
www.dialogic.com

Dialogic® Diva® API

Developer’s Reference Guide

Part of the Dialogic® Diva® Software Development Kit

March 2015 206-444-12

Page 2

Dialogic® Diva® API Developer’s Reference Guide

Copyright and Legal Notice
Copyright © 2008-2015 Dialogic Inc. All Rights Reserved. You may not reproduce this document in whole or in part without
permission in writing from Dialogic Inc. at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do not
represent a commitment on the part of Dialogic Inc. and its affiliates or subsidiaries ("Dialogic"). Reasonable effort is made
to ensure the accuracy of the information contained in the document. However, Dialogic does not warrant the accuracy of this
information and cannot accept responsibility for errors, inaccuracies or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER,
AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in certain safety-affecting situations. Please see
http://www.dialogic.com/company/terms-of-use.aspx for more details.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in
specific countries, and thus may not function properly in other countries. You are responsible for ensuring that your use of
such products occurs only in the countries where such use is suitable. For information on specific products, contact Dialogic
Inc. at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in
marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual
property rights owned by third parties. Dialogic does not provide any intellectual property licenses with the sale of Dialogic
products other than a license to use such product in accordance with intellectual property owned or validly licensed by Dialogic
and no such licenses are provided except pursuant to a signed agreement with Dialogic. More detailed information about such
intellectual property is available from Dialogic's legal department at 6700 de la Cote-de-Liesse Road, Suite 100, Montreal,
Quebec, Canada H4T 2B5. Dialogic encourages all users of its products to procure all necessary intellectual property licenses
required to implement any concepts or applications and does not condone or encourage any intellectual property infringement
and disclaims any responsibility related thereto. These intellectual property licenses may differ from country to country and
it is the responsibility of those who develop the concepts or applications to be aware of and comply with different national
license requirements.

Dialogic, Dialogic Pro, Dialogic Blue, Veraz, Brooktrout, Diva, BorderNet, PowerMedia, ControlSwitch, I-Gate, Mobile Experience
Matters, Network Fuel, Video is the New Voice, Making Innovation Thrive, Diastar, Cantata, TruFax, SwitchKit, Eiconcard, NMS
Communications, SIPcontrol, Exnet, EXS, Vision, inCloud9, NaturalAccess and Shiva, among others as well as related logos,
are either registered trademarks or trademarks of Dialogic Inc. and its affiliates or subsidiaries. Dialogic's trademarks may be
used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic's legal department at 6700
de la Cote-de-Liesse Road, Suite 100, Montreal, Quebec, Canada H4T 2B5. Any authorized use of Dialogic's trademarks will
be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic's
trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible for your
decision to use open source in connection with Dialogic products (including without limitation those referred to herein), nor
is Dialogic responsible for any present or future effects such usage might have, including without limitation effects on your
products, your business, or your intellectual property rights.

This software is based in part on the work of the FreeType Project (http://www.freetype.org), under the FreeType License (FTL).

© Copyright 2006-2014 by David Turner, Robert Wilhelm, and Werner Lemberg. All rights reserved.

This software is based in part on the work of the Independent JPG Group.

Tiff Lib
Copyright © 1988-1997 Sam Leffler
Copyright © 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that (i) the above copyright notices and this permission notice appear in all copies of the software
and related documentation, and (ii) the names of Sam Leffler and Silicon Graphics may not be used in any advertising or
publicity relating to the software without the specific, prior written permission of Sam Leffler and Silicon Graphics.

http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com
http://www.dialogic.com
http://www.dialogic.com
http://www.dialogic.com
http://www.dialogic.com
http://www.dialogic.com

Copyright and Legal Notice

Page 3

Dialogic Corporation License Agreement For Use of Software

This is an Agreement between you, the Company, and your Affiliates (referred to in some instances as "You" and
in other instances as "Company") and all Your Authorized Users and Dialogic Corporation ("Dialogic").

YOU SHOULD CAREFULLY READ THE SOFTWARE LICENSE AGREEMENT ("AGREEMENT") ON THIS SEALED PACKAGE BEFORE
OPENING THE PACKAGE. BY OPENING THE PACKAGE, YOU ACCEPT THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF
YOU DO NOT AGREE WITH OR ARE UNWILLING TO ACCEPT THESE TERMS AND CONDITIONS, YOU MAY RETURN THE PACKAGE
IN UNOPENED "AS NEW" CONDITION (INCLUDING ALL DOCUMENTATION AND BINDERS OR OTHER CONTAINERS) FOR A FULL
REFUND. BY DOWNLOADING, INSTALLING, COPYING OR OTHERWISE USING THE ENCLOSED SOFTWARE ("PROGRAM"), YOU
FURTHER AGREE AND ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT AND UNDERSTAND IT, AND THAT BY TAKING
ANY ONE OR MORE OF SUCH STEPS/ACTIONS YOU AGREE TO BE BOUND BY SUCH TERMS AND CONDITIONS. DIALOGIC IS
UNWILLING TO LICENSE THE SOFTWARE TO YOU IF YOU DO NOT ACCEPT AND AGREE TO BE BOUND BY THE TERMS AND
CONDITIONS OF THIS AGREEMENT.

Intellectual Property

The enclosed Software ("Program") and all accompanying documentation are individually and collectively owned by Dialogic
Corporation ("Dialogic"), its subsidiaries and/or its suppliers and are protected by all applicable intellectual property laws and
international treaty provisions. Therefore, You and Your Authorized Users must treat the Program and documentation like any
other material so protected, except as expressly permitted in this Agreement. In particular, but without limitation, You
acknowledge that the Program and its accompanying documentation constitute valuable intellectual property rights, including
without limitation trade secrets and copyrights, and confidential information of Dialogic. The Program and all programs
developed thereunder and all copies thereof (including without limitation translations, compilations, partial copies with
modifications and updated works) are proprietary to Dialogic and title to all applicable copyrights, trade secrets, patents and
other intellectual property rights therein remains in Dialogic, its subsidiaries, and/or its suppliers. Except as expressly permitted
in this Agreement, You shall not sell, transfer, publish, disclose, display or otherwise make available the Program or copies
thereof to others. You agree to secure and protect the Program, its accompanying documentation and copies thereof in a
manner consistent with the maintenance of Dialogic's rights therein and to take appropriate action by instruction or agreement
with Your employees and/or consultants who are permitted access to the Program to satisfy Your obligations hereunder.
Violation of any provision of this paragraph shall be the basis for immediate termination of this Agreement. Because
unauthorized use or transfer of the Software or documentation may diminish substantially the value of such materials and
irrevocably harm Dialogic, if You breach the provisions of this Section of this Agreement, Dialogic shall be entitled to injunctive
and/or other equitable relief, in addition to other remedies afforded by law, to prevent a breach of this Section of this Agreement.

Grant of License

Subject to the terms and conditions of this Agreement Dialogic grants to You a non-exclusive, personal, non-transferable
license to use the Program in object code form only and solely in accordance with the following terms and conditions:

• You may make, install and use only one (1) copy of the Program on a single-user computer, file server, or on a workstation
of a local area network, and only in conjunction with a legally acquired Dialogic® hardware or software product You may
also make one copy solely for backup or archive purposes;

• The primary Authorized User on the computer on which the Program is installed may make a second copy for his/her
exclusive use on either a home or portable computer;

• You may copy the Program into any machine readable or printed form for backup or modification purposes in support of
Your use of one copy of the Program;

• You may distribute the Program in object code only and only as part of, or integrated by You into, a computer system that
(i) contains a Dialogic hardware product, (ii) includes a substantial amount of other software and/or hardware manufactured
or marketed by You and (iii) is marketed and sublicensed to an end user for the end user's own internal use in the regular
course of business (a "Licensed System");

• Each end user to whom a Licensed System is distributed must agree to license terms with respect to the Program that are
at least as protective of Dialogic's rights in the Program as those set forth in this Agreement;

• You shall receive one (1) Program master disk, and shall be solely responsible for copying the Program into the Licensed
Systems and for warranting the physical media on which it is copied

• You may make one (1) copy of the documentation accompanying the Program, provided that all copyright notices contained
within the documentation are retained;

• You may modify the Program and/or merge it into another Program for Your use in one computer; (any portion of this
Program will continue to be subject to the terms and conditions of this Agreement);

• You may transfer the Program, documentation and the license to another eligible party within Your Company if the other
party agrees to accept the terms and conditions of this Agreement. If You transfer the Program and documentation, You
must at the same time either transfer all copies whether in printed or machine readable form to the same party or destroy
any copies not transferred; this includes all modifications and portions of the Program contained in or merged into other
Programs;

Page 4

Dialogic® Diva® API Developer’s Reference Guide

• You shall not remove, and each copy of the Program shall contain, the same copyright, proprietary, patent and/or other
applicable intellectual property or other ownership notices, plus any restricted rights legends that appear in the Program
and/or this Agreement and, if You copy the Program onto media to which a label may be attached, You shall attach a label
to the media that includes all such notices and legends that appear on the Program master disk and envelope;

• You may not rent or lease the Program. You may not reverse engineer, decompile or disassemble the Program. Except as
is strictly necessary for You to integrate the Program with other software and/or hardware to produce the Licensed Systems,
You shall not copy, modify or reproduce the Program or documentation in any way. You shall use Your best efforts to ensure
that any user of the Program does not reverse engineer, decompile or disassemble the Program to derive a source code
equivalent of the Program;

• If You transfer possession of any copy, modification or merged portion of the Program or documentation to another party
in any way other than as expressly permitted in this Agreement, this license is immediately and automatically terminated;

• The Program may be used only in conjunction with Dialogic hardware;

• The Program shall not be exported or re-exported in violation of any export provisions of the United States or any other
applicable jurisdiction.

Upgrades

If the Program is provided as an upgrade and the upgrade is an upgrade from another product licensed to You and Your
Authorized Users by Dialogic, the upgrade is governed by the license agreement earlier provided with that software product
package and the present Agreement does not grant You additional license(s). If You and Your Authorized Users choose to
upgrade this Program or the product used together with the Program and such upgrade requires the license of additional
software (whether a charge is associated with such software or not), the license agreement associated with such additional
software shall govern the license of such additional software to the exclusion of this Agreement.

Term

The Agreement is effective until terminated. You may terminate it at any time by notifying Dialogic and/or by destroying the
Program and all accompanying documentation together with all copies, modifications and merged portions in any form. The
Agreement will also terminate automatically upon the occurrence or lack of occurrence of certain terms and/or conditions set
forth in this Agreement, or if You fail to comply with any term or condition of this Agreement. You agree that upon any such
termination You shall destroy or return to Dialogic the Program and all accompanying documentation supplied by Dialogic,
together with any and all copies, modifications and merged portions in any form. All provisions of this Agreement relating to
disclaimers of warranties, limitation of liability, remedies, or damages, and licensor's proprietary rights shall survive
termination.

Limited Warranty

Dialogic solely warrants the media on which the Program is furnished to You to be free from defects in materials and
workmanship under normal use for a period of ninety (90) days from the date of purchase by You as evidenced by a copy of
Your receipt. If such a defect appears within the warranty period, You may return the defective media to Dialogic for replacement
without charge provided Dialogic, in good faith, determines that it was defective in materials or workmanship. Replacement
is Your sole remedy with respect to such a defect. Dialogic offers no warranty for Your reproduction of the Program. This
Limited Warranty is void if failure of the Program has resulted from accident, misuse, abuse or misapplication.

Disclaimers, Limitations of Liability and Customer Remedies

Except as set forth in the "Limited Warranty" Section of this Agreement, the Program and accompanying documentation are
provided to You "as is." Neither Dialogic, its subsidiaries, its suppliers, nor its licensor(s) (if any) warrants that the Program
will meet Your requirements or that its use will be uninterrupted or error-free. Except as set forth in the "Limited Warranty"
Section, EACH OF DIALOGIC, ITS SUBSIDIARIES, ITS SUPPLIERS AND ITS LICENSOR(S) (IF ANY) DISCLAIMS ANY AND ALL
REPRESENTATIONS AND WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THE PROGRAM AND ACCOMPANYING
DOCUMENTATION, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR AGAINST LATENT DEFECTS. Except as set forth in the "Limited Warranty" Section,
neither Dialogic, its subsidiaries, its suppliers, nor its licensor(s) (if any) shall have any liability to You or any third party for
any claim, loss or damage of any kind, including but not limited to lost business profits, business interruption, loss of
information, or other pecuniary loss and indirect, punitive, incidental, economic, consequential or special damages, arising
out of or in connection with this Agreement and/or the use, inability to use the Program and/or the Program's performance
or inability to perform nor from or in connection with the Program's accompanying documentation, or any data or equipment
related thereto or used in connection therewith. In no event shall Dialogic's, its subsidiaries', its suppliers' or its licensor(s)'s
liability for damages, whether arising out of contract, negligence, warranty, or patent or copyright infringement, exceed the
fees You paid for the Program. No representation or warranty regarding the Program may be made without Dialogic's, its
subsidiaries', its suppliers', or its licensor(s)'s (if any) prior written consent, and any warranty or representation made by You
or Your customers regarding the Program shall not constitute an obligation of Dialogic, its subsidiaries, its suppliers, or other
licensor(s) (if any). This limited warranty gives You specific legal rights. You may have other rights, which may vary from
jurisdiction to jurisdiction. Also, as some jurisdictions do not allow the exclusion or limitation for certain damages, some of
the above limitations may not apply to You.

Copyright and Legal Notice

Page 5

Right to Audit

If this Program is licensed for use in a Company, Your Company and You individually and collectively agree to keep all usual
and proper records and books of accounts and all usual proper entries relating to each installation of the Program during the
term of this Agreement and for a period of three (3) years thereafter. During this period, Dialogic may cause an audit to be
made of the applicable records in order to verify Your compliance with this Agreement and prompt adjustment shall be made
to compensate for any errors or omissions disclosed by such audit. Any such audit shall be conducted by an independent
certified public accountant selected by Dialogic and shall be conducted during the regular business hours at Your offices and
in such a manner as not to interfere with Your normal business activities. Any such audit shall be paid for by Dialogic unless
material discrepancies are disclosed. For such purposes, "material discrepancies" shall mean three percent (3%) or more of
the Authorized Users within the Company. If material discrepancies are disclosed,

Your Company agrees to pay Dialogic for the costs associated with the audit as well as the license fees for the additional
licensed channels or additional authorized users. In no event shall audits be made more frequently than semi-annually unless
the immediately preceding audit disclosed a material discrepancy.

Supplementary Software

Any Supplementary Software provided with the Program and/or referred to in this Agreement is provided "as is" with no
warranty of any kind.

Miscellaneous

You acknowledge that You have read this Agreement, that You understand it, and that You agree to be bound by its terms
and conditions, and You further agree that this is the complete and exclusive statement of the Agreement between the Dialogic
and You ("the Parties"), which supersedes and merges all prior proposals, understandings and all other agreements, oral and
written, between the Parties relating to the Program. You agree to indemnify and hold harmless Dialogic and its subsidiaries,
affiliates, suppliers, officers, directors and employees from and against any claim, injury, loss or expense, including reasonable
attorneys' fees, arising out of (i) Your failure to comply with the provisions of this Agreement, or (ii) any other wrongful conduct
by or on behalf of You. This Agreement applies to all updates, future releases, modifications and portions of the Program
contained in or merged into other programs. This Agreement may not be modified or altered except by written instrument
duly executed by Dialogic. No action, regardless of form, arising out of this Agreement or the use of the Program may be
brought by You more than two (2) years after the cause of action has first arisen. Except as provided herein, neither this
Agreement nor any rights granted are assignable or transferable, and any assignment or transfer will be null and void. If You
authorize any other person to copy the Program, You shall obligate that person in writing to comply with all conditions of this
Agreement. Dialogic shall have the right to collect from You its reasonable expenses incurred in enforcing this agreement,
including attorney's fees. The waiver or failure of Dialogic to exercise in any respect any right provided for herein shall not be
deemed a waiver of any further right hereunder. All rights and remedies, whether conferred hereunder or by any other
instrument or law, will be cumulative and may be exercised singularly or concurrently. Failure by either Dialogic or You to
enforce any term or condition of the Agreement will not be deemed a waiver of future enforcement of that or any other term
or conditions. The terms and conditions stated herein are declared to be severable. Should any term(s) or condition(s) of this
Agreement be held to be invalid or unenforceable the validity, construction and enforceability of the remaining terms and
conditions of this Agreement shall not be affected. It is expressly agreed that Dialogic and You are acting as independent
contractors under this Agreement. These terms and conditions will prevail notwithstanding any different, conflicting or
additional terms and conditions that may appear on any other agreement between Dialogic and You. Deviations from these
terms and conditions are not valid unless agreed to in writing in advance by an authorized representative of Dialogic. Any
notices sent to Dialogic under this Agreement must be sent by registered mail or courier to the attention of Dialogic's legal
department at the address below or such other address as may be listed on www.dialogic.com from time to time as being
Dialogic's Montreal headquarters.

U.S. Government Restricted Rights

The Program and all accompanying documentation are provided with RESTRICTED RIGHTS. Use, duplication or disclosure by
the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(iii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraph (c) (1) and (2) of the Commercial Computer
Software-Restricted Rights at 48 CFR52.227-19, both as applicable.

Governing Law

Any and all claims arising under this Agreement shall be construed and controlled by the laws in force in the Province of
Quebec, Canada, excluding its principles of conflict of laws and the United Nations Convention on Contracts for the Sale of
Goods. Dialogic is not obligated under any other agreements unless they are in writing and signed by an authorized
representative of Dialogic.

http://www.dialogic.com
http://www.dialogic.com

Page 6

Dialogic® Diva® API Developer’s Reference Guide

Contents

Contents

Page 7

Copyright and Legal Notice .. 2

About This Publication ... 19
How to use this online guide ... 19
Structure of this guide ... 19

Dialogic® Diva® SDK Overview.. 21
Requirements for installation .. 21
Installation for RPM-based systems ... 21
Installation for DEB-based systems .. 22
Installing the samples .. 22
Dialogic® Diva® SDK application programming interfaces .. 23
Dialogic® communication platform-related information .. 24

Dialogic® Diva® API Overview .. 25
Prerequisites .. 25
Requirements for installation .. 25
Installation for RPM-based systems ... 25
Installation for DEB-based systems .. 26
Installing the samples .. 26
Diva API objectives .. 27
Samples .. 28
Diva API function call interface .. 30
Getting started ... 31

Dialogic® Diva® API Functions.. 45

Startup and version ..45
DivaInitialize .. 46
DivaTerminate .. 46
DivaGetVersion ... 46
DivaGetVersionEx .. 47

Capabilities, registration, and information ...48
DivaGetNumLineDevices .. 49
DivaGetLineDeviceInfo ... 49
DivaCheckDeviceCapabilities ... 50
DivaRegister ... 50
DivaUnregister .. 52
DivaSetLineDeviceParamsFax .. 52
DivaSetLineDeviceParamsVoice ... 53
DivaGetLineDeviceConfiguration .. 53
DivaGetLineDeviceStatus ... 54
DivaSetLineDeviceStatusEvents .. 55
DivaGetLineDeviceStatistics .. 55
DivaClearLineDeviceStatistics ... 56
DivaEnableExtensions .. 56
DivaDisableExtensions ... 57

Dialogic® Diva® API Developer’s Reference Guide

Page 8

DivaGetDeviceName .. 57
DivaDeviceMgmtGetValue ... 58
DivaDeviceMgmtSetValue ... 59
DivaDeviceMgmtExecute ... 60
DivaGetChannelStatus ... 60
DivaSetChannelStatus .. 61
DivaGetSystemConfiguration ... 62
DivaSystemConfigurationActive ... 62
DivaSetAnalogHookState .. 63
DivaSetServiceState .. 64

Connection-oriented functions ...65
DivaCreateCall .. 66
DivaDial ... 66
DivaListen .. 67
DivaProceeding ... 68
DivaAlert .. 68
DivaAttachToCall ... 69
DivaAnswer .. 70
DivaAnswerFax .. 70
DivaAnswerVoice ... 71
DivaAnswerVoIP (RTP) ... 72
DivaAnswerModem .. 73
DivaAnswerSMS .. 74
DivaReject .. 74
DivaConnect ... 75
DivaConnectFax .. 76
DivaConnectVoice .. 77
DivaConnectVoIP ... 78
DivaConnectModem ... 80
DivaConnectSMS ... 81
DivaSetCallType .. 82
DivaSetCallTypeFax .. 82
DivaSetCallTypeVoice ... 83
DivaSetCallTypeVoIP .. 84
DivaDisconnect ... 84
DivaGetCallInfo ... 85
DivaCloseCall .. 85
DivaEnableDataChannel ... 86

Data transfer functions ..87
DivaSendData ... 87
DivaReceiveData ... 88
DivaSendFrame ... 88
DivaReceiveFrame ... 89

Fax transfer functions ..91
DivaSendFax ... 91
DivaSendMultipleFaxFiles .. 92
DivaReceiveFax ... 92
DivaAppendFax ... 93
DivaAppendFaxFiles ... 94

Contents

Page 9

DivaReceiveFaxToMemory ... 95
DivaReadFaxData .. 96
DivaValidateFaxFile .. 96

Voice transfer functions ...98
DivaSendVoiceFile ... 98
DivaSendMultipleVoiceFiles ... 99
DivaSendVoiceEx ...100
DivaAppendVoice ...101
DivaStopSending ..101
DivaPauseSend ..102
DivaContinueSend ..102
DivaForwardSend ...102
DivaRewindSend ..103
DivaGetSendPosition ...104
DivaPauseRecording ...104
DivaContinueRecording ...105
DivaGetRecordPosition ..105
DivaSetVolume ..106
DivaSetSamplingRate ...106
DivaEnableEchoCanceller ...107
DivaEnableTransactionRecording ...107
DivaRecordVoiceFile ..108
DivaReceiveAudio ...109
DivaStopRecording ...110
DivaGetVoiceFileLength ...110
DivaSetVoiceFileLength ...111
DivaRecordAppendVoiceFile ...111
DivaEnableNoiseSuppression ...112

DTMF, tone, and AMD support ..113
DivaReportDTMF ..113
DivaSendDTMF ..114
DivaReportTones ..114
DivaSendTone ..115
DivaSendContinuousTone ..116
DivaStopContinuousTone ...116
DivaGenerateSingleTone ..117
DivaGenerateDualTone ..118
DivaStopToneGeneration ...119
DivaDetectSingleTone ...119
DivaDetectDualTone ...120
DivaGetToneDetectorResult ...121
DivaSendGenericToneRequest ..122
DivaGetGenericToneInfo ..123
DivaSpecifyCustomTone ..123
DivaSetDTMFProcessingRules ...124
DivaGetDTMFBuffer ..126
DivaClearDTMFBuffer ..126
DivaEnableAnsweringMachineDetector ..127
DivaDisableAnsweringMachineDetector ..128

Dialogic® Diva® API Developer’s Reference Guide

Page 10

DivaDetectFSKData .. 128
DivaStopDetectFSKData ... 129

Speech Recognizer Support ..129
DivaInitializeSpeechProcessing .. 130
DivaOpenSpeechRecognizer .. 130
DivaCloseSpeechRecognizer .. 131
DivaStartSpeechRecognizer .. 131
DivaStopSpeechRecognizer ... 132
DivaGetSpeechRecognizerResult .. 132
DivaGetSpeechRecognizerResultDetails ... 133
DivaSetSpeechRecognizerParameter ... 134
DivaSetSpeechRecognizerGrammar .. 135
DivaCreateSpeechRecognizer .. 136
DivaSetSpeechRecognizerDefaultParameter ... 137
DivaSetSpeechRecognizerDefaultGrammar .. 137

Call Transfer ...139
DivaSetupCallTransfer .. 140
DivaCompleteCallTransfer ... 141
DivaBlindCallTransfer ... 142
DivaAcceptCallTransfer ... 142
DivaRejectCallTransfer .. 143
DivaListenChannel ... 143
DivaLIConnect .. 144
DivaLIDisconnect ... 145
DivaLIEnableRxData .. 145
DivaHold .. 146
DivaRetrieve ... 146
DivaSendInfo .. 147
DivaSendFlash .. 147

Conference ...149
DivaCreateConference .. 149
DivaDestroyConference .. 150
DivaConferenceSetProperties .. 150
DivaAddToConference .. 151
DivaRemoveFromConference ... 151
DivaGetConferenceInfo .. 152
DivaConferenceEnableRxData .. 152
DivaConferenceGetProperties .. 153

Message Waiting Indication ...154
DivaMWIActivate ... 154
DivaMWIDeactivate .. 155
DivaMWIReport ... 155
DivaMWIGetIndication .. 156

Call properties ..157
DivaSetCallProperties ... 157
DivaGetCallProperties ... 158
DivaDefaultCallProperties ... 158

Contents

Page 11

Event reporting ..160
Callback function ..160
CallbackEx function ..161
CallbackSignal function ...161
DivaGetEvent ..162
Message loop ...162

Monitoring ..163
DivaMonitorAttachToTimeslot ...163
DivaMonitorDetachHandle ...164
DivaMonitorSpecifyTone ..164
DivaMonitorAttachToLine ...165
DivaCreateMonitor ..166
DivaCreateMonitorR2 ..167
DivaCreateMonitorAudio ..168
DivaCreateMonitorAnalog ..169
DivaCreateMonitorT1CAS ..170
DivaDestroyMonitor ..171
DivaMonitorGetCallInfo ...172
DivaMonitorGetCallProperties ...172
DivaMonitorGetSetupMessage ..173
DivaMonitorCloseCallHandle ...174
DivaMonitorRecordAudio ...174
DivaMonitorStopAudio ...175
DivaMonitorSetVolume ..176
DivaMonitorEnableAudioData ...176
DivaMonitorDisableAudioData ..177
DivaMonitorReceiveAudio ..178
DivaMonitorReportFrames ...179
DivaMonitorGetFrame ...179
DivaMonitorReportDTMF ..180
DivaMonitorReportTone ...181
DivaMonitorGetDTMFInfo ...181
DivaMonitorGetToneInfo ..182

IP Media Channel Access ..184
DivaCreateIPMediaChannel ..184
DivaConnectIPMediaChannel ..185
DivaDisconnectIPMediaChannel ..186
DivaCloseIPMediaChannel ..186

Audio provider ..187
DivaRegisterAudioProvider ...187
DivaReleaseAudioProvider ...188
DivaConnectAudioProvider ...188
DivaDisconnectAudioProvider ...189
DivaAPSendAudio ...190
DivaAPStopSendAudio ..190
DivaAPSetRecordFormat ..191
DivaAPSetVolume ...192
DivaAPCloseAudio ..192
APNotifyCall ..193

Dialogic® Diva® API Developer’s Reference Guide

Page 12

APNotifyCallClose .. 194
APNotifyReceiveAudio ... 194
APConfirmAudioSend ... 195

Timer Handling ...196
DivaStartCallTimer ... 196
DivaStopCallTimer ... 196
DivaStartApplicationTimer .. 197
DivaStopApplicationTimer ... 197

Tracing ... 198
DivaEnableTrace .. 198
DivaSetTraceFile .. 198
DivaLogPrintf .. 199

Static and dynamic initialization functions ...200
DivaSetInitParameter ... 200
DivaSetDeviceInitParameter .. 201
DivaGetFirstIPLineDevice .. 201
DivaRegisterSIPRegistrar .. 202
DivaReleaseSIPRegistrar ... 203
DivaRegisterH323Gatekeeper .. 203
DivaReleaseH323Gatekeeper ... 204
DivaGetRegistrationResult ... 205
DivaSetH323Gateway .. 206
DivaCloseRegistration .. 206

IP-specific functions ..207
DivaRegisterSIPHeader ... 208
DivaGetSIPHeader ... 208
DivaSetSIPHeader ... 209

Dialogic® Diva® API Events .. 211
Event Summary .. 211
DivaEventAnsweringMachineDetector ... 214
DivaEventApplicationTimer .. 214
DivaEventCallConnected ... 214
DivaEventCallDisconnected ... 214
DivaEventCallDisconnectedNotify ... 214
DivaEventCallHoldNotify ... 214
DivaEventCallInfo .. 215
DivaEventCallProgress .. 215
DivaEventCallRetrievedNotify .. 215
DivaEventCallTimer .. 215
DivaEventCallTransferredNotify .. 215
DivaEventConferenceInfo .. 215
DivaEventCustomToneDetected ... 215
DivaEventDataAvailable .. 215
DivaEventDataChannelStatus .. 216
DivaEventDataFrameStatus ... 216
DivaEventDataSent .. 216
DivaEventDetailedFaxStatus .. 216

Contents

Page 13

DivaEventDeviceStatusChanged ...216
DivaEventDTMFInitialDigitTimeout ..216
DivaEventDTMFInterDigitTimeout ...216
DivaEventDTMFMaxDigits ..216
DivaEventDTMFMaxTimeout ...217
DivaEventDTMFReceived ...217
DivaEventDTMFTerminationDigit ...217
DivaEventEarlyDataChannelConnected ..217
DivaEventFaxDocumentSent ..217
DivaEventFaxPageReceived ..217
DivaEventFaxPageSent ..217
DivaEventFaxReceived ..217
DivaEventFaxSent ..217
DivaEventFlashCompleted ...218
DivaEventFSKDataDetected ...218
DivaEventGenericToneDetected ..218
DivaEventGenericToneEnded ..218
DivaEventGenericToneInfo ...218
DivaEventHoldCompleted ..218
DivaEventIncomingCall ...218
DivaEventIPMediaChannelStatus ..218
DivaEventLIConnectCompleted ...218
DivaEventLIDisconnected ..219
DivaEventMonitorAudioData ...219
DivaEventMonitorCallConnected ...219
DivaEventMonitorCallDisconnected ...219
DivaEventMonitorCallInfo ..219
DivaEventMonitorCallInitiated ..219
DivaEventMonitorFrameReceived ..219
DivaEventMonitorRecordEnded ...220
DivaEventMonitorStatus ..220
DivaEventMonitorDTMFDetected ...220
DivaEventMonitorToneDetected ..220
DivaEventMWICompleted ..220
DivaEventMWIIndicated ..220
DivaEventRecordVoiceEnded ..220
DivaEventRegistrationStatus ..220
DivaEventRetrieveCompleted ...221
DivaEventSendDTMFToneEnded ..221
DivaEventSendToneEnded ...221
DivaEventSendVoiceCanceled ...221
DivaEventSendVoiceDone ..221
DivaEventSendVoiceEnded ...221
DivaEventSendVoiceRestarted ..221
DivaEventSetupTransferCompleted ...221
DivaEventSIPMessageReceived ..222
DivaEventSms1MsgReceived ..222
DivaEventSmsError ..222
DivaEventToneDetected ..222
DivaEventTransferCompleted ...222
DivaEventTransferRequested ..222

Dialogic® Diva® API Developer’s Reference Guide

Page 14

DivaEventSpeechRecognizerStatus ... 222
DivaEventSpeechRecognizerProgress .. 222

Dialogic® Diva® API Call Properties.. 223
Common Call Properties for All Call Types ... 223
Voice, Streaming, VAD, Talker and Tone Detection ... 225
Fax Call Properties ... 227
Modem Call Properties .. 230
Extended Modem Call Properties .. 232
Modulation V.18 Call Properties .. 240
Call Properties for Low Level Signaling Access ... 241
Digital Data Call Properties ... 242
Special Supplementary Service Call Properties ... 243
Passive Monitoring Call Properties .. 243
RTP Call Properties .. 243

Dialogic® Diva® API Data Structures and Defines... 245
DivaCallType ... 245
DivaListenType .. 246
DivaLineDeviceInfo .. 247
DivaLineDeviceParamsFax ... 248
DivaLineDeviceParamsVoice .. 249
DivaEventModes .. 250
DivaCallState .. 250
DivaCallInfo .. 252
DivaDisconnectReasons .. 255
DivaRedirectReason ... 257
DivaSignalledCallType .. 258
DivaReturnCodes ... 259
DivaFaxFormat .. 261
DivaExtensions .. 262
DivaLineCodec .. 262
DivaAudioFormat ... 263
DivaFaxOptions ... 266
DivaFaxResolution ... 267
DivaFaxDocumentProperties .. 267
DivaVoiceOptions ... 268
DivaVoIPParams .. 269
DivaPayloadProtocol ... 269
DivaPayloadOptions ... 270
DivaModemOptions .. 270
DivaFaxMaxSpeed ... 271
DivaTransferOptions ... 271
DivaContinuousTones ... 273
DivaMultiFrequencyTones .. 275
DivaR2Tones ... 275
DivaToneDefinition ... 276
DivaVoiceDataSource ... 276
DivaVoicePositionFormat ... 277
DivaVoiceDescriptor ... 277
DivaConferencePropertyType ... 278

Contents

Page 15

DivaConferenceRights ...279
DivaConferenceMemberInfo ...280
DivaConferenceMemberRights ..280
DivaConferenceSupervisor ...280
DivaConferenceOptions ...281
DivaConferenceState ..281
DivaConferenceInfo ..282
DivaFaxPageQuality ..282
DivaFaxPageEnd ...283
DivaModulationClass ...283
Extended modem parameters ..284
V18 Properties ...284
Plain Protocol parameter setting ...284
DivaBinaryData ..284
DivaPlainNumber ..285
DivaNumberInformation ..285
DivaCallPropertyValue ...286
DivaV18DefProbings ...286
DivaV18Framing ..286
DivaConnectedNorm ...287
DivaMonitorSource ...288
DivaMonitorStatus ..288
DivaMonitorDTMFInfo ...288
DivaMonitorToneInfo ...289
DivaMonitorR2Variants ..289
DivaMonitorFrameReportMode ..290
DivaMonitorOptions ..290
DivaMonitorAnalogParams ...291
DivaMonitorT1CASVariants ..292
DivaMonitorT1CASParams ...292
DivaTime ..293
DivaCallTimeStatistics ...293
DivaRecordEndReasons ...293
DivaIdFormat ..294
DivaIdDescriptor ..294
DivaAPNotifyCallInParams ...295
DivaAPNotifyCallOutParams ...296
DivaVolume ...296
DivaVoicePosition ...296
DivaDirection ...297
DivaSignalService ..297
DivaDeviceConfigType ...298
DivaDeviceConfigValue ..299
DivaDeviceStatusType ...299
DivaDeviceStatusValue ...300
DivaSwitchType ..301
DivaLayer2Mode ..301
DivaLayer1Status ...302
DivaPotsLineStatus ...302
DivaLayer2Status ...303
DivaDSPState ..303

Dialogic® Diva® API Developer’s Reference Guide

Page 16

DivaDSPStateArray .. 304
DivaLineDeviceState .. 304
DivaDeviceStatisticsType .. 304
DivaLayer1Statistics .. 304
DivaDeviceStatisticsValue ... 306
DivaDeviceStatusEvents ... 306
DivaGenericToneFunction .. 306
DivaSingleToneReport ... 307
DivaDualToneReport ... 307
DivaGenericToneResultType ... 307
DivaGenericToneResult ... 307
DivaToneDetectorResults .. 308
DivaGenericToneInfo .. 308
DivaActiveDiscReasons ... 309
DivaSMSProtocol ... 309
DivaMessageStatus .. 309
DivaMessageNumberInfo .. 309
DivaMessageInvokeMode .. 309
DivaMWIActivateParams ... 311
DivaMWIDeactivateParams ... 312
DivaMWIIndicationParams .. 312
DivaResultAnsweringMachineDetector .. 313
DivaTerminationDigits .. 314
DivaProcessingGroup ... 314
DivaSendVoiceEndReasons .. 315
DivaSysConfCallDirection .. 315
DivaSysConfType ... 316
DivaSysConfValue .. 316
DivaDeviceCapabilities ... 316
DivaTraceLevel .. 317
DivaChannelStatus .. 318
DivaDataOptions ... 318
DivaFaxScanLineMax .. 318
DivaFaxStoreModes ... 319
DivaTransferRejectReasons ... 319
DivaInitParameterTypes .. 320
DivaDeviceInitParameterTypes .. 320
DivaSIPRegistrarParams ... 321
DivaH323GatekeeperParams ... 322
DivaH323EndpointType ... 323
DivaRegistrationStatus ... 323
DivaRegistrationResults .. 324
DivaCodec .. 325
DivaDTMFMode ... 325
DivaDataCodec .. 326
DivaDataCodecOptions ... 326
DivaSampleRates .. 326
DivaSamplingRate ... 328
DivaDataChannelStatus .. 328
DivaFSKModulation .. 328
DivaFSKEventTypes ... 328

Page 17

DivaFaxStatusType ...329
DivaFaxTrainingStats ..330
DivaFaxPageQualityDetails ...330
DivaFaxPartialPageDetails ..331
DivaFaxPhase ..331
DivaDataFrameStatus ...332
DivaCodecMask ..332
DivaMediaChannelStatus ...332
DivaMrcpVersion ..333
DivaSpeechRecognizerStatus ...333
DivaSpeechRecognizerProgress ..334
DivaSpeechRecognizerResultType ...335

Dialogic® Diva® API Developer’s Reference Guide

Page 18

About This Publication

Page 19

About This Publication

How to use this online guide
• To view a section, click the corresponding bookmark located on the left.

• To view a topic that contains further information, click the corresponding blue underlined phrase.

• You may wish to print out the pages required for developing your communication application.

Structure of this guide

This guide presents implementation details and functional descriptions of all commands in the Dialogic® Diva®

API Library interface. Examples are provided where needed. Constants, data structures, and return codes are
also provided.

This guide is structured as follows:

Section Contents

Dialogic® Diva® SDK Overview Introduction to the Dialogic® Diva® Software Development Kit and its application
programming interfaces: the Dialogic® Diva® API, the Dialogic® Diva® Component API,
and the Diva API for .NET.

Dialogic® Diva® API Overview Introduction to the components provided with the Diva API and prerequisites for using
the Diva API

Dialogic® Diva® API Functions Description of all functions provided with the Diva API

Dialogic® Diva® API Events Description of all events provided with the Diva API

Dialogic® Diva® API Call
Properties

Description of all call properties provided with the Diva API

Dialogic® Diva® API Data
Structures and Defines

Description of the structures and defines used in the Diva API

Page 20

Dialogic® Diva® API Developer’s Reference Guide

Dialogic® Diva® SDK Overview

Page 21

CHAPTER 1

Dialogic® Diva® SDK Overview

The Dialogic® Diva® SDK can be used in combination with Dialogic® Diva® Media Boards. On it, the Diva SDK
provides the following application programming interfaces (APIs): the Diva API and the Extended CAPI 2.0. The
Dialogic® Diva® API allows for developing communication applications for all Dialogic® communication platforms.

The Diva SDK releases are backwards compatible so as to allow applications developed on the basis of earlier
versions of the Diva SDK to be used with the new versions.

Notes:

• Previous Diva SDK versions supported the Dialogic® Host Media Processing (HMP) software ; however support
for it has been discontinued under this SDK at the time of this publication.

• The Diva SDK allows the use Diva® SoftIP Software resources; however this SW has been discontinued at
the time of this publication and is no longer supported in this version of the SDK. References to retired product
or IP SDK functions are left in the document for the sake of completness only.

The Diva SDK includes the following components:

• Libraries providing functions to access the Dialogic® communication platforms

• Programming samples in source code

• Documentation explaining the functions of the Diva SDK

Requirements for installation

• Installed and running Dialogic® communication platform

• Installed CAPI

• Installed GNU C/C++ compiler version 2.xx or 3.xx, or 4.xx

• Installed threading library (pthread)

Installation for RPM-based systems

The Dialogic® Diva® SDK is provided as a RPM package that contains the documentation with the binaries,
header files, and the samples. Use a package tool or the command line version of RPM to install the Diva SDK.

The Diva SDK is available for the GNU compiler versions 2.xx and 3.xx and 4.xx. Please use the correct package
suitable to the installed compiler on your system. The installation of the wrong package on your system will be
faulty.

After installation, the following files are available:

To install use: rpm -i dssdk-<version>-1.i386.rpm
To upgrade use: rpm -U dssdk-<version>-1.i386.rpm

File(s) Description

/usr/include/dssdk.h Diva SDK interface specification and constants

/usr/libDivaS.a Diva SDK static library

/usr/libDivaS.so, *.so.1, *.so.1.<version> Diva SDK shared library and symbolic links

/usr/share/doc/packages/dssdk/CxDtmf.pdf Documentation about proprietary DTMF extensions to CAPI interface

/usr/share/doc/packages/dssdk/CxEcho.pdf Documentation about proprietary echo cancelling extensions to CAPI
interface

/usr/share/doc/packages/dssdk/CxFax.pdf Documentation about proprietary FAX extensions to CAPI interface

/usr/share/doc/packages/dssdk/CxModem.pdf Documentation about proprietary Modem extensions to CAPI interface

Page 22

Dialogic® Diva® API Developer’s Reference Guide

Installation for DEB-based systems

For Debian-based distributions, the Dialogic® Diva® SDK is provided as a DEB package that contains the
documentation with the binaries, header files, and the samples. Use a package tool or the command line version
of dpkg to install the Diva SDK.

The Diva SDK is available for the GNU compiler versions 2.xx and 3.xx and 4.xx (only 64-bit). Please use the
correct package suitable to the installed compiler on your system. The installation of the wrong package on your
system will be faulty.

After installation, the following files have available:

Installing the samples

If you unpack the file "examples.tgz" into the current directory, one directory for each sample is created. Some
of the created directories with a short description of the sample are listed in the table below. A more detailed
description of each sample including the sample subdirectory tree and file structure is provided by the
"readme.html" file in each sample directory.

/usr/share/doc/packages/dssdk/CxTone.pdf Documentation about proprietary tone generation and recognition
extensions to CAPI interface

/usr/share/doc/packages/dssdk/DivaSAPI.pdf The main Diva SDK documentation

/usr/share/doc/packages/dssdk/readme.html Documentation about installation of Diva SDK

/usr/share/doc/packages/dssdk/examples.tgz Archive that contains the samples

File(s) Description

To install use: dpkg -i dssdk-<version>-1.i386.rpm

File(s) Description

/usr/include/dssdk.h Diva SDK interface specification and constants

/usr/libDivaS.a Diva SDK static library

/usr/libDivaS.so, *.so.1, *.so.1.<version> Diva SDK shared library and symbolic links

/usr/share/doc/dssdk/CxDtmf.pdf Documentation about proprietary DTMF extensions to CAPI interface

/usr/share/doc/dssdk/CxEcho.pdf Documentation about proprietary echo cancelling extensions to CAPI
interface

/usr/share/doc/dssdk/CxFax.pdf Documentation about proprietary FAX extensions to CAPI interface

/usr/share/doc/dssdk/CxModem.pdf Documentation about proprietary Modem extensions to CAPI interface

/usr/share/doc/dssdk/CxTone.pdf Documentation about proprietary tone generation and recognition
extensions to CAPI interface

/usr/share/doc/dssdk/DivaSAPI.pdf The main Diva SDK documentation

/usr/share/doc/dssdk/readme.html Documentation about installation of Diva SDK

/usr/share/doc/dssdk/examples.tgz Archive that contains the samples

Directory Sample Description

audiomonitor Monitoring calls and record audio streams

audiomonitorcodecs Monitoring calls and recording audio in uncompressed and compressed formats

audiomonitorex Interactively monitoring calls and record audio streams

faxdial Sample for processing outgoing fax calls

faxinsimple Mainstream sample for fax reception

faxoutsimple Mainstream sample for sending fax

faxoutcustomheadline Derived from faxoutsimple, adding a fax headline in Utf-8 characer coding on the fly

Dialogic® Diva® SDK Overview

Page 23

To use the Dialogic® Diva® SDK in your application, you have to include the header "dssdk.h" in the source files
and "smssdk.h" if you use SMS functionality, and link your application with either the static library "libDivaS.a"
or the shared library "libDivaS.so". Because the Diva SDK uses threads internally, the "pthread" library needs
to be linked additionally.

The samples that are provided with the Diva SDK contain details on compiling and linking your application. In
every sample subdirectory you will find a makefile that describes the compilation and link process of that
application.

www.dialogic.com/products/tdm_boards/development_tools/default.htmThe Diva SDK is freely distributed with
Dialogic® communication platforms. You do not have to purchase licences for developing applications based on
the software development kit.

Dialogic® Diva® SDK application programming interfaces

The application programming interfaces (APIs) of the Diva SDK represent different layers for the management
and development of applications for Dialogic® communication platforms.

• Diva API: It provides a high-level interface into the communication platforms that allows developers to
implement communication applications. It also provides an additional library for data conversion like TIFF to
SFF for fax applications.

• Extended CAPI 2.0 (only for Diva Media Boards): It provides Dialogic-specific CAPI extensions that are fully
CAPI 2.0 compliant.

Dialogic® communication platforms provide call control, media streaming, and management functionality that
are available on the Diva API.

Diva API

The Diva API is a high-level interface into the Dialogic® communication platforms via a library of "C" function
calls. This interface can allow developers to implement various communication applications faster and easier
than in the traditional CAPI 2.0 application development.

The Diva API contains modules that can be used as basis for communication applications, such as fax and voice
transfer or call control, and in the development of applications for these areas. The modules are intended to be
updated so as to offer development bases for additional communication applications.

Even if the Diva API abstracts functions and provides a high level interface, access to low level functions is
optionally available. Applications that require access to low level operations, e.g., control over signaling
messages, can be performed on the Diva API. This allows existing applications to be extended using the same
API, even if the requirements change. The CAPI 2.0 extensions are also available on the Diva API.

The Diva API also allows for access to the management interface of the Dialogic® Diva® Media Board for status
and statistic information.

faxserver Simple faxserver

smsservicecenter SMS service center

showdevicestatistics Sample for printing the statistics of a device

voiceext1 Simple answering machine or processing incoming voice calls

voiceext2 CTI-sample for voice processing and call transfer

voiceinsetvolume Streaming audio with volume contol

voiceinsimple Answering machine

voiceonleasedline Streaming audio data on leased lines

voiceoutsimple Announcement machine

POS_modem_scenarios Modem scenarios for POS application

SpecificModemConnection Specify the modulation type to use for the modem connection

Directory Sample Description

www.dialogic.com/products/tdm_boards/development_tools/default.htm

Page 24

Dialogic® Diva® API Developer’s Reference Guide

Extended CAPI 2.0

The Extended CAPI 2.0 is only available for Diva Media Boards and provides Dialogic-specific extensions for CAPI
2.0. The extensions are fully CAPI 2.0 compatible, and thus can be used with CAPI 2.0 applications. The following
Dialogic-specific CAPI extensions are available:

• Echo canceller support for voice applications: This extension allows the voice application to place an echo
canceller unit in the front end of a connection to suppress acoustical echo and signal return. The Dialogic
extension and the new CAPI standard for echo canceller are supported.

• Extension for fax paper formats and resolutions: This extension enables fax transmission and reception with
an extended range of paper formats and resolutions.

• Tone detection and generation extension for DTMF facility: This extension enables fax and voice applications
to detect in-band signals such as busy tone, to report events like modem CNG or fax flag detection, to detect
human speech, to report the unidentified tones, and to report that no signal is present on the line.

• Extensions for modem configuration: This extension enables to specify certain modulation and
protocol-related parameters. Modulations can be removed from the auto moding list or specific modulations
can be selected. The results of the modulation and the protocol negotiation are signaled to the application.

• Generic tone generator and detector support for voice applications: This extension provides built-in generic
tone detector and generator facilities.The generic tone services include sine generators with programmable
frequency and amplitude modulation, function generators with programmable signal shape, frequency, and
amplitude modulation, noise generators with programmable crest factor and amplitude modulation, single
tone detection, and dual tone detection.

Descriptions of the Dialogic-specific CAPI 2.0 extensions are available under SDK/DOC. The CAPI 2.0 specification
can be downloaded from the web site www.capi.org.

Dialogic® communication platform-related information

The Diva SDK uses the Dialogic® Diva® System Release software to communicate to the TDM or IP-based
communication resources if available. The Diva-based software is automatically started at system start and
configured via the Dialogic® Diva® Configuration Manager.

Some software features are based on licenses, and there are various options that can be combined. Based on
the available licenses, Diva API interface functions may return DivaErrorNotSupported if a requested function is
not licensed or no more licenses are available.

http://www.capi.org

Dialogic® Diva® API Overview

Page 25

CHAPTER 3

Dialogic® Diva® API Overview

The Diva API is a high-level interface that provides a basis for developing communication applications for specific
tasks, e.g., fax applications. It provides applications to access the communication resources of Dialogic®

communication platforms.The abstraction level is very high, without reducing the required flexibility. Connection
management is reduced to a simple function call. In general, the Diva API provides functions that combine
several steps of the CAPI in one function.

The Diva API is available as a function-oriented C-call interface.

The Diva API abstracts all communication details and concentrates on the global tasks of connection management
and data transfer. In addition, it provides functions to access certain supplementary services. This interface
allows developers to implement various communication applications faster and easier than the traditional CAPI
2.0 application development.

The Diva API Library relies on the Dialogic® Diva® System Release for Diva Media Boards software.

With the above software, the Diva API allows an application to control the ISDN features of a Dialogic® Diva®
BRI, 4BRI, PRI, 2PRI, 4PRI, or Analog Media Boards.

Thus the Diva API Library can help in the development of communication applications using a Dialogic
communication platform.

Prerequisites

This manual assumes that the developer has knowledge of C or C++ programming with the GNU C/C++ compiler
collection.

Requirements for installation

• Installed and running Dialogic® communication platform

• Installed CAPI

• Installed GNU C/C++ compiler version 2.xx, 3.xx, or 4.xx

• Installed threading library (pthread)

Installation for RPM-based systems

The Dialogic® Diva® SDK is provided as a RPM package that contains the documentation with the binaries,
header files, and the samples. Use a package tool or the command line version of RPM to install the Diva SDK.

The Diva SDK is available for the GNU compiler versions 2.xx and 3.xx and 4.xx (only 64-bit). Please use the
correct package suitable to the installed compiler on your system. The installation of the wrong package on your
system will be faulty.

After installation, the following files are available:

To install use: rpm -i dssdk-<version>-1.i386.rpm
To upgrade use: rpm -U dssdk-<version>-1.i386.rpm

File(s) Description

/usr/include/dssdk.h Diva SDK interface specification and constants

/usr/libDivaS.a Diva SDK static library

/usr/libDivaS.so, *.so.1, *.so.1.<version> Diva SDK shared library and symbolic links

/usr/share/doc/packages/dssdk/CxDtmf.pdf Documentation about proprietary DTMF extensions to CAPI interface

/usr/share/doc/packages/dssdk/CxEcho.pdf Documentation about proprietary echo cancelling extensions to CAPI
interface

Dialogic® Diva® API Developer’s Reference Guide

Page 26

Installation for DEB-based systems

For Debian-based distributions, the Dialogic® Diva® SDK is provided as a DEB package that contains the
documentation with the binaries, header files, and the samples. Use a package tool or the command line version
of dpkg to install the Diva SDK.

The Diva SDK is available for the GNU compiler versions 2.xx and 3.xx and 4.xx (only 64-bit). Please use the
correct package suitable to the installed compiler on your system. The installation of the wrong package on your
system will be faulty.

After installation, the following files have available:

Installing the samples

If you unpack the file "examples.tgz" into the current directory, one directory for each sample is created. Several
created directories with a short description of the sample are listed in the table below. A more detailed description
of each sample including the sample subdirectory tree and file structure is provided by the "readme.html" file
in each sample directory.

/usr/share/doc/packages/dssdk/CxFax.pdf Documentation about proprietary FAX extensions to CAPI interface

/usr/share/doc/packages/dssdk/CxModem.pdf Documentation about proprietary Modem extensions to CAPI interface

/usr/share/doc/packages/dssdk/CxTone.pdf Documentation about proprietary tone generation and recognition
extensions to CAPI interface

/usr/share/doc/packages/dssdk/DivaSAPI.pdf The main Diva SDK documentation

/usr/share/doc/packages/dssdk/readme.html Documentation about installation of Diva SDK

/usr/share/doc/packages/dssdk/examples.tgz Archive that contains the samples

File(s) Description

To install use: dpkg -i dssdk-<version>-1.i386.rpm

File(s) Description

/usr/include/dssdk.h Diva SDK interface specification and constants

/usr/libDivaS.a Diva SDK static library

/usr/libDivaS.so, *.so.1, *.so.1.<version> Diva SDK shared library and symbolic links

/usr/share/doc/dssdk/CxDtmf.pdf Documentation about proprietary DTMF extensions to CAPI interface

/usr/share/doc/dssdk/CxEcho.pdf Documentation about proprietary echo cancelling extensions to CAPI
interface

/usr/share/doc/dssdk/CxFax.pdf Documentation about proprietary FAX extensions to CAPI interface

/usr/share/doc/dssdk/CxModem.pdf Documentation about proprietary Modem extensions to CAPI interface

/usr/share/doc/dssdk/CxTone.pdf Documentation about proprietary tone generation and recognition
extensions to CAPI interface

/usr/share/doc/dssdk/DivaSAPI.pdf The main Diva SDK documentation

/usr/share/doc/dssdk/readme.html Documentation about installation of Diva SDK

/usr/share/doc/dssdk/examples.tgz Archive that contains the samples

Directory Sample Description

audiomonitor Monitoring calls and record audio streams

audiomonitorcodecs Monitoring calls and recording audio in uncompressed and compressed formats

audiomonitorex Interactively monitoring calls and record audio streams

faxdial Sample for processing outgoing fax calls

faxinsimple Mainstream sample for fax reception

Dialogic® Diva® API Overview

Page 27

To use the Dialogic® Diva® SDK in your application, you have to include the header "dssdk.h" in the source files
and "smssdk.h" if you use SMS functionality, and link your application with either the static library "libDivaS.a"
or the shared library "libDivaS.so". Because the Diva SDK uses threads internally, the "pthread" library needs
to be linked additionally.

The samples that are provided with the Diva SDK contain details on compiling and linking your application. In
every sample subdirectory you will find a makefile that describes the compilation and link process of that
application.

Diva API objectives

Since the Diva API can facilitate development of communication applications, it must fulfill the requirements of
various types of applications.

Call setup

Call setup on signaling platforms can be very different. Starting with a simple analog call, where only the phone
number to dial is needed, up to connections using ISDN-specific messages (user/user data) and high-level
protocols that require negotiation in the B-channel (like X.25) or IP-based protocols.

The Diva API provides a set of simple call setup functions to establish calls.

In general, applications support one specific set of services, e.g., voice or fax. For these applications, the call
setup should not contain specific parameters of other services, even if they are optional. In general, only one
function call is necessary to create or answer a call. Event reporting of the call progress is optional.

Event reporting

In general, call establishment is an asynchronous process. Depending on the used protocol or service, e.g., fax,
information is exchanged or negotiated between the two peers. This information is available and can be signaled
to the application. The application can choose if events should be signaled and how they are signaled.

Events can be signaled in the following ways:

• Callback function including the event information

• Callback function that only notifies that an event is available

Depending on the mechanism, the information about the event may be provided directly, e.g., as parameter to
the callback; or has to be retrieved from the Diva API by a function call.

Implementation dependencies

As already stated earlier, connection establishment is an asynchronous process that may cover several steps.

The Diva API is an asynchronous API. Applications that require blocking operations should use the Diva
Component API.

faxoutsimple Mainstream sample for sending fax

faxserver Simple faxserver

faxoutcustomheadline Sends a fax with Utf-8 character coding fax headline

smsservicecenter SMS service center

voiceext1 Simple answering machine or processing incoming voice calls

voiceext2 CTI-sample for voice processing and call transfer

voiceinsetvolume Streaming audio with volume contol

voiceinsimple Answering machine

voiceonleasedline Streaming audio data on leased lines

voiceoutsimple Announcement machine

Directory Sample Description

Dialogic® Diva® API Developer’s Reference Guide

Page 28

How applications use ports or channels

The communication channels provided by the installed Diva Media Boards can be seen as a pool of resources
shared between several applications or from a port oriented view. CAPI-based applications see the channels as
a pool of resources. Applications basically designed for serial ports see each available channel as a dedicated
resource.

The Diva API does not reserve resources and does not block resources against access by other applications like
serial interfaces do.

Access specific line devices and channels

By default, the Diva SDK selects line devices and channels for outgoing call on demand. Applications may want
to place a call on a specific line device or even a specific channel or timeslot. To select a specific line device, the
application specifies the line device in the call to DivaConnect. Applications using DivaCreateCall and DivaDial
use the call property DivaCPT_LineDevice to specify the line device to be used. Applications that want to set the
data channel or timeslot use the call property DivaCPT_DataChannel. Call properties for outgoing calls can only
be used with DivaCreateCall and DivaDial. Note that the property DivaCPT_DataChannel uses logical channels
and numbers channels from 1 to the amount of data channels. If the underlying protocol has a signaling channel
between data channels, e.g., E1 protocol, the Diva SDK handles this. The property DivaCPT_DataChannel is also
used to select a line of a Dialogic® Diva® Analog Media Board. To retrieve the information on which channel an
incoming call is signaled, the application can also use the property DivaCPT_DataChannel. In addition, the
member AssignedBChannel of DivaCallInfo provides the real timeslot information.

Samples

To demonstate the basic design of an SDK-related application, some samples are provided with this SDK. These
samples cover fax server, fax client, and fax polling, voice sending/recording and monitoring applications. Some
samples are designed just to demonstrate basic functionality without any error handling (single source files).
All samples are designed to be portable between operating systems.

• audiomonitor - Monitoring calls and recording audio:
This sample shows the monitoring of signaling information and the recording of audio streams between the
NT-side and the attached TE-side. The objective is to show the main task of monitoring or audio tapping. The
sample is realized as a simple command line program.

• audiomonitorcodecs - Monitoring calls and recording audio in uncompressed and compressed formats:
This sample shows the monitoring of signaling information and the recording of audio streams between the
NT-side and the attached TE-side. The objective is to show the main task of monitoring or audio tapping and
to store the recorded audio in any format supported by the Dialogic® Diva® Media Boards. The sample is
realized as a simple command line program.

• audiomonitorex - Interactively monitoring calls and recording audio streams:
This sample shows the monitoring of signaling information and the recording of audio streams between the
NT-side and the attached TE-side. The objective is to show the main task of interacitvely monitoring or audio
tapping. This is done without any error handling, so this sample must not be used in productive environments.
It is realized as a simple command line program.

• faxdial - Sample for processing outgoing fax calls:
This sample shows the processing of multiple outgoing fax calls. The calls can either initiate sending a fax or
fax polling. When fax polling is used, the direction is reversed and a fax is received. The sample includes a
command line user interface to configure a few parameters and to show active connections and status
messages.

• faxinsimple - Mainstream sample for fax reception:
This sample shows the processing of incoming fax calls and storing the received faxes in a single file. The
objective is to show the main tasks of fax reception. This is done without any error handling, so this sample
must not be used in productive environments. It is realized as a simple command line program.

• faxoutsimple - Mainstream sample for sending fax:
This sample shows how to send a fax. The fax data must be available (for this sample) as a file in TIFF Class
Format. The objective is to show the main tasks for sending a fax. This is done without any error handling.
Therefore, this sample must not be used in productive environments. It is realized as a simple command line
program.

Dialogic® Diva® API Overview

Page 29

• faxserver - Simple faxserver:
This sample shows the processing of multiple incoming voice or fax calls and streaming of audio data in
outgoing direction. In addition, detection and processing of DTMF and fax calling tones are shown. The sample
is designed as a simple command line program, that displays informational output on the terminal.

• faxoutcustomheadline - Outgoing fax application with custom headline:
This command-line sample application shows how to apply a TrueType or OpenType font file for the purpose
of inserting a headline text in Utf-8 character coding. The fax data must be available as a file in TIFF Class F
format, and a user-supplied (.TTF) font file must be supplied.

• voiceext1 - Simple answering machine or processing incoming voice calls:
This sample shows the processing of multiple incoming voice calls and streaming of audio data in both
directions. In addition, detection and processing of DTMF is shown. The sample includes a command line user
interface to configure a few parameters and to show active connections and status messages.

• voiceext2 - CTI-sample for voice processing and call transfer:
This sample shows the processing of multiple incoming voice calls, streaming of audio data in both directions
and call transfer to fixed or detected numbers. In addition, detection and processing of DTMF is shown. The
sample includes a command line user interface to configure a few parameters and to show active connections
and status messages.

• voiceinsetvolume - Streaming audio with volume contol:
This sample shows the streaming and recording of audio data. The volume of the outgoing and recorded audio
stream can be adjusted online. The recorded audio stream is stored in a file. The objective is to show the
main tasks of audio streaming and volume control. This is done without any error handling, so this sample
must not be used in productive environments. It is realized as a simple command line program.

• voiceinsimple - Answering machine:
This sample shows the streaming and recording of audio data. The recorded audio stream is stored in a file.
The objective is to show the main tasks of audio streaming and recording. This is done without any error
handling, so this sample must not be used in productive environments. It is realized as a simple command
line program.

• voiceonleasedline - Streaming audio data on leased lines:
This sample shows the streaming and recording of audio data on leased lines. The sample can stream audio
data from a wavefile into the leased line and record voice data out of the leased line into a wavefile. The
objective is to show the main tasks of audio streaming on a leased line. This is done without any error handling,
so this sample must not be used in productive environments. It is realized as a simple command line program.

• voiceoutsimple - Announcement machine:
This sample shows the streaming of audio data. The objective is to show the main tasks of making a call and
sending an audio stream. This is done without any error handling, so this sample must not be used in productive
environments. It is realized as a simple command line program.

• smsservicecenter - a simple SMS service center:
This sample shows the processing of short messages in the role of an SMS service center. It receives messages
and forwards them to their destination. It is command line based and has a simple menu to configure one
option (automatic forwarding on/off), trigger an action (forward last received message), and to quit the
program.
Please note that this sample is far from feature-complete and error handling is sparse, so it must not be used
in productive environments.

Note: Please see legal notice at the front of this document.

Dialogic® Diva® API Developer’s Reference Guide

Page 30

Diva API function call interface

The function call interface is implemented as a library and provides standard C-function calls. A static and dynamic
library and the Diva API header files are available for the application developer. The following groups of functions
are available:

• Registration

• Set common parameters for all calls

• Connection management, Connect / Disconnect / Get and Set Status

• Data transfer

• Voice streaming

• Fax functions

• VoIP functions

• Analog data transfer

• Digital data transfer

• Supplementary services

• Blind and supervised call transfer

• Conferencing

• Passive Monitoring (only Diva Media Boards)

• ASR / TTS Integration

Instances

Each application of the Diva API and each call represents an instance. A call must be identified by the Diva API
and by the application. The Diva API identifies different applications and calls based on virtual handles. The
handles are valid in the context of a process. Different threads of one process are allowed to share handles. Any
application that uses the Diva API interface has to register with the Diva API.

Registration instance

When a process registers with the Diva API, a handle is assigned. This handle must be used in subsequent calls
to other Diva API functions. With the registration, the application sets some parameters, e.g., buffer sizes and
number of buffers that are valid for all calls done on this registration.

The handle is also used for de-registration when the application terminates or stops all communication services.
The Diva API handles a cleanup for all pending actions on this instance. Calls are automatically disconnected
and any thread waiting for events is signaled.

Call instance

Each call has a unique call handle at the Diva API level and at the application level. The application handle is
optional and only used by the application, the Diva API does not interpret this value. The application handle is
signaled with each call-related event and can be used by the application to assign the event to a particular call.

When an outgoing call is initiated, the application provides its call handle to the Diva API and a location where
the Diva API places its own handle. An incoming call is signaled with the Diva API handle, the application gives
its own handle to the Diva API when accepting the call.

Lifetime of a call instance

A call instance at Diva API level has a defined life time. When an outgoing call is established or an incoming call
is signaled, the call instance is created and the handle is reported to the application. The instance is valid until
the application calls the functions DivaCloseCall or DivaReject.

Dialogic® Diva® API Overview

Page 31

Getting started

This section provides basic information about the functionality of the Diva API. In general, an application can
be handled as described below:

Initialization

1. Detect installed resources. (optional)

2. Get board-specific information, channels, etc. (optional)

3. If specific board handling, identify board by serial number. (optional)

4. Register with the Dialogic® Diva® SDK, either with default parameter or with application-specific parameters.

Monitor system integrity

The Dialogic® communication platforms support various interfaces for different types of applications. Some of
these interfaces allow remote access and in some scenarios these interfaces should be disabled for security
reasons. The Dialogic® Diva® configuration ensures that these interfaces are securely disabled. However,
applications may want to monitor the system configuration to ensure that the configuration is not changed during
runtime. The Diva API provides the functions DivaGetSystemConfiguration and DivaSystemConfigurationActive
to retrieve the installed environment.

Event processing

1. Build callback function or event thread.

2. Process necessary events in the callback or event thread.

Initiate call processing

1. For incoming call processing, place a Listen on either all line devices or specific line devices.

2. For outgoing calls, call the suitable connect function.

Call establishment

The call establishment for incoming and outgoing calls can be handled by high-level functions. The Diva API
handles the different media as call types. Common functions for all call types are available as well as functions
for specific call types, e.g., for fax and voice.

Outgoing calls

Outgoing calls can be established using one of the DivaConnect… functions. Based on a registration handle, the
call to DivaConnect initiates the connection. The function DivaConnect can be used to create calls for any call
type using the default parameters. For the call types fax, voice, modem, and VoIP, separate functions exist to
set media-specific parameters, e.g., the local identifier for fax calls.

Several events report the progress, e.g., call progress changes and call information changes. The application
may process them to display information or ignore them. Two events need to be processed for outgoing calls,
the connected and the disconnected event. See the basic frame below for an application that makes an outgoing
call and processes the connect and disconnected event.

void CallbackHandler (DivaAppHandle hApp, DivaEvent Event,
PVOID Param1, PVOID Param2)

{
switch (Event)
{
case DivaEventCallConnected:

printf("Call connected.\n");
break;

case DivaEventCallDisconnected:
printf("Call disconnected.\n");
DivaCloseCall (Param2);
break;

}

Dialogic® Diva® API Developer’s Reference Guide

Page 32

}

int main(int argc, char* argv[])
{

hMyCall = (void *) 0x11223344;
if (DivaInitialize () != DivaSuccess)return -1;
if (DivaRegister (&hApp, DivaEventModeCallback,

(void *) CallbackHandler, 0, 1, 7, 2048) != DivaSuccess)return -1;

if (DivaConnect (hApp, hMyCall, &hSdkCall, "99999",
DivaCallTypeVoice, LINEDEV_ALL) != DivaSuccess)return -1;

// Call initiated. Add any synchronization to wait for call completion.
DivaUnregister (hApp);
DivaTerminate ();
return (0);

};

Incoming calls

If enabled by DivaListen, incoming calls are signaled via events. The application may specify the services to
listen for. Optionally, listen can be restricted to a specific called party number, a list of numbers, or a range. By
default, the listen is done for all services on all devices.

An incoming call is signaled by the event DivaEventIncomingCall. The application may answer the call right away,
alert the call to get more time, or monitor the call. Answering the call is handled by DivaAnswer or one of the
call type specific functions, e.g., DivaAnswerFax. The following process is the same as for outgoing calls. Below
you can see the basic frame for an application that handles a single incoming call.

void CallbackHandler (DivaAppHandle hApp, DivaEvent Event,
PVOID Param1, PVOID Param2)

{
switch (Event)
{
case DivaEventIncomingCall:

printf("Incomimg call.\n");
hSdkCall = Param1;
DivaAnswer (hSdkCall, hMyCall, DivaCallTypeVoice);
break;

case DivaEventCallConnected:
printf("Call connected.\n");
break;

case DivaEventCallDisconnected:
printf("Call disconnected.\n");
DivaCloseCall (Param2);
break;

}
}

int main(int argc, char* argv[])
{

hMyCall = (void *) 0x11223344;
if (DivaInitialize () != DivaSuccess)return -1;
if (DivaRegister (&hApp, DivaEventModeCallback,

(void *) CallbackHandler, 0, 1, 7, 2048)
!= DivaSuccess)

return -1;

if (DivaListen (hApp, DivaListenAll, LINEDEV_ALL, "")
!= DivaSuccess)

return -1;

// Listen initiated. Add any synchronization to wait for call completion.
DivaUnregister (hApp);
DivaTerminate ();
return (0);

};

Dialogic® Diva® API Overview

Page 33

Extended call properties

The Diva API provides high level functions for making and answering calls. The functions allow for specifying
necessary parameters and for hiding specific parameters that require knowledge of the underlying protocols. In
some cases additional parameters have to be set, or parameters negotiated during connection establishment
have to be known and processed by the application. The extended functions for setting and retrieving extended
parameters provide this functionality. Those parameters are often specific to the underlying protocol and
therefore may require detailed knowledge of the protocol or modulation.

Extended call properties enable applications to set certain parameters during the call setup that are specific to
the environment, i.e. signal the call with different bearer capabilities than the standard function would use. For
further processing, i.e. voice streaming, the powerful high level functions can be used.

The setting of the extended properties requires a call handle. For incoming calls, the call handle is already
available and provided with the event DivaEventIncomingCall. The application may set any property using
DivaSetCallProperties. For outgoing calls, the function DivaConnect and the call type specific connect functions
return the call type when the call is initiated, which is too late to set the properties. Set the extended call
properties for outgoing calls by creating a call object using DivaCreateCall. Set the call properties via
DivaSetCallProperties and initiate the connect by calling DivaDial with the destination number.

Fax processing

The Dialogic® Diva® SDK supports high level functions for fax transmission and reception. Conversion from line
format to TIFF or SFF format (and vice versa) is handled without any interaction of the application. For details
refer to the following chapters.

Fax sending and receiving

Sending and receiving a fax is handled by a single function call. The fax document format is either TIFF class F
or SFF. The Diva API processes single- or multi-page documents automatically and signals the progress per page
via events. Sending or receiving a fax is initiated once the event DivaEventCallConnected is signaled. The
application may call the function DivaSendFax or DivaReceiveFax directly from the event handler. If the
application could not call the function right away, the Diva API will prevent data from being lost.

Upon successfully receiving or sending a fax, the application receives a confirmation event, DivaEventFaxSent
or DivaEventFaxReceived. If this event does not occur and the application receives the disconnect event, the
fax transmission has failed and the call information contains the reason.

The standard resolution of the fax format has different resolution for horizontal and vertical orientation. The
conversion routines of the Dialogic® Diva® SDK align the resolution upon request by the application.

Below is a sample to start sending a fax from the connect event of the callback function:

void CallbackHandler (DivaAppHandle hApp, DivaEvent Event,
PVOID Param1, PVOID Param2)

{
switch (Event)
{
case DivaEventCallConnected:

DivaSendFax (hSdkCall, "myfax.tif", DivaFaxFormatTIFF_ClassF);
break;

}
}

Fax polling

The application may allow fax polling for an incoming call or request polling for an outgoing call. The result of
the negotiation is available when the connection is established. The call information, retrieved by DivaGetCallInfo,
contains the state of the polling.

An application calls DivaSendFax to process an incoming call that has been negotiated for polling. To receive
the polled fax, an application calls DivaReceiveFax to process an outgoing call that has requested polling and
successfully negotiated polling.

Dialogic® Diva® API Developer’s Reference Guide

Page 34

Fax multi-document handling

The application provides the fax documents for sending. They can be sent as one or various SFF or TIFF files to
the Dialogic® Diva® SDK. Each file may contain one page or multiple pages.

The fax protocol allows sending several fax documents on one fax connection in order to save an additional
connect establishment time. The Diva SDK supports both the sending of multiple pages in different files as one
single fax document and the sending of each file as one single fax document. With the append function the
application can control the sending mode on a page base.

The behavior of DivaSendMultipleFaxFiles is controlled with the options set during connect establishment. If the
option DivaFaxOptionMultipleDocument is set, the pages included in each file are sent as a separate document.
If the option is not set, all pages of all files are sent as one document.

With the function DivaAppendFax the application can add faxes during a running transmission. For each file
added with DivaAppendFax, the application can specify if the pages included in the file as belonging to the same
document or to a new document. This provides more flexibility to the application.

Fax resolution and document formats

The Dialogic® Diva® SDK supports the fax resolutions standard, fine, super fine, and ultra fine. See the below
list of formats, ISO and T.30, and the corresponding number of pixels per line.

The Diva SDK supports the formats listed above. Documents in SFF format must match one of these formats in
horizontal resolution. TIFF documents that have a different horizontal pixel count are centered on the next
matching format. By default, no stretching is done. If the call property DivaCPT_FaxAllowDocumentStretching
is enabled, the document is doubled to the next matching pixels per line, e.g., a document with 800 pixels per
line is converted to 1600 pixels and centered on the 1728 pixel fax format.

With the event DivaEventCallConnected, the capabilities of the receiving side are available. The application may
retrieve either the full DIS frame or the resolution and maximum speed capabilities of the receiving side via the
call properties DivaCPT_FaxRemoteFeatures, DivaCPT_FaxRemoteMaxResolution, and
DivaCPT_FaxRemoteMaxSpeed. Based on this information, the application can pass the data in a valid format.

Format Pixels per line Dialogic® Media Boards
ISO A4 at: R8 x 3.85

R8 x 7.7
R8 x 15.4
200 x 200

1728 x

ISO B4 at: R8 x 3.85
R8 x 7.7
R8 x 15.4
200 x 200

2048 x

ISO A3 at: R8 x 3.85
R8 x 7.7
R8 x 15.4
200 x 200

2432 x

ISO A4 at: 300 x 300 2592 x
ISO B4 at: 300 x 300 3072 x
ISO A3 at: 300 x 300 3648 x
ISO A4 at: R16 x 15.4

400 x 400
3456 x

ISO B4 at: R16 x 15.4
400 x 400

4096 x

ISO A3 at: R16 x 15.4
400 x 400

4864 x

ISO A4 at: 600 x 600 5184 x
ISO B4 at: 600 x 600 6144 x
ISO A3 at: 600 x 600 7296 x
ISO A4 at: 1200x 1200 10368 x
ISO B4 at: 1200 x 1200 12288 x
ISO A3 at: 1200 x 1200 14592 x

Dialogic® Diva® API Overview

Page 35

Color fax

When the application wants to send a color fax, the call property DivaCPT_FaxEnableColor needs to be enabled.
When the call is connected, the result of the negotiation must be retrieved by the application. If the call property
DivaCPT_FaxColorSelected is true, color fax has been selected and the application must send a color fax
document. If the remote fax machine does not support color fax, the application must either send a corresponding
black and white document or disconnect. The SDK does not handle any color conversion.

If the application wants to receive color faxes, the call property DivaCPT_FaxEnableColor must be enabled. If
this property is enabled, the application must check the property DivaCPT_FaxColorSelected before calling
DivaReceiveFax. The format given to DivaReceiveFax must match the negotiated formats. If the format does
not match, the function will return DivaErrorInvalidParameter.

By default, all received pages of a color fax document are stored in a single file. The functions DivaSendFax and
DivaReceiveFax support the format DivaFaxFormatColorJPEG. All other fax sending and receiving related
functions return the error DivaErrorUnsupportedFormat.

Sending and receiving Non-Standard Facilities

The fax protocol allows the exchange of so called Non-Standard Facilities (NSF). These frames are used by some
fax machines to exchange a symbolic station name. The Dialogic® Diva® SDK provides received frames to the
application and allows to send frames. The call property DivaCPT_FaxLocalNSF is used to specify the NSF to be
send to the remote peer. The call property DivaCPT_FaxRemoteNSF provides a received NSF frame. The data
is not interpreted by the SDK.

Customizing the fax headline

New fax Call Properties allow applying a TrueType or OpenType font file for the purpose of customizing the fax
headline text; it allows the text to be in either Utf-8 or Utf-16 little endian character coding; default is 8-bit
ASCII extension. In addition it provides the ability of setting the size of the headline in points; omitting the date,
time, and page information in the headline; and selecting the font face if multiple fonts are present in the font file.

The use of a user-supplied font file (.TTF) must be enabled in the Call Properties for the feature to take effect,
otherwise the normal headline method is used instead.

Voice processing

The Diva API supports audio streaming in several ways. Simple functions to stream one or more audio files are
available as well as functions to stream from memory. Different audio formats are supported, either wave file
based or as raw format without any header information. Audio can be streamed continuously or up to a certain
amount of time.

Received audio can be recorded to a file or saved to the memory in a specified audio format.

The volume of the audio can be set by the application in the range of -18 to +18 db. The setting can be done
separately for inbound and outbound streaming.

