
Porting Global Call H.323
Applications

from Embedded Stack
to Host-Based Stack

Application Note

Copyright © 2002 Intel Converged Communications Inc.

05-1857-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This document as well as the software described in it is furnished under license and may only be used
or copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear in this document or any software that may be provided in
association with this document. Except as permitted by such license, no part of this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means without express
written consent of Intel Corporation.

Copyright © 2002 Intel Corporation.

AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT
Connect, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP,
InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create &
Share, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge,
Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash,
Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX,
MMX logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium
II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, Shiva, SmartDie,
Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.

Publication Date: November, 2002

Intel Converged Communications, Inc.
1515 Route 10
Parsippany NJ 07054
For Technical Support, visit the Intel Telecom Support Resources website:
http://developer.intel.com/design/telecom/support/
For Products and Services Information, visit the Intel Communications Systems Products website:
http://www.intel.com/network/csp/
For Sales Offices, visit the Intel Telecom Building Blocks Sales Offices page:
http://www.intel.com/network/csp/sales/

iii

Table of Contents
1. Introduction ... 1
1.1. Related Documentation .. 1
2. Deprecated Global Call Functions ... 3
2.1. Event Masking.. 4
3. Run Time Configuration... 5
3.1. IP Address and Port Specification .. 5
3.2. DTMF Transfer Mode Configuration... 6
4. config.val File Redundancy .. 9
4.1. Setting Stack Allocation Parameters .. 9
4.2. Setting the Address String Delimiter .. 10
4.3. Setting Vendor Information.. 11
4.4. Registration, Admission and Status (RAS) Information............................... 11

4.4.1. Registration.. 13
4.4.2. Getting Notification of Registration Status.. 16
4.4.3. Sending Nonstandard Registration Messages 18
4.4.4. Deregistration .. 19

4.5. Setting Coder Information.. 20
5. Compatibility Issues to be Fixed in Future Releases 21

6. Compatibility Issues .. 23
6.1. Retrievable Call Information Compatibility ... 24
6.2. Nonstandard Object ID and Nonstandard Data Backward Compatibility 26
6.3. Coder Information and Backward Compatibility ... 26
6.2. UII Alphanumeric Parameter Usage... 27
7. Enhanced Functionality .. 29
7.1. Specifying Automatic or Manual Sending of the Proceeding Message 30

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

iv

1

1. Introduction
This technical note provides information for application developers on porting
existing Global Call applications that use the embedded H.323 IP stack provided
in System Release 5.x to Global Call applications that use the host-based H.323
stack provided in System Release 6.0 and later. Topics include:

• Deprecated Global Call functions and the preferred equivalents

• Run time configuration

• The relevant Global Call API functions that replace the config.val file

• Compatibility issues to be fixed in future system releases

• Compatibility issues

• Enhanced functionality available in the System Release 6.0

1.1. Related Documentation

See the following documentation for related information:

• Global Call API Programming Guide

• Global Call API Library Reference

• Global Call IP Technology User�s Guide

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

2

3

2. Deprecated Global Call Functions
The following Global Call functions, which may have been used in applications
developed using the NetTSC embedded stack implementation are deprecated in
System Release 6.0. The preferred equivalent for each deprecated function is
given in Table 1.

Table 1. Deprecated Global Call Functions

Function Preferred Equivalent

gc_Attach() gc_AttachResource()

gc_ErrorValue() gc_ErrorInfo()

gc_GetANI() gc_GetCallInfo()

gc_GetDNIS() gc_GetCallInfo()

gc_GetNetworkH() gc_GetResourceH()

gc_GetVoiceH() gc_GetResourceH()

gc_Open() gc_OpenEx()

gc_ReleaseCall() gc_ReleaseCallEx()

gc_ResultMsg() gc_ResultInfo()/gc_ErrorInfo()

gc_SetCallingNum() gc_SetConfigData()

gc_SetEvtMsk() gc_SetConfigData()

gc_SndMsg() gc_SetUserInfo()

See the Global Call API Library Reference for generic information about these
functions and the Global Call IP Technology User�s Guide for technology-
specific information.

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

4

2.1. Event Masking

The gc_SetEvtMsk() function is deprecated in System Release 6.0. The preferred
equivalent is the gc_SetConfigData() function. The use of gc_SetConfigData()
is different depending on the type of events being masked as follows:

• Call state events, for example GCEV_ALERTING, are masked using
gc_SetConfigData() with a target type of GCTGT_GCLIB_CHAN and a
target ID equal to a line device. Global Call uses this generic mechanism to
mask call state events in all technologies. See the section on Call State Event
Configuration in the Global Call API Programming Guide for more
information on masking call state events.

NOTE: Using a board device in the gc_SetConfigData() function to mask
call states for all line devices associated with a board is not
supported. Call state events can be masked on a line device basis
only.

