariable() gets the value of a semantics-defined variable,
at function call time

cl_ReleaseTransaction() releases the call logging transaction

cl_SetTransactionUsrAttr() sets the user-defined attribute for a call
logging transaction

Table 13. Event-based Call Logging Functions

Function Description

cl_GetCalled() gets the called party number, at event time

cl_GetCalling() gets the calling party number, at event time

cl_GetChannel() gets the channel number, at event time

cl_GetOrdinalChannel() gets the ordinal channel number, at event time

cl_GetMessage() gets the message ID

cl_GetMessageDetails() gets the message ID and other details

cl_GetTransaction() gets the call logging transaction ID

cl_GetTransactionDetails() gets the call logging transaction ID and other
details

cl_GetVariable() gets the value of a semantics-defined variable,
at event time

3.2. Error Handling

Call Logging functions return a negative value (test for <0) for failure and in most
cases you use the SRL Standard Attribute function ATDV_LASTERR() to
obtain the error code. The cl_Open() function cannot use this error handling
method, however, because if it fails it does not return a device handle, which is a

Call Logging API Software Reference for Windows

46

required parameter for ATDV_LASTERR(). Instead, cl_Open() error codes
are returned in the errno global variable.

Table 14 shows the list of possible error codes that can be returned. The Errors
section of each function description lists the error codes that apply to that
particular function.

Table 14. Call Logging Function Errors

Error Code Value Description

ECL_NOMEM out of memory

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDPARAMETER invalid parameter

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_UNSUPPORTED function not supported

ECL_FILEOPEN fopen failed

ECL_FILECLOSE fclose failed

ECL_FILEREAD fread failed

ECL_FILEWRITE fwrite failed

ECL_TRACESTARTED trace already started

ECL_TRACENOTSTARTED trace not started

ECL_INVALIDDEVICE invalid device handle

ECL_INTERNAL internal Call Logging error; cause
unknown

ECL_GCOPENEX_NETWORK * gc_OpenEx() failed on the network
side

ECL_GCOPENEX_USER * gc_OpenEx() failed on the user side

3. Call Logging Function Overview

47

ECL_DTOPEN_BOARD dt_open() failed

ECL_ATDV_SUBDEVS_BOARD ATDV_SUBDEVS() failed

ECL_HIZOPEN_CHANNEL hiz_open() failed

*The following additional flag is set in these error code values to indicate that the
error occurred while the Call Logging API was calling a Global Call function:
ECL_FLAG_INSIDE_GC use gc_ErrorValue() for an additional

error description

The error codes returned by the Call Logging API may be explicit enough, but for
more information about the Global Call gc_ functions and error code values they
return, see the Global Call API Library Reference.

Some Call Logging functions will return -2 if they fail because the transaction was
already released. ATDV_LASTERR() returns
ECL_TRANSACTIONRELEASED in these cases.

ECL_INVALIDPARAMETER is returned when a parameter is fully or partially
invalid. Examples of situations in which this error code can be returned are:

• a field in the pszDeviceName parameter of cl_Open() is incorrect

• the state index specified by the iSemanticsStateIndex parameter of
cl_GetSemanticsStateName() is out of bounds

• the variable specified by the pszVariableName parameter of
cl_GetVariable() or cl_PeekVariable() does not exist

ECL_INVALIDCONTEXT is returned if the Call Logging function can only be
called while processing a CLEV_MESSAGE event and the function is called at
another time or with a different device than the one for which the event was
posted.

ECL_UNSUPPORTED is returned if the Call Logging function is not supported
under the current conditions. For example, cl_DecodeTrace() can only be called
when the FILE method was specified in the pszDeviceName parameter of
cl_Open().

Call Logging API Software Reference for Windows

48

ECL_FILEOPEN and ECL_FILEREAD are returned when fopen and fread fail.
This can happen when cl_DecodeTrace() is called if the pszFileName parameter
specifies a file that does not exist or a file that does not have the required format.

49

4. Call Logging Function Reference
This chapter provides a detailed description of each Call Logging function
included in the cllib.h file; functions are presented in alphabetical order.

This chapter also includes the following information:

• function documentation � the function description format

• general function syntax � the programming convention format

4.1. Function Documentation

The Call Logging API functions are listed alphabetically in the remainder of this
chapter. The format for each function description is as follows:

• Function header � Lists the function name and briefly states the purpose of
the function.

• Name � Defines the function name and function syntax using standard C
language syntax.

• Inputs � Lists all input parameters using standard C language syntax.

• Returns � Lists all returns of the function.

• Includes � Lists all include files required by the function.

• Mode � Asynchronous or synchronous.

• Platform � Indicates which platforms (DM3 or Springware) are
supported for each function. The term �DM3 boards� refers to products
that are based on the Intel® DM3 mediastream architecture. The term
�Springware boards� refers to boards based on earlier-generation
architecture.

Note: Although the Call Logging API is supported on DM3 boards only,
this information is provided for consistency across all libraries.

• Description paragraph � Provides a description of function operation,
including parameter descriptions.

Call Logging API Software Reference for Windows

50

• Termination Event paragraph � Describes the event(s) returned to indicate
the termination of the function. Termination events are returned by
asynchronous functions only.

• Cautions paragraph � Provides warnings and reminders.

• Example paragraph � Provides C language coding example(s) showing how
the function can be used in application code.

• Errors paragraph � Lists specific error codes for each function.

• See Also paragraph � Provides a list of related functions.

4.2. General Function Syntax

The Call Logging functions use the following format:

cl_function(reference, parameter1, parameter2, �, parameterN)

where:

• cl_function � is the function name.

• reference � is an input field that directs the function to a specific call logging
device or call logging transaction.

• parameters � are input or output fields.

 closes a previously opened call logging device cl_Close()

51

 Name: int cl_Close(hDevice)
 Inputs: long hDevice • Call Logging device handle

 Returns: 0 on success
-1 on failure

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_Close() function closes a previously opened call logging device that was
opened using the cl_Open() function.

 Parameter Description

 hDevice The device handle of the call logging device to be closed.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

 The Call Logging API is not multithread safe. Call logging functions must be called
within the same thread.

! ! ! ! Example

#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <cllib.h>
#include <stdio.h>
#include <malloc.h>

/* The Call Logging Device Handle */
extern long g_hDevice;

typedef struct
{
 const char*pszProtocol;
 const char*pszNetworkDeviceName;
 const char*pszUserDeviceName;
} DEVICEUSRATTR;

extern long EventHandler(unsigned long hEvent);

 cl_Close() closes a previously opened call logging device

52

extern DEVICEUSRATTR* GetDeviceUsrAttr(long hDevice);

void ExitApplication(void)
{
 DEVICEUSRATTR* pDeviceUsrAttr;

 if (g_hDevice != EV_ANYDEV)
 {
 if (sr_dishdlr(g_hDevice, EV_ANYEVT, EventHandler) != 0)
 {
 printf("ExitApplication - sr_dishdlr() failed\n");
 }

 pDeviceUsrAttr = GetDeviceUsrAttr(g_hDevice);
 free(pDeviceUsrAttr);

 if (cl_Close(g_hDevice) != 0)
 {
 printf("ExitApplication - cl_Close() failed\n");
 }

 g_hDevice = EV_ANYDEV;

 if (gc_Stop() != GC_SUCCESS)
 {
 printf("ExitApplication - gc_Stop() failed\n");
 }
 }
}

! ! ! ! Errors

None

! ! ! ! See Also

• cl_GetUsrAttr()
• cl_SetUsrAttr()

 decodes a previously recorded L2 frames trace file cl_DecodeTrace()

53

 Name: int cl_DecodeTrace(hDevice, pszFileName)
 Inputs: long hDevice • Call Logging device handle

 const char* pszFileName • pointer to ASCIIZ string
 Returns: 0 on success

-1 on failure
 Includes: cllib.h

 Mode: synchronous
 Platform: DM3

! ! ! ! Description

 The cl_DecodeTrace() function is not supported on analog HiZ boards.

 The cl_DecodeTrace() function decodes a previously recorded L2 frames trace file
and posts the call logging events to the SRL. The events are posted as if the L2
frames recorded in the trace file were actually monitored on the line when they were
occurring. Since trace files do not contain time information, the call logging events
are generated at a high rate.

 The cl_DecodeTrace() function is used primarily for testing. The SnifferMFC demo
provides an ISDN log file that can be used in conjunction with cl_DecodeTrace().

 Parameter Description

 hDevice The device handle of the call logging device.
 pszFileName A pointer to the ASCIIZ string that specifies the path and name

of the recorded L2 frames trace file.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

 cl_DecodeTrace() decodes a previously recorded L2 frames trace file

54

• This function can be called only for call logging devices for which the FILE
method was specified in the pszDeviceName parameter when the device was
opened. See the cl_Open() function description for more information.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>

/* The Call Logging Device Handle */
extern long g_hDevice;

void DecodeTraceFile(const char* pszTraceFileName)
{
 if (g_hDevice != EV_ANYDEV)
 {
 if (cl_DecodeTrace(g_hDevice, pszTraceFileName) != 0)
 {
 printf("DecodeTraceFile - cl_DecodeTrace() failed\n");
 }
 }
}

! ! ! ! Errors

If the function returns a value <0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_FILEOPEN fopen failed

ECL_FILEREAD fread failed

ECL_UNSUPPORTED function not supported

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

 decodes a previously recorded L2 frames trace file cl_DecodeTrace()

55

! ! ! ! See Also

• cl_Open()

 cl_GetCalled() gets the called party number, at event time

56

 Name: int cl_GetCalled(hDevice, pclEventData, pszCalled,
iCalledSize)

 Inputs: long hDevice • Call Logging device handle
 CL_EVENTDATA*

pclEventData
• pointer to the call logging event

data block
 char* pszCalled • pointer to the buffer for the

called party number
 int iCalledSize • size of the buffer for the called

party number
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetCalled() function gets the called party number, at event time. The value
returned is that of the semantics-defined CALLED variable. The function returns the
called party number as the number would have appeared at the time the
CLEV_MESSAGE event was generated.

 Parameter Description

 hDevice The device handle of the call logging device.
 pclEventData A pointer to the call logging event data block obtained from

sr_getevtdatap() while the function was processing a
CLEV_MESSAGE event. See 1.7.2. Retrieving Event Data
for more on the event data block.

 pszCalled The pointer to the buffer into which the called party number is
returned as an ASCIIZ string. If the called party number is not
available, the function will return with an empty string.

 iCalledSize The size of the buffer into which the called party number is
returned, where the maximum size includes the terminating
NUL of the ASCIIZ string.

! ! ! ! Termination Events

 None

 gets the called party number, at event time cl_GetCalled()

57

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• This function can be called only while processing a CLEV_MESSAGE event.