Control inbound streaming

Received audio data, which is recorded to an audio file, can be controlled by the application. The recording can
be paused and continued at any time. The application may retrieve the position from the start of the recording
either as recorded bytes or as recorded milliseconds.

Start and duration of the recording can be controlled by several properties. With the property
DivaCPT_VoiceRecordSilenceTimeout the application may specify a timeout of silence when the recording should
be terminated. If the stream is terminated, the reason is delivered with the event that sends a notification about
the terminated streaming.

The start of the recording can be delayed until a specific tone is detected. The property
DivaCPT_VoiceRecordStartTones allows specifying a list of start tones.

Dialogic® Diva® API Developer’s Reference Guide

Page 36

Control outbound streaming

Applications can stream and control audio. Playing can be paused and continued at any time. The application
may position the streaming by forward and rewind operations. The current position of the streaming can be
retrieved at any time. The position is reset to zero when a new streaming is activated. Note that control of the
audio streaming can be done only within one active streaming. Appended streaming is handled separately.

Streaming during connection establishment

In some cases, audio streaming is already available before the connection is confirmed. For example, an
announcement if a wrong number is dialed. The Dialogic® Diva® SDK supports the establishment of an audio
channel for the call type "voice" during the connection establishment by setting the
DivaVoiceOptionEarlyDataChannel (as) in the voice options. This option allows the receiving of audio streams
and the detection of tones.

DTMF tone generation and detection

The Dialogic® Diva® SDK supports DTMF detection and reporting on all Dialogic® communication platforms. This
includes the detection of fax calling tones and fax and modem answer tones. The tone support and the generic
tone support are only available if the Dialogic communication platform is equipped with DSP resources per
channel. The application gets the information if a line device is able to do tone support by calling
DivaGetLineDeviceInfo and checking the parameter bExtVoiceSupported in the returned information.

Detection of DTMF must be enabled before the Diva SDK will signal detected DTMF digits. Digits are signaled
via the Event DivaEventDTMFReceived. The received digit is directly passed with the event. DTMF detection is
enabled via the function DivaReportDTMF. The detection parameter for duration and pause of the signal can be
set by the call properties DivaCPT_VoiceDTMF_SendDuration and DivaCPT_VoiceDTMF_SendPause prior to
calling DivaReportDTMF.

Digits can be sent via the function DivaSendDTMF. The event DivaEventSendDTMFToneEnded is signaled when
the tone has been sent on the physical link.

Termination rules for DTMF events

In addition to the events that are signaled when a DTMF tone is received the Dialogic® Diva® SDK can handle
rules to combine several received DTMF tones to signal a specific event or even to terminate a streaming action.
The following rules can be defined using DivaSetDTMFProcessingRules:

• Termination digits, defined by a digit mask

• Maximum number of received digits

• Maximum inter digit delay (time between digits)

• Maximum initial digit delay (time for receiving the first digit)
• Maximum timeout (if no other rule expires before)
The termination rules can be combined and initiate the following actions:

• Signal an event, e.g., DivaEventDTMFTerminationDigit, DivaEventDTMFMaxDigits,
DivaEventDTMFMaxInterDigitDelay, DivaEventDTMFInitialDigitTimeout, DivaEventDTMFMaxTimeout

• Stop an ongoing outbound streaming

• Stop an ongoing recording to a file

Note: Different rules can be set for each action. The Diva SDK stores the DTMF digits internally in a buffer,
maximum 128 digits. The application can retrieve the content of the buffer and clear the buffer. When the rule
is set and every time a DTMF digit is detected, the termination rules are checked and the corresponding action
is done. If a streaming operation is terminated by one of these rules, the event that signals the end of the
streaming contains the reason. Refer to DivaRecordEndReasons and DivaSendVoiceEndReasons.

Dialogic® Diva® API Overview

Page 37

Human Talker and Voice Activity Detections

The Dialogic® Diva® SDK supports Human Talker and Voice Activity Detection (VAD) as part of the "tone support".
These functionalities require DSP resources. In general, the VAD and tone support is handled in the same way
as DTMF detection. The reporting of VAD must be enabled via DivaReportTones. Any changes are signaled via
the event DivaEventToneDetected. The available tones are defined in DivaContinuousTones. The end of a human
talker, VAD, or any other tone is signaled via DivaEndOfTones. Note that not all Dialogic® communication
platforms support talker detection.

Generic tone detector and generator

Besides the generation and detection of predefined tones, the Diva SDK supports the generation and detection
of generic tones. The application may specify certain parameters, like the frequency and amplitude for the
generation of a single or dual tone, or the range for a tone detection. Note that not all Dialogic® communication
platforms support tone detection.

The SDK supports high level functions to generate and detect single and dual tones as well as low level functions
for extended functionality.

The high level functions allow for setting basic parameters like frequency and amplitude. The functions take
integer values for the parameter, and are easy to handle.

The extended functionality allows access to the generator and detector setup for filter curves and filtering points.
The format of the frames is described in CxTone.pdf. The usage of the low level functions requires knowledge
of digital signal processing.

Plain data processing

Once the data channel is established, data can be exchanged. For the call types voice and fax, a set of specific
functions is available. For applications that run a proprietary protocol, the raw data the functions DivaSendData
and DivaReceiveData are available. For voice and fax applications, raw data processing is not recommended.

Received data is signaled via the event DivaEventDataAvailable. The application may read the data using
DivaReceiveData. The Dialogic® Diva® SDK will only signal new received data if the application has read the data.

Applications send raw data using DivaSendData. The Diva SDK confirms that the data has been sent by the
event DivaEventDataSent. During this time the SDK owns the data buffer.

For the call type voice, the data format is the raw bit transparent stream on the line. Applications using bit
transparent data exchange, e.g., 3G applications, may use the call type voice. For the call type fax, the data is
coded in the SFF format. All other formats contain proprietary data.

Changing media

The Dialogic® Diva® SDK supports changing the media type for an established call. An application may answer
a call in voice mode, detect a fax tone, and switch to the call type fax. This is done by the DivaSetCallType
function or one of the call type specific functions.

When the media or call type change is initiated by the application, the current data channel is disconnected and
the new data channel with the new call type is established. The application may set call properties for the new
call type before calling DivaSetCallType. The establishment of the new data channel is signaled by the event
DivaEventCallConnected. The establishment may take some seconds depending on the used call type.

Supplementary services

This section describes the supplementary services: Call Transfer, Conference, and Line Interconnect.

Dialogic® Diva® API Developer’s Reference Guide

Page 38

Call Transfer

A call transfer can be handled with or without a consultation call. The Diva API supports both. A call transfer
without consultation call, termed a blind transfer, is handled by DivaBlindTranfer. Based on an existing call, the
Dialogic® Diva® SDK fully handles the call transfer, including the transition of the original call to the hold state,
if necessary.

The application may establish two separate calls, either incoming or outgoing, and transfer them later by using
DivaCompleteTransfer.

In some environments, the second call may be required to complete a call transfer, e.g., establishment of the
outgoing call on a specific channel. If the application uses DivaSetupCallTransfer to establish or create a call,
the Diva API will address this requirement.

Conference

Conferences are sessions that include more than two parties simultaneously. They can be created using either
an external server-based bridge/mixer, e.g., the Dialogic® Diva® Media Board, or a switch-based conference
bridge inside a PBX. The Diva API supports the feature rich conference sessions provided by the Dialogic®
communication platform.

Conference setup and management

The Dialogic® Diva® SDK creates a conference handle for each conference. The conference handle has the same
capabilities for voice functions as a call handle. Using the conference handle for data streaming, audio data from
conference participants can be received from and sent to all. The single call objects remain.

Voice streaming

The Dialogic® communication platforms mix the received data of participating members into the common data
stream. The application that manages and monitors the conference may also want to participate in this
conference. In addition, a supervisor may want to send information only to specific members.

Application may record a conference or stream an announcement to all conference members. Depending on the
capabilities of the underlying platform, applications may also stream audio to specific members only.

Conference design and definitions

The Diva API implements conferences handled by Diva Media Boards.

Conference implementation details

Each conference consists of one conference object and several call objects. An application that wants to set up
a conference creates a conference object based on an already existing call by calling DivaCreateConference.

After the conference object is created, the properties of the conference may be set, e.g., the maximum number
of members. By default, the number of members is not limited. Properties are set by calling
DivaConferenceSetProperties indicating the type of property and the value. Properties should be set before the
first call is added to the conference. The properties will be extended with support for a switch-based functionality.
Existing applications will run without any changes.

In general, any call can be added to a conference. However, due to the installed hardware or the switch
environment, there might be some limitations.

Calls are added to and removed from a conference using DivaAddToConference and
DivaRemoveFromConference.

When the information on the conference changes, applications will receive the event DivaEventConferenceInfo.
The application may retrieve information on the conference such as state and members at any time by calling
DivaGetConferenceInfo.

Data streaming

For data streaming, standard streaming functions for sending and recording voice data are available. Data
channels are switched internally; the application does not need to consider this.

Dialogic® Diva® API Overview

Page 39

The conference handle is a valid handle for all voice streaming functions. Using the conference handle to receive
voice data, e.g., using DivaRecordVoiceFile, provides a mixed audio signal from all conference members. Using
the conference handle for sending voice, e.g., DivaSendVoiceFile, can also be used for streaming. Using a single
call handle will only address the particular call.

Only applications that use direct data reception via DivaReceiveData have to enable this on the conference object
of the call. Enabling and disabling is done by calling DivaConferenceEnableRxData.

Tromboning and Line Interconnect

The Tromboning or Line Interconnect of the Dialogic® Diva® SDK is based on two existing voice calls. The
application has to establish or answer these calls using standard functions of the Diva API.

The Diva SDK provides two functions, one to initiate Line Interconnect and another to release Line Interconnect.
A pair of interconnected calls has one main call and a participating call.

By default, no data traffic between the application and the interconnected calls is enabled. Data is only streamed
between the two endpoints. The application may enable the data streaming by calling one of the data-related
functions.

To receive native voice streaming via DivaReceiveData the streaming must be enabled. On the main call object,
data streaming is always done for both calls, also known as transaction recording. In the receiving direction,
the application gets the mixed stream. On the participating call, the data stream contains only the information
of this call.

Features

The following Line Interconnect features are supported:

• Create Line Interconnect between two existing calls.

• Receive data on one or both RX-channels optionally.

• Get mixed data streams of both RX-channels on one call object optionally.

• Have data streaming on one or both lines optionally.

Monitoring and tapping

In general, Diva Media Boards are used as one endpoint in the communication, and they actively initiate or
answer calls. A Diva Media Board could also be used to monitor a line, using a special configuration of the drivers
and a specific cable.

Two line devices are needed to monitor one line and to get the information of both directions. The line devices
must be configured in "Monitor Mode" by the Dialogic® Diva® Configuration Manager. The line devices are
attached to the line to monitor by a so called Y-cable. For monitoring in the PRI environment, a small box is
available to align the impedances. The information to monitor is signaling information and data channel audio.

When actively involved in a call, the call direction is clearly specified. In case of monitoring a line from point A
to point B, it depends on the installation which board monitors the data sent by point A to point B and which
board monitors the data from B to A. During initialization of the monitoring mode, the application passes this
information to the Diva API.

Dialogic® Diva® API Developer’s Reference Guide

Page 40

The figure above shows that device A records the signaling and audio streaming from point A to point B while
device B records the signaling and audio streaming from point B to point A. The audio recording functions identify
the direction to be recorded either by call direction or physical direction. The physical direction depends only on
the initialization parameter. The call direction may change with any call. For a call made from point A to B, A is
the originator and B the answers. For a call made from B to A, B is the originator and A the answerer. If the
application specifies the recording based on endpoints, e.g., A to B, this is independent from the call origination.

The monitoring functions provide the information about the side that initiates the call in the parameter
"LineDevice" of DivaCallInfo belonging to a monitored call.

Signaling channel monitoring

The monitoring of signaling information is available for lines running E1 or T1 Q.931-based protocols and for
E1 R2-based lines. For Q.931-based lines, called and calling party numbers are extracted from the setup and
info messages. For E1 R2 based lines, line state related signaling information is exchanged from channel 16.
Depending on the selected R2 variant when the monitoring is started, the called and calling party number is
retrieved from the inband information before the call is indicated to the application.

Monitoring of the signaling channel can be done at different layers depending on the application requirements.
The Diva API combines the information monitored on the two lines and assigns them to calls. This allows the
application to retrieve high level events that signal the state change of the call and provide the call information
as well as parameters like called and calling party number. The information is retrieved using standard data
structures on the monitoring functions. High level events signal the calls and their progress. The monitoring
events are:

• DivaEventMonitorCallInitiated

• DivaEventMonitorCallConnected

• DivaEventMonitorCallDisconnected

• DivaEventMonitorCallInfo

All high level monitoring events provide the handle of the monitored call as EventSpecific2 parameter. The
application may use the DivaMonitorGetCallInfo or DivaMonitorGetCallProperties functions to retrieve the
information. The parameter LineDevice of DivaCallInfo always contains the device that initiates the call. The
channel referring to this call is available in the parameter "AssignedBChannel" of DivaCallInfo.

For Q.931-based lines, the plain setup frame is provided to the application in addition to the decoded information
that is delivered by the high level functions. The setup frame contains the raw frame. The application may
retrieve the switch-dependent information that is needed.

Data channel monitoring

The data channel monitoring is restricted to audio. The Diva API provides functions to record the received audio
stream to a file. There are two independent audio streams, one for each direction. The Diva API has the ability
to combine these two streams into a single audio file with two channels (stereo). The application can also record
each direction into a single file. The recording can start once the data channel is known. The data channel is
either assigned with the call initiation or during call progress. If assigned during call initiation, the data channel
is already available with the event DivaEventMonitorCallInitiated. If the channel is not known at that time, the
event DivaEventMonitorCallInfo signals the change.

With the high level monitoring interface, the audio signal can only be recorded to a file. Applications that need
the audio data in memory or require DTMF and tone detection may use high level functions to monitor the
signaling. The data channel monitoring is then done by creating "calls" on each line device using the "leased line
mode". Thus simulated calls are created. They are handled like normal calls with the restriction that no outbound
streaming functions are available.

The Dialogic® Diva® SDK contains several samples for monitoring that show the modes described above. Please
refer to the samples for more information.

Dialogic® Diva® API Overview

Page 41

Media Resource Control Protocol for Speech Recognizer

A common interface for communication to the speech recognizer and synthesizer is the Media Resource Control
Protocol (MRCP). MRCP is used to control the commutation between an application and the recognizer /
synthesizer, the audio signal is exchanged via RTP. The Diva SDK supports speech recognizer via MRCPv1 and
implements an MRCP client that handles the MRCP protocol. The RTP stream negotiated via MRCP is controlled
by the Divas SDK to stream the audio signal to the speech recognizer. All streaming and recording operation
as well as DTMF and tone detection can be done in parallel to the speech recognition. For details refer to the
chapter “Speech Recognizer Support”.

The configuration of the parameter required for speech recognizer access can be done via Diva SDK interface
functions or via the configuration file dssdl.xml.

Below is a simple sample of a configuration to communicate to a speech recognizer and the description of the
parameter.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE DivaAPIConfiguration>
<DivaAPIConfiguration>

 <SpeechRecognizer Name=”MyRecognizer”>
 <MrcpVersion>V1</MrcpVersion>
 <ServerName>Speech</ServerName>
 <ServerIPAddress>192.168.0.100</ServerIPAddress>
 <ServerPort>4900</ServerPort>
 <LocalIPAddress>192.168.0.50</LocalIPAddress>

 <Parameter>
 <Name>Confidence-Threshold</Name>
 <Value>80</Value>
 </Parameter>

 <Grammar>
 <ContentType>text/uri-list</ContentType>
 <RequestId></RequestId>
 <Content> builtin:grammar/digits </Content>
 </Grammar>

 </SpeechRecognizer>

</DivaAPIConfiguration>

MrcpVersion Specifies the version to be used, options are V1 and V2, the default is V1.
Currently only V1 is supported.

ServerName Specifies the name of the server that is running the recognizer. The
parameter is optional if a ServerIpAddress is specified. If no name is
provided, the ServerIpAddress will be used.

ServerIPAddress Specifies the IP address of the server running the recognizer. The
parameter is optional if a ServerName is provided.

ServerPort Port number the recognizer is listening for requests. The parameter is
optional the default for MRCPv1 is 4900.

LocalIPAddress Specifies the local IP address to be used for communication with the server
running the recognizer. The parameter is optional if not set the default
network interface is used.

Dialogic® Diva® API Developer’s Reference Guide

Page 42

Audio provider (ASR/TTS) interface

Generally, a voice application using the Diva API controls the call setup and the audio streaming directly. This
is also done by audio providers of speech recognition and text to speech engines that have telephony support.
If audio providers for ASR / TTS handle only audio streaming, the audio streaming and the call control need to
be split. In addition, the received audio signal may be processed by two instances, the application for recording
purposes and the speech recognition for detection or words.

The above figure shows the overall architecture. The streaming part of the ASR / TTS engine registers to the
Dialogic® Diva® SDK via the so called "Audio Provider Interface". The application uses the standard registration
at the Diva API.

Note: The application and the audio provider(s) must run under the same process context.

During registration at the Audio Provider Interface function, entry points for notification of established calls and
streaming commands are exchanged. When the application decides to connect the streaming of an established
call to the audio provider interface, it calls DivaConnectAudioProvider. The Diva SDK now creates a link between
the call at the Diva SDK and the audio provider and routes streaming directly to / from the audio provider. The
application can still use the audio-related functions of the Diva API, e.g., to record the audio signal in parallel.

The interface allows the selection of the streaming direction. This implies that separate providers, one for ASR
and another for TTS, can be assigned to one call.

The assignment of the audio provider is done by a symbolic name. When the audio provider registers at the
Audio Provider Interface, it passes a symbolic name to the Diva API. When the application calls
DivaConnectAudioProvider it uses the same name to identify the provider. Assignment of an instance or channel
of the ASR / TTS engine is done by a device identifier. The identifier depends on the ASR / TTS engine and can
be a symbolic name or a binary ID. When the application connects the audio provider to a call, it passes the
information on how to identify the channel to the Diva SDK. The Diva SDK notifies the audio provider about this
connect request and passes the identifier. The audio provider compares the given identifier with the identifier
assigned by the ASR / TTS engine and connects the corresponding audio channels. Once the assignment is done,
function pointers are exchanged and the audio is streamed without any further interaction of the application.
The streaming is automatically handled between the Diva SDK and the audio provider.

The audio provider must implement the following functions:

Parameter Multiple parameters may be specified. Parameters consist of a name and
a value. The parameter will be passed unchanged to the recognizer before
recognition starts. The application may at runtime add or overwrite
parameters on a per call base.

Grammar The grammar definition contains the type, how the grammar is specified,
and the grammar content itself. The type may be text/uri-list as in the
sample above or application/grammar+xml. If the content is formatted in
XML, the XML control characters must be escaped or the data must be
included in a CDATA section. The grammar may be overwritten by the
application on per call base at runtime.

Dialogic® Diva® API Overview

Page 43

• APNotifyCall

• APNotifyCallClose

• APNotifyReceiveAudio (only if ASR support)

• APConfirmAudioSend (only if TTS support)

Device management

The Diva API virtualizes the available communication resources by different line devices. The line devices are
numbered from 1 to the number of installed lines. The application can retrieve information about installed devices
at any time. There are three categories of information:

• Device Information, e.g., amount of channels and capabilities

• Device Configuration, e.g., signaling protocol

• Device Status, e.g., Layer 1 status

All information can be retrieved without registration at the Diva API. The functions DivaGetNumLineDeviceInfo,
DivaGetLineDeviceInfo, DivaGetLineDeviceConfiguration, and DivaGetLineDeviceStatus do not require a
registration.

The device status information may change during runtime. Those changes can be signaled to the applications
via the standard event reporting mechanism. To get these notifications an application must register via
DivaRegister and enable the status events via DivaEnableLineStatusEvents.

The application can control the service state of a Dialogic® Diva® Media Board. This is used to take boards out
of service for maintenance and avoid that the switch signals calls to these devices. The service state of a line
device can be controlled via the functions DivaSetServiceState. To busy-out a line of a Dialogic® Diva® Analog
Media Board, use DivaSetAnalogHookState.

Answering machine detector

The answering machine detection is done based on the length of the initial announcement after an outgoing call
is connected. In general, the answering machine detector can be done with the functions of the Dialogic® Diva®

SDK; however, it requires several steps for the application and requires timer handling by the application. In
order to have a high level function, the Diva SDK combines this under a single function call and an event.

The application starts the detector based on an outgoing call. This can be done at any time from initiating the
call up to the event DivaEventCallConnected. The application provides two parameters, the maximum initial
silence and the minimum time of speech that is interpreted as automatic announcement.

The detection process starts when the call is connected. Typically the called person will answer the call with
either "Hello" or "John Smith speaking" and wait for the caller to respond. The SDK will note the time when the
talker starts and ends. If the human speech stops before the minimum time of speech expires, the event
DivaEventAnsweringMachineDetector is signaled and the detection is set to DivaResultAMD_Human. If the
minimum time of speech is reached, the detection result DivaResultAMD_Machine is signaled. The maximum
initial silence is an optional parameter to terminate the detector if no signal is received from the remote end.
The detector will also terminate if a fax or modem tone is detected.

Note: The detection process is based on the human talker and silence detector. Call properties that modify the
parameter of these detectors are also valid for the answering machine detector.

Timer events

The Dialogic® Diva® SDK notifies the application whenever an event occurs. Applications can register for a timer
event. When the timer expires, an event is signaled to the application. The event can be based on a call or on
an application registration. The application calls DivaStartCallTimer or DivaStartApplicationTimer to enable the
timer. When the timer expires, the corresponding event DivaEventCallTimer or DivaEventApplicationTimer is
signaled to the application. The timer resolution is 100 milliseconds. All timers are single shot timers.

Dialogic® Diva® API Developer’s Reference Guide

Page 44

Tracing

The Dialogic® Diva® SDK supports tracing into a text-based file. By default, the tracing is disabled. Applications
may enable tracing on demand at any time by calling the function DivaEnableTrace to set a new trace level.
Enabling the tracing also requires a valid trace file name. The application may overwrite the default name
(C:\Temp\dssdk.log) by any valid file name. The path for this file must exist, the file will be automatically
created.

Once enabled, the Diva SDK will write trace messages to the specified file. The application may use the SDK
trace interface to write own messages into the same file. This can be done by the function DivaLogPrintf.

Dialogic® Diva® API Functions

Page 45

CHAPTER 4

Dialogic® Diva® API Functions

The Diva API offers common functions for all call types as well as functions for specific call types, e.g., for fax
and voice. This chapter contains the following sections:

• Startup and version

• Capabilities, registration, and information

• Connection-oriented functions

• Data transfer functions

• Fax transfer functions

• Voice transfer functions

• DTMF, tone, and AMD support

• Speech Recognizer Support

• Call Transfer

• Conference

• Message Waiting Indication

• Call properties

• Event reporting

• Monitoring

• IP Media Channel Access

• Audio provider

• Timer Handling

• Tracing

• Static and dynamic initialization functions

• IP-specific functions

Startup and version

To ensure that the resources for the Diva API are properly allocated during start and released when the application
terminates, the Diva API must be initialized. In addition, the application may query and verify the version number
of the Diva API.

The Diva API provides the following startup and version functions:

• DivaInitialize

• DivaTerminate

• DivaGetVersion

• DivaGetVersionEx

Dialogic® Diva® API Developer’s Reference Guide

Page 46

DivaInitialize

The DivaInitialize function initializes the internal core of the Diva API.

Parameters

None.

Return values

If the function succeeds, the return value is DivaSuccess (0). In case of an error, the function returns
DivaErrorNoCapi.

Remarks

This function must be called before any other Diva API function is called. This is a synchronous function. When
DivaInitialize returned the initialization is completed.

See also

DivaTerminate

DivaTerminate

The DivaTerminate function frees all internal resources allocated by the core of the Diva API.

Parameters

None.

Return values

None.

Remarks

This function must be called before the application exits. All internal resources are returned to the system. Any
pending call is terminated.

See also

DivaInitialize

DivaGetVersion

The DivaGetVersion function returns the current version of the Diva API.

Parameters

None.

Return values

The high word contains the major version and the low word contains the minor version.

Remarks

The application can query the version number to verify that the correct Diva API is available.

See also

DivaGetVersionEx

DWORD DivaInitialize ()

void DivaTerminate ()

DWORD DivaGetVersion ()

Dialogic® Diva® API Functions

Page 47

DivaGetVersionEx

The DivaGetVersionEx function returns the current version of the Diva API.

Parameters

pProductVersionMajor

[out] This parameter points to the location where the Dialogic® Diva® SDK places the major product version
number.

pProductVersionMinor

[out] This parameter points to the location where the Diva SDK places the minor product version number.

pRevision

[out] This parameter points to the location where the Diva SDK places the major revision number. The revision
is reserved for future use and is currently set to zero.

pBuildVersionMinor

[out] This parameter points to the location where the Diva SDK places the minor build product version number.

Return values

The function returns DivaSuccess (0) if the version information are correctly returned. Another possible return
value is DivaErrorInvalidParameter.

Remarks

The application can query the version and build number to verify that the correct Diva API is available.

See also

DivaGetVersion

DWORD DivaGetVersionEx (DWORD *pProductVersionMajor,
DWORD *pProductVersionMinor,
DWORD *pRevision,
DWORD *pBuildVersionMinor);

Dialogic® Diva® API Developer’s Reference Guide

Page 48

Capabilities, registration, and information

The Diva API virtualizes the available communication resources by different line devices. The line devices are
numbered from 1 to the number of installed lines. Please note that an installed Dialogic® Diva® Media Board
may have more than one line device.

A line device has a defined number of channels. Line devices based on a Dialogic® Diva® BRI Media Board have
two channels. For line devices that depend on a Dialogic® Diva® PRI Media Board, the number of channels
depends on the used protocol. For fractional T1 or E1 lines, the line device's number of channels depends on
the capabilities of the line. For IP-based line devices, the amount of channel depends on the software license.
The application can obtain the number of channels for each line device at any time.

The following functions are provided in this section:

• DivaGetNumLineDevices

• DivaGetLineDeviceInfo

• DivaCheckDeviceCapabilities

• DivaRegister

• DivaUnregister

• DivaSetLineDeviceParamsFax

• DivaSetLineDeviceParamsVoice

• DivaGetLineDeviceConfiguration

• DivaGetLineDeviceStatus

• DivaSetLineDeviceStatusEvents

• DivaGetLineDeviceStatistics

• DivaClearLineDeviceStatistics

• DivaEnableExtensions

• DivaDisableExtensions

• DivaGetDeviceName

• DivaDeviceMgmtGetValue

• DivaDeviceMgmtSetValue

• DivaDeviceMgmtExecute

• DivaGetChannelStatus

• DivaSetChannelStatus

• DivaGetSystemConfiguration

• DivaSystemConfigurationActive

• DivaSetAnalogHookState

Dialogic® Diva® API Functions

Page 49

DivaGetNumLineDevices

The DivaGetNumLineDevices function gets the number of available line devices. All line devices are numbered
from one to the maximum number of devices.

Parameters

pNumLine

[out] This parameter is a pointer to a location that receives the number of available physical lines.

Return values

If the function succeeds, the return value is DivaSuccess (0).

Remarks

The function returns the number of available lines that can be accessed via the Diva API. To obtain more
information on the lines, the application may call DivaGetLineDeviceInfo and DivaCheckDeviceCapabilities for
each line.

See also

DivaGetLineDeviceInfo

DivaGetLineDeviceInfo

The DivaGetLineDeviceInfo function gets information on the capabilities of the line device, e.g., voice, fax, and
supplementary services.

Parameters

LineDeviceId

[in] The LineDeviceId parameter identifies the line device by an index starting with one.

pInfo

[out] This parameter is a pointer to a buffer that receives the information on the given line device. Note that
the buffer must be of the type DivaLineDeviceInfo and the length field of the data structure must be set to the
size of the structure.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorLineDevice and DivaErrorInvalidParameter.

Remarks

The function retrieves specific information about the given line device.

See also

DivaLineDeviceInfo

DWORD DivaGetNumLineDevices (DWORD *pNumLine);

DWORD DivaGetLineDeviceInfo (DWORD LineDeviceId,
DivaLineDeviceInfo *pInfo);

Dialogic® Diva® API Developer’s Reference Guide

Page 50

DivaCheckDeviceCapabilities

DivaCheckDeviceCapabilities returns information if the device has the specified capability.

Parameters

LineDevice

[in] The parameter LineDevice identifies the line device by an index starting with one.

Capability

[in] The parameter Capability specifies the capability to be validated. For valid capabilities see
DivaDeviceCapabilities.

Return values

If the line device supports the capability, the function returns TRUE. If the capability is not supported, the function
returns FALSE.

Remarks

The function returns the information if a specified capability is supported by the line device. The capabilities are
defined in DivaDeviceCapabilities. The function is a synchronous function and returns right away.

See also

No references.

DivaRegister

The DivaRegister function registers with the Diva API and sets global parameters and event reporting.

Parameters

pHandle

[out] This parameter is a pointer to a location that receives the handle for all further access to the Diva API.

EventMode

[in] This parameter specifies how the application handles events. The event mode must be one of the modes
specified by DivaEventModes.

EventModeSpecific1

[in] This parameter depends on the event mode. For details refer to remarks and to DivaEventModes.

EventModeSpecific2

[in] This parameter depends on the event mode. For details refer to remarks and to DivaEventModes.

MaxConn

[in] This parameter specifies the maximum number of connections to be used by the application. If this parameter
is set to zero, a maximum of one connection per available physical channel can be used.

RxBuffers

BOOL DivaCheckDeviceCapabilities (DWORD LineDevice,
DWORD Capability);

DWORD DivaRegister (DivaAppHandle *pHandle,
DWORD EventMode,
void *EventModeSpecific1,
void *EventModeSpecific2,
DWORD MaxConn,
DWORD RxBuffers,
DWORD MaxBufferSize);

Dialogic® Diva® API Functions

Page 51

[in] This parameter specifies the number of data blocks that should be reserved for each connection in receive
direction.

MaxBufferSize

[in] This parameter specifies the maximum buffer size to be used. See remarks below. The default registration
uses the value 256.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorLineDevice, DivaErrorInvalidHandle, and DivaErrorInvalidParameter.

Remarks

This function must be called by the application before any connection-oriented function can be called. The
application registers the parameters to be used for the amount of concurrent connections and the data buffer
management.

The MaxBufferSize and RxBuffers parameters are valid for all connections done on this registration at the Diva
API. The defaults are selected to have an optimal situation for fax and voice connections. The amount of buffers
should be between 4 and 8. This amount of buffers is used for receiving data and also for sending data. The
MaxBufferSize depends on the application requirements. If only fax or data calls are handled, the maximum of
2048 should be used. For voice applications the delay may be important. If the application is delay sensitive, a
buffer size or 256 should not be exceeded. If the application is not delay sensitive, a buffer set to 1024 or even
2048 is recommended. The buffer size should not be below 128.

The registration is a synchronous process; however, most of the function calls following the registration are
asynchronous and the result is reported via an event. The application selects the event mode with the parameter
EventMode. The event mode specific parameters are:

See also

DivaUnregister

EventMode EventModeSpecific1 EventModeSpecific2

DivaEventModeCallback Callback function entry NULL

DivaEventModeCallbackEx Callback function entry Application context. This context is not interpreted by
the Dialogic® Diva® SDK and passed to the callback
function.

DivaEventModeCallbackSignal Callback function entry Application context. This context is not interpreted by
the Diva SDK and passed to the callback function.

DivaEventModeOSEvent Event object to be signaled NULL

DivaEventModeMsgLoop Windows® handle Message type

Dialogic® Diva® API Developer’s Reference Guide

Page 52

DivaUnregister

The DivaUnregister function releases all allocated resources at the Diva API.

Parameters

Handle

[in] The application handle that was returned by a call to DivaRegister.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

This function is called to release the resources allocated to this instance. The application typically calls this
function before its termination. Note that all pending calls are cleared implicitly. It may take some time until the
final cleanup is confirmed. This is a synchronous function and the execution is blocked until cleanup is done.

See also

DivaRegister

DivaSetLineDeviceParamsFax

The DivaSetLineDeviceParamsFax function sets the fax parameters that should be used for all calls on this line
device, e.g., the calling number to be signaled to the remote side.

Parameters

hApp

[in] hApp is the application handle that was returned by a call to DivaRegister.

LineDeviceId

[in] This parameter identifies the line device. Line devices are continuously numbered by an index starting with
one.

Params

[in] This parameter is a pointer to a buffer that contains the default parameter settings. The buffer is of the type
DivaLineDeviceParamsFax.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorLineDevice and DivaErrorInvalidParameter.

Remarks

The function sets defaults for the line device. These defaults may be overwritten for specific calls. This is a
synchronous function that returns control right away.

See also

DivaConnect, DivaAnswer, DivaConnectFax, DivaAnswerFax

DWORD DivaUnregister (DivaAppHandle Handle);

DWORD DivaSetLineDeviceParamsFax (DivaAppHandle hApp,
DWORD LineDeviceId,
DivaLineDeviceParamsFax *Params);

Dialogic® Diva® API Functions

Page 53

DivaSetLineDeviceParamsVoice

The DivaSetLineDeviceParamsVoice function sets the voice parameters for all calls on this line device, e.g., the
calling number to be signaled to the remote side.

Parameters

hApp

[in] hApp is the application handle that was returned by a call to DivaRegister.

LineDeviceId

[in] This parameter identifies the line device. Line devices are continuously numbered by an index starting with
one.

Params

[in] This parameter is a pointer to a buffer that contains the default parameter settings. The buffer is of the type
DivaLineDeviceParamsVoice.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorLineDevice and DivaErrorInvalidParameter.

Remarks

The function sets defaults for the line device. These defaults may be overwritten for specific calls. This is a
synchronous function that returns control right away.

See also

DivaConnect, DivaAnswer, DivaConnectVoice, DivaAnswerVoice

DivaGetLineDeviceConfiguration

DivaGetLineDeviceConfiguration returns information about the current line device configuration.

Parameters

LineDeviceId

[in] This parameter identifies the line device by an index starting with one.

Type

[in] This parameter specifies which configuration parameter should be read. Valid types are defined in
DivaDeviceConfigType.

pValue

[out] This parameter points to a location where the value of the requested type is placed.

ValueSize

[out] This parameter specifies the length in bytes of the buffer specified by pValue.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorDataSize, and DivaErrorLineDevice.

DWORD DivaSetLineDeviceParamsVoice (DivaAppHandle hApp,
DWORD LineDeviceId,
DivaLineDeviceParamsVoice *Params);

DWORD DivaGetLineDeviceConfiguration (DWORD LineDeviceId,
DivaDeviceConfigType Type,
DivaDeviceConfigValue *pValue,
DWORD ValueSize);

Dialogic® Diva® API Developer’s Reference Guide

Page 54

Remarks

The function reads the specified configuration property of the specified line device. The available configuration
parameters are defined in DivaDeviceConfigType.

The configuration data is written to the location pointed to by pValue. The application provides the buffer and
also the length of the buffer. The configuration data has different lengths and the application does not always
need to provide the maximum space defined by the size of DivaDeviceConfigValue. The Diva API will validate
the provided length compared to the required length for the specific configuration type.

The function is a synchronous function and returns right away.

See also

No references.

DivaGetLineDeviceStatus

DivaGetLineDeviceStatus returns information about the current line device status.

Parameters

LineDeviceId

[in] This parameter identifies the line device by an index starting with one.

Type

[in] This parameter specifies which configuration parameter should be read. Valid types are defined in
DivaDeviceStatusType.

pValue

[out] This parameter points to a location where the value of the requested type is placed.

ValueSize

[out] This parameter specifies the length in bytes of buffer specified by pValue.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorDataSize, and DivaErrorLineDevice.

Remarks

The function reads the specified status type of the specified line device. The available status options are defined
in DivaDeviceStatusType.

The status information is written to the location pointed to by pValue. The application provides the buffer and
also the length of the buffer. The status information has different lengths and the application does not always
need to provide the maximum space defined by the size of DivaDeviceStatusValue. The Diva API will validate
the provided length compared to the required length for the specific status type.

The function is a synchronous function and returns right away.

See also

No references.

DWORD DivaGetLineDeviceStatus (DWORD LineDeviceId,
DivaDeviceStatusType Type,
DivaDeviceStatusValue *pValue,
DWORD ValueSize);

Dialogic® Diva® API Functions

Page 55

DivaSetLineDeviceStatusEvents

DivaSetLineDeviceStatusEvents specifies the status changes that should be reported to the application.

Parameters

hApp

[in] The hApp parameter specifies the application handle returned by DivaRegister.

LineDeviceId

[in] The LineDeviceId parameter identifies the line device by an index starting with one.

EventMask

[in] The EventMask parameter specifies which status changes should be reported to the application. Refer to
the description of DivaDeviceStatisticsType for options.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorLineDevice.

Remarks

The function enables or disables the event reporting to the application. The application must register via
DivaRegister. The status changes are reported via the event DivaEventDeviceStatusChanged using the standard
event handling. The function is a synchronous function and returns right away.

See also

DivaDeviceStatisticsType, DivaEventDeviceStatusChanged, DivaRegister

DivaGetLineDeviceStatistics1

DivaGetLineDeviceStatistics queries the layer 1 statistics for the line device.

Parameters

LineDeviceId

[in] The LineDeviceId parameter identifies the line device by an index starting with one.

Type

[in] TThis parameter specifies which configuration parameter should be read. Valid enumeration types are defined
in DivaDeviceStatisticsType.

pValue

[out] This parameter points to a location where the value of the requested type is placed.

ValueSize

[out] This parameter specifies the length in bytes of buffer specified by pValue.

Return values

DWORD DivaSetLineDeviceStatusEvents (DivaAppHandle hApp,
DWORD LineDeviceId,
DivaDeviceStatusEvents EventMask);

1. While this function is part of the common SDK, Layer 1 statistics functionality is not necessarily available in Windows

DWORD DivaGetLineDeviceStatistics (DWORD LineDeviceId,
DivaDeviceStatisticsType Type,
DivaDeviceStatisticsValue* pValue,
DWORD ValueSize);

Dialogic® Diva® API Developer’s Reference Guide

Page 56

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, and DivaErrorInvalidFunction.

Remarks

The function queries the line device for layer 1 (if applicable) and internal CPU statistics. Refer to for more
information. The function is a synchronous function and returns right away.

Also note that the LoadxxPercent values are only filled in for the first device Id of a physical board..

See also

DivaClearLineDeviceStatistics, DivaLayer1Statistics, DivaDeviceStatisticsType

DivaClearLineDeviceStatistics

DivaClearLineDeviceStatistics clears the line device statistics for the line device.

Parameters

LineDeviceId

[in] The LineDeviceId parameter identifies the line device by an index starting with one.

Type

[in] TThis parameter specifies which configuration parameter should be read. Valid enumeration types are defined
in DivaDeviceStatisticsType.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, and DivaErrorInvalidFunction.

Remarks

The function clears (resets) the values of the line device layer 1 (if applicable) and internal CPU statistics. Refer
to for more information. The function is a synchronous function and returns right away.

See also

DivaGetLineDeviceStatistics, DivaDeviceStatisticsType

DivaEnableExtensions

DivaEnableExtensions activates the given extension.

Parameters

hApp

[in] hApp is the application handle that was returned by a call to DivaRegister.

LineDeviceId

[in] This parameter identifies the line device. Line devices are continuously numbered by an index starting with
one.

Type

[in] This parameter specifies the extensions to be enabled. For valid extensions refer to DivaExtensions.

Return values

DWORD DivaGetLineDeviceStatistics (DWORD LineDeviceId,
DivaDeviceStatisticsType Type);

DWORD DivaEnableExtensions (DivaAppHandle hApp,

DWORD LineDeviceId,
DivaExtensions Type);

Dialogic® Diva® API Functions

Page 57

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorNotSupported.

Remarks

The function enables the given extensions if supported by the underlying Dialogic® communication platform.
The extensions are defined in DivaExtensions. A sample for an extension is the support of fax resolutions higher
than the fine format. The function is a synchronous function and returns right away.

See also

DivaDisableExtensions

DivaDisableExtensions

DivaDisableExtensions deactivates the given extension.

Parameters

hApp

[in] hApp is the application handle that was returned by a call to DivaRegister.

LineDeviceId

[in] This parameter identifies the line device. Line devices are continuously numbered by an index starting with
one.

Type

[in] This parameter specifies the extensions to be enabled. For valid extensions refer to DivaExtensions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorNotSupported.

Remarks

The function disables the given extensions. The extensions are defined in DivaExtensions. A sample for an
extension is the support of fax resolutions higher than the fine format. If disabled, the system will not signal
this capabilities. The function is a synchronous function and returns right away.

See also

DivaEnableExtensions

DivaGetDeviceName

DivaGetDeviceName retrieves the name of the underlying device.

Parameters

LineDevice

[in] This parameter identifies the line device by an index starting with one.

pBuffer

[in] The parameter pBuffer specifies the location where the name of the board is placed.

DWORD DivaDisableExtensions (DivaAppHandle hApp,
DWORD LineDeviceId,
DivaExtensions Type);

DWORD DivaGetDeviceName (DWORD LineDevice,
unsigned char * pBuffer,
DWORD BufferSize);

Dialogic® Diva® API Developer’s Reference Guide

Page 58

BufferSize

[in] The parameter BufferSize specifies the length of the buffer specified by pBuffer.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

Each Dialogic® communication platform has a symbolic name. The function DivaGetDeviceName provides the
name of the board, for example "Diva PRI CTI". The function is a synchronous function and returns right away.

See also

No references.

DivaDeviceMgmtGetValue

DivaDeviceMgmtGetValue reads information from the management interface of an underlying Dialogic®

communication platform.

Parameters

LineDevice

[in] This parameter identifies the line device by an index starting with one.

pValueName

[in] The parameter pValueName specifies the parameter to be read.

pResultBuffer

[out] The parameter pResultBuffer specifies the location where the result or the read request is placed.

BufferSize

[in] The parameter BufferSize specifies the length of the buffer specified by pResultBuffer

pBytesRead

[out] The parameter pBytesRead specifies the location where to place the amount of bytes read from the
management interface and written to the result buffer.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorNotSupported, and DivaErrorInvalidHandle.

Remarks

The Diva Media Boards provide an interface to retrieve certain information on the system or a specific call. The
interface is structured like a directory tree and the values are addressed by a path and a value name, e.g.,
"Config\FAX\Options".

DWORD DivaDeviceMgmtGetValue (DWORD LineDevice,
char * pValueName,
unsigned char * pResultBuffer,
DWORD BufferSize,
DWORD *pBytesRead);

Dialogic® Diva® API Functions

Page 59

This is a synchronous function. The result is placed in the buffer provided by the application. The format is
depending on the parameter, options are zero terminated string, DWORD, BOOLEAN etc.

Working with the management interface requires specific knowledge on the interface and the parameter.

Note: Not all Dialogic® communication platforms provide a management interface. If the line device does not
support a management interface, the function will fail with the result DivaErrorNotSupported.

See also

DivaDeviceMgmtSetValue, DivaDeviceMgmtExecute

DivaDeviceMgmtSetValue

DivaDeviceMgmtSetValue writes information to the management interface of an underlying Dialogic®

communication platform.

Parameters

LineDevice

[in] This parameter identifies the line device by an index starting with one.

pValueName

[in] The parameter pValueName specifies the parameter to be written.

pValue

[in] The parameter pValue specifies where the data to be written is located.

ValueSize

[in] The parameter ValueSize specifies the length of the date to be written.

pBytesWritten

[out] The parameter pBytesWritten specifies the location where to place the amount of bytes written to the
management interface.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorNotSupported, and DivaErrorInvalidHandle.

Remarks

The Diva Media Boards provide an interface to write information, e.g., configuration parameter, to the board.
The interface is structured like a directory tree and the values are addressed by a path and value name, e.g.,
"Config\FAX\Options".

This is a synchronous function. The application must provide the data in the format expected for the specified
parameter. Working with the management interface requires specific knowledge on the interface and the
parameter.

Note: Not all Dialogic® communication platforms provide a management interface. If the line device does not
support a management interface, the function will fail with the result DivaErrorNotSupported.

See also

DivaDeviceMgmtGetValue, DivaDeviceMgmtExecute

DWORD DivaDeviceMgmtSetValue (DWORD LineDevice,
char * pValueName,
unsigned char * pValue,
DWORD ValueSize,
DWORD * pBytesWritten);

Dialogic® Diva® API Developer’s Reference Guide

Page 60

DivaDeviceMgmtExecute

DivaDeviceMgmtExecute executes a specific function on the management interface of an underlying Dialogic®

communication platform.

Parameters

LineDevice

[in] This parameter identifies the line device by an index starting with one.

pValueName

[in] The parameter pValueName specifies the parameter to be executed.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorNotSupported, and DivaErrorInvalidHandle.

Remarks

The Diva Media Boards provide an interface to read, write, and execute parameters. The interface is structured
like a directory tree and the values are addressed by a path and value name, e.g., "Config\FAX\Options". The
execute option can be used to instruct the board to flash the LED.

This is a synchronous function. The application must provide the data in the format expected for the specified
parameter. Working with the management interface requires specific knowledge on the interface and the
parameter.

Note: Not all Dialogic® communication platforms provide a management interface. If the line device does not
support a management interface, the function will fail with the result DivaErrorNotSupported.

See also

DivaDeviceMgmtGetValue, DivaDeviceMgmtSetValue

DivaGetChannelStatus

DivaGetChannelStatus retrieves the status of a specific channel.

Parameters

LineDevice

[in] This parameter identifies the line device by an index starting with one.

Channel

[in] This parameter identifies the channel by an index starting with one. See remarks section for more
information.

pResult

[out] The parameter pResult specifies the location of type DivaChannelStatus where the status is placed. Possible
values are defined in DivaChannelStatus.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

DWORD DivaDeviceMgmtExecute (DWORD LineDevice,
char * pValueName);

DWORD DivaGetChannelStatus (DWORD LineDevice,
DWORD Channel,
DivaChannelStatus* pResult);

Dialogic® Diva® API Functions

Page 61

Remarks

Some protocols allow to enable or disable a specific channel of a trunk. The function retrieves the status for the
given channel. The channels are continuously numbered from 1 up to the maximum number of channels. If the
function returns DivaSuccess, the result is written to the location pointed to by pResult. If the parameter Channel
is set to zero, the status of all channels is returned. The application is responsible for providing a result buffer
large enough to cover the status of all channels. On all protocols that do not support channel blocking, the result
is always DivaSuccess and the status is DivaChannelStatusUnblocked.

See also

DivaSetChannelStatus

DivaSetChannelStatus

DivaSetChannelStatus modifies the status of a specific channel.

Parameters

LineDevice

[in] This parameter identifies the line device by an index starting with one.

Channel

[in] This parameter identifies the channel by an index starting with one.

Status

[in] The parameter Status specifies the new state of the channel. Possible options are defined in
DivaChannelStatus.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

Some protocols allow to enabled or disable a specific channel of a trunk. This function sets the channel status.
The channels are continuously numbered from 1 up to the maximum number of channels.

If the function returns DivaSuccess, the new status has been set. If the channel has already been blocked, the
function returns DivaErrorInvalidState. If the underlying protocol does not support channel blocking, the return
value is DivaErrorNotSupported. The function is a synchronous function and returns right away.

See also

DivaGetChannelStatus

DWORD DivaSetChannelStatus (DWORD LineDevice,
DWORD Channel,
DivaChannelStatus Status);

Dialogic® Diva® API Developer’s Reference Guide

Page 62

DivaGetSystemConfiguration

DivaGetSystemConfiguration retrieves the information on installed interfaces.

Parameters

Type

[in] The parameter Type identifies the type of information to be retrieved. See DivaSysConfType for available
types.

pValue

[out] The parameter pValue specifies the location of type DivaSysConfValues where the configuration information
is stored.

Size

[in] The parameter Size specifies the size of the buffer specified by pValue.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorReadFile,
DivaErrorOpenFile, and DivaErrorUnsupportedFormat.

Remarks

The function accesses the configuration system of the underlying Dialogic® communication platform. If the
function returns DivaErrorUnsupportedFormat, the version of the platform does not match the Dialogic® Diva®

SDK version.

The application calls the function with a specific type of the configuration to retrieve. Valid types are defined in
DivaSysConfTypes. The function returns the requested information in the provided buffer. The function is a
synchronous function and returns right away.

See also

DivaSystemConfigurationActive

DivaSystemConfigurationActive

DivaSystemConfigurationActive returns information if a configuration update is pending.

Parameters

bNeedsReboot

[out] The parameter bNeedsReboot specifies a memory location of type BOOL. The information if a reboot is
necessary to active the reported configuration is placed at this location.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorNotSupported.

Remarks

Some configuration changes require a restart of the system to make them active. The function
DivaSystemConfigurationActive checks if a restart is pending to activate the configuration reported by
DivaGetSystemConfiguration.

DWORD DivaGetSystemConfiguration (DivaSysConfType Type,
DivaSysConfValue* pValue
DWORD Size);

DWORD DivaSystemConfigurationActive (BOOL* bNeedsReboot);

Dialogic® Diva® API Functions

Page 63

Older Dialogic® Diva® platforms do not provide the information about a pending restart. In this case, the function
returns DivaErrorNotSupported. The function is a synchronous function and returns right away.

See also

DivaGetSystemConfiguration

DivaSetAnalogHookState

DivaSetAnalogHookState changes the hook state of an analog line.

Parameters

LineDevice

[in] The parameter LineDevice identifies the line device by an index starting with 1.

Line

[in] The parameter Line specifies the analog line of the line device by an index starting with 1.

bOffHook

[in] The parameter bOffHook specifies if the state should be set to on-hook or off-hook.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorNotSupported or DivaErrorInvalidParameter.

Remarks

The function changes the hook state of the Dialogic® Diva® Analog Media Board. If the selected line device is
not a Diva Analog Media Board, the function returns DivaErrorNotSupported. If the parameter bOffHook is true,
the line is set to off-hook. There is no timer running in this mode. The application must place the line on-hook
before any incoming call will be signaled. Note that outgoing calls can still be done. If the application places an
outgoing call on a line that is set to off-hook, the hook state is switched to on-hook and back to off-hook before
the dialing will start.

Note that this function is used to busy out the line at the switch. For call establishment use DivaConnect or
DivalDial.

This function may change the configuration of the parameter "Call Direction". This parameter should only be
used for systems that do not use the "Call Direction" configuration.

See also

DivaSetChannelStatus

DWORD DivaSetAnalogHookState (DWORD LineDevice,
DWORD Line,
BOOL bOffHook);

Dialogic® Diva® API Developer’s Reference Guide

Page 64

DivaSetServiceState

DivaSetServiceState sets the specified line device in service or out of service.

Parameters

LineDevice

[in] The parameter LineDevice identifies the line device by an index, starting with one.

bEnable

[in] The bEnable parameter specifies if the device should be placed in service or out of service. If set to true,
the device is placed in service.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidLineDevice and DivaErrorNotSupported.

Remarks

The function changes the service state of a line device. The function is only supported on line devices based on
Diva Media Boards. If a line device is disabled, the layer 1 is signaled as down to the remote peer. This can be
used for maintenance reasons to indicate to a switch or PBX that no more calls should be signaled to this device.

See also

No references.

DWORD DivaSetServiceState (DWORD LineDevice,

BOOL bEnable);

Dialogic® Diva® API Functions

Page 65

Connection-oriented functions

This chapter contains the following connection-oriented functions:

• DivaCreateCall

• DivaDial

• DivaListen

• DivaProceeding

• DivaAlert

• DivaAttachToCall

• DivaAnswer

• DivaAnswerFax

• DivaAnswerVoice

• DivaAnswerVoIP (RTP)

• DivaAnswerModem

• DivaAnswerSMS

• DivaReject

• DivaConnect

• DivaConnectFax

• DivaConnectVoice

• DivaConnectVoIP

• DivaConnectModem

• DivaConnectSMS

• DivaSetCallType

• DivaSetCallTypeFax

• DivaSetCallTypeVoice

• DivaSetCallTypeVoIP

• DivaDisconnect

• DivaGetCallInfo

• DivaCloseCall

Dialogic® Diva® API Developer’s Reference Guide

Page 66

DivaCreateCall

The DivaCreateCall function creates a call object without initiating the dialing.

Parameters

hApp

[in] The hApp parameter identifies the application instance. The handle has been returned by DivaRegister.

haCall

[in] The haCall parameter specifies the application call handle. This handle is not interpreted by the Dialogic®

Diva® SDK and is only used for event reporting.

phdCall

[out] The phdCall parameter points to a location where the Diva SDK call handle is placed. This handle must be
used in all following calls to the Diva SDK for this call.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function creates a call object for outgoing calls with standard call parameters for voice connections. The
application can modify the properties of the call by calling DivaSetCallProperties. The connection is initiated by
calling DivaDial.

The function returns right away, independent from the event mode.

See also

DivaSetCallProperties, DivaCompleteCallTransfer, DivaGetCallProperties

DivaDial

DivaDial initiates dialing the given call object.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

DestinationNumber

[in] This parameter specifies the number to dial.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

DWORD DivaCreateCall (DivaAppHandle hApp,
AppCallHandle haCall
DivaCallHandle *phdCall);

DWORD DivaDial (DivaCallHandle hdCall,
Char *DestinationNumber);

Dialogic® Diva® API Functions

Page 67

Remarks

If dialing the object has not yet started, a new call is set up with the stored information and the given number.
If call setup has already started, the dialing information is sent in so-called overlap mode. This requires that the
underlying switch supports overlap sending.

The function returns right away, and the call progress is reported via events.

See also

DivaSetupCallTransfer, DivaCompleteCallTransfer, DivaBlindCallTransfer

DivaListen

The DivaListen function registers for incoming calls on one or all line devices. The function is only valid if event
reporting is selected.

Parameters

hApp

[in] The hApp parameter identifies the application. The handle is assigned by a call to DivaRegister.

Services

[in] This parameter specifies which services should be signaled. Possible values are defined in DivaListenType.
Multiple services can be combined.

LineDevice

[in] The LineDevice parameter specifies if incoming calls from all line devices or only from a specific line device
should be signaled. To listen to all devices set this value to LINEDEV_ALL. Specific line defines are numbered
from one to the maximum installed.

pCalledNumber

[in] Specification of the called number is optional. If it is specified, the signaled called number is compared to
the given number for all incoming calls.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorLineDevice, DivaErrorInvalidHandle, and DivaErrorInvalidParameter.

Remarks

Call this function to receive incoming calls. The function is a synchronous function and returns right away.
Incoming calls are signaled by the event DivaEventIncomingCall to the event mechanism selected during
registration.

The application can specify which calls it wants to receive, and from which line devices. To listen for all types of
incoming calls, the Services parameter must be set to DivaListenAll. To listen for calls on all line devices, the
LineDevice parameter must be set to LINEDEV_ALL.

If the DivaListen function differs for the various line devices or only incoming calls on certain line devices should
be signaled, the application must specify the line device. In this case, a call to DivaListen is necessary for each
line device.

Please note that whether the service of a call can be detected is dependent on the underlying switch environment.
In particular, fax and voice calls may be signaled with the same service.

DWORD DivaListen (DivaAppHandle hApp,
DivaListenType Services,
DWORD LineDevice,
char *pCalledNumber);

Dialogic® Diva® API Developer’s Reference Guide

Page 68

If the called number is specified, the Diva API signals only calls that match this number. The numbers are
compared from right to left up to the end of the shortest number. The called number can be a single number or
a list of numbers separated by semicolons. One range can be specified by the LOW: and HIGH: keywords, e.g.,
LOW:100;High:200. The Diva API also handles overlap receiving.

In addition to a single number, the application may set a list of numbers, e.g., several MSNs or a range of
numbers, that the signaled number must match. Several numbers are separated by semicolons
(1234;234;2345). A range is defined by the keywords "low" and "high" (LOW:1234000;HIGH:1234999).

The Diva API supports up to 10 single numbers or one range.

See also

DivaRegister, DivaEventIncomingCall, DivaAlert, DivaAnswer, DivaListenType

DivaProceeding

DivaProceeding sends a proceeding message to the remote side.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect, or is signaled with the event DivaEventIncomingCall.

haCall

[in] The haCall parameter identifies the call at application level. This handle is not interpreted by the Diva API,
and it is only used for event reporting.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The function sends a proceeding message to the remote side. If UUI or Facility Data are specified, they are send
with the message. A progress indicator can be added to the proceeding message via the call property
DivaCPT_FacilityDataArray.

See also

DivaAlert

DivaAlert

DivaAlert sends an alert to the remote side.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is signaled with the event
DivaEventIncomingCall.

haCall

[in] The haCall parameter identifies the call at application level. This handle is not interpreted by the Diva API
and it is only used for event reporting.

DWORD DivaProceeding (DivaCallHandle hdCall
AppCallHandle haCall);

DWORD DivaAlert (DivaCallHandle hdCall
AppCallHandle haCall);

Dialogic® Diva® API Functions

Page 69

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

None.

See also

DivaEventIncomingCall, DivaAnswer

DivaAttachToCall

The DivaAttachToCall function assigns an application-specific call handle to an incoming call in order to get
additional event reporting for the call.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is provided with the event
DivaEventIncomingCall.

haCall

[in] The haCall parameter identifies the call at application level. This handle is not interpreted by the Diva API,
and only used for event reporting.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

When a call comes in, the application must call one of the following functions: DivaAnswer, DivaAlert,
DivaAttachToCall, DivaReject.

If the application answers the call right away by calling DivaAnswer or proceeds with the call by DivaAlert, there
is no need to call DivaAttachToCall. The application handle is then assigned by one of these functions.

Not all parameters of an incoming call may be available when the call is signaled for the first time. In direct
dial-in environments, for example, the called number might be signaled digit by digit. If the application does
not have enough information to decide whether a call should be accepted or rejected, it assigns its own call
handle which is necessary for event reporting.

If the application wants to reject the call, it must call DivaReject.

See also

DivaEventIncomingCall

DWORD DivaAttachToCall (DivaCallHandle hdCall
AppCallHandle haCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 70

DivaAnswer

DivaAnswer answers an incoming call using the default settings set by the application with a call to
DivaSetLineDeviceParamsFax or DivaSetLineDeviceParamsVoice.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is signaled with the event
DivaEventIncomingCall.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

CallType

[in] This parameter selects the call type to use, e.g., voice or fax. The values are defined in DivaCallType.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

When a call comes in, the application must call one of the following functions: DivaAnswer, DivaAlert,
DivaAttachToCall, or DivaReject.

This function answers the call right away. It may take some time until the call is actually established.

The function returns right away, and the call progress is reported via events. The event DivaEventCallConnected
signals that the data channel is ready for communication.

See also

DivaEventIncomingCall, DivaAnswerFax, DivaAnswerVoice, Call instance

DivaAnswerFax

DivaAnswerFax answers an incoming call with call type DivaCallTypeFaxG3.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is signaled with the event
DivaEventIncomingCall.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

DWORD DivaAnswer (DivaCallHandle hdCall,
AppCallHandle haCall,
DivaCallType CallType);

DWORD DivaAnswerFax (DivaCallHandle hdCall,
AppCallHandle haCall,
char *pLocalFaxId,
char *pHeadLine,
DWORD MaxSpeed,
DivaFaxOptions OptionFlags);

Dialogic® Diva® API Functions

Page 71

pLocalFaxId

[in] This parameter specifies the fax station identification to be used as local identification. If pLocalFaxId is
zero, the identification set by the application with a call to DivaSetLineDeviceParamsFax is used.

pHeadLine

[in] This parameter specifies a text that will be printed on top of every page. In addition to this information, the
current date and time as well as the station identification and the current page are printed. If pHeadLine is zero,
the headline set by the application with a call to DivaSetLineDeviceParamsFax is used.

MaxSpeed

[in] The MaxSpeed parameter specifies the maximum speed to be negotiated for the fax transmission.

OptionFlags

[in] The OptionFlags parameter specifies the fax options to be used, e.g., transmission mode as defined by
DivaFaxOptions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

When a call comes in, the application must call one of the following functions: DivaAnswer, DivaAlert,
DivaAttachToCall, DivaReject.

This function answers an incoming fax call right away without using the default parameters. It may take some
seconds until the connection is established.

The function returns right away, and the call progress is reported via events. The event DivaEventCallConnected
signals that the fax reception or sending can be started.

See also

DivaEventIncomingCall, DivaAnswer, DivaAnswerVoice, Call instance

DivaAnswerVoice

DivaAnswerVoice answers an incoming call with the call type DivaCallTypeVoice.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is signaled with the event
DivaEventIncomingCall.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

Options

[in] This parameter specifies the options to be used for this call. Valid options are defined in DivaVoiceOptions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

DWORD DivaAnswerVoice (DivaCallHandle hdCall,
AppCallHandle haCall,
DivaVoiceOptions Options);

Dialogic® Diva® API Developer’s Reference Guide

Page 72

Remarks

When a call comes in, the application must call one of the following functions: DivaAnswer, DivaAlert,
DivaAttachToCall, or DivaReject.

The function answers an incoming voice call right away without using the default parameters. It may take several
seconds until the connection is established.

The function returns right away, and the call progress is reported via events. The event DivaEventCallConnected
signals that the data channel is available.

See also

DivaEventIncomingCall, DivaAnswer, DivaAnswerFax, Call instance

DivaAnswerVoIP (RTP)

DivaAnswerVoIP answers an incoming call using the call type DivaCallTypeVoIP for RTP streaming.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or signaled with the event DivaEventIncomingCall.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the SDK. You can use it to pass (for example) an index or a pointer to a structure, to help
you keep track of multiple calls in the same application.

pVoIPParams

[in] The pVoIPParams parameter is a pointer to a user-supplied buffer of the type DivaVoIPParams that defines
VoIP-specific parameters. For detailed information on the parameters, see DivaVoIPParams.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

When a call comes in, the application must call one of the following functions: DivaAnswer, DivaAlert,
DivaAttachToCall, or DivaReject.

The function answers an incoming voice call right away without using the default parameters defined by
DivaVoIPParams.

Note that the call type DivaCallTypeVoIP specifies that RTP packets should be used in the data channel. This call
type does not initiate a call on the IP network via SIP or H.323. This call type is only available on Diva Media
Boards.

The function returns right away, and the call progress is reported via events. The event DivaEventCallConnected
signals that the data channel is available.

See also

DivaEventIncomingCall, DivaAnswer, DivaAnswerFax, DivaAnswerVoice, DivaAnswerModem, Call instance

DWORD DivaAnswerVoIP (DivaCallHandle hdCall,
AppCallHandle haCall,
DivaVoIPParams *pVoIPParams);

Dialogic® Diva® API Functions

Page 73

DivaAnswerModem

DivaAnswerModem answers an incoming call using the call type DivaCallTypeModem.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or signaled with the event DivaEventIncomingCall.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

MaxSpeed

[in] The MaxSpeed parameter defines the maximum speed that should be negotiated.

ModemOptions

[in] The ModemOptions parameter defines the modem options to be used for connection establishment. Valid
options are defined in DivaModemOptions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

When a call comes in, the application must call one of the following functions: DivaAnswer, DivaAlert,
DivaAttachToCall, or DivaReject.

The function answers an incoming analog modem call right away. The modem speed and protocol, e.g.,
compression, are negotiated according to the MaxSpeed and ModemOptions parameters.

Applications that want to reduce the call setup time and only need a very low speed may set MaxSpeed to a low
value, e.g., 2400. Additional modem parameters can be set using call properties. Please refer to
DivaSetCallProperties for more information.

The function returns right away, and the DivaEventCallConnected event is sent when connection establishment
is completed.

See also

DivaEventIncomingCall, DivaAnswer, DivaAnswerFax, DivaAnswerVoice, DivaAnswerModem, Call instance

DWORD DivaAnswerModem (DivaCallHandle hdCall,
AppCallHandle haCall,
DWORD MaxSpeed,
DWORD ModemOptions);

Dialogic® Diva® API Developer’s Reference Guide

Page 74

DivaAnswerSMS

DivaAnswerSMS answers an incoming call using the call type DivaCallTypeSMS.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is signaled with the event
DivaEventIncomingCall.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

Protocol

[in] This parameter selects the protocol to use. The values are defined in DivaCallType.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

When a call comes in, the application must call one of the following functions: DivaAnswer, DivaAlert,
DivaAttachToCall, or DivaReject.

This function answers the call right away. It may take some time until the call is actually established.

The function returns right away, and the call progress is reported via events. The event DivaEventCallConnected
signals that the data channel is ready for communication.

See also

DivaEventIncomingCall, DivaAnswer, DivaAnswerFax, Call instance

DivaReject

The DivaReject function tells the Diva API that the application is not interested in a call.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is signaled with the event
DivaEventIncomingCall.

bOthersMayTakeIt

[in] The bOthersMayTakeIt parameter defines if other applications may answer this call. See remarks below.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

When a call comes in, the application must call one of the following functions: DivaAnswer, DivaAlert,
DivaAttachToCall, or DivaReject.

DWORD DivaAnswerSMS (DivaCallHandle hdCall,
AppCallHandle haCall,
DivaSMSProtocol Protocol);

DWORD DivaReject (DivaCallHandle hdCall
BOOL bOtherMayTakeIt);

Dialogic® Diva® API Functions

Page 75

An application may decide that an incoming call should not be taken. The application calls DivaReject in order
to tell the Diva API that the call is not serviced and how to proceed with the call.

Incoming calls are signaled to all applications that have an active listen matching the call type and the optional
called number. If the application wants to allow other applications to service this call, it sets the bOtherMayTakeIt
parameter to TRUE. In this case, the Diva API does not reject the physical call right away, and other applications
have the chance to answer this call.

If the application decides that the call should be rejected and disconnected right away, the bOtherMayTakeIt
parameter must be set to FALSE.

The application may set a specific reason for rejecting the call via the call property DivaCPT_RejectReason.

See also

DivaEventIncomingCall, DivaAttachToCall

DivaConnect

DivaConnect initiates the establishment of an outgoing call using the default parameters set by the application
with a call to DivaSetLineDeviceParamsVoice or DivaSetLineDeviceParamsFax.

Parameters

hApp

[in] The hApp parameter identifies the application. The handle is assigned by a call to DivaRegister.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

phdCall

[out] The phdCall parameter points to a location of the type DivaCallHandle that receives the call handle on
successful return.

DestinationNumber

[in] This parameter specifies the number to dial.

CallType

[in] This parameter selects the call type to use, e.g., voice or fax. Possible values are defined in DivaCallType.

LineDevice

[in] This parameter specifies the line device that should be used for the call. If the parameter is set to
LINEDEV_ALL, the Diva API searches for a free resource on all installed line devices.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorDestBusy,
DivaErrorNoAnswer, DivaErrorNoChannel, DivaErrorLineDevice, DivaErrorInvalidHandle, and
DivaErrorInvalidParameter.

DWORD DivaConnect (DivaAppHandle hApp,
AppCallHandle haCall,
DivaCallHandle *phdCall,
char *DestinationNumber,
DivaCallType CallType,
DWORD LineDevice);

Dialogic® Diva® API Developer’s Reference Guide

Page 76

Remarks

The function initiates the connection using the default parameter for the specified call type. The function returns
right away. If the result is DivaSuccess, the connection has been initiated and the progress is reported via events.
Once the event DivaEventCallConnected is signaled, the data channel is available.

See also

DivaRegister, DivaEventCallConnected, DivaEventCallProgress, DivaDisconnect, DivaConnectFax,
DivaConnectVoice, Call instance

DivaConnectFax

DivaConnectFax initiates the establishment of an outgoing call with call type DivaCallTypeFaxG3.

Parameters

hApp

[in] The hApp parameter identifies the application. The handle is assigned by a call to DivaRegister.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

phdCall

[out] This parameter points to a location of the type DivaCallHandle that receives the call handle on successful
return.

DestinationNumber

[in] This parameter specifies the number to dial.

LineDevice

[in] The LineDevice parameter specifies which line device should be used for the call. If the parameter is set to
LINEDEV_ALL, the Diva API searches for a free resource on all installed line devices.

LocalNumber

[in] The LocalNumber parameter specifies which number should be signaled as the calling number. If
LocalNumber is zero, the number set by the application with a call to DivaSetLineDeviceParamsFax or
DivaSetLineDeviceVoice is used.

LocalSubAddress

[in] This parameter specifies which number should be signaled as the calling subaddress. If LocalSubAddress is
zero, the number set by the application with a call to DivaSetLineDeviceParamsFax or
DivaSetLineDeviceParamsVoice is used.

DWORD DivaConnectFax (DivaAppHandle hApp,
AppCallHandle haCall,
DivaCallHandle *phdCall,
char *DestinationNumber,
DWORD LineDevice,
char *LocalNumber,
char *LocalSubAddress,
char *pLocalFaxId,
char *pHeadLine,
DWORD MaxSpeed,
DivaFaxOptions OptionFlags);

Dialogic® Diva® API Functions

Page 77

pLocalFaxId

[in] This parameter specifies the fax station identification to be used as the local identification. If pLocalFaxId
is zero, the identification set by the application with a call to DivaSetLineDeviceParamsFax is used.

pHeadLine

[in] The pHeadLine parameter specifies a text that is printed on top of every page. In addition to this information,
the current date and time as well as the station identification and the current page are given. If pHeadLine is
zero, the headline set by the application with a call to DivaSetLineDeviceParamsFax is used.

MaxSpeed

[in] This parameter specifies the maximum speed to be negotiated for the fax transmission.

OptionFlags

[in] This parameter specifies the fax options to be used, e.g., transmission mode as defined by DivaFaxOptions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorDestBusy,
DivaErrorNoAnswer, DivaErrorNoChannel, DivaErrorLineDevice, DivaErrorInvalidHandle, and
DivaErrorInvalidParameter.

Remarks

The function initiates a fax connection using the given fax parameter. The function returns right away. If the
result is DivaSuccess, the connection has been initiated and the progress is reported via events. Once the event
DivaEventCallConnected is signaled, the fax exchange must be initiated via DivaSendFax or polling mode is
negotiated via DivaReceiveFax.

See also

DivaRegister, DivaEventCallConnected, DivaEventCallProgress, DivaDisconnect, DivaConnect,
DivaConnectVoice, Call instance.

DivaConnectVoice

DivaConnectVoice initiates the establishment of an outgoing call with the call type DivaCallTypeVoice.

Parameters

hApp

[in] The hApp parameter identifies the application. The handle is assigned by a call to DivaRegister.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

phdCall

[out] This parameter points to a location of the type DivaCallHandle that receives the call handle on successful
return.

DWORD DivaConnectVoice (DivaAppHandle hApp,
AppCallHandle haCall,
DivaCallHandle *phdCall,
char *DestinationNumber,
DWORD LineDevice,
char *LocalNumber,
char *LocalSubAddress,
DivaVoiceOptions Options);

Dialogic® Diva® API Developer’s Reference Guide

Page 78

DestinationNumber

[in] This parameter specifies the number to dial.

LineDevice

[in] The LineDevice parameter specifies which line device should be used for the call. If the parameter is set to
LINEDEV_ALL, the Diva API searches for a free resource on all installed line devices.

LocalNumber

[in] The LocalNumber parameter specifies the number that should be signaled as the calling number. If
LocalNumber is (0) zero, the number set by the application with a call to DivaSetLineDeviceParamsVoice or
DivaSetLineDeviceParamsFax is used.

LocalSubAddress

[in] This parameter specifies the number that should be signaled as the calling subaddress. If LocalSubAddress
is zero, the number set by the application with a call to DivaSetLineDeviceParamsVoice or
DivaSetLineDeviceParmsFax is used.

Options

[in] This parameter specifies the voice options that should be used for a call. For valid options see
DivaVoiceOptions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorDestBusy,
DivaErrorNoAnswer, DivaErrorNoChannel, DivaErrorLineDevice, DivaErrorInvalidHandle, and
DivaErrorInvalidParameter.

Remarks

The function initiates the connection for a voice call using the given parameters. The function returns right away.
If the result is DivaSuccess, the connection has been initiated and the progress is reported via events.

The availability of the data channel is reported via the event DivaEventCallConnected or in early data channel
mode via DivaEventEarlyDataChannelConnected.

See also

DivaRegister, DivaEventCallConnected, DivaEventCallProgress, DivaDisconnect, DivaConnectFax, DivaConnect,
Call instance

DivaConnectVoIP

DivaConnectVoIP initiates the establishment of an outgoing call with the call type DivaCallTypeVoIP.

Parameters

hApp

[in] The hApp parameter identifies the application. The handle is assigned by a call to DivaRegister.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

DWORD DivaConnectVoIP (DivaAppHandle hApp,
AppCallHandle haCall,
DivaCallHandle *phdCall,
char *DestinationNumber,
DWORD LineDevice,
char *LocalNumber,
char *LocalSubAddress,
DivaVoIPParams *pVoIPParams);

Dialogic® Diva® API Functions

Page 79

phdCall

[out] This parameter points to a location of the type DivaCallHandle that receives the call handle on successful
return.

DestinationNumber

[in] This parameter specifies the number to dial.

LineDevice

[in] The LineDevice parameter specifies which line device should be used for the call. If the parameter is set to
LINEDEV_ALL, the Diva API searches for a free resource on all installed line devices.

LocalNumber

[in] This parameter specifies which number should be signaled as the calling number. If LocalNumber is empty,
the number set by the application with a call to DivaSetLineDeviceParams is used.

LocalSubAddress

[in] This parameter specifies which number should be signaled as the calling subaddress. If LocalSubAddress is
empty, the subaddress set by the application with a call to DivaSetLineDeviceParams is used.

pVoIPParams

[in] The pVoIPParams parameter is a user-supplied buffer of the type DivaVoIPParams that defines VoIP-specific
parameters. For detailed information on the parameters, see DivaVoIPParams.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function establishes an analog connection and prepares the data channel for RTP streaming. The parameters
for RTP streaming and additional functions, such as silence suppression, are set by DivaVoIPParams.

The function returns right away, and the event DivaEventCallConnected is sent when connection establishment
is completed.

See also

DivaRegister, DivaEventCallConnected, DivaEventCallProgress, DivaDisconnect, DivaConnectFax,
DivaConnectVoice, Call instance

Dialogic® Diva® API Developer’s Reference Guide

Page 80

DivaConnectModem

DivaConnectModem initiates the establishment of an outgoing call with the call type DivaCallTypeModem.

Parameters

hApp

[in] The hApp parameter identifies the application. The handle is assigned by a call to DivaRegister.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

phdCall

[out] This parameter points to a location of the type DivaCallHandle that receives the call handle on successful
return.

DestinationNumber

[in] This parameter specifies the number to dial.

LineDevice

[in] The LineDevice parameter specifies which line device should be used for the call. If the parameter is set to
LINEDEV_ALL, the SDK searches for a free resource on all installed line devices.

LocalNumber

[in] The LocalNumber parameter specifies which number should be signaled as the calling number. If
LocalNumber is empty, the number set by the application with a call to DivaSetLineDeviceParams is used.

LocalSubAddress

[in] This parameter specifies which number should be signaled as the calling subaddress. If LocalSubAddress is
empty, the subaddress set by the application with a call to DivaSetLineDeviceParams is used.

MaxSpeed

[in] The MaxSpeed parameter defines the maximum speed that should be negotiated.

Options

[in] The Options parameter defines the modem options to be used for connection establishment. Valid options
are defined in DivaModemOptions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function establishes an analog modem connection. The modem speed and protocol, e.g., compression, is
negotiated depending on the MaxSpeed and Options parameters.

Applications that want to reduce the call setup time and only need a very low speed may set MaxSpeed to a low
value, e.g., 2400.

DWORD DivaConnectModem (DivaAppHandle hApp,
AppCallHandle haCall,
DivaCallHandle *phdCall,
char *DestinationNumber,
DWORD LineDevice,
char *LocalNumber,
char *LocalSubAddress,
DWORD MaxSpeed,
DivaModemOptions Options);

Dialogic® Diva® API Functions

Page 81

The function returns right away, and the DivaEventCallConnected event is sent when connection establishment
is completed.

See also

DivaRegister, DivaEventCallConnected, DivaEventCallProgress, DivaDisconnect, DivaConnectFax,
DivaConnectVoice, Call instance

DivaConnectSMS

DivaConnectSMS initiates the establishment of an outgoing call using the default parameters set by the
application with a call to DivaSetLineDeviceParamsVoice or DivaSetLineDeviceParamsFax.