• GCEV_EXTENSION events, for example notification of received DTMF
digits, are masked using the gc_SetConfigData() function with a target type
of GCTGT_CCLIB_NETIF and a target ID equal to a board device. For IP
technology, Global Call uses this mechanism to enable or disable events for
all line devices associated with a specific board device. See the section on
Enabling and Disabling Unsolicited Notification Events in the Global Call IP
Technology User�s Guide for more information on masking
GCEV_EXTENSION events.

5

3. Run Time Configuration
The following features, which in System Release 5.x were configurable at
download time, are now configurable at run time using the Global Call API.

• IP Address and Port Specification

• DTMF Transfer Mode Configuration

3.1. IP Address and Port Specification

When using Global Call and the host based stack implementation, IP address and
port information is configurable in the IPCCLIB_START_DATA structure used
by the gc_Start() function. Each NIC or NIC address (if a NIC supports multiple
addresses) corresponds to a IPT board device. For each IPT board device, a
IP_VIRTBOARD structure contains the address and port variables. The local IP
address for each IPT board device is a parameter of type IPADDR in the
IP_VIRTBOARD structure. The signaling ports used for H.323 and SIP are also
parameters in the IP_VIRTBOARD structure.

Caution:
In H.323, by default, the RAS signaling port is assigned to be one less
than the H.323 signaling port. Consequently, to avoid a port conflict
when configuring multiple boards, do not assign consecutive H.323

signaling port numbers to boards.

The following code example shows how to specify address and port information
for a NIC with one address. The bold text shows the most relevant lines of code:

 #define BOARDS_NUM 1

 /* initialize start parameters */
 IPCCLIB_START_DATA cclibStartData;
 memset(&cclibStartData,0,sizeof(IPCCLIB_START_DATA));

 IP_VIRTBOARD virtBoards[BOARDS_NUM];
 memset(virtBoards,0,sizeof(IP_VIRTBOARD)*BOARDS_NUM);

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

6

 cclibStartData.version = 0x0100; // must be set to 0x0100
 cclibStartData.delimiter = ',';
 cclibStartData.num_boards = BOARDS_NUM;
 cclibStartData.board_list = virtBoards;

 virtBoards[0].total_max_calls = IP_CFG_MAX_AVAILABLE_CALLS;
 virtBoards[0].h323_max_calls = IP_CFG_MAX_AVAILABLE_CALLS;
 virtBoards[0].sip_max_calls = IP_CFG_MAX_AVAILABLE_CALLS;
 virtBoards[0].localIP.ip_ver = IPVER4; // must be set to IPVER4
 virtBoards[0].localIP.u_ipaddr.ipv4 = IP_CFG_DEFAULT;
 virtBoards[0].h323_signaling_port = IP_CFG_DEFAULT;
 virtBoards[0].sip_signaling_port = IP_CFG_DEFAULT;
 virtBoards[0].reserved = NULL; // must be set to NULL

 CCLIB_START_STRUCT cclibStartStruct[] = {
 {"GC_IPM_LIB", NULL},
 {"GC_H3R_LIB", &cclibStartData}
 };

 GC_START_STRUCT gcStartStruct;
 gcStartStruct.cclib_list = cclibStartStruct;
 gcStartStruct.num_cclibs = 2;
 int rc = gc_Start(&gcStartStruct);
 if(GC_SUCCESS != rc)
 {
 // handle the error
 }

NOTE: The IP_CFG_DEFAULT define indicates to the call control library that
it should determine and fill in the correct values. IP_CFG_DEFAULT
values can be replaced by discrete values.

If two Global Call IP applications are required to be running on the same machine
(using same stack), the second application must modify the
IPCCLIB_START_DATA structure to have a different h323_signaling_port value
so that there is no conflict. If there is a conflict, the IP call control library will fail
to load.

3.2. DTMF Transfer Mode Configuration

In System Release 5.x, the DTMF transfer mode was configurable by setting the
value of the PrmDTMFXferMode parameter in the .config file. In System
Release 6.0, the DTMF transfer mode is configurable at run time using the
Global Call API. The DTMF mode can be specified for all line devices (using the
gc_SetConfigData() function) or on a per line device basis (using
gc_SetUserInfo() with the duration parameter set to GC_ALLCALLS).

3. Run Time Configuration

7

The GC_PARM_BLK associated with the gc_SetConfigData() or
gc_SetUserInfo() function is used to specify the DTMF modes that are
supported. The GC_PARM_BLK must include the following parameter set ID and
parameter ID:

• IPSET_DTMF

• IPPARM_SUPPORT_DTMF_BITMASK which can be one of the
following values:

• IP_DTMF_TYPE_ALPHANUMERIC_DTMF (H.323 only)

• IP_DTMF_TYPE_INBAND_RTP

• IP_DTMF_TYPE_RFC_2833

See the Global Call IP Technology User�s Guide for more detail.

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

8

9

4. config.val File Redundancy
In System Release 5.x, the config.val file contained the following configurable
information:

• Stack allocation parameters

• Address string delimiter

• Vendor information

• Registration, Admission and Status (RAS) information

• Coder information

In System Release 6.0, the config.val file is not used. The following sections
describe how Global Call API functions provide the configuration functionality
previously available in the config.val file.