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

void GetCalled_WithinEventHandler(long hDevice, CL_EVENTDATA* pclEventData)
{
 int iRet;
 char szCalled[32];

 iRet = cl_GetCalled(hDevice, pclEventData, szCalled, sizeof(szCalled));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetCalled_WithinEventHandler - Transaction already
released\n");
 }
 else
 {
 printf("GetCalled_WithinEventHandler - cl_GetCalled() failed\n");
 }
 return;
 }

 printf("Called party number is: \"%s\"\n", szCalled);
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_NOMEM out of memory

 cl_GetCalled() gets the called party number, at event time

58

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also

• cl_ReleaseTransaction()
• cl_GetVariable()
• cl_PeekCalled()

 gets the calling party number, at event time cl_GetCalling()

59

Name: int cl_GetCalling(hDevice, pclEventData, pszCalling,
iCallingSize)

Inputs: long hDevice • Call Logging device handle
 CL_EVENTDATA*

pclEventData
• pointer to the call logging event

data block
 char* pszCalling • pointer to the buffer for the

calling party number
 int iCallingSize • size of the buffer for the calling

party number
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetCalling() function gets the calling party number, at event time. The value
returned is that of the semantics-defined CALLING variable. The function returns the
calling party number as the number would have appeared at the time the
CLEV_MESSAGE event was generated.

 Parameter Description

 hDevice The device handle of the call logging device.
 pclEventData A pointer to the call logging event data block obtained from

sr_getevtdatap() while the function was processing a
CLEV_MESSAGE event. See 1.7.2. Retrieving Event Data
for more information.

 pszCalling The pointer to the buffer into which the calling party number is
returned as an ASCIIZ string. If the calling party number is not
available, the function will return with an empty string.

 iCallingSize The size of the buffer into which the calling party number is
returned, where the maximum size includes the terminating
NUL of the ASCIIZ string.

! ! ! ! Termination Events

 None

 cl_GetCalling() gets the calling party number, at event time

60

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• This function can be called only while processing a CLEV_MESSAGE event.

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

void GetCalling_WithinEventHandler(long hDevice, CL_EVENTDATA* pclEventData)
{
 int iRet;
 char szCalling[32];

 iRet = cl_GetCalling(hDevice, pclEventData, szCalling, sizeof(szCalling));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetCalling_WithinEventHandler - Transaction already
released\n");
 }
 else
 {
 printf("GetCalling_WithinEventHandler - cl_GetCalling() failed\n");
 }
 return;
 }

 printf("Calling party number is: \"%s\"\n", szCalling);
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_NOMEM out of memory

 gets the calling party number, at event time cl_GetCalling()

61

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also

• cl_ReleaseTransaction()
• cl_GetVariable()
• cl_PeekCalling()

 cl_GetChannel() gets the channel number, at event time

62

Name: int cl_GetChannel(hDevice, pclEventData, pszChannel,
iChannelSize)

Inputs: long hDevice • Call Logging device handle
 CL_EVENTDATA*

pclEventData
• pointer to the call logging event

data block
 char* pszChannel • pointer to the buffer for the

channel number
 int iChannelSize • size of the buffer for the

channel number
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetChannel() function gets the channel number, at event time. The value
returned is that of the semantics-defined CHANNEL variable. The function returns
the channel number as the number would have appeared at the time the
CLEV_MESSAGE event was generated.

 gets the channel number, at event time cl_GetChannel()

63

 Parameter Description

 hDevice The device handle of the call logging device.
 pclEventData A pointer to the call logging event data block obtained from

sr_getevtdatap() while the function was processing a
CLEV_MESSAGE event. See section 1.7.2. Retrieving
Event Data for more information.

 pszChannel The pointer to the buffer into which the channel number is
returned as an ASCIIZ string. For analog HiZ boards, this
string contains a number between 1 and the number of analog
HiZ devices specified in the pszDeviceName parameter of the
cl_Open() function.

 iChannelSize The size of the buffer into which the channel number is
returned, where the maximum size includes the terminating
NUL of the ASCIIZ string.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• This function can be called only while processing a CLEV_MESSAGE event.

• The range of channel numbers depends on the semantics rules and does not
necessarily match Intel device name numbering. For example, E-1 ISDN channel
numbers range from 1 to 15 and from 17 to 31, while the Intel device names on
an E-1 board range from �dtiBxT1� to �dtiBxT30�.

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

void GetChannel_WithinEventHandler(long hDevice, CL_EVENTDATA* pclEventData)
{
 int iRet;
 char szChannel[8];

 iRet = cl_GetChannel(hDevice, pclEventData, szChannel, sizeof(szChannel));

 cl_GetChannel() gets the channel number, at event time

64

 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetChannel_WithinEventHandler - Transaction already
released\n");
 }
 else
 {
 printf("GetChannel_WithinEventHandler - cl_GetChannel() failed\n");
 }
 return;
 }

 printf("Bearer channel number is: \"%s\"\n", szChannel);
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also

• cl_ReleaseTransaction()
• cl_GetVariable()
• cl_GetOrdinalChannel()
• cl_PeekChannel()
• cl_PeekOrdinalChannel()

 returns the ID of a message cl_GetMessage()

65

Name: int cl_GetMessage(hDevice, pidMessage, pclEventData)
Inputs: long hDevice • call logging device handle

 long* pidMessage • pointer to the message ID
 CL_EVENTDATA*

pclEventData
• pointer to the call logging event

data block
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetMessage() function returns the ID of a message for which a
CLEV_MESSAGE event was generated. The returned message ID is unique and
protocol dependent.

 Parameter Description

 hDevice The device handle of the call logging device.
 pidMessage A pointer to the returned message ID.
 pclEventData A pointer to the call logging event data block obtained from

sr_getevtdatap() while the function was processing a
CLEV_MESSAGE event. See section 1.7.2. Retrieving
Event Data for more information.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• This function can be called only while processing a CLEV_MESSAGE event.

 cl_GetMessage() returns the ID of a message

66

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

void GetMessage_WithinEventHandler(long hDevice, CL_EVENTDATA* pclEventData)
{
 int iRet;
 long idMessage;

 iRet = cl_GetMessage(hDevice, &idMessage, pclEventData);
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetMessage_WithinEventHandler - Transaction already
released\n");
 }
 else
 {
 printf("GetMessage_WithinEventHandler - cl_GetMessage() failed\n");
 }
 return;
 }

 printf("Message ID=%08X\n", idMessage);
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

 returns the ID of a message cl_GetMessage()

67

! ! ! ! See Also

• cl_ReleaseTransaction()
• cl_GetMessageDetails()

 cl_GetMessageDetails() returns the ID and details of a message

68

 Name: int cl_GetMessageDetails(hDevice, pidMessage, pclEventData,
piSource, pszName, iNameSize, pszTraceText, iTraceTextSize)

 Inputs: long hDevice • call logging device handle
 long* pidMessage • pointer to message ID
 CL_EVENTDATA*

pclEventData
• pointer to call logging event

data block
 int* piSource • pointer to code that identifies

sender side of message
 char* pszName • pointer to buffer for message

name
 int iNameSize • size of buffer for message name
 char* pszTraceText • pointer to buffer for decoded

message text
 int iTraceTextSize • size of buffer for decoded

message text
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetMessageDetails() function returns the ID and details of a message for
which a CLEV_MESSAGE event was generated. Optional details about the message
that can be returned include the message source, the message name, and the human-
readable decoded text based on the protocol message. Pass NULL as the related
parameter for any details that are not needed.

The returned message ID is unique and protocol-dependent. The value of the returned
code is either CL_SOURCE_NETWORK or CL_SOURCE_USER.

 returns the ID and details of a message cl_GetMessageDetails()

69

 Parameter Description

 hDevice The device handle of the call logging device.
 pidMessage The pointer to the returned message ID.
 pclEventData The pointer to the call logging event data block obtained

from sr_getevtdatap() while the function was processing a
CLEV_MESSAGE event. See section 1.7.2. Retrieving
Event Data for more information.

 piSource The pointer to the returned code that identifies the sender
side of the message. The value of the returned code is either
CL_SOURCE_NETWORK or CL_SOURCE_USER

 pszName The pointer to the buffer into which the name of the message
is returned as an ASCIIZ string.

 iNameSize The size of the buffer into which the name of the message is
returned, where the maximum size includes the terminating
NUL of the ASCIIZ string.

 pszTraceText The pointer to the buffer into which the human-readable
decoded text of the message is returned as an ASCIIZ string
(digital HiZ boards only).

 iTraceTextSize The size of the buffer into which the human-readable
decoded text of the message is returned, where the maximum
size includes the terminating NUL of the ASCIIZ string
(digital HiZ boards only).

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• This function can be called only while processing a CLEV_MESSAGE event.

• The names of the messages are protocol dependent.

 cl_GetMessageDetails() returns the ID and details of a message

70

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

const char* ToText_MessageSource(int iMessageSource)
{
 if (iMessageSource == CL_SOURCE_NETWORK)
 {
 return "Network-side";
 }
 else if (iMessageSource == CL_SOURCE_USER)
 {
 return "User-side";
 }
 return "Unknown";
}

void GetMessageDetails_WithinEventHandler(long hDevice, CL_EVENTDATA* pclEventData)
{
 int iRet;
 long idMessage;
 int iMessageSource;
 char szMessageName[32];
 char szMessageTraceText[4096];

 iRet = cl_GetMessageDetails(hDevice, &idMessage, pclEventData, &iMessageSource,
szMessageName, sizeof(szMessageName), szMessageTraceText, sizeof(szMessageTraceText));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetMessageDetails_WithinEventHandler - Transaction already
released\n");
 }
 else
 {
 printf("GetMessageDetails_WithinEventHandler - cl_GetMessageDetails()
failed\n");
 }
 return;
 }

 printf("Message ID=%08X \"%s\" sent by %s(%i):\n%s\n", idMessage, szMessageName,
ToText_MessageSource(iMessageSource), iMessageSource, szMessageTraceText);
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

 returns the ID and details of a message cl_GetMessageDetails()

71

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also

• cl_ReleaseTransaction()
• cl_GetMessage ()

 cl_GetOrdinalChannel() gets the ordinal channel number, at event time

72

Name: int cl_GetOrdinalChannel(hDevice, pclEventData,
piOrdinalChannel)

Inputs: long hDevice • call logging device handle
CL_EVENTDATA*
pclEventData

• pointer to the call logging
event data block

int* piOrdinalChannel • pointer to the returned ordinal
number of the channel

Returns: 0 on success
-1 on failure
-2 if call logging transaction already released

Includes: cllib.h
Mode: synchronous

 Platform: DM3

! ! ! ! Description

The cl_GetOrdinalChannel() function gets the ordinal channel number, at event
time. The value returned is the ordinal number of the channel among those
monitored by the call logging device. The ordinal channel number is an integer
between 0 and the number of monitored channels minus one. The function returns
the ordinal channel number as it would have appeared at the time the
CLEV_MESSAGE event was generated.