Parameters

hApp

[in] The hApp parameter identifies the application. The handle is assigned by a call to DivaRegister.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass (for example) an index or a pointer to a
structure, to help you keep track of multiple calls in the same application.

phdCall

[out] The phdCall parameter points to a location of the type DivaCallHandle that receives the call handle on
successful return.

DestinationNumber

[in] This parameter specifies the number to dial.

LineDevice

[in] This parameter specifies the line device that should be used for the call. If the parameter is set to
LINEDEV_ALL, the Diva API searches for a free resource on all installed line devices.

LocalNumber

[in] This parameter specifies which number should be signaled as the calling number. If LocalNumber is empty,
the number set by the application with a call to DivaSetLineDeviceParams is used.

Protocol

[in] This parameter selects the protocol to use. The values are defined in DivaCallType.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorDestBusy,
DivaErrorNoAnswer, DivaErrorNoChannel, DivaErrorLineDevice, DivaErrorInvalidHandle, and
DivaErrorInvalidParameter.

DWORD DivaConnectSMS (DivaAppHandle hApp,
AppCallHandle haCall,
DivaCallHandle *phdCall,
char *DestinationNumber,
DWORD LineDevice,
char *LocalNumber,
DivaSMSProtocol Protocol);

Dialogic® Diva® API Developer’s Reference Guide

Page 82

Remarks

The function initiates a modem connection for SMS over fixed networks. The function returns right away. If the
result code is DivaSuccess, the connection has been initiated and the progress is reported via events. Once the
event DivaEventCallConnected is signaled the application can start to pass layer 3 SMS messages.

See also

DivaRegister, DivaEventCallConnected, DivaEventCallProgress, DivaDisconnect, Call instance

DivaSetCallType

DivaSetCallType changes the type of an already established call.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

CallType

[in] This parameter selects the call type to use, e.g., voice or fax. Possible values are defined in DivaCallType.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function changes the call type for an existing connection. The connection remains stable, only the data
channel is disconnected and re-established with the new call type.

The function returns right away, and a new event DivaEventCallConnected is sent when the data channel is up
again and data can be sent and received.

Note: This function is not available for all call types. If either the active call type or the target call type does
not support changing the call type, the function returns DivaErrorInvalidParameter.

See also

DivaSetCallTypeFax, DivaSetCallTypeVoice, DivaSetCallTypeVoIP

DivaSetCallTypeFax

DivaSetCallTypeFax changes the type of the call to DivaCallTypeFaxG3.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

pLocalFaxId

[in] This parameter specifies the fax station identification to be used as local identification. If pLocalFaxId is
zero, the identification set by the application with a call to DivaSetLineDeviceParamsFax is used.

DWORD DivaSetCallType (DivaCallHandle hdCall,
DivaCallType CallType);

DWORD DivaSetCallTypeFax (DivaCallHandle hdCall,
char *pLocalFaxId,
char *pHeadLine,
DivaFaxMaxSpeed MaxSpeed,
DivaFaxOptions OptionFlags);

Dialogic® Diva® API Functions

Page 83

pHeadline

[in] The pHeadline parameter specifies a text that is printed on top of every page. In addition to this information,
the current date and time, as well as the station identification and the current page are given. If pHeadLine is
zero, the headline set by the application with a call to DivaSetLineDeviceParamsFax is used.

MaxSpeed

[in] This parameter specifies the maximum speed to be negotiated for the fax transmission.

OptionFlags

[in] The OptionFlags parameter specifies the fax options to be used, e.g., transmission mode as defined by
DivaFaxOptions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function changes the call type to Fax G3 for a call that is already connected. The existing connection remains
stable, only the data channel is disconnected and reconnected with the call type Fax G3 using the given
parameters.

The function returns right away, and a new event DivaEventCallConnected is sent when the data channel is up
again and fax files can be sent or received.

The fax protocol depends on the call direction. In general, the fax protocol itself supports changing the call
direction internally, which is called fax polling. In case of a protocol change in the data channel, the basic call
direction for the fax protocol can also be changed. This is supported by the fax options.

See also

DivaSetCallType, DivaSetCallTypeVoice, DivaSetCallTypeVoIP

DivaSetCallTypeVoice

DivaSetCallTypeVoice changes the call type to voice, using the default parameters that were set by the application
with a call to DivaSetLineDeviceParamsVoice.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

Options

[in] This parameter specifies the options that should be used for this call. For valid options see DivaVoiceOptions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function changes the call type to voice for a call that is already connected. The existing connection remains
stable, only the data channel is disconnected and reconnected with the call type voice using the given voice
options.

DWORD DivaSetCallTypeVoice (DivaCallHandle hdCall,
DivaVoiceOptions Options);

Dialogic® Diva® API Developer’s Reference Guide

Page 84

The function returns right away, and the DivaEventCallConnected event is sent when the data channel is up
again and audio data can be sent and received.

See also

DivaSetCallType, DivaSetCallTypeFax, DivaSetCallTypeVoIP

DivaSetCallTypeVoIP

DivaSetCallTypeVoIP changes the type of the call to voice using RTP streaming.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

pVoIPParams

[in] This parameter is a pointer to a user-supplied buffer of the type DivaVoIPParams that defines VoIP-specific
parameters. For detailed information on the parameters, see DivaVoIPParams.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function changes the call type to voice for a call that is already connected. The existing connection remains
stable. Only the data channel is disconnected and reconnected for RTP streaming with the given payload protocol
and options.

The function returns right away, and a new event DivaEventCallConnected is sent when the data channel is up
again and audio data can be sent and received.

See also

DivaSetCallType, DivaSetCallTypeFax, DivaSetCallTypeVoice

DivaDisconnect

DivaDisconnect disconnects a call.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is returned by DivaConnect or signaled
with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

DWORD DivaSetCallTypeVoIP (DivaCallHandle hdCall,
DivaVoIPParams *pVoIPParams);

DWORD DivaDisconnect (DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 85

Remarks

The function initiates the disconnection of a call.

The function returns right away. If the return parameter is DivaSuccess, the disconnect is reported via the event
DivaEventCallDisconnected.

Note: If the function does not return DivaSuccess, no event is signaled.

See also

DivaConnect, DivaAnswer, DivaCloseCall

DivaGetCallInfo

DivaGetCallInfo retrieves information about the call.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pCallInfo

[out] This parameter is a pointer to a user-supplied buffer of the type DivaCallInfo that receives the information
on the call. Note that the application must set the Size field of the DivaCallInfo structure to the size of the
structure before calling this function.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

For further information on the provided information see the description of DivaCallInfo.

See also

DivaCallInfo

DivaCloseCall

DivaCloseCall releases a call instance at the Diva API.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is returned by DivaConnect or signaled
with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). If the call handle is not known, the return value
is DivaErrorInvalidHandle.

DWORD DivaGetCallInfo (DivaCallHandle hdCall,
DivaCallInfo *pCallInfo);

DWORD DivaCloseCall (DivaCallHandle hdCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 86

Remarks

This function frees a call instance at the Diva API. In order to give the application the opportunity to retrieve
information on the disconnect reason, the Diva API keeps the call after DivaEventCallDisconnected has been
signaled. Therefore, the application must close the call by calling DivaCloseCall. Note that this is not necessary
for calls that are rejected by calling DivaReject.

See also

DivaAnswer

DivaEnableDataChannel

DivaEnableDataChannel changes the status of the data channel in manual data channel mode.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned from DivaCreateCall
or signaled with the event DivaEventIncomingCall.

bEnable

[in] The bEnable parameter specifies if the data channel should be enabled or disabled. If set to true, the data
channel is enabled.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorNotSupported.

Remarks

The function initiates the establishment or disconnect of the data channel. This function is only valid if the
application has enabled the manual data channel mode via the call property DivaCPT_ManualDataChannel. If
the manual data channel mode is not enabled, the function returns DivaErrorInvalidState.

Once the new state of the data channel is reached, the event DivaEventDataChannelStatus is signaled. The
event provides the new status in the second parameter.

See also

No references.

DWORD DivaEnableDataChannel (DivaCallHandle hdCall,
BOOL bEnable);

Dialogic® Diva® API Functions

Page 87

Data transfer functions

This chapter contains the following data transfer functions:

• DivaSendData

• DivaReceiveData

• DivaSendFrame

• DivaReceiveFrame

DivaSendData

DivaSendData sends the given data to the remote side.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pData

[in] The pData parameter points to a buffer provided by the caller. This buffer contains the data to be sent.

DataLength

[in] The DataLength parameter specifies the amount of data in the buffer pointed to by pData.

DataHandle

[in] The DataHandle parameter is an optional value to be used for confirmation. See remarks below.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

If the length of the data buffer exceeds the maximum buffer size set by DivaRegister, the data is fragmented.
Depending on the used protocol, the data may be received in fragments at the remote side.

In order to avoid copying data, the data buffer is owned by the Diva API until it is free. The application receives
the event DivaEventDataSent when the data has been sent and the buffer can be reused by the application. The
buffer is identified by the DataHandle.

See also

DivaReceiveData, DivaEventDataSent

DWORD DivaSendData (DivaCallHandle hdCall,
unsigned char *pData,
DWORD DataLength,
DWORD DataHandle);

Dialogic® Diva® API Developer’s Reference Guide

Page 88

DivaReceiveData

DivaReceiveData obtains received data from the Diva API.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pData

[out] The pData parameter points to a buffer that receives the data.

BufferSize

[out] The BufferSize parameter specifies the length of the data buffer in bytes.

pDataLength

[out] The pDataLength parameter points to a location that receives the amount of bytes copied to the buffer.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

If data is available, it is copied to the buffer provided by the application. The Diva API signals the event
DivaEventDataAvailable when data is available. The amount of data is passed with the event. The application
may retrieve the data using DivaReceiveData.

Note: New data is only signaled if the application retrieves the data.

See also

DivaSendData

DivaSendFrame

DivaSendFrame sends the given data and data options as a frame to the remote side.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

pData

[in] The pData parameter points to a buffer provided by the caller. This buffer contains the data to be sent.

DataLength

[in] The DataLength parameter specifies the amount of data in the buffer pointed to pData.

DWORD DivaReceiveData (DivaCallHandle hdCall,
unsigned char **pData,
DWORD BufferSize
DWORD *pDataLength);

DWORD DivaSendFrame (DivaCallHandle hdCall,
unsigned char pData,
DWORD DataLength
DWORD DataHandle
DWORD DataOptions);

Dialogic® Diva® API Functions

Page 89

DataHandle

[in] The DataHandle parameter is an optional value to be used for confirmation. See remarks below.

DataOptions

[in] The DataOptions parameter specifies the options to be signaled with the frame. For valid options refer to
DivaDataOptions.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, or DivaErrorInvalidHandle.

Remarks

The function sends the given data as a frame to the remote side. To avoid fragmentation, the buffer size must
not exceed the data size specified in DivaRegister.

The function is only supported on call types that allow framing, e.g., digital call types and modem call types with
a layer 2 protocol.

In order to avoid copying data, the data buffer is owned by the Diva API until it is free. The application receives
the event DivaEventDataSent when the data has been sent and the buffer can be reused by the application. The
buffer is identified by the DataHandle.

The options for the frame can be transferred to the remote side if supported by the underlying protocol. The
options are defined in DivaDataOptions.

See also

DivaSendData, DivaReceiveData, DivaReceiveFrame

DivaReceiveFrame

DivaReceiveFrame obtains the received framed data and the data options.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect, or signaled with the event DivaEventIncomingCall.

pData

[out] The pData parameter points to a buffer provided by the caller. This buffer contains the data to be received.

BufferSize

[in] The BufferSize parameter specifies the length of the data buffer in bytes.

pDataLength

[out] The pDataLength parameter points to a location that receives the amount of bytes copied to the buffer.

pDataOptions

[out] The pDataOptions parameter points to a location that receives the data options for the frame.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, or DivaErrorInvalidHandle.

DWORD DivaReceiveFrame (DivaCallHandle hdCall,
unsigned char* pData,
DWORD BufferSize,
DWORD* pDataLength,
DWORD* DataOptions);

Dialogic® Diva® API Developer’s Reference Guide

Page 90

Remarks

If data is available, it is copied to the buffer provided by the application. The data options for the frame are also
provided to the application.

The availability of a data frame is signaled to the application via the event DivaEventDataAvailable. The amount
of available data is signaled with the event. If more than one frame is available, this amount of data is the
complete size of all frames.

See also

DivaSendData, DivaReceiveData, DivaSendFrame

Dialogic® Diva® API Functions

Page 91

Fax transfer functions

This chapter contains the following fax transfer functions:

• DivaSendFax

• DivaSendMultipleFaxFiles

• DivaReceiveFax

• DivaAppendFax

• DivaAppendFaxFiles

• DivaReceiveFaxToMemory

• DivaReadFaxData

• DivaValidateFaxFile

DivaSendFax

DivaSendFax sends a fax given in a file.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pFilename

[in] The pFilename parameter points to the filename of the file containing the data to be sent. It must be a
complete path and file name. The process context of the caller must have read access rights for this file.

Format

[in] The Format parameter specifies the format in which the data is stored. For supported fax formats, see
DivaFaxFormat.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorOpenFile,
DivaErrorReadFile, DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function opens the given file, converts the data if necessary, and sends them as fax stream to the remote
side. For supported fax formats, see DivaFaxFormat. For each transmitted page, the event
DivaEventFaxPageSent is signaled. When the fax is successfully sent to the remote end, the event
DivaEventFaxSent is signaled. If the application did not receive the event DivaEventFaxSent before the event
DivaEventCallDisconnected is signaled, an error is indicated. Details on the reason can be retrieved via
DivaGetCallInfo.

The function can only be used if the DivaFaxOptionMultipleDocuments is not set. If the application has enabled
the option before initiating the call, DivaSendFax returns DivaErrorInvalidFunction.

See also

DivaEventFaxPageSent, DivaFaxFormat, DivaReceiveFax

DWORD DivaSendFax (DivaCallHandle hdCall,
char *pFilename,
DivaFaxFormat Format = DivaFaxFormatTIFF_ClassF);

Dialogic® Diva® API Developer’s Reference Guide

Page 92

DivaSendMultipleFaxFiles

DivaSendMultipleFaxFiles sends multiple fax documents.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

NumFiles

[in] The NumFiles parameter identifies the number of entries in ppFileArray.

ppFileArray

[in] The ppFileArray parameter points to an array of pointers to the documents.

Format

[in] The Format parameter specifies in which format the data is available in the files. Note that all files must
contain data of the same format.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorOpenFile,
DivaErrorReadFile, DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function sends multiple files. Each file may contain several pages, depending on the option
DivaFaxOptionMultipleDocument.

If the option has been set during connect establishment in its call to DivaConnectFax or DivaAnswerFax, each
file is sent as a single document. The application receives the event DivaEventFaxDocumentSent after each file
has been sent and the event DivaEventFaxSent after all files have been sent. The number information added to
the headline start with one for each file in the list.

If the option is not set, which is only supported for TIFF files, all files are interpreted as one document. The
application receives only one event DivaEventFaxSent after the last page of the last file has been sent. The
number information added to the headline are consecutive for all pages of all files.

See also

DivaSendFax, DivaConnectFax, DivaAnswerFax, DivaSetCallTypeFax

DivaReceiveFax

DivaReceiveFax receives a fax and stores it in a given format in a given file.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

DWORD DivaSendMultipleFaxFiles (DivaCallHandle hdCall,
Int NumFiles,
char **ppFileArray,
DivaFaxFormat Format);

DWORD DivaReceiveFax (DivaCallHandle hdCall,
char *pFilename,
DivaFaxFormat Format = DivaFaxFormatTIFF_ClassF);

Dialogic® Diva® API Functions

Page 93

pFilename

[in] The pFilename parameter points to the filename of the file where the received fax will be stored. It must
be a complete path and file name. The process context of the call must have create and write access to this
directory and file.

Format

[in] The Format parameter specifies the format in which data is stored.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorOpenFile,
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function converts the received fax to the requested data format and creates the file. Please note that existing
files will be overwritten.

Available formats are specified by DivaFaxFormat. Text format is not available. If the application has registered
for event reporting, the event DivaEventFaxReceived is signaled to the application.

See also

DivaEventFaxPageReceived, DivaFaxFormat, DivaSendFax

DivaAppendFax

DivaAppendFax appends the given fax document to an existing fax transmission.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

pFilename

[in] The pFilename parameter points to the filename of the file containing the data to be sent. It must be a
complete path and file name. The process context of the caller must have read access rights for this file.

Format

[out] The Format parameter specifies the format in which the data is stored. For supported fax formats, see
DivaFaxFormat.

bNewDocument

[in] The parameter bNewDocument specifies if the given files should be send as part of the current document
or as a new document on the same connection.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorLimitExceeded, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

With a call to DivaAppendFax the application adds fax pages to a running fax transmission. Adding fax pages to
a running transmission is only possible if the last page is still to be processed. If the last page is already in
progress and no new pages can be added, the function returns DivaErrorInvalidState.

DWORD DivaAppendFax (DivaCallHandle hdCall,
char *pFilename,
DivaFaxFortmat Format,
BOOL bNewDocument);

Dialogic® Diva® API Developer’s Reference Guide

Page 94

With the function DivaSendMultipleFaxFiles the Diva API supports the sending of one fax document per TIFF file
or several TIFF files as one fax document. The sending mode depends on the FaxOptions specified by the
application during call establishment. For more information, see DivaFaxOptionMultipleDocument.

When adding a TIFF file to an existing transmission, the application can specify if the pages in the new TIFF file
should be appended to the last document or if they should be sent as a new document.

If the parameter bNewDocument is set to FALSE, the pages in the given document are added to the last document
of the current transmission. If set to TRUE, the pages in the file are signaled as a separate fax document. In
both cases, the pages are sent on the same logical connection.

DivaAppendFax can not be used for the format DivaFaxFormatColorJPEG.

See also

DivaSendFax, DivaSendMultipleFaxFiles, DivaAppendFaxFiles

DivaAppendFaxFiles

DivaAppendFaxFiles appends the given fax documents to an existing fax transmission.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

NumFiles

[in] The NumFiles parameter identifies the number of entries in ppFileArray.

ppFileArray

[in] The ppFileArray parameter points to an array of pointers to the documents.

Format

[out] The Format parameter specifies in which format the data is available in the files. Note that all files must
contain data of the same format.

bNewDocument

[in] The bNewDocument parameter specifies if the given files should be sent as part of the current document
or as a new document on the same connection.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorLimitExceeded, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

With a call to DivaAppendFaxFiles the application adds fax pages to a running fax transmission. Adding fax pages
to a running transmission is only possible if the last page is still to be processed. If the last page is already in
progress and no new pages can be added, the function returns DivaErrorInvalidState.

With the function DivaSendMultipleFaxFiles the Diva API supports the sending of one fax document per TIFF file
or several TIFF files as one fax document. The sending mode depends on the FaxOptions specified by the
application during call establishment. For more information, see DivaFaxOptionMultipleDocument.

When adding a TIFF file to an existing transmission, the application can specify if the pages in the new TIFF file
should be appended to the last document or if they should be sent as a new document.

DWORD DivaAppendFaxFiles (DivaCallHandle hdCall,
int NumFiles,
char **ppFileArray,
DivaFaxFortmat Format,
BOOL bNewDocument);

Dialogic® Diva® API Functions

Page 95

If the parameter bNewDocument is set to FALSE, the pages in the given document are added to the last document
of the current transmission. If set to TRUE, the pages in the file are signaled as a separate fax document. In
both cases, the pages are sent on the same logical connection.

DivaAppendFax cannot be used for the format DivaFaxFormatColorJPEG.

See also

DivaSendFax, DivaSendMultipleFaxFiles, DivaAppendFax

DivaReceiveFaxToMemory

DivaReceiveFaxToMemory initiates the memory based fax reception in the given format.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect, or signaled with the event DivaEventIncomingCall.

Format

[in] The Format parameter specifies the data format in which the data is provided in the memory.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

The fax reception to the memory is available for TIFF documents only. The fax data is provided on a per page
base, because the header of each page must be updated when the full page is received. Therefore, the system
must ensure that enough memory is available. The memory management will be handled within the Dialogic®

Diva® SDK. The amount of memory required to store a page depends on the image and can vary between 20
KB and 900 KB. The Diva SDK uses an intelligent memory management based on 64 KB memory pages. If the
Diva SDK cannot allocate the required memory, the connection will be dropped and the disconnect reason will
be set to DivaDROutOfMemory.

Once a page is received, the Diva SDK signals the event DivaEventFaxPageReceived. The application can now
retrieve the data for the page and process the data.

Note: Since the amount of data to be retrieved can be very large, the application must ensure that the Diva
API is not blocked if it uses the callback mode for event processing.

When the connection of an incoming fax call is reported to the application via DivaEventCallConnected, the
application must ensure that DivaReceiveFaxToMemory is called in a reasonable time. The SDK will save data
in the internal memory buffer depending on the registration parameter. If DivaReceiveFaxToMemory is called
too late, data may be lost and the call will be disconnected with the reason DivaDRBufferOverflow.

See also

DivaReadFaxData, DivaReceiveFax

DWORD DivaReceiveFaxToMemory (DivaCallHandle hdCall,
DivaFaxFormat Format);

Dialogic® Diva® API Developer’s Reference Guide

Page 96

DivaReadFaxData

DivaReadFaxData retrieves the fax data buffered in the memory.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect, or signaled with the event DivaEventIncomingCall.

pBuffer

[out] The pBuffer parameter points to a buffer that receives the data.

BufferSize

[in] The BufferSize parameter specifies the length of the data buffer in bytes.

pDataLength

[out] The pDataLength parameter points to a location that receives the amount of bytes copied to the buffer.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorEndOfData, DivaErrorInvalidState, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

The function retrieves data for a fax reception initiated via DivaReceiveFaxToMemory. Once the availability of
data is signaled via the event DivaEventFaxPageReceived or DivaEventFaxReceived, the application should call
DivaReadFaxData in a loop until the amount of read bytes is zero. If the end of the fax document is reached,
the return code is DivaErrorEndOfData.

For more information on receive fax to memory refer to the remarks section of DivaReceiveFaxToMemory.

See also

DivaReceiveFax, DivaReceiveFaxToMemory

DivaValidateFaxFile

DivaValidateFaxFile validates the format of a given fax document.

DWORD DivaValidateFaxFile (const char* pFilename,
 BOOL* pRequiresExtensions,
 DivaFaxDocumentProperties* pProperties);

Parameter

pFilename

[in] The pFilename parameter points to the filename of the file to be validated. The process context of the caller
must have read access rights for this file.

pRequiresExtension

[out] The pRequiresExtension parameter points to a memory location of type BOOL. If the given file requires
extended fax capabilities from the peer the value TRUE will be written to this location.

pProperties

[out] The pProperties parameter points to a memory location of type DivaFaxDocumentProperties that receives
details about the fax document. The parameter is optional and may be set to NULL is no document properties
are needed.

DWORD DivaReadFaxData (DivaCallHandle hdCall,
unsigned char* pBuffer,
DWORD BufferSize,
DWORD* pDataLength);

Dialogic® Diva® API Functions

Page 97

Return values
If the function succeeds, the return value is DivaSuccess (0). Possible other return values are DivaErrorOpenFile,
DivaErrorReadFile and DivaErrorUnsupportedFormat.

Remarks

The function validates the format of the given file and checks for valid SFF and TIFF formats. If the format is
supported the function returns DivaSuccess, otherwise the function returns DivaErrorUnsupportedFormat.

Some fax formats may requires special capabilities that are no guaranteed by all fax endpoints. If this is the
case the function sets the RequiresExtension flag.

If the application provides a reference to a DivaFaxDocumentProperties variable, the page count and details
about the document resolution are returned, if the given file format allows this.

See Also

DivaSendFax, DivaAppendFax, DivaSendMultipleFaxFiles, DivaAppendFaxFiles

Dialogic® Diva® API Developer’s Reference Guide

Page 98

Voice transfer functions

This chapter contains the following voice transfer functions:

• DivaSendVoiceFile

• DivaSendMultipleVoiceFiles

• DivaSendVoiceEx

• DivaAppendVoice

• DivaStopSending

• DivaPauseSend

• DivaContinueSend

• DivaForwardSend

• DivaRewindSend

• DivaGetSendPosition

• DivaPauseRecording

• DivaContinueRecording

• DivaGetRecordPosition

• DivaSetVolume

• DivaEnableEchoCanceller

• DivaEnableTransactionRecording

• DivaRecordVoiceFile

• DivaReceiveAudio

• DivaStopRecording

• DivaGetVoiceFileLength

• DivaSetVoiceFileLength

• DivaRecordAppendVoiceFile

• DivaEnableNoiseSuppression

DivaSendVoiceFile

DivaSendVoiceFile streams a given audio file.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pFilename

[in] The pFilename parameter points to the filename of the file containing the audio data.

bContinuous

[in] If the bContinuous parameter is set to TRUE, the audio data is streamed until DivaStopSending is called.

Return values

DWORD DivaSendVoiceFile (DivaCallHandle hdCall,
char *pFilename,
BOOL bContinuous);

Dialogic® Diva® API Functions

Page 99

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorOpenFile,
DivaErrorReadFile, DivaErrorUnsupportedFormat, DivaErrorInvalidParameter, DivaErrorInvalidState, and
DivaErrorInvalidHandle.

Remarks

The function opens the given file and converts the audio data to line format. Any other pending streaming is
automatically terminated.

Standard wave formats are supported. Available codecs are specified by the wave formats listed in
DivaAudioFormat. The function detects the format in the header of the wave audio file.

The event DivaEventSendVoiceEnded signals that the audio streaming is finished. If the continuous mode is
selected, the event DivaEventSendVoiceRestarted is signaled every time the audio is restarted.

See also

DivaEventSendVoiceDone, DivaStopSending, DivaLineCodec

DivaSendMultipleVoiceFiles

DivaSendMultipleVoiceFiles streams voice data from several files.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

nFiles

[in] The nFiles parameter specifies the number of files in ppFileArray.

ppFileArray

[in] The ppFileArray parameter is a pointer to an array of pointers to file names. These files are streamed one
after the other.

bContinuous

[in] If the parameter bContinuous is set to TRUE, streaming of the audio data is repeated until it is explicitly
stopped or the connection is terminated.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function opens the given files and converts the audio data to line format. Any other pending streaming
operation is automatically terminated.

The standard wave formats are supported. Available codecs are specified by the wave formats listed in
DivaAudioFormat. The function detects the format in the header of the wave audio file.

The DivaEventSendVoiceDone signals that audio streaming is finished. If the bContinuous flag is set, the event
is signaled each time the end of the last audio file is reached.

The event DivaEventSendVoiceEnded signals that the audio streaming is finished. If the continuous mode is
selected, the event DivaEventSendVoiceRestarted is signaled every time the audio is restarted.

See also

DWORD DivaSendMultipleVoiceFiles (DivaCallHandle hdCall,
int nFiles,
char **ppFileArray,
BOOL bContinuous);

Dialogic® Diva® API Developer’s Reference Guide

Page 100

DivaEventSendVoiceDone, DivaStopSending, DivaLineCodec, DivaSendVoiceFile

DivaSendVoiceEx

DivaSendVoiceEx streams the given audio data either from a file or a memory in the given format.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

NumObjects

[in] The NumObjects parameter defines the number of members in the voice descriptor table pointed to by
pDescriptor.

pDescriptor

[in] The pDescriptor parameter points to an array containing elements of the type DivaVoiceDescriptor. These
elements define which kind of audio data should be streamed.

bContinuous

[in] If the bContinuous parameter is set to TRUE, the audio data is streamed until the maximum time is reached,
DivaStopSending is called or the connection is disconnected.

MaxSeconds

[in] The MaxSeconds parameter defines the maximum period of time that the data should be streamed. If this
parameter is set to zero, no limit is set.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorOpenFile,
DivaErrorReadFile, DivaErrorUnsupportedFormat, DivaErrorInvalidParameter, DivaErrorInvalidState, and
DivaErrorInvalidHandle.

Remarks

The function allows flexible streaming of memory or file-based audio data using different codecs. Several audio
fragments can be combined to a single announcement. Auto repeat as well as duration limitations are possible.
The audio fragments are defined by DivaVoiceDescriptor.

The function streams the data defined in the given descriptors. Each descriptor defines either a file-based or
memory-based data set in the specified voice format. The descriptors may also define start position and duration
of the streaming independent from the file or memory length.

The Diva API streams all voice data from all descriptors. When all data from all descriptors is streamed or the
maximum time defined by MaxSeconds is reached, the event DivaEventSendVoiceEnded is signaled to the
application. If the continuous mode is selected, the event DivaEventSendVoiceRestarted is signaled every time
the audio is restarted.

See also

DivaSendVoiceFile, DivaRecordVoiceFile, DivaStopSending, DivaEventSendVoiceDone

DWORD DivaSendVoiceEx (DivaCallHandle hdCall,
DWORD NumObjects,
DivaVoiceDescriptor *pDesciptor,
BOOL bContinuous,
DWORD MaxSeconds);

Dialogic® Diva® API Functions

Page 101

DivaAppendVoice

DivaAppendVoice appends the given audio data for streaming.

Parameters

hdCall

[in] The hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or DivaConnect
or signaled with the event DivaEventIncomingCall.

pDesc

[in] The parameter pDesc points to an element of type DivaVoiceDescriptor. This element describes which kind
of audio data should be streamed.

Return values

If the function succeeds the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function allows flexible streaming of memory or file based audio data. The format and the type are specified
by the parameter pDesc that points to an element of DivaVoiceDescriptor.

The function adds the streaming to any previously initiated streaming. If no streaming is active, the function
also triggers the streaming. Once the streaming is finished, the event DivaEventSendVoiceEnded is signaled.

The function is only available for calls initiated with the call type DivaCallTypeVoice. For all other call types the
function returns DivaErrorInvalidFunction.

See also

DivaSendVoiceFile, DivaSendMultipleVoiceFiles, DivaSendVoiceEx, DivaStopSending

DivaStopSending

DivaStopSending stops any data streaming right away.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function stops any pending data streaming. It replaces the voice-specific function
DivaStopSendingVoiceFile.The function returns right away. The Diva API confirms that the streaming has stopped
and the resources are freed via the event DivaEventSendVoiceCanceled.

See also

DivaSendVoiceFile, DivaSendVoiceEx, DivaSendData

DWORD DivaAppendVoice (DivaCallHandle hdCall,
DivaVoiceDescriptor *pDesc);

DWORD DivaStopSending (DivaCallHandle hdCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 102

DivaPauseSend

DivaPauseSend pauses a currently active streaming.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

With a call to DivaPauseSend an application pauses the currently active streaming. The pausing is only defined
for streaming from audio files.

See also

DivaContinueSend, DivaStopSending, DivaForwardSend, DivaRewindSend, DivaGetSendPosition

DivaContinueSend

DivaContinueSend continues a previously paused audio streaming.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

With a call to DivaContinueSend an application continues a previously paused streaming.

See also

DivaPauseSend, DivaStopSending, DivaForwardSend, DivaRewindSend, DivaGetSendPosition

DivaForwardSend

DivaForwardSend positions the active audio streaming.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

DWORD DivaPauseSend (DivaCallHandle hdCall);

DWORD DivaContinueSend (DivaCallHandle hdCall);

DWORD DivaForwardSend (DivaCallHandle hdCall,
DivaVoicePosition *pPosition);

Dialogic® Diva® API Functions

Page 103

pPosition

[in] Pointer to a location that holds the parameter for the new position. For more information on the format see
DivaVoicePosition.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

With a call to DivaForwardSend the position of the audio file currently streamed is forwarded. If the streaming
is currently paused, only the position is updated. The application must call DivaContinueSend to continue
streaming. The new position is relative to the current position. The position can be specified in bytes or in
milliseconds.

If the new position is larger than the available data to stream, the streaming is stopped and the corresponding
event is fired.

See also

DivaPauseSend, DivaContinueSend, DivaStopSending, DivaRewindSend, DivaGetSendPosition

DivaRewindSend

DivaRewindSend positions the active audio streaming.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pPosition

[in] Pointer to a location that holds the parameter for the new position. For more information on the format, see
DivaVoicePosition.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

With a call to DivaRewindSend the position of the audio file currently streamed is rewound. If the streaming is
currently paused, only the position is updated. The application must call DivaContinueSend to continue
streaming. The new position is relative to the current position. The position can be specified in bytes or in
milliseconds.

See also

DivaPauseSend, DivaContinueSend, DivaStopSending, DivaForwardSend, DivaGetSendPosition

DWORD DivaRewindSend (DivaCallHandle hdCall,
DivaVoicePosition *pPosition);

Dialogic® Diva® API Developer’s Reference Guide

Page 104

DivaGetSendPosition

DivaGetSendPosition retrieves the current position of an active audio streaming.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pPosition

[in out] Pointer to a location that holds and returns the parameter about the positioning.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The application may retrieve the current position of the audio streaming any time while the streaming from a
file is running.

The application must set the Size and Format parameter in the DivaVoicePosition before calling
DivaGetSendPosition. When the function returns, the position value is set according to the requested format.

The internal position value is reset to zero with every new initiated streaming.

See also

DivaPauseSend, DivaContinueSend, DivaStopSending, DivaForwardSend, DivaRewindSend

DivaPauseRecording

DivaPauseRecording pauses a currently running voice recording.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The application may pause an active recording at any time. A paused recording can be continued using
DivaContinueRecording or stopped using DivaStopRecording.

See also

DivaContinueRecording, DivaStopRecording, DivaGetRecordPosition

DWORD DivaGetSendPosition (DivaCallHandle hdCall,
DivaVoicePosition *pPosition);

DWORD DivaPauseRecording (DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 105

DivaContinueRecording

DivaContinueRecording continues a previously paused recording.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

This function continues a previously paused recording.

See also

DivaPauseRecording, DivaStopRecording, DivaGetRecordPosition

DivaGetRecordPosition

DivaGetRecordPosition retrieves the current recording position.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pPosition

[in out] Pointer to a location that holds and returns the parameter about the positioning.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The application may retrieve the current position of the audio recording at any time while recording is active.

The application must set the Size and Format parameter in the DivaVoicePosition before calling
DivaGetSendPosition. When the function returns, the position value is set according to the requested format.

The internal position value is reset to zero with every new initiated streaming.

See also

DivaContinueRecording, DivaStopRecording, DivaPauseRecording

DWORD DivaContinueRecording (DivaCallHandle hdCall);

DWORD DivaGetRecordPosition (DivaCallHandle hdCall,
DivaVoicePosition *pPosition);

Dialogic® Diva® API Developer’s Reference Guide

Page 106

DivaSetVolume

DivaSetVolume sets the volume for inbound and outbound streaming.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

Volume

[in] The parameter Volume specifies the new volume to set. The value must be in the range DivaVolumeMin to
Diva VolumeMax.

Direction

[in] The parameter Direction specifies the direction for which the new volume should be used. Possible values
are defined in DivaDirection.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The volume can be specified in a range of -18 to +18 db. The Volume parameter specifies this. The volume can
be specified per direction, depending on the parameter Direction.

See also

No references.

DivaSetSamplingRate

DivaSetSampling sets the sampling rate for play or recording.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned from DivaCreateCall
or signaled with the event DivaEventIncomingCall.

SamplingRate

[in] The SampingRate parameter specifies the new sampling rate to be used. The default sampling rate is 8000.
The valid range for the sampling rate is given by the DivaSamplingRate. See Remarks below.

Direction

[in] The Direction parameter specifies if the sampling rate should be set for inbound, outbound, or both directions.
For valid values, refer to DivaDirection.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorNotSupported.

DWORD DivaSetVolume (DivaCallHandle hdCall,
DivaVolume Volume,
DivaDirection Direction);

DWORD DivaSetSamplingRate (DivaCallHandle hdCall,
DWORD SamplingRate,

DivaDirection Direction);

Dialogic® Diva® API Functions

Page 107

Remarks

The function sets the sampling at the given direction. If the underlying Dialogic® communication platform does
not support different sampling rates, DivaErrorNotSupported is returned.

If the function is called before the data channel is available, the sampling rate is stored and activated when the
data channel is established.

The default sampling rate is 8000. The minimum supported sampling rate is 1250 and the maximum sampling
rate is 51200 as defined in DivaSamplingRate.

See also

No references.

DivaEnableEchoCanceller

DivaEnableEchoCanceller enables or disables the echo canceller of a voice call.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

bEnable

[in] The parameter bEnable specifies if the echo canceller is enabled or disabled.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The echo canceller can be switched on when the connection is established via DivaConnectVoice or
DivaAnswerVoice. In addition, the application may control the echo canceller when the call is in the connected
state using DivaEnableEchoCanceller. The state of the echo canceller can be seen in the DivaCallInfo.

See also

No references.

DivaEnableTransactionRecording

DivaEnableTransactionRecording enables or disables the transaction recording.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by

DivaConnect or signaled with the event DivaEventIncomingCall.

bEnable

[in] The parameter bEnable specifies if transaction recording is enabled or disabled.

DWORD DivaEnableEchoCanceller (DivaCallHandle hdCall,
BOOL bEnable);

DWORD DivaEnableTransactionRecording (DivaCallHandle hdCall,
BOOL bEnable);

Dialogic® Diva® API Developer’s Reference Guide

Page 108

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

With the function DivaEnableTransactionRecording, the application controls if the recorded audio signal should
also contain the sent audio signal. If this function is enabled, the Diva Media Boards will mix send and received
audio into one audio stream.

See also

No references.

DivaRecordVoiceFile

DivaRecordVoiceFile writes the received audio stream to a file.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pFilename

[in] The pFilename parameter points to the filename of the file where the audio data is stored.

Format

[in] The Format parameter specifies the audio format to be used. For supported formats, see DivaAudioFormat.

MaxRecordTime

[in] The MaxRecordTime parameter specifies the time, in seconds, that is allowed for recording. A value of zero
allows unlimited recording.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidFunction, DivaErrorInvalidParameter, DivaErrorInvalidState, DivaErrorInvalidHandle,
DivaErrorUnsupportedFormat, and DivaErrorOpenFile.

Remarks

The function converts the received audio stream to the requested data format and creates the file. Note that
existing files will be overwritten.

The function returns right away. Recording ends when DivaStopRecording is called, the maximum time is reached,
or a line drop occurs. The application may specify a maximum silence via the call property
DivaCPT_VoiceRecordSilenceTimeout. When the recording ends, the event DivaEventRecordVoiceEnded is
signaled. The reason for the termination is signaled with the event. Refer to DivaRecordEndReasons for available
reasons.

See also

DivaStopRecording

DWORD DivaRecordVoiceFile (DivaCallHandle hdCall,
char *pFilename,
DivaAudioFormat Format,
DWORD MaxRecordTime);

Dialogic® Diva® API Functions

Page 109

DivaReceiveAudio

DivaReceiveAudio retrieves received audio data in the requested audio format.

Parameters

hdCall

[in] The hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or DivaConnect
or signaled with the event DivaEventIncomingCall.

pBuffer

[in] The parameter pBuffer specifies the location where the received audio data should be written.

BufferSize

[in] The parameter BufferSize specifies the length of the buffer in bytes.

pBytesWritten

[out] The parameter pBytesWritten points to a location of type DWORD where the amount of bytes written to
the buffer is placed.

Format

[in] The parameter Format specifies the audio format for which the application requests the data. Possible options
are the raw formats of DivaAudioFormat.

Return values

If the function succeeds the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function retrieves received audio information, converts it to the requested audio format and writes it to the
given buffer. The supported audio formats are the raw formats defined in DivaAudioFormat. These formats do
not write a header but contain the plain audio information. In general, the function works like DivaReceiveData
and the data conversion is done additionally.

This function is only available for calls made with the call type DivaCallTypeVoice. For all other call types the
function returns DivaErrorInvalidFunction.

Available data is signaled by the event DivaEventDataAvailable, if no recording is active.

Note: The length of the available data is reported in the line format. Depending on the requested audio format,
the amount of data retrieved by the application may be much longer.

The function returns right away, independent from the event mode.

See also

DivaReceiveData, DivaRecordVoiceFile

DWORD DivaReceiveAudio (DivaCallHandle hdCall,
unsigned char *pBuffer,
DWORD BufferSize,
DWORD *pBytesWritten,
DivaAudioFormat Format);

Dialogic® Diva® API Developer’s Reference Guide

Page 110

DivaStopRecording

DivaStopRecording stops the recording initiated by DivaRecordVoiceFile right away.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function stops any pending audio recording initiated by DivaRecordVoiceFile. The function returns right away.
The event DivaEventRecordVoiceEnded is signaled when the recording has finished and the file can be accessed
by the application. The record end reason for a user initiated termination is DivaRecordEndReasonUndefined.

See also

DivaRecordVoiceFile, DivaSendVoiceFile

DivaGetVoiceFileLength

DivaGetVoiceFileLength calculates the length of the given voice file.

Parameters

pFilename

[in] The pFilename parameter points to the file name of the file where the audio data is stored.

Format

[in] The Format parameter specifies the audio format of the file. For supported formats, see DivaAudioFormat.

PositionFormat

[in] The PositionFormat parameter specifies if the length should be returned in bytes or as duration. For supported
options, see DivaVoicePositionFormat.

pLength

[out] The pLength parameter points to a location that receives the length of the voice file.

Return Values

If the function succeeds the return value is DivaSuccess (0). Other possible return values are DivaErrorOpenFile,
DivaErrorReadFile, DivaErrorInvalidHandle, DivaErrorInvalidState, or DivaErrorInvalidParameter.

Remarks

The function calculates the length of the given audio file in the requested format, either in bytes or in milliseconds.

If the format of the existing file allows reading the audio format from the file, the parameter Format will be
ignored.

See also

DivaRecordAppendVoiceFile, DivaSetVoiceFileLength, DivaRecordVoiceFile

DWORD DivaStopRecording (DivaCallHandle hdCall);

DWORD DivaGetVoiceFileLength (char* pFilename,
DivaAudioFormat Format,
DivaVoicePositionFormat PositionFormat,
DWORD* pLength);

Dialogic® Diva® API Functions

Page 111

DivaSetVoiceFileLength

DivaSetVoiceFileLength changes the length of the voice file to the specified value.

Parameters

pFilename

[in] the pFilename parameter points to the filename of the file where the audio data is stored.

Format

[in] The Format parameter specifies the audio format of the file. For supported formats, see DivaAudioFormat.

PositionFormat

[in] The PositionFormat parameter specifies if the length is given in bytes or as duration. For supported options,
see DivaVoicePositionFormat.

Length

[in] The Length parameter specifies the new length of the voice file.

Return Values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are DivaErrorOpenFile,
DivaErrorReadFile, DivaErrorInvalidHandle, DivaErrorInvalidState or DivaErrorInvalidParameter.

Remarks

The function changes the length of the given voice file. If the voice file contains a header containing length
information, the header is updated as well. If a length is specified that is larger than the current length the
function returns DivaErrorInvalidParameter.

If the format of the existing file allows reading the audio format from the file, the parameter Format will be
ignored.

See also

DivaRecordVoiceFile, DivaRecordAppendVoiceFile, DivaGetVoiceFileLength,

DivaRecordAppendVoiceFile

DivaRecordAppendVoiceFile appends received audio data to the given file.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

pFilename

[in] The pFilename parameter points to the filename of the file where the audio data is stored.

Format

[in] The Format parameter specifies the audio format to be used. For supported formats see DivaAudioFormat.

DWORD DivaSetVoiceFileLength (char* pFilename,
DivaAudioFormat Format,
DivaVoicePositionFormat PositionFormat,
DWORD Length);

DWORD DivaRecordAppendVoiceFile (DivaCallHandle hdCall,
char* pFilename,
DivaAudioFormat Format,
DWORD MaxRecordTime);

Dialogic® Diva® API Developer’s Reference Guide

Page 112

Return values

If the function succeeds the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidFunction, DivaErrorInvalidParameter, DivaErrorInvalidState, DivaErrorInvalidHandle,
DivaErrorUnsupportedFormat, and DivaErrorOpenFile.

Remarks

In general, the function works like DivaRecordVoiceFile. If an existing audio file is detected, the audio stream
is appended to this file. If the audio file does not exist, the function behaves like DivaRecordVoiceFile.

The maximum length to record specifies the time that DivaRecordAppendVoiceFile will add to a potential existing
file.

If the file already exists and the format of the existing file allows to read the audio format from the file, the
parameter Format will be ignored.

See also

DivaRecordVoiceFile, DivaStopRecording

DivaEnableNoiseSuppression

DivaEnableNoiseSuppression enables or disables the noise suppression.

DWORD DivaEnableNoiseSuppression (DivaCallHandle hCall,
 BOOL bEnable);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

bEnable

[in] The parameter bEnable specifies if the noise suppression is enabled or disabled.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidHandle, DivaErrorInvalidState and DivaErrorNotSupported.

Remarks

The function enables or disables the noise suppression for a connected call. An application may also enable
noise suppression via the call property DivaCPT_EnableNoiceSuppression before answering or dialing a call. The
state of the noise suppression can be retrieved by the call property DivaCPT_NoiseSuppressionActive. Noise
suppression is only supported on Diva Media boards with DSPs.

See Also

DivaEnableEchoCanceller

Dialogic® Diva® API Functions

Page 113

DTMF, tone, and AMD support

The Dialogic® Diva® Diva API includes the DivaReportDTMF and DivaSendDTMF functions to support DTMF tone
detection and generation. It also supports enhanced tone generation and detection if the number of DSPs of a
Dialogic® Diva® Media Board corresponds to the number of available channels. Enhanced tone detection can be
enabled per connection as needed. The following functions are available:

• DivaReportDTMF

• DivaSendDTMF

• DivaReportTones

• DivaSendTone

• DivaSendContinuousTone

• DivaStopContinuousTone

• DivaGenerateSingleTone

• DivaGenerateDualTone

• DivaStopToneGeneration

• DivaDetectSingleTone

• DivaDetectDualTone

• DivaGetToneDetectorResult

• DivaSendGenericToneRequest

• DivaGetGenericToneInfo

• DivaSpecifyCustomTone

• DivaSetDTMFProcessingRules

• DivaGetDTMFBuffer

• DivaClearDTMFBuffer

• DivaEnableAnsweringMachineDetector

• DivaDisableAnsweringMachineDetector

• DivaDetectFSKData

• DivaStopDetectFSKData

The enhanced tone support includes detection of single tones such as multi-frequency tones and continuous
tones such as ring tones. Some tones, for example the human voice, can be detected but not generated. The
DivaContinuousTones and DivaMultiFrequencyTones data structures describe the various tones.

Note: It is not recommended to enable and disabled detectors based on detected tones. Depending on the
length of a tone, this may lead into double detection of tones on Diva boards.

DivaReportDTMF

DivaReportDTMF switches reporting of DTMF tones on or off.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

bEnable

[in] If bEnable is TRUE, detection of tones is initiated.

DWORD DivaReportDTMF (DivaCallHandle hdCall,
BOOL bEnable);

Dialogic® Diva® API Developer’s Reference Guide

Page 114

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function enables or disables reporting of tones. Detected digits are signaled by the event
DivaEventDTMFReceived. The criteria for the detection can be changed by setting the pause and duration of the
DTMF digit using the call properties VoiceDTMF_DetectDuration and VoiceDTMF_DetectPause.

The application may use the automatic processing of DTMF digits via DivaSetDTMFProcessingRules.

See also

DivaSendDTMF, DivaEventDTMFReceived, DivaSetDTMFProcessingRules

DivaSendDTMF

DivaSendDTMF sends a given sequence of DTMF tones.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

pTones

[in] The pTones parameter points to a zero-terminated string containing the DTMF tones to be sent.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function sends the given sequence of DTMF tones to the remote side. It returns right away. If a voice file
is being streamed, streaming is interrupted while the tones are sent. Valid DTMF tones are "0 to "9", "A" to
"D","*", and "#".

The pause and duration of the DTMF digits can be specified by the call properties
DivaCPT_VoiceDTMF_SendDuration and DivaCPT_VoiceDTMF_SendPause.

See also

DivaReportDTMF

DivaReportTones

DivaReportTones switches reporting of single or continuous tones on or off.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

bEnable

[in] If bEnable is TRUE, tone detection is enabled.

DWORD DivaSendDTMF (DivaCallHandle hdCall,
char *pTones);

DWORD DivaReportTones (DivaCallHandle hdCall,
BOOL bEnable);

Dialogic® Diva® API Functions

Page 115

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function enables or disables reporting of tones. The detected tones are signaled with the event
DivaEventToneDetected. The tones that can be detected are defined in DivaContinuousTones and
DivaMultiFrequencyTones.

The detection of continuous tones generates two signals, one when the tone starts and DivaEndOfTone when
the tone stops.

See also

DivaSendTone, DivaSendContinuousTone, DivaStopContinuousTone, DivaEventToneDetected

DivaSendTone

DivaSendTone sends a given sequence of multi-frequency tones.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

NumTones

[in] The NumTones parameter specifies the number of tones available in the array pointed to by pTones.

pTones

[in] The pTones parameter points to an array that contains the tones to be sent.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function sends the given sequence of tones to the remote side. The function returns right away. If a voice
file is being streamed, streaming is interrupted while the tones are sent.

The DivaEventSendToneEnded event is sent when the last tone has been streamed.

See also

DivaReportDTMF, DivaSendContinuousTone, DivaStopContinuousTone, DivaEventToneDetected

DWORD DivaSendTone (DivaCallHandle hdCall,
DWORD NumTones,
DivaMultiFrequencyTones *pTones);

Dialogic® Diva® API Developer’s Reference Guide

Page 116

DivaSendContinuousTone

DivaSendContinuousTone sends a continuous tone for a given maximum of time.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

Tone

[in] The Tone parameter defines the continuous tone to be streamed. For possible options, see
DivaContinuousTones.

MaxSeconds

[in] If the MaxSeconds parameter is set to non-zero, it specifies the period of time after which streaming is
stopped.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function initiates the streaming of the requested tone. Any previously initiated audio streaming is interrupted.
The application may limit the length of the tone streaming by setting MaxSeconds to non-zero.

The function returns right away. The streaming of the tone ends when the maximum time is reached, if selected,
or the function DivaStopContinuousTone is called. In both cases, the event DivaEventSendToneEnded is signaled
when the streaming has stopped.

See also

DivaSendTone, DivaReportDTMF, DivaStopContinuousTone, DivaEventToneDetected

DivaStopContinuousTone

DivaStopContinuousTone stops the streaming of a continuous tone.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

DWORD DivaSendContinuousTone (DivaCallHandle hdCall,
DivaContinousTones Tone,
DWORD MaxSeconds);

DWORD DivaStopContinuousTone (DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 117

Remarks

The function stops the streaming of a continuous tone initiated by DivaSendContinuousTone. Any other streaming
that was active before the tone was sent is continued.

The function returns right away. The DivaEventSendContinuousToneEnded event is signaled when the streaming
has stopped.

See also

DivaReportDTMF, DivaSendTone, DivaSendContinuousTone, DivaEventToneDetected

DivaGenerateSingleTone

DivaGenerateSingleTone generates a single tone of the given frequency and amplitude.

Parameters

hdCall

[in] The parameter hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

Frequency

[in] The parameter Frequency specifies the frequency of the tone to be generated in Hz. The value must be in
the range from 0 to 4000 Hz.

Amplitude

[in] The parameter Amplitude specifies the amplitude of the tone to be generated. The amplitude is specified in
dBm in the range of 127.996 to -127.996. The value -32767 corresponds to -127.996 dBm and the value 32767
corresponds to +127.996 dBm.

Duration

[out] The parameter Duration specifies the duration of the tone in milliseconds. A value of zero indicates no
timeout and the application must stop the tone via DivaStopToneGeneration. The maximum value is 65535.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorNotSupported.

Remarks

The function validates that the requested tone can be generated. If successful, the tone generation is started.
The tone is either generated for a specific time or the application controls the duration and stops the tone using
DivaStopToneGeneration. If the tone stopped via a timeout, the event DivaEventGenericToneEnded is signaled.

Only one tone can be generated at a time. If another request to generate a single or dual tone is issued, the
current tone is stopped.

See also

No references.

DWORD DivaGenerateTone (DivaCallHandle hdCall,
DWORD Frequency,
int Amplitude,
DWORD Duration);

Dialogic® Diva® API Developer’s Reference Guide

Page 118

DivaGenerateDualTone

DivaGenerateDualTone generates a dual tone of the given frequencies and amplitudes.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

FrequencyA

[in] The FrequencyA parameter specifies the frequency of the first tone to be generated in Hz. The value must
be in the range from 0 to 4000 Hz.

AmplitudeA

[in] The AmplitudeA parameter specifies the amplitude of the first tone to be generated. The amplitude is specified
in dBm in the range of 127.996 to -127.996. The value -32767 corresponds to -127.996 dBm and the value
32767 corresponds to +127.996 dBm.

FrequencyB

[in] The FrequencyB parameter specifies the first frequency of the second tone to be generated in Hz. The value
must be in the range from 0 to 4000 Hz.

AmplitudeB

[in] The AmplitudeB parameter specifies the amplitude of the second tone to be generated. The amplitude is
given in dBm. The amplitude is specified in dBm in the range of 127.996 to -127.996. The value -32767
corresponds to -127.996 dBm and the value 32767 corresponds to +127.996 dBm.

Duration

[out] The Duration parameter specifies the duration of the tone in milliseconds. A value of zero indicates no
timeout and the application must stop the tone via DivaStopToneGeneration. The maximum value is 65535.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorNotSupported.

Remarks

The function validates that the requested tone can be generated. If successful, the tone generation is started.
The tone is either generated for a specific time or the application controls the duration and stops the tone using
DivaStopToneGeneration. If the tone stopped via a timeout, the event DivaEventGenericToneEnded is signaled.

Only one tone can be generated at a time. If another request to generate a single or dual tone is issued, the
current tone is stopped.

See also

No references.

DWORD DivaGenerateDualTone (DivaCallHandle hdCall,
DWORD FrequencyA,
int AmplitudeA,
DWORD FrequencyB,
int AmplitudeB,
DWORD Duration);

Dialogic® Diva® API Functions

Page 119

DivaStopToneGeneration

DivaStopToneGeneration stops the currently generated tone.

Parameters

hdCall

[in] The hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or DivaConnect
or signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function stops the generation of a tone. The tone stops when the function returns. No event
DivaEventGenericToneEnded is signaled.

See also

No references.

DivaDetectSingleTone

DivaDetectSingleTone enables the generic tone detector for a single tone.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

ReportFlags

[in] The ReportFlags parameter specifies which characteristics of the detected tone should be reported. For
options, refer to DivaSingleToneReport.

MinDuration

[in] The MinDuration parameter specifies the minimum duration of a tone before the detection is reported. The
time is given in milliseconds.

MinSNR

[in] The MinSNR parameter specifies the minimum signal to noise ratio. The value is specified in dB in the range
of 128 dB to -128 dB. The value of -32768 corresponds to -128 dB, the value 32767 corresponds to +127.996 dB.

MinLevel

[in] The MinLevel parameter specifies the minimum level of the detected signal. The value is specified in dB in
the range of 127.996 to -127.996. The value of -1 corresponds to any level, the value -32767 corresponds to
-127.996 dB and the value 32767 corresponds to +127.996 dB.

DWORD DivaStopToneGeneration (DivaCallHandle hdCall);

DWORD DivaDetectSingleTone (DivaCallHandle hdCall,
DWORD ReportFlags,
DWORD MinDuration,
int MinSNR,
int MinLevel,
DWORD MaxAM,
DWORD MaxFM);

Dialogic® Diva® API Developer’s Reference Guide

Page 120

MaxAM

[in] The MaxAM parameter specifies the maximum allowed variation of the signal level. This corresponds to the
maximum amplitude modulation. The value is given in dB in the range of 0 db (0) to 255.996 dB (65535).

MaxFM

[in] The MaxFM parameter specifies the maximum allowed variation of the signal frequency. This corresponds
to the maximum frequency modulation. The value is given in the range of 0 to 4000 Hz.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorNotSupported.

Remarks

The function validates that the requested tone can be detected. If successful, the tone detection is started. Any
previously enabled and still pending generic tone detection is stopped.

When a tone within the specified range is detected the event DivaEventGenericToneDetector is signaled. The
application must retrieve the information via DivaGetToneDetectorResult.

See also

No references.

DivaDetectDualTone

DivaDetectDualTone enables the generic tone detector for a dual tone.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

ReportFlags

[in] The ReportFlags parameter specifies which characteristics of the detected tone should be reported. For
options, refer to DivaDualToneReport.

MinDuration

[in] The MinDuration parameter specifies the minimum duration of a tone before the detection is reported. The
time is given in milliseconds.

MinSNR

[in] The MinSNR parameter specifies the minimum signal to noise ratio. The value is specified in dB in the range
of 128 to -128. The value of -32768 corresponds to -128 dB, the value 32767 corresponds to +127.996 dB.

MinLevel

[in] The MinLevel parameter specifies the minimum level of the detected signal. The value is specified in dB in
the range of 127.996 to -127.996. The value of -32768 corresponds to no minimum level, the value -32767
corresponds to -127.996 dB and the value 32767 corresponds to +127.996 dB.

DWORD DivaDetectDualTone (DivaCallHandle hdCall,
DWORD ReportFlags,
DWORD MinDuration,
int MinSNR,
int MinLevel,
int MaxDiffHighToLow,
int MaxDiffLowToHigh);

Dialogic® Diva® API Functions

Page 121

MaxDiffHighToLow

[in] The MaxDiffHighToLow parameter specifies the maximum allowed difference in levels between the higher
and the lower frequency tone. The value -32767 corresponds to -127.996 dB and the value 32767 corresponds
to +127.996 dB. The value -32768 is invalid. A dual tone is valid when the level of the higher frequency tone
does not exceed the level of the lower frequency tone by more than MaxDiffHighToLow dB.

MaxDiffLowToHigh

[in] The MaxDiffLowToHigh parameter specifies the maximum allowed difference in levels between the lower
and higher frequency tone. The value -32767 corresponds to -127.996 dB and the value 32767 corresponds to
+127.996 dB. The value -32768 is invalid. A dual tone is valid when the level of the lower frequency tone does
not exceed the level of the higher frequency tone by more than MaxDiffHighToLow dB.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorNotSupported.

Remarks

The function validates that the requested tone can be detected. If successful, the tone detection is started. Any
pending previously enabled generic tone detection is stopped.

When a matching dual tone is detected the event DivaEventGenericToneDetector is signaled. The application
must retrieve the information via DivaGetToneDetectorResult.

See also

No references.

DivaGetToneDetectorResult

DivaGetToneDetectorResult retrieves the information for a detected single or dual tone.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

pResults

[out] The pResult parameter specifies a location in memory of type DivaToneDetectorResults where the
information about the detected tone is written.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorInvalidState.

Remarks

The function validates that tone detection is pending and detector information is available. The information
depends on the enabled detector and if the tone started or stopped. For details on the information, refer to
DivaToneDetectorResults.

See also

No references.

DWORD DivaGetToneDetectorResult (DivaCallHandle hdCall,
DivaToneDetectorResults *pResults);

Dialogic® Diva® API Developer’s Reference Guide

Page 122

DivaSendGenericToneRequest

DivaSendGenericToneRequest sends a request coded by the application to the generic tone engine.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

Function

[in] The Function parameter specifies the requested function. The functions are Get Supported Services, Enable
Tone operation and Disable Tone operation.

pRequest

[in] The pRequest parameter specifies a location in the memory where the generic tone request is stored. Upon
return of the function, the buffer is free.

RequestLen

[in] The RequestLen parameter specifies the amount of data in pRequest in bytes.

Handle

[in] The Handle parameter specifies an application defined value that is signaled with the confirmation for the
request.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The given request data is passed to the generic tone engine without further interpretation. The application must
ensure that the data is coded in accordance with the CAPI Extensions "Generic Tone Generator and Detector".

Each request that succeeds is answered by a confirmation. The confirmation is signaled via the event
DivaEventGenericToneInfo. The application must retrieve the information using DivaGetGenericToneInfo.

The detector signals results also via the event DivaEventGenericToneInfo. The application retrieves the
information via DivaGetGenericToneInfo. The returned data contains information regarding whether data should
be interpreted as confirmation or indication data.

See also

No references.

DWORD DivaSendGenericToneRequest (DivaCallHandle hdCall,
DivaGenericToneFunction Function,
BYTE *pRequest,
DWORD RequestLen,
Void *Handle);

Dialogic® Diva® API Functions

Page 123

DivaGetGenericToneInfo

DivaGetGenericToneInfo retrieves a confirmation or indication from the generic tone engine.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

pInfoBuffer

[in] The pInfoBuffer parameter specifies a location in the memory where the information is placed. For more
information on the structure of the information, refer to DivaGenericToneInfo.

InfoBufferLen

[in] The InfoBufferLen parameter specifies the overall size in bytes of the memory specified by pInfoBuffer.

pBytesWritten

[in] The pBytesWritten parameter specifies a location in memory of type DWORD where the amount of data
written to pInfoBuffer is placed. If the application is not interested in this information, pBytesWritten may be
set to zero.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The application calls DivaGetGenericToneInfo when the event DivaEventGenericToneInfo is signaled. The
function provides a confirmation or indication information to the application.

The application must provide a buffer of type DivaGenericToneInfo. The required size can be queried by setting
pInfoBuffer to zero. In this case, the required size is returned in the location specified by pBytesWritten.

See also

No references.

DivaSpecifyCustomTone

Via DivaSpecifyCustomTone, the application specifies a specific event to be signaled if a custom tone or sequence
is detected.

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaConnect or
signaled with the event DivaEventIncomingCall.

DWORD DivaGetGenericToneInfo (DivaCallHandle hdCall,
DivaGenericToneInfo *pInfoBuffer,
DWORD InfoBufferLen,
DWORD *pBytesWritten);

DWORD DivaSpecifyCustomTone (DivaCallHandle hdCall,
DWORD Type,
DWORD Recurrences,
DWORD NumDefinitions,
DivaToneDefinition* pDefinitions);

Dialogic® Diva® API Developer’s Reference Guide

Page 124

Type

[in] The parameter Type identifies how the tone should be interpreted. Valid options are DivaRingingTone and
DivaBusyTone.

Recurrences

[in] The parameter Recurrences specifies how often the tone and pause sequence specified by pDefinitions must
be repeated to trigger the event specified by Type.

NumDefinitions

[in] The parameter NumDefinitions specifies the number of members in the definition table pointed to by
pDefinitions.

pDefinitions

[in] The parameter pDefinitions points to an array containing elements of type DivaToneDefinition. These
elements describe the frequencies, duration, pause, and variations of the tone.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorNotSupported, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

Via DivaSpecifyCustomTone, the application may specify one or more custom tones and cadences to be indicated
via a single event to the application. Each tone definition specified via a DivaToneDefinition contains the
specification about the tone, namely, whether the tone is single or dual, what the duration of the tone is, and
optionally what the tone pause is. Multiple definitions can be used to define the cadence to be detected. If the
cadence should occur multiple times before this is indicated to the application, the parameter Recurrences can
be used. The occurrence of the tone or cadence is indicated by the event DivaEventCustomToneDetected and
the Type parameter is signaled with the event.

See also

DivaEventCustomToneDetected

DivaSetDTMFProcessingRules

DivaSetDTMFProcessingRules defines the action in combination with received DTMF digits.

Parameters

hdCall

[in] The parameter hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

Group

[in] The parameter Group specifies the category for which the rules are valid. The rules can be valid for event
reporting, streaming, and recording. The possible options are defined in DivaProcessingGroup.

TerminationDigitMask

[in] The parameter TerminationDigitMask specifies which digits trigger an immediate action. For valid digit masks,
refer to DivaTerminationDigits.

DWORD DivaSetDTMFProcessingRules (DivaCallHandle hdCall,
DivaProcessingGroup Group,
DWORD TerminationDigitMask,
DWORD MaxDigits,
DWORD InterDigitTimeout,
DWORD IntialDigitTimeout,
DWORD MaxTimeout);

Dialogic® Diva® API Functions

Page 125

MaxDigits

[in] The parameter MaxDigits specifies the amount of digits that trigger an action. A value of zero disables this
rule.

InterDigitTimeout

[in] The parameter InterDigitTimeout specifies the maximum time between two received DTMF digits. The time
is given in milliseconds. The timer resolution is 100 milliseconds.

IntialDigitTimeout

[in] The parameter IntialDigitTimeout specifies the maximum time to receive the first DTMF digit. The time is
given in milliseconds. The timer resolution is 100 milliseconds. A value of zero disables this timeout.

MaxTimeout

[in] The parameter MaxTimeout specifies the maximum time for the rule. If no other event terminates the rule,
the maximum timeout terminates after the given time. The time is given in milliseconds. The timer resolution
is 100 milliseconds. A value of zero disables this timeout.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle and DivaErrorInvalidParameter.

Remarks

With a call to DivaSetDTMFProcessingRules the application defines the processing of received DTMF digits. The
processing rules can be set separately for each group. Please note that all groups process the same DTMF buffer.

All timeouts are optional, and a value of zero disables them. The initial digit timeout defines the time within
which the first digit is expected. The inter digit timeout is started when the first digit is received. This timeout
is not valid for the first received digit. The maximum timeout can be used to have a maximum time for the whole
rule if no other event terminates the rule.

Note: Calling this function has no impact on digits already in the internal buffer. If a processing rule for a
termination digit or maximum digits is given and the digits in the buffer fulfill this rule, the action may be taken,
depending on the group. For an event group the event would be fired right away. For the streaming group, the
action would be taken when the streaming is started. A rule for streaming and recording would expire right
away. If no streaming or recording is ongoing, there will be no event.

Once a rule detects one of the termination conditions, the whole rule for this group is terminated. Even if more
digits are received, they are not processed for this group unless the application sets a new rule.

See also

DivaGetDTMFBuffer, DivaClearDTMFBuffer, DivaEventDTMFTerminationDigit, DivaEventDTMFMaxDigits,
DivaEventDTMFInitialDigitTimeout, DivaTerminationDigits, DivaEventDTMFInterDigitTimeout

Dialogic® Diva® API Developer’s Reference Guide

Page 126

DivaGetDTMFBuffer

DivaGetDTMFBuffer retrieves the received DTMF digits.

Parameters

hdCall

[in] The parameter hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

Buffer

[out] The parameter Buffer specifies a location in memory where the digits should be placed.

BufferSize

[in] The parameter BufferSize specifies the length of the buffer.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidHandle, DivaErrorInvalidParameter, and DivaErrorDataSize.

Remarks

The application gets a copy of the internal DTMF buffer by calling this DivaGetDTMFBuffer, The digits remain in
the internal buffer until the application calls DivaClearDTMFBuffer. The function is a synchronous function and
can be called at any time.

See also

DivaSetDTMFProcessingRules, DivaClearDTMFBuffer

DivaClearDTMFBuffer

DivaClearDTMFBuffer clears the internal DTMF buffer.

Parameters

hdCall

[in] The hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or DivaConnect
or signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The function clears the internal DTMF buffer. The function is a synchronous function and can be called at any time.

See also

DivaSetDTMFProcessingRules, DivaGetDTMFBuffer

DWORD DivaGetDTMFBuffer (DivaCallHandle hdCall,
char * Buffer,
DWORD BufferSize);

DWORD DivaClearDTMFBuffer (DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 127

DivaEnableAnsweringMachineDetector

DivaEnableAnsweringMachineDetector starts the detection process based on the length of prompt-based
answering machine detection.

Parameters

hdCall

[in] The hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or DivaConnect.

MaxInitialSilence

[in] The parameter MaxInitialSilence specifies the time, in milliseconds, until the remote side starts speaking.
When this timeout is reached without detecting a speaker, the answering machine detector terminates with the
result DivaResultSilence.

MaxHumanSpeakerTime

[in] The parameter MaxHumanSpeakerTime specifies the time, in milliseconds, that is seen as the maximum
time a human speaker would speak when answering the phone. If the announcement from the called party is
longer than the specified time, it will be interpreted as an answering machine.

MaxInterSpeakerTimeout

[in] The parameter MaxInterSpeakerTimeout specifies the maximum time, in milliseconds, the human speech
may be interrupted after it has started to be interpreted as continuous speech.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

With a call to DivaEnableAnsweringMachineDetector, the application enables the analysis of the inbound audio
stream for answering machine detection based on the length of the speech. The result is reported via the event
DivaEventAnsweringMachineDetector.

The Dialogic® Diva® SDK compares the length of the received speech with the given parameter. If the length
of the announcements is below MaxHumanSpeakerTime, a human has answered the phone. If the length is
above MaxHumanSpeakerTime, an answering machine has answered.

If no signal is received, the detector terminates when the MaxInitialSilence is reached.

If the detector detects the remote peer as an answering machine, the termination event with the result
DivaResultAnsweringMachine is signaled. At this time, the announcement of the answering machine may still
be streamed.

Note: The answering machine detector requires detection capabilities not currently available on all Dialogic®

communication platforms. The application may check for the extended voice capabilities of a line device. The
detection must be enabled by the application using DivaReportTones.

See also

DivaEventAnsweringMachineDetector, DivaDisableAnsweringMachineDetector,
DivaResultAnsweringMachineDetector

DWORD DivaEnableAnsweringMachineDetector (DivaCallHandle hdCall,
DWORD MaxInitialsilence,
DWORD MaxHumanSpeakerTime,
DWORD MaxInterSpeakerTimeout);

Dialogic® Diva® API Developer’s Reference Guide

Page 128

DivaDisableAnsweringMachineDetector

DivaDisableAnsweringMachineDetector stops the answering machine detector.

Parameters

hdCall

[in] The hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or DivaConnect.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

With a call to DivaDisableAnsweringMachineDetector, the application stops a previously started detector. The
stopping is confirmed with an event DivaEventAnsweringMachineDetector with the result set to
DivaResultUserTerminated.

See also

DivaEnableAnsweringMachineDetector

DivaDetectFSKData

DivaDetectFSKData switches the detection of FSK data on.

Parameter

hdCall

The parameter hdCall is the Diva SDK call handle provided with the event DivaEventIncomingCall or returned
by DivaCreateCall.

Sensitivity

This parameter specifies the sensitivity. The value is specified in dB in the range of 128 dB to -128 dB. The value
of -32768 corresponds to -128 dB, the value 32767 corresponds to +127.996 dB.

Modulation

This parameter specifies the modulation to be used for FSK detection. For valid options, refer to
DivaFSKModulation.

Options

The Options parameter specifies how FSK data is provided to the application. Valid options are defined by
FSKDetectorOptions; see Remarks for more information.

Returns

The function returns DivaSuccess (0) if the underlying line device supports detection of FSK data. Other possible
errors are DivaErrorInvalidHandle, DivaErrorNotSupported, and DivaErrorInvalidParameter.

DWORD DivaDisableAnsweringMachineDetector (DivaCallHandle hdCall);

DWORD DivaDetectFSKData (DivaCallHandle hdCall,
int Sensitivity,
DivaFSKModulation Modulation,
DWORD Options);

Dialogic® Diva® API Functions

Page 129

Remarks

The function starts the detector for FSK data. The function is only valid if the call is established with the call type
DivaCallTypeVoice. By default, the Diva SDK filters the FSK data on a frame base by validating length fields and
the checksum. If the application requires the complete received FSK data, the option DivaFSKOptionTransparent
can be set. In that case, the application gets all data including the preamble bytes.

A sample call to enable detection of V.23 modulated data would be:

Result = DivaDetectFSKData (hCall,
 -46,
 DivaFSKModulationV23,
 DivaFSKOptionDefault);

See also

DivaStopDetectFSKData

DivaStopDetectFSKData

DivaStopDetectFSKData switches a previously enabled FSK detector off.

Parameter

hdCall

The parameter hdCall is the Diva SDK call handle provided with the event DivaEventIncomingCall or returned
by DivaCreateCall.

Returns

The function returns DivaSuccess (0) if the underlying line device supports detection of FSK data. Other possible
errors are DivaErrorInvalidHandle, DivaErrorNotSupported, and DivaErrorInvalidState.

Remarks

The function stops a previously enabled FSK detector.

See also

DivaDetectFSKData

Speech Recognizer Support

The Dialogic® Diva® SDK provides build in access to speech recognizer via the Media Resource Control Protocol
(MRCP) version 1. The communication with the Speech Recognizer is done by the Diva SDK, the application
continues to use the Diva SDK interface. The Diva SDK streams the audio signal via RTP to the speech recognizer
and controls the recognition process via MRCPv1. The application may use any streaming and recording function
in parallel to the speech recognition.

The Diva SDK will provides high level functions to setup speech recognizer sessions, to start recognition and to
retrieve recognition results. Setting up the parameter to access a speech recognizer and configure the session
can be done by the application calling Diva SDK functions or via a configuration file. The Diva SDK implements
a high abstraction level comparable to enabling and processing DTMF tones. As a minimum requirement the
application would call DivaOpenSpeechRecognizer when a call is connected and DivaStartSpeechRecognition
when recognition should start. The result would be reported via event and the application would retrieve the
result via DivaGetSpeechRecognizerResult. Optionally the Diva SDK allows to set detailed configuration
parameter e.g. for grammar via DivaSetSpeechRecognizerParameter or DivaSetSpeechRecognizerGrammar..

In the simplest scenario the parameter for accessing the speech engine are configured via the configuration file
and the application just needs to perform the following steps:

1. Open a recognizer session via DivaOpenSpeechRecognizer when the call is initiated, answered or connected.

2. Start recognition via DivaStartSpeechRecognizer

DWORD DivaStopDetectFSKData (DivaCallHandle hdCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 130

3. Process the event DivaEventSpeechRecognizerProgress

4. Retrieve recognizer results via DivaGetSpeechRecognizerResult

5. Continue with 2) for next recognition on the same call if needed

6. Stop the recognizer session via DivaStopSpeechRecognizer (will be done implicit when the call is closed).

The following functions are available for speech recognizer support:

• DivaInitializeSpeechProcessing

• DivaOpenSpeechRecognizer

• DivaCloseSpeechRecognizer

• DivaStartSpeechRecognizer

• DivaStopSpeechRecognizer

• DivaGetSpeechRecognizerResult

• DivaGetSpeechRecognizerResultDetails

• DivaSetSpeechRecognizerParameter

• DivaSetSpeechRecognizerGrammar

• DivaCreateSpeechRecognizer

• DivaSetSpeechRecognizerDefaultParameter

• DivaSetSpeechRecognizerDefaultGrammar

DivaInitializeSpeechProcessing

DivaInitializeSpeechProcessing initializes the speech processing for recognizer and synthesizer.

DWORD DivaInitializeSpeechProcessing (const char* LocalIpAddress);

Parameter

LocalIpAddress

[in] The LocalIpAddress parameter allows the application to specify the local IP address to be used. The
parameter is optional and may be set to zero, see remarks.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, and DivaErrorNotSupported.

Remarks

The function initializes the speech processing and must be called before any other speech recognizer or speech
synthesizer related function is called. The application may specify a local IP address, if not specified the default
network address is used. Different local IP addresses may also be specified per speech server.

See Also

DivaCreateSpeechRecognizer

DivaOpenSpeechRecognizer

DivaOpenSpeechRecognizer establishes a session with a speech recognizer.

DWORD DivaOpenSpeechRecognizer (DivaCallHandle hdCall,
 const char* RecognizerName);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

Dialogic® Diva® API Functions

Page 131

RecognizerName

[in] The RecognizerName parameter specifies the recognizer to be used. The recognizer is identified by a symbolic
name, which is specified in the configuration file or via DivaCreateSpeechRecognizer. The parameter is optional,
if not specified the first configured speech recognizer is used.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorNotSupported, DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function initiates a session with the specified speech recognizer. The status of the session is reported
asynchronously via the event DivaEventSpeechRecognizerStatus. Note that only one recognizer can be open
for a DivaCallHandle. If a recognizer session is already open the function will return DivaErrorInvalidState.

Multiple speech recognizers may be available in a system. The recognizers are identified by a symbolic name
and the application may select which recognizer should be opened by the parameter RecognizerName. If only
one speech recognizer is available the parameter can be set to NULL or an empty string.

See Also

DivaEventSpeechRecognizerStatus, DivaStartSpeechRecognizer, DivaCloseSpeechRecognizer

DivaCloseSpeechRecognizer

DivaCloseSpeechRecognizer terminates a session with a speech recognizer.

DWORD DivaCloseSpeechRecognizer (DivaCallHandle hdCall);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported and DivaErrorInvalidHandle.

Remarks

The function terminates a session with the specified speech recognizer. The status of the session is reported
asynchronously via the event DivaEventSpeechRecognizerStatus.