4.1. Setting Stack Allocation Parameters

Stack allocation parameters are configurable in the IPCCLIB_START_DATA
structure used by the gc_Start() function. The parameters are configurable on a
virtual board basis. Since the underlying call control library now supports both the
H.323 and SIP protocols, parameters are included for each protocol. The
parameters include:

• total_max_calls - The maximum total number of IPT devices that can be
open concurrently.

• h323_max_calls - The maximum number of IPT devices used for H.323 calls

• sip_max_calls - The maximum number of IPT devices used for SIP calls.

Refer to the IP_VIRTBOARD data structure description in the Global Call IP
Technology User�s Guide for a complete description of the structure. The
following code example shows how to specify stack allocation parameters for a
NIC with one address. The bold text shows the most relevant lines of code:

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

10

 #define BOARDS_NUM 1
 /* initialize start parameters */
 IPCCLIB_START_DATA cclibStartData;
 memset(&cclibStartData,0,sizeof(IPCCLIB_START_DATA));

 IP_VIRTBOARD virtBoards[BOARDS_NUM];
 memset(virtBoards,0,sizeof(IP_VIRTBOARD)*BOARDS_NUM);

 cclibStartData.version = 0x0100; // must be set to 0x0100
 cclibStartData.delimiter = ',';
 cclibStartData.num_boards = BOARDS_NUM;
 cclibStartData.board_list = virtBoards;

 virtBoards[0].total_max_calls = IP_CFG_MAX_AVAILABLE_CALLS;
 virtBoards[0].h323_max_calls = IP_CFG_MAX_AVAILABLE_CALLS;
 virtBoards[0].sip_max_calls = IP_CFG_MAX_AVAILABLE_CALLS;
 virtBoards[0].localIP.ip_ver = IPVER4; // must be set to IPVER4
 virtBoards[0].localIP.u_ipaddr.ipv4 = IP_CFG_DEFAULT;
 virtBoards[0].h323_signaling_port = IP_CFG_DEFAULT;
 virtBoards[0].sip_signaling_port = IP_CFG_DEFAULT;
 virtBoards[0].reserved = NULL; // must be set to NULL

 CCLIB_START_STRUCT cclibStartStruct[] = {
 {"GC_IPM_LIB", NULL},
 {"GC_H3R_LIB", &cclibStartData}
 };

 GC_START_STRUCT gcStartStruct;
 gcStartStruct.cclib_list = cclibStartStruct;
 gcStartStruct.num_cclibs = 2;
 int rc = gc_Start(&gcStartStruct);
 if(GC_SUCCESS != rc)
 {
 // handle the error
 }

NOTE: The IP_CFG_MAX_AVAILABLE_CALLS define indicates to the call
control library that it should determine and fill in the correct values.
Discrete values can also be used. Values must be in the range 0 to 2016.
Specifying values less than the maximum reduces the amount of memory
allocated by the stack and helps improve performance.

4.2. Setting the Address String Delimiter

The delimiter that separates different parts of the address in composite address
strings can be set in the IPCCLIB_START_DATA structure used by the
gc_Start() function. The parameter is configurable on a system-wide basis. The
following code segment shows how to set the delimiter to be a comma (,).

 #define BOARDS_NUM 1

 /* initialize start parameters */
 IPCCLIB_START_DATA cclibStartData;
 memset(&cclibStartData,0,sizeof(IPCCLIB_START_DATA));

4. config.val File Redundancy

11

 cclibStartData.version = 0x0100; // must be set to 0x0100
 cclibStartData.delimiter = ',';
 cclibStartData.num_boards = BOARDS_NUM;
 cclibStartData.board_list = virtBoards;

4.3. Setting Vendor Information

The application can set vendor information using the gc_SetConfigData()
function. The following are the relevant function parameter values:

• target_type - GCTGT_CCLIB_NETIF

• target_id - IPT board device

• target_datap - A pointer to a GC_PARM_BLK structure that contains
configuration information including the vendor information.

To specify vendor information, the GC_PARM_BLK must contain the following
parameter set ID and parameter IDs:

• IPSET_VENDORINFO

• IPPARM_VENDOR_PRODUCT_ID - Product ID. A string with a
maximum length of MAX_PRODUCT_ID_LENGTH (32) characters.

• IPPARM_VENDOR_VERSION_ID - Version ID. A string with a
maximum length of MAX_VERSION_ID_LENGTH (32) characters.

• IPPARM_H221NONSTD - Non-standard vendor information. A
structure containing country code, extension, and manufacturer�s code.
See the IP_H221NONSTANDARD structure description in the
Global Call IP Technology User�s Guide for more information.

4.4. Registration, Admission and Status (RAS)
Information

In System Release 5.x with the NetTSC embedded stack, registration functionality
was configurable by setting parameter values in the config.val file. Functionality
was provided in stages as described below:

• A setting determined if working with RAS protocol was enabled or disabled

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

12

• If working with the RAS protocol was enabled, then another setting
determined if automatic registration at initialization time was enabled or
disabled.