If you previously called cl_GetChannel() to access your own channel-related
data stored in an array, then the new cl_GetOrdinalChannel() function is a
recommended replacement. As it returns an integer between 0 and the number of
monitored channels minus one, this function is similar to cl_GetChannel() and
should be used in its place. This new function, introduced in System Release 6.0,
allows direct access into any array of channel-related structures that you wish to
allocate. This is particularly useful in E-1 trunk environments where the value
returned by cl_GetChannel() ranges from 1 to 15 and 17 to 31. The new
cl_GetOrdinalChannel() function allows you to build a unified method to
handle monitored channels, whether they sit on T-1, E-1, or analog lines.

 gets the ordinal channel number, at event time cl_GetOrdinalChannel()

73

Parameter Description

 hDevice The device handle of the call logging device.
 pclEventData A pointer to the call logging event data block obtained

from sr_getevtdatap() while the function was
processing a CLEV_MESSAGE event. See section
1.7.2. Retrieving Event Data for more information.

 piOrdinalChannel The pointer to the ordinal number of the channel,
returned as an integer between 0 and the number of
monitored channels minus one.

! ! ! ! Termination Events

None.

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• This function can be called only while processing a CLEV_MESSAGE event.

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

void GetOrdinalChannel_WithinEventHandler(long hDevice, CL_EVENTDATA* pclEventData)
{
 int iRet;
 int iOrdinalChannel;

 iRet = cl_GetOrdinalChannel(hDevice, pclEventData, &iOrdinalChannel);
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetOrdinalChannel_WithinEventHandler - Transaction already released\n");
 }
 else
 {
 printf("GetOrdinalChannel_WithinEventHandler - cl_GetOrdinalChannel() failed\n");
 }
 return;
 }

 printf("Channel index (or ordinal number) is: %i\n", iOrdinalChannel);
}

 cl_GetOrdinalChannel() gets the ordinal channel number, at event time

74

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_GetChannel()
• cl_PeekOrdinalChannel()

 returns the number of semantics states cl_GetSemanticsStateCount()

75

 Name: int cl_GetSemanticsStateCount(hDevice,
piSemanticsStateCount)

 Inputs: long hDevice • call logging device handle
 int* piSemanticsStateCount • pointer to returned number

 Returns: 0 on success
-1 on failure

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetSemanticsStateCount() function returns the number of semantics states
defined in the protocol-specific semantics for a specified call logging device.
Semantics states, such as dialing, connected or disconnected, represent the current
status of the monitored call.

 The list of semantics states (count, names, and indexes) is protocol-dependent.
Semantics states are indexed from 0 to the number of semantics states minus one.

 Parameter Description

 hDevice The device handle of the call logging device.
 piSemanticsStateCount The pointer to the returned number of semantics

states for this call logging device.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

 The Call Logging API is not multithread safe. Call logging functions must be called
within the same thread.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>

 cl_GetSemanticsStateCount() returns the number of semantics states

76

/* The Call Logging Device Handle */
extern long g_hDevice;

void GetSemanticsStates(void)
{
 int nStates;
 int iState;
 char szState[64];

 if (g_hDevice != EV_ANYDEV)
 {
 if (cl_GetSemanticsStateCount(g_hDevice, &nStates) != 0)
 {
 printf("GetSemanticsStates - cl_GetSemanticsStateCount() failed\n");
 return;
 }

 printf("There are %i semantics states:\n", nStates);

 for (iState = 0 ; (iState < nStates) ; ++iState)
 {
 if (cl_GetSemanticsStateName(g_hDevice, iState, szState,
sizeof(szState)) != 0)
 {
 printf("GetSemanticsStates - cl_GetSemanticsStateName()
failed\n");
 return;
 }

 printf("%i: \"%s\"\n", iState, szState);
 }
 }
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_GetSemanticsStateName()

 returns the name of a semantics state cl_GetSemanticsStateName()

77

 Name: int cl_GetSemanticsStateName(hDevice, iSemanticsStateIndex,
pszSemanticsStateName, iSemanticsStateNameSize)

 Inputs: long hDevice • call logging device handle
 int iSemanticsStateIndex • index of semantics state
 char* pszSemanticsStateName • pointer to buffer into

which semantics state
name is returned

 int iSemanticsStateNameSize • size of buffer into which
name of semantics state
name is returned

 Returns: 0 on success
-1 on failure

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetSemanticsStateName() function returns the name of a semantics state
according to its index. Semantics states, such as dialing, connected or disconnected,
represent the current status of the monitored call. The names of semantics states are
returned as ASCIIZ strings.

 Semantics states are indexed from 0 to the number of semantics states minus one.
The list of semantics states (count, names, and indexes) is protocol dependent.

 cl_GetSemanticsStateName() returns the name of a semantics state

78

 Parameter Description

 hDevice The device handle of the call logging device.
 iSemanticsStateIndex The index of the semantics state.
 pszSemanticsStateName The pointer to the buffer into which the name of

the indexed semantics state is to be returned.
The name is returned as an ASCIIZ string.

 iSemanticsStateNameSize The size of the buffer into which the name of the
indexed semantics state is to be returned, where
the maximum size includes the terminating NUL
of the returned ASCIIZ string.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

 The Call Logging API is not multithread safe. Call logging functions must be called
within the same thread.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>

/* The Call Logging Device Handle */
extern long g_hDevice;

void GetSemanticsStates(void)
{
 int nStates;
 int iState;
 char szState[64];

 if (g_hDevice != EV_ANYDEV)
 {
 if (cl_GetSemanticsStateCount(g_hDevice, &nStates) != 0)
 {
 printf("GetSemanticsStates - cl_GetSemanticsStateCount() failed\n");
 return;
 }

 printf("There are %i semantics states:\n", nStates);

 for (iState = 0 ; (iState < nStates) ; ++iState)

 returns the name of a semantics state cl_GetSemanticsStateName()

79

 {
 if (cl_GetSemanticsStateName(g_hDevice, iState, szState,
sizeof(szState)) != 0)
 {
 printf("GetSemanticsStates - cl_GetSemanticsStateName()
failed\n");
 return;
 }

 printf("%i: \"%s\"\n", iState, szState);
 }
 }
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDPARAMETER invalid parameter

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also

• cl_GetSemanticsStateCount()

 cl_GetTransaction() returns the ID of a call logging transaction

80

Name: int cl_GetTransaction(hDevice, pidTransaction, pclEventData)
Inputs: long hDevice • call logging device

handle
 long* pidTransaction • pointer to returned

transaction ID
 CL_EVENTDATA* pclEventData • pointer to call

logging event data
block

 Returns: 0 on success
-1 on failure
-2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetTransaction() function returns the ID of a call logging transaction for
which a CLEV_MESSAGE event was generated. The returned call logging
transaction ID is unique and protocol dependent.

 Parameter Description

 hDevice The device handle of the call logging device.
 pidTransaction The pointer to the returned call logging transaction ID.
 pclEventData The pointer to the call logging event data block obtained

from sr_getevtdatap() while the function was processing
a CLEV_MESSAGE event. See section
1.7.2. Retrieving Event Data for more information on
the event data block.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• This function can be called only while processing a CLEV_MESSAGE event.

 returns the ID of a call logging transaction cl_GetTransaction()

81

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>
#include <malloc.h>

typedef struct
{
 const char* pszProtocol;
 const char* pszNetworkDeviceName;
 const char* pszUserDeviceName;
} DEVICEUSRATTR;

typedef struct
{
 time_t timeConnect;
 time_t timeDisconnect;
} TRANSACTIONUSRATTR;

extern DEVICEUSRATTR* GetDeviceUsrAttr(long hDevice);
extern TRANSACTIONUSRATTR* GetTransactionUsrAttr(long hDevice, long idTransaction);
extern TRANSACTIONUSRATTR* SetTransactionUsrAttr(long hDevice, long idTransaction);

long EventHandler(unsigned long hEvent)
{
 long hDevice;
 long lEvent;
 CL_EVENTDATA* pclEventData;
 int iRet;
 long idTransaction;
 DEVICEUSRATTR* pDeviceUsrAttr;
 TRANSACTIONUSRATTR* pTransactionUsrAttr;

 hDevice = sr_getevtdev(hEvent);
 if (hDevice == -1)
 {
 printf("EventHandler - sr_getevtdev() failed\n");
 return 1;
 }

 lEvent = sr_getevttype(hEvent);
 if (lEvent == -1)
 {
 printf("EventHandler - sr_getevttype() failed\n");
 return 1;
 }

 pclEventData = (CL_EVENTDATA*)sr_getevtdatap(hEvent);
 if (pclEventData == NULL)
 {
 printf("EventHandler - sr_getevtdatap() failed\n");
 return 1;
 }

 pDeviceUsrAttr = GetDeviceUsrAttr(hDevice);

 if (lEvent == CLEV_MESSAGE)
 {
 printf("EventHandler - CLEV_MESSAGE - iResult=%08X\n", pclEventData-
>iResult);

 iRet = cl_GetTransaction(hDevice, &idTransaction, pclEventData);
 if (iRet != 0)

 cl_GetTransaction() returns the ID of a call logging transaction

82

 {
 if (iRet == -2)
 {
 printf("EventHandler - Transaction already released\n");
 }
 else
 {
 printf("EventHandler - cl_GetTransaction() failed\n");
 }
 return 0;
 }

 printf("Transaction ID=%08X\n", idTransaction);

 if ((pclEventData->iResult & ECL_FIRST_MESSAGE) != 0)
 {
 pTransactionUsrAttr = SetTransactionUsrAttr(hDevice, idTransaction);
 }
 else
 {
 pTransactionUsrAttr = GetTransactionUsrAttr(hDevice, idTransaction);
 }

 if (pTransactionUsrAttr != NULL)
 {
 if ((pclEventData->iResult & ECL_CONNECT_MESSAGE) != 0)
 {
 pTransactionUsrAttr->timeConnect = pclEventData->timeEvent;
 }

 if ((pclEventData->iResult & ECL_DISCONNECT_MESSAGE) != 0)
 {
 pTransactionUsrAttr->timeDisconnect = pclEventData->timeEvent;
 }
 }

 if ((pclEventData->iResult & ECL_LAST_MESSAGE) != 0)
 {
 free(pTransactionUsrAttr);
 pTransactionUsrAttr = NULL;

 iRet = cl_ReleaseTransaction(hDevice, idTransaction);
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("EventHandler - Transaction already released\n");
 }
 else
 {
 printf("EventHandler - cl_ReleaseTransaction() failed\n");
 }
 }
 }

 return 0;
 }
 else if (lEvent == CLEV_ALARM)
 {
 printf("EventHandler - CLEV_ALARM - iResult=%08X\n", pclEventData->iResult);
 return 0;
 }
 else if (lEvent == CLEV_ERROR)
 {
 printf("EventHandler - CLEV_ERROR - iResult=%08X\n", pclEventData->iResult);

 returns the ID of a call logging transaction cl_GetTransaction()

83

 return 0;
 }

 printf("EventHandler - Unknown event(%08X)\n", lEvent);
 return 1;
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also

• cl_GetTransactionDetails()
• cl_ReleaseTransaction()
• cl_SetTransactionUsrAttr()
• cl_GetTransactionUsrAttr()

 cl_GetTransactionDetails() returns the ID and details of a transaction

84

Name: int cl_GetTransactionDetails(hDevice, pidTransaction,
pclEventData, plReference, piSemanticsStateIndex,
pszSemanticsStateName, iSemanticsStateNameSize)

Inputs: long hDevice • call logging device
handle

 long* pidTransaction • pointer to returned
transaction ID

 CL_EVENTDATA* pclEventData • pointer to call
logging event data
block

 long* plReference • pointer to returned
call reference
number

 int* piSemanticsStateIndex • pointer to returned
index of current
semantics state

 char* pszSemanticsStateName • pointer to buffer into
which name of
current semantics
state is returned

 int iSemanticsStateNameSize • size of buffer into
which name of
current semantics
state is returned

 Returns: 0 on success
-1 on failure
-2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetTransactionDetails() function returns the ID and details of a transaction
for which a CLEV_MESSAGE event was generated. The details about the specified
call logging transaction are optional and can include the call reference number and the
name or index of the current semantics state. Pass NULL as the related parameter for
any details that are not needed.