See Also

DivaEventSpeechRecognizerStatus, DivaStartSpeechRecognizer, DivaCloseSpeechRecognizer

DivaStartSpeechRecognizer

DivaStartSpeechRecognizer starts the recognition process.

DWORD DivaStartSpeechRecognizer (DivaCallHandle hdCall,
 BOOL bAutoRestart);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

bAutoRestart

[in] The bAutoRestart parameter specifies that the recognition process is automatically restarted after a match
or no-match event. The parameter is reserved for future use.

Dialogic® Diva® API Developer’s Reference Guide

Page 132

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported, DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function starts the recognition process. The progress of the recognition is reported asynchronously via the
event DivaEventSpeechRecognizerProgress. For progress options refer to DivaSpeechRecognizerProgress. The
application may stop processing before the recognition completes by calling DivaStopSpeechRecognizer.

See Also

DivaEventSpeechRecognizerProgress, DivaStopSpeechRecognizer, DivaOpenSpeechRecognizer,
DivaCloseSpeechRecognizer

DivaStopSpeechRecognizer

DivaStopSpeechRecognizer starts the recognition process.

DWORD DivaStopSpeechRecognizer (DivaCallHandle hdCall);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported, DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

The function stops the recognition process. The stop is confirmed via the event
DivaEventSpeechRecognizerProgress. Note that the speech recognizer resource remains open and attached to
the call.

See Also

DivaEventSpeechRecognizerProgress, DivaStartSpeechRecognizer, DivaOpenSpeechRecognizer,
DivaCloseSpeechRecognizer, DivaGetSpeechRecognizerResult

DivaGetSpeechRecognizerResult

DivaGetSpeechRecognizerResult retrieves the recognition result.

DWORD DivaGetSpeechRecognizerResult (DivaCallHandle hdCall,
 char* pTextBuffer,
 DWORD* pTextSize,
 DWORD* pConfidence);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

pTextBuffer

[out] The pTextBuffer parameter is a reference to a buffer that receives the text detected by the speech
recognizer.

Dialogic® Diva® API Functions

Page 133

pTextSize

[in / out] The pTextSize parameter is a reference to a DWORD value that contains the size of the buffer referenced
by pTextBuffer when the function is called and returned the amount of bytes written or needed on return. Refer
to remarks for details.

pConfidence

[out] The pConfidence parameter is a reference to a DWORD value that receives the confidence level of the
recognition. The parameter is optional, if the application does not need the confidence level the parameter may
be set to NULL.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported, DivaErrorInvalidState, DivaErrorNoDataAvailable, DivaErrorInsufficientBuffer and
DivaErrorInvalidHandle.

Remarks

The function retrieves the results of the speech recognition. The application passes a buffer to retrieve the
detected text. The length of the buffer is passed as reference value. If the buffer is too small to receive the
text the function returns DivaErrorInsufficientBuffer and the required size is places into the location specified
by pTextSize. The application may call DivaGetSpeechRecognizerResult with the pTextBuffer parameter set to
NULL to retrieve the needed size. If no recognized data is pending the function returns DivaErrorNoDataAvailable.

The recognition results may contain addition information like type of detected data, e.g. speech or digit, and the grammar that
has been used. Detailed information is returned by the function DivaGetSpeechRecognizerResultDetails.

See Also

DivaEventSpeechRecognizerProgress,DivaOpenSpeechRecognizer,DivaCloseSpeechRecognizer,DivaStartSpeec
hRecognizer,DivaStopSpeechRecognizer,DivaGetSpeechRecognizerResultDetails

DivaGetSpeechRecognizerResultDetails

DivaGetSpeechRecognizerResultDetails retrieves detailed information about the recognition result.

DWORD DivaGetSpeechRecognizerResultDetails (DivaCallHandle hdCall,
 DivaSpeechRecognizerResultType Type,
 char* pBuffer,
 DWORD* pSize);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

Type

[out] The Type parameter identifies the type of results to retrieve. For available types refer to the remarks
section.

pBuffer

[out] The pBuffer parameter is a reference to a buffer that receives the information specified by the Type
parameter..

pSize

[in / out] The pSize parameter is a reference to a DWORD value that contains the size of the buffer referenced
by pBuffer when the function is called and returned the amount of bytes written or needed on return. Refer to
remarks for details.

Return values

Dialogic® Diva® API Developer’s Reference Guide

Page 134

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported, DivaErrorInvalidState, DivaErrorNoDataAvailable, DivaErrorInsufficientBuffer and
DivaErrorInvalidHandle.

Remarks

The function retrieves the detailed results of the speech recognition. The application passes a buffer to retrieve
the textual information. The length of the buffer is passed as reference value. If the buffer is too small to
receive the text the function returns DivaErrorInsufficientBuffer and the required size is places into the location
specified by pSize. The application may call DivaGetSpeechRecognizerResultDetailst with the pBuffer parameter
set to NULL to retrieve the needed size. If no recognized data is pending the function returns
DivaErrorNoDataAvailable.

The returned information depends on the requested type of information. Valid types are interpretation, grammar and content.
For details refer to DivaSpeechRecognizerResultType.

See Also

DivaEventSpeechRecognizerProgress, DivaOpenSpeechRecognizer, DivaCloseSpeechRecognizer,
DivaStartSpeechRecognizer, DivaStopSpeechRecognizer, DivaGetSpeechRecognizerResult

DivaSetSpeechRecognizerParameter

DivaSetSpeechRecognizerParameter sets or updates the parameter for speech recognition.

DWORD DivaSetSpeechRecognizerParameter (DivaCallHandle hdCall,
 const char* Name,
 const char* Value);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

Name

[in] The Name parameter specifies the name of the parameter.

Value

[in] The Value parameter specifies the value to be set for the parameter.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function sets the parameter for speech recognition for the call specified by the parameter hdCall. If the
parameter already exists the value will be changed to the new value. If the parameter does not exist the
parameter will be added to the end of the list of existing parameters.

The function can be called for an open speech recognizer session. If the recognizer session is not open or the
speech recognition process is running the function will return DivaErrorInvalidState.

See Also

DivaEventSpeechRecognizerProgress, DivaOpenSpeechRecognizer, DivaCloseSpeechRecognizer,
DivaStartSpeechRecognizer, DivaStopSpeechRecognizer, DivaSetSpeechRecognizerGrammar

DivaSetSpeechRecognizerGranmar sets or updates the grammar for speech recognition.

DWORD DivaSetSpeechRecognizerGrammar (DivaCallHandle hdCall,
 const char* ContentType,
 const char* ContentId,

Dialogic® Diva® API Functions

Page 135

 const char* Grammar);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

ContentType

[in] The ContentType parameter specifies the type of content provided by the Grammar parameter.

ContentId

[in] The ContentId parameter specifies the identifier to be sent with the grammar definition.

Grammar

[in] The Grammar parameter specifies the grammar to be used. The format depends on the ContentType
parameter, e.g. a URI list or an XML based definition.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function sets the grammar for speech recognition for the call specified by the parameter hdCall. If the
grammar is already defined it will be overwritten. The grammar and the type of content are passed unchanged
to the speech recognizer.

The function can be called for an open speech recognizer session. If the recognizer session is not open or the
speech recognition process is running the function will return DivaErrorInvalidState.

See Also

DivaOpenSpeechRecognizer, DivaCloseSpeechRecognizer, DivaStartSpeechRecognizer,
DivaStopSpeechRecognizer

DivaSetSpeechRecognizerGrammar

DivaSetSpeechRecognizerGranmar sets or updates the grammar for speech recognition.

DWORD DivaSetSpeechRecognizerGrammar (DivaCallHandle hdCall,
 const char* ContentType,
 const char* ContentId,
 const char* Grammar);

Parameter

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

ContentType

[in] The ContentType parameter specifies the type of content provided by the Grammar parameter.

ContentId

[in] The ContentId parameter specifies the identifier to be sent with the grammar definition.

Grammar

[in] The Grammar parameter specifies the grammar to be used. The format depends on the ContentType
parameter, e.g. a URI list or an XML based definition.

Return values

Dialogic® Diva® API Developer’s Reference Guide

Page 136

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function sets the grammar for speech recognition for the call specified by the parameter hdCall. If the
grammar is already defined it will be overwritten. The grammar and the type of content are passed unchanged
to the speech recognizer.

The function can be called for an open speech recognizer session. If the recognizer session is not open or the
speech recognition process is running the function will return DivaErrorInvalidState.

See Also

DivaOpenSpeechRecognizer, DivaCloseSpeechRecognizer, DivaStartSpeechRecognizer,
DivaStopSpeechRecognizer, DivaSetSpeechRecognizerParameter

DivaCreateSpeechRecognizer

DivaCreateSpeechRecognizer creates a speech recognizer instance and assigns common parameter for all sessions.

DWORD DivaCreateSpeechRecognizer (const char* Name,
 DivaMrcpVersion Version,
 const char* ServerName,
 const char* ServerIpAddress,
 DWORD ServerPort,
 const char* DefaultMediaPath,
 const char* LocalIpAddress);

Parameter

Name

[in] The Name parameter is a symbolic name that must be unique within the system. The name identifies the
speech server for all following default parameter settings and for opening a session at this recognizer.

Version

[in] The Version parameter specifies the MRCP version used for communication with the speech recognizer.

ServerName

[in] The ServerName parameter specifies the network name of the server that is running the recognizer. The parameter
is optional if a ServerIpAddress is specified. If no name is provided, the ServerIpAddress will be used.

ServerIpAddress

[in] The ServerIpAddress parameter specifies the IP address of the server running the recognizer. The parameter is optional
if a ServerName is provided.

ServerPort

[in] The ServerPort parameter specifies the port number the server is listening for requests. If set to zero the default port for the
MRCP version is used, e.g. 4900 for MRCPv1.

DefaultMediaPath

[in] The DefaultMediaPath parameter specifies any optional media path to be used to address the recognizer. The parameter
is optional. If not specified the speech recognizer is addressed by the IP address or name and the port.

LocalIpAddress

[in] The LocalIpAddress parameter specifies the local IP address to be used. The parameter is optional. By
default the IP address of the default network interface is used. The application may specify an address if multiple
network interfaces are available in a system.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported or DivaErrorInvalidParameter.

Remarks

Dialogic® Diva® API Functions

Page 137

The function creates an object for the given parameter. The object must have a unique symbolic name. If the
name already exists the application will return DivaErrorInvalidParameter. The application may assign default
parameter and default grammar to the object. If a session is created via DivaOpenSpeechRecognizer these
default parameter are used to initialize the session.

See Also

DivaSetSpeechRecognizerDefaultParameter, DivaSetSpeechRecognizerDefaultGrammar,
DivaOpenSpeechRecognizer

DivaSetSpeechRecognizerDefaultParameter

DivaSetSpeechRecognizerDefaultParameter sets the default parameter for this speech recognizer.

DWORD DivaSetSpeechRecognizerDefaultParameter (const char* Name,
 const char* ParameterName,
 const char* ParameterValue);

Parameter

Name

[in] The Name parameter identifies the speech recognizer. The name has been assigned by a call to
DivaCreateSpeechRecognizer or by an instance in the configuration file.

ParameterName

[in] The ParameterName parameter specifies the name of the parameter.

ParameterValue

[in] The ParameterValue parameter specifies the value to be set for the parameter.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported and DivaErrorInvalidHandle.

Remarks

The function sets the default parameter for speech recognition. These parameters will be implicitly assigned to
a recognition session when DivaOpenSpeechRecognizer is called using the Name of this recognizer.

See Also

DivaOpenSpeechRecognizer, DivaCreateSpeechRecognizer, DivaSetSpeechRecognizerDefaultGrammar

DivaSetSpeechRecognizerDefaultGrammar

DivaSetSpeechRecognizerDefaultGranmar sets the default grammar for this speech recognizer.

DWORD DivaSetSpeechRecognizerDefaultGrammar (const char* Name,
 const char* ContentType,
 const char* ContentId,
 const char* Grammar);

Parameter

Name

[in] The Name parameter identifies the speech recognizer. The name has been assigned by a call to
DivaCreateSpeechRecognizer.

ContentType

[in] The ContentType parameter specifies the type of content provided by the Grammar parameter.

ContentId

[in] The ContentId parameter specifies the identifier to be used for the Grammar.

Dialogic® Diva® API Developer’s Reference Guide

Page 138

Grammar

[in] The Grammar parameter specifies the grammar to be used. The format depends on the ContentType
parameter, e.g. a URI list of an XML based definition.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are,
DivaErrorNotSupported, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function sets the default grammar for speech recognition. These grammar parameters will be implicitly
assigned to a recognition session when DivaOpenSpeechRecognizer is called using the Name of this recognizer.

See Also

DivaOpenSpeechRecognizer, DivaCreateSpeechRecognizer, DivaSetSpeechRecognizerDefaultParameter

Dialogic® Diva® API Functions

Page 139

Call Transfer

Call transfer can be done in various ways. Usually, one call is on hold while the second call is created, then the
transfer is completed. The second call may be created by the application or by the Diva API. If the call is created
inside the Diva API, the transfer is called "blind transfer". A call transfer may also be performed based on a
single call, which is called Call Deflection.

To enable implementation of the call transfer functionality for application developers, the Diva API provides the
framework for call transfer. In some cases, for example, if both calls must be handled on the same channel of
an ISDN line, the call must be established following specific rules.

The following logical functions are available for call transfer:

• DivaSetupCallTransfer (optional)

• DivaCompleteCallTransfer

• DivaBlindCallTransfer

• DivaAcceptCallTransfer

• DivaRejectCallTransfer

• DivaListenChannel

• DivaLIConnect

• DivaLIDisconnect

• DivaLIEnableRxData

• DivaHold

• DivaRetrieve

• DivaSendInfo

• DivaSendFlash

There are different ways to complete a call transfer, depending on who is setting up the second call and how
the call is created.

Transfer using consultation call

In general, the two calls that shall be transferred can be created in any way by the application. However, in
certain switch environments, the Diva API can only handle call transfer if it is informed on the intended transfer
before the call is established. In this case, the Diva API uses a so-called consultation call object to handle the
call transfer.

To tell the Diva API that a call will be handled as a consultation call for a call transfer, the application calls
DivaSetupCallTransfer. The consultation call object is created and a handle is given to the application. When the
Diva API returns control to the application, the original call is on hold.

Depending on the parameters passed to DivaSetupCallTransfer, the physical connection is either initiated when
the consultation call object is created or not. If no destination number is given in DivaSetupCallTransfer, only
the logical object is created and the physical connection is initiated when the application calls DivaDial. This
ensures that the transfer also works in switch environments that only support block dialing.

The application calls DivaCompleteCallTransfer to complete the transfer.

Transfer using independent call objects

The application can create two independent calls, either incoming or outgoing, and transfer one to the other
directly. The transfer needs to be completed using DivaCompleteCallTransfer. If the first call is not on hold, the
Diva API will put it on hold implicitly. Transfer using independent call objects is not possible in all switch
environments, the application must detect whether this kind of transfer is possible or not.

Dialogic® Diva® API Developer’s Reference Guide

Page 140

Transfer on one call object

If an application just wants to forward a single call to a different destination, it uses DivaBlindCallTransfer. This
function creates the second call and completes the transfer. In case of a transfer failure, the result code provides
detailed information if the failure was related to the establishment of the second call or the transfer itself.
Depending on the options passed to DivaBlindCallTransfer, the transfer may be handled as Call Deflection.

Transfer completion

All transfer-related function return right away, and the progress of the transfer is reported to the application via
events. Implicit changes of the call state, e.g., when the active call is put on hold, are reported to the application.
Once the transfer is completed, the DivaEventTransferCompleted event is signaled. The call objects are no longer
needed and the call state changes to disconnect. The application has to free the call objects by calling
DivaCloseCall once the event DivaEventCallDisconnected is received for those call objects.

DivaSetupCallTransfer

DivaSetupCallTransfer creates a consultation call object based on the given call. The original call is put on hold,
if not already done.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

hAppConsultCall

[in] This parameter specifies the application call handle for the consultation call. The Diva API uses this handle
to report events for the consultation call.

phdConsultCall

[out] This parameter points to a location of the type DivaCallHandle that receives the call handle of the
consultation call object on successful return.

pDestination

[in] This parameter specifies the number that should be used to establish the consultation call. It may be an
empty string, see Remarks.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function initiates the transition to hold state for the call, if not already done. A consultation call object is
created and filled with the CallType parameter and other parameters from the active call object. When the
function returns, dialing the consultation call object can be started using DivaCompleteCallTransfer.

The function returns right away. The progress is reported by the DivaEventSetupTransferCompleted event.

DWORD DivaSetupCallTransfer (DivaCallHandle hdCall,
AppCallHandle hAppConsultCall,
DivaCallHandle *phdConsultCall,
char *pDestination);

Dialogic® Diva® API Functions

Page 141

The application can provide a number to be used for the consultation call. In this case, the Diva API initiates the
consultation call. Depending on the options set by the call properties DivaCPT_NoHoldBeforeTransfer and
DivaCPT_UseSameChannelForTransfer the primary call may be set on hold and the consultation call will be done
on the same channel. If the application wants to handle dialing manually, it can set pDestination to an empty
string and use DivaDial to establish the consultation call.

See also

DivaCompleteCallTransfer, DivaBlindCallTransfer, DivaCPT_NoHoldBeforeTransfer

DivaCompleteCallTransfer

DivaCompleteCallTransfer completes the transfer of the given call objects.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

hdConsultCall

[in] The hdConsultCall parameter identifies the consultation call at the Diva API. The call has been created as
consultation call via DivaSetupCallTransfer or as an independent call via the standard functions for call
establishment.

Options

[in] This parameter specifies how the call transfer is completed.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

If the first call is not on hold, the function initiates the transition to hold state. After successful transfer, both
call objects are no longer needed and the Diva API signals that the calls are disconnected. The application has
to close both calls by calling DivaCloseCall when the event DivaEventCallDisconencted is signaled.

The function returns right away, and the completion of the call transfer is signaled by the event
DivaEventTransferCompleted.

If the transfer fails, the application has to take care of both calls. The call state of the calls may have changed
and the application may have to retrieve a call using DivaRetrieve.

See also

DivaSetupCallTransfer, DivaBlindCallTransfer

DWORD DivaCompleteCallTransfer (DivaCallHandle hdCall,
DivaCallHandle hdConsultCall,
DivaTransferOptions Options);

Dialogic® Diva® API Developer’s Reference Guide

Page 142

DivaBlindCallTransfer

DivaBlindCallTransfer automatically transfers the call to a given destination.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

pDestination

[in] The pDestination parameter specifies the number to dial.

Options

[in] This parameter specifies how the transfer should be completed.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

If the first call is not on hold, the function initiates the transition hold state. Then, the second call to the given
destination is created internally. Once the second call reaches the ringing state, the transfer is completed. Upon
successful transfer, the call object is no longer needed and the Diva API signals that the call is disconnected.
The application has to close the call by calling DivaCloseCall.

The function returns right away, and the success of the call transfer is signaled by the event
DivaEventTransferCompleted.

If the transfer fails, the secondary call created by the Diva API is disconnected. The state of the primary call is
restored, if possible. The application has to handle the primary call.

See also

DivaCompleteCallTransfer, DivaSetupCallTransfer

DivaAcceptCallTransfer

DivaAcceptCallTransfer accepts a call transfer request.

Parameters

hdCall

[in] The parameter hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect, or it is signaled with the event DivaEventCallIncoming.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle, DivaErrorInvalidState, and DivaErrorNotSupported.

Remarks

The function is only available on SIP calls. When a call transfer is invoked by the remote peer, the application
will be notified about the request. By default, the notification is disabled and can be enabled via the call property
DivaCPT_TransferRequestNotification.

DWORD DivaBlindCallTransfer (DivaCallHandle hdCall,
Char *pDestination,
DivaTransferOptions Options);

DWORD DivaAcceptCallTransfer (DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 143

If the call transfer notification is enabled, the event DivaEventTransferRequested is signaled to the application.
The application may retrieve additional information about the transfer request via the call properties. To accept
the call transfer, the application calls DivaAcceptCallTransfer. To reject a transfer request, the function
DivaRejectCallTransfer can be used.

By default, the transfer notification is disabled and any transfer request is accepted. Once the call transfer has
been performed, the event DivaEventCallTransferredNotify is signaled to the application.

See also

DivaRejectCallTransfer,DivaEventTransferRequested,DivaCPT_TransferRequestNotification,

DivaRejectCallTransfer

DivaRejectTransfer rejects a call transfer request from the remote peer.

Parameters

hdCall

[in] The parameter hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect, or it is signaled with the event DivaEventCallIncoming.

Reason

[in] The parameter Reason contains the reason for the reject. Valid reasons are specified in
DivaTransferRejectReasons.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle, DivaErrorInvalidState, and DivaErrorNotSupported.

Remarks

The function is only available on SIP calls. For a description of call transfer notifications, accept and reject, refer
to DivaAcceptCallTransfer.

See also

DivaEventTransferRequested, DivaCPT_TransferRequestNotification, DivaAcceptCallTransfer

DivaListenChannel

DivaListenChannel registers a incoming call notification on a specific channel.

Parameters

hApp

[in] The hApp parameter identifies the application. The handle is assigned by a call to DivaRegister.

Services

[in] This parameter specifies which services should be signaled. Possible values are defined in DivaListenType.
Multiple services can be combined.

DWORD DivaRejectCallTransfer (DivaCallHandle hdCall,
DWORD Reason);

DWORD DivaListenChannel (DivaApplHandle hApp,
DivaListenType ServiceType,
DWORD LineDevice,
DWORD Channel,
char* pCalledNumber);

Dialogic® Diva® API Developer’s Reference Guide

Page 144

LineDevice

[in] This parameter specifies the line device on which the listening should be enabled. Line defines are numbered
from one to the maximum installed.

Channel

[in] This parameter specifies the channel on which the listening should be enabled. Channels are numbered from
one to the maximum available on the line device.

pCalledNumber

[in] The specification of the called number is optional. If it is specified, the signaled called number is compared
to the given number for all incoming calls.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle, DivaErrorLineDevice, or DivaErrorInvalidParameter.

Remarks

The function behaves like DivaListen on a specific channel. Refer to DivaListen for more information on services
and number filtering.

The function allows for reserving channels for outgoing calls by placing listens only on those channels that should
be used for incoming calls.

See also

DivaRegister, DivaListen, DivaEventIncomingCall, DivaListenType

DivaLIConnect

DivaLIConnect creates a Line Interconnect between two existing voice calls.

Parameters

hMainCall

[in] The hMainCall parameter identifies the first call at the Diva API. The handle is either returned by
DivaWaitForCall or DivaConnect or signaled with the event DivaEventIncomingCall. On this call, Line Interconnect
will be logically initiated. This call object is used for sending and receiving a mixed data stream.

hCall

[in] The hCall parameter identifies the second call at the Diva API. The handle is either returned by
DivaWaitForCall or DivaConnect or signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function initiates Line Interconnect between the given calls. Both calls must have an assigned data channel
and by in the call state DivaCallStateRinging, DivaCallStateOffering, DivaCallStateAnswered,
DivaCallStateProceeding or DivaCallStateConnected. By defaullt no data traffic between the application and the
calls take place. Data traffic between the application and the calls can be enabled by calling any voice streaming
function. On the call identified by the call handle hMainCall, the application can stream to both calls or receive
the audio from both call, also called transaction recording. On the second call object, the streaming and recording
is done as for a single call.

The function returns right away, and the event DivaEventLIConnectCompleted is sent when the calls are
interconnected.

DWORD DivaLIConnect (DivaCallHandle hMainCall,
DivaCallHandle hCall);

Dialogic® Diva® API Functions

Page 145

See also

DivaLIDisconnect, DivaEventCustomToneDetected, DivaEventLIDisconnected, DivaLIEnableRxData

DivaLIDisconnect

DivaLIDisconnect releases a Line Interconnect between two existing calls.

Parameters

hMainCall

[in] The hMainCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall. This call handle must be the handle given as
the main call when Line Interconnect was initiated.

bDisconnectCalls

[in] If the bDisconnectCalls parameter is set, the interconnected calls are released.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function initiates a Disconnect of the existing Line Interconnect. Both calls involved remain connected. The
function returns right away, and the event DivaEventLIDisconnected is sent when the Line Interconnect is
released.

See also

Call properties, DivaEventCustomToneDetected, DivaEventLIDisconnected

DivaLIEnableRxData

DivaLIEnableRxData enables receive data on an interconnected call.

Parameters

hCall

[in] The hCall parameter identifies the call at the Diva API. The handle is either the main call handle or the
participating call handle used when Line Interconnect has been created.

bEnable

[in] If bEnable is set, receiving of data on the given call object is enabled. If the call object specifies the main
call handle, the mixed data stream is used.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorInvalidHandle.

Remarks

The function enables the indication of data received on the call object. Note that this is only for plain data
streaming. Users of DivaRecordVoiceFile are not required to call this function.

See also

Call properties, DivaLIDisconnect, DivaEventCustomToneDetected, DivaEventLIDisconnected

DWORD DivaLIDisconnect (DivaCallHandle hMainCall,
BOOL bDisconnectCalls);

DWORD DivaLIEnableRxData (DivaCallHandle hCall,
BOOL bEnable);

Dialogic® Diva® API Developer’s Reference Guide

Page 146

DivaHold

DivaHold puts the specified call on hold.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

If the call is connected, the transition to hold state is initiated. The function returns right away. The result is
reported by the DivaEventHoldCompleted event and the state change is reported by DivaEventCallProgress.

See also

DivaRetrieve, DivaCallState

DivaRetrieve

DivaRetrieve retrieves a call that has been put on hold.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState and DivaErrorInvalidHandle.

Remarks

If the call is on hold, the transition to connected state is initiated using the selected call type. The function returns
right away. The result is reported by the DivaEventRetrieveCompleted event and the state change is reported
by DivaEventCallProgress.

If the call is not on hold, the function returns right away with the error code DivaErrorInvalidState.

See also

DivaEventRetrieveCompleted, DivaHold, DivaCallState

DWORD DivaHold (DivaCallHandle hdCall);

DWORD DivaRetrieve (DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 147

DivaSendInfo

DivaSendInfo sends an info message containing user-user information or facility information.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

Info

[in] This parameter is for future use.

InfoLength

[in] This parameter is for future use.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorNotSupported.

Remarks

The function sends an info message containing an user-user information element and / or a facility information
element. The information elements must be set via the call properties DivaCPT_UserUserInfo and
DivaCPT_FacilityDataArray.

This function can be used to send messages to switches to initiate call transfers or other supplementary services.
In general, it is recommended to use the standard call transfer methods. This function should only be used if
the standard function and the underlying Dialogic® communication platform do not support the required
functionality.

See also

No references

DivaSendFlash

DivaSendFlash returns information if the device has the specified capability.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall.

FlashLength

[in] The parameter FlashLength specifies the maximum length of the hook flash.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible values are DivaErrorNotSupported
and DivaErrorInvalidHandle.

DWORD DivaSendInfo (DivaCallHandle hdCall,
unsigned char* Info,
DWORD InfoLength);

BOOL DivaSendFlash (DivaCallHandle hdCall,
DWORD FlashLength);

Dialogic® Diva® API Developer’s Reference Guide

Page 148

Remarks

The function initiates the sending of a hook flash. Once the flash is finished, the event DivaEventFlashCompleted
is signaled to the application. The function is used for applications that run an own protocol using hook flash
and DTMF to communicate to the switch.

See also

No references

Dialogic® Diva® API Functions

Page 149

Conference

This chapter contains the following conference functions:

• DivaCreateConference

• DivaDestroyConference

• DivaConferenceSetProperties

• DivaAddToConference

• DivaRemoveFromConference

• DivaGetConferenceInfo

• DivaConferenceEnableRxData

• DivaConferenceGetProperties

DivaCreateConference

DivaCreateConference creates an internal conference object.

Parameters

hApp

[in] The hApp parameter identifies the application. The handle is assigned by a call to DivaRegister.

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaWaitForCall
or DivaConnect or signaled with the event DivaEventIncomingCall. Optionally, the hdCall parameter can be set
to zero to create an empty conference object and add the members later.

haConference

[in] The haConference parameter identifies the application context of the conference object and is signaled with
all conference-related events.

phdConference

[out] The phdConference parameter points to a location that receives the Diva API-related handle of the
conference. This handle has to be used in all following conference-related calls.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState, DivaErrorLimitExceeded, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

With the call to DivaCreateConference the application creates a conference. The function creates a logical instance
holding all information on the conference and the members belonging to the conference.

If the call handle is given, the conference is created based on this call handle and the call may be interpreted
as master call. The call must be in proceeding, alerting, or connected state.

See also

DivaConferenceOptions, DivaEventConferenceInfo, DivaDestroyConference, DivaAddToConference,
DivaRemoveFromConference, DivaGetConferenceInfo

DWORD DivaCreateConference (DivaAppHandle hApp,
DivaCallHandle hdCall,
AppCallHandle haConference,
DivaCallHandle *phdConference);

Dialogic® Diva® API Developer’s Reference Guide

Page 150

DivaDestroyConference

DivaDestroyConference destroys a conference and optionally disconnects all calls.

Parameters

hdConference

[in] The hdConference parameter identifies the conference previously created by DivaCreateConference.

bDisconnectCalls

[in] The bDisconnectCalls parameter specifies that the calls which belong to the conference are to be
disconnected.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function destroys the conference and releases all corresponding resources. After the function returns, the
conference handle is no longer valid.

If the parameter bDisconnectCalls is set to TRUE, all calls that belong to the conference are disconnected. If the
parameter is set to FALSE, the calls are removed from the conference and kept the current state. This is a
synchronous function. When the function returns, all calls are removed from the conference and the conference
object is no longer valid. There is no event for destroying of a conference.

See also

DivaConferenceOptions, DivaEventConferenceInfo, DivaCreateConference, DivaAddToConference,
DivaRemoveFromConference, DivaGetConferenceInfo

DivaConferenceSetProperties

DivaConferenceSetProperties modifies the properties of the conference.

Parameters

hdConference

[in] The hdConference parameter identifies the conference previously created by DivaCreateConference.

PropertyType

[in] The PropertyType parameter specifies the property to be set. For more information see
DivaConferencePropertyType.

PropertyValue

[in] The PropertyValue parameter depends on the type of property.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The properties of a conference are set by this function. The value type depends on the property. Refer to
DivaConferencePropertyType for more information on the available properties.

DWORD DivaDestroyConference (DivaCallHandle hdConference,
BOOL bDisconnectCalls);

DWORD DivaConferenceSetProperties (DivaCallHandle hdConference,
DWORD PropertyType,
DivaConferenceProperty *PropertyValue);

Dialogic® Diva® API Functions

Page 151

See also

DivaConferenceOptions, DivaEventConferenceInfo, DivaCreateConference, DivaAddToConference,
DivaRemoveFromConference, DivaGetConferenceInfo

DivaAddToConference

DivaAddToConference adds the given call to the existing conference.

Parameters

hdConference

[in] The hdConference parameter identifies the conference previously created by DivaCreateConference.

hdCall

[in] The hdCall parameter identifies the call at the Diva API.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidState, DivaErrorLimitExceeded, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

The function adds the call specified by the call handle to the conference. The call may be established using any
connect or answer function. The state of the conference is changed to DivaConferenceStateAdding while the call
is added.

The call must be in the proceeding, alerting, or connected state. The function returns right away. The event
DivaEventConferenceInfo is signaled when the member is part of the conference.

See also

DivaConferenceOptions, DivaEventConferenceInfo, DivaCreateConference, DivaDestroyConference,
DivaRemoveFromConference, DivaGetConferenceInfo

DivaRemoveFromConference

DivaRemoveFromConference removes the call from the conference.

Parameters

hdConference

[in] The hdConference parameter identifies the conference previously created by DivaCreateConference.

hdCall

[in] The hdCall parameter identifies the call that is to be removed at the Diva API. If this parameter is set to
zero, the last call added to the conference is removed.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

DWORD DivaAddToConference (DivaCallHandle hdConference,
DivaCallHandle hdCall);

DWORD DivaRemoveFromConference (DivaCallHandle hdConference,
DivaCallHandle hdCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 152

Remarks

The function removes the given call from the conference. The state of the conference is changed to
DivaConferenceStateRemoving while the removal is pending.

The function returns right away, and the event DivaEventConferenceInfo is signaled when the removal is
completed. The call state is not changed.

See also

DivaConferenceOptions, DivaEventConferenceInfo, DivaCreateConference, DivaDestroyConference,
DivaAddToConference, DivaGetConferenceInfo

DivaGetConferenceInfo

DivaGetConferenceInfo retrieves the status and the members of a conference. The function is obsolete, the
application should use DivaConferenceGetProperties.

Parameters

hdConference

[in] The hdConference parameter identifies the conference previously created by DivaCreateConference.

pConferenceInfo

[in] The pConferenceInfo parameter is a pointer to a user supplied buffer of type DivaConferenceInfo that receives
the information on the conference. Note that the application must set the size field of the DivaConferenceInfo
structure to the size of the structure before calling the function.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

The function retrieves information on the given conference. The information is copied to the buffer supplied by
the caller. The function returns right away. For more information on the returned information refer to
DivaConferenceInfo.

Note: The amount of members in a conference is not limited. However, the data structure DivaConferenceInfo
limits the amount of members for retrieving information. Therefore, applications should use
DivaConferenceGetProperties to retrieve member information.

See also

DivaConferenceInfo

DivaConferenceEnableRxData

DivaConferenceEnableRxData enables or disables data reception on the conference or call.

Parameters

hdObject

[in] The hdObject parameter identifies the conference or call object.

bEnable

[in] The bEnable parameter defines if streaming is enabled or disabled.

DWORD DivaGetConferenceInfo (DivaCallHandle hdConference,
DivaConferenceInfo *pConferenceInfo);

DWORD DivaConferenceEnableRxData (DivaCallHandle hdObject,
BOOL bEnable);

Dialogic® Diva® API Functions

Page 153

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

By default, no receive data is forwarded to conference members and no events for the reception of plain data
are generated. With this function, the application can select that receive data is forwarded to the application.

The function only works in environments where streaming on the conference members is available. If this is not
the case, DivaErrorInvalidFunction is returned.

Note: This is only for plain data streaming. Users of DivaRecordVoice are not required to call this function.

See also

No references.

DivaConferenceGetProperties

DivaConferenceGetProperties provides information on members and status of a conference.

Parameters

hdConference

[in] The hdConference parameter identifies the conference previously created by DivaCreateConference.

PropertyType

[in] The PropertyType parameter specifies the property to be retrieved. For more information see
DivaConferencePropertyType.

PropertyValue

[out] The PropertyValue parameter depends on the type of property. The application must provide a buffer that
is large enough to cover the parameter requested by PropertyType.

PropertyValueSize

[in] The PropertyValueSize parameter specifies the size of the buffer provided by the application.

pPropertyValueSizeUsed

[out] The PropertyValueSizeUsed parameter points to a location that receives the amount or bytes written to
the buffer specified by PropertyValue.

Return values

If the function succeeds, the return value is DivaSuccess (0). If the buffer for the property value is not large
enough, DivaErrorOutOfMemory is returned. Other possible return values are DivaErrorInvalidParameter and
DivaErrorInvalidHandle.

Remarks

The properties of a conference are retrieved (get) by this function. The value type depends on the property. The
application must ensure that the buffer for the property is large enough.

See also

DivaConferenceOptions, DivaEventConferenceInfo, DivaCreateConference, DivaAddToConference,
DivaRemoveFromConference, DivaGetConferenceInfo, DivaConferenceSetProperties

DWORD DivaConferenceGetProperties (DivaCallHandle hdConference,
DWORD PropertyType,
DivaConferenceProperty *PropertyValue,
DWORD PropertyValueSize,
DWORD *pPropertyValueSizeUsed);

Dialogic® Diva® API Developer’s Reference Guide

Page 154

Message Waiting Indication

This chapter contains the following MWI functions:

• DivaMWIActivate

• DivaMWIDeactivate

• DivaMWIReport

• DivaMWIGetIndication

DivaMWIActivate

DivaMWIActivate sends an message waiting activation request to the switch.

Parameters

hApp

[in] hApp is the application handle that was returned by a call to DivaRegister.

LineDeviceId

[in] This parameter identifies the line device. Line devices are continuously numbered by an index starting with
one.

pParams

[in] This parameter points to a data structure of the type DivaMWIActivateParams that contains the activation
parameter.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorNotSupported.

Remarks

The function creates a message waiting activation request based on the given parameter. For information on
the parameter refer to DivaMWIActivateParams.

The function returns right away. If the return code is DivaSuccess, the action is initiated. The result of the request
is signaled via the event DivaEventMWICompleted. The handle given in the DivaMWIActivateParams is passed
to the application with the event.

See also

DivaMWIDeactivate

DWORD DivaMWIActivate (DivaAppHandle hApp,
DWORD LineDeviceId,
DivaMWIActivateParams* pParams);

Dialogic® Diva® API Functions

Page 155

DivaMWIDeactivate

DivaMWIDeactivate sends an message waiting deactivation request to the switch.

Parameters

hApp

[in] hApp is the application handle that was returned by a call to DivaRegister.

LineDeviceId

[in] This parameter identifies the line device. Line devices are continuously numbered by an index starting with
one.

pParams

[in] The parameter points to a data structure of the type DivaMWIDeactivateParams that contain the deactivation
parameter.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorInvalidHandle, and DivaErrorNotSupported.

Remarks

The function creates a message waiting deactivation request based on the given parameter. For information on
the parameter, refer to DivaMWIActivateParams. The handle given in the DivaMWIDeactivateParams is passed
to the application with the event.

The function returns right away. If the return code is DivaSuccess, the action is initiated. The result of the request
is signaled via the event DivaEventMWICompleted.

See also

DivaMWIActivate

DivaMWIReport

DivaMWIReport enables or disables the reporting of message waiting indications.

Parameters

hApp

[in] hApp is the application handle that was returned by a call to DivaRegister.

LineDeviceId

[in] This parameter identifies the line device. Line devices are continuously numbered by an index starting with
one.

bEnable

[in] The parameter bEnable specifies whether the reporting of message waiting indications is enabled or disabled.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorLineDevice, DivaErrorInvalidHandle, and DivaErrorNotSupported.

DWORD DivaMWIDeactivate (DivaAppHandle hApp,
DWORD LineDeviceId,
DivaMWIDeactivateParams* pParams);

DWORD DivaMWIActivate (DivaAppHandle hApp,
DWORD LineDeviceId,
BOOL bEnable);

Dialogic® Diva® API Developer’s Reference Guide

Page 156

Remarks

The function enables or disables the reporting of message waiting indications. Received message waiting
indications are reported via the event DivaEventMWIIndicated.

See also

• DivaEventMWIIndicated

• DivaMWIGetIndication

DivaMWIGetIndication

DivaMWIGetIndication returns detailed information about a received message waiting indication.

Parameters

hApp

[in] hApp is the application handle that was returned by a call to DivaRegister.

LineDeviceId

[in] The parameter hApp identifies the line device. Line devices are continuously numbered by an index starting
with one.

hMWIIndication

[in] The parameter hMWIIndication specifies a handle to address the message waiting information. See Remarks.

pParams

[out] The parameter pParams specifies a pointer to a user-supplied buffer of type DivaMWIIndicationParams
that receives the information.

ParamSize

[in] The parameter ParamSize specifies the length of the user-supplied buffer.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorLineDevice, DivaErrorInvalidParameter, DivaErrorInvalidHandle, DivaErrorNoDataAvailable and
DivaErrorNotSupported

Remarks

The function retrieves information about the message waiting indication. The availability of message waiting
information is signaled via the event DivaEventMWIIndicated. With this event, a handle is provided that can be
used as the parameter hMWIIndication. If the parameter hMWIIndication is set to zero, the most recent message
waiting indication is returned.

See also

• DivaEventMWIIndicated

• DivaMWIReport

DWORD DivaMWIGetIndication (DivaAppHandle hApp,
DWORD LineDeviceId,
DivaHandle hMWIIndication,
DivaMWIIndicationParams* pParams,
DWORD ParamSize);

Dialogic® Diva® API Functions

Page 157

Call properties

The call properties are available for applications that set specific information or retrieve specific information. All
call properties are optional. The call properties enable a flexible development of applications and allow to extend
the functionality of applications to specific environments. For a detailed list of call properties, please refer to
Dialogic® Diva® API Call Properties.

This section contains the following call properties:

• DivaSetCallProperties

• DivaGetCallProperties

• DivaDefaultCallProperties

DivaSetCallProperties

DivaSetCallProperties sets special properties of a call.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

Type

[in] The Type parameter specifies the property to be set. See Dialogic® Diva® API Call Properties for available
property types.

pPropertyValue

[in] The pPropertyValue parameter points to a location, where the property value is located. The value and the
length depend on the property type. See Remarks.

PropValueSize

[in] The PropValueSize parameter specifies size in bytes provided for the property value. The required length
depends on the property type.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorReadOnlyParameter, DivaErrorDataSize, and DivaErrorInvalidHandle.

Remarks

The function sets certain properties of a call. For an initial call, the function must be called prior to initiate or
answer the call. For established calls the new properties have only an impact if one of the "set call type functions"
is called.

The property data given to the Diva API depends on the property type. In general, this points to the type
DivaCallPropertyValue and the length is given by the data type. In case shorter values of a simple type, i.e.
Boolean, are needed, they can also be passed directly. The Diva API will always verify the given length compared
to the required.

Note: Some properties are read only, they cannot be set.

The function returns right away, independent of the event mode.

See also

DivaCallPropertyValue, DivaGetCallProperties, Call properties, Dialogic® Diva® API Call Properties

DWORD DivaSetCallProperties (DivaCallHandle hdCall,
DivaCallPropertyType Type,
DivaCallPropertyValue *pPropertyValue,
DWORD ProperyValueSize);

Dialogic® Diva® API Developer’s Reference Guide

Page 158

DivaGetCallProperties

DivaGetCallProperties gets special properties of a call.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

Type

[in] The Type parameter specifies the property to be set. See Dialogic® Diva® API Call Properties for available
property types.

Note: Some properties are read only, they cannot be set.

pPropertyValue

[in] The pPropertyValue parameter points to a location, where the value for the requested property is placed.

PropValueSize

[in] The PropValueSize parameter specifies the length in bytes of the caller provided buffer.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorWriteOnlyParameter, DivaErrorDataSize, and DivaErrorInvalidHandle.

Remarks

The function reads certain properties of a call. The available call properties are defined in DivaCallPropertyType;
however, not all of them have the read attribute. For those with write only attributes, the return code is
DivaErrorWriteOnlyParameter.

The property data is written to the location pointed to by pPropertyValue. The application provides the buffer
and also the length of the buffer. The properties have different lengths and the application does not always need
to provide the maximum space defined by the size of DivaCallPropertyValue. The Diva API will always verify the
provided length compared to the required length for the specific property.

The function returns right away, independent of the event mode.

See also

DivaCallPropertyValue, DivaSetCallProperties, Call properties, Dialogic® Diva® API Call Properties

DivaDefaultCallProperties

DivaDefaultCallProperties sets the default properties for the given call type.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned by DivaCreateCall,
DivaConnect or signaled with the event DivaEventIncomingCall.

DWORD DivaGetCallProperties (DivaCallHandle hdCall,
DivaCallPropertyType Type,
DivaCallPropertyValue *pPropertyValue,
DWORD ProperyValueSize);

DWORD DivaDefaultCallProperties (DivaCallHandle hdCall,
DivaCallType CallType);

Dialogic® Diva® API Functions

Page 159

CallType

[in] The CallType parameter specifies the type of the call for which the default should be set. Valid values are
defined by DivaCallType.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidParameter.

Remarks

The function sets all call-related parameters to their defaults and sets the call type to the given value. The
function is used to reset certain parameters changed by DivaSetCallProperties to their default.

See also

DivaSetCallProperties

Dialogic® Diva® API Developer’s Reference Guide

Page 160

Event reporting

The application can register for three different types of event reporting:

• Callback function

• Event object to be signaled

• Message loop

For callback function and message loop signaling, the event is provided directly. For signaling of an event object,
the event has to be retrieved by a function call.

If the application has selected that events should trigger an event object, the application has to create a thread
waiting for this object. Typically, operating system-specific events do not allow parameters to be given to the
thread when the event is signaled. Therefore, the application has to call DivaGetEvent to obtain the event.

The following functions are provided:

• Callback function

• CallbackEx function

• CallbackSignal function

• DivaGetEvent

• Message loop

Callback function

If the application has registered for events via callback function, the following function needs to be provided by
the application. The function name may be chosen by the application, the entry point of the function is given to
the Diva API with the registration via DivaRegister.

Parameters

hApp

[in] This parameter specifies the application instance. It is the handle returned by the Diva API during registration
via DivaRegister.

Event

[in] The Event parameter specifies the event that causes the call to this function. For more information see the
list of events.

EventSpecific1

[in] This parameter is event-specific. Except for signaling a new call, this parameter is usually the application
handle passed into DivaConnect..., DivaAnswer..., or DivaCreateCall.

EventSpecific2

[in] This parameter is event-specific.

Return values

None.

Remarks

None.

See also

No references.

void DivaCallback (DivaAppHandle hApp,
DivaEvent Event,
void *EventSpecific1,
void *EventSpecific2);

Dialogic® Diva® API Functions

Page 161

CallbackEx function

If the application has registered using the event mode DivaEventModeCallbackEx, the following function needs
to be provided by the application. The function name may be chosen by the application, the entry point of the
function is given to the Diva API with the registration via DivaRegister. In addition, a context parameter is
registered by the application that is signaled when the callback function is called.

Parameters

pContext

[in] This parameter has been provided by the application with the call to DivaRegister. The parameter is not
interpreted by the Dialogic® Diva® SDK.

Event

[in] The Event parameter specifies the event that causes the call to this function. For more information see the
list of events.

EventSpecific1

[in] This parameter is event-specific. For events related to a call, this parameter is usually the application handle
passed into DivaConnect..., DivaAnswer..., or DivaCreateCall.

EventSpecific2

[in] This parameter is event-specific.

Return values

None.

Remarks

None.

See also

No references.

CallbackSignal function

If the application has registered using the event mode DivaEventModeCallbackSignal, the following function
must be provided by the application. The function name may be chosen by the application, the entry point of
the function is given to the Diva API with the registration via DivaRegister. In addition, a context parameter is
registered by the application that is signaled when the callback function is called.

Parameters

pContext

[in] This parameter has been provided by the application with the call to DivaRegister. The parameter is not
interpreted by the Dialogic® Diva® SDK.

Return values

None.

void DivaCallbackEx (void* *pContext,
DivaEvent Event,
void *EventSpecific1,
void *EventSpecific2);

void DivaCallback (void *pContext);

Dialogic® Diva® API Developer’s Reference Guide

Page 162

Remarks

The SDK calls this function to notify the application that an event occurred. The event remains in the internal
event queue. The application must retrieve the event using DivaGetEvent. Applications should always call
DivaGetEvent in a loop until the return value shows that no more events are available.

See also

DivaGetEvent

DivaGetEvent

The DivaGetEvent function retrieves an event from the event queue.

Parameters

hApp

[in] The hApp parameter identifies the application instance. The handle is returned by DivaRegister.

Event

[out] This parameter is a pointer to a location that receives the event code. For more information see the list of
events.

EventSpecific1

[out] This parameter is a pointer to a location that receives additional information on the event. The information
depends on the event.

EventSpecific2

[out] This parameter is a pointer to a location that receives additional information on the event. The information
depends on the event.

Return values

The function returns non-zero if an event is available.

Remarks

The function is used by event mechanisms that do not allow to provide the event information directly when
signaling the event.

See also

No references.

Message loop

If the application has selected event reporting to a Windows® message loop, it has to pass a Windows® handle
and a unique message identifier to the Diva API.

No additional parameters are passed with the Windows® message. lParam and wParam are set to zero. The
application has to call DivaGetEvent to retrieve the event.

BOOL DivaGetEvent (DivaAppHandle hApp,
DivaEvent *Event,
void **EventSpecific1,
void **EventSpecific2);

Dialogic® Diva® API Functions

Page 163

Monitoring

This chapter contains the following monitoring functions:

• DivaMonitorAttachToTimeslot

• DivaMonitorDetachHandle

• Audio provider

• DivaMonitorAttachToLine

• DivaRegister

• DivaCreateMonitor

• DivaCreateMonitorR2

• DivaCreateMonitorAudio

• DivaCreateMonitorAnalog

• DivaCreateMonitorT1CAS

• DivaDestroyMonitor

• DivaMonitorGetCallInfo

• DivaMonitorGetCallProperties

• DivaMonitorGetSetupMessage

• DivaMonitorCloseCallHandle

• DivaMonitorRecordAudio

• DivaMonitorStopAudio

• DivaMonitorSetVolume

• DivaMonitorEnableAudioData

• DivaMonitorDisableAudioData

• DivaMonitorReceiveAudio

• DivaMonitorReportFrames

• DivaMonitorGetFrame

• DivaMonitorReportDTMF

• DivaMonitorReportTone

• DivaMonitorGetDTMFInfo

• DivaMonitorGetToneInfo

DivaMonitorAttachToTimeslot

DivaMonitorAttachToTimeslot is used to create a link to the specified timeslot for audio recording. The function
is used for monitoring audio only.

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by
DivaCreateMonitorAudio.

Timeslot

[in] The parameter Timeslot identifies the timeslot or B-channel.

DWORD DivaMonitorAttachToTimeslot (DivaMonitorHandle hdMonitor,
DWORD Timeslot,
DivaCallHandle *phdCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 164

phdCall

[in] The parameter phdCall points to a location that receives the Diva API-related handle for monitoring the line.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorNotSupported, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

The function is only valid on monitoring objects created via DivaCreateMonitorAudio. Only applications that
retrieve the signaling information via a 3rd party source, e.g., via CSTA or SS7, use this function. If signaling
information is provided by the Diva API, the attach is done implicitly and the handle is provided via the
event-specific parameter.

The function returns immediately and provides a call handle that can be used for Diva API calls to monitor audio
signals, e.g., DivaMonitorRecordAudio. The application does not need to detach the handle for each monitored
call. The recording can be controlled on a per call basis using DivaMonitorRecordAudio and DivaMonitorStopAudio.
When the application no longer needs any access to the line, the handle is freed by a call to
DivaMonitorDetachHandle.

See also

DivaMonitorDetachHandle, DivaMonitorAttachToLine

DivaMonitorDetachHandle

DivaMonitorDetachHandle frees a handle returned by DivaMonitorAttachToLine or DivaMonitorAttachToTimeslot.

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor or
DivaCreateMonitorAudio.

hdCall

[in] The parameter hdCall identifies the handle to be detached from the monitoring object. The handle is returned
by DivaMonitorAttachToLine or DivaMonitorAttachToTimeslot.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorNotSupported and DivaErrorInvalidHandle.

Remarks

The function detaches the handle from the monitoring object. This implicitly closes all pending actions on the
line or timeslot, e.g., a pending audio recording.

See also

DivaMonitorAttachToTimeslot, DivaMonitorAttachToLine

DivaMonitorSpecifyTone

Via DivaMonitorSpecifyTone, the application specifies a custom ringing or dial tone cadence.

DWORD DivaMonitorDetachHandle (DivaMonitorHandle hdMonitor,
DivaCallHandle *phdCall);

DWORD DivaMonitorSpecifyTone (DivaMonitorHandle hdMonitor,
DWORD Type,
DWORD Recurrences,
DWORD NumDefinitions,
DivaToneDefinition* pDefinitions);

Dialogic® Diva® API Functions

Page 165

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by
DivaCreateMonitorAnalog.

Type

[in] The parameter Type identifies how the tone should be interpreted. Valid options are DivaRingingTone and
DivaBusyTone.

Recurrences

[in] The parameter Recurrences specifies how often the tone and pause sequence specified by pDefinitions must
be repeated to trigger the event specified by Type.

NumDefinitions

[in] The parameter NumDefinitions specifies the number of members in the definition table pointed to by
pDefinitions.

pDefinitions

[in] The parameter pDefinitions points to an array containing elements of type DivaToneDefinition. These
elements describe the frequencies, duration, pause, and variations of the tone.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorNotSupported, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

By default, the Dialogic® Diva® SDK will use a set of build-in definitions to detect ringing and busy conditions.
The application may specify custom tones and cadences to be interpreted as ringing or busy tone. Each tone
definition specified via DivaToneDefinition contains the specification about the tone, namely, whether the tone
is single or dual, what the duration of the tone is, and optionally what the tone pause is. Multiple definitions can
be used to define the cadence to be detected. If the cadence should occur multiple times before this is interpreted
as detected tone, the parameter Recurrences can be used.

DivaMonitorAttachToLine

DivaMonitorAttachToLine is used to create a link to the specified line for audio recording if call progress analysis
is disabled.

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by
DivaCreateMonitorAnalog.

Line

[in] The parameter Line identifies the analog line by an index starting from one.

phdCall

[in] The parameter phdCall points to a location that receives the Diva API related handle for monitoring the line.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorNotSupported, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

DWORD DivaMonitorAttachToLine (DivaMonitorHandle hdMonitor,
DWORD Line,
DivaCallHandle *phdCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 166

The function is only valid on monitoring objects created via DivaCreateMonitorAnalog using the option
DivaMonitorOptionDisableCPA. Only applications that retrieve the signaling information via a 3rd party source,
e.g., via CSTA, use this function. If signaling information is provided by the Diva API, the attach is done implicitly
and the handle is provided via the event-specific parameter.

The function returns immediately and provides a call handle that can be used for Diva API calls to monitor audio
signals, e.g., DivaMonitorRecordAudio. The application does not need to detach the handle for each monitored
call. The recording can be controlled on a per call base using DivaMonitorRecordAudio and DivaMonitorStopAudio.
When the application no longer needs any access to the line, the handle is freed by a call to
DivaMonitorDetachHandle.

See also

DivaMonitorDetachHandle, DivaMonitorAttachToTimeslot

DivaCreateMonitor

DivaCreateMonitor creates an internal monitoring object for Q.931-based lines and initiates the monitoring.

Parameters

hApp

[in] The parameter hApp identifies the application. The handle is assigned by a call to DivaRegister.

haMonitor

[in] The parameter haMonitor identifies the application context for the monitor object and is signaled with all
monitor-related events. The handle is not interpreted by the Diva API, the application is free to use any value.

phdMonitor

[out] The parameter phdMonitor points to a location that receives the Diva API-related handle of the monitor
object. This handle has to be used in all succeeding monitor-related calls.

LineDeviceA

[in] The parameter LineDeviceA identifies the first line device connected to the line to be monitored. See remarks
section.

LineDeviceB

[in] The parameter LineDeviceB identifies the second line device connected to the line to be monitored. See
remarks section.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorLimitExceeded, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

With a call to DivaCreateMonitor the application creates a monitor object and accesses the given line devices.
The function returns right away. The start of the monitor is signaled by the event DivaEventMonitorStatus with
the status set to DivaMonitorStarted. When the monitor object detects an active layer 1, it will signal another
status event with the status set to DivaMonitorLayer1Up.

DWORD DivaCreateMonitor (DivaAppHandle hApp,
AppMonitorHandle haMonitor,
DivaMonitorHandle *phdMonitor,
DWORD LineDeviceA,
DWORD LineDeviceB);

Dialogic® Diva® API Functions

Page 167

The monitor uses two line devices to record both directions of the call. The two line devices are defined by
LineDeviceA and LineDeviceB. The Diva API does not know the environment and therefore cannot differentiate
between incoming and outgoing calls. The line device member in the call information for a monitored call will
always contain the line device that initiates the call.

See also

DivaDestroyMonitor, DivaEventMonitorStatus, DivaCreateMonitorR2

DivaCreateMonitorR2

DivaCreateMonitorR2 creates an internal monitoring object for E1 R2-based lines and initiates the monitoring.

Parameters

hApp

[in] The parameter hApp identifies the application. The handle is assigned by a call to DivaRegister.

haMonitor

[in] The parameter haMonitor identifies the application context for the monitor object and is signaled with all
monitor-related events. The handle is not interpreted by the Diva API, the application is free to use any value.

phdMonitor

[out] The parameter phdMonitor points to a location that receives the Diva API-related handle of the monitor
object. This handle has to be used in all succeeding monitor-related calls.

LineDeviceA

[in] The parameter LineDeviceA identifies the first line device connected to the line to be monitored. See remarks
section.

LineDeviceB

[in] The parameter LineDeviceB identifies the second line device connected to the line to be monitored. See
remarks section.

R2Variant

[in] The parameter R2Variant identifies the variant of the E1 R2 protocol of the monitored line. For supported
variants, refer to DivaMonitorR2Variants.

R2GenericParams

The parameter is reserved for future use.

Reserved

The parameter is reserved for future use.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorLimitExceeded, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

DWORD DivaCreateMonitorR2 (DivaAppHandle hApp,
AppMonitorHandle haMonitor,
DivaMonitorHandle *phdMonitor,
DWORD LineDeviceA,
DWORD LineDeviceB,
DWORD R2Variant,
void* R2GenericParams,
DWORD Reserved);

Dialogic® Diva® API Developer’s Reference Guide

Page 168

Remarks

With a call to DivaCreateMonitorR2 the application creates a monitor object and accesses the given line devices.
The function returns right away. The start of the monitor is signaled by the event DivaEventMonitorStatus with
the status set to DivaMonitorStarted. When the monitor object detects an active layer 1, it will signal another
status event with the status set to DivaMonitorLayer1Up.

The monitor extracts signaling information from channel 16 of the given line devices and creates the
corresponding events. Based on the selected R2 variant, inband information for called and calling party number
is extracted from B-channels and reported with the events.

The monitor uses two line devices to record both directions of the call. The two line devices are defined by
LineDeviceA and LineDeviceB. The Diva API does not know the environment and therefore cannot differentiate
between incoming and outgoing calls. The line device member in the call information for a monitored call will
always contain the line device that initiates the call.

See also

DivaDestroyMonitor, DivaEventMonitorStatus, DivaCreateMonitor

DivaCreateMonitorAudio

DivaMonitorCreateAudio creates an internal monitoring object for monitoring audio signal on all timeslots of a
line. Signaling information is not retrieved by this object.

Parameter

hApp

[in] The parameter hApp identifies the application. The handle is assigned by a call to DivaRegister.

haMonitor

[in] The parameter haMonitor identifies the application context for the monitor object and is signaled with all
monitor-related events. The handle is not interpreted by the Diva API; the application is free to use any value.

phdMonitor

[out] The parameter phdMonitor points to a location that receives the Diva API-related handle of the monitor
object. This handle has to be used in all succeeding monitor-related calls.

LineDeviceA

[in] The parameter LineDeviceA identifies the first line device connected to the line to be monitored. See Remarks
section.

LineDeviceB

[in] The parameter LineDeviceB identifies the second line device connected to the line to be monitored. See
Remarks section.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorNotSupported, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

With a call to DivaCreateMonitorAudio, the application creates a monitor object and accesses the given line
devices. The function returns right away. The start of the monitor is signaled by the event DivaEventMonitorStatus
with the status set to DivaMonitorStarted. When the monitor object detects an active layer 1, it will signal another
status event with the status set to DivaMonitorLayer1Up.

DWORD DivaCreateMonitorAudio (DivaAppHandle hApp,
AppMonitorHandle haMonitor,
DivaMonitorHandle *phdMonitor,
DWORD LineDeviceA,
DWORD LineDeviceB

Dialogic® Diva® API Functions

Page 169

The monitor uses two line devices to record both directions of the call. The two line devices are defined by
LineDeviceA and LineDeviceB. On the monitoring object created by DivaCreateMonitorAudio, the application can
attach to timeslots via DivaMonitorAttachToTimeslot and initiate the recording of audio. Signaling information
is not handled on this object; all timeslots are available for audio recording. Applications that retrieve the signaling
information via a 3rd party source, e.g., via CSTA or SS7, use this function.

See also

DivaMonitorDetachHandle, DivaMonitorAttachToTimeslot

DivaCreateMonitorAnalog

DivaCreateMonitorAnalog creates an internal monitoring object for "analog-based" lines and initiates the
monitoring.

Parameters

hApp

[in] The parameter hApp identifies the application. The handle is assigned by a call to DivaRegister.

haMonitor

[in] The parameter haMonitor identifies the application context for the monitor object and is signaled with all
monitor-related events. The handle is not interpreted by the Diva API, the application is free to use any value.

phdMonitor

[out] The parameter phdMonitor points to a location that receives the Diva API-related handle of the monitor
object. This handle has to be used in all succeeding monitor-related calls.

LineDevice

[in] The parameter LineDevice identifies the analog line device connected to the lines to be monitored.

Options

[in] The parameter Options defines generic rules for the monitoring. See Remarks section.

pParams

[in] The parameter pParams allows applications to specify parameters for detecting a connect, default audio
formats, and recording gain. If the application wants to use the default parameter, pParams may be set to zero.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorLineDevice, DivaErrorNotSupported, DivaErrorInvalidParameter, and
DivaErrorInvalidHandle.

Remarks

With a call to DivaCreateMonitorAnalog, the application creates a monitor object and accesses the given line
device. The function returns right away. The start of the monitor is signaled by the event DivaEventMonitorStatus
with the status set to DivaMonitorStarted. The Diva SDK will automatically attach to all lines of the
Dialogic® Diva® Analog Media Board. When the monitor object detects an active layer 1, it will signal another
status event for the line with the status set to DivaMonitorLayer1Up.

By default, the Dialogic® Diva® SDK will use standard detection for ring tones, human talker detection, and busy
tones to generate the events DivaEventMonitorCallConnected and DivaMonitorCallDisconnected. Via the Options
parameter, the application can overwrite this behavior.

DWORD DivaCreateMonitorAnalog (DivaAppHandle hApp,
AppMonitorHandle haMonitor,
DivaMonitorHandle *phdMonitor,
DWORD LineDevice,
DWORD Options,
DivaMonitorAnalogParams *pParams);

Dialogic® Diva® API Developer’s Reference Guide

Page 170

The default detection waits for a human talker detection to signal the connected event. The Diva SDK will store
the audio during detection such that the initial audio sequence is part of the recorded audio. The disconnect is
generated when the standard busy signal is detected. The standard busy tone has the frequency of 425 Hz with
a duration of about 160 milliseconds and a pause of 400 milliseconds. By default, three continuous occurrences
of the tone are used to interpret this as a busy tone. By default, the Diva SDK will remove the busy tone from
the recorded audio.

See also

DivaCreateMonitor, DivaCreateMonitorR2, DivaCreateMonitorAudio, DivaMonitorAnalogParams,
DivaMonitorOptions

DivaCreateMonitorT1CAS

DivaCreateMonitorT1CAS creates an internal monitoring object for T1CAS-based lines and initiates the
monitoring.

Parameters

hApp

[in] The parameter hApp identifies the application. The handle is assigned by a call to DivaRegister.

haMonitor

[in] The parameter haMonitor identifies the application context for the monitor object and is signaled with all
monitor-related events. The handle is not interpreted by the Diva API, the application is free to use any value.

phdMonitor

[out] The parameter phdMonitor points to a location that receives the Diva API-related handle of the monitor
object. This handle has to be used in all succeeding monitor-related calls.

LineDeviceA

[in] The parameter LineDeviceA identifies the first line device connected to the lines to be monitored.

LineDeviceB

[in] The parameter LineDeviceB identifies the second line device connected to the lines to be monitored. See
Remarks section.

T1CASVariant

[in] The parameter T1CASVariant defines the T1 CAS variant to be used. See DivaMonitorT1CASVariants for
supported variants.

Options

[in] The parameter Options defines generic rules for the monitoring. See Remarks section.

pParams

[in] The parameter pParams allows applications to specify parameter to customize monitoring. If the application
wants to use the default parameter, pParams may be set to zero.

Return values

DWORD DivaCreateMonitorT1CAS (DivaAppHandle hApp,
AppMonitorHandle haMonitor,
DivaMonitorHandle *phdMonitor,
DWORD LineDeviceA,
DWORD LineDeviceB,
DWORD T1CASVariant,
DWORD Options,
DivaMonitorT1CASParams* pParams);

Dialogic® Diva® API Functions

Page 171

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorLineDevice, DivaErrorNotSupported, DivaErrorInvalidParameter, and
DivaErrorInvalidHandle.

Remarks

With a call to DivaCreateMonitorT1CAS, the application creates a monitor object and accesses the given line
devices. The function returns right away. The start of the monitor is signaled by the event DivaEventMonitorStatus
with the status set to DivaMonitorStarted. When the monitor object detects an active layer 1, it will signal another
status event with the status set to DivaMonitorLayer1Up. The cabling must ensure that LineDeviceA monitors
the traffic from the user (TE) to the network (NT) and LineDeviceB monitors the traffic from the network to the
user.

The monitor extracts signaling information from the upper bit of each timeslot and creates the corresponding
events. The processing of the signaling information depends on the parameter T1CASVariant, which allows
specifying the trunk types LoopStart, GroundStart, and WinkStart. In addition to the signaling information from
the upper bit, the Diva SDK will process tones for call progress analyses. By default, the Diva SDK will use
standard detection for ring tones, human talker detection, and busy tones to generate the events
DivaEventMonitorCallConnected and DivaMonitorCallDisconnected. Via the Options parameter the application
can overwrite this behavior.

The default detection waits for a human talker detection to signal the connected event. The Diva SDK will store
the audio during detection to ensure the initial audio sequence is part of the recorded audio. The disconnect is
signaled when the standard busy signal is detected. The standard busy tone has the frequency 425 Hz with a
duration of about 160 milliseconds and a pause of 400 milliseconds. Three continuous occurrences of the tone
are used to interpret this as a busy tone. The Diva SDK will remove the busy tone from the recorded audio if
default options are used.

The application may add customized ring or busy tones via the function DivaMonitorSpecifyTone. Via the option
DivaMonitorOptionDisableStandardTones the standard tone may be disabled.

See also

DivaCreateMonitor, DivaCreateMonitorR2, DivaCreateMonitorAudio, DivaDestroyMonitor

DivaDestroyMonitor

DivaDestroyMonitor terminates monitoring for the given monitor handle.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

With a call to DivaDestroyMonitor the application removes a monitoring object. This is a synchronous function
and returns when the monitoring object is destroyed and all resources are freed.

See also

DivaCreateMonitor, DivaEventMonitorStatus

DWORD DivaDestroyMonitor (DivaMonitorHandle hdMonitor);

Dialogic® Diva® API Developer’s Reference Guide

Page 172

DivaMonitorGetCallInfo

DivaMonitorGetCallInfo retrieves information for a monitored call.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with one of the events
DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, or DivaEventMonitorCallInfo.

pCallInfo

[out] This parameter is a pointer to a user-supplied buffer of the type DivaCallInfo that receives the information
on the call. Note that the application must set the Size field of the DivaCallInfo structure to the size of the
structure before calling this function.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The function returns the information for a monitored call. Refer to DivaCallInfo for more information on the
returned parameter. The application may also use DivaMonitorGetCallProperties to retrieve specific parameters
like bearer capabilities.

See also

DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, DivaEventMonitorCallInfo,
DivaMonitorGetCallProperties

DivaMonitorGetCallProperties

DivaMonitorGetCallProperties retrieves specific information for a monitored call.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with one of the events
DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, or DivaEventMonitorCallInfo.

Type

[in] The Type parameter specifies the property to be set. See Dialogic® Diva® API Call Properties for available
property types.

pValue

[in] The pValue parameter points to a location, where the value for the requested property is placed.

DWORD DivaMonitorGetCallInfo (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall,
DivaCallInfo *pCallInfo);

DWORD DivaMonitorGetCallProperties (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall,
DivaCallPropertyType Type,
DivaCallPropertyValue *pValue,
DWORD PropertySize);

Dialogic® Diva® API Functions

Page 173

PropertySize

[in] The PropertySize parameter specifies the length in bytes of the buffer provided by the caller.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The function reads certain properties of a call. The available call properties are defined in DivaCallPropertyType;
however, not all of them have the read attribute. For those with write only attributes, the return code is
DivaErrorWriteOnlyParameter.

The property data is written to the location pointed to by pPropertyValue. The application provides the buffer
and also the length of the buffer. The properties have different lengths and the application does not always need
to provide the maximum space defined by the size of DivaCallPropertyValue. The Diva API always compares the
provided length with the required length for the specific property.

The function returns right away, independent of the event mode.

See also

DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, DivaEventMonitorCallInfo,
DivaMonitorGetCallInfo

DivaMonitorGetSetupMessage

DivaMonitorGetSetupMessage retrieves the setup message that belongs to the monitored call.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with one of the events
DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, or DivaEventMonitorCallInfo.

pBuffer

[out] The parameter specifies a location to which the setup message is written. The length of the buffer is
described by the parameter BufferLength.

BufferLength

[in] The parameter specifies the length of the buffer provided by the caller.

pBytesUsed

[in] The parameter specifies a location where the amount of bytes, written to the user provided buffer, is placed.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

DWORD DivaMonitorGetSetupMessage (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall,
unsigned char *pBuffer,
DWORD BufferLength,
DWORD *pBytesUsed);

Dialogic® Diva® API Developer’s Reference Guide

Page 174

Remarks

The function provides the raw setup message (layer 3) to the caller. The setup message is available from the
first event-related to this call.

See also

DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, DivaEventCallInfo,
DivaMonitorGetCallProperties

DivaMonitorCloseCallHandle

DivaMonitorCloseCallHandle frees a call handle and resources bound to this handle.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with one of the
DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, or DivaEventMonitorCallInfo.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

When a monitoring call is disconnected, the application might want to read properties from the call. Therefore,
the Diva API keeps the information on this call until the application calls DivaMonitorCloseCallHandle. If this is
not called, the Dialogic® Diva® SDK will not release the call-related resources.

See also

DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, DivaEventMonitorCallInfo

DivaMonitorRecordAudio

DivaMonitorRecordAudio starts the recording on a monitored call.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call to monitor. The handle is passed by the event
DivaEventMonitorCallConnected.

pFilename

[in] The parameter pFilename identifies the path and name of the file to store the audio data.

DWORD DivaMonitorCloseCallHandle (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall);

DWORD DivaMonitorRecordAudio (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall,
char *pFilename,
DivaAudioFormat Format,
DivaMonitorSource Source);

Dialogic® Diva® API Functions

Page 175

Format

[in] The parameter Format specifies the format of the audio. See DivaAudioFormat for available formats. If the
monitoring source is set to DivaMonitorSourceBoth, only the wave file formats are valid.

Source

[in] The parameter Source specifies if both directions of the call should be recorded.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

With a call to DivaMonitorRecordAudio the recording to a file is started. The application defines the format and
the directions to record. The direction is either given as physical information (from line device A to B) or related
to the call direction (originator or answerer).

The parameter Source specifies what to record. Options are defined in DivaMonitorSource. If the source is
specified to DivaMonitorSourceBoth, the data is written to a stereo wave file.

See also

DivaMonitorStopAudio

DivaMonitorStopAudio

DivaMonitorStopAudio terminates the recording on a monitored call.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call to monitor. The handle is passed by the event
DivaEventMonitorCallConnected.

Source

[in] The parameter Source specifies which recording should be stopped. If set to DivaMonitorSourceBoth any
recording is stopped. Otherwise the specific recording direction is stopped. Note that this must match the
previously initiated recording.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

With a call to DivaMonitorRecordStop the recording to a file terminated. The event DivaEventMonitorRecordEnded
signals that the Dialogic® Diva® SDK has ended recording and the file is no longer accessed by the Diva SDK.

See also

DivaMonitorRecordAudio

DWORD DivaMonitorStopAudio (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall,
DivaMonitorSource Source);

Dialogic® Diva® API Developer’s Reference Guide

Page 176

DivaMonitorSetVolume

DivaMonitorSetVolume changes the volume for a monitored data channel.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call to monitor. The handle is passed by the event
DivaEventMonitorCallConnected.

Volume

[in] The parameter Volume specifies the new volume in the range defined by DivaVolume.

Source

[in] The parameter Source specifies for which recording the volume is to be changed. See
DivaMonitorRecordAudio for more information.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The Diva API allows to control the volume in the range of -18 db to +18 db. The volume can be controlled
individually for each direction.

Note: This is a setting of the volume, not an automatic gain control.

See also

DivaMonitorRecordAudio

DivaMonitorEnableAudioData

DivaMonitorEnableAudioData changes the signaling of audio data in passive monitoring mode.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call to monitor. The handle is passed by the Diva API with the event
DivaEventCallConnected.

AudioBuffers

[in] The parameter AudioBuffers specifies the amount of buffers used for storing the recorded audio. See remarks.

DWORD DivaMonitorSetVolume (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall,
DivaVolume Volume,
DivaMonitorSource Source);

DWORD DivaMonitorEnableAudioData (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall,
DWORD AudioBuffers);

Dialogic® Diva® API Functions

Page 177

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorInvalidHandle.

Remarks

With a call to DivaMonitorEnableAudioData the application enables audio data for the monitored call to be passed
to the application. The function is independent from recording to a file and can be activated at any time.

Once audio data is available, the event DivaMonitorAudioData is signaled to the application. The application must
retrieve the data via DivaMonitorReceiveAudio.

The parameter AudioBuffers specifies how many buffers are stored by the application until data is lost. For
performance reasons, it is recommended to set this parameter to 1 and process the audio directly from the
callback function.

See also

DivaMonitorDisableAudioData, DivaEventMonitorAudioData, DivaMonitorReceiveAudio

DivaMonitorDisableAudioData

DivaMonitorDisableAudioData changes the signaling of audio data in passive monitoring mode.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call to monitor. The handle is provided by the Diva API with the event
DivaEventCallConnected.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The function stops the reporting of monitored audio to the application. A pending recording to a file will continue
unchanged.

See also

DivaMonitorEnableAudioData, DivaEventMonitorAudioData, DivaMonitorReceiveAudio

DWORD DivaMonitorDisableAudioData (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 178

DivaMonitorReceiveAudio

DivaMonitorReceiveAudio retrieves monitored audio signal to a memory location given by the caller.

Parameters

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hdCall

[in] The parameter hdCall identifies the call to monitor. The handle is passed by the Diva API with the event
DivaEventCallConnected.

Source

[in] The parameter Source identifies for which direction the audio signal should be retrieved. The option
DivaMonitorSourceBoth provides the mixed audio stream.

pBuffer

[out] The parameter pBuffer specifies the location where the received audio data should be written.

BufferSize

[in] The parameter BufferSize specifies the length of the buffer in bytes.

pBytesWritten

[out] The parameter pBytesWritten points to a location of type DWORD where the amount of bytes written to
the buffer is placed.

Format

[in] The parameter Format specifies the audio format for which the application requests the data. Possible options
are the raw formats of DivaAudioFormat.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle and DivaErrorInvalidParameter.

Remarks

The function retrieves received audio information, converts it to the requested audio format and writes it to the
given buffer. The supported audio formats are the raw formats defined in DivaAudioFormat.

Every time the event DivaMonitorEventAudioData is signaled an audio buffer for both directions (caller to callee
and vice versa) is available.

If the format DivaMonitorSourceBoth is specified, the audio from both directions will be mixed into one audio
stream.

See also

DivaMonitorEnableAudioData, DivaEventMonitorAudioData, DivaMonitorDisableAudioData

DWORD DivaMonitorReceiveAudio (DivaMonitorHandle hdMonitor,
DivaCallHandle hdCall,
DivaMonitorSource Source,
unsigned char *pBuffer,
DWORD BufferSize,
DWORD *pBytesWritten,
DivaAudioFormat Format);

Dialogic® Diva® API Functions

Page 179

DivaMonitorReportFrames

DivaMonitorReportFrames enables or disables the reporting of layer 2 or layer 3 signaling frames.

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

Mode

[in] The parameter Mode specifies if reporting of frames should be enabled or disabled. If enabled, it also specifies
if layer 2 or layer 3 frames should be reported. See DivaMonitorFrameReportMode for options.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorNotSupported, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

With a call to DivaMonitorReportFrames, the application controls if pure layer 2 or layer 3 frames should be
reported to the application. By default, high level call control events are reported to the application, but no frames.

If enabled, the Dialogic® Diva® SDK will signal the event DivaEventMonitorFrameReceived for each received
frame that matches the Mode parameter. The application retrieves the frame and additional information by the
function DivaMonitorGetFrame.

See also

DivaCreateMonitor, DivaMonitorGetFrame, DivaEventMonitorFrameReceived

DivaMonitorGetFrame

DivaMonitorGetFrame retrieves a layer 2 or layer 3 frame from the monitoring object.