• If automatic registration at initialization time was enabled, then other settings
determined:

• Whether working with multicast or unicast is required and the respective
address

• The terminal alias, supported prefixes and time-to-live information
(optional)

In System Release 6.0 with the host-based stack, registration is achieved using the
gc_ReqService() function. The following rules apply:

• The application must use a valid board device handle that was previously
obtained using the gc_OpenEx() function, for example,
gc_OpenEx(&boardDevice,�:N_iptB1:P_IP�,EV_ASYNC, NULL) .

• The application must perform initial discovery and registration before
handling any calls.

• When the application is registered and has active calls, any deregistration or
switching to a different gatekeeper must be done when all line devices in the
system are in the Idle state.

The gc_ReqService() function is used for both registration and deregistration and
includes a GC_PARM_BLK that can be populated with parameters that determine
the following:

• The operation to be performed (register or deregister)

• The sub-operation to be performed (set registration information, add to
registration information, delete one component of registration information by
value, delete all registeration information)

• Registration address information

• Any local aliases to be included in the registration (when the registration
target is H.323 only)

• Any supported prefixes to be included in the registration (when the
registration target is H.323 only)

4. config.val File Redundancy

13

4.4.1. Registration

The gc_ReqService() function is used for registration. Registration information is
stored locally and can be retained or discarded when deregistering. IP registration
address information is stored in the IP_REGISTER_ADDRESS structure that has
the following definition:

 typedef struct
 {
 char reg_client[IP_REG_CLIENT_ADDR_LENGTH];
 char reg_server[IP_REG_SERVER_ADDR_LENGTH];
 int time_to_live;
 int max_hops;
 }IP_REGISTER_ADDRESS;

Each field has the following meaning:

• reg_client: 128 character local address of registering host

• reg_server: 64 character local address of gatekeeper

• time_to_live: unicast TTL in seconds

• max_hops: multicast TTL in seconds

Important defines in this context are:

 #define IP_REG_MULTICAST_DEFAULT_ADDR "0.0.0.0" /* default multicast
 registration address */
 #define IP_REG_SERVER_ADDR_LENGTH 64 /* server address length in characters */
 #define IP_REG_CLIENT_ADDR_LENGTH 128 /* client address length in characters */

The following paragraphs contain code segments that demonstrate how to
populate the GC_PARM_BLK with the parameters required for registration with a
gatekeeper.

1. Including two mandatory parameters. The generic Global Call service request
feature requires two mandatory parameters for all service requests including
registration. The parameters can be included in the GC_PARM_BLK as
follows:

 GC_PARM_BLKP pParmBlock = NULL;
 int frc = GC_SUCCESS;

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

14

 /****** Two (mandatory) elements that are not related directly to
 the server-client negotiation ********/
 frc = gc_util_insert_parm_val(&pParmBlock,
 GCSET_SERVREQ,
 PARM_REQTYPE,
 sizeof(char),
 IP_REQTYPE_REGISTRATION);

 frc = gc_util_insert_parm_val(&pParmBlock,
 GCSET_SERVREQ,
 PARM_ACK,
 sizeof(char),
 1);

2. Since Global Call in System Release 6.0 supports both H.323 and SIP
protocols, the protocol must be specified. This is achieved by including the
following set ID and parameter ID in the GC_PARM_BLK:

 /******Setting the protocol target***********/
 frc = gc_util_insert_parm_val(&pParmBlock,
 IPSET_PROTOCOL,
 IPPARM_PROTOCOL_BITMASK,
 sizeof(char),
 IP_PROTOCOL_H323); /*can be H323, SIP or Both*/

3. The operation (registration) and the sub-operation (set registration
information) can be specified by including the following set ID and parameter
IDs in the GC_PARM_BLK:

 /****** Setting the operation to perform ***********/
 frc = gc_util_insert_parm_val(&pParmBlock,
 IPSET_REG_INFO,
 IPPARM_OPERATION_REGISTER, /* can be Register
 or Deregister */
 sizeof(char),
 IP_REG_SET_INFO); /* can be other relevant
 "sub" operations */

4. Registration address information is specified by including the following set
ID and parm ID in the GC_PARM_BLK:

 /****** Setting address information ***********/
 IP_REGISTER_ADDRESS registerAddress;
 strcpy(registerAddress.reg_server,"101.102.103.104"); /* set server address*/
 strcpy(registerAddress.reg_client,"10.20.30.40"); /* set client (self)
 address */
 registerAddress.max_hops = regMulticastHops;
 registerAddress.time_to_live = regUnicastTTL;

 frc = gc_util_insert_parm_ref(&pParmBlock,
 IPSET_REG_INFO,
 IPPARM_REG_ADDRESS,
 (UINT8)sizeof(IP_REGISTER_ADDRESS),
 ®isterAddress);

4. config.val File Redundancy

15

5. An e-mail alias can be specified by including the following set ID and
parameter ID in the GC_PARM_BLK. Other alias types can be included by
using the parameter IDs: IPPARM_ADDRESS_DOT_NOTATION (for IP
addresses), IPPARM_ADDRESS_H323_ID (for H.323 IDs),
IPPARM_ADDRESS_PHONE (for phone numbers),
IPPARM_ADDRESS_URL (for universal resource locators), and
IPPARM_ADDRESS_TRANSPARENT (for unknown types).