 The list of semantics states (count, names and indexes) is protocol dependent.

 returns the ID and details of a transaction cl_GetTransactionDetails()

85

 Parameter Description

 hDevice The device handle of the call logging device.
 pidTransaction The pointer to the returned call logging

transaction ID. The call logging transaction ID is
unique and protocol dependent.

 pclEventData The pointer to the call logging event data block
obtained from sr_getevtdatap() while the
function was processing a CLEV_MESSAGE
event. See section 1.7.2. Retrieving Event
Data for more information.

 plReference The pointer to the returned call reference number
of the specified call logging transaction. The
meaning of the call reference number is protocol
specific.

 piSemanticsStateIndex The pointer to the returned index of the current
semantics state of the specified call logging
transaction. Semantics states are indexed from 0
to the number of semantics states minus one.

 pszSemanticsStateName The pointer to the buffer into which the name of
the current semantics state of the specified call
logging transaction is returned. The name is
returned as an ASCIIZ string.

 iSemanticsStateNameSize The size of the buffer into which the name of the
current semantics state of the specified call
logging transaction is returned, where maximum
size includes the terminating NUL of the ASCIIZ
string.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• This function can be called only while processing a CLEV_MESSAGE event.

 cl_GetTransactionDetails() returns the ID and details of a transaction

86

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

void GetTransactionDetails_WithinEventHandler(long hDevice, CL_EVENTDATA* pclEventData)
{
 int iRet;
 long idTransaction;
 long lReference;
 int iSemanticsState;
 char szSemanticsStateName[32];

 iRet = cl_GetTransactionDetails(hDevice, &idTransaction, pclEventData,
&lReference, &iSemanticsState, szSemanticsStateName, sizeof(szSemanticsStateName));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetTransactionDetails_WithinEventHandler - Transaction already
released\n");
 }
 else
 {
 printf("GetTransactionDetails_WithinEventHandler -
cl_GetTransactionDetails() failed\n");
 }
 return;
 }

 printf("Transaction ID=%08X, Reference=%08X, State=\"%s\"(%i)\n", idTransaction,
lReference, szSemanticsStateName, iSemanticsState);
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_INTERNAL internal Call Logging error; cause
unknown

 returns the ID and details of a transaction cl_GetTransactionDetails()

87

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also

• cl_GetTransaction()
• cl_ReleaseTransaction()
• cl_SetTransactionUsrAttr()
• cl_GetTransactionUsrAttr()
• cl_GetSemanticsStateCount()
• cl_GetSemanticsStateName()

 cl_GetTransactionUsrAttr() returns the user-defined transaction attribute

88

Name: int cl_GetTransactionUsrAttr(hDevice, idTransaction,
ppUsrAttr)

Inputs: long hDevice • call logging device handle
 long idTransaction • call logging transaction ID
 void** ppUsrAttr • pointer to returned pointer to user-

defined attribute
 Returns: 0 on success

-1 on failure
-2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetTransactionUsrAttr() function returns the user-defined transaction
attribute for a specified call logging transaction. The user-defined attributes are set
using the cl_SetTransactionUsrAttr() function. If the cl_SetTransactionUsrAttr()
function has not been called for the specified call logging transaction, NULL will be
returned.

 Parameter Description

 hDevice The device handle of the call logging device.
 idTransaction The call logging transaction ID.
 ppUsrAttr The pointer to the returned pointer to the user-defined

attribute for the specified call logging transaction.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• The application is responsible for freeing the memory allocated to store the user-
defined attribute.

 returns the user-defined transaction attribute cl_GetTransactionUsrAttr()

89

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

typedef struct
{
 time_t timeConnect;
 time_t timeDisconnect;
} TRANSACTIONUSRATTR;

TRANSACTIONUSRATTR* GetTransactionUsrAttr(long hDevice, long idTransaction)
{
 TRANSACTIONUSRATTR* pTransactionUsrAttr;
 int iRet;

 iRet = cl_GetTransactionUsrAttr(hDevice, idTransaction,
(void**)&pTransactionUsrAttr);
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetTransactionUsrAttr - Transaction already released\n");
 }
 else
 {
 printf("GetTransactionUsrAttr - cl_GetTransactionUsrAttr() failed\n");
 }

 return NULL;
 }

 return pTransactionUsrAttr;
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_TRANSACTIONRELEASED transaction already released

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

 cl_GetTransactionUsrAttr() returns the user-defined transaction attribute

90

! ! ! ! See Also

• cl_GetTransaction()
• cl_GetTransactionDetails()
• cl_ReleaseTransaction()
• cl_SetTransactionUsrAttr()

 returns the user-defined attribute for a call logging device cl_GetUsrAttr()

91

Name: int cl_GetUsrAttr(hDevice, ppUsrAttr)
Inputs: long hDevice • call logging device handle

 void** ppUsrAttr • pointer to returned pointer to user-
defined attribute

 Returns: 0 on success
-1 on failure

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetUsrAttr() function returns the user-defined attribute for a call logging
device. The user-defined attributes are set using the cl_SetUsrAttr() function. If
NULL was specified as the pUsrAttr parameter of the cl_Open() function and if the
cl_SetUsrAttr() function has not been called for the specified call logging device,
NULL will be returned.

 Parameter Description

 hDevice The device handle of the call logging device.
 ppUsrAttr The pointer to the returned pointer to the user-defined

attribute for the specified call logging device.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• The application is responsible for freeing the memory allocated to store the user-
defined attribute.

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

typedef struct

 cl_GetUsrAttr() returns the user-defined attribute for a call logging device

92

{
 const char*pszProtocol;
 const char*pszNetworkDeviceName;
 const char*pszUserDeviceName;
} DEVICEUSRATTR;

DEVICEUSRATTR* GetDeviceUsrAttr(long hDevice)
{
 DEVICEUSRATTR* pDeviceUsrAttr;

 if (cl_GetUsrAttr(hDevice, (void**)&pDeviceUsrAttr) != 0)
 {
 printf("GetDeviceUsrAttr - cl_GetUsrAttr() failed\n");

 return NULL;
 }

 return pDeviceUsrAttr;
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_Open()
• cl_SetUsrAttr()

 returns the semantics-defined variable cl_GetVariable()

93

Name: int cl_GetVariable(hDevice, pclEventData, pszVariableName,
pszVariable, iVariableSize)

Inputs: long hDevice • call logging device handle
 CL_EVENTDATA*

pclEventData
• pointer to call logging

event data block
 const char* pszVariableName • pointer to ASCIIZ string

that specifies name of
variable

 char* pszVariable • pointer to buffer into
which the value of the
variable is returned

 int iVariableSize • size of buffer into which
the value of the variable
is returned

 Returns: 0 on success
-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_GetVariable() function returns the semantics-defined variable as it would
have appeared at the time the CLEV_MESSAGE event was generated. The current list
of semantics variables common to all protocols is (case-sensitive) CALLED,
CALLING, CHANNEL. Additional protocol-specific variable names can be defined
by the semantics.

 cl_GetVariable() returns the semantics-defined variable

94

 Parameter Description

 hDevice The device handle of the call logging device.
 pclEventData The pointer to the call logging event data block obtained

from sr_getevtdatap() while the function was processing
a CLEV_MESSAGE event. See section
1.7.2. Retrieving Event Data for more information.

 pszVariableName The pointer to the ASCIIZ string that specifies the name of
the semantics-defined variable.

 pszVariable The pointer to the buffer into which the value of the
semantics-defined variable is returned. The value is
returned as an ASCIIZ string.

 iVariableSize The size of the buffer into which the value of the
semantics-defined variable is returned, where maximum
size includes the terminating NUL of the returned ASCIIZ
string.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• This function can only be called while processing a CLEV_MESSAGE event.

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>

void GetVariable_WithinEventHandler(long hDevice, CL_EVENTDATA* pclEventData)
{
 int iRet;
 char szCalled[32];
 char szCalling[32];
 char szChannel[8];

 iRet = cl_GetVariable(hDevice, pclEventData, "CALLED", szCalled,
sizeof(szCalled));
 if (iRet != 0)
 {

 returns the semantics-defined variable cl_GetVariable()

95

 if (iRet == -2)
 {
 printf("GetVariable_WithinEventHandler - Transaction already
released\n");
 }
 else
 {
 printf("GetVariable_WithinEventHandler - cl_GetVariable() failed\n");
 }
 }
 else
 {
 printf("Called party number is: \"%s\"\n", szCalled);
 }

 iRet = cl_GetVariable(hDevice, pclEventData, "CALLING", szCalling,
sizeof(szCalling));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetVariable_WithinEventHandler - Transaction already
released\n");
 }
 else
 {
 printf("GetVariable_WithinEventHandler - cl_GetVariable() failed\n");
 }
 }
 else
 {
 printf("Calling party number is: \"%s\"\n", szCalling);
 }

 iRet = cl_GetVariable(hDevice, pclEventData, "CHANNEL", szChannel,
sizeof(szChannel));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("GetVariable_WithinEventHandler - Transaction already
released\n");
 }
 else
 {
 printf("GetVariable_WithinEventHandler - cl_GetVariable() failed\n");
 }
 }
 else
 {
 printf("Bearer channel number is: \"%s\"\n", szChannel);
 }
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

 cl_GetVariable() returns the semantics-defined variable

96

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDCONTEXT invalid event context

ECL_TRANSACTIONRELEASED transaction already released

ECL_INVALIDPARAMETER invalid parameter

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_GetCalled()
• cl_GetCalling()
• cl_GetChannel()
• cl_PeekVariable()
• cl_ReleaseTransaction()

 opens a call logging device cl_Open()

97

Name: int cl_Open(phDevice, pszDeviceName, pUsrAttr)
Inputs: long* phDevice • pointer to returned call

logging device handle
 const char* pszDeviceName • pointer to ASCIIZ string

defining device to be
opened and protocol to be
used

 void* pUsrAttr • pointer to user-defined
attribute for device

 Returns: 0 on success
-1 on failure

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_Open() function opens a call logging device and returns a call logging device
handle that will be used to monitor the traffic on the line. On digital HiZ boards, the
pszDeviceName parameter defines the protocol to be used, the method for retrieving
L2 frames, and, if needed, the names of the HiZ devices to be used. On analog HiZ
boards, this parameter defines the list of HiZ devices to be used.