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor.

hFrame

[out] The parameter hFrame identifies the frame to be retrieved. The application may set this parameter to zero
to retrieve the most recent received frame. See the Remarks section for detailed information.

phdCall

[out] The parameter phdCall points to a location that receives the call handle of the call to which the frame
belongs. If the frame does not belong to a call, INVALID_APP_CALL_HANDLE will be returned. If the application
does not need the information, the parameter can be set to zero.

DWORD DivaMonitorReportFrames (DivaMonitorHandle hdMonitor,

DivaMonitorReportMode Mode);

DWORD DivaMonitorGetFrame (DivaMonitorHandle hdMonitor,
DivaHandle hFrame,
DivaCallHandle *phdCall,
DWORD *pLineDevice,
DivaTime *pTimeStamp,
unsigned char *pBuffer,
DWORD BufferLength,
DWORD *pBytesUsed);

Dialogic® Diva® API Developer’s Reference Guide

Page 180

pLineDevice

[out] The parameter pLineDevice points to a location that receives the line device on which the frame was
received. If the application does not need the information, the parameter can be set to zero.

pTimeStamp

[out] The parameter pTimeStamp points to a location that receives the time stamp when the frame was received.
If the application does not need the information, the parameter can be set to zero.

pBuffer

[out] The parameter pBuffer points to a location that receives the signaling frame.

BufferLength

[in] The parameter BufferLength specifies the length (in bytes) of the buffer specified by the pBuffer parameter.

pBytesUsed

[out] The parameter pBytesUsed points to a location that receives the amount of bytes written to the buffer
specified by the pBuffer parameter.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorNotSupported, DivaErrorInvalidState, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

The application retrieves plain layer 2 or layer 3 frames via a call to DivaMonitorGetFrame on monitoring objects
that are Q.931-based and created with DivaCreateMonitor. The reception and reporting of layer 2 or layer 3
frames must be enabled via DivaMonitorReportFrames.

In addition to the high level call control events, the Dialogic® Diva® SDK signals the event
DivaEventMonitorFrameReceived for each frame that matches the mode specified by DivaMonitorReportFrames.
The second parameter, delivered with the event DivaEventMonitorFrameReceived, specifies a handle that
identifies the frame. The application may use this handle as parameter for hFrame to retrieve the frame. To
retrieve the most recent frame, the application sets the parameter hFrame to zero.

See also

DivaCreateMonitor, DivaMonitorReportFrames, DivaEventMonitorFrameReceived

DivaMonitorReportDTMF

DivaMonitorReportDTMF enables or disables the DTMF detection for a monitored call.

DWORD DivaMonitorReportDTMF (DivaMonitorHandle hdMonitor,
 DivaCallHandle hdCall
 BOOL bEnable);

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor,
DivaCreateMonitorR2, DivaCreateMonitorAnalog, DivaMonitorCreateMonitorT1CAS or DivaCreateMonitorAudio.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with one of the events
DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, or DivaEventMonitorCallInfo.
DivaEventMonitorCallInfo.

bEnable

[in] If the parameter bEnable is TRUE the detection of DTMF tones is enabled.

Return values

Dialogic® Diva® API Functions

Page 181

If the function succeeds, the return value is DivaSuccess (0). Possible other return value is
DivaErrorInvalidHandle.

Remarks

The function enables or disables reporting of DTMF digits. Detected digits are signaled by the event
DivaMonitorEventDTMFDetected and must be retrieved via the function DivaMonitorGetDTMFInfo.

See Also

DivaEventMonitorDTMFDetected, DivaMonitorGetDTMFInfo, DivaMonitorReportTone, DivaMonitorGetToneInfo,
DivaEventMonitorToneDetected

DivaMonitorReportTone

DivaMonitorReportTone enables or disables the extended tone detection for a monitored call.

DWORD DivaMonitorReportTone (DivaMonitorHandle hdMonitor,
 DivaCallHandle hdCall
 BOOL bEnable);

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor,
DivaCreateMonitorR2, DivaCreateMonitorAnalog, DivaMonitorCreateMonitorT1CAS or DivaCreateMonitorAudio.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with one of the events
DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, or DivaEventMonitorCallInfo.
DivaEventMonitorCallInfo.

bEnable

[in] If the parameter bEnable is TRUE the detection of extended tones is enabled.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return value is DivaErrorInvalidHan-
dle.

Remarks

The function enables or disables reporting of extended tones. . For a list of extended tones refer to
DivaContinuousTones. Detected tones are signaled by the event DivaMonitorEventToneDetected and must be
retrieved via the function DivaMonitorGetToneInfo

See Also

DivaEventMonitorDTMFDetected, DivaEventMonitorToneDetected, DivaMonitorGetDTMFInfo,
DivaMonitorReportTone, DivaMonitorGetToneInfo

DivaMonitorGetDTMFInfo

DivaMonitorGetDTMFInfo retrieves the DTMF digit information for a digit detected on a monitored call.

DWORD DivaMonitorGetDTMFInfo (DivaMonitorHandle hdMonitor,
 DivaCallHandle hdCall
 DivaMonitorDTMFInfo* pInfo);

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor,
DivaCreateMonitorR2, DivaCreateMonitorAnalog, DivaMonitorCreateMonitorT1CAS or DivaCreateMonitorAudio.

Dialogic® Diva® API Developer’s Reference Guide

Page 182

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with one of the events
DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, or DivaEventMonitorCallInfo.
DivaEventMonitorCallInfo.

pInfo

[out] This parameter is a reference to a user-supplied buffer of the type DivaMonitorGetDTMFInfo that receives
the information about the received DTMF digit and which side has sent the digit.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidHandle and DivaErrorNoDataAvailable.

Remarks

The function retrieves the information about a DTMF digit detected on the monitored call. The Diva API notifies
the application via the event DivaEventMonitorDTMFDetected that a digit is available. The application must
retrieve the digit information via DivaMonitorGetDTMFInfo.

The information about the digit and the side that has sent the digit are returned via the data structure
DivaMonitorDTMFInfo. If the digit is sent by the side that has initiated the call, the parameter Source is set to
DivaMonitorSourceOriginator, if the side that has answered the call has sent the digit, the parameter Source is
set to DivaMonitorSourceAnswerer. If the direction information is not available, e.g. on analog lines, the
parameter Source is set to DivaMonitorSourceUnknown.

See Also
DivaMonitorReportDTMF, DivaEventMonitorDTMFDetected, DivaEventMonitorToneDetected, DivaMonitorReportTone,
DivaMonitorGetToneInfo

DivaMonitorGetToneInfo

DivaMonitorGetToneInfo retrieves the extended tone information for a tone detected on a monitored call.

DWORD DivaMonitorGetToneInfo(DivaMonitorHandle hdMonitor,
 DivaCallHandle hdCall
 DivaMonitorToneInfo* pInfo);

Parameter

hdMonitor

[in] The parameter hdMonitor identifies the monitoring object. The handle is returned by DivaCreateMonitor,
DivaCreateMonitorR2, DivaCreateMonitorAnalog, DivaMonitorCreateMonitorT1CAS or DivaCreateMonitorAudio.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with one of the events
DivaEventMonitorCallInitiated, DivaEventMonitorCallConnected, or DivaEventMonitorCallInfo.
DivaEventMonitorCallInfo.

pInfo

[out] This parameter is a reference to a user-supplied buffer of the type DivaMonitorToneInfo that receives the
information about the received tone and which side has sent the digit.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidHandle and DivaErrorNoDataAvailable.

Remarks

Dialogic® Diva® API Functions

Page 183

The function retrieves the information about an extended tone detected on the monitored call. The Diva API
notifies the application via the event DivaEventMonitorToneDetected that a tone is available. The application
must retrieve the digit information via DivaMonitorGetToneInfo.

The information about the tone and the side that has sent the tone are returned via the data structure
DivaMonitorDTMFInfo. If the tone is sent by the side that has initiated the call, the parameter Source is set to
DivaMonitorSourceOriginator, if the side that has answered the call has sent the tone, the parameter Source is
set to DivaMonitorSourceAnswerer. If the direction information is not available, e.g. on analog lines, the
parameter Source is set to DivaMonitorSourceUnknown.

See Also

DivaMonitorReportTone, DivaEventMonitorDTMFDetected, DivaEventMonitorToneDetected, DivaMonitorReportDTMF,
DivaMonitorGetDTMFInfo, DivaMonitorReportTone, DivaMonitorGetToneInfo

Dialogic® Diva® API Developer’s Reference Guide

Page 184

IP Media Channel Access

This chapter contains the following IP media channel functions:

• DivaCreateIPMediaChannel

• DivaConnectIPMediaChannel

• DivaDisconnectIPMediaChannel

• DivaCloseIPMediaChannel

DivaCreateIPMediaChannel

The DivaCreateIPMediaChannel function creates a virtual call object to control an IP Media Channel.

Parameters

hApp

[in] The parameter hApp identifies the application. The handle is assigned by a call to DivaRegister.

haCall

[in] The value of haCall that you pass in here will be given back to your application whenever a callback or event
is generated by the Dialogic® Diva® SDK. You can use it to pass an index or a pointer to a structure or class,
to help you keep track of multiple IP media channels in the same application.

phdCall

[out] This parameter points to a location of type DivaCallHandle that receives the call handle on successful
return. This call handle must be used when making Diva API calls to control the media channel.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidParameter, DivaErrorNotSupported, and DivaErrorInvalidHandle.

Remarks

The function creates a virtual call object for plain media access. Only IP media streaming will be possible on this
object, and certain call properties will be ignored. The application may set certain IP streaming-related call
properties before calling DivaOpenIPMediaChannel. Once the IP Media Channel is confirmed via the event
DivaEventIPMediaChannelStatus, the application may use functions to stream audio, or to record audio or
conferencing functions.

Note: This function does not handle any signaling, e.g., SIP. The application must ensure that the remote
endpoint is aware about port and media information.

See Also

DivaConnectIPMediaChannel, DivaDisconnectIPMediaChannel, DivaCloseIPMediaChannel,
DivaEventIPMediaChannelStatus

DWORD DivaCreateIPMediaChannel (DivaAppHandle hApp,
AppCallHandle haCall,
DivaCallHandle *phdCall);

Dialogic® Diva® API Functions

Page 185

DivaConnectIPMediaChannel

DivaConnectIPMediaChannel initiates an IP media channel for streaming only.

Parameters

hdCall

[in] The parameter hdCall identifies the media channel at the Diva API. The handle is returned by
DivaCreateIPMediaChannel.

LocalIpAddress

[in] The parameter LocalIpAddress specifies the local IP address to be used in RTP packets.

LocalPort

[in] The parameter LocalPort specifies the local UDP port to listen for incoming RTP packets.

RemoteIpAddress

[in] The parameter RemoteIpAddress specifies the IP address to which RTP packets should be sent.

RemotePort

[in] The parameter RemotePort specifies the remote UDP port to be used as the destination port in RTP packets.

CodecMask

[in] The parameter CodecMask specifies the codecs to enable, for example, a-Law, µ-Law and/or DTMF. Refer
to DivaCodecMask for available codecs.

Options

[in] The parameter Options is reserved for future use.

Return values

If the function succeeds, the return value is DivaSuccess (0). Possible other return values are
DivaErrorInvalidState, DivaErrorInvalidParameter, and DivaErrorInvalidHandle.

Remarks

With a call to DivaConnectIPMediaChannel, the application initiates RTP streaming to an endpoint defined by the
given parameter. The result of the operation is reported by the event DivaEventIPMediaChannelStatus. Once
the event is received, the RTP streaming between the local and the remote endpoint is initiated and the application
may use the voice related function to stream and record audio.

Note: This function does not handle any signaling, e.g., SIP. The application must ensure that the remote
endpoint is informed about port and media information.

See Also

DivaCreateIPMediaChannel, DivaDisconnectIPMediaChannel, DivaCloseIPMediaChannel,
DivaEventIPMediaChannelStatus

DWORD DivaConnectIPMediaChannel (DivaCallHandle hdCall,
char* LocalIpAddress,
DWORD LocalPort,
char* RemoteIpAddress,
DWORD RemotePort,
DWORD CodecMask,
DWORD Options);

Dialogic® Diva® API Developer’s Reference Guide

Page 186

DivaDisconnectIPMediaChannel

The DivaDisconnectIPMediaChannel function stops the RTP streaming for the media channel..

Parameter

hdCall

[in] The parameter hdCall identifies the media channel at the Diva API. The handle is returned by
DivaCreateIPMediaChannel.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

With a call to DivaDisconnectIPMediaChannel, the application terminates the RTP streaming between the local
and remote endpoint. The termination of the RTP streaming is indicated via the event
DivaEventIPMediaChannelStatus.

See Also

DivaCreateIPMediaChannel, DivaConnectIPMediaChannel, DivaCloseIPMediaChannel,
DivaEventIPMediaChannelStatus

DivaCloseIPMediaChannel

The DivaCreateIPMediaChannel function creates a virtual call object to control an IP Media Channel.

Parameters

hdCall

[in] The parameter hdCall identifies the media channel at the Diva API. The handle is returned by
DivaCreateIPMediaChannel.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle

Remarks

With a call to DivaCloseIPMediaChannel, the application terminates the RTP streaming between the local and
remote endpoint and frees the object created via DivaCreateIPMediaChannel. After the function returns, the
handle is no longer valid.

See Also

DivaCreateIPMediaChannel, DivaConnectIPMediaChannel, DivaDisconnectIPMediaChannel,
DivaEventIPMediaChannelStatus

DWORD DivaDisconnectIPMediaChannel (DivaCallHandle hdCall);

DWORD DivaCloseIPMediaChannel (DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 187

Audio provider

This chapter contains the following audio functions:

• DivaRegisterAudioProvider

• DivaReleaseAudioProvider

• DivaConnectAudioProvider

• DivaDisconnectAudioProvider

• DivaAPSendAudio

• DivaAPStopSendAudio

• DivaAPSetRecordFormat

• DivaAPSetVolume

• DivaAPCloseAudio

• APNotifyCall

• APNotifyCallClose

• APNotifyReceiveAudio

• APConfirmAudioSend

DivaRegisterAudioProvider

DivaRegisterAudioProvider registers an audio provider with the Dialogic® Diva® SDK.

Parameters

pHandle

[out] The parameter pHandle points to a location that receives the handle for the audio provider registration.

Providername

[in] The parameter Providername identifies the audio provider. This is done by a symbolic name. The application
uses the same name when attaching audio providers to data channels.

pfnNotifyCall

[out] The parameter pfnNotifyCall is the function entry of type APNotifyCall provided by the audio provider. The
function is called to create a link between a call and the audio channel.

Return values

If the function succeeds, the return value is DivaSuccess (0). If an audio provider with the same name is already
registered, the function returns DivaErrorAlreadyAssigned.

Remarks

With a call to DivaRegisterAudioProvider, the application creates an instance at the Diva API for the audio
provider. The symbolic provider name and the notify function are stored for further requests. For more
information on the function, refer to APNotifyCall.

See also

DivaReleaseAudioProvider, APNotifyCall, DivaConnectAudioProvider, DivaDisconnectAudioProvider

DWORD DivaRegisterAudioProvider (DivaAppHandle *pHandle,
char *Providername,
DivaAPNotifyCall pfnNotifyCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 188

DivaReleaseAudioProvider

DivaReleaseAudioProvider releases a previously done registration of an audio provider.

Parameters

hApp

[in] The parameter hApp identifies the audio provider instance. The handle has been returned by a previous call
to DivaRegisterAudioProvider.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

With a call to DivaReleaseAudioProvider the instance at Dialogic® Diva® SDK level is removed. All streaming
operations assigned to the audio provider are implicitly removed.

See also

DivaRegisterAudioProvider

DivaConnectAudioProvider

DivaConnectAudioProvider attaches an audio provider to the data channels of an existing call.

Parameters

hdCall

[in] The parameter hdCall identifies the call at the Dialogic® Diva® SDK. The handle is either returned by
DivaConnect or signaled with the event DivaEventIncomingCall.

Providername

[in] The parameter Providername identifies the audio provider. This is the same name that the audio provider
used during registration.

pDeviceId

[out] The parameter pDeviceId defines the logical channel at the audio provider. The format of this identifier
depends on the used ASR / TTS engine. The Diva SDK routes this parameter to the audio provider without any
further processing.

WhatToConnect

[in] The parameter WhatToConnect defines in which direction the streaming should be done.

Return values

If the function succeeds, the return value is DivaSuccess (0). If the handles cannot be assigned or the provider
name is not valid, the function returns DivaErrorInvalidHandle. If the audio provider rejects the notification, the
function returns DivaErrorNoChannel.

DWORD DivaReleaseAudioProvider (DivaAppHandle hApp);

DWORD DivaConnectAudioProvider (DivaCallHandle hdCall,
char *Providername,
DivaIdDescriptor *pDeviceId,
DivaAPMode WhatToConnect);

Dialogic® Diva® API Functions

Page 189

Remarks

With the call DivaConnectAudioProvider, the application, which controls the call, attaches the audio channel to
an audio provider. The Diva SDK identifies the audio provider by the symbolic name.

The Diva SDK notifies the audio provider by calling APNotifyCall. The following communication between the audio
provider and the Diva SDK is done via function entries exchanged during notification.

See also

DivaRegisterAudioProvider, APNotifyCall, DivaDisconnectAudioProvider

DivaDisconnectAudioProvider

DivaDisonnectAudioProvider removes an audio provider from the audio channel of the given call.

Parameters

hdCall

[in] The parameter hdCall identifies the call at the Dialogic® Diva® SDK. The handle is either returned by
DivaConnect or signaled with the event DivaEventIncomingCall.

Providername

[in] The parameter Providername identifies the audio provider. This is the same name that the audio provider
used during registration.

WhatToDisconnect

[in] The parameter WhatToDisonnect defines in which direction the streaming should be removed.

Return values

If the function succeeds, the return value is DivaSuccess (0). If the handles cannot be assigned or the provider
name is not valid, the function returns DivaErrorInvalidHandle.

Remarks

With a call DivaDisconnectAudioProvider, the application that controls the call removes the data channel from
the audio provider. The Diva SDK identifies the audio provider by the symbolic name.

The application controls the streaming direction to connect or disconnect. The assignment can be changed at
any time. An application may switch the send direction to stream TTS or plain audio while the receive direction
remains unchanged.

See also

DivaRegisterAudioProvider, APNotifyCall, DivaConnectAudioProvider

DWORD DivaDisconnectAudioProvider (DivaCallHandle hdCall,
char *Providername,
DivaAPMode WhatToDisconnect);

Dialogic® Diva® API Developer’s Reference Guide

Page 190

DivaAPSendAudio

DivaAPSendAudio is a function entry point provided by the Dialogic® Diva® SDK for streaming audio from an
audio provider.

Parameters

hApp

[in] The parameter hApp identifies the audio provider instance. The handle has been assigned by
DivaRegisterAudioProvider.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with the call to APNotifyCall.

pData

[in] The parameter pData points to a location that contains the audio data to be streamed.

Length

[in] The parameter Length specifies the amount of data to be sent.

Format

[in] The parameter Format specifies the audio coding format of the given data.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The entry point of this function is provided by the Diva SDK and is exchanged when a call is notified to the audio
provider. The audio provider calls this function to stream audio data from the TTS engine. The data buffer
provided by the audio provider is owned by the Diva SDK until the confirmation function of the audio provider
is called.

See also

DivaRegisterAudioProvider, APNotifyCall, APConfirmAudioSend, DivaConnectAudioProvider

DivaAPStopSendAudio

DivaAPStopSendAudio is a function entry point provided by the Dialogic® Diva® SDK for interrupting the
streaming audio from an audio provider.

Parameters

hApp

[in] The parameter hApp identifies the audio provider instance. The handle has been assigned by
DivaRegisterAudioProvider.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with the call to APNotifyCall.

DWORD (* DivaAPSendAudio (DivaAppHandle hApp,
DivaCallHandle hdCall,
unsigned char *pData,
DWORD Length,
DivaAudioFormat Format);

DWORD (* DivaAPStopSendAudio (DivaAppHandle hApp,
DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 191

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible other return value is
DivaErrorInvalidHandle.

Remarks

The entry point of this function is provided by the Diva SDK and is exchanged when a call is notified to the audio
provider. The audio provider calls this function to stop the streaming of audio data previously initiated by
DivaAPSendAudio.

See also

DivaRegisterAudioProvider, APNotifyCall, DivaAPSendAudio, DivaConnectAudioProvider

DivaAPSetRecordFormat

DivaAPSetRecordFormat is a function entry point provided by the Dialogic® Diva® SDK for setting the audio
format for the ASR engine.

Parameters

hApp

[in] The parameter hApp identifies the audio provider instance. The handle has been assigned by
DivaRegisterAudioProvider.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with the call to APNotifyCall.

Format

[in] The parameter Format specifies the audio format. Valid formats are the raw formats defined on
DivaAudioFormat.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle or DivaErrorInvalidParameter.

Remarks

The entry point of this function is provided by the Diva SDK and is exchanged when a call is notified to the audio
provider. The audio provider may set the audio format at any time. The format is valid with the next audio data
signaled to the audio provider via APNotifyReceiveAudio.

See also

DivaRegisterAudioProvider, APNotifyReceiveAudio, DivaAudioFormat, DivaConnectAudioProvider

DWORD (* DivaAPSetRecordFormat (DivaAppHandle hApp,
DivaCallHandle hdCall,
DivaAudioFormat Format);

Dialogic® Diva® API Developer’s Reference Guide

Page 192

DivaAPSetVolume

DivaAPSetVolume is a function entry point provided by the Dialogic® Diva® SDK for setting the volume for
received and sent audio.

Parameters

hApp

[in] The parameter hApp identifies the audio provider instance. The handle has been assigned by
DivaRegisterAudioProvider.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with the call to APNotifyCall.

Volume

[in] The parameter Volume specifies the volume to be set. Valid formats are in the range defined by DivaVolume.

Direction

[in] The parameter Direction specifies if the volume should be set for receive and/or sent. For valid formats
please refer to DivaDirection.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle or DivaErrorInvalidParameter.

Remarks

The entry point of this function is provided by the Diva SDK and is exchanged when a call is notified to the audio
provider. The audio provider may set the audio format at any time. The format is valid with the next audio data
signaled to the audio provider via APNotifyReceiveAudio.

See also

DivaRegisterAudioProvider, APNotifyReceiveAudio, DivaDirection, DivaConnectAudioProvider

DivaAPCloseAudio

DivaAPCloseAudio is a function entry point provided by the Dialogic® Diva® SDK for closing a logical link between
audio provider and Diva SDK.

Parameters

hApp

[in] The parameter hApp identifies the audio provider instance. The handle has been assigned by
DivaRegisterAudioProvider.

hdCall

[in] The parameter hdCall identifies the call. The handle has been provided with the call to APNotifyCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

DWORD (* DivaAPSetVolume (DivaAppHandle hApp,
DivaCallHandle hdCall,
DivaVolume Volume,
DivaDirection Direction);

DWORD (* DivaAPCloseAudio (DivaAppHandle hApp,
DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 193

Remarks

The entry point of this function is provided by the Diva SDK and is exchanged when a call is notified to the audio
provider. The audio provider calls this function if the logical instance at the audio provider is no longer valid.
The Diva SDK will not call any more function entries related to this call.

See also

DivaRegisterAudioProvider, APNotifyCall, DivaConnectAudioProvider

APNotifyCall

APNotifyCall is provided by the audio provider. The name of the function can be different, and the function entry
point is exchanged during registration.

Parameters

hApp

[in] The parameter hApp identifies the audio provider instance. This is the same handle returned by a previous
call to DivaRegisterAudioProvider.

pInParams

[in] The parameter pInParams is of the type DivaAPNotifyCallInParams and contains the input parameter.

pOutParams

[out] The parameter pOutParams is of the type DivaAPNotifyCallOutParams and contains the output parameter.

Return values

The function returns TRUE if the audio provider has assigned the call based on the input parameter. It returns
FALSE if the identifier is unknown.

Remarks

The function is provided by the audio provider. Based on the identifier in the input parameters, the call is assigned.
The Dialogic® Diva® SDK and the audio provider exchange handles for identification of the streaming channel
and several function pointers to exchange the audio and control information. The Diva SDK provides the following
functions in the input parameter:

• DivaAPSendAudio

• DivaAPStopSendAudio

• DivaAPSetRecordFormat

• DivaAPCloseAudio

The audio provider places the following functions in the output parameter:

• APNotifyCallClose

• APNotifyReceiveAudio (only if ASR supported)

• APConfirmAudioSend (only if TTS supported)

See also

DivaRegisterAudioProvider, DivaReleaseAudioProvider, DivaConnectAudioProvider,
DivaDisconnectAudioProvider

BOOL APNotifyCall (DivaAppHandle hApp,
DivaAPNotifyCallInParams *pInParams,
DivaAPNotifyCallOutParams *pOutParams);

Dialogic® Diva® API Developer’s Reference Guide

Page 194

APNotifyCallClose

APNotifyCallClose is a function entry point provided by the audio provider. The name of the function can be
different, the function entry point is exchanged during notification via APNotifyCall.

Parameters

hAPCall

[in] The parameter hAPCall identifies the instance or channel at the audio provider. The handle has been given
to the Dialogic® Diva® SDK in the output parameters during APNotifyCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The entry point of this function is provided by the audio provider. The Diva SDK calls this function when a call
is disconnected and a link previously initiated by DivaConnectAudioProvider exists. The audio provider must stop
to call any entry points at the Diva SDK exchanged during APNotifyCall.

See also

DivaRegisterAudioProvider, APNotifyCall, DivaConnectAudioProvider

APNotifyReceiveAudio

APNotifyReceiveAudio is a function entry point provided by the audio provider. The name of the function can be
different, and the function entry point is exchanged during notification via APNotifyCall.

Parameters

hAPCall

[in] The parameter hAPCall identifies the instance or channel at the audio provider. The handle has been given
to the Dialogic® Diva® SDK in the output parameters during APNotifyCall.

pData

[in] The parameter pData identifies the location where the Diva SDK provides the received audio stream.

Length

[in] The parameter Length specifies the amount of bytes available at pData.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The entry point of this function is provided by the audio provider. The Diva SDK calls this function for each data
block if a link for received audio has been created by DivaConnectAudioProvider.

The format of the audio stream has been selected by the audio provider. The audio provider has to process the
data to this function during the call. When the function returns, the data is no longer valid.

See also

DivaRegisterAudioProvider, APNotifyCall, DivaConnectAudioProvider, DivaAPSetRecordFormat

DWORD (* DivaAPNotifyCallClose (AppCallHandle hAPCall);

DWORD (* DivaAPNotifyReceiveAudio (AppCallHandle hAPCall,
unsigned char *pData,
DWORD Length);

Dialogic® Diva® API Functions

Page 195

APConfirmAudioSend

APConfirmAudioSend is a function entry point provided by the audio provider. The name of the function can be
different, and the function entry point is exchanged during notification via APNotifyCall.

Parameters

hAPCall

[in] The parameter hAPCall identifies the instance or channel at the audio provider. The handle has been given
to the Dialogic® Diva® SDK in the output parameters during APNotifyCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The entry point of this function is provided by the audio provider. The Diva SDK calls this function when a data
buffer, sent by DivaAPSendAudio, has been processed, and the buffer is free.

There is no handle for buffers to be confirmed. The Diva SDK ensures that buffers are processed and confirmed
in the order they were passed by the audio provider.

See also

DivaRegisterAudioProvider, APNotifyCall, DivaConnectAudioProvider, DivaAPSendAudio

DWORD (* APConfirmAudioSend (AppCallHandle hAPCall);

Dialogic® Diva® API Developer’s Reference Guide

Page 196

Timer Handling

This chapter contains the following timer handling functions:

• DivaStartCallTimer

• DivaStopCallTimer

• DivaStartApplicationTimer

• DivaStopApplicationTimer

DivaStartCallTimer

DivaStartCallTimer starts a single shot timer based on a call object.

Parameters

hdCall

[in] The parameter hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

WaitTime

[in] The parameter WaitTime specifies the time, in milliseconds, when the timer will be fired. The minimum value
is 100 milliseconds. The timer resolution is 100 milliseconds.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

With a call to DivaStartCallTimer the application registers for a timer event based on the call object. When the
timer expires, the event DivaEventCallTimer is signaled to the applications event registration, e.g., the callback
function. The timer is a single shot timer, and the application may restart the timer directly from the event
handler.

If a call object is closed, a pending timer is silently discarded.

See also

DivaStopCallTimer, DivaStartApplicationTimer, DivaEventCallTimer

DivaStopCallTimer

DivaStopCallTimer stops a time initiated via DivaStartCallTimer.

Parameters

hdCall

[in] The parameter hdCall identifies the call at the Diva API. The handle is either returned by DivaCreateCall or
DivaConnect or signaled with the event DivaEventIncomingCall.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

DWORD DivaStartCallTimer (DivaCallHandle hdCall,
DWORD WaitTime);

DWORD DivaStopCallTimer (DivaCallHandle hdCall);

Dialogic® Diva® API Functions

Page 197

Remarks

With a call to DivaStopCallTimer a timer started with DivaStartCallTimer is cleared.

See also

DivaStartCallTimer, DivaStartApplicationTimer, DivaStopApplicationTimer, DivaEventCallTimer

DivaStartApplicationTimer

DivaStartApplicationTimer starts a single shot timer based on an a registered application.

Parameters

Handle

[in] The application Handle that was returned by a call to DivaRegister.

WaitTime

[in] The parameter WaitTime specifies the time, in milliseconds, when the timer will be fired. The minimum value
is 100 milliseconds. The timer resolution is 100 milliseconds.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

With a call to DivaStartApplicationTimer the application registers for a timer event. When the timer expires, the
event DivaEventApplicationTimer is signaled to the applications event registration, e.g., the callback function.
The timer is a single shot timer, the application may restart the timer directly from the event handler.

An application can only run one timer of the type "DivaApplicationTimer" at a time. Any pending timer is cleared
by another call to DivaStartApplicationTimer.

See also

DivaStopApplicationTimer, DivaStartCallTimer, DivaEventApplicationTimer

DivaStopApplicationTimer

DivaStopApplicationTimer stops a timer started by a call to DivaStartApplicationTimer.

Parameters

Handle

[in] The application Handle that was returned by a call to DivaRegister.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

With a call to DivaStopApplicationTimer a timer started with a call to DivaStartApplicationTimer is stopped.

See also

DivaStartApplicationTimer, DivaStartCallTimer, DivaEventApplicationTimer

DWORD DivaStartApplicationTimer (DivaAppCallHandle Handle,
DWORD WaitTime);

DWORD DivaStopApplicationTimer (DivaAppHandle Handle);

Dialogic® Diva® API Developer’s Reference Guide

Page 198

Tracing

The Dialogic® Diva® SDK can be enabled to write trace information to a file. The general trace settings are done
by the CONFIG.EXE. The application may change these settings and select a different file or change the trace
level. The following functions are available:

• DivaEnableTrace

• DivaSetTraceFile

• DivaLogPrintf

DivaEnableTrace

DivaEnableTrace controls the trace level at runtime.

Parameter

nLevel

[in] This parameter sets the level of tracing.

Return values

The function returns TRUE if the level has been changed. If an invalid level is passed, the function returns FALSE.

See also

DivaTraceLevel

DivaSetTraceFile

DivaSetTraceFile allows the application to specify the trace file name and location as well as the maximum size.

Parameters

pFilename

[in] This parameter specifies the path and file name of the new trace file.

dwMaxSize

[in] This parameter specifies the maximum size of the trace file.

Return values

The function returns TRUE if the new trace file has been accepted. If the file could not be opened, the function
returns FALSE and the old trace file is used.

Remarks

The function requires a trace level higher than DivaTraceLevelNothing to be active. If the application does not
know which level is active, set the trace level using DivaEnableTrace before setting the trace file.

See also

DivaEnableTrace

BOOL DivaEnableTrace (DWORD nLevel);

BOOL DivaSetTraceFile (char * pFilename,
DWORD dwMaxSize);

Dialogic® Diva® API Functions

Page 199

DivaLogPrintf

DivaLogPrintf writes trace messages into the Dialogic® Diva® SDK trace system.

Parameters

strApplication

The parameter specifies a short name to identify the application. The name is limited to three characters.

strModule

The parameter specifies the module that issues the message.

strType

The parameter specifies a type of the message, e.g., error or warning. The type is limited to three characters.

strFormat

Contains the message and format information. Syntax for the format information is the same as for printf.

Return values

None

Remarks

The function allows an application to trace into the standard Diva SDK trace environment.

See also

No references.

void DivaLogPrintf (const char * strApplication,
const char * strModule,
const char * strType,
const char * strFormat);

Dialogic® Diva® API Developer’s Reference Guide

Page 200

Static and dynamic initialization functions

IP-based line devices are configured via DivaSetDeviceInitParameter. Note that the Diva SDK places the Dialogic®

Diva® Media Board devices in front of IP-based line devices by default. Therefore, the line device numbers used
to create virtual IP boards may differ from line device numbers after DivaInitialization. The Diva API provides
the line device of the first virtual IP board via DivaGetFirstIPLineDevice.

The dynamic parameters can be updated at any time after the initialization via DivaInitialize succeeded. Most
of the dynamic parameters are updated asynchronously and the result is reported via an event. In order to
receive events, the application must register via DivaRegister. Note that only one registration via DivaRegister
is recommended per process. Examples for asynchronous dynamic parameters are registrations for SIP registrar
and H.323 gatekeeper via DivaRegisterSIPRegistrar and DivaRegisterH323Gatekeeper.

The following functions are available:

• DivaSetInitParameter

• DivaSetDeviceInitParameter

• DivaGetFirstIPLineDevice

• DivaRegisterSIPRegistrar

• DivaReleaseSIPRegistrar

• DivaRegisterH323Gatekeeper

• DivaReleaseH323Gatekeeper

• DivaGetRegistrationResult

• DivaSetH323Gateway

• DivaCloseRegistration

DivaSetInitParameter

DivaSetInitParameter sets the initialization parameter to be used during DivaInitialize.

Parameters

Type

[in] The parameter specifies the type of the value to be set. Valid values are defined in DivaInitParameterTypes.

pValue

[in] The pValue parameter points to a location, where the parameter value is located. The value and the length
depend on the Type. See Remarks.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorNotSupported.

Remarks

The function sets a certain parameter for initialization. All parameters must be set before DivaInitialize is called.

The parameter value depends on the parameter Type. In general, the value has the data type
DivaInitParameterValue and the length is given by the type. If shorter values of basic types, e.g., Boolean, are
used, the reference to this parameter can be passed directly by using the cast operator. Below is a sample code
for setting a Boolean value directly.

DWORD DivaSetInitParameter (DivaInitParameterTypes Type,
DivaInitParameterValue* pValue);

BOOL bSet = TRUE;

DivaSetInitParameter (DivaParamDisableTDMDevices, (DivaInitParameterValue*) &bSet);

Dialogic® Diva® API Functions

Page 201

See also

DivaInitialize, DivaInitParameterTypes

DivaSetDeviceInitParameter

DivaSetDeviceInitParameter sets the initialization parameter for a line device to be used during DivaInitialize.

Parameters

LineDevice

[in] This parameter specifies the line device. This is an index starting with one. See remarks.

Type

[in] This parameter specifies the type of the value to be set. Valid values are defined in
DivaDeviceInitParameterTypes.

pValue

[in] The pValue parameter points to a location, where the parameter value is located. The value and the length
depend on the Type. See Remarks.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorInvalidState, and DivaErrorNotSupported.

Remarks

The function sets a device specific parameter for initialization. All parameters for all devices to be created need
to be set before DivaInitialize is called.

The parameter value depends on the parameter type. In general, the value has the data type
DivaDeviceInitParameterValue and the length is given by the type. If shorter values of basic types, e.g., Boolean,
are used, the reference to this parameter can be passed directly by using the cast operator.

The line device parameter needs to start with one and is incremented for each device to be created. The maximum
amount of IP-based line devices to be created is specified via the DivaSetInitParameter.

Note that the Dialogic® Diva® SDK by default arranges the line devices as TDM devices first and then the IP-based
devices. Therefore, the application needs to call DivaGetFirstIPLineDevice to align the devices initialized via
DivaSetDeviceInitParameter to the real device numbers after initialization.

See also

DivaInitialize, DivaDeviceInitParameterTypes

DivaGetFirstIPLineDevice

DivaGetFirstIPLineDevice provides the number of the first line device that belongs to a virtual IP device.

Parameters

pLineDevice

[out] The pLineDevice parameter specifies a location that receives the line device number of the first virtual IP
device. See Remarks.

Return values

DWORD DivaSetDeviceInitParameter (DWORD LineDevice,
DivaDeviceInitParameterTypes Type,
DivaDeviceInitParameterValue* pValue);

DWORD DivaGetFirstIPLineDevice (DWORD pLineDevice);

Dialogic® Diva® API Developer’s Reference Guide

Page 202

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorNotSupported.

Remarks

When the application configures the virtual IP-based line devices, it numbers them starting from one. During
initialization, the Diva API enumerates TDM-based line devices first and adds the configured virtual IP-based
devices. DivaGetFirstIPLineDevice returns the number of the first device that belongs to a virtual IP device. All
IP-based line devices are numbered continuously. If no virtual IP device is available, the function returns
DivaErrorNotSupported.

See also

DivaInitialize, DivaSetDeviceInitParameter

DivaRegisterSIPRegistrar

DivaRegisterSIPRegistrar initiates the registration at a SIP registrar server.

Parameters

hApp

[in] The hApp parameter specifies the application instance created via DivaRegister for event notification. See
remarks.

LineDevice

[in] The parameter specifies the line device. The line device is an index starting with one up to the maximum
number of line devices.

hAppRegistrar

[in] The value of hAppRegistrar passed in here will be given back to the application whenever a callback or an
event is generated by the Dialogic® Diva® SDK. You can use it to pass, e.g., an index or a pointer to a structure,
to help you keep track of multiple registrations in the same application.

phDivaRegistrar

[out] The phDivaRegsitar parameter points to a location of type DivaHandle that receives the Diva API handle
for this registration request.

pParams

[in] The pParams parameter points to a user supplied buffer that contains the registration parameter. Refer to
DivaSIPRegistrarParams for details.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorLineDevice, DivaErrorInvalidState, and DivaErrorNotSupported.

Remarks

The function initiates the registration at a SIP registrar server. The function is only valid on SIP-based line
devices; if called on other line devices, the function returns DivaErrorNotSupported.

If the registration request was sent successfully, the function returns DivaSuccess. The status of the registration
is reported via the event DivaEventRegistrationStatus. For assignment of events to registrations, the application
may specify a handle that is signaled with the events. This handle may have any value and is not interpreted
by the Dialogic® Diva® SDK. The function returns a handle for further actions related to this registration, e.g.,
to cancel the registration via DivaReleaseSIPRegistrar.

DWORD DivaRegisterSIPRegistrar (DivaAppHandle hApp,
DWORD LineDevice,
DivaHandle hAppRegistrar,
DivaHandle* phDivaRegistrar,
DivaSIPRegistrarParams * pParams);

Dialogic® Diva® API Functions

Page 203

The parameters for the registration are passed in the data structure DivaSIPRegistrarParams. Refer to the
description of DivaSIPRegistrarParams for more detailed information about the parameter.

The event notification is done on the context returned via DivaRegister. It is recommended for applications to
register only once via DivaRegister. If multiple registrations via DivaRegister are done, the SIP registrations are
valid for all instances registered with DivaRegister.

See also

DivaReleaseSIPRegistrar, DivaEventRegistrationStatus, DivaSIPRegistrarParams

DivaReleaseSIPRegistrar

DivaReleaseSIPRegistrar initiates the release of a registration at a SIP registrar server.

Parameter

hDivaRegistrar

[in] The hDivaRegistrar parameter contains a handle and identifies the registration. The handle has been
returned by DivaRegisterSIPRegistrar.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle, DivaErrorLineDevice, DivaErrorInvalidState, and DivaErrorNotSupported.

Remarks

The function initiates the release of a previous registration at a SIP registrar server. The function is only valid
on SIP-based line devices. If it is called on other line devices, the function returns DivaErrorNotSupported.

If the function returns success, the progress is reported by the event DivaEventRegistrationStatus. If no
registration is active or pending, the function returns DivaErrorInvalidState.

Note that the handles remain valid until the application calls DivaCloseRegistration.

See also

DivaRegisterSIPRegistrar, DivaEventRegistrationStatus, DivaSIPRegistrarParams

DivaRegisterH323Gatekeeper

DivaRegisterH323Gatekeeper initiates the registration at a H.323 gatekeeper.

Parameters

hApp

[in] The hApp parameter specifies the application instance created via DivaRegister for event notification. See
Remarks.

LineDevice

[in] The parameter specifies the line device. The line device is an index starting with one up to the maximum
number of line devices.

DWORD DivaReleaseSIPRegistrar (DivaHandle hDivaRegistrar);

DWORD DivaRegisterH323Gatekeeper (DivaAppHandle hApp,
DWORD LineDevice,
DivaHandle hAppGatekeeper,

DivaHandle* phDivaGatekeeper,
DivaH323GatekeeperParams * pParams);

Dialogic® Diva® API Developer’s Reference Guide

Page 204

hAppGatekeeper

[in] The value of hAppGatekeeper passed in here will be given back to the application whenever an event is
indicated by the Dialogic® Diva® SDK for this request. You can use it to pass, e.g., an index or a pointer to a
structure, to help you keep track of multiple registrations in the same application.

phDivaGateKeeper

[out] The phDivaGatekeeper parameter points to a location of type DivaHandle that receives the Diva API handle
for this registration request.

pParams

[in] The pParams parameter points to a user supplied buffer that contains the registration parameter. For details,
refer to DivaH323GatekeeperParams.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter, DivaErrorLineDevice, DivaErrorInvalidState, and DivaErrorNotSupported.

Remarks

The function initiates the registration at a H.323 gatekeeper. The function is only valid on H.323-based line
devices; if called on other line devices, the function returns DivaErrorNotSupported.

If the registration request was successfully sent, the function returns DivaSuccess. The status of the registration
is reported via the event DivaEventRegistrationStatus. For assignment of events to registrations, the application
may specify a handle that is signaled with the events. This handle may have any value and is not interpreted
by the Diva SDK. The function returns a handle for further actions related to this registration, e.g., to cancel the
registration via DivaReleaseH323Gatekeeper.

The parameters for the registration are passed in the data structure DivaH323GatekeeperParams. Refer to the
description of the structure for more detailed information about the parameter.

The event notification is done on the context returned via DivaRegister. Applications should register only once
via DivaRegister. If multiple registrations via DivaRegister are done, the SIP registrations are valid for all
instances registered with DivaRegister.

See also

DivaReleaseH323Gatekeeper, DivaEventRegistrationStatus, DivaH323GatekeeperParams,
DivaSetH323Gateway

DivaReleaseH323Gatekeeper

DivaReleaseH323Gatekeeper initiates the release registration at a H.323 gatekeeper.

Parameter

hDivaRegistrar

[in] The hDivaRegistrar parameter contains a handle and identifies the registration. The handle has been returned
by DivaRegisterH323Gatekeeper.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle, DivaErrorInvalidState, and DivaErrorNotSupported.

Remarks

The function initiates the release of a previous registration at a H.323 gatekeeper. The function is only valid on
H.323-based line devices, if called on other line devices the function returns DivaErrorNotSupported.

DWORD DivaReleaseH323Gatekeeper (DivaHandle hDivaRegistrar);

Dialogic® Diva® API Functions

Page 205

If the function returns success, the progress is reported by the event DivaEventRegistrationStatus. If no
registration is active or pending, the function returns DivaErrorInvalidState.

The handles remain valid until the application calls DivaCloseRegistration.

See also

DivaRegisterH323Gatekeeper, DivaEventRegistrationStatus, DivaH323GatekeeperParams

DivaGetRegistrationResult

DivaGetRegistrationResult provides the result of the registration and optionally whether a retry is recommended.

Parameters

hDivaRegistrar

[in] The hDivaRegistrar parameter contains a handle and identifies the registration. The handle has been returned
by DivaRegisterSIPRegistrar or DivaRegisterH323Gatekeeper.

pResult

[out] The pResult parameter points to a location of type DWORD that receives the result of the registration.

pReply

[out] The pReply parameter points to a location of type BOOL and receives the information whether a retry is
recommended or not. The parameter is optional and may be set to zero.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possibles return values are
DivaErrorInvalidHandle, DivaErrorInvalidParameter, and DivaErrorInvalidState.

Remarks

When a registration is completed, the event DivaEventRegistrationStatus provides information whether the
registration was successful or failed. If the registration failed, the application may call DivaGetRegistrationResult
to retrieve the reason of the failure. For possible failures, refer to DivaRegistrationResults. Optionally, the
application may pass a pointer to a variable of type BOOL that receives the information whether a retry is
recommended.

The function can be called if the status signaled via the event DivaEventRegistrationStatus is
DivaRegStatusRegistered, DivaRegStatusFailed, or DivaRegStatusReleased. For all other states, the result
DivaErrorInvalidState is returned.

See also

DivaRegisterH323Gatekeeper, DivaRegisterSIPRegistrar, DivaEventRegistrationStatus

DWORD DivaGetRegistrationResult (DivaHandle hDivaRegistrar,
DWORD* pResult,
BOOL* pRetry)

Dialogic® Diva® API Developer’s Reference Guide

Page 206

DivaSetH323Gateway

DivaSetH323Gateway specifies a H.323 gateway to be used for outgoing calls.

Parameters

LineDevice

[in] This parameter specifies the line device. The line device is an index starting with one up to the maximum
number of line devices.

pGatewayAddress

[in] The pGatewayAddress parameter specifies the gateway IP address and optional the port number.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidParameter and DivaErrorNotSupported.

Remarks

The function DivaSetH323Gateway stores the information about a default gateway to be used. If a gateway is
specified, the Dialogic® Diva® SDK will add the gateway information to outgoing calls that are initiated with a
phone number only. The gateway address is specified as a string in the format <IP address>[:port], e.g.,
192.168.0.100:1010. To remove a previously set gateway, call this function with an empty gateway address.

Note that configuring a gateway is only valid if no registration at a gatekeeper is done.

See also

DivaRegisterH323Gatekeeper, DivaReleaseH323Gatekeeper, DivaEventRegistrationStatus,
DivaH323GatekeeperParams

DivaCloseRegistration

DivaCloseRegistration frees all internal resources allocated to the registration handle.

Parameter

hDivaRegistrar

[in] The hDivaRegistrar parameter contains a handle and identifies the registration. The handle has been returned
either by DivaRegisterSIPRegistrar or DivaRegisterH323Gatekeeper.

Return values

If the function succeeds, the return value is DivaSuccess (0). Another possible return value is
DivaErrorInvalidHandle.

Remarks

The function releases all resources allocated for the given handle. This function should be called when a
registration has been released or has failed. The function is synchronous and returns immediately. When the
function returns, the handle of the Dialogic® Diva® SDK is invalidated.

If the registration is still pending, the Diva SDK will implicitly release the registration. During this time, registration
resources in the Diva SDK may be blocked and a new registration may not be possible immediately.

See also

DivaRegisterH323Gatekeeper, DivaRegisterSIPRegistrar, DivaEventRegistrationStatus

DWORD DivaSetH323Gateway (DWORD LineDevice,
const char * pGatewayAddress);

DWORD DivaCloseRegistration (DivaHandle hDivaRegistrar);

Dialogic® Diva® API Functions

Page 207

IP-specific functions

With Dialogic® Diva® SDK 5.5, several IP-specific features are introduced. These features will only be available
on IP-based line devices. All IP-specific features will only be available on SIP-based line devices or on calls that
are initiated or answered on these line devices.

All IP-specific features are optional, and, if not used, the default handling known from previous Diva SDK releases
will take place.

• DivaRegisterSIPHeader

• DivaGetSIPHeader

• DivaSetSIPHeader

Dialogic® Diva® API Developer’s Reference Guide

Page 208

DivaRegisterSIPHeader

DivaRegisterSIPHeader registers a SIP header to be reported to the application if included in a received SIP
message.

Parameters

LineDevice

[in] This parameter specifies the line device. The line device is an index starting with one up to the maximum
number of line devices.

Name

[in] The Name parameter specifies the SIP header to be registered. This can be a standard SIP header, e.g.,
"Contact" or a private header either application- or PBX-specific. The maximum length for the name parameter
is MAX_ADDR_LEN.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle and DivaErrorLineDevice.

Remarks

By default, the Diva API abstracts the communication protocol-specific parameters, so that applications are
independent from the underlying protocol. If applications require SIP-specific information, they may register to
receive a certain SIP header. The SIP header may be a standard SIP header like "Contact" or any private header.
The availability of a SIP header is signaled via the event DivaEventSIPMessageReceived. The registration for SIP
header is done per line device and is valid for all calls processed on this line device.

See also

DivaGetSIPHeader, DivaSetSIPHeader

DivaGetSIPHeader

DivaGetSIPHeader retrieves a SIP header from the Diva API.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned from DivaCreateCall
or signaled with the event DivaEventIncomingCall.

hMessage

[in] The hMessage parameter specifies the SIP message for which the SIP header should be retrieved. A value
of zero specifies that the oldest available SIP header is retrieved, independent from any SIP message identifier.

pName

[out] The pName parameter specifies a location that receives the name of the SIP header. The length of the
buffer must be MAX_ADDR_LEN.

DWORD DivaRegisterSIPHeader (DWORD LineDevice,
const char Name);

DWORD DivaGetSIPHeader (DivaCallHandle hdCall,
DivaHandle hMessage,
char* pName,
char* pBuffer,
DWORD BufferSize,
DWORD* pSizeNeeded);

Dialogic® Diva® API Functions

Page 209

pBuffer

[out] The pBuffer parameter specifies a location that receives the SIP header information. For information about
buffer size, refer to Remarks.

BufferSize

[in] The BufferSize parameter specifies the length of the buffer specified by the pBuffer parameter.

pSizeNeeded

[out] The pSizeNeeded parameter specifies a location of type DWORD that receives the required length. The
parameter is optional and may be set to zero.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle, DivaErrorInvalidParameter, DivaErrorNoResources, and DivaErrorLineDevice.

Remarks

The function retrieves the SIP header information for a specific call. The Diva API signals the available SIP header
via the event DivaEventSIPMessageReceived, if enabled by the application via DivaRegisterSIPHeader. With the
event, the application gets a message identifier that specifies the SIP message belonging to the event. The
application may use this handle to retrieve the SIP headers for a specific SIP message.

If the application passes the value zero as message identifier hMessage, the oldest available SIP header is
retrieved. Applications should call DivaGetSIPHeader in a loop until the result DivaErrorNoDataAvailable is
returned.

Note: For SIP headers that are signaled with the initial INVITE message, the event
DivaEventSIPMessageReceived is not signaled. The event DivaEventIncomingCall implicitly signals that a SIP
header might be available. The application may retrieve the SIP header belonging to the initial INVITE using
either DivaSIPInitialMessageHandle or zero as message identifier.

The Diva API buffers a certain amount of SIP headers before they are overwritten. Once a message is retrieved
via DivaGetSIPHeader, the message is removed from the internal queue.

The application must specify two memory locations to retrieve a SIP header. The memory location that receives
the name of the SIP header is expected to be MAX_ADDR_LEN long. The memory location that receives the
header information may vary in length. The application may retrieve the required length by passing a valid
pointer for the pSizeNeeded parameter. The Diva API will return the required length in pSizeNeeded if the buffer
is not specified or the length of the buffer does not fit. If the length does not fit, the Diva API returns
DivaErrorInsufficientBuffer.

See also

DivaRegisterSIPHeader, DivaSetSIPHeader, DivaEventSIPMessageReceived

DivaSetSIPHeader

DivaSetSIPHeader specifies a SIP header to be sent with the next SIP message.

Parameters

hdCall

[in] The hdCall parameter identifies the call at the Diva API. The handle is either returned from DivaCreateCall
or signaled with the event DivaEventIncomingCall.

pName

[in] The pName parameter specifies the name of the SIP header to be set.

DWORD DivaSetSIPHeader (DivaCallHandle hdCall,
const char* pName,
const char* pHeader);

Dialogic® Diva® API Developer’s Reference Guide

Page 210

pHeader

[in] The pHeader parameter specifies the information to be set for the header specified by pName.

Return values

If the function succeeds, the return value is DivaSuccess (0). Other possible return values are
DivaErrorInvalidHandle and DivaErrorInvalidParameter.

Remarks

The function sets the information for a SIP header to be included in the next SIP message sent to the peer. The
message in which the SIP header is included depends on the call state, e.g., the header is send with the INVITE
message if the SIP header is set before calling DivaDial. Once the specified header is included in a SIP message,
it will be cleared from the internal storage. The application must set a new SIP header if this information should
be included in the next SIP message.

See also

DivaRegisterSIPHeader, DivaGetSIPHeader

Dialogic® Diva® API Events

Page 211

CHAPTER 5

Dialogic® Diva® API Events

This chapter describes the events reported by the Diva API. The parameters delivered with the event are
event-specific. Most events pass the application call handle with the event. If the application has not set the call
handle, the value INVALID_APP_CALL_HANDLE is used.

Each event may be silently discarded by the application. No resources are bound to an event in the Diva API.
An exception is the event DivaEventCallDisconnected, which must be processed in order to free resources bound
to a call. Resources are set free by calling DivaCloseCall.

Event Summary

The following tables summarize the Diva API events by group.

Connection Events

Call Transfer and Supplementary Services Events

Event Description

DivaEventIncomingCall Signals an incoming call.

DivaEventCallProgress Signals the progress of a call by providing information on the call setup steps.

DivaEventCallInfo New information for the call is available since the last call to DivaGetCallInfo.

DivaEventCallConnected An incoming or outgoing call is physically connected, and data transfer can be
performed on this call.

DivaEventCallDisconnected The call was disconnected.

DivaEventEarlyDataChannelConnected Signals that voice information can be streamed. The event is only signaled for
outgoing calls that are established with DivaVoiceOptionEarlyDataChannel set
in DivaVoiceOptions or for incoming calls that are not answered, but have call
type set to voice using the DivaVoiceOptionEarlyDataChannel option.

DivaEventCallDisconnectedNotify Remote side initiated a disconnect. The event is only signaled in early data
channel mode.

Event Description

DivaEventHoldCompleted DivaHold initiated a hold request.

DivaEventRetrieveCompleted DivaRetrieve initiated a retrieve request.

DivaEventSetupTransferCompleted DivaSetupCallTransfer requested a call transfer.

DivaEventTransferCompleted DivaCompleteCallTransfer or DivaBlindCallTransfer initiated a transfer request.

DivaEventCallHoldNotify The remote end put the call on hold.

DivaEventCallRetrievedNotify The remote end retrieved a call that was previously on hold.

DivaEventCallTransferredNotify The call was transferred by the remote end.

DivaEventTransferRequested The remote end requested a call transfer.

DivaEventMWICompleted A message activation or deactivation request sent via DivaMWIActivate or
DivaMWIDeactivate completed.

DivaEventMWIIndicated A message waiting indication was detected.

DivaEventFlashCompleted A hook flash initiated by DivaSendFlash was completed.

DivaEventLIConnectCompleted Line Interconnect was established

DivaEventLIDisconnected Line Interconnect was released

Dialogic® Diva® API Developer’s Reference Guide

Page 212

VoIP Events

Data Transfer Events

Fax Events

Voice Events

Event Description

DivaEventIPMediaChannelStatus Signals whether access to an IP media channel via DivaConnectIPMediaChannel
was successful or whether an error occurred.

DivaEventSIPMessageReceived The application received a SIP message containing one or more headers for
which it registered.

Event Description

DivaEventDataAvailable New data is available.

DivaEventDataSent The data passed for sending has been sent, and the buffer is free to be used by
the application.

DivaEventDataChannelStatus The status of the data channel has changed. This event is only signaled if the
application enabled manual data channel mode via the call property
DivaCPT_ManualDataChannel.

DivaEventDTMFInitialDigitTimeout Signals information about the receive status of modem data, e.g. if reception
of a data block is in progress. This event is only signaled if the application
enabled the reporting of data status information via the call property
DivaCPT_EnableDataStatusReporting.

Event Description

DivaEventFaxPageSent A fax page has been sent.

DivaEventFaxSent All pages of a fax have been sent.

DivaEventFaxPageReceived A fax page has been received.

DivaEventFaxReceived All pages of a fax have been received.

DivaEventDetailedFaxStatus Fax status information is available. This event is only signaled if the application
enables the reporting of fax status information via the call property
DivaCPT_EnableFaxStatusReporting.

DivaEventRecordVoiceEnded The recording of the audio data has ended.

DivaEventSendVoiceEnded The streaming of the audio data has ended.

DivaEventSendVoiceDone (Obsolete) The streaming of the audio has ended.

DivaEventSendVoiceRestarted The streaming of the audio data was restarted.

DivaEventSendVoiceCanceled The streaming of the audio data was terminated by the application.

DivaEventDTMFReceived A DTMF tone was detected.

DivaEventSendDTMFToneEnded The streaming of a DTMF tone or of the last tone of a sequence initiated by
DivaSendDTMF has ended.

DivaEventToneDetected The start or stop of a continuous tone or a multi-frequency tone was detected.
The detection must be enabled by calling DivaReportTones.

DivaEventSendToneEnded The streaming of a tone or of the last tone of a sequence initiated by
DivaSendTone or DivaSendContinuousTone has ended.

DivaEventDTMFMaxDigits DTMF processing for the group DivaProcessingGroupEvent was enabled via via
DivaSetDTMFProcessingRules, and the maximum amount of digits were
received.

Dialogic® Diva® API Events

Page 213

Device Status Events

Monitoring/Line Tapping Events

DivaEventDTMFTerminationDigit DTMF processing for the group DivaProcessingGroupEvent was enabled via
DivaSetDTMFProcessingRules, and one of the enabled termination digits was
received.

DivaEventDTMFInterDigitTimeout DTMF processing for the group DivaProcessingGroupEvent was enabled via
DivaSetDTMFProcessingRules, and the inter digit timeout was reached.

DivaEventDTMFInitialDigitTimeout DTMF processing for the group DivaProcessingGroupEvent was enabled, and no
DTMF digit was received within the initial digit timeout set via
DivaSetDTMFProcessingRules.

DivaEventDTMFMaxTimeout DTMF processing for the group DivaProcessingGroupEvent was enabled via
DivaSetDTMFProcessingRules, and no other part of the rules specified expired
before the maximum timeout was detected.

DivaEventAnsweringMachineDetector The answering machine detector, started with
DivaEnableAnsweringMachineDetector, has finished the analyses and reports
the result.

DivaEventGenericToneEnded The generic tone generator, enabled via DivaGenerateSingleTone or
DivaGenerateDualTone, has ended due to a timeout condition.

DivaEventGenericToneDetected The generic tone detector, enabled via DivaDetectSingleTone or
DivaDetectDualTone, has detected a tone that matches the detection parameter.

DivaEventGenericToneInfo An answer to a low level generic tone request is available. The request was
previously issued by the application via the function
DivaSendGenericToneRequest.

DivaEventCustomToneDetected A custom tone specified via DivaSpecifyCustomTone was detected.

DivaEventGenericToneDetected The generic tone detector, enabled via DivaDetectSingleTone or
DivaDetectDualTone, has detected a tone that matches the detection parameter.

DivaEventConferenceInfo New information concerning the current conference is available.

Event Description

DivaEventDeviceStatusChanged The status of a device has changed.

DivaEventRegistrationStatus The status of a registration at a SIP registrar or H.323 gatekeeper changed.

Event Description

DivaEventMonitorCallInitiated A call was initiated on the monitored line

DivaEventMonitorCallConnected A call was connected at the signaling level.

DivaEventMonitorCallDisconnected A call was disconnected at the signaling level.

DivaEventMonitorCallInfo The state of a call changed or additional information was received as information
messages.

DivaEventMonitorFrameReceived A layer 2 or layer 3 frame is available on the monitored line.

DivaEventMonitorRecordEnded Recording stopped.

DivaEventMonitorStatus The status of a monitor object created by DivaCreateMonitor changed.

DivaEventMonitorAudioData Audio data for the monitored call is available can be retrieved by the application.

DivaEventMonitorDTMFDetected DTMF was detected on the monitored call.

DivaEventMonitorToneDetected An extended tone or human talker was detected on the monitored call.

Dialogic® Diva® API Developer’s Reference Guide

Page 214

Timer Events

SMS Events

The remainder of this chapter each Diva API event. The events are listed in alphabetical order

Speech Recognizer Events

DivaEventAnsweringMachineDetector

The event DivaEventAnsweringMachineDetector is signaled when the answering machine detector, started with
DivaEnableAnsweringMachineDetector, has finished the analyses and reports the result. The event specific
parameter 1 contains the handle of the call. The event specific parameter 2 contains the result. See
DivaResultAnsweringMachineDetector for valid results.

DivaEventApplicationTimer

The event DivaEventApplicationTimer is signaled when a timer started with DivaStartApplicationTimer expires.
There is no event specific parameter for this event.

DivaEventCallConnected

The DivaEventCallConnected event signals that an incoming or outgoing call is physically connected and data
transfer can be done on this call. The EventSpecific1 parameter contains the call handle of the application.

DivaEventCallDisconnected

The DivaEventCallDisconnected event reports the final disconnect of a call. The EventSpecific1 parameter
contains the call handle of the application. The EventSpecific2 parameter contains the call handle of the Diva
API. This parameter should be used to close the call via DivaCloseCall.

Note: There is no application-specific call handle and no disconnect event is sent if the application has rejected
a call.

DivaEventCallDisconnectedNotify

The event DivaEventCallDisconnectNotify is only signaled in early data channel mode. The event indicates that
the remote side has initiated the disconnect. The Diva SDK will not release the call and applications may still
listen to the data channel, e.g., to hear the busy tone. The call is finally released when the application calls
DivaDisconnect.

DivaEventCallHoldNotify

The event DivaEventCallHoldNotify is signaled when the remote end puts the call on hold. The EventSpecific1
parameter contains the call handle of the application.

Event Description

DivaEventCallTimer A timer started with DivaStartCallTimer expired.

DivaEventApplicationTimer A timer started with DivaStartApplicationTimer expired.

Event Description

DivaEventSms1MsgReceived An SMS message arrived.

DivaEventSmsError SMS detected an error.

Event Description

DivaEventSpeechRecognizerStatus An event signals the status of a speech recognizer session of a call.

DivaEventSpeechRecognizerProgress An event signals the progress of a speech recognizer session of a call.

Dialogic® Diva® API Events

Page 215

DivaEventCallInfo

The DivaEventCallInfo event is signaled when new information for the call is available since the last call to
DivaGetCallInfo. The EventSpecific1 parameter contains the call handle of the application. The application may
obtain more information on this call by calling DivaGetCallInfo.

This event is signaled when the content of one of the DivaCallInfo members has changed. An exception are the
members that own a separate event, for example CallState, which is reported by DivaEventCallProgress.

DivaEventCallProgress

The DivaEventCallProgress event signals the progress of an incoming or outgoing call. The EventSpecific1
parameter contains the call handle of the application. The EventSpecific2 parameter contains the new call state.
The application may obtain more information on this call by calling DivaGetCallInfo.

This event is available in addition to the DivaEventCallConnected and DivaEventCallDisconnected events to
provide information on different steps of the call setup. The call state is one of the states defined in DivaCallState.

The event is signaled whenever the state of a call is changed. Other call-related information, e.g., disconnect
reasons may not be updated at the time the event is received. The update of this kind of information is signaled
with other events, e.g., DivaEventCallInfo or DivaEventCallDisconnected.

DivaEventCallRetrievedNotify

The event DivaEventCallRetrieveNotify is signaled when the remote end retrieves a call that was previously on
hold. The EventSpecific1 parameter contains the call handle of the application.

DivaEventCallTimer

The event DivaEventCallTimer is signaled when a timer started with DivaStartCallTimer expires. The parameter
EventSpecific1 contains the call handle of the application.

DivaEventCallTransferredNotify

The DivaEventCallTransferredNotify event is signaled when the call is transferred by the remote party. The
EventSpecific1 parameter contains the call handle of the application.

DivaEventConferenceInfo

The DivaEventConferenceInfo event is signaled when new information concerning the conference is available.
The application can retrieve the conference information by calling DivaGetConferenceInfo.

The EventSpecific1 parameter contains the conference handle of the application passed to the Diva API when
the conference was created.

DivaEventCustomToneDetected

The event DivaEventCustomTone is signaled if the application has specified one or more customer tones via
DivaSpecifyCustomTone. The EventSpecific1 parameter contains the call handle of the application. The
EventSpecific2 parameter contains the identifier of the tone assigned, with the tone definition passed via
DivaSpecifyCustomTone.

DivaEventDataAvailable

The DivaEventDataAvailable event is signaled when new data is available. The application has to retrieve the
data using DivaReceiveData.

The EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter contains
the amount of available data.

Dialogic® Diva® API Developer’s Reference Guide

Page 216

DivaEventDataChannelStatus

The event DivaEventDataChannelStatus signals that the status of the data channel has changed. The event is
only signaled if the application has enabled manual data channel mode via the call property
DivaCPT_ManualDataChannel. The EventSpecific1 parameter contains the call handle of the application. The
EventSpecific2 parameter contains the new state of the data channel. For possible data channel states, refer to
DivaEventDataChannelStatus.

DivaEventDataFrameStatus

The DivaEventDataFrameStatus event signals information about the receive status of modem data, e.g., if
reception of a data block is in progress. The signaling of this event must be enabled via the call property
DivaCPT_EnableDataStatusReporting. The parameter EventSpecific1 contains the call handle of the application.
The parameter EventSpecific2 contains information about the available status information. Refer to
DivaDataFrameStatus for details about available data status options.

DivaEventDataSent

The DivaEventDataSent event is signaled when the data passed for sending has been sent and the buffer is free
to be used by the application.

The EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter contains
the data handle from the corresponding call to DivaSendData.

Note: The event might be signaled before the call to DivaSendData returns.

DivaEventDetailedFaxStatus

The DivaEventDetailedFaxStatus event signals the availability of detailed fax status information. The signaling
of this event must be enabled via the call property DivaCPT_EnableFaxStatusReporting. The parameter
EventSpecific1 contains the call handle of the application. The parameter EventSpecific2 contains information
about the available status information. Refer to DivaFaxStatusType for details about available fax status types.

DivaEventDeviceStatusChanged

The event DivaEventDeviceStatusChanged is reported when an enabled device status has changed.

The parameter EventSpecific1 contains the line device ID of the device that has changed. The parameter
EventSpecifc2 contains the information about what has changed. This are one or more options of
DivaLineDeviceStatusEvents.

DivaEventDTMFInitialDigitTimeout

The event DivaEventDTMFInitialDigitTimeout is signaled when DTMF processing for the group
DivaProcessingGroupEvent is enabled, and no DTMF digit has been received within the initial digit timeout set
via DivaSetDTMFProcessingRules. The parameter EventSpecific1 contains the call handle of the application. The
parameter EventSpecific2 is always zero.

DivaEventDTMFInterDigitTimeout

The event DivaEventDTMFInterDigitTimeout is signaled when DTMF processing for the group
DivaProcessingGroupEvent is enabled via DivaSetDTMFProcessingRules and the inter digit timeout is reached
after receiving the last digit. The parameter EventSpecific1 contains the call handle of the application. The
parameter EventSpecific2 contains the amount of digits in the digit buffer.

DivaEventDTMFMaxDigits

The event DivaEventDTMFMaxDigits is signaled when DTMF processing for the group DivaProcessingGroupEvent
is enabled and the amount of digits is reached. The parameter EventSpecific1 contains the call handle of the
application. The parameter EventSpecific2 contains the amount of digits in the digit buffer.

Dialogic® Diva® API Events

Page 217

DivaEventDTMFMaxTimeout

The event DivaEventDTMFMaxDigitTimeout is signaled when DTMF processing for the group
DivaProcessingGroupEvent is enabled via DivaSetDTMFProcessingRules and no other part of the rules specified
expired before the maximum timeout was detected. The parameter EventSpecific1 contains the call handle of
the application. The parameter EventSpecific2 contains the amount of digits in the digit buffer.

DivaEventDTMFReceived

The DivaEventDTMFReceived event is signaled when a DTMF tone is detected. The detection must be enabled
by calling DivaReportDTMF.

The EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter contains
the signaled DTMF tone.

DivaEventDTMFTerminationDigit

The event DivaEventDTMFTerminationDigits is signaled when DTMF processing for the group
DivaProcessingGroupEvent is enabled and one of the enabled termination digits is received. The parameter
EventSpecific1 contains the call handle of the application. The parameter EventSpecific2 contains the termination
digit.

DivaEventEarlyDataChannelConnected

The DivaEventEarlyDataChannelConnected event reports that voice information can be streamed. The physical
connection may not have reached the connected state at this moment. The event is only signaled for outgoing
calls that are established with DivaVoiceOptionEarlyDataChannel set in DivaVoiceOptions or for incoming calls
that are not answered but the call type is set to voice using the DivaVoiceOptionEarlyDataChannel option. The
EventSpecific1 parameter contains the call handle of the application.

DivaEventFaxDocumentSent

The DivaEventFaxDocumentSent event is signaled when the multi fax document sending is ongoing and one
document has been completed. The EventSpecific1 parameter contains the call handle of the application.

DivaEventFaxPageReceived

The DivaEventFaxPageReceived event is signaled when a page has been received. It does not indicate if more
pages follow. The EventSpecific1 parameter contains the call handle of the application. The application must call
DivaGetCallInfo to retrieve the number of pages currently received. Additional fax-related parameters such as
speed may have changed.

DivaEventFaxPageSent

The DivaEventFaxPageSent event is signaled when a page has been sent. The EventSpecific1 parameter contains
the call handle of the application. The application must call DivaGetCallInfo to retrieve the number of pages
currently sent. Additional fax-related parameters such as speed may have changed.

DivaEventFaxReceived

The DivaEventFaxReceived event is signaled when all pages of a fax have been received. The EventSpecific1
parameter contains the call handle of the application.

DivaEventFaxSent

The DivaEventFaxSent event is signaled when all pages have been sent. At this moment, the remote side can
automatically disconnect. The EventSpecific1 parameter contains the call handle of the application.

Dialogic® Diva® API Developer’s Reference Guide

Page 218

DivaEventFlashCompleted

The DivaEventFlashCompleted event is signaled when a hook flash initiated by DivaSendFlash has been
completed. The EventSpecific1 parameter contains the call handle of the application.

DivaEventFSKDataDetected

The event DivaEventFSKDataDetected is signaled when the FSK detector has been enabled via
DivaDetectFSKData. The parameter EventSpecific1 contains the application call handle. The EventSpecific2
parameter contains the detected character or type. The lower 16 bits contain the character, the upper 16 bits
contain the event type. For valid types, refer to DivaFSKEventTypes. In 64 bit systems, the upper 32 bits are
unused.

DivaEventGenericToneDetected

The event DivaEventGenericToneDetected is reported when the generic tone detector enabled via
DivaDetectSingleTone or DivaDetectDualTone has detected a tone that matches the detection parameter. The
result must be retrieved via DivaGetDetectToneResult. The parameter EventSpecific1 contains the call handle
of the application.

DivaEventGenericToneEnded

The event DivaEventGenericToneEnded is reported when the generic tone generator enabled via
DivaGenerateSingleTone or DivaGenerateDualTone has ended due to a timeout condition. The parameter
EventSpecific1 contains the call handle of the application.

DivaEventGenericToneInfo

The event DivaEventGenericToneInfo is reported when an answer to a low level generic tone request is available.
The request has been previously issued by the application via the function DivaSendGenericToneRequest. The
application must retrieve the information via DivaGetGenericToneInfo. The parameter EventSpecific1 contains
the call handle of the application.

DivaEventHoldCompleted

The DivaEventHoldCompleted event is signaled as a result of a hold request initiated by DivaHold. The
EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter contains the
result of the request. If the call has reached the hold state, the result is DivaSuccess. In case of an error, the
result is DivaErrorNotSupported.

DivaEventIncomingCall

The DivaEventIncomingCall event signals a new incoming call. The EventSpecific1 parameter contains the Diva
API call handle of this call. The application can retrieve more information on this call by calling DivaGetCallInfo
with the given handle. The application can answer the call by calling DivaAnswer, DivaAnswerFax, or
DivaAnswerVoice. If more information is needed, the application must attach a call handle by calling
DivaAttachToCall. If the application is not able to service a call, DivaReject must be called.

DivaEventIPMediaChannelStatus

The DivaEventIPMediaChannelStatus event signals whether access to an IP media channel via
DivaConnectIPMediaChannel was successful or whether an error occurred. The parameter EventSpecific1
contains the virtual call handle of the application, which is provided with a call to DivaCreateIPMediaChannel.
The parameter EventSpecific2 contains status information. Refer to DivaMediaChannelStatus for details about
available status information.

DivaEventLIConnectCompleted

The DivaEventLIConnectCompleted event is signaled when Line Interconnect has been established. Line
Interconnect must be initiated by DivaLIConnect.

Dialogic® Diva® API Events

Page 219

The EventSpecific1 parameter contains the call handle of the application for this call. On success, the
EventSpecific2 parameter contains the call handle of the interconnected call. If Line Interconnect fails, the
EventSpecific2 parameter is set to INVALID_APP_CALL_HANDLE.

DivaEventLIDisconnected

The DivaEventLIDisconnected event is signaled when Line Interconnect has been released. Line Interconnect
must be initiated by DivaLIDisconnect. This event is also sent if the interconnected call is disconnected for some
reason.

The EventSpecific1 parameter contains the call handle of the application for this call. On success, the
EventSpecific2 parameter contains the call handle of the previously interconnected call.

DivaEventMonitorAudioData

The event DivaEventMonitorAudioData is signaled when audio data for the monitored call is available that can
be retrieved by the application. The parameter EventSpecific1 contains the monitor handle of the application
passed to the Diva API when the monitor instance is created. The parameter EventSpecific2 contains the handle
of a call object. The call object can be used to retrieve the audio data using DivaMonitorReceiveAudio. It is
recommended to call DivaMonitorReceiveAudio in a loop until the returned amount of bytes is zero.

DivaEventMonitorCallConnected

The event DivaEventMonitorCallConnected is signaled when a call was connected at the signaling level.

The parameter EventSpecific1 contains the monitor handle of the application passed to the Diva API when the
monitor is created. The parameter EventSpecific2 contains the handle of a call object. The call object can be
used to retrieve information by calling DivaGetCallInfo or DivaGetCallProperties.

DivaEventMonitorCallDisconnected

The event DivaEventMonitorCallDisconnected is signaled when a call was disconnected at the signaling level.

The parameter EventSpecific1 contains the monitor handle of the application passed to the Diva API when the
monitor is created. The parameter EventSpecific2 contains the handle of a call object. The call object can be
used to retrieve disconnect information by calling DivaGetCallInfo or DivaGetCallProperties.

DivaEventMonitorCallInfo

The event DivaEventMonitorCallInfo is signaled when call information has been changed, e.g., the state of a call
changed or additional information is received as info messages.

The parameter EventSpecific1 contains the monitor handle of the application passed to the Diva API when the
monitor is created. The parameter EventSpecific2 contains the handle of a call object. The call object can be
used to retrieve information by calling DivaGetCallInfo or DivaGetCallProperties.

DivaEventMonitorCallInitiated

The event DivaEventMonitorCallInitiated is signaled when a call was initiated on the monitored line.

The parameter EventSpecific1 contains the monitor handle of the application passed to the Diva API when the
monitor is created. The parameter EventSpecific2 contains the handle of a call object. The call object can be
used to retrieve information by calling DivaGetCallInfo or DivaGetCallProperties.

DivaEventMonitorFrameReceived

The event DivaEventMonitorFrameReceived is signaled when a layer 2 or layer 3 frame is available on the
monitored line.

The parameter EventSpecific1 contains the monitor handle of the application passed to the Diva API when the
monitor is created via DivaCreateMonitor. The parameter EventSpecific2 contains the handle of the frame that
may be used to retrieve the frame information via DivaMonitorGetFrame.

Dialogic® Diva® API Developer’s Reference Guide

Page 220

DivaEventMonitorRecordEnded

The event DivaEventMonitorRecordEnded is signaled when the recording stops.

The parameter EventSpecific1 contains the monitor handle of the application passed to the Diva API when the
monitor is created. The parameter EventSpecific2 contains the reason for the stopping, typically user initiated.