 /**** Setting terminalAlias information ****/
 /**** With H.323 - may repeat this line with different aliases and
 alias types ****/
 /**** SIP does not allow the setting of this parm block ****/
 frc = gc_util_insert_parm_ref(&pParmBlock,
 IPSET_LOCAL_ALIAS,
 (unsigned short)IPPARM_ADDRESS_EMAIL,
 (UINT8)(strlen("someone@someplace.com")+1),
 "someone@someplace.com");

6. A phone number supported prefix can be specified by including the following
set ID and parameter ID in the GC_PARM_BLK. Other supported prefix
types can be included by using the parameter IDs:
IPPARM_ADDRESS_DOT_NOTATION (for IP addresses),
IPPARM_ADDRESS_H323_ID (for H.323 IDs),
IPPARM_ADDRESS_PHONE (for phone numbers),
IPPARM_ADDRESS_URL (for universal resource locators), and
IPPARM_ADDRESS_TRANSPARENT (for unknown types).

 /**** Setting supportedPrefixes information ***********/
 /**** With H.323 - may repeat this line with different supportedPrefixes and
 supported prefix types ****/
 /**** SIP does not allow the setting of this parm block ****/
 frc = gc_util_insert_parm_ref(&pParmBlock,
 IPSET_SUPPORTED_PREFIXES,
 (unsigned short)IPPARM_ADDRESS_PHONE,
 (UINT8)(strlen("011972")+1),
 "011972");

7. Once the GC_PARM_BLK has been set up, the gc_ReqService() function
can be used to send the request to the gatekeeper.

 /****** Send the request ***********/
 unsigned long serviceID ;
 int rc = gc_ReqService(GCTGT_CCLIB_NETIF,
 boarddev,
 &serviceID,
 pParmBlock,
 NULL,
 EV_ASYNC);

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

16

 if (rc != GC_SUCCESS)
 {
 printf("failed in gc_ReqService\n");
 return GC_ERROR;
 }

4.4.2. Getting Notification of Registration Status

When using the Global Call API, getting notification of registration status is a two
step process:

• Detecting a registration event on the board device

• Extracting the status from the GC_PARM_BLK associated with the event

The following code demonstrates how to detect the event on the board device.

int rasProcessEvent(METAEVENT *metaevt)
{
 long type = sr_getevttype();
 LINEDEV device = sr_getevtdev();
 EXTENSIONEVTBLK* pextensionBlk = NULL;
 GC_PARM_BLKP gcParmBlk;
 int rc;
 printf("Got event [0x%x] for board device [%d]\n",type,device);
 if(GCEV_SERVICERESP == metaevt->evttype)
 {
 pextensionBlk = (EXTENSIONEVTBLK*)(metaevt->extevtdatap);
 if (NULL == pextensionBlk)
 {
 printf("rasProcessEvent: (NULL == pextensionBlk)\n");
 return FUNCFAIL;
 }

 gcParmBlk = (&(pextensionBlk->parmblk));

 rc = getExtension(gcParmBlk);
 if (FUNCSUCCESS != rc)
 {
 printf("rasProcessEvent: No InfoElement on Extension Buffer\n");
 return FUNCFAIL;
 }
 }
 return FUNCSUCCESS;
}

The following code shows how to extract registration status (accepted or rejected)
from the GC_PARM_BLK associated with the event.

int getExtension(GC_PARM_BLKP parm_blk)
{
 GC_PARM_DATA *parmp = NULL;
 static int xxx=0;
 parmp = gc_util_next_parm(parm_blk,parmp);

4. config.val File Redundancy

17

 if (!parmp)
 {
 return FUNCFAIL;
 }

 while (NULL != parmp)
 {
 xxx++;
 printf("param # = %d\n",xxx);
 switch (parmp->set_ID)
 {
 case IPSET_REG_INFO:
 if (IPPARM_REG_STATUS == parmp->parm_ID)
 {
 int value = (*(int *)(parmp->value_buf));
 switch (value)
 {
 case IP_REG_CONFIRMED:
 switch (g_waitForCmplt)
 {
 case REGESTER:
 printf("\tGot REG_STATUS - IP_REG_CONFIRMED for
Regesteration\n");
 break;
 case UNREGESTER:
 printf("\tGot REG_STATUS - IP_REG_CONFIRMED for un
regester\n");
 ApplicationExit();
 break;
 default:
 break;
 }
 case IP_REG_REJECTED:
 switch (g_waitForCmplt)
 {
 case REGESTER:
 printf("\tGot REG_STATUS - IP_REG_REJECTED for
Regesteration\n");
 break;
 case UNREGESTER:
 printf("\tGot REG_STATUS - IP_REG_REJECTED for un
regester\n");
 break;
 default:
 break;
 }
 default:
 break;
 }
 }
 break;
 default:
 printf("\tGot unknown extension setID %d\n",parmp->set_ID);
 break;
 }/* end switch (parmp->set_ID) */

 parmp = gc_util_next_parm(parm_blk,parmp);
 }
 return FUNCSUCCESS;
}

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

18

4.4.3. Sending Nonstandard Registration Messages

Non-standard registration messages are sent to the gatekeeper using the
gc_Extension() function with an extension ID (ext_ID) of
IPEXTID_SENDMSG. A GC_PARM_BLK associated with the gc_Extension()
function contains the required parameters and the message data. The following
code demonstrates how to set up a GC_PARM_BLK and use the gc_Extension()
function to send a nonstandard message to the gatekeeper.