 Parameter Description

 phDevice The pointer to the returned call logging device handle.
 pszDeviceName The pointer to the ASCIIZ string that defines the call

logging device to be opened and the protocol to be used if
applicable. See below for a description of the format for
this parameter.

 pUsrAttr The pointer to the user-defined attribute for the specified
call logging device.

 The format of the pszDeviceName parameter is:

 <field1><field2>�<fieldN>

 These fields may be listed in any order. The format of each of these fields is:

 :<key>_<value>

 cl_Open() opens a call logging device

98

 Table 15 lists the valid keys and their acceptable values for digital HiZ boards. All
other keys are reserved for future use.

 Table 15. pszDeviceName Field Values (Digital HiZ)

 Key Meaning Acceptable Values
(Digital HiZ)

 M Specifies the method used to get L2 frames. HDLC
FILE **

 P Specifies the protocol name. ISDN *
NET5
QSIGE1
4ESS
5ESS
DMS
NI2
NTT
QSIGT1

 N Specifies the name of the HiZ device that is
connected to the network side. This key is
ignored when the method used to get L2
frames is :M_FILE.

 dtiB<n>

 U Specifies the name of the HiZ device that is
connected to the user side. This key is
ignored when the method used to get L2
frames is :M_FILE

 dtiB<n>

 * The protocol name ISDN specifically refers to the E-1 Euro-ISDN protocol, also
known as NET5.

 ** Use FILE with the cl_DecodeTrace() for testing purposes. No physical device is
needed when the FILE method is used to get L2 frames.

 Table 16 lists the valid keys and their acceptable values for analog HiZ boards. All
other keys are reserved for future use. In this table, TSC refers to Telephony Service
Channel.

 opens a call logging device cl_Open()

99

 Table 16. pszDeviceName Field Values (Analog HiZ)

 Key Meaning Acceptable Values
(Analog HiZ)

 M Specifies the method for
collecting signaling data.

 TSC

 P (not supported) (not supported)

 N Specifies the names of analog
HiZ devices connected to
monitored lines.

 dtiBxTy,
dtiBxTy-dtiBxTz,
dtiBx,
dtiBx-dtiBw,
or any comma-separated list of such values
(see the description following this table for
more information)

 U (not supported) (not supported)

On analog HiZ boards, the �N� field accepts a comma-separated list of analog HiZ
device names, expressed as one of the following:

• dtiBxTy: a single network interface time slot device (one channel)

• dtiBxTy-dtiBxTz: a range of network interface time slot devices on the same
network interface logical board (several channels)

• dtiBx: a network interface logical board (all the channels on the logical
board)

• dtiBx-dtiBw: a range of network interface logical boards (all the channels on
the logical boards).

NOTE: The device name is case-sensitive. You must use the format shown:
lowercase �dti�, uppercase �B�, and uppercase �T�.

On analog and digital HiZ boards, a call logging device gathers a set of HiZ line
devices and monitors the whole set of channels associated with these devices.

! ! ! ! Termination Events

 None

 cl_Open() opens a call logging device

100

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• The application is responsible for allocating the memory used to store the user-
defined attribute.

• Once per process, the cl_Open() function must be preceded by a call to
gc_Start().

! ! ! ! Example

#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <cllib.h>
#include <stdio.h>
#include <malloc.h>
#include <memory.h>

/* The Call Logging Device Handle */
long g_hDevice = EV_ANYDEV;

typedef struct
{
 const char* pszProtocol;
 const char* pszNetworkDeviceName;
 const char* pszUserDeviceName;
} DEVICEUSRATTR;

extern long EventHandler(unsigned long hEvent);
extern void ExitApplication(void);

int InitApplication(const char* pszProtocol, const char* pszNetworkDeviceName, const
char* pszUserDeviceName)
{
/*
 To build the pszDeviceName parameter of cl_Open(), parameters are considered as
follows:
 - pszProtocol==NULL and pszNetworkDeviceName==NULL
 => error, pszUserDeviceName ignored
 - pszProtocol==NULL and pszNetworkDeviceName!=NULL
 => Analog devices (:M_TSC), pszUserDeviceName ignored
 - pszProtocol!=NULL and (pszNetworkDeviceName==NULL or pszUserDeviceName==NULL)
 => Digital recorded frames (:M_FILE), pszNetworkDeviceName and pszUserDeviceName
ignored
 - pszProtocol!=NULL and pszNetworkDeviceName!=NULL and pszUserDeviceName!=NULL
 => Digital devices (:M_HDLC)
*/
 DEVICEUSRATTR* pDeviceUsrAttr;
 char szDeviceName[256];

 if (g_hDevice == EV_ANYDEV)
 {
 if ((pszProtocol == NULL) && (pszNetworkDeviceName == NULL))
 {
 printf("InitApplication - Invalid parameters\n");

 opens a call logging device cl_Open()

101

 return -1;
 }

 pDeviceUsrAttr = (DEVICEUSRATTR*)malloc(sizeof(DEVICEUSRATTR));
 if (pDeviceUsrAttr == NULL)
 {
 printf("InitApplication - malloc() failed\n");
 return -1;
 }

 memset(pDeviceUsrAttr, 0, sizeof(DEVICEUSRATTR));
 pDeviceUsrAttr->pszProtocol = pszProtocol;
 pDeviceUsrAttr->pszNetworkDeviceName = pszNetworkDeviceName;
 pDeviceUsrAttr->pszUserDeviceName = pszUserDeviceName;

 if (gc_Start(NULL) != GC_SUCCESS)
 {
 printf("InitApplication - gc_Start() failed\n");

 free(pDeviceUsrAttr);
 return -1;
 }

 if (pszProtocol == NULL)
 {
 sprintf(szDeviceName, ":M_TSC:N_%s", pszNetworkDeviceName);
 }
 else if ((pszNetworkDeviceName == NULL) || (pszUserDeviceName == NULL))
 {
 sprintf(szDeviceName, ":P_%s:M_FILE", pszProtocol);
 }
 else
 {
 sprintf(szDeviceName, ":P_%s:M_HDLC:N_%s:U_%s", pszProtocol, pszNetworkDeviceName,
pszUserDeviceName);
 }

 if (cl_Open(&g_hDevice, szDeviceName, pDeviceUsrAttr) != 0)
 {
 printf("InitApplication - cl_Open() failed\n");

 gc_Stop();
 free(pDeviceUsrAttr);
 return -1;
 }

 if (sr_enbhdlr(g_hDevice, EV_ANYEVT, EventHandler) != 0)
 {
 printf("InitApplication - sr_enbhdlr() failed\n");

 cl_Close(g_hDevice);
 g_hDevice = EV_ANYDEV;
 gc_Stop();
 free(pDeviceUsrAttr);
 return -1;
 }
 }

 return 0;
}

int main(int argc, char* argv[])
{
 char szUnusedInput[256];

 cl_Open() opens a call logging device

102

/* Typical call for Digital HiZ */
 /*
 if (InitApplication("ISDN", "dtiB1", "dtiB2") != 0)
 */
/* Typical call for Analog HiZ */
 */
 if (InitApplication(NULL, "dtiB1,dtiB2T1-dtiB2T2,dtiB3-dtiB4", NULL) != 0)
 */

 {
 return 1;
 }

 /* Wait until <Return> is hit */
 gets(szUnusedInput);

 ExitApplication();
 return 0;
}

! ! ! ! Errors

The cl_Open() function does not return errors in the standard Call Logging API
return code format because the error is a system, parameter, or Global Call error.
Also, the standard ATDV_LASTERR() function requires a device handle and if
cl_Open() fails, there is none.

If an error occurs during the cl_Open() call, a -1 is returned and the specific error
code is returned in the errno global variable. The error codes that can be returned
if cl_Open() fails are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_GCOPENEX_NETWORK * gc_OpenEx() failed on the network side

ECL_GCOPENEX_USER * gc_OpenEx() failed on the user side

ECL_DTOPEN_BOARD dt_open() failed on board

ECL_ATDVSUBDEVS_BOARD ATDV_SUBDEVS() failed on board

ECL_HIZOPEN_CHANNEL hiz_open() failed on channel

ECL_INVALIDPARAMETER invalid parameter

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging API error; cause

 opens a call logging device cl_Open()

103

unknown

*The following additional flag is set in these error code values to indicate that the
error occurred while the Call Logging API was calling a Global Call function:

ECL_FLAG_INSIDE_GC use gc_ErrorValue() for an additional
error description

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_Close()
• cl_SetUsrAttr()

 cl_PeekCalled() gets the called party number

104

Name: int cl_PeekCalled(hDevice, idTransaction, pszCalled,
iCalledSize)

Inputs: long hDevice • call logging device handle
 long idTransaction • call logging transaction ID
 char* pszCalled • pointer to buffer into which called

party number is returned
 int iCalledSize • size of buffer into which called party

number is returned
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_PeekCalled() function gets the called party number as it was observed at the
time the function was called. The cl_PeekCalled() function returns the value of the
semantics-defined CALLED variable.

 Parameter Description

 hDevice The device handle of the call logging device.
 idTransaction The call logging transaction ID.
 pszCalled The pointer to the buffer into which the called party number is

returned. The called party number is returned as an ASCIIZ
string. If the called party number is not available, the function
returns with an empty string.

 iCalledSize The size of the buffer into which the called party number is
returned, where maximum size includes the terminating NUL
of the returned ASCIIZ string.

! ! ! ! Termination Events

 None

 gets the called party number cl_PeekCalled()

105

! ! ! ! Cautions

 The Call Logging API is not multithread safe. Call logging functions must be called
within the same thread.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>

/* The Call Logging Device Handle */
extern long g_hDevice;

void PeekCalled(long idTransaction)
{
 int iRet;
 char szCalled[32];

 if (g_hDevice != EV_ANYDEV)
 {
 iRet = cl_PeekCalled(g_hDevice, idTransaction, szCalled, sizeof(szCalled));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("PeekCalled - Transaction already released\n");
 }
 else
 {
 printf("PeekCalled - cl_PeekCalled() failed\n");
 }
 return;
 }

 printf("Called party number is: \"%s\"\n", szCalled);
 }
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_TRANSACTIONRELEASED transaction already released

 cl_PeekCalled() gets the called party number

106

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_GetCalled()
• cl_PeekVariable()
• cl_ReleaseTransaction()

 gets the calling party number cl_PeekCalling()

107

Name: int cl_PeekCalling(hDevice, idTransaction, pszCalling,
iCallingSize)

Inputs: long hDevice • call logging device handle
 long idTransaction • call logging transaction ID
 char* pszCalling • pointer to buffer into which

calling party number is returned
 int iCallingSize • size of buffer into which calling

party number is returned
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_PeekCalling() function gets the calling party number as it was observed at the
time the function was called. The cl_PeekCalling() function returns the value of the
semantics-defined CALLING variable.

 Parameter Description

 hDevice The device handle of the call logging device.
 idTransaction The call logging transaction ID.
 pszCalling The pointer to the buffer into which the calling party number

is returned. The calling party number is returned as an
ASCIIZ string. If the calling party number is not available,
the function returns with an empty string.

 iCallingSize The size of the buffer into which the calling party number is
returned, where maximum size includes the terminating NUL
of the returned ASCIIZ string.