DivaEventMonitorStatus

The event DivaEventMonitorStarted is signaled when the status of a monitor object created by DivaCreateMonitor
has changed.

The parameter EventSpecific1 contains the monitor handle of the application passed to the Diva API when the
monitor is created. The parameter EventSpecific2 contains the new status. See the DivaMonitorStatus for possible
status messages.

DivaEventMonitorDTMFDetected

The event DivaEventMonitorDTMFDetected is signaled when a DTMF tone has been detected on the monitored
call. The parameter EventSpecific1 contains the monitor handle of the application passed to the Diva API when
the monitor is created. The parameter EventSpecific2 contains the handle of a call object. The application could
retrieve the information about the DTMF digit via DivaMonitorGetDTMFInfo.

DivaEventMonitorToneDetected

The event DivaEventMonitorToneDetected is signaled when an extended tone has been detected on the monitored
call. The parameter EventSpecific1 contains the monitor handle of the application passed to the Diva API when
the monitor is created. The parameter EventSpecific2 contains the handle of a call object. The application could
retrieve the information about the extended tone via DivaMonitorGetToneInfo.

DivaEventMWICompleted

The event DivaEventMWICompleted is signaled when a message activation or deactivation request sent via
DivaMWIActivate or DivaMWIDeactivate has completed. The parameter EventSpecific1 contains the application
handle passed with the request. The parameter EventSpecific2 contains the result. A value of zero indicates
success.

DivaEventMWIIndicated

The DivaEventMWIIndicated event is signaled when a message waiting indication is detected. The EventSpecific1
parameter contains the line device ID of the device that received the message waiting indication. The
EventSpecifc2 parameter contains a handle to retrieve the message waiting information via the
DivaMWIGetIndication function. The reporting of Message waiting indications must be enabled via the
DivaMWIReport.

DivaEventRecordVoiceEnded

The DivaEventRecordVoiceEnded event signals that the recording of the audio data is terminated. The
EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter contains the
reason for the termination. For valid reasons, see DivaRecordEndReasons.

DivaEventRegistrationStatus

The DivaEventRegistrationStatus event is signaled when the status of a registration at a SIP registrar or H.323
gatekeeper changes. The EventSpecific1 parameter contains the handle of the application passed by the
application to DivaRegisterSIPRegistrar or DivaRegisterH323Gatekeeper. The EventSpecific2 parameter contains
the new status of the registration. For valid values, refer to the enumeration DivaRegistrationStatus.

Dialogic® Diva® API Events

Page 221

DivaEventRetrieveCompleted

The DivaEventRetrieveCompleted event is signaled as a result of a retrieve request initiated by DivaRetrieve.
The EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter contains
the result of the request. If the call has been successfully retrieved and reached the connected state, the result
is DivaSuccess. In case of an error, the result is DivaErrorNotSupported.

DivaEventSendDTMFToneEnded

The DivaEventSendDTMFToneEnded event is signaled when the streaming of a DTMF tone or of the last tone of
a sequence initiated by DivaSendDTMF has ended. When this event occurs, all data-related to this tone have
been streamed.

The EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter is set
to zero.

DivaEventSendToneEnded

The DivaEventSendToneEnded event is signaled when the streaming of a tone or of the last tone of a sequence
initiated by DivaSendTone or DivaSendContinuousTone has ended. DivaSendContinuousTone may end due to a
timeout or a call to DivaStopContinuousTone. When this event occurs, all data-related to this tone have been
streamed.

The EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter is set
to zero.

DivaEventSendVoiceCanceled

The DivaEventSendVoiceCanceled event signals that the streaming of the audio data is terminated by the
application. Any resources used by the Dialogic® Diva® SDK for the streaming are no longer used. The
EventSpecific1 parameter contains the call handle of the application.

DivaEventSendVoiceDone

The DivaEventSendVoiceDone event signals the streaming of the audio data is completed. The EventSpecific1
parameter contains the call handle of the application.

Please note that this event is also sent at the end of the file when continuous playing of the file has been selected.
This event is obsolete. It is recommended to use the events DivaEventSendVoiceEnded,
DivaEventSendVoiceRestarted, and DivaEventSendVoiceCanceled.

DivaEventSendVoiceEnded

The DivaEventSendVoiceEnded event signals that the streaming of the audio data is completed. The
EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter contains the
reason for the termination. For valid reasons, see DivaSendVoiceEndReasons.

DivaEventSendVoiceRestarted

The DivaEventSendVoiceRestarted event signals that the continuous streaming of the audio data is restarted.
The EventSpecific1 parameter contains the call handle of the application.

DivaEventSetupTransferCompleted

The DivaEventSetupTransferCompleted event is signaled as a result of the request to transfer a call with
DivaSetupCallTransfer. The EventSpecific1 parameter contains the call handle of the primary call. The
EventSpecific2 parameter contains the result of the request. In case of success, the result code is DivaSuccess.
Other possible values are DivaErrorNotSupported and DivaErrorIvalidState.

Dialogic® Diva® API Developer’s Reference Guide

Page 222

DivaEventSIPMessageReceived

The DivaEventSIPMessageReceived event is signaled when a SIP message is received containing one or more
headers that the application has registered for. The EventSpecific1 parameter contains the application call handle.
The EventSpecific2 parameter contains an identifier to retrieve the SIP header information belonging to this SIP
message via DivaGetSIPHeader.

DivaEventSms1MsgReceived

The event DivaEventSms1MsgReceived is signaled when a SMS message arrives. In this case, "message" refers
to information origination in layer 2 or layer 3. The EventSpecific1 parameter contains the call handle of the
application. The EventSpecific2 parameter is a pointer to the received message. The application must retrieve
the information via DivaSms1ReleaseMsgReceived.

DivaEventSmsError

The event DivaEventSmsError is signaled by SMS when it detects an error. The EventSpecific1 parameter contains
the call handle of the application. The EventSpecific2 parameter is a four-byte integer.

DivaEventToneDetected

The DivaEventToneDetected event is signaled when the start or stop of a continuous tone or a multi-frequency
tone is detected. The detection must be enabled by calling DivaReportTones.

The EventSpecific1 parameter contains the call handle of the application. The EventSpecific2 parameter contains
the signaled tone. The continuous tones are defined in DivaContinuousTones, and the multi-frequency tones are
defined in DivaMultiFrequencyTones.

DivaEventTransferCompleted

The DivaEventTransferCompleted event is signaled as a result of a transfer request initiated by
DivaCompleteCallTransfer or DivaBlindCallTransfer. The EventSpecific1 parameter contains the call handle of
the primary call. The EventSpecific2 parameter contains the result of the request. In case of success, the result
code is DivaSuccess. Other possible values are:

• DivaErrorDestBusy: This error can only occur during a blind transfer. The consultation call failed due to a
busy condition.

• DivaErrorUnallocatedNumber: This error can only occur during a blind transfer. The consultation call failed,
the switch reported that the dialed number is invalid.

• DivaErrorNotSupported: The requested function is not supported. This might be due to the hold request or
the transfer itself.

DivaEventTransferRequested

The event DivaEventTransferRequested is signaled when the remote party requests a call transfer. The event is
only signaled if the call property DivaCPT_TransferRequestNotification is enabled. Param1 contains the
application call handle. Param2 is unused and will always contain zero.

DivaEventSpeechRecognizerStatus

The DivaEventSpeechRecognizerStatus event signals the status of a speech recognizer session of a call. The
parameter EventSpecific1 contains the call handle of the application. The parameter EventSpecific2 contains
information about the status. For possible values refer to DivaSpeechRecognizerStatus.

DivaEventSpeechRecognizerProgress

The DivaEventSpeechRecognizerProgress event signals the status of a speech recognizer session of a call. The
parameter EventSpecific1 contains the call handle of the application. The parameter EventSpecific2 contains
information about the progress. For possible values refer to DivaSpeechRecognizerProgress.

Dialogic® Diva® API Call Properties

Page 223

CHAPTER 6

Dialogic® Diva® API Call Properties

The Diva API call properties allow application to set or retrieve information. All call properties are optional and
allow for enhancing functionality and for keeping the Diva API interface compatible with previous versions. The
following lists the available call property types by category.

• Common Call Properties for All Call Types

• Voice, Streaming, VAD, Talker and Tone Detection

• Fax Call Properties

• Modem Call Properties

• Extended Modem Call Properties

• Modulation V.18 Call Properties

• Call Properties for Low Level Signaling Access

• Digital Data Call Properties

• Special Supplementary Service Call Properties

• Passive Monitoring Call Properties

• RTP Call Properties

Common Call Properties for All Call Types

Property Value Definition
DivaCPT_CallType =1 Get

Set
This parameter specifies the basic type of a call and is available for reading and
writing. The basic call type may be modified by additional properties, i.e., modem
settings. Refer to DivaCallType for infromation on available call types.

DivaCPT_LineDevice Get
Set

DivaCPT_LineDevice specifies the device on which a call is handled and is available
for reading and writing. On setting the parameter, the value may be set to
LINEDEV_ALL. In this case, the Diva API automatically selects a line device. On
reading, the actual selected line device is reported.

DivaCPT_DataChannel Get
Set

DivaCPT_DataChannel is a read and write property. The write operation is only valid
for outgoing calls and specifies the data channel to be used. The property must be
set prior to the first call to DivaDial. On read the property provides the data channel
(B-channel) used for the call.

DivaCPT_ManualDataChannel Set The DivaCPT_ManualDataChannel is a write only property to specify that the
application handles the data channel manually. Refer to DivaEnableDataChannel
for more information.

DivaCPT_SignaledService Get
Set

DivaCPT_SignaledService specifies the service that is signaled from the network
for an incoming call or that is signaled to the network for an outgoing call. The
parameter is read and write.

Dialogic® Diva® API Developer’s Reference Guide

Page 224

DivaCPT_BearerCapabilities Get
Set

DivaCPT_BearerCapabilities provides the bearer capabilities signaled for an
incoming call on reading and specifies the bearer capabilities to be used for an
outgoing call. This parameter is read and write.

DivaCPT_CalledNumber Get DivaCPT_CalledNumber is a read only parameter and provides the called number
signaled for an incoming call. The called number for an outgoing call is specified by
the dial string of DivaDial or one of the DivaConnect functions.

DivaCPT_CallingNumber Get
Set

DivaCPT_CallingNumber is a read and write parameter. For an incoming call, the
calling number signaled from the network is provided on reading. For an outgoing
call, the number is signaled to the remote peer which is specified by writing the
property.

DivaCPT_CalledNumberParams Get
Set

DivaCPT_CalledNumberParams is a read and write parameter and sets / gets the
parameter for a called number. For information on the parameter, see
DivaNumberInformation.

DivaCPT_CallingNumberParams Get
Set

DivaCPT_CallingNumberParams is a read and write parameter and sets / gets the
parameter for a calling number. For information on the parameter, see
DivaNumberInformation.

DivaCPT_RedirectingNumber Get The parameter is read only and provides the redirected and redirecting number if
available.

DivaCPT_RedirectedNumber Get The parameter is read only and provides the redirected and redirecting number if
available.

DivaCPT_RedirectionNumber Get This is a read only parameter that provides the redirection number if a call is
transferred by the remote party.

DivaCPT_RedirectReason Get
Set

The DivaCPT_RedirectReason is a read write property to set or retrieve the redirect
reason.

DivaCPT_SecondCallingNumber Get The parameter is read only and provides the information about a second calling
party number. A second calling party number may be signaled by SMS gateways.

DivaCPT_SecondCallingNumber
Params

Get The parameter is read only and provides the parameter of a second calling party number. For
information about this parameter, see DivaNumberInformation. A second calling party number
may be signaled by SMS gateways.

DivaCPT_CallingName Get
Set

The parameter is read and write. On read, it provides the calling name for an
incoming call. On write, it allows to set the name for an outgoing call. The availability
of the name depends on the underlying network.

DivaCPT_ConnectedName Get The parameter is read only. When the call is connected, the property provides the
name of the connected party. The availability of the name depends on the
underlying network.

DivaCPT_CallingSubAddress Get
Set

The parameter provides the calling party address signaled on an incoming call or
sets the calling party address for an outgoing call. This parameter is read and write.

DivaCPT_CalledSubAddress Get
Set

The parameter provides the called party address signaled on an incoming call or
sets the called party address for an outgoing call. This parameter is read and write.

DivaCPT_OriginalCalledNumber Get DivaCPT_OriginalCalledNumber is a read only property and specifies the number
that the originator of the call has dialed. This number can be different from the
calling party number and the redirecting number if the call has been redirected.

DivaCPT_ConnectedNumber Get DivaCPT_ConnectedNumber is a read only property and specifies the number of
the endpoint that answered the call. This can be different from the called number
if the call is redirected.

DivaCPT_CalledName Get DivaCPT_CalledName is a read only parameter and specifies the name of the
endpoint that answered the call.

DivaCPT_TxSpeed Get The parameter is read only and provides the transmit and receive speed for the
call. Depending on the type of call the transmit and receive speed may be different.

DivaCPT_RxSpeed Get The parameter is read only and provides the transmit and receive speed for the
call. Depending on the type of call the transmit and receive speed may be different.

DivaCPT_DiscReason Get The parameter is read only and returns the disconnect reason. Refer to
DivaDisconnectReasons for possible options.

DivaCPT_SignaledLineDiscReason Get The parameter is read only and returns the disconnect reason in the format signaled
by the line.

DivaCPT_RejectReason Set The parameter is write only and specifies the reject reason to be used when the
call is rejected by DivaReject. Please note that the property must be set prior to
call DivaReject.

Property Value Definition

Dialogic® Diva® API Call Properties

Page 225

Voice, Streaming, VAD, Talker and Tone Detection

DivaCPT_DisconnectReason Set DivaCPT_DisconnectReason is a write only property to set the disconnect reason.
For valid disconnect reasons, see DivaActiveDiscReasons. Note that the disconnect
reason is only used for calls that have already been answered. Calls that are in the
offering state can be disconnected using the reject reasons.

DivaCPT_DisconnectCause Set DivaCPT_DisconnectCause is a write only property to set the disconnect cause. This
is the Q.931 cause value. Note that the disconnect cause is only used for calls that
have already been answered. Calls that are in the offering state can be disconnected
using the reject reasons.

Property Value Definition

Property Value Definition
DivaCPT_VoiceEchoCanceler Set The parameter is write only and enables the echo canceller for the next call

initiated or answered on this call handle.
DivaCPT_VoiceEarlyDataChannel Set The parameter is write only and enables the data channel before the

connection in the signaling channel is established. The property is only valid
for outgoing calls and must be set before the first call to DivaDial.

DivaCPT_VoiceRecordSilenceTimeout Set The parameter is write only and specifies the period of silence before a
recording to an audio file should be terminated. The property must be set
prior to calling DivaRecordVoiceFile.

DivaCPT_VoiceRecordStartTones= 100 Set The property is write only and defines a list of tones to trigger the recording.
By default, recording initiated by DivaRecordVoiceFile starts right away.
Setting a start tone delays the start until one of the tones is detected. The
tones are coded as string containing the codes for the tones as 8 bit values.
The string may contain any DTMF, continuous tone or MF tone. The
application must enable DTMF and tone detection. The property is valid for
the next call to DivaRecordVoiceFile.

DivaCPT_VoiceDTMF_SendDuration Set The property is write only and specifies the duration (in milliseconds) of
generated DTMF tones.

DivaCPT_VoiceDTMF_SendPause Set The property is write only and specifies the pause (in milliseconds) of
generated DTMF tones.

DivaCPT_VoiceDTMF_DetectDuration Set The property is write only and specifies the duration and pause for DTMF
tone detection. The properties must be set prior to the call to
DivaReportDTMF.

DivaCPT_VoiceDTMF_DetectPause Set The property is write only and specifies the duration and pause for DTMF
tone detection. The properties must be set prior to the call to
DivaReportDTMF.

DivaCPT_VoiceRemoveDTMFFromStream Set The property is write only. If enabled, DTMF tones are removed for the audio
stream. The DTMF tones are still reported via events.

DivaCPT_VoiceEarlyDataDiscOnInfo Set DivaCPT_VoiceEarlyDataDiscOnInfo is a write only property and specifies
that a connection established with the early data channel option is
disconnected when the network signals the disconnect via info message. By
default, the connection is kept open to allow the application to record and
process any announcement or tones.

DivaCPT_EchoCancellerEnableNLP Set The property is write only and enables the non-linear processing for the echo
canceller.

DivaCPT_EchoCancellerAutoDisable1 Set The property is write only and bypasses the echo canceller upon detection
of phase reversed 2100 Hz (operation according to G.165).

DivaCPT_EchoCancellerAutoDisable2 Set The property is write only. It bypasses the echo canceller upon detection of
phase reversed or phase continuous 2100 Hz (operation according to G.164
and G.165).

DivaCPT_EchoCancellerTailLength Set The property is write only. Echo canceller time span in milliseconds; default
is implementation-specific.

DivaCPT_EchoCancellerPreDelay Set The property is write only. Echo canceller pre-delay before starting.
DivaCPT_EnableDTMFTrailingEdge Set The property is a write only and enables the reporting of the training edge

of a DTMF tone. The default is disabled.
DivaCPT_DataCodec Set The DivaCPT_DataCodec specifies that the data between the application and

the Diva API is exchanged in compressed mode. For supported codecs, refer
to DivaDataCodec. The property is only valid for calls handled on Diva Media
Boards.

Dialogic® Diva® API Developer’s Reference Guide

Page 226

DivaCPT_DataCodecOptions Set The DivaCPT_DataCodecOptions allows options to be specified for a data
codec selected via DivCPT_DataCodec.

DivaCPT_DataCodecSamplesPerPacket Set DivaCPT_DataCodecSamplesPerPacket allows for setting the maximum
amount of bytes that are collected before received audio is indicated to the
application. Note that the maximum packet size is also defined by the
registration parameter set with DivaRegister.

DivaCPT_DisableMFDetection Set The property is write only and specifies if MF tone should be reported by the
tone detector. By default, the tone detector, enabled via DivaReportTones,
reports MF tones. This property allows to disable MF tone detection. The
property must be set before calling DivaReportTone.

DivaCPT_EnableHookSignaling Set The property is write only and specifies if hook signaling tones should be
reported by the tone detector. By default, the tone detector, enabled via
DivaReportTones, does not report hook signaling tones. This property allows
enabling detection of hook signaling. The property must be set before calling
DivaReportTone. Refer to DivaContinuousTones for information on hook
signaling tones.

DivaCPT_EnableR2ForwardDetection Set The property is write only and specifies if MF R2 Forward tones should be
reported by the tone detector. By default, the tone detector, enabled via
DivaReportTones, does not report MF R2 Forward tones. This property allows
enabling detection of MF R2 Forward tones. The property must be set before
calling DivaReportTone. Refer to DivaR2Tones for information on MF R2
Forward tones.

DivaCPT_EnableR2BackwardDetection Set The property is write only and specifies if MF R2 Backward tones should be
reported by the tone detector. By default, the tone detector, enabled via
DivaReportTones, does not report MF R2 Backward tones. This property
allows enabling detection of MF R2 Backward tones. The property must be
set before calling DivaReportTone. Refer to DivaR2Tones for information on
MF R2 Backward tones.

DivaCPT_FSKData Get The property is read only and provides the received FSK Data. The
application must enable FSK detection via DivaDetectFSKData. The received
FSK data is cleared after the application has read the data.

DivaCPT_DTMFMode Set The property sets the preferred DTMF mode for an IP-based call. By default,
the Diva API selects the DTMF mode automatically via the following rules:
If possible, DTMF is exchanged via RFC 2833. If RFC 2833 is not possible,
a fallback to inband is done. If the used codec does not allow inband SIP,
Info messages are used on SIP-based devices. The options to switch the
DTMF mode are shown in DivaDTMFMode. When the property is read, the
currently active DTMF mode is returned.

DivaCPT_EnableTransparentLI Set The property is write only and sets the line interconnect mode to transparent.
The property should be enabled if modem or digital data calls are
interconnected (tromboned).

DivaCPT_HumanTalkerThreshold Set The property is write only and sets the threshold for the human talker
detector. The threshold can be set in the range of -127 dBm to 127 dBm.
The recommended range is -48 dBm to 0 dBm; the default value is -43 dBm.

DivaCPT_VoiceActivityThreshold Set The property is write only and sets the threshold for the voice activity
detector. The threshold can be set in the range of -127 dBm to 127 dBm.

DivaCPT_VoiceDTMF_TxLevelGroup Set The property is write only and sets the transmit level for DTMF tones. The
level can be set in the range -124 to +127.

DivaCPT_SingleToneOffDuration Set The property is write only and sets the off time for the generic single tone
detector. By default, the single tone off event is signaled if a previously
detected tone is not detected for 64 milliseconds. The application may
specify a customized timeout in the range 32 to 8000 milliseconds.

DivaCPT_DualToneOffDuration Set The property is write only and sets the off time for the generic dual tone
detector. By default, the dual tone off event is signaled if a previously
detected dual tone is not detected for 64 milliseconds. The application may
specify a customized timeout in the range 32 to 8000 milliseconds.

DivaCPT_HookSignalingOffHookTime Set The property is a write only property used to configure the minimum time
for offhook detection of hook signaling. The time is specified in milliseconds,
and the maximum value is 510 milliseconds. This parameter is only
processed if hook signaling is enabled via the call property
DivaCPT_EnableHookSignaling.

Property Value Definition

Dialogic® Diva® API Call Properties

Page 227

Fax Call Properties

DivaCPT_HookSignalingHookFlashTime Set The property is a write only property used to configure the minimum time
for hook flash detection of hook signaling. The time is specified in
milliseconds, and the maximum value is 510 milliseconds. This parameter
is only processed if hook signaling is enabled via the call property
DivaCPT_EnableHookSignaling.

DivaCPT_ToneDetectorFFTLength Set The call property DivaCPT_ToneDetectorFFTLength is a write only property
of type DWORD. The property is used to specify the minimum length the
FFT detector uses to identify a tone. The range is from 8 milliseconds to 64
milliseconds. The default is 64 milliseconds. The property is valid for the
single and dual tone detector and must be set before calling
DivaDetectSingleTone or DivaDetectDualTone.

DivaCPT_SingleToneDetectorMinFreq Set The call property DivaCPT_SingleToneDetectorMinFreq is a write only
property of type DWORD. The property is used to specify the minimum
frequency of a single tone that should be reported to the application or
processed by the internal custom tone processing. By default all tones are
reported. The property is valid for the single tone detector and must be set
before calling DivaDetectSingleTone.

DivaCPT_SingleToneDetectorMaxFreq Set The call property DivaCPT_SingleToneDetectorMaxFreq is a write only
property of type DWORD. The property is used to specify the maximum
frequency of a single tone that should be reported to the application or
processed by the internal custom tone processing. By default all tones are
reported. The property is valid for the single tone detector and must be set
before calling DivaDetectSingleTone.

DivaCPT_DataCodecSampleRate Set The call property DivaCPT_DataCodecSampleRate is a write only property
of type DWORD. The parameter is used to set the sample rate when the
data codec is set to DivaDataCodecPCM16. For valid sample rates refer to
DivaSampleRates.

DivaCPT_EnableNoiceSuppression Set The call property DivaCPT_EnableNoiceSuppression is a write only property
and enables the noise suppressor for the next call initiated or answered on
this call handle.

DivaCPT_NoiseSuppressionActive Get The call property DivaCPT_NoiseSuppressionActive is a read only property
that provides the information if the noise suppressor has been enabled and
is active.

Property Value Definition

Property Value Definition
DivaCPT_FaxLocalId = 200 Set The property is write only and specifies the local identifier to be used in the fax

communication. The property is only valid for fax communication.
DivaCPT_FaxHeadline Set The parameter is write only and specifies the headline text to be printed on top of

every fax page to be sent. The property is only valid for fax communication.
DivaCPT_FaxRemoteId Get The property is read only and returns the identifier of the remote fax machine. The

property is only valid for fax communication.
DivaCPT_FaxPages Get The property is read only and provides the fax page currently processed. The

property is only valid for fax communication.
DivaCPT_FaxMaxSpeed Set The parameter is write only and defines the maximum fax speed to be negotiated.

The property is only valid for fax communication.
DivaCPT_FaxHighResolution Set The parameter is write only and enables the negotiation of the high resolution. The

used format depends on the remote capabilities. The property is only valid for fax
communication.

DivaCPT_FaxEnablePolling Set The parameter is write only and enables the polling mode for fax communication.
The property is only valid for fax communication.

DivaCPT_FaxReverseSession Set The parameter is write only and enables the reverse session used for fax on
demand. The property is only valid for fax communication.

DivaCPT_FaxMultiDocument Set The property is write only and sets the processing of multiple fax files or multiple
documents. Refer to DivaSendMultipleFaxFiles for comments on multi document
support. The property is only valid for fax communication.

DivaCPT_FaxDisableECM Set The property is write only and disables ECM mode. The property is only valid for
fax communication.

Dialogic® Diva® API Developer’s Reference Guide

Page 228

DivaCPT_FaxDisableMR Set The property is write only and disables MR mode. The property is only valid for fax
communication.

DivaCPT_FaxDisableMMR Set The property is write only and disables MMR mode. The property is only valid for
fax communication.

DivaCPT_FaxPageQuality Get DivaCPT_FaxPageQuality is a read parameter and only valid in fax mode. The
parameter is updated every time a fax page is received or sent. For information on
page quality, refer to DivaFaxPageQuality.

DivaCPT_FaxPageEndInfo Get DivaCPT_FaxPageQuality is a read parameter and only valid in fax receive mode.
The parameter is updated every time a fax page is received. The parameter provides
information on coming pages or documents. For information on valid page ends,
refer to DivaFaxPageEnd.

DivaCPT_FaxRemoteFeatures Get DivaCPT_FaxRemoteFeatures is a read only property and provides the binary coded
capabilities of the receiving fax station. The information is coded in accordance with
T.30 DIS and DTC frame.

DivaCPT_FaxRemoteMaxHorzRes Get DivaCPT_FaxRemoteMaxHorzRes is a read only property and provides the
maximum horizontal resolution the receiving fax station can support. The value is
given as pixel per line.

DivaCPT_FaxRemoteMaxVertRes Get DivaCPT_FaxRemoteMaxVertRes is a read only property and provides the maximum
horizontal resolution the receiving fax station can support. The value is given as
pixel per line.

DivaCPT_FaxRemoteMaxSpeed Get DivaCPT_FaxRemoteMaxSpeed is a read only property and provides the maximum
speed the receiving fax station can support. Please note that this is not the finally
negotiated speed because this depends on the line quality.

DivaCPT_FaxRemoteNSF Get DivaCPT_FaxRemoteNSF is a read only property and provides the non standard
facilities received from the remote fax station. The data is provided as binary data,
first byte length field.

DivaCPT_FaxLocalNSF Set DivaCPT_FaxLocalNSF is a write only property and specifies the non standard
facilities to be send to the remote fax station. The data is expected as binary data,
first byte length field.

DivaCPT_FaxEnableColor Set DivaCPT_FaxEnableColor is a write only property. If set, the color fax capabilities
are signaled for incoming fax calls.

DivaCPT_FaxColorSelected Get DivaCPT_FaxColorSelected is a read only property and specifies that the fax
negation results in sending a color fax document. The application must pass a
document in the color fax JPEG format using the option DivaFaxFormatColorJPEG.

DivaCPT_EnableInterrupt Set The property is write only and enables the fax procedure interrupt. The usage is
depending on the remote peer. The property DivaCPT_FaxProcedureInterrupt
returns the result.

DivaCPT_RequestInterrupt Set The property is write only and requests the fax procedure interrupt. The usage is
depending on the remote peer. The property DivaCPT_FaxProcedureInterrupt
returns the result.

DivaCPT_FaxProcedureInterrupt Get The property is read only and returns the state of the procedure interrupt
negotiation. The property can only be negotiated if the property
DivaCPT_RequestInterrupt or DivaCPT_FaxProcedureInterrupt are enabled.

DivaCPT_FaxEnableSecurity Set The call property is write only and enables the negotiation of the secure fax options.
The usage of the option depends on the remote peer.

DivaCPT_FaxRemoteSupports
Subaddr

Get The property is read only and provides information about whether the remote party
can handle secure fax protocols.

DivaCPT_FaxRemoteSupports
Password

Get The property is read only and provides information about whether the remote party
can handle secure fax protocols.

DivaCPT_FaxSignalSubAddress Set The property is write only and specifies the sub address and password to be send
to the remote end within the Fax T.30 negotiation.

DivaCPT_FaxSignalPassword Set The property is write only and specifies the sub address and password to be send
to the remote end within the Fax T.30 negotiation.

DivaCPT_FaxRemoteSubAddress Get The property is read only and provides the sub address and password of the remote
party negotiated during fax T.30 negotiation.

DivaCPT_FaxRemotePassword Get The property is read only and provides the sub address and password of the remote
party negotiated during fax T.30 negotiation.

Property Value Definition

Dialogic® Diva® API Call Properties

Page 229

DivaCPT_FaxDisableFileBuffering Set The property disables the internal buffering of fax data to a temporary file. By
default, the Dialogic® Diva® SDK buffers data to memory and also to file if the
application does not call DivaReceiveFax fast enough to avoid loss of data. If this
option is set, the file buffering will be disabled. Note that the application must
ensure that DivaReceiveFax or DivaReceiveFaxToMemory is called shortly after the
event DivaEventCallConnected is reported. The property is write only.

DivaCPT_FaxUseTextForSending Set If this property is used before initiating a fax connection or changing the mode to
fax transmission, the expected document format is plain ASCII text. The property
is write only.

DivaCPT_FaxAllowDocument
Stretching

Set If this option is selected before calling DivaSendFax, DivaAppendFax, or
DivaSendMultipleFaxFiles, a TIFF document provided in a resolution that is half of
the next matching fax format will be stretched, e.g., a document with a resolution
of 800 pixels per line will be stretched to 1600 pixels per line and centered on the
next matching resolution of 1728 pixels per line. The property is write only.

DivaCPT_FaxRemoteScanLineLength Get The property is read only and provides the maximum scan line length the receiving
fax station can support. The value is given as DivaFaxScanLineMax.

DivaCPT_FaxStoreMode Get DivaCPT_FaxStoreMode is a write only property and specifies how single pages of
a received fax are stored. For possible values, refer to DivaFaxStoreModes.

DivaCPT_FaxPassDataOnNextPage
Start

Set If this option is set, the fax data provided via DivaReceiveFaxToMemory is signaled
when the next page starts. By default, the data is signaled when the current page
ends.

DivaCPT_FaxStartPage Set Specifies the page of a multi-page fax document with which the transmission starts.
By default, transmission starts with the first page.

DivaCPT_FaxEnableClearChannel Set Enables the clear channel mode for IP-based fax. Refer to DivaFaxOptions for a
detailed description.

DivaCPT_EnableFaxStatusReporting Set The call property DivaCPT_EnableFaxStatusReporting enables or disables the
reporting of detailed fax status information like training results, retransmits, and
scanline statistics. The property is write only and must be set before calling DivaDial
or DivaAnswer. The availability of detailed fax status information is signaled via the
event DivaEventDetailedFaxStatus.

DivaCPT_FaxReportDCS Get The call property DivaCPT_FaxReportDCS is a read only property of binary data,
first byte is length. The property provides the DCS information negotiated by the
peers.

DivaCPT_FaxReportTrainingResult Get The call property DivaCPT_FaxReportTrainingResult is a read only property of type
boolean. The property provides the result of the fax training sequence. If true, the
training was successful, if false the training failed.

DivaCPT_FaxReportTrainingStats Get The call property DivaCPT_FaxReportTrainingStats is a read only property of type
DivaFaxTrainingStats. The property is only available in fax receive mode. For details
on available training statistics refer to DivaFaxTrainingStats.

DivaCPT_FaxReportPageQuality Get The call property DivaCPT_FaxReportPageQuality is a read only property of type
DivaFaxPageQualityDetails. The property is only available in receive mode and
returns details about received scan lines and errors in scan lines.

DivaCPT_FaxReportPartialPage Get The call property DivaCPT_FaxReportPartialPage is a read only property of type
DivaFaxPartialPageDetails. The property returns information on ECM results
received from the peer or sent to the peer, depending on the call direction.

DivaCPT_FaxReportT30Timeout Get The call property DivaCPT_FaxReportT30Timeout is a read only property of type
DWORD. The property returns the number of the expired T.30 timer.

DivaCPT_FaxT30Phase Get The call property DivaCPT_FaxT30Phase is a read only property of type
DivaFaxPhase. The property returns the current T.30 phase.

DivaCPT_FaxResultReport Get The call property DivaCPT_FaxReportT30Timeout is a read only property that
returns the hang up code (HUC) according to T.32 as a hexadecimal value.

DivaCPT_FaxEnableBinaryFile
Transfer

Set The property is write only and enables the binary file transfer option for an incoming
call. The property must be set before calling DivaAnswer. The application must
check if binary file transfer is negotiated by reading the call property
DivaCPT_FaxBinaryFileTransferActive, when the event DivaEventCallConnected is
received.

DivaCPT_FaxRequestBinaryFile
Transfer

Set The property is write only and requests the binary file transfer option for an outgoing
call. The property must be set before calling DivaDial. The application must check
if binary file transfer is negotiated by reading the call property
DivaCPT_FaxBinaryFileTransferActive,when the event DivaEventCallConnected is
received

Property Value Definition

Dialogic® Diva® API Developer’s Reference Guide

Page 230

Modem Call Properties

DivaCPT_FaxBinaryFileTransfer
Active

Get The property is read only and returns the result of the binary file transfer
negotiation. The property can only be negotiated, if the property
DivaCTP_FaxEnableBinaryFileTransfer or DivaCPT_FaxRequestBinaryFileTransfer
is enabled. The result of the negotiation is available when the event
DivaEventCallConnected is signaled.

DivaCPT_FaxSelectManual Result Set The property is write only and selects manual result reporting for an incoming fax
call using binary file transfer. By default, the Diva SDK will confirm a reception once
all data is stored or passed to the application. If this property is set, the Diva SDK
will delay the confirmation until the application calls DivaDisconnect. The
application may set a result by setting the call property
DivaCPT_FaxManualResultValue before calling DivaDisconnect.

DivaCPT_FaxManualResult
Value

Set The property is write only and only used in fax binary file transfer receive mode,
when the call property DivaCPT_FaxSelectManualResult has been set by the
application. A non-zero value is interpreted as an error and reported to the sending
side when the application calls DivaDisconnect.

DivaCPT_FaxUseHeadlineFont Set This write-only boolean property enables the use of a user-supplied TrueType or
OpenType font file for the fax headline text.
The next Fax properties are only applicable if this property is enabled; otherwise
they have no effect on the headline.

DivaCPT_FaxHeadlinePageInfo Set The property is write only; it points to a buffer containing the right-aligned text
preceding the page number and total pages.

DivaCPT_FaxHeadlineFontFile Set The property is write only; it must contain the path to the user-supplied font file,
when the use of a font file is enabled.

DivaCPT_FaxHeadlineFontFace Set The property is write only and is used to select, if multiple fonts are present in the
font file, any other than the first font face.

DivaCPT_FaxHeadlineFontSizePoints Set The property is write only and is used to indicate the font size in points when
headline font is enabled.
Default size is 12 points; minimum is 8 points.

DivaCPT_FaxHeadlineCoding Set The property is write only and it selects the character coding for the headline text.
If defaults to DivaFaxHeadlineCodingASCII (8-bit ASCII extension), and it can be
set to either of the other two enum values: DivaFaxHeadlineCodingUtf8 (Utf-8
charcter coding), or DivaFaxHeadlineCodingUtf16LE (Utf-16 little endian character
coding).
The coding applies to the entire user-provided headline text, whether left or right
aligned.

DivaCPT_FaxHeadlineOmitDateTime Set This write-only property is a boolean to omit date and time from the headline.
Otherwise the date and time are shown, left aligned, with a date format determined
automatically based on the companding setting (Law) on the board.

DivaCPT_FaxHeadlineOmitPageInfo Set This write-only property is a boolean to omit page number and total pages from
the headline, otherwise are shown right aligned.

Property Value Definition

Property Value Definition
DivaCPT_MaximumSpeed =400 Set DivaCPT_MaximumSpeed is a write only property and defines the maximum speed

that is allowed for the connection. The parameter is only valid for analog modem
and V.110 types. The real negotiated speed can be retrieved by the
DivaCPT_TxSpeed and DivaCPT_RxSpeed properties.

DivaCPT_DataBits Get
Set

The property is read and write and sets / gets the framing for an asynchronous
connection.

DivaCPT_StopBits Get
Set

The property is read and write and sets / gets the framing for an asynchronous
connection.

DivaCPT_Parity Get
Set

The property is read and write and sets / gets the framing for an asynchronous
connection.

DivaCPT_DisableCompression
=800

Set The property is write only and disables any compression for an analog modem
connection.

Dialogic® Diva® API Call Properties

Page 231

DivaCPT_DisableV42 Set The property is write only and disables any V.42 or MNP negotiation for an analog
modem connection.

DivaCPT_DisableMNP Set The property is write only and disables any V.42 or MNP negotiation for an analog
modem connection.

DivaCPT_ForceReliable Set The property is write only and valid for call type modem. If set, a reliable connection
using V.42 or MNP is negotiated. If the remote peer is not able to handle one of
these protocols, the connection will fail.

DivaCPT_DisableRetrain Set The property is write only and disables the retrain for an analog modem connection.
DivaCPT_ModulationClass Set The property is write only and valid for call type modem. It sets the modulation

class between V.8 and V.110. The options are defined in DivaModulationClass.
DivaCPT_NegotiatedV42V42bis Get The property is read only and valid only for analog modem connections. If the

property is set, the negotiation succeeds in the specified reliable protocol. If
DivaCPT_NegotiatedCompression is also set, the corresponding compression,
V.42bis or MNP5, is also negotiated.

DivaCPT_NegotiatedMNP4MNP5 Get The property is read only and valid only for analog modem connections. If the
property is set, the negotiation succeeds in the specified reliable protocol. If
DivaCPT_NegotiatedCompression is also set, the corresponding compression,
V.42bis or MNP5, is also negotiated.

DivaCPT_NegotiatedTransparent Get The property is read only and valid only for the call type modem. If the property
is set, the modem connection is negotiated without using any reliable protocol.

DivaCPT_NegotiatedSDLC Get The property is read only and valid only for the call type modem. If the property
is set, the modem connection is negotiated using the SDLC protocol.

DivaCPT_NegotiatedCompression Get The property is read only and valid only for the call type modem. If the property
is set, the modem connection is negotiated using a compression protocol.

DivaCPT_DCD Get The property is read only and valid only for the call type modem. DivaCPT_DCD
reflects the state of the DCD modem signal.

DivaCPT_CTS Get The property is read only and valid only for the call type modem. DivaCPT_CTS
reflects the state of the CTS signal.
The CTS signal is only provided if the call type is modem and any of the extended
modem settings have been enabled.

DivaCPT_ConnectedNorm Get The property is read only and valid only for the call type modem selected via the
extended modem settings. The property holds the modulation result. For valid
options, see DivaConnectedNorm.

DivaCPT_RoundTripDelay Get The property is read only and available for modem connections using V.34
modulation. The property is set when the DCD information is available and contains
the time for receiving the echo of a signal set to the remote peer.

DivaCPT_ParityAutoDetectMode Set The call property DivaCPT_ParityAutoDetectMode is a write only property and
enables or disables parity auto detection for incoming modem connections. If the
auto detection for parity is enabled by the application, the Diva SDK will analyze
the first received data frame based on the enabled detection method. If the parity
of all bytes of the data frame matches one of the enabled parities, this parity is
selected. For valid detection options, refer to DivaCPT_ParityAutoDetectMode. If
the parity DivaParityEven or DivaParityOdd is detected, the Diva SDK will clear the
upper bit of each received byte before passing the data to the application and add
the parity before sending data given by the application.
Note that the detection process does not know the expected data and will be based
on analyzing the parity of all received bytes of the first data frame. If the received
data does not contain a parity bit but the data matches one of the enabled parities,
this would be false interpreted as parity.

DivaCPT_ParityAutoDetectMinData Set The property DivaCPT_ParityAutoDetectMinData allows for specifying the minimum
amount of data to collect before doing the detection. By default, the first received
data frame is used, independent from the length of the frame.

DivaCPT_EnableDataStatus
Reporting

Set The write only property DivaCPT_EnableDataStatusReporting enables or disables
the reporting of data status information, such as receive started or receive aborted.
The property must be set before calling DivaDial or DivaAnswer. The availability
of data status information is signaled via the event DivaEventDataFrameStatus.

DivaCPT_AnswerToneDuration Set The write only call property DivaCPT_AnswerToneDuration sets the length of the
answer tone for modem protocols. By default, the property is set to zero and uses
a default of 2400 milliseconds. The answer tone duration must be given in
milliseconds.

Property Value Definition

Dialogic® Diva® API Developer’s Reference Guide

Page 232

Extended Modem Call Properties

DivaCPT_V29FCAnswerToneDurati
on

Set The write only call property DivaCPT_V29FCAnswerToneDuration sets the length
of the answer tone for the modulation V.29 Fast Connect. By default, the property
is set to zero and uses the default of 2500 milliseconds. The V29FC answer tone
duration must be given in milliseconds the maximum is 6000 milliseconds.

DivaCPT_EnableLargeFrames Set The write only call property DivaCPT_EnableLargeFrames is used to enable larger
frame sizes as alllowed by the registration parameter and buffer size limitation of
the DivaRegister. This requires a protocol that is able to fragment and recombine
data frames, and is only used if the call type is DivaCallTypeModem using SDLC.

DivaCPT_DetectedParity Get
Set

The call property DivaCPT_DetectedParity can be read and written. On read, it
reports the detected parity if parity auto detection is enabled via
DivaCPT_ParityAutoDetectMode. The application may overwrite a detected parity
by setting the property. For valid values, refer to DivaParity.

DivaCPT_NegotiatedSDLC Get The property is read only and valid only for the call type modem. If the property
is set, the modem connection is negotiated using the SDLC protocol.

Property Value Definition

Property Value Definition
DivaCPT_DisableV42Detection Set The property is write only. For more information, refer to the CAPI

extensions in the document CxModem.pdf.
DivaCPT_EnableModulationV29FDX Set The property is write only. For more information, refer to the CAPI

extensions in the document CxModem.pdf.
DivaCPT_EnableModulationV33 Set The property is write only. For more information, refer to the CAPI

extensions in the document CxModem.pdf.
DivaCPT_EnableModulationV90APCM Set The property is write only. For more information, refer to the CAPI

extensions in the document CxModem.pdf.
DivaCPT_EnableModulationV22FS Set The property is write only. For more information, refer to the CAPI

extensions in the document CxModem.pdf.
DivaCPT_EnableModulationV29FS Set The property is write only. For more information, refer to the CAPI

extensions in the document CxModem.pdf.
DivaCPT_EnableModulationV23_1 Set The property is write only. For more information, refer to the CAPI

extensions in the document CxModem.pdf.
DivaCPT_EnableModulationV23_2 Set The property is write only. For more information, refer to the CAPI

extensions in the document CxModem.pdf.
DivaCPT_EnableModulationV22bisFS Set The property is write only and enables the V.22 bis Fast Setup modulation.

This allows short negotiation periods for 2400 baud connections.
DivaCPT_EnableModulationBell202CID Set The property is write only and enables the modem modulation Bell 202

CID.
DivaCPT_EnableModulationBell202POS Set The property is write only and enables the modem modulation Bell 202

POS.
DivaCPT_EnableModulationBell103SIA Set The property is write only and enables the modem modulation Bell 103

SIA.
DivaCPT_EnableModulationV21Bits10 Set The property is write only and enables the modem modulation V.21 Bits

10.
DivaCPT_EnableModulationV23Reverse Set The property is write only and enables the modem modulation V.23

reverse.
DivaCPT_EnableModulationFSK Set The property is write only and enables the FSK modulation using the

default frequencies 1300 and 2100 Hz.
DivaCPT_EnableFSKExtendedMode Set The property is write only and enables the FSK modulation using the

frequencies 1300 and 1900 Hz. If the property
DivaCPT_DisableAnswerTone is not set, an initial answer tone with the
frequencies 1550 and 1900 Hz is sent before the first data packet. The
length of the answer tone is by default 700 milliseconds, if the property
DivaCPT_EnableShortAnswerTone is set the answer tone is 200
milliseconds.

DivaCPT_EnableModulationECall Set The property is write only and enables the eCall modem modulation.

Dialogic® Diva® API Call Properties

Page 233

DivaCPT_ModemBitTransparentMode Set The call property DivaCPT_ModemBitTransparentMode enables a mode
that doesn't apply any error correction or framing to the data. All bits of
each data byte from the application are passed LSB first to the modulator.
Bits received from the demodulator are concatenated LSB first to form
data bytes for the application. This mode can be used with any modulation.
If there is no data from the application in time, bytes with all '1' bits are
inserted.

DivaCPT_DisableModulationV21 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV22 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV22bis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV23 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV32 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV32bis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV34 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV90DPCM Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationBell103 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationBell212A Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationAllFS Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationK56Flex Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationX2 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34TxLevelReduction Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34PreCoding Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34PreEmphasis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34Shaping Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34NonLinearEncoding Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34ManualReduction Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34Training16Point Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate2400 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate2743 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate2800 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate3000 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate3200 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate3429 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

Property Value Definition

Dialogic® Diva® API Developer’s Reference Guide

Page 234

DivaCPT_GuardTone Set The property is write only. Specifies the modem guard tone. A value of
zero selects no guard tone, one is for a 1800 Hz guard tone and two for
a 550 Hz guard tone.

DivaCPT_ModemLeasedLine Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_Modem4WireOption Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableDiscOnBusyTone Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableCallingTone Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableAnswerTone Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableDialToneDetect Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableStepUp Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableStepDown Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableSpiltSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableShortAnswerTone Set The property is write only and enables the short answer tone for low speed
modem connections. This allows to shorten the modem negotiation
process.

DivaCPT_DisableFlushTimer Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableEmptyFrames Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableMultimoding Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_BypassControl Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MinimumTxSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MaximumTxSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MinimumRxSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MaximumRxSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_TxLevelAdjust Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_ForceReliableIfV34 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableSDLC Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableReliableIf1200 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_BufferDuringV42Detection Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV42SelectivReject Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableMNP3 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableMNP4 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableMNP10 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

Property Value Definition

Dialogic® Diva® API Call Properties

Page 235

DivaCPT_TransparentModeIfV22bis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_TransparentModeIfV32bis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_BreakMode Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_ModemEarlyConnect Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_ModemPassIndication Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCLinkAddress Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCModuloMode Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCWindowSize Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCXID Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCReverse
Establishment

Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCInitiateFastEstablishment Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCSingleDataPackets Set The property is write only. If set, the "right to send" is passed to the
remote side after each data packet. If multiple packets are waiting, this
allows the remote side to answer before the next packet is sent. For POS
applications, this option should be set.

DivaCPT_SDLCExplicitDataAck Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCFastPollRecovery Set The property is write only and controls how the sending is initiated. If the
property is set and data is pending, the "right to send" is requested from
the peer rather than waiting for the peer to initiate the send. For POS
applications, the option should be set.

DivaCPT_ModemDisconnectTimeout Set The property is write only and specifies a maximum time to wait until the
modem data connection is disconnected before the signaling channel
disconnects. The value is given in seconds. If the property is set to modem,
then the data connection and the signaling connection are disconnected
at the same time. The default value is zero.

DivaCPT_Modem7BitsPerChar Set If this option is selected, the framing for asynchronous modem
connections is set to 7 data bits. The number of stop bits depends on the
setting of DivaModemOption2StopBits.

DivaCPT_Modem2StopBits Set If this option is selected, the number of stop bits for asynchronous modem
connections is set to 2. The number of data bits depends on the setting
of DivaModemOption7BitsPerChar.

DivaCPT_ModemParityOdd Set If this option is selected, the framing for asynchronous modem
connections is set to use odd parity bits. By default, no parity bits are
inserted. This option cannot be combined with
DivaModemOptionParityEven.

DivaCPT_ModemParityEven Set If this option is selected, the framing for asynchronous modem
connections is set to use even parity bits. By default, no parity bits are
inserted.
This option cannot be combined with DivaModemOptionParityOdd.

DivaCPT_ModemEnableAutoMode Set If this option is set, the modem will negotiate the connection speed and
mode automatically. This is currently only available for synchronous
modes.

DivaCPT_ModemSDLCEnable Set If this option is set, the connection will use SDLC on top of the synchronous
modem connection.

DivaCPT_ModemSyncV22Normal Set In general, V.22 modem connections are negotiated. If this option is
deselected and other synchronous modulations are selected, V.22 is
disabled and a higher speed is negotiated.

Property Value Definition

Dialogic® Diva® API Developer’s Reference Guide

Page 236

DivaCPT_ModemSyncEnableV22bis Set If this option is set, V.22bis is added to the enabled modulation modes.
If no higher option is selected, this is the preferred modulation.

DivaCPT_ModemSyncEnableV22Fast
Setup

Set If this option is set, V.22 Dialogic® Diva® Fast Setup is added to the
enabled modulation modes. If no higher option is selected, this is the
preferred modulation.

DivaCPT_ModemSyncEnableV22bisFast
Setup

Set If this option is set, V.22bis Dialogic® Diva® Fast Setup is added to the
enabled modulation modes. If no higher option is selected, this is the
preferred modulation.

DivaCPT_ModemSyncEnableV29Fast
Setup

Set If this option is set, V.29 Dialogic® Diva® Fast Setup is added to the
enabled modulation modes. If no higher option is selected, this is the
preferred modulation.

DivaCPT_ModemSyncSDLCExtModulo
Mode

Set If this option is set, the modulo mode will be set to 128. If this option is
not selected, the default modulo mode 8 is active.

DivaCPT_DisableV42Detection Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableModulationV29FDX Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableModulationV33 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableModulationV90APCM Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableModulationV22FS Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableModulationV29FS Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableModulationV23_1 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableModulationV23_2 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableModulationV22bisFS Set The property is write only and enables the V.22 bis Fast Setup modulation.
This allows short negotiation periods for 2400 baud connections.

DivaCPT_EnableModulationBell202CID Set The property is write only and enables the modem modulation Bell 202
CID.

DivaCPT_EnableModulationBell202POS Set The property is write only and enables the modem modulation Bell 202
POS.

DivaCPT_EnableModulationBell103SIA Set The property is write only and enables the modem modulation Bell 103
SIA.

DivaCPT_EnableModulationV21Bits10 Set The property is write only and enables the modem modulation V.21 Bits
10.

DivaCPT_EnableModulationV23Reverse Set The property is write only and enables the modem modulation V.23
reverse.

DivaCPT_DisableModulationV21 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV22 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV22bis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV23 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV32 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV32bis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV34 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationV90DPCM Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationBell103 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

Property Value Definition

Dialogic® Diva® API Call Properties

Page 237

DivaCPT_DisableModulationBell212A Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationAllFS Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationK56Flex Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableModulationX2 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34TxLevelReduction Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34PreCoding Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34PreEmphasis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34Shaping Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34NonLinearEncoding Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34ManualReduction Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34Training16Point Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate2400 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate2743 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate2800 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate3000 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate3200 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV34SymbolRate3429 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_GuardTone Set The property is write only. Specifies the modem guard tone. A value of
zero selects no guard tone, one is for a 1800 Hz guard tone and two for
a 550 Hz guard tone.

DivaCPT_ModemLeasedLine Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_Modem4WireOption Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableDiscOnBusyTone Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableCallingTone Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableAnswerTone Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableDialToneDetect Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableStepUp Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableStepDown Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableSpiltSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableShortAnswerTone Set The property is write only and enables the short answer tone for low speed
modem connections. This allows to shorten the modem negotiation
process.

DivaCPT_DisableFlushTimer Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

Dialogic® Diva® API Developer’s Reference Guide

Page 238

DivaCPT_EnableEmptyFrames Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_EnableMultimoding Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_BypassControl Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MinimumTxSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MaximumTxSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MinimumRxSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MaximumRxSpeed Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_TxLevelAdjust Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_ForceReliableIfV34 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableSDLC Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableReliableIf1200 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_BufferDuringV42Detection Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableV42SelectivReject Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableMNP3 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableMNP4 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_DisableMNP10 Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_TransparentModeIfV22bis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_TransparentModeIfV32bis Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_BreakMode Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_ModemEarlyConnect Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_ModemPassIndication Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCLinkAddress Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCModuloMode Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCWindowSize Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCXID Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCReverse
Establishment

Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCInitiateFastEstablishment Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCSingleDataPackets Set The property is write only. If set, the "right to send" is passed to the
remote side after each data packet. If multiple packets are waiting, this
allows the remote side to answer before the next packet is sent. For POS
applications, this option should be set.

DivaCPT_SDLCExplicitDataAck Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

Dialogic® Diva® API Call Properties

Page 239

DivaCPT_FastFallbackToTransparent Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MaxGarbageBytes Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_MaxTimeInDetectionPhase Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf

DivaCPT_SDLCFastPollRetryTimer Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_AnswerToneDelay Set The property is write only. For more information, refer to the CAPI
extensions in the document CxModem.pdf.

DivaCPT_SDLCFastPollRecovery Set The property is write only and controls how the sending is initiated. If the
property is set and data is pending, the "right to send" is requested from
the peer rather than waiting for the peer to initiate the send. For POS
applications, the option should be set.

DivaCPT_ModemDisconnectTimeout Set The property is write only and specifies a maximum time to wait until the
modem data connection is disconnected before the signaling channel
disconnects. The value is given in seconds. If the property is set to modem,
then the data connection and the signaling connection are disconnected
at the same time. The default value is zero.

DivaCPT_Modem7BitsPerChar Set If this option is selected, the framing for asynchronous modem
connections is set to 7 data bits. The number of stop bits depends on the
setting of DivaModemOption2StopBits.

DivaCPT_Modem2StopBits Set If this option is selected, the number of stop bits for asynchronous modem
connections is set to 2. The number of data bits depends on the setting
of DivaModemOption7BitsPerChar.

DivaCPT_ModemParityOdd Set If this option is selected, the framing for asynchronous modem
connections is set to use odd parity bits. By default, no parity bits are
inserted. This option cannot be combined with
DivaModemOptionParityEven.

DivaCPT_ModemParityEven Set If this option is selected, the framing for asynchronous modem
connections is set to use even parity bits. By default, no parity bits are
inserted.
This option cannot be combined with DivaModemOptionParityOdd.

DivaCPT_ModemEnableAutoMode Set If this option is set, the modem will negotiate the connection speed and
mode automatically. This is currently only available for synchronous
modes.

DivaCPT_ModemSDLCEnable Set If this option is set, the connection will use SDLC on top of the synchronous
modem connection.

DivaCPT_ModemSyncV22Normal Set In general, V.22 modem connections are negotiated. If this option is
deselected and other synchronous modulations are selected, V.22 is
disabled and a higher speed is negotiated.

DivaCPT_ModemSyncEnableV22bis Set If this option is set, V.22bis is added to the enabled modulation modes.
If no higher option is selected, this is the preferred modulation.

DivaCPT_ModemSyncEnableV22Fast
Setup

Set If this option is set, V.22 Dialogic® Diva® Fast Setup is added to the
enabled modulation modes. If no higher option is selected, this is the
preferred modulation.

DivaCPT_ModemSyncEnableV22bisFast
Setup

Set If this option is set, V.22bis Dialogic® Diva® Fast Setup is added to the
enabled modulation modes. If no higher option is selected, this is the
preferred modulation.

DivaCPT_ModemSyncEnableV29Fast
Setup

Set If this option is set, V.29 Dialogic® Diva® Fast Setup is added to the
enabled modulation modes. If no higher option is selected, this is the
preferred modulation.

DivaCPT_ModemSyncSDLCExtModulo
Mode

Set If this option is set, the modulo mode will be set to 128. If this option is
not selected, the default modulo mode 8 is active.

Dialogic® Diva® API Developer’s Reference Guide

Page 240

Modulation V.18 Call Properties

Property Value Definition
DivaCPT_V18Selected Set The property is write only and enables the V.18 mode.
DivaCPT_V18ProbingSequence Set Array of bytes containing the sequence of modulation norm identifiers that

specifies the order used in answer mode probing. The property is write only.
DivaCPT_V18CountryProbingSequence Set Pre-defined country probing sequences. For available countries, refer to

DivaV18DefProbings. The property is write only.
DivaCPT_V18ProbingMessage Set Text of the message string used for probing. The property is write only.
DivaCPT_V18ReinitializeOnSilence Set The property is write only and enables or disables the reinitialization on

silence.
DivaCPT_V18RevertToAnswerMode Set The property is write only and enables or disables the revert to answer

mode on timeout.
DivaCPT_V18DisconnectOnBusy Set The property is write only and enables or disables disconnect on busy

detection.
DivaCPT_V18AutomodingMonitorMode Set The property is write only and enables or disables automoding monitor.
DivaCPT_V18TextProbingForCarrierMode Set The property is write only and enables or disables continuous carrier

probing with the message.
DivaCPT_V18TXPSpaceParityInOrigMode Set The property is write only and enables or disables the sending of TXP with

space parity in origination mode.
DivaCPT_V18EnableV18OriginationMode Set The property is write only and enables the V.18 originate mode (CI/TXP

procedure, V.21 data state, TX: 980/1180 Hz 300 bit/s, RX: 1650/1850 Hz
300 bit/s).

DivaCPT_V18EnableV18AnswerMode Set The property is write only and enables V.18 answer mode (CI/TXP
procedure, V.21 data state, TX: 1650/1850 Hz 300 bit/s, RX: 980/1180 Hz
300 bit/s).

DivaCPT_V18EnableV21OriginationMode Set The property is write only and enables V.21 originate mode (TX: 980/1180
Hz 300 bit/s, RX: 1650/1850 Hz 300 bit/s).

DivaCPT_V18EnableV21AnswerMode Set The property is write only and enables V.21 answer mode (TX: 1650/1850
Hz 300 bit/s, RX: 980/1180 Hz 300 bit/s).

DivaCPT_V18EnableBell103OrigMode Set The property is write only and enables Bell 103 originate mode (TX:
1270/1070 Hz 300 bit/s, RX: 2225/2025 Hz 300 bit/s).

DivaCPT_V18EnableBell103AnswerMode Set The property is write only and enables Bell 103 answer mode (TX:
2225/2025 Hz 300 bit/s, RX: 1270/1070 Hz 300 bit/s).

DivaCPT_V18EnableV23OriginationMode Set The property is write only and enables V.23 originate mode (TX: 390/450
Hz 75 bit/s, RX: 1300/1700 Hz 1200 bit/s).

DivaCPT_V18EnableV23AnswerMode Set The property is write only and enables V.23 answer mode (TX: 1300/1700
Hz 1200 bit/s, RX: 390/450 Hz 75 bit/s).

DivaCPT_V18EnableEDTMode Set The property is write only and enables EDT mode (980/1180 Hz 110 bit/s).
DivaCPT_V18EnableBAUDOT45Mode Set The property is write only and enables BAUDOT 45 mode (1800/1400 Hz

22 ms/bit).
DivaCPT_V18EnableBAUDOT47Mode Set The property is write only and enables BAUDOT 47 mode (1800/1400 Hz

21 ms/bit).
DivaCPT_V18EnableBAUDOT50Mode Set The property is write only and enables BAUDOT 50 mode (1800/1400 Hz

20 ms/bit).
DivaCPT_V18EnableDTMFMode Set The property is write only and enables DTMF mode (DTMF 50ms on / 50ms

off).
DivaCPT_V18TransmitLevel Set The property is write only. Transmits level in dBm, coded as 2-s

complement signed integer.
Valid range: -12..-31 dBm
Value 0 will set the default.

DivaCPT_V18AsyncFormatV21 Set Asynchronous data format used in V.18 and V.21 mode. The coding is
described in DivaV18Framing. Value 0 will set the default. The property is
write only.

DivaCPT_V18AsyncFormatV23 Set Asynchronous data format used in V.23 mode. The coding is described in
DivaV18Framing. Value 0 will set the default. The property is write only.

DivaCPT_V18AsyncFormatBell103 Set Asynchronous data format used in Bell 103 mode. The coding is described
in DivaV18Framing. Value 0 will set the default. The property is write only.

DivaCPT_V18AsyncFormatEDT Set Asynchronous data format used in EDT mode. The coding is described in
DivaV18Framing. Value 0 will set the default. The property is write only.

Dialogic® Diva® API Call Properties

Page 241

Call Properties for Low Level Signaling Access

DivaCPT_V18AsyncFormatBAUDOT Set Asynchronous data format used in BAUDOT modes. The coding is described
in DivaV18Framing. Value 0 will set the default. The property is write only.

DivaCPT_V18TimerTcTimeout Set Timeout time for ITU-T V.18 timer Tc in milliseconds. (Tc specifies the
maximum time waiting for response when sending a probing carrier in
answer mode). Value 0 will set the default. The property is write only.

DivaCPT_V18TimerTmTimeout Set Timeout time for ITU-T V.18 timer Tm in milliseconds. (Tm specifies the
maximum time waiting for response after a probing message has been sent
in answer mode). Value 0 will set the default. The property is write only.

DivaCPT_V18CleanCarrierTime Set Time span in milliseconds for which the carrier is maintained in half duplex
modes after the last pending character has been sent to the line. Value 0
will set the default. The property is write only.

DivaCPT_V18EchoSupressTime Set Time span in milliseconds for which the receiver is disabled in half duplex
mode after the last send period in order to avoid interpretation of the echo
signal. Value 0 will set the default. The property is write only.

Property Value Definition

Property Value Definition
DivaCPT_LLC Get

Set
Sets the Low Layer Compatibility Information for an outgoing call or retrieves
them from an incoming call. The element is coded according to Q.931. The
property is read and write.

DivaCPT_HLC Get
Set

Sets the High Layer Compatibility Information for an outgoing call or retrieves
them from an incoming call. The element is coded according to Q.931. The
property is read and write.

DivaCPT_B_ChannelInfo Set The property is write only and provides a flexible setting of the B-channel
information. This can be used to select a specific channel for an outgoing call
or to connect a special channel in leased line mode. The coding is done according
to the CAPI Specification.

DivaCPT_KeypadFacility Get
Set

The property is read and write and gets or sets the keypad facility information
for a setup message. The element is coded according to Q.931.

DivaCPT_UserUserInfo Get
Set

The property is available for read and write and sets the User User Information
for an outgoing call or retrieves them from an incoming call. The element is
coded according to Q.931. If the user-user information is set before calling
DivaAlert, the information are passed in the alert message.

DivaCPT_FacilityDataArray Get
Set

The property is available for read and write an sets the Facility Data Information
for an outgoing call or retrieves them from an incoming call. The element is
coded according to Q.931.

DivaCPT_DisplayInfo Get The property is read only and reads the display information received from an
incoming call.

DivaCPT_TotalChargeUnits Get The property is read only and provides the amount of charge units reported by
the network.

DivaCPT_SpecialInfoElement Get
Set

The property is available for read and write and is used for setting-specific
elements.

DivaCPT_ChannelInfoElement Get The property is read only and provides the channel information element as
received from the line.

DivaCPT_ProgressIndElement Get The property is read only and provides the progress information element as
received from the line.

DivaCPT_SetupMessage Get The property is read only and provides the recreated setup messages. Note that
this is not the original setup message.

DivaCPT_GlobalConfiguration Set The parameter is write only and allows to modify the "global configuration"
option of the underlying CAPI interface. Currently, the B-channel operation
mode can be switched to DCT or DTE by this parameter.

DivaCPT_ReverseDataChannelConnect Set The parameter is write only and specifies that the data channel connection is
not initiated by the side that has initiated the physical connection.

DivaCPT_CauseInfoElement Get DivaCPT_CauseInfoElement is a read only property and provides the cause
information element as signaled on the underlying network.

Dialogic® Diva® API Developer’s Reference Guide

Page 242

Digital Data Call Properties

DivaCPT_SendingComplete Get
Set

The property may be set for an outgoing call. A value of true indicates that the
provided dial information is complete, and a value of false indicated that
additional information will follow. For an incoming call, the property delivers the
information if more dial information can be expected from the remote peer.

DivaCPT_LastMessage Get The property is read only and provides the last signaling message received in
the signaling cahnnel. The availablility depends on teh underlying signaling
protocol.

DivaCPT_LineInfoElement Get The property is read only and returns the line info element. The line info element
is supported by US protocols like NI 2 and includes the service indicator.
Applications that require only the service indicator may use the property
DivaCPT_ServiceIndicator.

DivaCPT_ServiceIndicator Get The property is read only and retrieves the service indicator from a line info
element. The information is only available on US protocols and it depends on
the switch if the information is passed.

DivaCPT_B1Protocol = 1200 Set The property is write only. The B1 protocol according to the CAPI 2.0
specification. For more information, see Plain Protocol parameter setting.

DivaCPT_B2Protocol Set The property is write only. The B2 protocol according to the CAPI 2.0
specification. For more information, see Plain Protocol parameter setting.

DivaCPT_B3Protocol Set The property is write only. The B3 protocol according to the CAPI 2.0
specification. For more information, see Plain Protocol parameter setting.

DivaCPT_B1Configuration Set The property is write only. The B1 configuration options according to the CAPI
2.0 specification. For more information, see Plain Protocol parameter setting.

DivaCPT_B2Configuration Set The property is write only. The B2 configuration options according to the CAPI
2.0 specification. For more information, see Plain Protocol parameter setting.

DivaCPT_B3Configuration Set The property is write only. The B3 configuration options according to the CAPI
2.0 specification. For more information, see Plain Protocol parameter setting.

Property Value Definition

Property Value Definition
DivaCPT_X25_NCPI = 2000 Get Set The property is available for read and write. It provides the ability to set and

get the plain X.25 information exchanged between the endpoints.
DivaCPT_X25_CalledAddress Get Set The property is available for read and write and sets or retrieves the X.25

addresses for a call using call type DivaCallTypeX25.
DivaCPT_X25_CallingAddress Get Set The property is available for read and write and sets or retrieves the X.25

addresses for a call using call type DivaCallTypeX25.
DivaCPT_X25_ReverseRestart Set DivaCPT_X25_ReverseRestart is a write only property and enables the X.25

restart sequence. The property must be set before the call is initiated or
answered.

DivaCPT_AutoDetectMode=2400 Set The property is reserved for future use.
DivaCPT_AutoDetectX75ForceX25 Set The property is write only. If specified, the autodetect mode for digital protocols

interprets X.25 frames in layer 2 as X.25 connections.
DivaCPT_AutoDetectMaxFrames Set The property is write only and specifies the maximum amount of frames that

should be used for autodetection of a digital protocol. The property is only valid
if the call type is set to DivaCallTypeAutoDetect.

DivaCPT_AutoDetectMaxSeconds Set The property is write only and specifies the maximum amount of seconds for
the autodetect process. The property is only valid if the call type is set to
DivaCallTypeAutoDetect.

Dialogic® Diva® API Call Properties

Page 243

Special Supplementary Service Call Properties

Passive Monitoring Call Properties

RTP Call Properties

The RTP parameters are used on Diva Media Boards to convert from TDM to RTP packets.

Property Value Definition
DivaCPT_UseSameChannelForTransfer
=4000

Set The property is write only. If set to true for an existing call, a consultation call
initiated via DivaSetupCallTransfer or DivaBlindCallTransfer uses the same
B-channel. By default, the channel is assigned by the switch.

DivaCPT_NoAnswerTimeout Set The property is write only and specifies the amount of time (in seconds) to wait
until the remote side picks up the call.

DivaCPT_ConnectTimeout Set The property is write only and specifies the amount of time (in seconds) to wait
until an answered call reaches the connect state. This is typically the time to
negotiate a modem or fax connection.

DivaCPT_NoHoldBeforeTransfer Set DivaCPT_NoHoldBeforeTransfer is a write only property and specifies that the
consultation call created via DivaSetupCallTransfer is established without
setting the primary call on hold. This implies that the consultation call is done
on a different channel

DivaCPT_TransferRequestNotification Set If this option is set, the application is notified via the event
DivaEventTransferRequested when the remote party requests a call transfer.
Refer to DivaEventTransferRequested for more information.

DivaCPT_AutoDiversion Set The DivaCPT_AutoDiversion enables the diversion of IP-based calls if requested
by the called peer. By default, the call will be disconnected if the peer requests
a diversion.

Property Value Definition
DivaCPT_CallTimeStats = 5200 Get The property is read only and only valid in monitoring mode. It provides the

timing information about the detection of the different signaling messages for
the monitored call.

DivaCPT_MonitorIncomingCall Get The property is read only and only available for call monitoring on the Diva
Analog Media Boards. If the property returns true, the monitored call has been
identified as incoming call based on the ring detection.

Property Value Definition
DivaCPT_RTPPayloadProtocol Set The property is write only and defines the coding of the data used in send and

receive direction of the data channel. It must be one of the values defined in
DivaPayloadProtocol.

DivaCPT_RTPPayloadOptions Set The property is write only and defines the options to be used in the data channel.
For available options and a detailed description, refer to DivaPayloadOptions.

DivaCPT_RTPMaxPacketLateRate Set The property is write only and and defines the maximum period of time, in
milliseconds, that a packet may be delayed before it is discarded.

DivaCPT_RTPMaxDejitterDelay Set The property is write only and defines the maximum size of the anti-jitter buffer
in milliseconds.

DivaCPT_RTPSSRC Set The property is write only and becomes part of the RTP-packet header. It
identifies the synchronization source. It is chosen randomly with the intent that
only one synchronization source within one RTP session has the same SSRC
identifiers.

DivaCPT_RTPLocalIpAddress Set The property is write only and is used to define the local IP address for RTP
streaming, when call type DivaCallTypeRTPGwMode is enabled.
When the parameter is set, the Diva SDK will check if the parameter is a valid
IP address. If the string cannot be converted to an IP address,
DivaSetCallProperties will return DivaErrorInvalidParameter.

DivaCPT_RTPLocalPort Set The property is write only and is used to define the local port for RTP streaming,
when call type DivaCallTypeRTPGwMode is enabled.

Dialogic® Diva® API Developer’s Reference Guide

Page 244

DivaCPT_RTPRemoteIpAddress Set The property is write only and is used to define the remote IP address for RTP
streaming, when call type DivaCallTypeRTPGwMode is enabled.
When the parameter is set, the Diva SDK will check if the parameter is a valid
IP address. If the string cannot be converted to an IP address,
DivaSetCallProperties will return DivaErrorInvalidParameter.

DivaCPT_RTPRemotePort Set The property is write only and is used to define the remote port for RTP
streaming, when call type DivaCallTypeRTPGwMode is enabled.

DivaCPT_RTPCodecMask Set The property is write only and is used to define the codec to be used for RTP
streaming, when call type DivaCallTypeRTPGwMode is enabled.
The options are defined in DivaCodecMask.

DivaCPT_RTPMinDejitterDelay Set The property is a write only and is used to specify the minimum delay to
compensate packet arrival jitter, when DivaCallTypeRTPGwMode is enabled.

Property Value Definition

Dialogic® Diva® API Data Structures and Defines

Page 245

CHAPTER 7

Dialogic® Diva® API Data Structures and Defines

This chapter contains the Diva API data structures and defines.

DivaCallType
typedef enum
{

DivaCallTypeVoice,
DivaCallTypeFax,
DivaCallTypeModem,
DivaCallTypeDigitalData,
DivaCallTypeX75,
DivaCallTypeV120,
DivaCallTypeGSM,
DivaCallTypeVoIP,
DivaCallTypeX25,
DivaCallTypeSMS,
DivaCallTypeRTPGwMode,
DivaCallTypeAutoDetect

} DivaCallType;

DivaCallTypeVoice

The call is processed as a voice call. The data channel is set to plain audio streaming according to G.711. The
Diva API handles a-law and µ-law coding for all voice streaming functions. Outgoing calls with this call type are
signaled to the switch as speech.

DivaCallTypeFax

The call is processed as a fax G3 call. The data channel is set to support the fax G3 protocol including polling
etc. Outgoing calls with this call type are signaled to the switch as 3.1 kHz audio.

DivaCallTypeModem

The call is processed as an analog modem call. The data channel is set to support a full analog modem including
automatic speed negotiation. Outgoing calls with this call type are signaled to the switch as 3.1 kHz audio.

DivaCallTypeDigitalData

The call is processed as a digital data call. The data channel is set to handle digital data. Plain HDLC is done.
This ensures that received data are valid but it does not guarantee packet delivery. Outgoing calls with this call
type are signaled to the switch as unrestricted digital information.

DivaCallTypeX75

The call is processed as a reliable digital data call. The data channel is set to handle digital data using the X.75
protocol that guarantees packet delivery and flow control. Outgoing calls with this call type are signaled to the
switch as unrestricted digital information.

DivaCallTypeV120

The call is processed as a reliable digital data call. The data channel is set to handle digital data using the V.120
protocol that guarantees packet delivery and flow control. Outgoing calls with this call type are signaled to the
switch as unrestricted digital information.

DivaCallTypeGSM

The call is processed as a GSM data call. The data channel is set to handle the V.110 protocol. The default speed
is 9600 bps, which is the typical speed for GSM connections. Outgoing calls with this call type are signaled as
V.110, with specific information set in the ISDN protocol elements.

DivaCallTypeVoIP

The call is processed as a VoIP call. The data channel is set to handle the RTP protocol. Outgoing calls with this
call type are signaled to the switch as speech.

Page 246

Dialogic® Diva® API Developer Reference Guide

DivaCallTypeX25

The call is processed as a reliable digital data call. The data channel is set to handle digital data using the X.25
protocol that guarantees packet delivery and flow control. Outgoing calls with this call type are signaled to the
switch as unrestricted digital information.

DivaCallTypeSMS

The call is processed as SMS data call. The data channel is set to handle Short Messages using the SMS protocol 1.

DivaCallTypeRTPGwMode

The call is processed as a voice call and the audio signal is send as RTP packets to the peer specified by the call
properties DivaCPT_RTPRemoteIpAddress and DivaCPT_RTPRemotePort. Note that the audio is processed inside
the Dialogic® Diva® System Release Software. The application cannot send or record audio in this mode. This
call type is useful for applications implementing a gateway that have their own IP signaling stack.

DivaCallTypeAutoDetect

This call type is only valid for incoming digital calls. The Dialogic® Diva® SDK detects automatically if it is a
digital data, X.75, X.25, or V.120 call type. The result is signaled in DivaCallInfo.

DivaListenType
typedef enum
{

DivaListenNone = 0x00000000,
DivaListenAll = 0xffffffff,
DivaListenAllVoice = 0x00010032,
DivaListenAllSMS = 0x00010012
DivaListenSpeech = 0x00000002,
DivaListenAudio3_1KHz = 0x00000010,
DivaListenAudio7KHz = 0x00000020,
DivaListenTelephony = 0x00010000,
DivaListenFaxG3 = 0x00020000

} DivaListenType;

In the ISDN environment, calls may be signaled with different parameters depending on the switch capacities
and the network. DivaListenType defines the different types for voice and fax G3.

Note: In certain environments, fax calls may be signaled as 3.1 kHz audio or even as speech. If the application
cannot be sure which service is signaled, it should use DivaListenAll.

Dialogic® Diva® API Data Structures and Defines

Page 247

DivaLineDeviceInfo
typedef struct
{

} DivaLineDeviceInfo;

Members

Size

The Size defines the length of the structure. The application sets this value before calling any function that gets
this structure as parameter. Depending on the version of the Diva API, the size may grow.

Channels

The Channels member defines the total number of parallel connections that can be established on the line device.

bModemSupported

If bModemSupported is set to TRUE, the line device supports analog modem connections.

bFaxSupported

If bFaxSupported is set to TRUE, the line device supports fax G3 connections.

bVoIPSupport

If bVoIPSupport is set to TRUE, the line device supports VoIP connections.

CapiControllerId

This parameter defines the CAPI controller number that is used by the line device.

LineCodec

This parameter indicates the audio format of the line. It depends on the ISDN protocol that is used on this line.
Possible line codecs are given in DivaLineCodec.

bLISupported

If bLISupported is set to TRUE, the line device supports Line Interconnect. Line Interconnect is also the base
for conferencing.

SerialNumber

This parameter defines the unique serial number of the hardware.

HardwareLineIndex
This parameter is used for hardware supporting multiple line devices. All line devices will have the same serial number and
HardwareLineIndex identifies the line. The first line is 1, etc.