int sendNonStandardRasMsg()
{
 GC_PARM_BLKP gcParmBlk = NULL;
 int frc;

 /******Setting the protocol target******/
 frc = gc_util_insert_parm_val(&pParmBlock,
 IPSET_PROTOCOL,
 IPPARM_PROTOCOL_BITMASK,
 sizeof(char),
 IP_PROTOCOL_H323); /* can only be H323 target /*
 /* for this task */

 frc = gc_util_insert_parm_val(&gcParmBlk,
 IPSET_MSG_REGISTRATION,
 IPPARM_MSGTYPE,
 sizeof(int),
 IP_MSGTYPE_REG_NONSTD);

 frc = gc_util_insert_parm_ref(&gcParmBlk,
 IPSET_NONSTANDARDDATA,
 IPPARM_NONSTANDARDDATA_OBJID,
 (unsigned char)(strlen(Boards[1].RegData.NonStdObjID) +1),
 (void*)Boards[1].RegData.NonStdObjID);

 frc = gc_util_insert_parm_ref(&gcParmBlk,
 IPSET_NONSTANDARDDATA,
 IPPARM_NONSTANDARDDATA_DATA,
 (unsigned
char)(strlen(Boards[1].RegData.NonStdCmd)+1),
 (void*)(Boards[1].RegData.NonStdCmd));

 if (gc_Extension(GCTGT_CCLIB_NETIF,
 Boards[1].device,
 IPEXTID_SENDMSG,
 gcParmBlk,
 NULL,
 EV_ASYNC)<0)
 {
 printf("gc_Extention failed");
 }

 gc_util_delete_parm_blk(gcParmBlk);
 return FUNCSUCCESS;
}

4. config.val File Redundancy

19

4.4.4. Deregistration

Deregistration is achieved using the gc_ReqService() by specifying the IPSET-
REG_INFO set ID and the IPPARM_OPERATION_DEREGISTER parameter ID
in the GC_PARM_BLK associated with the gc_ReqService() function. In
addition, the application can choose to keep the registration information that is
stored locally or to discard it by setting the
IPPARM_OPERATION_DEREGISTER parameter to a value of
IP_REG_MAINTAIN_LOCAL_INFO (deregister but keep registration
information locally) or IP_REG_DELETE_ALL (deregister and discard the
registration information stored locally).

The following code example shows how to deregister from a gatekeeper and
discard the registration information stored locally.

int unregister()
{
 GC_PARM_BLKP pParmBlock = NULL;
 unsigned long serviceID = 1;
 int rc;

 /******Setting the protocol target******/
 rc = gc_util_insert_parm_val(&pParmBlock,
 IPSET_PROTOCOL,
 IPPARM_PROTOCOL_BITMASK,
 sizeof(char),
 IP_PROTOCOL_H323); /* can be H323 or SIP /*

 rc = gc_util_insert_parm_val(&pParmBlock,
 IPSET_REG_INFO,
 IPPARM_OPERATION_DEREGISTER,
 sizeof(char),
 IP_REG_DELETE_ALL);

 rc = gc_ReqService(GCTGT_CCLIB_NETIF,
 Boards[1].device,
 &serviceID,
 pParmBlock,
 NULL,
 EV_ASYNC);

 if (GC_SUCCESS != rc)
 {
 printf("gc_ReqService failed while unregestering\n");
 gc_util_delete_parm_blk(pParmBlock);
 return FUNCFAIL;
 }
 g_waitForCmplt = UNREGESTER;
 printf("Unregester request to the GK was sent ...\n");
 printf("the application will not be able to make calls !!! so it will EXIT\n");
 gc_util_delete_parm_blk(pParmBlock);
 return FUNCSUCCESS;
}

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

20

4.5. Setting Coder Information

In System Release 5.x, coder information could be specified in the config.val file.
In System Release 6.0, coder information can only be set at run time using the
Global Call API. Coder information can be set:

• On a system-wide basis using gc_SetConfigData()

• On a per line device basis using gc_SetUserInfo()

• On a per call device using gc_MakeCall()

Any coder information that is set using gc_SetUserInfo() overrides coder
information set using gc_SetConfigData() and in turn any coder information set
using gc_MakeCall() overrides coder information set using gc_SetUserInfo().
The coder information is specified in a GC_PARM_BLK associated with the
respective function. The set ID is GCSET_CHAN_CAPABILITY and the
parameter ID is IPPARM_LOCAL_CAPABILITY which is a structure of type
IP_CAPABILITY that contains the coder details.