! ! ! ! Termination Events

 None

 cl_PeekCalling() gets the calling party number

108

! ! ! ! Cautions

 The Call Logging API is not multithread safe. Call logging functions must be called
within the same thread.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>

/* The Call Logging Device Handle */
extern long g_hDevice;

void PeekCalling(long idTransaction)
{
 int iRet;
 char szCalling[32];

 if (g_hDevice != EV_ANYDEV)
 {
 iRet = cl_PeekCalling(g_hDevice, idTransaction, szCalling,
sizeof(szCalling));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("PeekCalling - Transaction already released\n");
 }
 else
 {
 printf("PeekCalling - cl_PeekCalling() failed\n");
 }
 return;
 }

 printf("Calling party number is: \"%s\"\n", szCalling);
 }
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_TRANSACTIONRELEASED transaction already released

 gets the calling party number cl_PeekCalling()

109

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_GetCalling()
• cl_PeekVariable()
• cl_ReleaseTransaction()

 cl_PeekChannel() gets the channel number

110

Name: int cl_PeekChannel(hDevice, idTransaction, pszChannel,
iChannelSize)

Inputs: long hDevice • call logging device handle
 long idTransaction • call logging transaction ID
 char* pszChannel • pointer to buffer into which channel

number is returned
 int iChannelSize • size of buffer into which channel

number is returned
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_PeekChannel() function gets the channel number as it was observed at the
time the function was called. The cl_PeekChannel() function returns the value of
the semantics-defined CHANNEL variable.

 Parameter Description

 hDevice The device handle of the call logging device.
 idTransaction The call logging transaction ID.
 pszChannel The pointer to the buffer into which the channel number is

returned. The channel number is returned as an ASCIIZ
string. For analog HiZ boards, this string contains a number
between 1 and the number of analog HiZ devices specified
in the pszDeviceName parameter of the cl_Open()
function.

 iChannelSize The size of the buffer into which the channel number is
returned, where maximum size includes the terminating
NUL of the returned ASCIIZ string.

! ! ! ! Termination Events

 None

 gets the channel number cl_PeekChannel()

111

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• The range of channel numbers depends on the semantics rules and does not
necessarily match Intel device name numbering. For example, E-1 ISDN channel
numbers range from 1 to 15 and from 17 to 31, while the Intel device names on
an E-1 board range from �dtiBxT1� to �dtiBxT30�.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>

/* The Call Logging Device Handle */
extern long g_hDevice;

void PeekChannel(long idTransaction)
{
 int iRet;
 char szChannel[8];

 if (g_hDevice != EV_ANYDEV)
 {
 iRet = cl_PeekChannel(g_hDevice, idTransaction, szChannel,
sizeof(szChannel));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("PeekChannel - Transaction already released\n");
 }
 else
 {
 printf("PeekChannel - cl_PeekChannel() failed\n");
 }
 return;
 }

 printf("Bearer channel number is: \"%s\"\n", szChannel);
 }
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

 cl_PeekChannel() gets the channel number

112

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_TRANSACTIONRELEASED transaction already released

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_GetChannel()
• cl_GetOrdinalChannel()
• cl_PeekOrdinalChannel()
• cl_PeekVariable()
• cl_ReleaseTransaction()

 gets the ordinal channel number cl_PeekOrdinalChannel()

113

Name: int cl_PeekOrdinalChannel(hDevice,idTransaction,
piOrdinalChannel)

Inputs: long hDevice • call logging device handle
long idTransaction • call logging transaction ID
int* piOrdinalChannel • pointer to the returned ordinal

number of the channel
Returns: 0 on success

-1 on failure
-2 if call logging transaction already released

Includes: cllib.h
Mode: synchronous

Platform: DM3

! ! ! ! Description

The cl_PeekOrdinalChannel() function gets the ordinal channel number as it
was observed at the time the function was called. The value returned is the ordinal
number of the channel among those monitored by the call logging device. The
ordinal channel number is an integer between 0 and the number of monitored
channels minus one.

If you previously called cl_PeekChannel() to access your own channel-related
data stored in an array, then the new cl_PeekOrdinalChannel() function is a
recommended replacement. As it returns an integer between 0 and the number of
monitored channels minus one, this function is similar to cl_PeekChannel() and
should be used in its place. This new function, introduced in System Release 6.0,
allows direct access into any array of channel-related structures that you wish to
allocate. This is particularly useful in E-1 trunk environments where the value
returned by cl_PeekChannel() ranges from 1 to 15 and 17 to 31. The new
cl_PeekOrdinalChannel() function allows you to build a unified method to
handle monitored channels, whether they sit on T-1, E-1, or analog lines.

Parameter Description

hDevice The device handle of the call logging device
idTransaction The call logging transaction ID
piOrdinalChannel The pointer to the ordinal number of the channel,

returned as an integer between 0 and the number
of monitored channels minus one

 cl_PeekOrdinalChannel() gets the ordinal channel number

114

! ! ! ! Termination Events

None

! ! ! ! Cautions

The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>

/* The Call Logging Device Handle */
extern long g_hDevice;

void PeekOrdinalChannel(long idTransaction)
{
 int iRet;
 int iOrdinalChannel;

 if (g_hDevice != EV_ANYDEV)
 {
 iRet = cl_PeekOrdinalChannel(g_hDevice, idTransaction, &iOrdinalChannel);
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("PeekOrdinalChannel - Transaction already released\n");
 }
 else
 {
 printf("PeekOrdinalChannel - cl_PeekOrdinalChannel() failed\n");
 }
 return;
 }

 printf("Channel index (or ordinal number) is: %i\n", iOrdinalChannel);
 }
}

 gets the ordinal channel number cl_PeekOrdinalChannel()

115

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_TRANSACTIONRELEASED transaction already released

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_GetOrdinalChannel()
• cl_PeekChannel()

 cl_PeekVariable() gets the value of a semantics-defined variable

116

Name: int cl_PeekVariable(hDevice, idTransaction, pszVariableName,
pszVariable, iVariableSize)

Inputs: long hDevice • call logging device handle
 long idTransaction • call logging transaction ID
 const char*

pszVariableName
• pointer to ASCIIZ string that

specifies name of variable
 char* pszVariable • pointer to buffer into which the

value of the variable is returned
 int iVariableSize • size of buffer into which the value

of the variable is returned
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_PeekVariable() function gets the value of a semantics-defined variable as it
was observed at the time the function was called. The current list of semantics
variables common to all protocols is (case-sensitive) CALLED, CALLING,
CHANNEL Additional protocol-specific variable names can be defined by the
semantics.

 gets the value of a semantics-defined variable cl_PeekVariable()

117

 Parameter Description

 hDevice The device handle of the call logging device.
 idTransaction The call logging transaction ID.
 pszVariableName The pointer to the ASCIIZ string that specifies the name

of the semantics-defined variable.
 pszVariable The pointer to the buffer into which the value of the

semantics-defined variable is returned. The variable is
returned as an ASCIIZ string.

 iVariableSize The size of the buffer into which the value of the
semantics-defined variable is returned, where maximum
size includes the terminating NUL of the ASCIIZ string.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

 The Call Logging API is not multithread safe. Call logging functions must be called
within the same thread.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>

/* The Call Logging Device Handle */
extern long g_hDevice;

void PeekVariable(long idTransaction)
{
 int iRet;
 char szCalled[32];
 char szCalling[32];
 char szChannel[8];

 if (g_hDevice != EV_ANYDEV)
 {
 iRet = cl_PeekVariable(g_hDevice, idTransaction, "CALLED", szCalled,
sizeof(szCalled));
 if (iRet != 0)
 {
 if (iRet == -2)
 {

 cl_PeekVariable() gets the value of a semantics-defined variable

118

 printf("PeekVariable - Transaction already released\n");
 }
 else
 {
 printf("PeekVariable - cl_PeekVariable() failed\n");
 }
 }
 else
 {
 printf("Called party number is: \"%s\"\n", szCalled);
 }

 iRet = cl_PeekVariable(g_hDevice, idTransaction, "CALLING", szCalling,
sizeof(szCalling));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("PeekVariable - Transaction already released\n");
 }
 else
 {
 printf("PeekVariable - cl_PeekVariable() failed\n");
 }
 }
 else
 {
 printf("Calling party number is: \"%s\"\n", szCalling);
 }

 iRet = cl_PeekVariable(g_hDevice, idTransaction, "CHANNEL", szChannel,
sizeof(szChannel));
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("PeekVariable - Transaction already released\n");
 }
 else
 {
 printf("PeekVariable - cl_PeekVariable() failed\n");
 }
 }
 else
 {
 printf("Bearer channel number is: \"%s\"\n", szChannel);
 }
 }
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

 gets the value of a semantics-defined variable cl_PeekVariable()

119

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_INVALIDPARAMETER invalid parameter

ECL_TRANSACTIONRELEASED transaction already released

ECL_NOMEM out of memory

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_GetVariable()
• cl_PeekCalled()
• cl_PeekCalling()
• cl_PeekChannel()
• cl_ReleaseTransaction()

 cl_ReleaseTransaction() releases a call logging transaction

120

Name: int cl_ReleaseTransaction(hDevice, idTransaction)
Inputs: long hDevice • call logging device handle

 long idTransaction • call logging transaction ID
 Returns: 0 on success

-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

The cl_ReleaseTransaction() function releases a call logging transaction. Once a
transaction has been released, information about that particular call logging
transaction can no longer be queried. Because a call logging system has no impact on
a digital line and only observes the activity on the line, the cl_ReleaseTransaction()
function does not drop the monitored call. Rather, the purpose of the function is to
instruct the Call Logging API to release the internal resources allocated for the
specified call logging transaction.

 The cl_ReleaseTransaction() function is usually called from the call logging event
handler when a CLEV_MESSAGE event is received and the event has the
ECL_LAST_MESSAGE bit set in the iResult field of its call logging event data block
(see section 1.7.2. Retrieving Event Data for more information). If the
cl_ReleaseTransaction() function is called before this specific event is received, the
application will not receive any additional call logging events related to the specified
call logging transaction.

 Parameter Description

 hDevice The device handle of the call logging device.
 idTransaction The call logging transaction ID to be released.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

 releases a call logging transaction cl_ReleaseTransaction()

121

• When the application has completed a call logging transaction, the
cl_ReleaseTransaction() function must be called to release internally allocated
resources. Failure to do so may cause memory problems due to the allocated
memory not being released (ECL_OUT_OF_MEMORY error).