DWORD Size // Size of the structure, may depend on the API version
DWORD Channels; // The number of data channels
BOOL bModemSupported; // If true, analog modem is supported
BOOL bFaxSupported; // If true, fax is supported
BOOL bVoIPSupport; // If VoIP support is available
DWORD CapiControllerId; // Controller ID assigned by CAPI
DivaLineCodec LineCodec // Audio codec on the line
BOOL bLISupported // If true, line interconnect is supported
DWORD SerialNumber // serial number of the hardware
DWORD HardwareLineIndex // used for hardware that supports multiple lines. Index

starting with 1
BOOL bExtVoiceSupported // If true, extended voice capabilities supported
BOOL bHoldRetrievesupported;
BOOL bTransferSupported;
BOOL bForwardSupported;
BOOL bCallDeflectionSupported;
BOOL bManagementSupported;

Page 248

Dialogic® Diva® API Developer Reference Guide

bExtVoiceSupported

If bExtVoiceSupported is set to TRUE, the line device supports extended voice capabilities like echo canceller
and enhanced tone detection and generation.

bHoldRetrieveSupported

If bHoldRetrieveSupported is set to TRUE, the line device supports hold and retrieve. Please note that this does
not guarantee that the switch supports it as well.

bTransferSupported

If bTransferSupported is set to TRUE, the line device supports call transfer. Please note that this does not
guarantee that the switch supports it as well.

bForwardSupported

If bForwardSupported is set to TRUE, the line device supports call forwarding. Please note that this does not
guarantee that the switch supports it as well.

bCallDeflectionSupported

If bCallDeflectionSupported is set to TRUE, the line device supports call deflection. Please note that this does
not guarantee that the switch supports this as well.

bManagementSupported

If bManagementSupported is set to TRUE, the line device supports the management interface extensions. See
DivaGetLineDeviceStatus, DivaGetLineDeviceConfiguration as well as DivaDeviceMgmtGetValue and
DivaDeviceMgmtSetValue for more information.

DivaLineDeviceParamsFax

typedef struct
{

} DivaLineDeviceParamsFax;

Members

Size

The Size defines the length of the structure. The application sets this value before calling any function that gets
this structure as parameter. Depending on the Diva API version, the size may grow.

LocalNumber

The LocalNumber is signaled to the remote side with outgoing calls. Please note that the underlying protocol
must support transport of this information.

LocalSubAddress

The LocalSubAddress is signaled to the remote side with outgoing calls. Please note that the underlying protocol
must support transport of this information.

LocalFaxId

The LocalFaxId is used during establishment of the fax connection. This parameter identifies the local fax station
and is typically the phone number of the local fax machine.

DWORD Size;
// General parameters
char LocalNumber[MAX_ADDR_LEN];
char LocalSubAddress [MAX_SUBADDR_LEN];
// Fax-related parameters
char LocalFaxId[MAX_ADDR_LEN];
char FaxHeadLine[MAX_ADDR_LEN];
DWORD DefaultMaxSpeed;
DivaFaxOptions FaxOptions

Dialogic® Diva® API Data Structures and Defines

Page 249

FaxHeadLine

The FaxHeadLine is printed at the top of all sent fax pages. In addition to this line, the date and time as well as
page information is given.

DefaultMaxSpeed

The DefaultMaxSpeed defines the maximum speed that can be negotiated for outbound and inbound fax G3
connections.

FaxOptions

The FaxOptions define how fax G3 connections are negotiated and which parameters are allowed. See
DivaFaxOptions for possible options.

See also

DivaFaxOptions, DivaSetLineDeviceParamsFax

DivaLineDeviceParamsVoice

typedef struct
{

} DivaLineDeviceParamsVoice;

Members

Size

Size defines the length of the structure. The application sets this value before calling any function that gets this
structure as a parameter. Depending on the version of the Diva API, the size may grow.

LocalNumber

The LocalNumber is signaled to the remote side with outgoing calls. Please note that the underlying protocol
must support transport of this information.

LocalSubaddress

The LocalSubaddress is signaled to the remote side with outgoing calls. Please note that the underlying protocol
must support transport of this information.

VoiceOptions

The VoiceOptions define voice-specific parameters to be used for all voice calls. See DivaVoiceOptions for possible
options.

See also

DivaVoiceOptions, DivaSetLineDeviceParamsVoice

DWORD Size;
// General parameters
char LocalNumber[MAX_ADDR_LEN];
char LocalSubAddress[MAX_SUBADDR_LEN];
// Voice-related parameter
DWORD VoiceOptions

Page 250

Dialogic® Diva® API Developer Reference Guide

DivaEventModes
typedef enum
{

DivaEventModeCallback,
DivaEventModeOSEvent,
DivaEventModeMsgLoop,
DivaEventModeCallbackEx,
DivaEventModeCallbackSignal

} DivaEventModes;

DivaEventModeCallback

The application receives the event reported by the Diva API via a callback function. For more information on the
callback function, refer to Callback function.

DivaEventModeOSEvent

The application receives the event reported by the Diva API via an event object that is signaled by the Diva API.
The event object is operating-system-specific. For more information on the event object, refer to DivaGetEvent.

DivaEventModeMsgLoop

The application receives the event reported by the Diva API as a message that is sent to a message loop. For
more information on this event mode, refer to Message loop.

DivaEventModeCallbackEx

The application receives the event reported by the Diva API via a callback function. For more information on the
callback function, refer to CallbackEx function.

DivaEventModeCallbackSignal

The application receives the notification that a new event is available at the Diva API via a callback function. For
more information on the callback function, refer to CallbackSignal function.

DivaCallState

The DivaCallState constants define the current state of a call.

typedef enum
{

DivaCallStateIdle = 0,
DivaCallStateDialing = 1,
DivaCallStateRinging,
DivaCallStateOffering,
DivaCallStateAnswered,
DivaCallStateProceeding,
DivaCallStateConnected,
DivaCallStateOnHold,
DivaCallStateDisconnecting,
DivaCallStateDisconnected

} DivaCallState;

DivaCallStateIdle

This is the initial call state for a call handle created with DivaCreateCall.

DivaCallStateDialing

The call is initiated and the dialing information is being given to the switch. This call state is only available for
outgoing calls.

DivaCallStateRinging

Dialing is finished and the confirmation has been received that ringing at the remote end has started. This call
state is only available for outgoing calls.

Dialogic® Diva® API Data Structures and Defines

Page 251

DivaCallStateOffering

The call has been signaled to one or more applications and not yet been answered. This call state is only available
for incoming calls.

DivaCallStateAnswered

The call has been answered by the application and call establishment is in progress. This call state is only available
for incoming calls.

DivaCallStateProceeding

The call is connected at the signaling level and the data channel connection is initiated.

DivaCallStateConnected

The data channel is connected and data can be streamed in both directions.

DivaCallStateOnHold

The call is in hold state and no data channel is currently available.

DivaCallStateDisconnecting

Disconnect of the call is in progress.

DivaCallStateDisconnected

The call is disconnected. When it reaches this state, the application may read the disconnect reason via
DivaGetCallInfo if required. It must then close the call by calling DivaCloseCall.

Page 252

Dialogic® Diva® API Developer Reference Guide

DivaCallInfo
typedef struct
{

} DivaCallInfo;

Members

Size

Size defines the length of the data structure. The application sets this value before calling any function that gets
this structure as parameter. Depending on the version of the Diva API, the size may grow.

CallState

CallState defines the current state of a call. Valid call states are listed in DivaCallState. The event
DivaEventCallInfo is signaled if the call state changes.

Service

The Service parameter defines the service of a call. It is automatically selected and corresponds to the call type
for outgoing calls. For incoming calls, the service is read from the incoming call parameters, if possible. As long
as an incoming call has not been accepted, the service may change online events, e.g., tone detection.

// Size of the structure, may depend on the API version
DWORD Size
DWORD LineDevice;
DivaCallState CallState;
DivaListenType Service;
DivaCallType CallType;
BOOL bDataTransferPossible;
char CallingNumber[MAX_ADDR_LEN];
char CalledNumber[MAX_ADDR_LEN];
DWORD RxSpeed;
DWORD TxSpeed;
DWORD Compression;
// Parameters valid if call fails or after termination
DivaDisconnectReasons DisconnectReason;
DWORD dwISDNCause;
// Special parameters for CallType Fax
char RemoteFaxId[MAX_ADDR_LEN];
char LocalFaxId[MAX_ADDR_LEN];
DWORD dwFaxPages;
BOOL bPollingActive;
DivaFaxResolution PageResolution;
BOOL bMRActive;
BOOL bMMRActive;
BOOL bECMActive;
// Special parameters for CallType Voice
BOOL bEchoCancellerActive;

DWORD dwRedirectReason;
char RedirectedNumber[MAX_ADDR_LEN];
char RedirectingNumber[MAX_ADDR_LEN];

DivaSignalledCallType SignalledCallType;
DWORD AssignedBChannel

Dialogic® Diva® API Data Structures and Defines

Page 253

CallType

The CallType is selected by the application when connecting, either incoming or outgoing. It can also be changed
during a call.

bDataTransferPossible

If this parameter is TRUE, data can be sent and received. Typically, data are transferred in connected state. In
case of voice applications; however, data transfer may be possible earlier.

CallingNumber

The CallingNumber is a zero-terminated string containing the number of the caller.

CalledNumber

The CalledNumber is a zero-terminated string containing the number of the called party.

RxSpeed

RxSpeed specifies the connection speed in receive direction. This speed differs from the TxSpeed only in case
of analog connections.

TxSpeed

TxSpeed specifies the connection speed in sending direction. This speed differs from the RxSpeed only in case
of analog connections.

Compression

This parameter specifies if the used call type uses compression.

dwDisconnectReason

This parameter contains the converted disconnect reason. The parameter is valid when the call enters the state
DivaCallStateDisconnected. The values for this parameter are defined by DivaDisconnectReasons.

dwISDNCause

This parameter contains the plain cause code for the disconnect reason, received from the underlying network.
The parameter is valid when the call enters the state DivaCallStateDisconnected. The values for this parameter
are defined by the ISDN specifications. Users of this parameter should be familiar with ISDN cause codes.

RemoteFaxId

This parameter is only valid if the call type is set to DivaCallTypeFax. It is a zero-terminated string containing
the station identification of the remote fax. This identification does not rely on the underlying communication
network and is not identical to the calling or called number.

dwLocalFaxId

This parameter is only valid if the call type is set to DivaCallTypeFax. The value is set by the application.

dwFaxPages

This parameter is only valid if the events DivaEventFaxSent or DivaEventFaxReceived have been signaled or the
call type has been set to DivaCallTypeFax. It contains the total number of pages sent or received.

bPollingActive

This parameter is only valid if the call type is set to DivaCallTypeFax. It is set to true if the transfer direction of
the fax has been changed or fax polling or fax on demand has been selected.

PageResolution

This parameter is only valid if the call type is set to DivaCallTypeFax. It defines the resolution of the fax and
contains one of the values defined in DivaFaxResolution.

bMRActive, bMMRActive

These parameters are only valid if the call type is set to DivaCallTypeFax. They define the used extended fax
coding method. If neither parameter is set, the default coding according to T.30 is used. Please note that these
coding methods are only used on the line and do not correspond to any data format of the received or sent file.

Page 254

Dialogic® Diva® API Developer Reference Guide

bECMActive

This parameter is only valid if the call type is set to DivaCallTypeFax. The parameter indicates if the reliable
Error Correction Mode has been negotiated or not.

bEchoCancellerActive

This parameter is only valid if the call type is set to DivaCallTypeVoice. If the parameter is set, the echo canceller
is active.

dwRedirectReason

This parameter indicates if the call has been redirected from another party. Possible values are defined in
DivaRedirectReason.

RedirectedNumber

This parameter contains a zero-terminated string with the redirected number.

RedirectingNumber

This parameter contains a zero-terminated string with the number of the redirecting party.

SignalledCallType

This parameter is only valid for incoming calls. The call type of an incoming call is evaluated, based on the
information delivered from the network. For valid options, see DivaSignalledCallType.

AssignedBchannel

The call is available once it is proceeding in the assigned B-channel. This channel is the physical channel assigned
by the network. Numbering starts with one. For Dialogic® Diva® PRI Media Boards, the numbering may not be
continuous.

Dialogic® Diva® API Data Structures and Defines

Page 255

DivaDisconnectReasons
typedef enum
{

DivaDRNormalCallClearing = 0,
DivaDRActiveDisconnect,
DivaDRBusy,
DivaDRReject,
DivaDRNoAnswer,
DivaDRAlertingNoAnswer,
DivaDRNumberUnknown,
DivaDRInvalidNumber,
DivaDRNumberChanged,
DivaDRNoChannelAvailable,
DivaDRCableError,
DivaDRGeneralNetworkError,
DivaDRUnspecifiedError,
DivaDRUnallocatedNumber,
DivaDRAnotherAppGotThatCall,
DivaDRDataChannelFailed,
DivaDRNoFaxDevice,
DivaDRFaxTrainingFailed,
DivaDRFaxRemoteAbort,
DivaDRFaxLocalAbort,
DivaDRModemNegotiationFailed,
DivaDRModemNoAnswer,
DivaDRModemCarrierLost,
DivaDRIncompatibleDestination,
DivaDRFileAccess,
DivaDRLowMemory,
DivaDRIllegalData,
DivaDRConnectTimeout,
DivaDRFaxSecureNotSupported,
DivaDRFaxPartialErrors

} DivaDisconnectReasons

DivaDRNormalCallClearing

The call ended with the default cause.

DivaDRActiveDisconnect

The application initiated the disconnect of the call.

DivaDRBusy

The remote end is busy and could not take the call. This disconnect reason is only signaled for outgoing calls.

DivaDRReject

The call was rejected by the remote peer.

DivaDRNoAnswer

The remote end did not answer the call and the call timed out. This disconnect reason is only signaled for outgoing
calls.

DivaDRAlertingNoAnswer

The remote end did not answer the call, even though it sent an alert to keep the call ringing. This disconnect
reason is only signaled for outgoing calls.

DivaDRNumberUnknown

The switch responds that the dialed number is not known.

Page 256

Dialogic® Diva® API Developer Reference Guide

DivaDRInvalidNumber

The switch responds that the dialed number is not in a valid format or not complete.

DivaDRNumberChanged

The switch responds that the dialed number is not known because it has changed.

DivaDRNoChannelAvailable

All channels on the line device are already in use.

DivaDRCableError

There is no layer 1 connection between the line device and the switch. This is typically a cable error or an
un-plugged line device.

DivaDRGeneralNetworkError

A general network error occurred during call establishment.

DivaDRUnspecifiedError

There is no specific information regarding why the call failed.

DivaDRUnallocatedNumber

The dialed number is no longer available.

DivaDRAnotherAppGotThatCall

Another application answered the call.

DivaDRDataChannelFailed

The negotiation of the data-related protocol failed, e.g., modem negotiation.

DivaDRNoFaxDevice

The remote side is not a fax device.

DivaDRFaxTrainingFailed

The line quality is too bad to establish a fax connection.

DivaDRFaxRemoteAbort

The remote side has aborted the fax protocol.

DivaDRFaxLocalAbort

The fax protocol has been terminated from the local side. Reasons may be too many retries, for example.

DivaDRModemNegotiationFailed

The modem negotiation failed. This may be a line quality problem, or the settings of both sides not matching.

DivaDRModemNoAnswer

The remote modem did not answer.

DivaDRModemCarrierLost

The modem connection lost the carrier signal.

DivaDRIncompatibleDestination

The network could not reach the remote side due to compatibility issues.

DivaDRFileAccess

The file that should be accessed to send or receive data could not be accessed. See Dialogic® Diva® SDK trace
for more information.

DivaDRLowMemory

The system is running out of memory.

Dialogic® Diva® API Data Structures and Defines

Page 257

DivaDRIllegalData

A file that is expected to contain a specific data format, e.g., fax TIFF format, did not contain valid data.

DivaDRConnectTimeout

A connect timeout specified by the application is reached. The application controls the timeout by the properties
DivaCPT_NoAnswerTimeout or DivaCPT_ConnectTimeout.

DivaDRFaxSecureNotSupported

The application requested a secure fax connection by enabling DivaCPT_FaxEnableSecurity, but the remote peer
did not support authentication. Therefore, the connection was disconnected.

DivaDRFaxPartialErrors

One or more pages of a received fax document contain errors. If a multi page document is received and at least
one page was received with good quality, the Diva SDK indicates a successful reception via the event
DivaEventFaxReceived. The disconnect reason informs the application that the document contains errors. Note
that applications can retrieve the quality for each page via the call property DivaCPT_FaxPageQuality when the
event DivaEventFaxPageReceived is signaled.

DivaRedirectReason
typedef enum
{

DivaRedirectReasonUnknown = 0,
DivaRedirectReasonBusy = 1,
DivaRedirectReasonNoReply = 2,
DivaRedirectReasonCallDeflection = 4,
DivaRedirectReasonDTEOutOfOrder = 9,
DivaRedirectReasonByCalledDTE = 10,
DivaRedirectReasonUnconditional = 15
DivaRedirectReasonUnavailable = 256,
DivaRedirectReasonTimeOfDay,
DivaRedirectReasonDoNotDisturb
DivaRedirectReasonFollowMe,
DivaRedirectReasonAway

} DivaRedirectReason;

DivaRedirectReasonUnknown

There is no information on the reason for the redirection reported by the remote peer.

DivaRedirectReasonBusy

The call was redirected due to a busy condition of the dialed destination.

DivaRedirectReasonNoReply

The call was redirected because the dialed destination did not answer the call.

DivaRedirectReasonCallDeflection

The call was redirected because the dialed destination has deflected the call.

DivaRedirectReasonDTEOutOfOrder

The call was redirected because the dialed destination is out of order.

DivaRedirectReasonByCalledDTE

The call was redirected by the dialed destination.

DivaRedirectReasonUnconditional

The call was redirected without a special condition.

Page 258

Dialogic® Diva® API Developer Reference Guide

DivaRedirectReasonUnavailable

The call has been redirected because the peer is not available. This reason is only available for IP-based line
devices.

DivaRedirectReasonTimeOfDay

The call has been redirected because the peer is not available at this time. This reason is only available for
IP-based line devices.

DivaRedirectReasonDoNotDisturb

The call has been redirected because the peer does not want to be disturbed. This reason is only available for
IP-based line devices.

DivaRedirectReasonFollowMe

The call has been redirected to reach the dialed peer at another device. This reason is only available for IP-based
line devices.

DivaRedirectReasonAway

The call has been redirected because the peer is not available. This reason is only available for IP-based line
devices.

DivaSignalledCallType
typedef enum
{

DivaSignalledCallTypeUnknown = 0,
DivaSignalledCallTypeAnalog,
DivaSignalledCallTypeDigital,
DivaSignalledCallTypeGSM,
DivaSignalledCallTypeFax

} DivaSignalledCallType;

DivaSignalledCallTypeUnknown

The call type for the incoming call could not be determined.

DivaSignalledCallTypeAnalog

The call is signaled as an analog call. It might be a voice, fax, or modem call.

DivaSignalledCallTypeDigital

The call is signaled as a digital call.

DivaSignalledCallTypeGSM

The call is signaled as an asynchronous V.110 call for GSM connectivity.

DivaSignalledCallTypeFax

The call is signaled as fax call. This option may occur if an incoming SIP call contains only the media information
for T.38.

Dialogic® Diva® API Data Structures and Defines

Page 259

DivaReturnCodes

Name Value Description

DivaSuccess 0 Success

DivaErrorLineDevice 1 The specified line device is not available.

DivaErrorInvalidFunction 2 The requested function could not be performed.

DivaErrorInvalidHandle 3 The handle passed to the Diva API is not valid. Either the device does
not support the function or the function could not be performed due to
the selected parameter, e.g., call type.

DivaErrorInvalidParameter 4 One or more of the parameters passed to the function are not valid.

DivaErrorInvalidState 5 The requested function could not be performed in the current state.

DivaErrorOutOfMemory 6 The allocation of memory failed.

DivaErrorNoCapi 7 This result code is obsolete. Refer to the result code DivaErrorNoDevice

DivaErrorCapiError 8 The underlying Dialogic® communication platform is not accessible.

DivaErrorDestBusy 9 The remote peer is busy. This result code is only valid for a blind call
transfer completion event.

DivaErrorNoAnswer 10 The remote peer did not answer. This result code is only valid for a blind
call transfer completion event.

DivaErrorNoChannel 11 There is no data channel to initiate the call. This could happen if all data
channels are in use or if a fixed channel is selected that is already in use.

DivaErrorOpenFile 12 The specified file could not be opened. Files are opened in read only
mode.

DivaErrorUnsupportedFormat 13 The specified format is not supported. The format may be specified as
a parameter or read from the file.

DivaErrorReadFile 14 The Diva API failed to read the expected data from the specified file.

DivaErrorAnotherAppGotThat
Call

15 An incoming call was answered by another application.

DivaErrorTimeout 16 Future use

DivaErrorUnallocatedNumber 17 The dialed number is not known by the carrier. This result code is only
valid for a blind call transfer completion event.

DivaErrorNotSupported 18 The requested function is not supported by the selected line device.

DivaErrorUnspecific 19 The outgoing call failed with an unspecified error. This result code is
only valid for a blind call transfer completion event.

DivaErrorReadOnlyParameter 20 Future use

DivaErrorDataSize 21 The provided buffer space to return system information is not big
enough.

DivaErrorWriteOnlyParameter 22 Future use

DivaErrorAlreadyAssigned 23 An audio provider with the same name is already assigned.

DivaErrorNoDataAvailable 24 There is no data available for a generic tone operation.

DivaErrorEndOfData 25 The end of the data has been reached for a received fax in TIFF format.

DivaErrorFormatNotEnabled 26 The fax document format is supported but not enabled by the
application.

DivaErrorNoDevice 27 No Dialog® Diva® resources could be detected. There might be no
resources installed or the ressources may not be configured or started
correctly.

Page 260

Dialogic® Diva® API Developer Reference Guide

DivaErrorInsufficientBuffer 28 The provided buffer space is not sufficient to place the requested
information.

DivaErrorRejected 29 The call transfer request was rejected by the remote peer. This result
code is passed with the event DivaEventTransferCompleted.
DivaErrorRejected can only occur on a line device that uses SIP as a
signaling protocol.

DivaErrorNoResources 30 The requested function or operation requires a resource that is not
available. This may occur on Dialogic® communication platforms that
have licensed components.

Name Value Description

Dialogic® Diva® API Data Structures and Defines

Page 261

DivaFaxFormat
typedef enum
{

DivaFaxFormatAutodetect,
DivaFaxFormatDefault,
DivaFaxFormatTIFF_ClassF = 1,
DivaFaxFormatTIFF_ClassFSymmetric,
DivaFaxFormatSFF,
DivaFaxFormatTIFF_G3,
DivaFaxFormatTIFF_G3Symmetric,
DivaFaxFormatTIFF_G4,
DivaFaxFormatTIFF_G4Symmetric,
DivaFaxFormatColorJPEG,
DivaFaxFormatASCII,
DivaFaxFormatBinaryFile

} DivaFaxFormat;

DivaFaxFormatAutodetect

The format of the fax document is detected by the file extension and the header information. This is only valid
for function calls to transmit a fax.

DivaFaxFormatDefault

The default format is used. This option is only valid as parameter for DivaReceiveFax. The default format is TIFF
class F.

DivaFaxFormatTIFF_ClassF

The data is coded according to the TIFF Class F specification.

DivaFaxFormatTIFF_ClassFSymmetric

The data is coded according to the TIFF Class F specification. Resolution of the pages is aligned to be symmetric.

DivaFaxFormatSFF

The data is coded according to the SFF format that is used as the internal format of the Diva API and also the
CAPI interface.

DivaFaxFormatTIFF_G3

The data is coded according to the TIFF Class F specification using the G3 coding.

DivaFaxFormatTIFF_G3Symmetric

The data is coded according to the TIFF Class F specification using the G3 coding. Resolution of the pages is
aligned to be symmetric.

DivaFaxFormatTIFF_G4

The data is coded according to the TIFF Class F specification using the G4 coding. This format has a higher
compression and requires less disk space.

DivaFaxFormatTIFF_G4Symmetric

The data is coded according to the TIFF Class F specification using the G4 coding format has a higher compression
and requires less disk space. Resolution of the pages is aligned to be symmetric.

DivaFaxFormatColorJPEG

The data is coded as JPEG according to the color fax specification.

Page 262

Dialogic® Diva® API Developer Reference Guide

DivaFaxFormatASCII

The data provided should be interpreted as plain unformatted text. Note that this requires setting the call property
DivaCPT_FaxUseTextForSending to true before initiating the connection of the switch to fax mode.

DivaFaxFormatBinaryFile

The data provided should be interpreted as plain binary data. This requires that the Diva SDK reported that
binary file transfer is active via the call property DivaCPT_FaxBinaryFileTransferActive.

DivaExtensions
typedef enum
{

DivaExtensionFaxFormat
} DivaExtensions;

DivaExtensionFaxFormat

The extension DivaExtensionFaxFormat enables or disables the fax formats superfine and ultrafine. If enabled,
the capabilities are signaled to the calling side on inbound faxes and negotiated on outbound faxes depending
on the document format. By default, the Diva API negotiates only formats up to fine.

DivaLineCodec

typedef enum

{

LineAudio_ALaw = 0, // G.711 ALaw
LineAudio_uLaw = 1, // G.711 uLaw

/*
* Codecs only available in direct access mode line configuration.
*/
LineAudio_G722 = 10, // G.722 codec
LineAudio_G722_G711 = 11, // G.722 - G 711 Hybrid
LineAudio_PCM16_8KHz = 20, // PCM codec 16 Bit 8 KHz
LineAudio_PCM16_16KHz = 21, // PCM codec 16 Bit 16 KHz
LineAudio_PCM16_32KHz = 23, // PCM codec 16 Bit 32 KHz
LineAudio_PCM16_48KHz = 24, // PCM codec 16 Bit 48 KHz

} DivaLineCodec;

LineAudio_ALaw

The A-Law audio codec is generally used in Europe.

LineAudio_uLaw

The µ-Law audio codec is generally used in North America

LineAudio_G722

The G.722 audio codec is used if the line is configured for HD Audio using G.722. Standard voice calls will use
the G.722 line and data codec. The line codec is only available on lines configured for direct access mode (no
signaling).

LineAudio_G722_G711

The LineAudio_G722_G711 audio codec is only available if the line is configured in direct access mode. The
audio signal will be automatically detected between G.722 and G.711 for DTMF detection, audio will be handled
as G.722 like for LineAudio_G722. The line codec is only available on lines configured for direct access mode
(no signaling).

Dialogic® Diva® API Data Structures and Defines

Page 263

LineAudio_PCM16_8KHz

The LineAudio_PCM16_8KHz audio codec is used if the line is configured for linear PCM data with 16 bit and a
sample rate of 8 KHz. This requires two channels / timeslots per audio stream. Standard voice calls will use
the PCM 16 data codec by default. The line codec is only available on lines configured for direct access mode
(no signaling).

LineAudio_PCM16_16KHz

The LineAudio_PCM16_16KHz audio codec is used if the line is configured for linear PCM data with 16 bit and a
sample rate of 16 KHz. This requires four channels / timeslots per audio stream. Standard voice calls will use
the PCM 16 data codec by default. The line codec is only available on lines configured for direct access mode
(no signaling).

LineAudio_PCM16_32KHz

The LineAudio_PCM16_32KHz audio codec is used if the line is configured for linear PCM data with 16 bit and a
sample rate of 32 KHz. This requires eight channels / timeslots per audio stream. Standard voice calls will use
the PCM 16 data codec by default. The line codec is only available on lines configured for direct access mode
(no signaling).

LineAudio_PCM16_48KHz

The LineAudioPCM16_48KHz audio codec is used if the line is configured for linear PCM data with 16 bit and a
sample rate of 48 KHz. This requires twelve channels / timeslots per audio stream. Standard voice calls will
use the PCM 16 data codec by default. The line codec is only available on lines configured for direct access mode
(no signaling).

DivaAudioFormat

The Dialogic® Diva® SDK supports several audio formats. The formats contain the codec and the storage format.
The storage format can be the well known wave format and the raw format.

The raw formats do not contain any header. The data is coded in the given format (codec) without any preceding
information.

The format containing the wave header can be used for file-based streaming, but not for memory-based
streaming.

typedef enum
{

 /*
 * Windows® waveform (WAV) formats:
 */
 DivaAudioFormat_aLaw8K8BitMono = 0,
 DivaAudioFormat_uLaw8K8BitMono = 1,
 DivaAudioFormat_PCM_8K8BitMono = 2,
 DivaAudioFormat_PCM_8K16BitMono = 3,
 DivaAudioFormat_GSM_610 = 10,
 DivaAudioFormat_G723_6_4 = 12,
 DivaAudioFormat_G723_5_3 = 13,
/*
 * Raw audio formats:
 */
 DivaAudioFormat_Raw_aLaw8K8BitMono = 100,
 DivaAudioFormat_Raw_uLaw8K8BitMono = 101,
 DivaAudioFormat_Raw_PCM_8K8BitMono = 102,
 DivaAudioFormat_Raw_PCM_8K16BitMono = 103,
 DivaAudioFormat_Raw_ADPCM_8K4BitMono = 104,
 DivaAudioFormat_Raw_ADPCM_6K4BitMono = 105,

DivaAudioFormat_Raw_GSM_610,
DivaAudioFormat_Raw_G729,
DivaAudioFormat_Raw_ILBC,
DivaAudioFormat_Raw_AMR_4_75,
DivaAudioFormat_Raw_AMR_5_15,

Page 264

Dialogic® Diva® API Developer Reference Guide

DivaAudioFormat_Raw_AMR_5_9,
DivaAudioFormat_Raw_AMR_6_7,
DivaAudioFormat_Raw_AMR_7_4,
DivaAudioFormat_Raw_AMR_7_95,
DivaAudioFormat_Raw_AMR_10_2,
DivaAudioFormat_Raw_AMR_12_2

 DivaAudioFormat_Raw_G723_6_4 = 212,
 DivaAudioFormat_Raw_G723_5_3 = 213,
 DivaAudioFormat_Raw_G722 = 214,
 DivaAudioFormat_Raw_PCM_16K16Bit = 215,
 DivaAudioFormat_Raw_PCM_32K16Bit = 217,
 DivaAudioFormat_Raw_PCM_48K16Bit = 216,
} DivaAudioFormat;

} DivaAudioFormat;

DivaAudioFormat_aLaw8K8BitMono

The data is coded as 8 Bit a-law with an 8 KHz sampling rate. The storage format contains a wave file header.

DivaAudioFormat_uLaw8K8BitMono

The data is coded as 8 Bit µ-law with an 8 KHz sampling rate. The storage format contains a wave file header.

DivaAudioFormat_PCM_8K8BitMono

The data is coded as 8 Bit PCM with an 8 KHz sampling rate. The storage format contains a wave file header.
Please note that the 8 Bit PCM format may contain a higher noise than a-law or µ-law formats.

DivaAudioFormat_PCM_8K16BitMono

The data is coded as 16 Bit PCM with an 8 KHz sampling rate. The storage format contains a wave file header.

DivaAudioFormat_GSM_610

The format DivaAudioFormat_GSM_610 specifies that the file format is a wave file and the coding is according
to GSM 610. Please note that this format is only available for the function DivaMonitorRecordAudio. All other
functions will return an error if this format is used.

DivaAudioFormat_Raw_aLaw8K8BitMono

The data is coded as 8 Bit a-law with an 8 KHz sampling rate. The storage format is raw and contains no header.

DivaAudioFormat_Raw_uLaw8K8BitMono

The data is coded as 8 Bit µ-law with an 8 KHz sampling rate. The storage format is raw and contains no header.

DivaAudioFormat_Raw_PCM_8K8BitMono

The data is coded as 8 Bit PCM with an 8 KHz sampling rate. The storage format is raw and contains no header.
Please note that the 8 Bit PCM format may contain a higher noise than a-law or µ-law formats.

DivaAudioFormat_Raw_PCM_8K16BitMono

The data is coded as 16 Bit PCM with an 8 KHz sampling rate. The storage format is raw and contains no header.

DivaAudioFormat_Raw_ADPCM_8K4BitMono

The data is coded as 4 Bit Adaptive PCM. The sampling rate is 8 KHz. The storage format is raw and contains
no header. This format is an adaptive format and can only be processed-based on an audio file.

DivaAudioFormat_Raw_ADPCM_6K4BitMono

The data is coded as 4 Bit Adaptive PCM. The sampling rate is 6 KHz. The storage format is raw and contains
no header. The sampling rate of 6 KHz requires an underlying Dialogic® communication platform that supports
"extended voice". This format is an adaptive format and can only be processed-based on an audio file.

DivaAudioFormat_Raw_GSM_610

The format is only available when using the function DivaMonitorRecordAudio.

Dialogic® Diva® API Data Structures and Defines

Page 265

DivaAudioFormat_Raw_G729

The format is only available when using the function DivaMonitorRecordAudio.

DivaAudioFormat_Raw_ILBC

The format is only available when using the function DivaMonitorRecordAudio.

DivaAudioFormat_Raw_AMR_4_75

The format is only available when using the function DivaMonitorRecordAudio.

DivaAudioFormat_Raw_AMR_5_15

The format is only available when using the function DivaMonitorRecordAudio.

DivaAudioFormat_G723_6_4

The format DivaAudioFormat_G723_6_4 specifies that the file format is a wave file and the coding is according
to G.723 using compression ratio 6.4 Kbits per second. Please note that this format is only available for the
function DivaMonitorRecordAudio. All other functions will return an error if this format is used.

DivaAudioFormat_G723_5_3

The format DivaAudioFormat_G723_5_3 specifies that the file format is a wave file and the coding is according
to G.723 using compression ratio 5.3 Kbits per second. Please note that this format is only available for the
function DivaMonitorRecordAudio. All other functions will return an error if this format is used.

DivaAudioFormat_Raw_G723_6_4

The format DivaAudioFormat_Raw_G723_6_4 specifies that the file format is a raw file and the coding is
according to G.723 using compression ratio 6.4 Kbits per second. Please note that this format is only available
for the function DivaMonitorRecordAudio. All other functions will return an error if this format is used.

DivaAudioFormat_Raw_G723_5_3

The format DivaAudioFormat_Raw_G723_5_3 specifies that the file format is a wave file and the coding is
according to G.723 using compression ratio 5.3 Kbits per second. Please note that this format is only available
for the function DivaMonitorRecordAudio. All other functions will return an error if this format is used.

DivaAudioFormat_Raw_G722

The format DivaAudioFormat_Raw_G722 specifies that the file format is a raw and the coding is according to
G.722. Please note that this format is only available if a call is initiated via the data codec G.722 or the line is
configured for line codec G.722.

DivaAudioFormat_Raw_PCM16K16Bit

The format DivaAudioFormat_Raw_PCM16K16Bit specifies that the file format is a raw and the coding is according
to PCM using 16 bit samples with a sample rate of 16 KHz. Please note that this format is only available if a call
is initiated via the data codec PCM 16 with a sampling rate of 16 KHz or the line is configured for line codec PCM
16 bit 16 KHz.

DivaAudioFormat_Raw_PCM32K16Bit

The format DivaAudioFormat_Raw_PCM32K16Bit specifies that the file format is a raw and the coding is according
to PCM using 16 bit samples with a sample rate of 32 KHz. Please note that this format is only available if a call
is initiated via the data codec PCM 16 with a sampling rate of 32 KHz or the line is configured for line codec PCM
16 bit 32 KHz.

DivaAudioFormat_Raw_PCM48K16Bit

The format DivaAudioFormat_Raw_PCM48K16Bit specifies that the file format is a raw and the coding is according
to PCM using 16 bit samples with a sample rate of 48 KHz. Please note that this format is only available if a call
is initiated via the data codec PCM 16 with a sampling rate of 48 KHz or the line is configured for line codec PCM
16 bit 48 KHz.

DivaAudioFormat_Raw_AMR_5_9

The format is only available when using the function DivaMonitorRecordAudio.

Page 266

Dialogic® Diva® API Developer Reference Guide

DivaAudioFormat_Raw_AMR_6_7

The format is only available when using the function DivaMonitorRecordAudio.

DivaAudioFormat_Raw_AMR_7_4

The format is only available when using the function DivaMonitorRecordAudio.

DivaAudioFormat_Raw_AMR_7_95

The format is only available when using the function DivaMonitorRecordAudio.

DivaAudioFormat_Raw_AMR_10_2

The format is only available when using the function DivaMonitorRecordAudio.

DivaAudioFormat_Raw_AMR_12_2

The format is only available when using the function DivaMonitorRecordAudio.

DivaFaxOptions
typedef enum
{

DivaFaxOptionsDefault = 0x00000000,
DivaFaxOptionDisableHighResolution = 0x00000001,
DivaFaxOptionDisableMR = 0x00000002,
DivaFaxOptionDisableMMR = 0x00000004,
DivaFaxOptionDisableECM = 0x00000008,
DivaFaxOptionEnablePolling = 0x00000100,
DivaFaxOptionRequestPolling = 0x00000200,
DivaFaxOptionReverseSession = 0x00000400,
DivaFaxOptionMultipleDocument = 0x00000800,
DivaFaxOptionEnableColor = 0x00001000,
DivaFaxOptionEnableInterrupt = 0x00010000,
DivaFaxOptionRequestInterrupt = 0x00020000,
DivaFaxOptionEnableClearChannel

} DivaFaxOptions;

DivaFaxOptionDefault

By default, the fax G3 protocol negotiates the best possible options. Certain options can be disabled by the
settings described below. The polling mode is disabled by default.

DivaFaxOptionDisableHighResolution

This option reduces the vertical resolution to 100 DPI in order to reduce transmission time.

DivaFaxOptionDisableMR

This option disables additional compression. The data will be exchanged using the modified Huffman compression.

DivaFaxOptionDisableMMR

This option disables additional compression. The data will be exchanged using the modified Huffman compression
or MR compression.

DivaFaxOptionDisableECM

This option disables the error correction mode.

DivaFaxOptionEnablePolling

This option must be set to be able to enter polling mode. The polling mode changes the direction of the fax
transmission. If this option is enabled for an incoming call, a polling request from the calling side is accepted.

DivaFaxOptionRequestPolling

This option must be set to enter polling mode. The polling mode changes the direction of the fax transmission.
If this option is set for an outgoing call, a polling request is sent to the called party.

Dialogic® Diva® API Data Structures and Defines

Page 267

DivaFaxOptionReverseSession

This option is used to change the call type to fax and to reverse the call direction at the same time. For example,
an incoming voice call can be changed to fax and the fax is sent to the caller.

DivaFaxOptionMultipleDocument

This option must be set when connecting or answering a call if multiple documents should be sent on the
connection.

DivaFaxOptionEnableColor

If DivaFaxOptionEnableColor is set, the negotiation of color fax in the fax protocol is enabled.

DivaFaxOptionEnableInterrupt

If this option is set, the connection may continue as voice connection after the fax has been processed. The
remote side is responsible for requesting the interrupt procedure.

DivaFaxOptionRequestInterrupt

If this option is set, a request to change to voice mode after the fax has been sent is send to the remote party.
The result is reported in the call property DivaCPT_FaxProcedureInterrupt.

DivaFaxOptionEnableClearChannel

If this option is set, the clear channel fax mode is enabled. By default, only T.38 is used.

DivaFaxResolution
typedef enum

{

DivaFaxResolutionStandard = 1,

DivaFaxResolutionFine,
DivaFaxResolutionSuperFine,
DivaFaxResolutionUltraFine

} DivaFaxResolution;

DivaFaxDocumentProperties

typedef struct

{

DWORD Size;
DWORD Pages;
DivaFaxResolution FaxResolution;
DWORD ImageWidth;
DWORD ImageLength;
DWORD HorizontalResolution;
DWORD VerticalResolution;
DWORD Compression;
DivaFaxFormat Format;
BOOL AllPagesHaveSameFormat;

} DivaFaxDocumentProperties;

Size

The parameter Size defines the length of the data structure. The application sets this value before calling any
function that gets this structure as parameter. Depending on the version of the Diva API additional parameter
may be added and the size may grow.

Page 268

Dialogic® Diva® API Developer Reference Guide

Pages

The parameter Pages contains the amount of pages included in the fax document. If the number of pages cannot
be calculated the parameter is set to zero.

FaxResolution

The parameter FaxResolution contains the information if the resolution is standard, fine, superfine or ultrafine.

ImageWidth

The parameter ImageWidth contains the information about the horizontal amount of pixel per line. If the
information is not available from the document header the parameter will be set to zero.

ImageLength

The parameter ImageLength contains the information about the amount of lines. If the document contains
multiple pages, this is the length of the first page. . If the information is not available from the document header
the parameter will be set to zero.

HorizontalResolution

The parameter HorizontalResolution contains the information about the horizontal resolution in dpi. . If the
information is not available from the document header the parameter will be set to zero.

VerticallResolution

The parameter VerticalResolution contains the information about the vertical resolution in dpi. . If the information
is not available from the document header the parameter will be set to zero.

Compression

The parameter Compression contains the information about the compression format. The parameter is only
available for TIFF documents and will be set to zero for all other formats. The supported compression formats
are RLE (2), Fax G3/T4 (3), Fax G4/T6 (4) and LZW (5). . If the information is not available from the document
header the parameter will be set to zero.

FaxFormat

The parameter FaxFormat contains the information about the document format. This depends on the type of
document (SFF or TIFF) and the compression.

AllPagesHaveSameFormat

The parameter AllPagesHaveSameFormat specifies if the format is the same on all pages or not.

DivaVoiceOptions
typedef enum
{

DivaVoiceOptionDefault = 0x000,
DivaVoiceOptionEarlyDataChannel = 0x001,
DivaVoiceOptionEchoCanceller = 0x002

} DivaVoiceOptions;

DivaVoiceOptionEarlyDataChannel

If the option DivaVoiceOptionEarlyDataChannel is selected, the data channel is established before the B-channel
connection is confirmed by the remote side. This is useful to hear announcements, ring tones, ring back tones,
and busy tones. Please note that this feature is only available for outgoing calls.

DivaVoiceOptionEchoCanceller

If the DivaVoiceOptionEchoCanceller option is selected, the echo canceller is enabled for this connection.

Dialogic® Diva® API Data Structures and Defines

Page 269

DivaVoIPParams
typedef struct
{

} DivaVoIPParams;

Size

Size defines the length of the structure. The application sets this value before calling any function that gets this
structure as parameter. Depending on the version of the Diva API, the size may grow.

PayloadProtocol

This parameter defines the coding of the data used in send and receive direction of the data channel. It must
be one of the values defined in DivaPayloadProtocol.

PayloadOptions

The PayloadOptions parameter defines the options to be used in the data channel. For available options and a
detailed description refer to DivaPayloadOptions.

MaxPacketLateRate

The MaxPacketLateRate parameter defines the maximum period of time, in milliseconds, that a packet may be
delayed before it is discarded.

MaxDejitterDelay

The MaxDejitterDelay parameter defines the maximum size of the anti-jitter buffer in milliseconds.

SSRC

The SSRC parameter is part of the RTP-packet header. It identifies the synchronization source. It is chosen
randomly with the intent that only one synchronization source within one RTP session has the same SSRC
identifiers.

VoiceOptions

The VoiceOptions parameter defines voice-specific options like enabling or disabling the echo canceller. For valid
options, see DivaVoiceOptions.

DivaPayloadProtocol
typedef enum
{

DivaPayload_PCMU,
DivaPayload_PCMA,
DivaPayload_G723
DivaPayload_G726,
DivaPayload_GSM

} DivaPayloadProtocol;

DivaPayload_PCMU

The data format complies to G.711 PCM with µ-law coding.

DivaPayload_PCMA

The data format complies to G.711 PCM with a-law coding.

DWORD Size;
DivaPayloadProtocol PayloadProtocol;
DivaPayloadOptions PayloadOptions;
DWORD MaxPacketLateRate;
DWORD MaxDejitterDelay;
DWORD SSRC;
DWORD VoiceOptions

Page 270

Dialogic® Diva® API Developer Reference Guide

DivaPayload_G723

The data format complies to G.723.1 coding.

DivaPayload_G726,

The data format complies to G.726 32 kbps coding.

DivaPayload_GSM,

The data format complies to GSM 06.10 / ETS 300 961 full rate coding.

DivaPayloadOptions
typedef enum
{

DivaDisableVoiceActivityDetection,
DivaDisableComfortNoise,
DivaDisableDTMFDetection,
DivaDisableDTMFGeneration,
DivaG723LowCodingRate

} DivaPayloadOptions;

DivaDisableVoiceActivityDetection

This parameter disables voice activity detection. By default, voice activity detection is enabled.

DivaDisableComfortNoise

This parameter disables the generation of comfort noise when no data is transmitted. By default, comfort noise
generation is enabled.

DivaDisableDTMFDetection

This parameter disables the detection of in-band DTMF tones.

DivaDisableDTMFGeneration

This parameter disables the generation of in-band DTMF tones.

DivaG723LowCodingRate

If this option is selected, the low coding rate of the G.723 codec, i.e. 5.3 kbps, is used. The default coding rate
is 6.3 kbps.

DivaModemOptions
typedef enum
{

DivaModemOptionsDefault = 0,
DivaModemOptionDisableRetrain = 0x10,
DivaModemOptionDisableCompression = 0x20,
DivaModemOptionDisableV42 = 0x40,
DivaModemOptionDisableMNP = 0x80,
DivaModemOptionForceReliable = 0x100,
DivaModemOptionDisableAnswerTone = 0x00001000,

/*
*Modem options for synchronous modems. The options following *DivaModemOptionSynchronous are
only valid if this bit is set.
*/
DivaModemOptionSynchronous = 0x80000000

} DivaModemOptions;

DivaModemOptionsDefault

The default modem options will be used. The default options are 8 data bits, 1 stop bit, no parity, a full negotiation
for reliable protocols like MNP or V.42, and compression.

Dialogic® Diva® API Data Structures and Defines

Page 271

DivaModemOptionDisableRetrain

If this option is selected, retrain for established connections is disabled.

DivaModemOptionDisableCompression

If this option is selected, no compression is negotiated for analog modem connections.

DivaModemOptionDisableV42

If this option is selected, the modem negotiation refuses V.42. The acceptance of MNP depends on the option
DivaModemOptionDisableMNP.

DivaModemOptionDisableMNP

If this option is selected, the modem negotiation refuses MNP. The acceptance of V.42 depends on the option
DivaModemOptionDisableV42.

DivaModemOptionForceReliable

If this option is selected, the connection will only be established if a reliable modem connection can be negotiated.
If the remote side has disabled V.42 and MNP, the connection will fail.

DivaModemOptionDisableAnswerTone

If this option is selected, the modem will not generate any answer tone. This is used for synchronous modem
connections.

DivaModemOptionSynchronous

If this option is set, a synchronous modem connection is negotiated. The modulation depends on the speed and
the other modulation settings for V.22 up to V.22 Dialogic® Diva® Fast Setup.

DivaFaxMaxSpeed
typedef enum
{

DivaFaxMaxAutomatic,
DivaFaxMaxSpeed2400,
DivaFaxMaxSpeed4800,
DivaFaxMaxSpeed7200,
DivaFaxMaxSpeed9600,
DivaFaxMaxSpeed14400,
DivaFaxMaxSpeed33600

}DivaFaxMaxSpeed;

DivaTransferOptions
typedef enum
{

DivaTransferOptionDefault = 0x0000,
DivaTransferOptionNoHoldRequired,
DivaTransferOptionOnAlerting,
DivaTransferOptionOnProceeding,
DivaTransferOptionCallDeflection,
DivaTransferOptionUseCallingNumber,
DivaTransferOptionUseCallingName

}DivaTransferOptions;

DivaTransferOptionDefault

DivaTransferOptionDefault uses the transfer capabilities of the switch or PBX to which the corresponding line
device is connected. If the default transfer options are selected, the primary call is placed on hold before the
transfer is initiated. On blind transfer no specific channel handling is done for the consultation call. The transfer
is completed when the consultation call is connected.

Page 272

Dialogic® Diva® API Developer Reference Guide

DivaTransferOptionNoHoldRequired

If this option is set, the Dialogic® Diva® SDK did not transfer the primary call to the hold state before initiating
the transfer.

DivaTransferOptionOnAlerting

If this option is set, the Diva SDK completes a blind call transfer if the secondary call reaches the alerting state.
By default, the transfer is completed in the connected state. This option can only be used for
DivaBlindCallTransfer.

DivaTransferOptionOnProceeding

If this option is set, the Diva SDK completes a blind call transfer if the secondary call reaches the proceeding
state. By default, the transfer is completed in the connected state. This option can only be used for
DivaBlindCallTransfer.

DivaTransferOptionCallDeflection

If this option is set, the Diva SDK handles a call transfer as call deflection. This is only possible if the primary
call is in the offering state. This option can only be used for DivaBlindCallTransfer.

DivaTransferOptionUseCallingNumber

If this option is used in combination with the option DivaTransferOptionCallDeflection, the Diva SDK signals the
calling party number set by the call property DivaCPT_CallingNumber when deflecting the call. If this option is
used when transferring an incoming call via DivaBlindCallTransfer without the option
DivaTransferOptionCallDeflection the calling number signaled with the incoming call is used as calling number
for the implicit consultation call.

DivaTransferOptionUseCallingName

This option is only valid in combination with DivaTransferOptionCallDeflection. If this option is set, the Diva SDK
signals the calling party number set by the call property DivaCPT_CallingName when deflecting the call.

Dialogic® Diva® API Data Structures and Defines

Page 273

DivaContinuousTones
typedef enum
{

Tone Value Capability Description

DivaEndOfTone 0x80 Detect Indicates that a previously detected tone has ended.

DivaUnknownTone 0x81 Detect Energy has been detected, but not a specific tone.

DivaDialTone 0x82 Detect/Generate Standard continuous dial tone

DivaPBXInternalDialTone 0x83 Detect/Generate Internal dial tone used by PBX. Three burst tone followed
by pause.

DivaSpecialDialTone 0x84 Detect/Generate Dial tone with interruptions, stutter dial tone.

DivaSecondDialTone 0x85 Detect/Generate Dial tone with cadence according to TBR 21

DivaRingingTone 0x86 Detect/Generate Standard ringback tone

DivaSpecialRingingTone 0x87 Detect/Generate Special ringback tone. Dual burst tone followed by pause.

DivaBusyTone 0x88 Detect/Generate Standard busy tone

DivaCongestionTone 0x89 Detect/Generate Fast busy tone indicating congestion

DivaSpecialInformationTone 0x8A Detect/Generate Three tone (950 Hz, 1400 Hz, 1800 Hz) indicating that the
called party cannot be reached for another reason than
busy or congestion.

DivaComfortNoise 0x8B Generate Comfort tone indicating that the call is processed e.g.
during post dial period.

DivaHoldTone 0x8C Generate Caller has been placed on hold

DivaRecordTone 0x8D Generate Tone used to indicate to the caller that recording begins

DivaCallerWaitingTone 0x8E Generate Called party is busy but call has been indicated that call is
waiting

DivaCallWaitingTone 0x8F Generate Other party is calling

DivaPayTone 0x90 Generate Reminder to deposit additional coins in a payphone

DivaPositiveIndicationTone 0x91 Generate Supplementary service has been activated

DivaNegativeIndicationTone 0x92 Generate Supplementary service could not be activated

DivaWarningTone 0x93 Generate Notification that this call is being recorded

DivaIntrusionTone 0x94 Generate Notification that this call is being monitored by an operator

DivaCallingCardServiceTone 0x95 Generate Calling card service tone

DivaPayphoneRecognitionTone 0x96 Generate A payphone is used for the call.

DivaCPEAlertingSignal 0x97 Generate Dual tone alerting signal for Call waiting in PSTN
environment (2130 Hz + 2750 Hz).

DivaOffHookWarningTone 0x98 Generate Howler that may be sent if the PSTN equipment has been
left off hook for an extended period of time.

DivaSITTone0 0xA0 Detect/Generate Special information tone (three tone short 950 Hz, short
1400 Hz, short 1800 Hz)

DivaSITTone1 0xA1 Detect/Generate Special information tone (three tone long 950 Hz, short
1400 Hz, short 1800 Hz)

DivaSITTone2 0xA2 Detect/Generate Special information tone (three tone short 950 Hz, long
1400 Hz, short 1800 Hz)

DivaSITTone3 0xA3 Detect/Generate Special information tone (three tone long 950 Hz, long
1400 Hz, short 1800 Hz)

DivaSITOperatorIntercept 0xA4 Detect/Generate Special information tone for operator intercept (three tone
short 950 Hz, short 1400 Hz, long 1800 Hz).

Page 274

Dialogic® Diva® API Developer Reference Guide

} DivaContinuousTones;

DivaSITVacantCircuit 0xA5 Detect/Generate Special information tone for vacant circuit (three tone long
950 Hz, short 1400 Hz, long 1800 Hz).

DivaSITRecoder 0xA6 Detect/Generate Special information tone for recording (three tone short
950 Hz, long 1400 Hz, long 1800 Hz)

DivaSITNoCircuitFound 0xA7 Detect/Generate Special information tone for no circuit found (three tone
long 950 Hz, long 1400 Hz, long 1800 Hz)

DivaSignalingSystem5ToneF1 0xAB Detect / Generate Special tone used in signaling systems according to
System 5.

DivaSignalingSystem5ToneF2 0xAC Detect / Generate Special tone used in signaling systems according to
System 5.

DivaSignalingSystem5ToneF1F2 0xAD Detect / Generate Special tone used in signaling systems according to
System 5.

DivaInterceptTone 0xAF Generate Intercept tone

DivaModemCallingTone 0xC0 Detect/Generate Standard modem calling tone (1300 Hz) indicating
outbound modem calls

DivaFaxCallingTone 0xC1 Detect/Generate Standard fax calling tone (1100 Hz) indicating outbound
fax calls

// These tones can be detected but not generated.

DivaAnswerTone 0xC2 Detect/Generate Modem or fax answer tone (2100 Hz) used to disable echo
suppressors in the PSTN.

DivaAnswerTonePhaseReversal 0xC3 Generate Modem answer tone (2100 Hz) with regular phase
reversals to disable echo suppressors and echo cancellers.

DivaANSam 0xC4 Detect/Generate Modified answer tone according to ITU-T V.8 (modulated
2100 Hz) indicating V.8 capability.

DivaANSamPhaseReversal 0xC5 Generate Modified answer tone according to ITU-T V.8 (modulated
2100 Hz) with phase reversals.

DivaBell103AnswerTone 0xC6 Detect/Generate Continuous 2225 Hz answer tone used with Bell 103
modulation.

DivaFaxFlags 0xC7 Detect/Generate HDLC flag sequences in modulation scheme ITU-T V.21
channel 2 of a Fax Preamble have been detected.

DivaFaxG2GroupId 0xC8 Detect/Generate 1850 Hz tone of group 2 FAX machines indicating the
ability to receive.

DivaHumanSpeech 0xC9 Detect The signal has been detected as a human talker.

DivaAnsweringMachineTone 0xCA Detect/Generate Answering machine tone 390Hz.

DivaToneAlertingSignal 0xCB Detect/Generate Dual tone alerting signal for Caller ID in PSTN environment
(2130 Hz + 2750 Hz).

Tone Value Capability Description

Dialogic® Diva® API Data Structures and Defines

Page 275

DivaMultiFrequencyTones
typedef enum
{

DivaToneMF1 = 0xF1,
DivaToneMF2,
DivaToneMF3,
DivaToneMF4,
DivaToneMF5,
DivaToneMF6,
DivaToneMF7,
DivaToneMF8,
DivaToneMF9,
DivaToneMF0,
DivaToneMFStart = 0xFD,
DivaToneMFStop = 0xFF

} DivaMultiFrequencyTones;

DivaR2Tones

The Diva SDK supports the detection and generation of R2 forward and backward tones. The following tones are
supported.

typedef enum
{

DivaR2ForwardToneOff = 0xD0,
DivaR2ForwardTone1 = 0xD1,
DivaR2ForwardTone2 = 0xD2,
DivaR2ForwardTone3 = 0xD3,
DivaR2ForwardTone4 = 0xD4,
DivaR2ForwardTone5 = 0xD5,
DivaR2ForwardTone6 = 0xD6,
DivaR2ForwardTone7 = 0xD7,
DivaR2ForwardTone8 = 0xD8,
DivaR2ForwardTone9 = 0xD9,
DivaR2ForwardTone10 = 0xDA,
DivaR2ForwardTone11 = 0xDB,
DivaR2ForwardTone12 = 0xDC,
DivaR2ForwardTone13 = 0xDD,
DivaR2ForwardTone14 = 0xDE,
DivaR2ForwardTone15 = 0xDF,
DivaR2BackwardToneOff = 0xB0,
DivaR2BackwardTone1 = 0xB1,
DivaR2BackwardTone2 = 0xB2,
DivaR2BackwardTone3 = 0xB3,
DivaR2BackwardTone4 = 0xB4,
DivaR2BackwardTone5 = 0xB5,
DivaR2BackwardTone6 = 0xB6,
DivaR2BackwardTone7 = 0xB7,
DivaR2BackwardTone8 = 0xB8,
DivaR2BackwardTone9 = 0xB9,
DivaR2BackwardTone10 = 0xBA,
DivaR2BackwardTone11 = 0xBB,
DivaR2BackwardTone12 = 0xBC,
DivaR2BackwardTone13 = 0xBD,
DivaR2BackwardTone14 = 0xBE,
DivaR2BackwardTone15 = 0xBF

} DivaR2Tones;

Page 276

Dialogic® Diva® API Developer Reference Guide

DivaToneDefinition

Via DivaToneDefinition, a single or dual tone with a specific duration is specified; optionally, a pause can be
specified as well. Multiple definitions can be combined to a cadence.

typedef struct
{

} DivaAnalogParams;

Frequency1

Frequency1 defines the frequency (in Hz) for a single tone or the first frequency of a dual tone.

Frequency1Variation

Frequency1Variation defines the variation (in Hz) for the frequency specified by Frequency1.

Frequency2

Frequency2 defines the frequency (in Hz) for the second frequency of a dual tone. If the tone definition refers
to a single tone, Frequency2 must be set to zero.

Frequency2Variation

Frequency2Variation defines the variation (in Hz) for the frequency specified by Frequency2.

Duration

Duration defines the time (in milliseconds) that the tone must be available. The maximum duration for a tone
is 8000 milliseconds, including the variation.

DurationVariation

DurationVariation defines the variation (in milliseconds) for the time specified by Duration.

Pause

Pause defines the expected time of silence after the tone. The time must be specified in milliseconds. The
maximum pause is 8000 milliseconds, including the variation. If no silence is expected after the tone, the
parameter is set to zero.

PauseVariation

PauseVariation defines the variation (in milliseconds) for the time specified by Pause.

DivaVoiceDataSource

Audio data may be stored in a file or at a specific memory location if it is to be streamed by functions that support
enhanced voice streaming.

typedef enum
{

DivaVoiceDataSourceFile = 1,
DivaVoiceDataSourceMemory

} DivaVoiceDataSource;

DivaVoiceDataSourceFile

The audio data is file-based. This parameter does not specify the coding format of the data stored in the file.

DWORD Frequency1;
DWORD Frequency1Variation;
DWORD Frequency2;
DWORD Frequency2Variation;
DWORD Duration;
DWORD DurationVariation;
DWORD Pause;
DWORD PauseVariation

Dialogic® Diva® API Data Structures and Defines

Page 277

DivaVoiceDataSourceMemory

The audio data is located in the memory. This parameter does not specify the coding format of the memory-based
audio data.

DivaVoicePositionFormat

For enhanced audio streaming, the offset from the start and the duration might be specified. The
DivaVoicePositionFormat defines how the offset and duration are calculated.

typedef enum
{

DivaVoicePositionFormatBytes = 1,
DivaVoicePositionFormatMSec

} DivaVoicePositionFormat;

DivaVoicePositionFormatBytes

The offset and duration are given in bytes of the audio stream.

DivaVoicePositionFormatMSec

The offset and duration are given in milliseconds.

DivaVoiceDescriptor
typedef struct
{

} DivaVoiceDescriptor;

Size

Size defines the length of the structure. The application sets this value before calling any function that gets this
structure as parameter. Depending on the Diva API version the size may grow.

DataSource

DataSource defines if the data is memory or file-based. For defined values, refer to DivaVoiceDataSource.

DataFormat

DataFormat defines the codec used for the data. For defined values, refer to DivaAudioFormat. If streaming
from memory is selected, only the so called "raw" formats are valid.

DWORD Size;
DivaVoiceDataSource DataSource;
DivaAudioFormat DataFormat;
DivaVoicePositionFormat PositionFormat;
DWORD StartOffset;
DWORD Duration;
union
{
struct
{
char *pFilename;
}File;
struct
{
DWORD DataLength;
char *pBuffer;
}Memory;
}Source;

Page 278

Dialogic® Diva® API Developer Reference Guide

PositionFormat

PositionFormat defines how StartOffset and Duration should be interpreted. For defined values, refer to
DivaVoicePositionFormat.

StartOffset

StartOffset defines where to start streaming of the audio data. In general, the streaming is started at the
beginning and StartOffset is set to zero.

Duration

Duration defines the maximum amount of audio data to be streamed. By default, it should be set to zero and
the Diva API streams the complete data either defined by the file size or the memory size.

pFilename

This parameter is only valid if DataSource is set to DivaVoiceDataSourceFile. It specifies the name of the file,
typically a complete file name containing the path information.

DataLength

This parameter is only valid if DataSource is set to DivaVoiceDataSourceMemory. It specifies the size of the
memory location where the audio information is stored.

pBuffer

This parameter is only valid if DataSource is set to DivaVoiceDataSourceMemory. In this case, it specifies the
beginning of the data buffer where the audio information is available.

DivaConferencePropertyType
typedef enum
{

} DivaConferencePropertyType;

DivaConferencePropertyMaxMembers

The property DivaConferencePropertiesMaxMembers sets the maximum number of members that can participate
in the conference. By default, there is no limitation.

DivaConferencePropertyOptions

The property DivaConferencePropertiesOptions specifies the options, e.g., if the conference is to be handled on
the switch or on the board. For more information, see DivaConferenceOptions.

DivaConferencePropertyDefRights

The property DivaConferencePropertyDefRights specifies the default rights for a new member of the conference.
For valid rights refer to DivaConferenceRights. The property can be "Get" and "Set".

DivaConferencePropertyMemberRights

The property DivaConferencePropertyMemberRights gets and sets the rights for the specified member. For valid
rights refer to DivaConferenceRights. The parameter used to get and set the parameter is defined by
DivaConferenceMemberRights.

DivaConferencePropertyMaxMembers = 1,
DivaConferencePropertyOptions = 2,
DivaConferencePropertyDefRights = 3, // Set Get

DivaConferencePropertyMemberRights = 4, // Set Get

DivaConferencePropertySupervisor = 5, // Set

DivaConferencePropertyNumMembers = 6, // Get

DivaConferencePropertyMembers = 7, // Get

DivaConferencePropertyNumTalkers = 8, // Get

DivaConferencePropertyTalkers = 9 // Get

Dialogic® Diva® API Data Structures and Defines

Page 279

DivaConferencePropertySupervisor

The property DivaConferencePropertySupervisor sets the supervisor options. This controls streaming of the
supervisor to the conference and a specific member. The parameter used to set the parameter is defined by
DivaConferenceSupervisor.

DivaConferencePropertyNumMembers

The property DivaConferencePropertyNumMembers returns the number of members that belong to this
conference.

DivaConferencePropertyMembers

The property DivaConferencePropertyMembers returns the information about the members of the conference.
The information is returned via DivaConferenceMemberInfo, one per member. The application has to provide a
buffer that is large enough to place the information for all members. The first member in the list is the current
conference master.

DivaConferencePropertyNumTalkers

The property DivaConferencePropertyNumTalkers returns the number of active talkers in this conference.

DivaConferencePropertyTalkers

The property DivaConferencePropertyTalkers returns the information about the active talker of the conference.
The information is returned via DivaConferenceMemberInfo, one per talking member. The application has to
provide a buffer that is large enough to place the information for all members.

DivaConferenceRights
typedef enum
{

DivaConferenceRightSpeak = 1,
DivaConferenceRightListen = 2,
DivaConferenceRightSuvervisor = 7

} DivaConferenceRights;

DivaConferenceRightSpeak

The right DivaConferenceRightSpeak specifies that a member of the conference can speak to all members of
the conference.

DivaConferenceRightListen

The right DivaConferenceRightListen specifies that a member of the conference can listen to a conference.

DivaConferenceRightSuvervisor

The right DivaConferenceRightSuvervisor specifies that a member of a conference can act as a supervisor. This
grants the right to speak to the conference or to speak to specific members.

Page 280

Dialogic® Diva® API Developer Reference Guide

DivaConferenceMemberInfo

The type DivaConferenceMemberInfo is used to report member information of a conference.

typedef struct
{

} DivaConferenceMemberInfo;

hdCall

The parameter hdCall specifies the Dialogic® Diva® SDK call handle of this member.

haCall

The parameter haCall specifies the application call handle of this member.

Rights

The parameter Rights hold the current right of the member. Refer to DivaConferenceRights for more information
on conference rights.

bTalking

If bTalking is set to TRUE, the member is currently talking.

DivaConferenceMemberRights

The type DivaConferenceMemberRights is used to set and get member rights via the property
DivaConferencePropertyMembers.

typedef struct
{

} DivaConferenceMemberRights;

hdCall

The parameter hdCall specifies the Dialogic® Diva® SDK call handle of this member.

Rights

The parameter Rights hold the current right of the member. Refer to DivaConferenceRights for more information
conference rights.

DivaConferenceSupervisor

The type DivaConferenceSupervisor is used to set the supervisor options. Note that the member must have
supervisor rights.

typedef struct
{

} DivaConferenceSupervisor;

hdSupervisor

The parameter hdSupervisor specifies the Dialogic® Diva® SDK call handle of the supervisor.

DivaCallHandle hdCall;
AppCallHandle haCall;
DivaConferenceRights Rights;
BOOL bTalking;

DivaCallHandle hdCall;
DivaConferenceRights Rights;

DivaCallHandle hdSupervisor;
BOOL bEnable;
DivaCallHandle hdTalkTo;

Dialogic® Diva® API Data Structures and Defines

Page 281

bEnable

If bEnable is set to TRUE, the supervisor link between hdSupervisor and hdTalkTo is created, otherwise the link
is disconnected. If the link is disconnected and the right DivaConferenceRightSpeak is assigned, the supervisor
talks to all members.

hdTalkTo

The parameter hdTalkTo specifies the member that will be supervised.

DivaConferenceOptions
typedef enum
{

DivaConferenceOptionLocal = 1
} DivaConferenceOptions;

DivaConferenceOptionLocal

The conference is handled by the Dialogic® Diva® Media Board. This mode does not require any conference
features of the PBX or switch and is the default setting.

DivaConferenceState
typedef enum
{

DivaConferenceStateIdle = 0,
DivaConferenceStateOnHold,
DivaConferenceStateAdding,
DivaConferenceStateRemoving,
DivaConferenceStateConnected

} DivaConferenceState;

DivaConferenceStateIdle

The conference is idle if only one two-way call is assigned to the conference. This is the case if the conference
is created or if all other members have been removed.

DivaConferenceStateOnHold

The conference is on hold. This is typically done to create another call to be added to the conference.

DivaConferenceStateAdding

Another call is being added to the conference. While this happens, the other calls may be on hold.

DivaConferenceStateRemoving

The removal of a call is in process. While this happens, the other calls may be on hold.

DivaConferenceStateConnected

There are at least two calls part of the conference and the conference is active, voice streaming and mixing is
in process.

Page 282

Dialogic® Diva® API Developer Reference Guide

DivaConferenceInfo
typedef struc
{

} DivaConferenceInfo;

Members

Size

The Size defines the length of the structure. The application sets this value before calling any function that gets
this structure as parameter. Depending on the version of the Diva API the size may grow.

State

The State defines the current state of the conference. Valid conference states are listed in DivaConferenceState.

MaxMembers

The MaxMembers parameter defines the maximum number of calls including the initial call that can be part of
this conference. This parameter is set when the conference is created. Note that using DivaConferenceInfo and
DivaGetConferenceInfo creates a limitation to the maximum amount of members that can be handled. Using
DivaConferenceGetProperties removes these limitation.

CurrentMembers

The CurrentMembers parameter provides the information on the current number of calls that belong to the
conference. There will be at least one call.

hdConfMembers

The array hdConfMembers contains the Diva API handles of the calls that belong to the conference.

haConfMembers

The array haConfMembers contains the application handles of the calls that belong to the conference.

DivaFaxPageQuality
typedef enum
{

DivaFaxPageQualityPerfect,
DivaFaxPageQualityGood,
DivaFaxPageQualityAcceptable,
DivaFaxPageQualityReject

} DivaFaxPageQuality;

Members

DivaFaxPageQualityPerfect

The page has been received without any errors.

DivaFaxPageQualityGood

The page may contain a few error lines, the overall quality is good.

// Size of the structure, may depend on the API version
DWORD Size;
DivaConferenceState State;
DWORD MaxMembers;
DWORD CurrentMembers;
DivaCallHandle hdConfMembers[MAX_CONF_MEMBERS];
AppCallHandle haConfMembers[MAX_CONF_MEMBERS]

Dialogic® Diva® API Data Structures and Defines

Page 283

DivaFaxPageQualityAcceptable

The page contains error line but the quality is acceptable.

DivaFaxPageQualityReject

The page contains too many errors and has been rejected. Behavior depends on the remote peer.

DivaFaxPageEnd
typedef enum
{

DivaFaxPageEndUndefined,
DivaFaxPageEndMPS,
DivaFaxPageEndEOM,
DivaFaxPageEndEOP

} DivaFaxPageEnd;

Members

DivaFaxPageEndUndefined

The page end information is not available.

DivaFaxPageEndMPS

Another page that belongs to the same document will follow.

DivaFaxPageEndEOM

Another page will follow. The page belongs to a new document.

DivaFaxPageEndEOP

This is the last page. The disconnect will follow.

DivaModulationClass
typedef enum
{

DivaModulationClassNone,
DivaModulationClassInClass,
DivaModulationClassV100,
DivaModulationClassV8

} DivaModulationClass;

Members

DivaModulationClassNone

The speed negotiation is done without any modulation class. This allows speeds to 14.400 bps.

DivaModulationClassInClass

The speed negotiation is done within the current active modulation class. The speed negotiation is done within
the modulation class defined by V.100. This covers speeds up to V.32

DivaModulationClassV8

The speed negotiation is done within the modulation class defined by V.8. This covers speeds of V.34 and above.

See also

Extended modem parameters, V18 Properties, Plain Protocol parameter setting

Page 284

Dialogic® Diva® API Developer Reference Guide

Extended modem parameters

The properties for the extended modem parameters allow the setting of certain modem parameters. Working
with these parameters requires knowledge of modulation and modem protocols. The names of the parameters
are self-explaining. For details on modulation and protocols, refer to standard modem documentation.

The disabled modulation properties are used to remove the specified modulation(s) from the automoding
procedure. To enable specific modulations that are not included in the automoding procedure, the enable
modulation properties are used.

V18 Properties

The properties for V.18 are used for text phone modes. V.18 modulation is part of the extended modem
functionality and based on the call type DivaCallTypeModem. To enable V.18 the property DivaCPT_V18Selected
must be set. The different modulations may be selected by the application and the negotiated mode is available
via the property DivaCPT_ConnectedNorm.

The probing sequence can be selected directly or by a country default. The country defaults are selected via the
property DivaCPT_V18CountryProbingSequence. According to ITU-T V.18 they have the following sequence:

Plain Protocol parameter setting

If an application wants to select specific protocol settings for layer 1, layer 2, and layer 3 that are not covered
by the call types and additional properties, it may use the plain protocol parameter setting. The protocol settings
and configuration has to be coded according to the CAPI specification or Dialogic-specific extensions documented
in the CAPI extensions.

DivaBinaryData

The data type DivaBinaryData is used for setting and reading call properties, i.e., bearer capabilities.

typedef struct
{

} DivaBinaryData;

Value for Property
DivaCPT_V18CountryProbingSequence

Probing Sequence

V18DefProbingAustria 10, 3, 7, 8, 12, 5

V18DefProbingIreland 10, 3, 7, 8, 12, 5

V18DefProbingGermany 8, 3, 7, 10, 12, 5

V18DefProbingSwiss 8, 3, 7, 10, 12, 5

V18DefProbingItaly 8, 3, 7, 10, 12, 5

V18DefProbingNetherlands 12, 3, 7, 10, 8, 5

V18DefProbingScandinavian 3, 12, 10, 8, 7, 5

V18DefProbingUK 3, 10, 7, 8, 12, 5

V18DefProbingUS 10, 5, 3, 7, 8, 12

V18DefProbingFrance 7, 8, 12, 10, 3, 5

V18DefProbingBelgium 7, 8, 12, 10, 3, 5

unsigned char nDataLength;
unsigned char Data[255]

Dialogic® Diva® API Data Structures and Defines

Page 285

Members

nDataLength

The nDataLength specifies the amount of bytes stored in the member Data.

Data

The Data member contains the binary information.

DivaPlainNumber
typedef struct
{

} DivaPlainNumber;

Members

Number

The Number specifies called, calling or redirecting numbers. This represents only the digits, not the information
of the number. The number information is available in the DivaNumberInformation property.

DivaNumberInformation
typedef struct
{

DWORD TypeOfNumber;
DWORD NumberIdentification;
DWORD Presentation;
DWORD Screening

} DivaNumberInformation;

Members

TypeOfNumber

The TypeOfNumber specifies how the number should be interpreted, i.e. if the number is handled as international
or national number. Valid values are defined in DivaNumberType. Detailed information is available in the ISDN
specifications.

NumberIdentification

The NumberIdentification specifies how the number should be interpreted. Valid values are defined in
DivaNumberId. Detailed information is available in the ISDN specifications.

Presentation

The Presentation specifies if the number should be presented or not. The parameter is only available for calling
numbers. Please note that the presentation information must be supported by the switch, it is not guaranteed
that setting this information at Dialogic® Diva® SDK level suppresses presentation. Valid values are defined in
DivaNumberPresentation.

Screening

The Screening values are defined in DivaNumberScreening. Detailed information about screening is available in
the ISDN specifications.

unsigned char Number[MAX_ADDR_LEN]

Page 286

Dialogic® Diva® API Developer Reference Guide

DivaCallPropertyValue

The DivaCallPropertyValue is used to read and write various call properties. The union covers all types and is
defined in the Dialogic® Diva® SDK header files. For a description of the call properties see Dialogic® Diva®
API Call Properties.

Applications may declare a variable of type DivaCallPropertyValue and set the appropriate member corresponding
to the used DivaCallPropertyType or use directly a variable of the type corresponding to the property type, i.e.
BOOLEAN. The API will internally check only for the needed size corresponding to the property type. If a direct
type is used, this needs to be casted to DivaCallPropertyValue before calling the get / set function.