See the Global Call IP Technology User�s Guide for information on the supported
coders and how to set them.

21

5. Compatibility Issues to be Fixed in
Future Releases
The following are known compatibility issues that are expected to be fixed in
future releases:

• In the host-based stack implementation, gc_OpenEx() and
gc_ReleaseCallEx() are supported in both synchronous and asynchronous
mode. All other functions are supported in asynchronous mode only.

• The host-based stack implementation does not currently support RTCP
Reports.

• The gc_GetCTInfo() function, which is supported in the NetTSC embedded
stack implementation is not currently supported in the host-based stack
implementation.

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

22

23

6. Compatibility Issues
The following compatibility issues necessitate changes to applications developed
using the NetTSC embedded stack implementation in order to run on the host-
based stack implementation in System Release 6.0:

• The config.val file is no longer being used. Parameters previously
configurable in config.val are now configurable using Global Call API
functions. See Chapter 4. config.val File Redundancy for more information.

• In the embedded stack implementation, when using gc_OpenEx(), the
protocol identifier in the numberstr parameter is P_H323_R and each IP
Media device (ipmBxCy) is bound to the corresponding IP network device
(iptBxTy), that is BxCy = BxTy. In the host-based stack implementation, the
protocol identifier is P_H323 and the IP Media device is not bound to a
corresponding IP network device.

• The gc_SetConfigData() function uses different target types and target IDs
in the different implementations as follows:

• In the NetTSC embedded stack implementation, the target type is
GCTGT_PROTOCOL_SYSTEM and the target ID (protocol ID) had to
be retrieved using the gc_QueryConfigData() function.

• In the host-based stack implementation, the target type is
GCTGT_CCLIB_NETIF and the target ID is the board device ID.

In addition, parameter settings apply not only to newly opened devices but
also to devices already opened. See the Global Call IP Technology User�s
Guide for more information.

• In the NetTSC embedded stack implementation, the GCEV_EXTENSION
event had a dual role acting as the completion event for the gc_Extension()
function and as an unsolicited event. In the host-based stack implementation,
the completion event for gc_Extension() is GCEV_EXTENSIONCMPLT.
The GCEV_EXTENSION event is reserved for unsolicited events only.

• In the NetTSC embedded stack implementation, the number of IP network
devices allocated depended on the number and type of Intel NetStructure
DM/IP boards in the system. In the host-based stack implementation, the
number of IP network devices that will be allocated is configurable using the

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

24

IPCCLIB_START_DATA structure associated with the gc_Start() function.
See Section 4.1. Setting Stack Allocation Parameters for more information.

• In System Release 6.0, the usage of IPPARM_UII_ALPHANUMERIC is
different than in the NetTSC embedded stack implementation. See
Section 6.4. UII Alphanumeric Parameter Usage below for more detail.

6.1. Retrievable Call Information Compatibility

Table 2 shows the retrievable call information in the host-based stack
implementation in System Release 6.0 and indicates the level of compatibility
with the embedded stack implementation in System Release 5.x.

Table 2. Retrievable Call Information and Backward Compatibility

Parameter Set ID Parameter ID System Release
6.0 Backwards
Compatible

RTCP
information

IPSET_
CALLINFO

IPPARM_
RTCPINFO

Not supported in
System Release
6.0.

Coder
information

GCSET_CHAN_
CAPABILITY

IPPARM_
LOCAL_
CAPABILITY

No, see Section
6.3. Coder
Information and
Backward
Compatibility.

Display
Information

IPSET_
CALLINFO

IPPARM_
DISPLAY

Yes

User-to-User
Information

IPSET_
CALLINFO

IPPARM_
USERUSER_
INFO

Yes

Call Duration IPSET_
CALLINFO

IPPARM_
CALLDURATION

Yes

6. Compatibility Issues

25

Parameter Set ID Parameter ID System Release
6.0 Backwards
Compatible

Phone List IPSET_
CALLINFO

IPPARM_
PHONELIST

Yes

Nonstandard
Object ID

IPSET_
CALLINFO

IPPARM_NON
STANDARDDATA_
OBJID

No, see Section
6.2. Nonstandar
d Object ID and
Nonstandard
Data Backward
Compatibility.

Nonstandard
Data

IPSET_
CALLINFO

IPPARM_NON
STANDARDDATA_
DATA

No, see Section
6.2. Nonstandar
d Object ID and
Nonstandard
Data Backward
Compatibility.

Vendor
Product ID

IPSET_
VENDORINFO

IPPARM_
VENDOR_
PRODUCT_ID

Yes

Vendor
Version ID

IPSET_
VENDORINFO

IPPARM_
VENDOR_
VERSION_ID

Yes

H.221
Nonstandard
information

IPSET_
VENDORINFO

IPPARM_
H221NONSTD

Yes

Conference ID IPSET_
CONFERENCE

IPPARM_
CONFERENCE_ID

Yes

Conference
Goal

IPSET_
CONFERENCE

IPPARM_
CONFERENCE_
GOAL

Yes

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

26

Parameter Set ID Parameter ID System Release
6.0 Backwards
Compatible

Call ID IPSET_
CALLINFO

IPPARM_
CALLID

Not supported in
System Release
5.x.