• Once the cl_ReleaseTransaction() function is called, the call logging
transaction ID is no longer valid.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>
#include <malloc.h>

typedef struct
{
 const char*pszProtocol;
 const char*pszNetworkDeviceName;
 const char*pszUserDeviceName;
} DEVICEUSRATTR;

typedef struct
{
 time_t timeConnect;
 time_t timeDisconnect;
} TRANSACTIONUSRATTR;

extern DEVICEUSRATTR* GetDeviceUsrAttr(long hDevice);
extern TRANSACTIONUSRATTR* GetTransactionUsrAttr(long hDevice, long idTransaction);
extern TRANSACTIONUSRATTR* SetTransactionUsrAttr(long hDevice, long idTransaction);

long EventHandler(unsigned long hEvent)
{
 long hDevice;
 long lEvent;
 CL_EVENTDATA* pclEventData;
 int iRet;
 long idTransaction;
 DEVICEUSRATTR* pDeviceUsrAttr;
 TRANSACTIONUSRATTR* pTransactionUsrAttr;

 hDevice = sr_getevtdev(hEvent);
 if (hDevice == -1)
 {
 printf("EventHandler - sr_getevtdev() failed\n");
 return 1;
 }

 lEvent = sr_getevttype(hEvent);
 if (lEvent == -1)
 {
 printf("EventHandler - sr_getevttype() failed\n");
 return 1;
 }

 pclEventData = (CL_EVENTDATA*)sr_getevtdatap(hEvent);
 if (pclEventData == NULL)
 {

 cl_ReleaseTransaction() releases a call logging transaction

122

 printf("EventHandler - sr_getevtdatap() failed\n");
 return 1;
 }

 pDeviceUsrAttr = GetDeviceUsrAttr(hDevice);

 if (lEvent == CLEV_MESSAGE)
 {
 printf("EventHandler - CLEV_MESSAGE - iResult=%08X\n", pclEventData-
>iResult);

 iRet = cl_GetTransaction(hDevice, &idTransaction, pclEventData);
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("EventHandler - Transaction already released\n");
 }
 else
 {
 printf("EventHandler - cl_GetTransaction() failed\n");
 }
 return 0;
 }

 printf("Transaction ID=%08X\n", idTransaction);

 if ((pclEventData->iResult & ECL_FIRST_MESSAGE) != 0)
 {
 pTransactionUsrAttr = SetTransactionUsrAttr(hDevice, idTransaction);
 }
 else
 {
 pTransactionUsrAttr = GetTransactionUsrAttr(hDevice, idTransaction);
 }

 if (pTransactionUsrAttr != NULL)
 {
 if ((pclEventData->iResult & ECL_CONNECT_MESSAGE) != 0)
 {
 pTransactionUsrAttr->timeConnect = pclEventData->timeEvent;
 }

 if ((pclEventData->iResult & ECL_DISCONNECT_MESSAGE) != 0)
 {
 pTransactionUsrAttr->timeDisconnect = pclEventData->timeEvent;
 }
 }

 if ((pclEventData->iResult & ECL_LAST_MESSAGE) != 0)
 {
 free(pTransactionUsrAttr);
 pTransactionUsrAttr = NULL;

 iRet = cl_ReleaseTransaction(hDevice, idTransaction);
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("EventHandler - Transaction already released\n");
 }
 else
 {
 printf("EventHandler - cl_ReleaseTransaction() failed\n");
 }

 releases a call logging transaction cl_ReleaseTransaction()

123

 }
 }

 return 0;
 }
 else if (lEvent == CLEV_ALARM)
 {
 printf("EventHandler - CLEV_ALARM - iResult=%08X\n", pclEventData->iResult);
 return 0;
 }
 else if (lEvent == CLEV_ERROR)
 {
 printf("EventHandler - CLEV_ERROR - iResult=%08X\n", pclEventData->iResult);
 return 0;
 }

 printf("EventHandler - Unknown event(%08X)\n", lEvent);
 return 1;
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_TRANSACTIONRELEASED transaction already released

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_GetTransaction()
• cl_GetTransactionDetails()
• cl_GetTransactionUsrAttr()
• cl_SetTransactionUsrAttr()

 cl_SetTransactionUsrAttr() sets the user-defined transaction attribute

124

Name: int cl_SetTransactionUsrAttr(hDevice, idTransaction, pUsrAttr)
Inputs: long hDevice • call logging device handle

 long idTransaction • call logging transaction ID
 void* pUsrAttr • pointer to user-defined attribute

 Returns: 0 on success
-1 on failure
 -2 if call logging transaction already released

 Includes: cllib.h
 Mode: synchronous

 Platform: DM3

! ! ! ! Description

 The cl_SetTransactionUsrAttr() function sets the user-defined transaction attribute
for a specified call logging transaction.

 Parameter Description

 hDevice The device handle of the call logging device.
 idTransaction The call logging transaction ID.
 pUsrAttr The pointer to the user-defined attribute for the specified

call logging transaction.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• The application is responsible for allocating the memory used to store the user-
defined attribute.

! ! ! ! Example

#include <cllib.h>
#include <stdio.h>
#include <malloc.h>
#include <memory.h>

 sets the user-defined transaction attribute cl_SetTransactionUsrAttr()

125

typedef struct
{
 time_t timeConnect;
 time_t timeDisconnect;
} TRANSACTIONUSRATTR;

TRANSACTIONUSRATTR* SetTransactionUsrAttr(long hDevice, long idTransaction)
{
 TRANSACTIONUSRATTR* pTransactionUsrAttr;
 int iRet;

 pTransactionUsrAttr = (TRANSACTIONUSRATTR*)malloc(sizeof(TRANSACTIONUSRATTR));
 if (pTransactionUsrAttr == NULL)
 {
 printf("SetTransactionUsrAttr - malloc() failed\n");
 return NULL;
 }

 memset(pTransactionUsrAttr, 0, sizeof(TRANSACTIONUSRATTR));

 iRet = cl_SetTransactionUsrAttr(hDevice, idTransaction, pTransactionUsrAttr);
 if (iRet != 0)
 {
 if (iRet == -2)
 {
 printf("SetTransactionUsrAttr - Transaction already released\n");
 }
 else
 {
 printf("SetTransactionUsrAttr - cl_SetTransactionUsrAttr() failed\n");
 }

 free(pTransactionUsrAttr);
 return NULL;
 }

 return pTransactionUsrAttr;
}

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_TRANSACTIONRELEASED transaction already released

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

 cl_SetTransactionUsrAttr() sets the user-defined transaction attribute

126

! ! ! ! See Also
• cl_GetTransaction()
• cl_GetTransactionDetails()
• cl_GetTransactionUsrAttr()
• cl_ReleaseTransaction()

 sets the user-defined attribute for a call logging device cl_SetUsrAttr()

127

Name: int cl_SetUsrAttr(hDevice, pUsrAttr)
Inputs: long hDevice • call logging device handle

 void* pUsrAttr • pointer to user-defined attribute
 Returns: 0 on success

-1 on failure
 Includes: cllib.h

 Mode: synchronous
 Platform: DM3

! ! ! ! Description

 The cl_SetUsrAttr() function sets the user-defined attribute for a call logging device .
When possible, the user-defined attribute for a call logging device should be specified
by the pUsrAttr parameter of the cl_Open() function.

 Parameter Description

 hDevice The device handle of the call logging device.
 pUsrAttr The pointer to the user-defined attribute for the specified

call logging device.

! ! ! ! Termination Events

 None

! ! ! ! Cautions

• The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

• The application is responsible for allocating the memory used to store the user-
defined attribute.

! ! ! ! Example

#include <srllib.h>
#include <cllib.h>
#include <stdio.h>
#include <malloc.h>
#include <memory.h>

/* The Call Logging Device Handle */
extern long g_hDevice;

 cl_SetUsrAttr() sets the user-defined attribute for a call logging device

128

typedef struct
{
 const char*pszProtocol;
 const char*pszNetworkDeviceName;
 const char*pszUserDeviceName;
} DEVICEUSRATTR;

extern DEVICEUSRATTR* GetDeviceUsrAttr(long hDevice);

void SetDeviceUsrAttr(const char* pszProtocol, const char* pszNetworkDeviceName, const
char* pszUserDeviceName)
{
 DEVICEUSRATTR* pNewDeviceUsrAttr;
 DEVICEUSRATTR* pOldDeviceUsrAttr;

 if (g_hDevice != EV_ANYDEV)
 {
 pNewDeviceUsrAttr = (DEVICEUSRATTR*)malloc(sizeof(DEVICEUSRATTR));
 if (pNewDeviceUsrAttr == NULL)
 {
 printf("SetDeviceUsrAttr - malloc() failed\n");
 return;
 }

 memset(pNewDeviceUsrAttr, 0, sizeof(DEVICEUSRATTR));
 pNewDeviceUsrAttr->pszProtocol = pszProtocol;
 pNewDeviceUsrAttr->pszNetworkDeviceName = pszNetworkDeviceName;
 pNewDeviceUsrAttr->pszUserDeviceName = pszUserDeviceName;

 pOldDeviceUsrAttr = GetDeviceUsrAttr(g_hDevice);

 if (cl_SetUsrAttr(g_hDevice, pNewDeviceUsrAttr) != 0)
 {
 printf("SetDeviceUsrAttr - cl_SetUsrAttr() failed\n");

 free(pNewDeviceUsrAttr);
 return;
 }

 free(pOldDeviceUsrAttr);
 }
}

! ! ! ! Errors

None.

! ! ! ! See Also
• • • • cl_GetUsrAttr()
• • • • cl_Open

 starts recording an L2 frames trace file cl_StartTrace()

129

Name: int cl_StartTrace(hDevice, pszFileName)
Inputs: long hDevice • call logging device handle

const char* pszFileName • pointer to ASCIIZ string
Returns: 0 on success

-1 on failure
Includes: cllib.h

Mode: synchronous
Platform: DM3

! ! ! ! Description

 The cl_StartTrace() function is not supported on analog HiZ boards.

The cl_StartTrace() function starts recording an L2 frames trace file. This
function is used for testing and debugging. The SnifferMFC demo shows how this
function is used.

Parameter Description

hDevice the device handle of the call logging device
pszFileName a pointer to the ASCIIZ string that specifies the

path and name of the L2 frames trace file

! ! ! ! Termination Events

None

! ! ! ! Cautions

The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

! ! ! ! Example

See the SnifferMFC demo for an example of how to use this function.

 cl_StartTrace() starts recording an L2 frames trace file

130

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_NULLPARAMETER invalid NULL parameter

ECL_TRACESTARTED trace already started

ECL_FILEOPEN fopen failed

ECL_FILEWRITE fwrite failed

ECL_UNSUPPORTED function not supported

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_StopTrace()
• cl_DecodeTrace()

 stops recording an L2 frames trace file cl_StopTrace()

131

Name: int cl_StopTrace(hDevice)
Inputs: long hDevice • call logging device handle

Returns: 0 on success
-1 on failure

Includes: cllib.h
Mode: synchronous

Platform: DM3

! ! ! ! Description

 The cl_StopTrace() function is not supported on analog HiZ boards.

The cl_StopTrace() function stops recording an L2 frames trace file. This
function is used for testing and debugging. The SnifferMFC demo shows how this
function is used.

Parameter Description

hDevice the device handle of the call logging device

! ! ! ! Termination Events

None

! ! ! ! Cautions

The Call Logging API is not multithread safe. Call logging functions must be
called within the same thread.

! ! ! ! Example

See the SnifferMFC demo for an example of how to use this function.