6.2. Nonstandard Object ID and Nonstandard Data
Backward Compatibility

In System Release 5.x, the Nonstandard Object ID and Nonstandard Data
parameters used the IPSET_CALLINFO parameter set ID. Since these parameters
are not call information parameters, they have been changed to use a more
logically named IPSET_NONSTANDARDCONTROL parameter set ID.
IPSET_NONSTANDARDCONTROL uses the same nonstandard parameter IDs
as previously used by IPSET_CALLINFO.

In addition, IPSET_NONSTANDARDCONTROL also supports the
IPPARM_H221NONSTANDARD parameter ID.

6.3. Coder Information and Backward Compatibility

The GCEV_EXTENSION event with a parameter set ID of
IPSET_MEDIA_STATE is used to signal that media has either started or stopped
streaming in the transmit or the receive directions:

• If the parameter is IPPARM_TX_CONNECTED, then media has begun to
stream in the transmit direction.

• If the parameter is IPPARM_RX_CONNECTED, then media has begun to
stream in the receive direction.

The coder configuration is contained in the event data as an IP_CAPABILITY
structure.

6. Compatibility Issues

27

6.4. UII Alphanumeric Parameter Usage

In the NetTSC embedded stack implementation, the
IPPARM_UII_ALPHANUMERIC parameter had a dual role:

• If the application was using out-of-band (OOB) DTMF (as defined by setting
PrmDTMFXferMode to 2 [default] in the .config file), then
IPPARM_UII_ALPHANUMERIC was used for DTMF.

• If the application was using in-band DTMF (as defined by setting
PrmDTMFXferMode to 1 in the .config file), then
IPPARM_UII_ALPHANUMERIC was used to send messages to the
application at the remote side.

In the host-based stack implementation, the .config file is not used. DTMF and
application data transfer is achieved as follows:

• The application uses IPSET_DTMF with
IPPARM_DTMF_ALPHANUMERIC (which is the same value as
IPPARM_UII_ALPHANUMERIC) to send DTMF.

• The application can use User Input Indication (UII) non-standard, or Q931
User-to-User Information (UUI) to send information to an application at the
remote end.

See the Global Call IP Technology User�s Guide for more information.

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

28

29

7. Enhanced Functionality
The host-based stack implementation in System Release 6.0 includes the following
enhancements over the NetTSC embedded stack implementation:

• Support for both H.323 and SIP protocols

• Support for RFC2833.

• Support for T.38 fax.

• In the host-based stack implementation, both Transmit and Receive coders
can be specified. In the NetTSC embedded stack implementation, only
Transmit coders could be specified.

• The behavior of the gc_SetUserInfo() with the GC_SINGLECALL (per call
basis) and GC_ALLCALLS (per device basis) options is different as follows:

• In the NetTSC embedded stack implementation, only coder information
could be set using GC_ALLCALLS (per line device basis); all other
information could be set using GC_SINGLECALL only (per call basis).

• In the host-based stack implementation, all parameters (coder info,
conference goal, connection method, display information, nonstandard
data, nonstandard control, phone list, tunneling, and user-to-user
information) can be set using both GC_SINGLECALL and
GC_ALLCALLS.

• In the NetTSC embedded stack implementation, the Proceeding message was
sent automatically by the stack. In the host-based stack implementation, the
application can determine if the Proceeding message should be sent manually
or automatically by the stack. See Section 7.1. Specifying Automatic or
Manual Sending of the Proceeding Message below for more detail.

• In the NetTSC embedded stack implementation, routing using gc_Listen(),
gc_UnListen() had to be done in synchronous mode, but these functions
were non-blocking. In the host-based stack implementation, it is
recommended to use gc_Listen() and gc_Unlisten() in asynchronous mode.
Using gc_Listen() and gc_UnListen() in synchronous mode is supported,
but these functions are blocking in the host-based implementation.

Porting Global Call H.323 Applications from Embedded Stack to Host-Based
Stack Application Note

30

7.1. Specifying Automatic or Manual Sending of the
Proceeding Message

In the NetTSC embedded stack implementation, during call setup, the Proceeding
message was sent automatically. In the host based stack implementation, the
application can configure if the Proceeding message should be sent manually by
the application (using the gc_CallAck() function) or automatically by the stack.

This configuration is done using the gc_SetConfigData() function with the
following set ID and parameter ID in the associated GC_PARM_BLK:

• GCSET_CALL_CONFIG

• GCPARM_CALLPROC - Possible values are:

• GCCONTROL_APP - The Proceeding message should be sent by
the application

• GCCONTROL_TCCL - The Proceeding message is sent
automatically by the stack

The default is that the Proceeding message is sent manually by the application by
issuing gc_CallAck(). If the automatic option is selected, there may be
performance issues at the receiving side.