! ! ! ! Errors

If the function returns a value < 0, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a

 cl_StopTrace() stops recording an L2 frames trace file

132

descriptive error message. The error codes that can be returned by
ATDV_LASTERR() are:

Error Code Value Returned When

ECL_TRACENOTSTARTED trace not started

ECL_FILECLOSE fclose failed

ECL_UNSUPPORTED function not supported

ECL_INTERNAL internal Call Logging error; cause
unknown

See section 3.2. Error Handling for more information about the kinds of errors that
can cause these codes to be returned.

! ! ! ! See Also
• cl_StartTrace()
• cl_DecodeTrace()

133

Appendix A � Call Logging Sample
Code

The following code provides an example of the function calls and procedures used
to implement a network monitoring application.

NOTE: This sample code does not include error checking or testing on return
values. It is only meant to demonstrate how the Call Logging functions
are used.

// Application entry point
main()
{
 // Start Global Call
 gc_Start (NULL) ;

 // Open the call logging device
 long hDevice;
 cl_Open(&hDevice, ":P_ISDN:M_HDLC:N_dtiB1:U_dtiB2", NULL);

 // Enable the application event handler
 sr_enbhdlr(hDevice, EV_ANYEVT, appEventHandler);

 // Wait until <return> is hit
 char szUnusedInput[256];
 gets(szUnusedInput);

 // Disable the application event handler
 7dishdlr(hDevice, EV_ANYEVT, appEventHandler);

 // Close the call logging device
 cl_Close(hDevice);

 // Stop Global Call
 gc_Stop() ;
}

// Define the transaction bag structure that will be used as the transaction user
attribute
struct TRANSACTIONBAG
{
 char szCaller[256];
 char szCallee[256];
 char szChannel[256];
 time_t timeStart;
 time_t timeEnd;
};

// Application event handler
long appEventHandler(unsigned long hEvent)
{

Call Logging API Software Reference for Windows

134

 long hDevice = sr_getevtdev(hEvent);

 // Identify the type of event received
 switch (sr_getevttype(hEvent))
 {
 case CLEV_MESSAGE:

 // Get the call logging transaction ID
 CL_EVENTDATA* pclEventData = (CL_EVENTDATA*)sr_getevtdatap(hEvent);
 long idTransaction;
 cl_GetTransaction(hDevice, &idTransaction, pclEventData);

 // Is it the first message for this call logging transaction ?
 int iResult = pclEventData->iResult;
 if ((iResult & ECL_FIRST_MESSAGE) != 0)
 {
 // Create the transaction bag structure
 TRANSACTIONBAG* pTransactionBag = new TRANSACTIONBAG;
 memset(pTransactionBag, 0, sizeof(TRANSACTIONBAG));

 // Associate the transaction bag structure with the call logging
 transaction
 cl_SetTransactionUsrAttr(hDevice, idTransaction, pTransactionBag);

 // Remember the time when the call logging transaction started
 pTransactionBag->timeStart = pclEventData->timeEvent;
 }

 // Is it the last message for this call logging transaction ?
 if ((iResult & ECL_LAST_MESSAGE) != 0)
 {
 // Retrieve the transaction bag structure for this call logging
 transaction
 TRANSACTIONBAG* pTransactionBag;
 cl_GetTransactionUsrAttr(hDevice, idTransaction,
 (void**)&pTransactionBag);

 // Remember the time when the call transaction ended
 pTransactionBag->timeEnd = pclEventData->timeEvent;

 // Get the caller number
 cl_GetCalling(hDevice, pclEventData, pTransactionBag->szCaller, 256);
 // same as: cl_GetVariable(hDevice, pclEventData, "CALLING",
 pTransactionBag->szCaller, 256);

 // Get the callee number
 cl_GetCalled(hDevice, pclEventData, pTransactionBag->szCallee, 256);
 // same as: cl_GetVariable(hDevice, pclEventData, "CALLED",
 pTransactionBag->szCallee, 256);

 // Get the channel on which the call logging transaction took place
 cl_GetChannel(hDevice, pclEventData, pTransactionBag->szChannel, 256);
 // same as: cl_GetVariable(hDevice, pclEventData, "CHANNEL",
 pTransactionBag->szChannel, 256);

 // Application-specific: record the call logging transaction
statistics
 RecordNetworkStatistics(pTransactionBag);

 // Delete the transaction bag structure
 delete pTransactionBag;

135

 // We are now done with this call logging transaction
 cl_ReleaseTransaction(hDevice, idTransaction);
 }

 // This event has been consumed
 return 0;
 break;
 }

 return 1;
}

Call Logging API Software Reference for Windows

136

137

Glossary

ASCII American Standard Code for Information Interchange

asynchronous function A function that returns immediately to the
application and returns a completion/termination event at some future time.
An asynchronous function allows the current thread to continue processing
while the function is running.

asynchronous mode The classification for functions that operate without
blocking other functions.

B channel A bearer channel used in ISDN interfaces. This circuit-switched,
digital channel can carry voice or data at 64,000 bits/sec in either direction.

data structure Programming term for a data element consisting of fields,
where each field may have a different definition and length. A group of
data structure elements usually share a common purpose or functionality.

device handle A numerical reference to a device, obtained when the device is
opened. This handle is used for all operations on that device.

driver A software module that provides a defined interface between the
program and the hardware.

event An unsolicited communication from a hardware device to an operating
system, application, or driver. Events are generally attention-getting
messages, allowing a process to know when a task is complete or when an
external event occurs.

Global Call A unified, high-level API that shields developers from the low-
level signaling protocol details that differ in countries around the world.
Allows the same application to easily work on multiple signaling systems
worldwide (for example, ISDN, T-1 robbed bit, R2MF, pulsed, MF
Socotel, Analog).

Integrated Services Digital Network (ISDN) An internationally accepted
standard for voice, data, and signaling that provides users with integrated
services using digital encoding at the user-network interface.

ISDN see Integrated Services Digital Network

PSTN see Public Switched Telephone Network

Call Logging API Software Reference for Windows

138

Public Switched Telephone Network (PSTN) Refers to the worldwide
telephone network accessible to all those with either a telephone or access
privileges.

semantics rules The guidelines used by the Call Logging API to analyze
signaling data and manage call logging transactions. Semantics rules
include semantics states, semantics variables, and a list of specific call
logging events. Semantics rules are defined by and dependent on the
analog or digital nature of the line, and/or on the CCS protocol being used.

semantics states The types of call states, as determined by the protocol, used
to identify the current status of a monitored call. Examples of semantics
states include dialing, alerting, connected and disconnected.

semantics variables The kinds of information to be monitored and collected
for call logging transactions. Variables are protocol-dependent and may
include the calling party number, called party number and bearer channel
number.

SRL Standard Runtime Library

Standard Runtime Library A software resource containing Event
Management and Standard Attribute functions and data structures used by
all Intel telecom devices, but which return data unique to the device.

synchronous function Synchronous functions block an application or process
until the required task is successfully completed or a failed/error message is
returned.

termination condition An event that causes a process to stop.

termination event An event that is generated when an asynchronous function
terminates.

thread (Windows) The executable instructions stored in the address space of a
process that the operating system actually executes. All processes have at
least one thread, but no thread belongs to more than one process. In a
multithreaded process, more than one thread is executed seemingly
simultaneously. When the last thread finishes its task, the process
terminates. The main thread is also referred to as a primary thread; both
main and primary thread refer to the first thread started in a process. A
thread of execution is just a synonym for thread.

time slot: In a digital telephony environment, a normally continuous and
individual communication (for example, someone speaking on a telephone)
is (1) digitized, (2) broken up into pieces consisting of a fixed number of

139

bits, (3) combined with pieces of other individual communications in a
regularly repeating, timed sequence (multiplexed), and (4) transmitted
serially over a single telephone line. The process happens at such a fast rate
that, once the pieces are sorted out and put back together again at the
receiving end, the speech is normal and continuous. Each individual
pieced-together communication is called a time slot.

unsolicited events An event that occurs without prompting, for example,
CLEV_MESSAGE, CLEV_ERROR, CLEV_ALARM.

Call Logging API Software Reference for Windows

140

141

Index

A
analog HiZ configuration, 5

C
Call Logging API

features, 4
functions, 43

call logging event data block, 11

call logging events, 9, 10, 53

call logging transactions, 9

CALLED variable, 104

CALLING variable, 107

CHANNEL variable, 110, 113

cl_Close(), 51

cl_DecodeTrace(), 53

CL_EVENTDATA, 11
iResult, 11
timeEvent, 13

cl_GetCalled(), 56

cl_GetCalling(), 59

cl_GetChannel(), 62

cl_GetMessage(), 65

cl_GetMessageDetails, 68

cl_GetOrdinalChannel(), 72

cl_GetSemanticsStateCount(), 75

cl_GetSemanticsStateName(), 77

cl_GetTransaction(), 80

cl_GetTransactionDetails(), 84

cl_GetTransactionUsrAttr(), 88

cl_GetUsrAttr(), 91

cl_GetVariable(), 93

cl_Open(), 97

cl_PeekCalled(), 104

cl_PeekCalling(), 107

cl_PeekChannel(), 110

cl_PeekOrdinalChannel(), 113

cl_PeekVariable, 116

cl_ReleaseTransaction(), 120

cl_SetTransactionUsrAttr(), 124

cl_SetUsrAttr(), 127

cl_StartTrace(), 129

cl_StopTrace(), 131

CLEV_ERROR events, 12, 13

CLEV_MESSAGE events, 11

cllib.h file, 49

configuration
call logging system

analog HiZ, 5
digital HiZ, 4

D
data structure

CL_EVENTDATA, 11

demo program, 39

demo programs, 21
HiZDemo, 21
SnifferMFC, 33

Call Logging API Software Reference for Windows

142

digital HiZ configuration, 4

dx_mreciottdata(), 8

dx_reciottdata(), 8

E
error handling, 45

event basis, 9

event data block, 11

events
call logging, 10
call logging, 9
unsolicited, 10

F
features

Call Logging API, 4

function categories
Call Logging API, 43

function documentation format, 49

function reference
Call Logging API, 49

function syntax, 50

G
gc_Extension(), 7

gc_GetFrame(), 7

Get functions, usage, 9

Global Call API, 6, 7

H
hardware configuration

analog HiZ, 5
digital HiZ, 4

HiZDemo application, 21

P
Peek functions, usage, 9

polling basis, 9

protocols
supported, 6

pszDeviceName, 97

S
sample application

SnifferMFC, 39

sample applications, 21

semantics rules, 9

semantics states, 9, 75, 77

semantics variables, 9

SnifferMFC, 39

SnifferMFC demo application, 33

sr_enbhdlr(), 7

sr_getevtdatap(), 11

sr_getevttype(), 11

sr_waitevt(), 7

SRL, 7, 53

Standard Runtime Library, 6. See SRL

states
semantics, 9

syntax
call logging functions, 50

T
trace file, 53

transaction recording, 8

transactions, 9

Index

143

V
variables

CALLED, 104
CALLING, 107
CHANNEL, 110, 113
event basis, 9
polling basis, 9
semantics, 9

Voice API, 6, 8