DivaV18DefProbings

The V18DefProbings specify the available options for the property DivaCPT_CountryProbingSequence. The names
of the options contain the country and are self explaining. For information on the V.18 probing settings behind
the country default see the remarks of Dialogic® Diva® API Call Properties.

typedef enum
{

V18DefProbingNone = 0,
V18DefProbingAustria,
V18DefProbingIreland,
V18DefProbingGermany,
V18DefProbingSwiss,
V18DefProbingItaly,
V18DefProbingNetherlands,
V18DefProbingScandinavian,
V18DefProbingUK,
V18DefProbingUS,
V18DefProbingFrance,
V18DefProbingBelgium

} DivaV18DefProbings;

DivaV18Framing

The V18Framing specifies the framing options for the properties DivaCPT_V18AsyncFormatxxx, where xxx is the
modulation. The framing is selected by combining the options for data bits, parity and stop pits, i.e. V18DataBits8
| V18ParityNo | V18StopBits1.

typedef enum
{

} Diva V18Framing;

V18DataBits4 =0x0004,
V18DataBits5 =0x0005,
V18DataBits6 =0x0006,
V18DataBits7 =0x0007,
V18DataBits8 =0x0008,
V18ParityNo =0x0000,
V18ParityOdd =0x0010,
V18ParityEven =0x0020,
V18ParityMark =0x0030,
V18ParitySpace =0x0040,
V18EnableRxParityCheck =0x0080,
V18StopBits1 =0x0000,
V18StopBits1_5 =0x0010,
V18StopBits2 =0x0020

Dialogic® Diva® API Data Structures and Defines

Page 287

DivaConnectedNorm

DivaConnectedNorm specifies the modulation result of the modem or V.18 connection. The connected norm can
be read by the property DivaCPT_ConnectedNorm.

typedef enum
{

} DivaConnectedNorm;

ConnNormUnspecified =0,
ConnNormV21 =1,
ConnNormV23 =2,
ConnNormV22 =3,
ConnNormV22bis =4
ConnNormV32bis =5,
ConnNormV34 =6,
ConnNormBell212A =8,
ConnNormBell103 =9,
ConnNormV29LeasedLine =10,
ConnNormV33LeasedLine =11,
ConnNormV90 =12,
ConnNormV32 =18,
ConnNormK56Flex =19,
ConnNormX2 =20,
ConnNormTxtPhoneUnspecified =21,
ConnNormTxtPhoneV18Org =22,
ConnNormTxtPhoneV18Ans =23,
ConnNormTxtPhoneV21Org =24,
ConnNormTxtPhoneV21Ans =25,
ConnNormTxtPhoneBell103Org =26,
ConnNormTxtPhoneBell103Ans =27,
ConnNormTxtPhoneV23Org =28,
ConnNormTxtPhoneV23Ans =29,
ConnNormTxtPhoneEDT =30,
ConnNormTxtPhoneBAUDOT45 =31,
ConnNormTxtPhoneBAUDOT47 =32,
ConnNormTxtPhoneBAUDOT50 =33,
ConnNormTxtPhoneDTMF =34,
ConnNormV23ETS300659_2 =39,
ConnNormV23ETS300659_1 =40,
ConnNormBell202CID =42,
ConnNormV21Bits10 =43,
ConnNormBell202POS =44,
ConnNormV23Reverse =46,
ConnNormFSK =47,
ConnNormECall =59,
ConnNormBell103SIA =45,
ConnNormV22FastSetup =72,
ConnNormV22bisFastSetup =73,
ConnNormV29FastSetup =74

Page 288

Dialogic® Diva® API Developer Reference Guide

DivaMonitorSource
typedef enum
{

DivaMonitorSourceUnknown = 0,
DivaMonitorSourceOriginator,
DivaMonitorSourceAnswerer,
DivaMonitorDeviceAToDeviceB,
DivaMonitorDeviceBToDeviceA,
DivaMonitorSourceBoth,
DivaMonitorSourceMixed

} DivaMonitorSource;

DivaMonitorSourceUnknown

For DTMF or tone detection on analog lines the value DivaMonitorSourceUnknown will be returned in
DivaMonitorDTMFInfo or DivaMonitorToneInfo. This value cannot be used by the application for recording
functions.

DivaMonitorSourceOriginator

The audio streamed from the originator of a call is recorded.

DivaMonitorSourceAnswerer

The audio streamed from the answerer of a call is recorded.

DivaMonitorDeviceAToDeviceB

The audio streamed from the line device A. The device is specified during creation of the monitor object by
DivaCreateMonitor.

DivaMonitorDeviceBToDeviceA

The audio streamed from the line device B. The device is specified during creation of the monitor object by
DivaCreateMonitor.

DivaMonitorSourceBoth

The audio streamed from both parties is recorded to an audio file with two channels.

DivaMonitorSourceMixed

The audio from both parties is mixed and recorded to an audio file with one channel.

DivaMonitorStatus
typedef enum
{

DivaMonitorStarted = 1,
DivaMonitorStopped,
DivaMonitorErrorStarting,
DivaMonitorLayer1Up,
DivaMonitorLayer1Down

} DivaMonitorStatus;

DivaMonitorDTMFInfo

typedef struct

{

char Digit;
DWORD Device;
DivaMonitorSource Source,

} DivaMonitorDTMFInfo;

Dialogic® Diva® API Data Structures and Defines

Page 289

Digit

The parameter Digit contains the received DTMF digits. Valid digits are '0123456789ABCD*#XY'. The value 'X'
reports that a fax calling tone has been detected, the value 'Y' reports that a fax answer tone has been detected.

Device

The parameter Device contains the information on which Diva SDK line device the digit was detected. If the
monitoring object was created via DivaCreateMonitorAudio, the Diva SDK has no information on the signaling
direction. In such cases the application may calculate if the originator or answerer of the call has sent the digit
from the line device information.

Source

The parameter Source contains the information which side has sent the digit. Valid options are
DivaMonitorSourceOriginator, DivaMonitorSourceAnswerer or DivaMonitorSourceUnknown.

DivaMonitorToneInfo
typedef struct
{
 DWORD Tone;
 DWORD Device;
 DivaMonitorSource Source,
} DivaMonitorToneInfo;

Tone

The parameter Tone contains the received tone digits. For valid tone refer to DivaContinuousTones.

Device

The parameter Device contains the information on which Diva SDK line device the tone was detected. If the
monitoring object was created via DivaCreateMonitorAudio, the Diva SDK has no information on the signaling
direction. In such cases the application may calculate if the originator or answerer of the call has sent the tone
from the line device information.

Source

The parameter Source contains the information which side has sent the tone. Valid options are
DivaMonitorSourceOriginator, DivaMonitorSourceAnswerer or DivaMonitorSourceUnknown.

DivaMonitorR2Variants
typedef enum
{

DivaMonitorR2Basic = 1,
DivaMonitorR2India,
DivaMonitorR2Brazil,
DivaMonitorR2Mexico

} DivaMonitorR2Variants;

DivaMonitorR2Basic

If this variant is selected, only signaling information is extracted. In this mode no called or calling number
information will be available.

DivaMonitorR2India

If the R2 variant DivaMonitorR2India is selected, the inband information for called and calling party number is
extracted based on the Indian R2 protocol.

DivaMonitorR2Brazil

If the R2 variant DivaMonitorR2Brazil is selected, the inband information for called and calling party number is
extracted based on the Brazilian R2 protocol.

Page 290

Dialogic® Diva® API Developer Reference Guide

DivaMonitorR2Mexico

If the R2 variant DivaMonitorR2Mexico is selected, the inband information for called and calling party number
is extracted based on the Mexican R2 protocol.

DivaMonitorFrameReportMode

The DivaMonitorFrameReportMode specifies which type of frames will be reported to the application.

typedef enum
{

DivaMonitorFrameReportModeNone,
DivaMonitorFrameReportModeLayer3,
DivaMonitorFrameReportModeLayer2

} DivaMonitorFrameReportMode;

DivaMonitorFrameReportModeNone

If the option DivaMonitorFrameReportModeNone is specified, no frames are indicated to the application. This is
the default mode. Note that high level call progress events are still signaled.

DivaMonitorFrameReportModeLayer3

If the option DivaMonitorFrameReportModeLayer3 is specified, received layer 3 frames are indicated to the
application.

DivaMonitorFrameReportModeLayer2

If the option DivaMonitorFrameReportModeLayer2 is specified, received layer 2 frames are indicated to the
application. This includes pure layer 2 frames and layer 2 frames with layer 3 content.

DivaMonitorOptions

The DivaMonitorOptions allow an application to overwrite the default behavior of the monitoring on analog media
boards.

typedef enum
{

DivaMonitorOptionPolarity = 0x0001,
DivaMonitorOptionConnectOnEnergy = 0x0002,
DivaMonitorOptionDisableCPAOnConnect = 0x0004,
DivaMonitorOptionDisableCPAOnDisconnect = 0x0008,
DivaMonitorOptionDisableStandardTones = 0x0010,
DivaMonitorOptionDisableFSK = 0x0020,
DivaMonitorOptionDisableCPA = 0x0080,
DivaMonitorOptionDisableDigitProcessing = 0x0100

} DivaMonitorOptions;

DivaMonitorOptionPolarity

If the option DivaMonitorOptionPolarity is specified, the connect and disconnect detection is done based on
polarity reversal detection. The options DivaMonitorOptionConnectOnEnergy,
DivaMonitorOptionDisableConnectDetect, and DivaMonitorOptionDisableDisconnectDetect are ignored if this
option is set.

DivaMonitorOptionConnectOnEnergy

By default, the Dialogic® Diva® SDK will detect the connect based on human talker detection and if a tone
outside the range for signaling tones is detected. If the option DivaMonitorOptionConnectOnEnergy is set, any
energy on the line is interpreted as connect. The energy level can be specified via DivaMonitorAnalogParams.

DivaMonitorOptionDisableCPAOnConnect

If the option DivaMonitorOptionDisableCPAOnConnect is set, the Diva SDK will not do any call progress analyses
for detecting the connect. Applications that want to record the initial phase including ringing may use this option.
The Diva SDK will report the connect once the on hook of the parties is detected.

Dialogic® Diva® API Data Structures and Defines

Page 291

DivaMonitorOptionDisableCPAOnDisconnect

If the option DivaMonitorOptionDisableCPAOnDisconnect is set, the Diva SDK will not do any call progress
analyses for detecting the disconnect. Applications that want to record the whole call including busy tones may
use this option. The Diva SDK will report the disconnect once the off hook of the parties is detected.

DivaMonitorOptionDisableFSK

By default, the Diva SDK will detect FSK data between the rings to retrieve calling party information. If the
option DivaMonitorOptionDisableFSK is set, the FSK detection is disabled and the event
DivaEventMinitorCallInitiated is reported with the first ring.

DivaMonitorOptionDisableStandardTones

By default, the Diva SDK will use standard definitions for ring and busy tones. The application may add definitions
of custom tones and cadences. If the application wants to use only the custom tones, the option
DivaMonitorOptionDisableStandardTones can be used to disable the standard tones.

DivaMonitorOptionDisableCPA

Applications that get signaling information via a 3rd party source, e.g., via CSTA, disable the CPA via the option
DivaMonitorOptionDisableCPA. If this option is set, all other options are ignored. The application attaches to the
analog lines for recording via DivaMonitorAttachToLine.

DivaMonitorOptionDisableDigitProcessing

The DivaMonitorOptionDisableDigitProcessing option disables the processing of DTMF separator digits to detect
called and calling numbers. By default, the Diva SDK checks whether DivaMonitorAnalogParams is available.
Then it detects the called number and calling number (ANI / DNIS), and stores them into separate call properties.

DivaMonitorAnalogParams
typedef struct
{

} DivaMonitorAnalogParams;

Size

Size defines the length of the data structure. The application sets this value before calling any Diva API function
that gets the structure as parameter. The Size is available for compatibility reasons. Depending on the version
of the Dialogic® Diva® SDK, members may be added and indicated by a larger size.

RecordingGain

RecordingGain defines the energy (in dBm) to increase or decrease the volume for recording.

ConnectEnergy

ConnectEnergy defines the energy (in dBm) that is interpreted as connect event. The energy is given in the
range of -127 to 127 dBm.

ConnectSilenceTimeout

ConnectSilenceTimeout defines the maximum amount of silence (in milliseconds) after the last ringing tone
before a connect is indicated. A value of zero disables the silence timeout and the connection is detected based
on a human talker detection or energy detection. The default value is zero.

DefaultAudioFormat

DefaultAudioFormat defines the audio format initially used when the data channel is established for call progress
analyses. The Diva SDK may store data during the connect detection until detectors trigger human talker and
uses the data when recording is initiated by the application. If the format given with the start of the recording
does not match the default format, this stored data cannot be used.

DWORD Size;
int RecordingGain;
DWORD ConnectEnergy;
DWORD ConnectSilenceTimeout;
DivaAudioFormat DefaultAudioFormat;

Page 292

Dialogic® Diva® API Developer Reference Guide

DivaMonitorT1CASVariants
typedef enum
{

 DivaMonitorT1CASLoopStart = 1,
 DivaMonitorT1CASGroundStart,
 DivaMonitorT1CASWinkStart

} DivaMonitorT1CASVariants;

DivaMonitorT1CASLoopStart

This option configures the monitoring object for monitoring T1 CAS lines with the trunk type “Loop Start” and
the signaling mode FXS/FXO.

DivaMonitorT1CASGroundStart

This option configures the monitoring object for monitoring T1 CAS lines with the trunk type “Ground Start” and
the signaling mode FXS/FXO.

DivaMonitorT1CASWinkStart

This option configures the monitoring object for monitoring T1 CAS lines with the trunk type “Wink Start”.

DivaMonitorT1CASParams
typedef struct
{

} DivaMonitorT1CASParams;

Size

Size defines the length of the data structure. The application sets this value before calling any Diva API function
that gets the structure as parameter. The Size is available for compatibility reasons. Depending on the version
of the Diva SDK members may be added and indicated by a larger size.

RecordingGain

RecordingGain defines the energy in dBm to increase or decrease the volume for recording.

ConnectSilenceTimeout

ConnectSilenceTimeout defines the maximum amount of silence in milliseconds after the last ringing tone before
a connect is indicated. A value of zero disables the silence timeout and the connection is detected based on a
human talker detection or energy detection. The default value is 4000 milliseconds.

DigitCountToSignalCall

DigitCountToSignalCall defines the amount of dial digits to be received before indicating the call to the application.
By default, the call is indicated when the ring is detected.

DWORD Size;
int RecordingGain;
DWORD ConnectSilenceTimeout;
DWORD DigitCountToSignalCall;

Dialogic® Diva® API Data Structures and Defines

Page 293

DivaTime

The Diva API reports time stamps via the DivaTime format. The members are self-explanatory.

typedef struct
{

} DivaTime;

DivaCallTimeStatistics

The Dialogic® Diva® SDK reports time stamps for signaling messages received in monitoring mode via the
DivaCallTimeStatistics structure. The members define by name to which signaling message the time stamp
belongs. If a member is set to zero, the corresponding message has not been received. The information is
reported by the call property DivaCPT_CallTimeStats.

typedef struct
{

} DivaCallTimeStatistics;

DivaRecordEndReasons

The DivaRecordEndReasons specifies the reason for the termination of the audio streaming.

typedef enum
{

DivaRecordEndReasonUndefined = 0,
DivaRecordEndReasonDisconnected = 1,
DivaRecordEndReasonTimeout = 2,
DivaRecordEndReasonSilence = 3,
DivaRecordEndReasonMaxDTMF = 4,
DivaRecordEndReasonTerminationDigit = 5,
DivaRecordEndReasonInterDigitTimeout = 6,
DivaRecordEndReasonIntialDigitTimeout = 7

} DivaRecordEndReasons;

DivaRecordEndReasonUndefined

There is no specific reason for the termination of the recording. The application has terminated the recording.

DivaRecordEndReasonDisconnected

The recording terminates because the call has been disconnected.

WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

DivaTime SetupTime;
DivaTime CallProcTime;
DivaTime AlertTime;
DivaTime ConnectTime;
DivaTime ConnectAckTime;
DivaTime DisconnectTime;
DivaTime ReleaseTime;
DivaTime ReleaseCompTime;

Page 294

Dialogic® Diva® API Developer Reference Guide

DivaRecordEndReasonTimeout

The recording is terminated because the maximum time for recording to a file is reached. The time can be set
in the call to DivaRecordVoiceFile or via DivaSetDTMFProcessingRules.

DivaRecordEndReasonSilence

The recording is terminated because the maximum silence time during recording to a file is reached. The option
to terminate on silence is set by the call property DivaCPT_VoiceRecordSilenceTimeout.

DivaRecordEndReasonMaxDTMF

The recording is terminated because the maximum DTMF digits specified with a call to
DivaSetDTMFProcessingRules have been received.

DivaRecordEndReasonTerminationDigit

The recording is terminated because one of the termination digits specified with a call to
DivaSetDTMFProcessingRules has been received.

DivaRecordEndReasonInterDigitTimeout

The recording is terminated because the inter digit timeout specified with a call to DivaSetDTMFProcessingRules
has been exceeded.

DivaRecordEndReasonIntialDigitTimeout

The recording is terminated because the initial digit timeout specified with a call to DivaSetDTMFProcessingRules
has been exceeded.

DivaIdFormat
typedef enum
{

DivaIdFormatDWORD,
DivaIdFormatString,
DivaIdFormatBinary

} DivaIdFormat;

DivaIdFormatDWORD

The identifier is given as a 32 bit binary value.

DivaIdFormatString

The identifier is given as a zero terminated string.

DivaIdFormatBinary

The identifier is given as a plain binary value. The first byte contains the length of the following binary data.

DivaIdDescriptor
typedef struct
{

} DivaIdDescriptor;

IdFormat

Specifies the format of the data in "Id". Valid options are defined by DivaIdFormat.

Id

Contains the identifier in the format defined by IdFormat.

DWORD IdFormat;
unsigned char Id[100];

Dialogic® Diva® API Data Structures and Defines

Page 295

DivaAPNotifyCallInParams
typedef struct
{

} DivaAPNotifyCallInParams;

hdCall

Identifies the channel / call at Dialogic® Diva® SDK level. The audio provider passes this handle with each call
to the function entry points provided in DivaAPNotifyCallInParams.

Identifier

The Identifier is passed transparent through the Dialogic® Diva® SDK and contains information for the audio
provider on the channel.

pfnSendAudio

Provides an entry point at the Diva SDK to be called by the audio provider to stream audio. If the assignment
is only for inbound streaming, pfnSendAudio will be zero.

pfnStopSendAudio

Provides an entry point at the Diva SDK to be called by the audio provider to terminate the streaming of audio.
If the assignment is only for inbound streaming, pfnStopSendAudio will be zero.

pfnSetRecordFormat

Provides an entry point at the Diva SDK to be called by the audio provider to set the format for received audio.
The audio format is initially specified during notification of the call, but can be changed at any time.

pfnCloseAudio

Provides a function entry point at the Diva SDK. This function must be called by the audio provider when the
instance is closed.

pfnPassEvent

This function is for future use and is set to zero.

pfnSetVolume

Provides an entry point at the Diva SDK to be called by the audio provider to set the volume for received and
sent audio. For valid values, refer to DivaVolume. The volume can be changed at any time.

DivaCallHandle hdCall;
DivaIdDescriptor Identifier;
DivaAPSendAudio pfnSendAudio;
DivaAPStopSendAudio pfnStopSendAudio;
DivaAPSetRecordFormat pfnSetRecordAudio;
DivaAPCloseAudio pfnCloseAudio;
DivaAPPassEvent pfnPassEvent;
DivaAPSetVolume pfnSetVolume;

Page 296

Dialogic® Diva® API Developer Reference Guide

DivaAPNotifyCallOutParams
typedef struct
{

} DivaAPNotifyCallOutParams;

hAPCall

Identifies the channel / call at audio provider level. The Dialogic® Diva® SDK passes this handle with each call
to the function entry points provided in DivaAPNotifyCallOutParams.

pfnNotifyCallClose

Provides an entry point at the audio provider. This function is called by the Diva SDK when the link between the
audio provider and the Diva SDK for this call is disconnected. For more information, see APNotifyCallClose.

pfnNotifyReceiveAudio

Provides an entry point at the audio provider. This function is called by the Diva SDK when audio data is received.
For more information, see APNotifyReceiveAudio.

pfnConfirmSend

Provides an entry point at the audio provider. This function is called by the Diva SDK to confirm that audio data
passed by DivaAPSendAudio is sent and the buffer is free. For more information, see APConfirmAudioSend.

pfnGetEventDetails

This function entry is reserved for future use.

Format

The audio format to be used when DivaAPNotifyReceiveAudio is called. The format can be switched at any time
using DivaAPSetRecordFormat.

DivaVolume

DivaVolume defines the range for setting the input and output volume. The volume is defined in the range from
-18 to +18 db. The value for the unchanged volume is 0.

typedef enum
{

DivaVolumeMin = -18,
DivaVolumeNormal = 0,
DivaVolumeMax = +18

} DivaVolume;

DivaVoicePosition

typedef struct
{

} DivaVoicePosition;

Size

Size defines the length of the data structure. The application sets this value before calling any function that gets
this structure as parameter. Depending on the version of the Diva API, the size may grow.

AppCallHandle hAPCall;
DivaAPNotifyCallClose pfnNotifyCallClose;
DivaAPNotifyReceiveAudio pfnNotifyReceiveAudio;
DivaAPConfirmAudioSend pfnConfirmSend;
DivaAPGetEventDetails pfnGetEventDetails;
DivaAudioFormat Format;

DWORD Size;
DivaVoicePositionFormat Format;
int Offset;

Dialogic® Diva® API Data Structures and Defines

Page 297

Format

The parameter Format defines how the offset is interpreted. The offset can be given as byte offsets
(DivaVoicePositionFormatBytes) or as time, in milliseconds (DivaVoicePositionFormatMSec).

Offset

Offset for positioning. Depending on the parameter format this is interpreted as bytes or as milliseconds. Note
that the byte offset is depending on the audio formats (coding bits).

DivaDirection
typedef enum
{

DivaDirectionInbound = 1,
DivaDirectionOutbound = 2,
DivaDirectionBoth = 3

} DivaDirection;

DivaDirectionInbound

The settings are only valid for inbound audio streaming.

DivaDirectionOutbound

The settings are only valid for outbound audio streaming.

DivaDirectionBoth

The settings are valid for inbound and outbound audio streaming.

DivaSignalService
typedef enum
{

DivaSignalServiceUnknown = 0,
DivaSignalServiceSpeech = 1,
DivaSignalServiceDigital = 2,
DivaSignalServiceV110 = 8,
DivaSignalServiceAudio3_1KHz = 4,
DivaSignalServiceAudio7KHz = 5,
DivaSignalServiceTelefony = 16,
DivaSignalServiceFaxG3 = 17,
DivaSignalServiceFaxG4 = 18,
DivaSignalServiceVideo = 6

} DivaSignalServices;

The enum DivaSignalService defines the service to be signaled to the network for an outgoing call or the service
indicated for an incoming call.

DivaSignaServiceUnknown

The service of an incoming call is not reported by the network. This value cannot be used for an outgoing call.

DivaSignalServiceSpeech

The call is signaled with the capabilities set to speech.

DivaSignalServiceDigital

The call is signaled as a pure digital call.

DivaSignalServiceV110

The call is signaled as a digital call using GSM services.

DivaSignalServiceAudio3_1KHz

The call is signaled as an audio call with 3.14 KHz.

Page 298

Dialogic® Diva® API Developer Reference Guide

DivaSignalServiceAudio7KHz

The call is signaled as an audio call with 7 KHz.

DivaSignalServiceTelefony

The call is signaled as ISDN telephone call.

DivaSignalServiceFaxG3

The call is signaled as analog call carrying fax G3 data.

DivaSignalServiceFaxG4

The call is signaled as digital call carrying fax G4 data.

DivaSignalServiceVideo

The call is signaled as digital call carrying video data.

DivaDeviceConfigType

DivaDeviceConfigType defines the available configuration parameter that can be read for a line device. The data
types are defined in the union DivaDeviceConfigValue.

typedef enum
{

DivaDCT_SwitchType,
DivaDCT_PBXName,
DivaDCT_DDIEnabled,
DivaDCT_Layer2Mode,
DivaDCT_NumberCollectLength,
DivaDCT_AutoSpid,
DivaDCT_SPID1,
DivaDCT_SPID2,
DivaDCT_DirectoryNumber1,
DivaDCT_DirectoryNumber2

} DivaDeviceConfigType;

DivaDCT_SwitchType

Provides the switch type configured for the device. See DivaSwitchType for a list of values.

DivaDCT_PBXName

The symbolic name of the configured switch. Only available if the DivaSwitchType is set to DivaSwitchTypeQ-Sig.
For all other switch types an empty string is returned. The data is given as zero terminated string.

DivaDCT_DDIEnabled

Specifies whether the direct inward dialing or direct dial in is enabled for the device. The data type is Boolean.

DivaDCT_Layer2Mode

Defines the information on the layer 2 mode. This information is needed to interpret the layer 2 and layer 1
status changes. The values are specified in DivaLayer2Mode.

DivaDCT_NTMode

Specifies if the line device is working as NT or TE. The data type is Boolean.

DivaDCT_NumberCollectLength

Provides the amount of digits that must be available as called number for an incoming call before the call is
signaled to the application. The data type is DWORD.

DivaDCT_AutoSpid

Specifies if automatic SPID assignment is enabled. Only valid for US protocols. The data type is Boolean.

Dialogic® Diva® API Data Structures and Defines

Page 299

DivaDCT_SPID1

Specifies the SPID configured and assigned to the B-channel. Only valid for US protocols. The data type is a
zero terminated string.

DivaDCT_SPID2

Specifies the SPID configured and assigned to the B-channel. Only valid for US protocols. The data type is a
zero terminated string.

DivaDCT_DirectoryNumber1

Specifies the directory number configured and assigned to the B-channel. Only valid for US protocols. The data
type is a zero terminated string.

DivaDCT_DirectoryNumber2

Specifies the directory number configured and assigned to the B-channel. Only valid for US protocols. The data
type is a zero terminated string.

DivaDeviceConfigValue

The DivaDeviceConfigValue is used to read various device configuration options. The union covers all possible
types and is defined in the Dialogic® Diva® SDK header files. For a description of the call properties, see
DivaDeviceConfigType.

Applications may declare a variable of type DivaDeviceConfigValue and set the appropriate member
corresponding to the used DivaDeviceConfigType or directly use a variable of the type corresponding to the
property type, i.e. BOOLEAN. The Diva API will internally check only for the needed size corresponding to the
property type.

DivaDeviceStatusType

DivaDeviceStatusType defines the available status parameter that can be read for a line device. The table below
provides information on the status parameter and the data type. The data types are defined in the union
DivaDeviceStatusValue.

typedef enum
{

DivaDST_Layer1Status,
DivaDST_PotsLineStatus,
DivaDST_Layer2Status,

 DivaDSP_LineDeviceStatus,

DivaDST_RedAlarm,
DivaDST_BlueAlarm,
DivaDST_YellowAlarm,

DivaDST_ActiveInConnections,
DivaDST_ActiveOutConnections,

DivaDST_TotalDSPs,
DivaDST_UsedDSPs
DivaDST_OutOfServiceDSPs,
DivaDST_DSPStates

} DivaDeviceStatusType;

DivaDST_Layer1Status

Provides the information on the layer 1 status. Values are defined in DivaLayer1Status.

DivaDST_PotsLineStatus

The Dialogic® Diva® Analog Media Board provides the status information per line of the device. The application
must set the Channel field of DivaPotsLineState before calling DivaGetLineDeviceStatus. The values are defined
in DivaPotsLineStatus.

Page 300

Dialogic® Diva® API Developer Reference Guide

DivaDST_Layer2Status

Provides the information on the layer 2 status. Values are defined in DivaLayer2Status.

DivaDST_LineDeviceStatus

The type DivaDST_LineDeviceStatus provides the information if the device is enabled or disabled. Values are
defined in DivaLineDeviceState.

DivaDST_RedAlarm

If true the red alarm is active. Only valid for a Dialogic® Diva® PRI Media Board. The data type is Boolean.

DivaDST_BlueAlarm

If true the blue alarm is active. Only valid for a Diva PRI Media Board. The data type is Boolean.

DivaDST_YellowAlarm

If true the yellow alarm is active. Only valid for a Diva PRI Media Board. The data type is Boolean.

DivaDST_ActiveInConnections

The amount of incoming calls that have been successfully connected since the last restart of the line device.
The data type is DWORD.

DivaDST_ActiveOutConnections

The amount of outgoing calls that have been successfully connected since the last restart of the line device. The
data type is DWORD.

DivaDST_TotalDSPs

Number of physical installed DSPs. The data type is DOWRD.

DivaDST_UsedDSPs

Number of DSPs that are currently attached to a B-channel. The data type is DWORD.

DivaDST_OutOfServiceDSPs

Number of DSPs that are currently out of service. The data type is DWORD.

DivaDST_DSPStates

Provides the state of each physical available DSP. The data type is DivaDSPStateArray.

DivaDeviceStatusValue

The DivaDeviceStatusValue is used to read various device status information. The union covers all types and is
defined in the Dialogic® Diva® SDK header files. For a description of the call properties see DivaDeviceStatusType.

Applications may declare a variable of type DivaDeviceStatusValue and set the appropriate member
corresponding to the used DivaDeviceStatusType or use directly a variable of the type corresponding to the
property type, i.e. BOOLEAN. The Diva API will internally check only for the needed size corresponding to the
property type.

Dialogic® Diva® API Data Structures and Defines

Page 301

DivaSwitchType
typedef enum
{

DivaSwitchType1TR6,
DivaSwitchTypeETSI,
DivaSwitchTypeFranceVN4,
DivaSwitchTypeBelgium,
DivaSwitchTypeSweden,
DivaSwitchTypeNI_DMS,
DivaSwitchType5ESSCustom,
DivaSwitchTypeJapan,
DivaSwitchTypeItaly,
DivaSwitchTypeTaiwan,
DivaSwitchTypeAustralia,
DivaSwitchType4ESS_SDN,
DivaSwitchType4ESS_SDS,
DivaSwitchType4ESS_LDS,
DivaSwitchType4ESS_MGC,
DivaSwitchType4ESS_MGI,
DivaSwitchTypeHongkong,
DivaSwitchTypeRBSCAS,
DivaSwitchTypeQSIG,
DivaSwitchTypeNI_EWSD,
DivaSwitchTypeNI_5ESS,
DivaSwitchTypeQSIG_T1,
DivaSwitchTypeTrunkE1,
DivaSwitchTypeTrunkT1,
DivaSwitchTypeR2CAS,
DivaSwitchTypeFranceVN6,
DivaSwitchTypePOTS

} DivaSwitchType;

DivaSwitchType specifies the options for the switch type read by the configuration property DivaDCT_SwitchType.
For the description of configuration options, refer to the Dialogic® Diva® Configuration Manager Online Help file
(DSMain.chm).

DivaLayer2Mode
typedef enum
{

DivaLayer2ModePermanent,
DivaLayer2ModeOnDemand,
DivaLayer2ModeNoDisconnect

} DivaLayer2Mode;

DivaLayer2Mode specifies the options returned for the configuration property DivaDCT_Layer2Mode. For the
description on configuration options refer to the Dialogic® Diva® Configuration Manager Online Help file
(DSMain.chm).

Page 302

Dialogic® Diva® API Developer Reference Guide

DivaLayer1Status
typedef enum
{

DivaLayer1Down = 0,
DivaLayer1Up,
DivaLayer1SyncLost,
DivaLayer1Synchronized

} DivaLayer1Status;

DivaLayer1Status defines the values that can be returned by the status property DivaDST_Layer1Status.

DivaLayer1Down

Specifies that there is no layer 1 activity.

DivaLayer1Up

Specifies that the layer 1 is fully synchronized and operational.

DivaLayer1SyncLost

The synchronization at the layer 1 has been lost.

DivaLayer1Synchronized

The layer 1 has reached synchronization state.

DivaPotsLineStatus
typedef enum
{

DivaPotsLineDown= 0,
DivaPotsLineHookOff,
DivaPotsLineIdle,
DivaPotsLineRing,
DivaPotsLinePolarityReverse,
DivaPotsLineToneAlertingSignal,
DivaPotsLineEndofCall,
DivaPotsLineFlashDetected,
DivaPotsLineInUse

} DivaPotsLineStatus;

The DivaPotsLineStatus defines the values that can be returned by the status property DivaDST_PotsLineStatus.

DivaPotsLineDown

Specifies that there is no layer 1 activity.

DivaPotsLineHookOff

The line is in the hook off state.

DivaPotsLineIdle

The line is connected to the switch and no call is in progress. This is the idle state.

DivaPotsLineRing

A ring is detected at the line.

DivaPotsLinePolarityReverse

Reverse polarity has been detected on the line.

DivaPotsLineToneAlertingSignal

A Dual Tone Alerting signal (2130 Hz + 2750 Hz) has been detected on the idle line. It should be followed by
the caller ID information.

Dialogic® Diva® API Data Structures and Defines

Page 303

DivaPotsLineEndofCall

A gap in the current loop has been detected in off hook state. This is usually the indication of the switch that
the peer hung up.

DivaPotsLineFlashDetected

A hook flash from another device on the line has been detected in idle state.

DivaPotsLineInUse

In idle state, it has been detected that another device on the line went off hook.

DivaLayer2Status
typedef enum
{

DivaLayer2Down = 0,
DivaLayer2Up,
DivaLayer2Closing,
DivaLayer2Activating,
DivaLayer2Initializing

} DivaLayer2Status;

DivaLayer2Status defines the values that can be returned by the status property DivaDST_Layer2Status.

DivaLayer2Down

The layer 2 is inactive.

DivaLayer2Up

The layer 2 is fully negotiated and operational. Layer 3 data packets can be exchanged.

DivaLayer2Closing

The layer 2 connection in disconnecting.

DivaLayer2Activating

The layer 2 is activated.

DivaLayer2Initializing

The layer 2 is initialized in order to establish the layer 2 connection.

DivaDSPState
typedef enum
{

DivaDSPStateIdle,
DivaDSPStateUsed,
DivaDSPStateOutofService,
DivaDSPStateUnavailable

} DivaDSPState;

DivaDSPState defines the status of a single DSP. Possible options are:

DivaDSPStateIdle

The DSP is operational and currently not attached to a data channel.

DivaDSPStateUsed

The DSP is attached to a data channel

Page 304

Dialogic® Diva® API Developer Reference Guide

DivaDSPStateOutofService

The DSP has reported problems and has been taken out of service.

DivaDSPStateUnavailable

The DSP is not populated or is not working.

DivaDSPStateArray
typedef struct
{

} DivaDSPStateArray;

DivaDSPStateArray defines the format of the DSP state data retrieved by the status property
DivaDST_DSPStates.

Entries

The amount of DSP state entries in "State".

State

An array of type DivaDSPState containing the state for each DSP.

DivaLineDeviceState
typedef enum

{

DivaLineDeviceStateEnabled = 0,
 DivaLineDeviceStateDisabled,

} DivaLineDeviceState;

DivaLineDeviceStateEnabled

The state DivaLineDeviceStateEnabled specifies that the line device is properly installed and driver software is
started.

DivaLineDeviceStateDisabled

The state DivaLineDeviceStateDisabled specifies that the line device is either physically removed or the driver
software for the device is not loaded.

DivaDeviceStatisticsType
typedef enum
{

DivaST_Layer1Statistics = 1,
} DivaDeviceStatisticsType;

DivaDeviceStatisticsType specify the Line Device statistics type enumeration.

DivaST_Layer1Statistics

The layer 1 statistics is the only enumeration available; layer 1 statistics are only applicable to T1 and E1 Line
Device types.

DivaLayer1Statistics1

typedef struct

{

DWORD Entires;
DivaDSPState State[100];

Dialogic® Diva® API Data Structures and Defines

Page 305

} DivaLayer1Statistics;

DivaLayer1Statistics defines the counters available for the DivaST_Layer1Statistics enumeration in
DivaDeviceStatisticsType.

FramingErrors

This counter increments each time a Framing error is detected in the T1 or E1 Line Device since the last clear;
note that this counter is not available on Analog or BRI Line Devices.

CodeViolations

This counter increments each time a Code Violations is detected in the T1 or E1 Line Device since the last clear;
note that this counter is not available on Analog or BRI Line Devices.

Note: Code Violations keeps track of either Bipolar Violations (BPV) or Excessive Zeros (EXZ) errors.

Crc4Errors

This counter increments each time a CRC-4 error is detected in the T1 or E1 Line Device since the last clear;
note that this counter is not available on Analog or BRI Line Devices.

InternalErrors
DmaOverloads
ProcessingOverloads

These counters are normally zero as relate to a DMA engine which is not applicable to most Diva media Boards.

SampleOverruns

This counter is incremented each time the sample buffer between the TDM and the signal processing function
was not able to compensate for CPU scheduling or processing backlog. Each increment means that a buffer of
samples slipped which could cause a discontinuity or clicks in the audio stream. This counter is available on all
Media boards and it might be useful in troubleshooting voice quality issues. Note that the value is only meaningful
in the context of the first device Id of a physical board.

This entry keeps track of the number of internal CPU processing errors detected since the last clear; the counter
is mostly used for troubleshooting purposes. Note that the value is only meaningful for the first device Id of a
physical board.

1. These data structures along the DivaGetLineDeviceStatistic() are used in retrieving Layer 1 statistics functionality,
which is not necessarily available in Windows

unsigned int FramingErrors;
unsigned int CodeViolations;
unsigned int Crc4Errors;
unsigned int FrameSlips;
unsigned int InternalErrors;
unsigned int DmaOverloads;
unsigned int SampleOverruns;
unsigned int ProcessingOverloads;
unsigned int Load90Percent;
unsigned int Load80Percent;
unsigned int Load70Percent;
unsigned int Load60Percent;
unsigned int Load50Percent;
unsigned int PeakProcessingLoad;

Page 306

Dialogic® Diva® API Developer Reference Guide

LoadXXPercent

This counter keeps track of the number of times the internal CPU processing load reached that XX level, or
higher, since the last clear; the counter is useful in troubleshooting potential CPU overloads. Note that the value
is only meaningful for the first device Id of a physical board.

PeakProcessingLoad;

This entry stores the actual peak CPU load measured; note that its resolution is 6%, thus the only values seen
are 6, 12, 18, 24, 30, etc. Like the other internal counters, this value is only meaningful for the first device Id
of a physical board.

DivaDeviceStatisticsValue
typedef union
{

} DivaDeviceStatisticsValue;

DivaDeviceStatusEvents
typedef enum
{

DivaDSE_Layer1, = 0x00000001
DivaDSE_Layer2, = 0x00000002,
DivaDSE_Alarms = 0x00000004,

 DivaDSE_ServiceState = 0x00000080,
} DivaDeviceStatusEvents;

DivaDeviceStatusEvents specify which events should be signaled to the applications event mechanism when a
change occurs. These values are also used to specify the event class when the event
DivaEventDeviceStatusChanged is signaled to the application.

DivaDSE_Layer1

The layer 1 state or the pots line state has changed.

DivaDSE_Layer2

The layer 2 state has changed.

DivaDSE_Alarms

The state of one of the alarms (red / blue / yellow) has changed.

DivaDSE_ServiceState

The service state of the device has changed from enabled to disabled or vice versa.

DivaGenericToneFunction
typedef enum
{

DivaGenericToneGetSupportedServices,
DivaGenericToneEnableOperation,
DivaGenericToneDisableOperation

} DivaGenericToneFunction;

DivaGenericToneGetSupportedServices

The function DivaGenericToneGetSupportedServices retrieves information on the capabilities of the selected line
device.

DivaGenericToneEnableOperation

The function DivaGenericToneEnableOperation switches on a tone generation or detection or updates the
parameter of a running tone operation.

DivaLayer1Statistics Layer1Statistics;

Dialogic® Diva® API Data Structures and Defines

Page 307

DivaGenericToneDisableOperation

The function DivaGenericToneDisableOperation switches off a running tone generation or detection.

DivaSingleToneReport

DivaSingleToneReport defines which information for a detected single tone should be reported to the application
in DivaDetectorResults.

typedef enum
{

} DivaSingleToneReport;

DivaDualToneReport

DivaDualToneReport defines which information for a detected dual tone should be reported to the application in
DivaDetectorResults.

typedef enum
{

} DivaDualToneReport;

DivaGenericToneResultType

DivaGenericToneResultType specifies if the information relates to a single or dual tone.

typedef enum
{

DivaSingleToneStart = 1,
DivaDualToneStart,
DivaSingleToneStop,
DivaDualToneStop

} DivaGenericToneResultType;

DivaGenericToneResult

DivaGenericToneResult specifies the result of a generic tone detection.

typedef enum
{

DivaGenericToneDoneSuccess = 0,
DivaGenericToneDoneParamsShrinked,
DivaGenericToneDoneParamsIgnored,
DivaGenericToneErrorInvalidParams = 0x80,
DivaGenericToneErrorOutOfResource,
DivaGenericToneErrorMissingParams

}DivaGenericToneResult;

Result codes named DivaGenericToneError… (bit 7 is set) indicate that the operation has not been started. For
all others, the operation has started but parameters may be ignored or shrunk.

DivaSingleToneReportSignalNoiseRatio = 0x00000002,
DivaSingleToneReportEnergy = 0x00000004,
DivaSingleToneReportFrequency = 0x00000008,
DivaSingleToneReportEnergyVariation = 0x00000010,
DivaSingleToneReportFrequencyVariation = 0x00000020

DivaDualToneReportSignalNoiseRatio = 0x00000002,
DivaDualToneReportEnergyLowTone = 0x00000004,
DivaDualToneReportEnergyHighTone = 0x00000008,
DivaDualToneReportFrequencyLowTone = 0x00000010,
DivaDualToneReportFrequencyHighTone = 0x00000020

Page 308

Dialogic® Diva® API Developer Reference Guide

DivaToneDetectorResults
typedef struct
{

} DivaToneDetectorResults;

DivaGenericToneInfo

DivaGenericToneInfo provides the confirmation or indication for a low level generic tone request.

typedef struct
{

} DivaGenericToneInfo;

Confirmation

If the parameter Confirmation is set, the following data are a confirmation to a previous request. If the parameter
is not set, the following data must be interpreted as an indication.

Handle

The parameter Handle is only valid if the parameter Confirmation is set. The value of the handle is the same as
the value passed to DivaSendGenericToneRequest.

Function

The parameter Function specifies the function that has been requested. The parameter is only valid if the
parameter Confirmation is set.

DataLength

The parameter DataLength specifies the amount of bytes written to the Data array.

DivaGenericToneResultType Type;
DWORD TimeStamp;
DivaGenericToneResult Result;
union
{
struct
{
short SignalNoiseRatio;
short Energy;
WORD Frequency;
WORD AmplitudeVariation;
WORD FrequencyVariation;
}Single
struct
{
short SignalNoiseRatio;
short EnergyToneLow;
short EnergyToneHigh;
WORD FrequencyToneLow;
WORD FrequencyToneHigh;
}Dual;
}Tone;

BOOL Confirmation;
Void *Handle;
DivaGenericToneFunction Function;
DWORD DataLength;
BYTE Data[1];

Dialogic® Diva® API Data Structures and Defines

Page 309

Data

The parameter Data contains the confirmation or indication information. The size depends on the function and
the request. For more information, see CxTone.pdf.

DivaActiveDiscReasons

DivaActiveDiscReasons specifies the reasons for an active disconnection.

typedef enum
{

DivaActiveDiscReasonBusy = 1,
DivaActiveDiscReasonReject,
DivaActiveDiscReasonNoAnswer,
DivaActiveDiscReasonNumberUnknown,
DivaActiveDiscReasonInvalidNumber,
DivaActiveDiscReasonNumberChanged,
DivaActiveDiscReasonUnallocatedNumber,
DivaActiveDiscReasonOutOfOrder

} DivaActiveDiscReasons;

DivaSMSProtocol

DivaSMSProtocol specifies the SMS protocol to be used for sending and receiving Short Messages.

typedef enum
{

DivaSMSProtocolOne,
DivaSMSProtocolTwo

} DivaSMSProtocol;

DivaSMSProtocolOne

Protocol 1 is more widely used for SM transmission. This protocol is supported by the Diva API.

DivaSMSProtocolTwo

Protocol Two is not presently supported by the Diva API.

DivaMessageStatus
typedef enum
{

DivaMessageAdded,
DivaMessageRemoved,
DivaMessageUnknown

} DivaMessageStatus;

DivaMessageNumberInfo
typedef enum
{

DivaMessageNumberUnknown,
DivaMessageNumberNotAvailable

} DivaMessageNumberInfo;

DivaMessageInvokeMode
typedef enum
{

DivaMessageInvokeDeferred,
DivaMessageInvokeImmediate,
DivaMessageInvokeCombined,
DivaMessageInvokeSupress

Page 310

Dialogic® Diva® API Developer Reference Guide

} DivaMessageInvokeMode;

DivaMessageInvokeMode specifies how the message activation should be invoked. Options are deferred or
combined. If set to DivaMessageInvokeSupress, the invocation mode is suppressed.

Dialogic® Diva® API Data Structures and Defines

Page 311

DivaMWIActivateParams
typedef struct
{

} DivaMWIActivateParams;

Size

The Size parameter defines the length of the structure. The application sets this value before calling any function
that gets this structure as parameter. Depending on the Diva API version, the size may grow.

Handle

This parameter is not interpreted by the Dialogic® Diva® SDK. It is passed with the event
DivaEventMWICompleted when the operation is finished. The application may use this handle to assign the result
delivered with the event to a request.

Service

Specifies the service that should be signaled to the switch. This identifies the media type of the message, e.g.,
voice or fax. For IVR systems that signal voice messages, this value must be set to 1.

NumMessages

Specifies the amount of messages that should be signaled.

Status

Specifies the status; for options see DivaMessageStatus.

Reference

The parameter is only valid if Status is not set to DivaMessageUnknown.

InvokeMode

Specifies the invocation mode. For valid options, see DivaMessageInvokeMode.

ReceivingUserNumber

The extension of the user to whom the messages should be signaled.

ControllingUserNumber

This parameter depends on the used switch. Some switches use this number to authenticate the requester. This
must be set in accordance with the switch configuration.

ControllingUserProvidedNumber

This parameter is switch-dependent and should be set to an empty string by default.

DWORD Size;
DWORD Handle;
DWORD Service;
DWORD NumMessages;
DivaMessageStatus Status;
DWORD Reference;
DivaMessageInvokeMode InvokeMode;
char ReceivingUserNumber[MAX_ADDR_LEN];
char ControllingUserNumber[MAX_ADDR_LEN];
char ControllingUserProvidedNumber[MAX_ADDR_LEN];
DivaTime Time;

Page 312

Dialogic® Diva® API Developer Reference Guide

DivaMWIDeactivateParams
typedef struct
{

} DivaMWIDeactivateParams;

DivaMWIIndicationParams
typedef struct
{

} DivaMWIIndicationParams;

SizeUsed

The SizeUsed parameter defines the length of data written by the Diva SDK.

Line

The Line parameter identifies the line device on which the information was received. Line devices are continuously
numbered by an index starting with one.

Handle

The Handle parameter is reserved for future use.

Service

The Service parameter specifies the service or media type of the message, e.g. voice or fax.

NumMessages

The NumMessage parameter pecifies the amount of messages that are waiting.

Status

Specifies whether the message was added or removed. For options see DivaMessageStatus.

Reference

The Reference parameter is only valid if Status is not set to DivaMessageUnknown.

DWORD Size;
DWORD Handle;
DWORD Service;
DivaMessageInvokeMode InvokeMode;
char ReceivingUserNumber[MAX_ADDR_LEN];
char ControllingUserNumber[MAX_ADDR_LEN];
char ControllingUserProvidedNumber[MAX_ADDR_L

EN];
DivaTime Time;

DWORD SizeUsed;
DWORD Line;
DWORD Handle;
DWORD Service;
DWORD NumMessages;
DivaMessageStatus Status;
DWORD Reference;
char ControllingUserNumber[MAX_ADDR_LEN];
char ControllingUserProvidedNumber[MAX_ADDR_LEN];
DivaTime Time;
char CalledNumber[MAX_ADDR_LEN];

Dialogic® Diva® API Data Structures and Defines

Page 313

ControllingUserNumber

The ControllingUserNumber parameter reports the number of the user that controlled the message waiting
indication.

ControllingUserProvidedNumber

The ControllingUserProvidedNumber parameter reports the number used for authentication.

Time

The Time parameter specifies the time when the indication was created.

CalledNumber

The CalledNumber parameter is reserved for future use.

DivaResultAnsweringMachineDetector
typedef enum
{

DivaResultUserTerminated,
DivaResultHumanTalker,
DivaResultAnsweringMachine,
DivaResultAnsweringMachineTone,
DivaResultSilence,
DivaResultFaxOrModem

} DivaResultAnsweringMachineDetector;

DivaResultUserTerminated

The application has terminated the answering machine detector with a call to
DivaDisableAnsweringMachineDetectior.

DivaResultHumanTalker

The remote side is a human talker.

DivaResultAnsweringMachine

The remote side is an answering machine. Note that the event is signalled when the remote peer has been
identified as answering machine. At this time, the announcement of the answering machine may still be streamed.

DivaResultAnsweringMachineTone

The standard answering machine tone of 390 Hz has been detected. Note that the tone may still be active when
the event is signaled.

DivaResultSilence

No signal received within a given timeout. The detector terminated due to the initial silence timeout.

DivaResultFaxMachine

The remote end is a fax machine.

DivaResultModem

The remote end is a modem.

Page 314

Dialogic® Diva® API Developer Reference Guide

DivaTerminationDigits

The DiveTerminationDigits are a mask to specify which digits will be used to terminate an ongoing operation or
signal a special event.

DivaProcessingGroup
typedef enum
{

DivaProcessingGroupEvent = 1,
DivaProcessingGroupSending,
DivaProcessingGroupRecording

} DivaProcessingGroup;

DivaProcessingGroupEvent

This option defines that the processing parameters are used to create the events DivaEventDTMFMaxDigit,
DivaEventDTMFTerminationDigit, and DivaEventDTMFInterDigitTimeout.

DivaProcessingGroupSending

This option defines that the processing parameters have influence on the termination of the outbound streaming
operation initiated by DivaSendVoice… functions.

DivaProcessingGroupRecording

This option defines that the processing parameters have influence on the termination of the inbound recording
operation initiated by DivaRecordVoiceFile.

#define DivaTerminationDigit_None 0x000000000
#define DivaTerminationDigit_0 0x000000001
#define DivaTerminationDigit_1 0x000000002
#define DivaTerminationDigit_2 0x000000004
#define DivaTerminationDigit_3 0x000000008
#define DivaTerminationDigit_4 0x000000010
#define DivaTerminationDigit_5 0x000000020
#define DivaTerminationDigit_6 0x000000040
#define DivaTerminationDigit_7 0x000000080
#define DivaTerminationDigit_8 0x000000100
#define DivaTerminationDigit_9 0x000000200
#define DivaTerminationDigit_A 0x000000400
#define DivaTerminationDigit_B 0x000000800
#define DivaTerminationDigit_C 0x000001000
#define DivaTerminationDigit_D 0x000002000
#define DivaTerminationDigit_S 0x000004000
#define DivaTerminationDigit_H 0x000008000
#define DivaTerminationDigit_FAXCNG 0x000010000
#define DivaTerminationDigit_FAXCED 0x000020000

Dialogic® Diva® API Data Structures and Defines

Page 315

DivaSendVoiceEndReasons
typedef enum
{

DivaSendVoiceEndReasonUndefined = 0,
DivaSendVoiceEndReasonDisconnected,
DivaSendVoiceEndReasonMaxDTMF,
DivaSendVoiceEndReasonTerminationDigit,
DivaSendVoiceEndReasonInterDigitTimeout,
DivaSendVoiceEndReasonInitialDigitTimeout,
DivaSendVoiceEndReasonMaxTimeout

} DivaSendVoiceEndReasons;

DivaSendVoiceEndReasonUndefined

There is no specific reason for the termination. Note that user requested termination is reported by a separate
event and is not listed here.

DivaSendVoiceEndReasonDisconnected

The sending terminates because the call has been disconnected.

DivaSendVoiceEndReasonMaxDTMF

The sending terminates because the maximum amount of DTMF digits has been received. The maximum amount
of digits has been specified by the application with a call to DivaSetDTMFTerminationRules.

DivaSendVoiceEndReasonTerminationDigit

The sending terminates because one of the termination digits has been received. The termination digits have
been specified by the application with a call to DivaSetDTMFTerminationRules.

DivaSendVoiceEndReasonInterDigitTimeout

The sending terminates because the inter digit timeout has exceeded. The inter digit timeout has been specified
by the application with a call to DivaSetDTMFTerminationRules.

DivaSendVoiceEndReasonInitialDigitTimeout

The sending terminates because the initial digit timeout has exceeded. The initial digit timeout has been specified
by the application with a call to DivaSetDTMFTerminationRules.

DivaSendVoiceEndReasonMaxTimeout

The sending terminates because the maximum timeout has exceeded. The maximum timeout has been specified
by the application with a call to DivaSetDTMFTerminationRules.

DivaSysConfCallDirection
typedef enum
{

DivaSysConfCallDirectionNone,
DivaSysConfCallDirectionOutbound,
DivaSysConfCallDirectionBoth

} DivaSysConfCallDirection;

DivaSysConfCallDirectionNone

Specifies that no calls can be made on this interface.

DivaSysConfCallDirectionOutbound

Specifies that only outgoing calls, but no incoming calls, can be made on this interface.

DivaSysConfCallDirectionBoth

Specifies that inbound and outbound calls can be done on this interface.

Page 316

Dialogic® Diva® API Developer Reference Guide

DivaSysConfType
typedef enum
{

DivaSCT_RASInstalled,
DivaSCT_RASTotalChannels,
DivaSCT_RASCallDirection,
DivaSCT_TAPIInstalled,
DivaSCT_TAPITotalChannels,
DivaSCT_TAPICallDirection,
DivaSCT_CAPIInstalled,
DivaSCT_CAPITotalChannels,
DivaSCT_CAPICallDirection,
DivaSCT_DataModemInstalled,
DivaSCT_DataModemTotalChannels,
DivaSCT_DataModemCallDirection,
DivaSCT_FaxModemInstalled,
DivaSCT_FaxModemTotalChannels,
DivaSCT_FaxModemCallDirection

} DivaSysConfType;

DivaSysConfValue
typedef union
{

} DivaSysConfValue;

DivaDeviceCapabilities
typedef enum
{

DivaDevCapsPSTNBased,
DivaDevCapsIPBased,
DivaDevCapsAnalogBased,
DivaDevCapsExtEquipment

} DivaDeviceCapabilities;

DivaDevCapsPSTNBased

If the function DivaCheckDeviceCapabilities returns true for DivaDevCapsPSTNBased, the line device is
PSTN-based. This includes ISDN and analog-based devices.

DivaDevCapsIPBased

If the function DivaCheckDeviceCapabilities returns true for DivaDevCapsIPBased, the line device is IP-based.
This includes H.323 and SIP devices.

BOOL RASInstalled;
DWORD RASTotalChannels;
DivaSysConfCallDirection RASCallDirection;
BOOL TAPIInstalled;
DWORD TAPITotalChannels;
DivaSysConfCallDirection TAPICallDirection;
BOOL CAPIInstalled;
DWORD CAPITotalChannels;
DivaSysConfCallDirection CAPICallDirection;
BOOL DataModemInstalled;
DWORD DataModemTotalChannels;
DivaSysConfCallDirection DataModemCallDirection;
BOOL FaxModemInstalled;
DWORD FaxModemChannels;
DivaSysConfCallDirection FaxModemDirection;

Dialogic® Diva® API Data Structures and Defines

Page 317

DivaDevCapsAnalogBased

If the function DivaCheckDeviceCapabilities returns true for DivaDevCapsAnalogBased, the line device is PSTN
and analog-based. This is only true for the Dialogic® Diva® Analog Media Board, not for RBS lines.

DivaDevCapsExtEquipment

If the function DivaCheckDeviceCapabilities returns true for DivaDevCapsExtEquipment, the line device has an
external equipment, e.g., it can connect a headset and microphones.

DivaTraceLevel
typedef enum
{

DivaTraceLevelNothing = 0,
DivaTraceLevelError,
DivaTraceLevelWarning,
DivaTraceLevelInformation,
DivaTraceLevelApiEntry,
DivaTraceLevelDebug,
DivaTraceLevelDebugHigh,
DivaTraceLevelDataMsg

} DivaTraceLevel;

DivaTraceLevelNothing

No trace information is written.

DivaTraceLevelError

Error information is written.

DivaTraceLevelWarning

Warning information is written.

DivaTraceLevelInformation

Additional information is written.

DivaTraceLevelApiEntry

The entry and return from interface functions are written.

DivaTraceLevelDebug

Developer trace information is written

DivaTraceLevelDebugHigh

High level debug information is written.

DivaTraceLevelDataMsg

Data messages are written. This creates a very large amount of trace output and may have an impact on the
performance of the system.

Page 318

Dialogic® Diva® API Developer Reference Guide

DivaChannelStatus
typedef enum
{

DivaChannelStatusUnblocked = 0,
DivaChannelStatusActiveBlocked = 1,
DivaChannelStatusPassiveBlocked = 2,
DviaChannelStatusInUse = 3

} DivaChannelStatus;

DivaChannelStatusUnblocked

The channel is unblocked and can be used for communication.

DivaChannelStatusActiveBlocked

The channel is blocked by the application and cannot be used for communication.

DivaChannelStatusPassiveBlocked

The channel is blocked by the switch and cannot be used for communication.

DivaChannelStatusInUse

The channel is currently in use for a call or not yet available for making or answering another call.

DivaDataOptions

DivaDataOptions specifies attributes for a data frame.

typedef enum
{

DivaDataOptionQualifier = 0x00000001,
DivaDataOptionMoreData = 0x00000002,
DivaDataOptionDelivery = 0x00000004

} DivaDataOptions;

DivaDataOptionQualifier

The option "qualifier" is set via this option. The availability of this option depends on the used protocol.

DivaDataOptionMoreData

The option "more data follows" is set via this option. This allows the application to do fragmentation of frames.
The availability of this option depends on the used protocol.

DivaDataOptionDelivery

The option "Delivery confirmation" is set via this option. The availability of this option depends on the used
protocol.

DivaFaxScanLineMax

The maximum scan line provides information about the scan line capabilities of a receiving fax.

typedef enum
{

DivaFaxScanLineUnknown = 0,
DivaFaxScanLineMax215,
DivaFaxScanLineMax255,
DivaFaxScanLineMax303

} DivaFaxScanLineMax;

DivaFaxScanLineUnknown

The remote side did not provide the scan line capabilities.

DivaFaxScanLineMax215

The remote fax is able to handle scan lines of 215 millimeter. This corresponds to the ISO A4 format.

Dialogic® Diva® API Data Structures and Defines

Page 319

DivaFaxScanLineMax255

The remote fax is able to handle scan lines of 255 millimeter. This corresponds to the ISO B4 format.

DivaFaxScanLineMax303

The remote fax is able to handle scan lines of 303 millimeter. This corresponds to the ISO A3 format.

DivaFaxStoreModes

With DivaFaxStoreModes, the rules for storing received fax pages in files is selected.

typedef enum
{

DivaFaxStorePerSession = 0,
DivaFaxStorePerDocument,
DivaFaxStorePerPage

} DivaFaxStoreModes;

DivaFaxStorePerSession

All pages of the complete fax session are stored in one file. This is the default setting.

DivaFaxStorePerDocument

This option is reserved for future use.

DivaFaxStorePerPage

Each page of a fax reception is stored in a separate file. This option is currently only available for color fax JPEG
documents. The file names get the addition "_D1_Px," where "x" is the page index.

DivaTransferRejectReasons

The DivaTransferRejectReasons specify the reasons for a transfer reject. The values can be specified in a call to
DivaRejectTransfer and retrieved if the application is the initiator of a transfer and receives the reject.

typedef enum
{

DivaTRRUnknown = 0,
DivaTRRBadRequest,
DivaTRRUnauthorized,
DivaTRRNotAcceptable,
DivaTRRUserDefined

} DivaTransferRejectReasons;

DivaTRRUnknown

The transfer reject reason is unknown.

DivaTRRBadRequest

The transfer request was rejected by the remote peer with the reason "400 Bad Request".

DivaTRRUnauthorized

The transfer request was rejected by the remote peer with the reason "401 Unauthorized".

DivaTRRNotAcceptable

The transfer request was not accepted by the remote peer.

Page 320

Dialogic® Diva® API Developer Reference Guide

DivaInitParameterTypes

The enumeration DivaInitParameterTypes defines the parameter that can be set by DivaSetInitParameter. The
following table specifies the types and describes the functionality.

DivaDeviceInitParameterTypes

The enumeration DivaDeviceInitParameterTypes defines the parameter that can be set by
DivaSetDeviceInitParameter. The following table specifies the types and describes the functionality.

Type Name Data Type Description

DivaParamNumIPDevices DWORD Specifies the maximum number of IP devices to be configured.
Default is one. If set to zero, no IP devices will be created. The
maximum number of devices that can be configured is eight.

DivaParamDisableTDMDevices Boolean If this parameter is set, the Dialogic® Diva® SDK will not use any
TDM-based Diva Media Boards. Only software-based IP
communication will be possible.

DivaParamDisableConfActiveT
alker

Boolean If set, active talker detection for conferences is disabled. By
default, the active talker detection is enabled.

DivaParamConfActiveTalkerNo
tifyInterval

DWORD Specifies the interval for notification of active talker on a
conference.

Type Name Data Type Descrption

DivaDeviceParamNetwork
Interface

ASCII String The parameter defines the local IP address. It is planned
that in future versions also the network interface name can
be specified. If not specified, the default local IP address is
used. The maximum length is MAX_ADDR_LEN.

DivaDeviceParamMaxChannels DWORD Defines the maximum amount of channels to be used for
this device. Note that the amount of licensed channels must
be equal or greater than the amount of all configured
channels of all devices.

DivaDeviceParamSignaling
Protocol

DivaSignalingP
rotocols

Specifies the signaling protocol to be used. Currently, the
following options are available:
• DivaProtocolH323
• DivaProtocolSIP
The default value is DivaProtocolSIP.

DivaDeviceParamSignalingPort DWORD Specifies the port to be used for signaling. The default value
depends on the signaling protocol.

DivaDeviceParamSignaling
Transport

DivaTransport
Protocols

Specifies the signaling transport protocol to be used.
Currently, the following options are available:
• DivaTransportUDP
• DivaTransportTCP

DivaDeviceParamMaxRegistrations DWORD Specifies the maximum registrations at SIP registrar
servers. The parameter is valid for SIP only. By default, one
registration is assumed. The type of the parameter is
DWORD.

DivaDeviceParamProxy ASCII String Specifies the SIP proxy in the format
{<IP address> | <DNS Name> }[:<port>]. The parameter
is only valid if the signaling protocol is set to SIP. By default,
no proxy is used. The type of the parameter is a zero
terminated string.

DivaDeviceParamProxyUser ASCII String Specifies the user name to be used for authentication at the
SIP proxy. The parameter is only valid if the signaling
protocol is set to SIP. The type of the parameter is a zero
terminated string.

Dialogic® Diva® API Data Structures and Defines

Page 321

DivaSIPRegistrarParams

typedef struct
{

} DivaSIPRegistrarParams;

Size

Size defines the length of the data structure passed by the application. The Size parameter allows for extending
the data structure with future Dialogic® Diva® SDK versions, e.g., for security parameter. The Diva SDK will
only use access fields in the data structure that are within the given size.

RegistrarAddress

RegistrarAddress is a mandatory parameter that contains the SIP registrar address as IP address or DNS name.
Optionally, a port number can be added. The format is:
{ <IP address> | <DNS name> }[:<port number>], e.g., 192.168.0.100 or myregistrar.com:5060.

DisplayName

DisplayName is an optional parameter sent to the registrar server during registration.

Domain

Domain is a mandatory parameter containing the network part of the public SIP address.

User

User is a mandatory parameter containing the user part of the public SIP address.

AuthorizationRealm

AuthorizationRealm is an optional parameter that is only required if the SIP registrar uses a realm for
authentication requests that is different from the Domain.

DivaDeviceParamProxyPassword ASCII String Specifies the password to be used for authentication at the
SIP proxy. The parameter is only valid if the signaling
protocol is set to SIP. The type of the parameter is a zero
terminated string.

DivaDeviceParamProxyRealm ASCII String Specifies the realm/domain to be used for authentication at
the SIP proxy. The parameter is only valid if the signaling
protocol is set to SIP. The type of the parameter is a zero
terminated string.

DivaDeviceParamEnableTranspAdd
r

Boolean If enabled, the Dialogic® Diva® SDK will signal the received
SIP or H.323 addresses without changes, unless a mapping
exists. By default, the Diva SDK tries to extract a phone
number from the SIP or H.323 address.

DivaDeviceParamDefaultFrom
Address

ASCII String If specified, the address will be used as default FROM
address if no calling number has been specified when a call
is initiated. The parameter is only valid for SIP-based line
devices.

Type Name Data Type Descrption

DWORD Size;
char RegistrarAddress[MAX_ADDR_LEN];
char DisplayName[MAX_ADDR_LEN];
char Domain[MAX_ADDR_LEN];
char User[MAX_ADDR_LEN];
char AuthorizationRealm[MAX_ADDR_LEN];
char AuthorizationUser[MAX_ADDR_LEN];
char Password[MAX_ADDR_LEN];
DWORD RefreshInterval;

Page 322

Dialogic® Diva® API Developer Reference Guide

AuthorizationUser

AuthorizationUser is an optional parameter that is only required if the SIP registrar uses a different user name
than specified as public user name for the authorization.

Password

Password is an optional parameter used for authentication at the SIP registrar. The parameter is required if the
SIP registrar requests authentication.

RefreshInterval

The RefreshInterval parameter specifies the amount of seconds until a refresh of the registration is required.

DivaH323GatekeeperParams

typedef struct

{

} DivaH323GatekeeperParams;

Size

The Size defines the length of the data structure passed by the application. The Size parameter allows to extend
the data structure with future Dialogic® Diva® SDK versions, e.g., for security parameter. The Diva SDK will
only use access fields in the data structure that are within the given size.

GatekeeperAddress

The GatekeeperAddress is a mandatory parameter that contains the IP address of the gatekeeper. Optionally,
a port number can be added. The format is: <IP address> [:<port number>], e.g., 192.168.0.100:1010.

LocalType

The LocalType parameter specifies the type of the local endpoint. The parameter is of type
DivaH323EndpointType, valid values are DivaH323EndpointTerminal and DivaH323EndpointGateway.

Number

The Number parameter contains one phone number or a comma separated list of phone numbers to be registered
at the gatekeeper.

Aliases

The Aliases parameter contains one H.323 alias or a comma separated list of H.323 aliases to be registered at
the gatekeeper.

Prefixes

The Prefixes parameter contains one or more comma separated prefixes to be registered at the gatekeeper.

Name

The Name parameter is optional and defines a symbolic name used to display at the endpoint.

RefreshInterval

The RefreshInterval parameter specifies the amount of seconds until a refresh of the registration is required.

DWORD Size;
char GatekeeperAddress[MAX_ADDR_LEN];
DivaH323EndpointType LocalType;
char Number[MAX_ADDR_LEN];
char Aliases[MAX_ADDR_LEN];
char Prefixes[MAX_ADDR_LEN];
char Name[MAX_ADDR_LEN];
DWORD RefreshInterval;

Dialogic® Diva® API Data Structures and Defines

Page 323

DivaH323EndpointType
typedef enum
{

 DivaH323EndpointTerminal = 1,
 DivaH323EndpointGateway

} DivaH323EndpointType;

DivaH323EndpointTerminal

The value DivaH323EndpointTerminal specifies that the H.323 endpoint type is terminal.

DivaH323EndpointGateway

The value DivaH323EndpointGateway specifies that the H.323 endpoint type is gateway.

DivaRegistrationStatus
typedef enum
{

 DivaRegStatusIdle,
 DivaRegStatusInitiated,
 DivaRegStatusRegistered,
 DivaRegStatusFailed,
 DivaRegStatusReleasing,
 DivaRegStatusReleased

} DivaRegistrationStatus;

DivaRegStatusIdle

This is the initial state before the registration request has been sent.

DivaRegStatusInitiated

The registration request has been successfully sent. The response from the peer is pending.

DivaRegStatusRegistered

The registration has been confirmed by the peer.

DivaRegStatusFailed

The registration has been rejected by the peer.

DivaRegStatusReleasing

The release of a previously successful or pending registration has been initiated.

DivaRegStatusReleased

A previously successful registration has been released by the peer or has timed out.

Page 324

Dialogic® Diva® API Developer Reference Guide

DivaRegistrationResults
typedef enum
{

 DivaRegResultSuccess = 0,
 DivaRegResultNetworkError,
 DivaRegResultTimeout,
 DivaRegResultUnavailable,
 DivaRegResultUnknownUser,
 DivaRegResultPermissionDenied,
 DivaRegResultInvalidParameter,
 DivaRegResultRejected

} DivaRegistrationResults;

DivaRegResultSuccess

The registration was successful.

DivaRegResultNetworkError

The registration failed due to a network error.

DivaRegResultTimeout

The registration timed out. The timeout values can not be set. SIP and H.323 have different timeout values.

DivaRegResultUnavailable

The registrar server or gatekeeper was not available.

DivaRegResultUnknownUser

The registration failed because the user name given for authentication is unknown.

DivaRegResultPermissionDenied

The registration failed because the user could not be authenticated.

DivaRegResultInvalidParameter

The registration failed because the parameter, e.g., the address, is rejected by the peer.

DivaRegResultRejected

The registration was rejected by the registrar server or gatekeeper.

Dialogic® Diva® API Data Structures and Defines

Page 325

DivaCodec

The enumeration DivaCodec defines the list of predefined codecs. For these codecs, the Dialogic® Diva® SDK
automatically adds information like payload and default frame size.

DivaDTMFMode

DivaDTMFMode is used to specify the DTMF handling on IP-based calls and to retrieve the negotiated mode.

DivaCodec_G711_ALaw Enables G.711 a-law.

DivaCodec_G711_ULaw Enables G.711 µ-law.

DivaCodec_T38 Enables T.38 fax.

DivaCodec_G723 Enables all rates for G.723 codecs.

DivaCodec_G723_5_3 Enables G.723 at 5.3 kbps.

DivaCodec_G723_6_3 Enables G.723 at 6.3 kbps.

DivaCodec_G726 Enables all rates for the G.726 codecs.

DivaCodec_G726_16 Enables G.726 at 16 kbps.

DivaCodec_G726_24 Enables G.726 at 24 kbps.

DivaCodec_G726_32 Enables G.726 at 32 kbps.

DivaCodec_G726_40 Enables G.726 at 40 kbps.

DivaCodec_G729 G.729 at 8 kbps.

DivaCodec_G729A G.729 with annex A at 8 kbps.

DivaCodec_G729B G.729 with silence suppression.

DivaCodec_G729AB G.729 with annex A at 8 kbps with silence suppression.

DivaCodec_GSM_FULL GSM with full speech rate.

DivaCodec_GSM_HALF GSM with half speech rate.

DivaCodec_GSM_EFR GSM with enhanced full rate.

DivaCodec_GSM_AMR GSM with adaptive multirate.

DTMF Mode Description

DivaDtmfModeAuto Uses the automatic negotiation of the DTMF mode. The options RFC 2833 and
inband are enabled. Based on the negotiation with the peer, RFC2833 or inband
is used. If DTMF cannot be sent via RFC2833 or inband, then SIP info messages
are used. Received DTMF are signaled to the application independent from the
way they are received.

DivaDtmfModeRFC2833 Use RFC2833 if supported by the remote peer. An implicit fallback to inband
DTMF mode is done if RFC2833 is not supported by the remote peer.

DivaDtmfModeSIPInfo Only valid for transmitted DTMF tones. If this mode is set, DTMF chars are sent
via SIP info messages. RFC2833 is not enabled.

DivaDtmfModeRFC2833SIPI
nfo

Use RFC2833 if supported by the remote peer. If DTMF tones cannot be
transmitted via RFC2833, SIP Info messages are used. Incoming DTMF tones
may be signaled as RFC2833, inband, or SIP Info, depending on the remote peer.

Page 326

Dialogic® Diva® API Developer Reference Guide

DivaDataCodec

Diva Media Boards support several compression codecs that can be used to convert G.711 audio used on the
TDM line to compressed audio used by the application. The following options can be set via the call property
DivaCPT_DataCodec.

typedef enum
{

DivaDataCodecNone = 0,
DivaDataCodecG729,
DivaDataCodecG726,
DivaDataCodecGSM,
DivaDataCodecILBC,
DivaDataCodecPCM16
DivaDataCodecG722

} DivaDataCodec;

DivaDataCodecOptions

If an audio compression codec is selected, the codec options can be modified by the call property
DivaCPT_DataCodecOptions. The following options are available:

typedef enum
{

DivaDCO_None = 0x00,
DivaDCO_EnableVAD = 0x01,
DivaDCO_EnableComfortNoise = 0x02,
DivaDCO_EnableDTMFDetection = 0x04,
DivaDCO_EnableDTMFGeneration = 0x08,
DivaDCO_All = 0x0F

} DivaDataCodecOptions;

DivaDCO_None

Use the default codec options.

DivaDCO_EnableVAD

If this option is enabled, the voice activity detection is activated. By default, the voice activity detection is off.

DivaDCO_EnableComfortNoise

If this option is enabled, the comfort noise generation is activated. By default, the comfort noise generation is off.

DivaDCO_EnableDTMFDetection

If this option is enabled, the DTMF detection is activated. By default, the DTMF detection is off.

DivaDCO_EnableDTMFGeneration

If this option is enabled, the DTMF generator is activated. By default, the DTMF generator is off.

DivaDCO_All

The value DivaDCO_All can be used to set all the above options.

DivaSampleRates

For the data codec DivaDataCodecPCM16 several sample rates are supported. The following sample rates can
be set via the call property DivaCPT_DataCodecSampleRate. For all other codecs the sample rate is ignored.

typedef enum

{
 DivaSampleRate8000 = 0,
 DivaSampleRate16000 = 2,
 DivaSampleRate32000 = 4,
 DivaSampleRate48000 = 5,

Dialogic® Diva® API Data Structures and Defines

Page 327

} DivaSampleRates;

DivaSampleRate8000

The value DivaSampleRate8000 sets the sample rate for the data codec PCM 16 bit to 8000 KHz. This is the
default sample rate.

DivaSampleRate16000

The value DivaSampleRate16000 sets the sample rate for the data codec PCM 16 bit to 16000 KHz.

DivaSampleRate32000

The value DivaSampleRate32000 sets the sample rate for the data codec PCM 16 bit to 32000 KHz.

DivaSampleRate48000

The value DivaSampleRate48000 sets the sample rate for the data codec PCM 16 bit to 48000 KHz.

Page 328

Dialogic® Diva® API Developer Reference Guide

DivaSamplingRate
typedef enum
{

DivaSamplingRateMin = 1250,
DivaSamplingRateNormal = 8000,
DivaSamplingRateMax = 51200

} DivaSamplingRate;

DivaSamplingRateMin

Defines the minimum sampling rate supported by Diva Media Boards.

DivaSamplingRateNormal

Defines the normal or default-sampling rate used by Diva Media Boards.

DivaSamplingRateMax

Defines the maximum sampling rate supported by Diva Media Boards.

DivaDataChannelStatus
typedef enum
{

DivaDataChannelDown = 0,
DivaDataChannelUp

} DivaDataChannelStatus;

DivaDataChannelDown

The data channel has been disconnected based on a request initiated by the application via
DivaEnableDataChannel.

DivaDataChannelUp

The data channel has been established based on a request initiated by the application via
DivaEnableDataChannel.

DivaFSKModulation
typedef enum
{

DivaFSKModulationV23 = 1
} DivaFSKModulation;

DivaFSKModulationV23

The FSK data is expected as V.23 modulation with 1200 Baud and frequencies 2100 and 1300.

DivaFSKEventTypes
typedef enum
{

DivaFSKEventData = 0,
DivaFSKEventCarrierOn = 14,
DivaFSKEventCarrierOff = 15,
DivaFSKEventPreamble = 200

} DivaFSKEventTypes;

DivaFSKEventData

The lower word of the parameter contains the data byte.

DivaFSKEventCarrierOn

The carrier for FSK data reception has been detected.

Dialogic® Diva® API Data Structures and Defines

Page 329

DivaFSKEventCarrierOff

The carrier for FRSK data reception is lost. The application may now retrieve all FSK data via the call property
DivaCPT_FSKData.

DivaFSKEventPreamble

A preamble for the FSK data has been detected. This event type is not signaled if the application has enabled
the transparent mode.

DivaFaxStatusType

DivaFaxStatusType defines the type of fax status indicated to the application. The information is signaled with
the event DivaEventDetailedFaxStatus. Multiple information might be indicated with one event.

typedef struct
{

DivaFaxStatusTrainingResult = 0x00000001,
DivaFaxStatusTrainingStatistics = 0x00000002,
DivaFaxStatusQualityReport = 0x00000004,
DivaFaxStatusPartialPageReport = 0x00000008,
DivaFaxStatusTimeoutReport = 0x00000010,
DivaFaxStatusResultReport = 0x00000020,
DivaFaxStatusDISReport = 0x00000040,
DivaFaxStatusDCSReport = 0x00000080,
DivaFaxStatusPhaseReport = 0x00000100,

} DivaFaxStatusType;

DivaFaxStatusTrainingResult

The option DivaFaxStatusTrainingResult indicates that the training results can be retrieved by the call property
DivaCPT_FaxReportTrainingResult.

DivaFaxStatusTrainingStatistics

The option DivaFaxStatusTrainingStatistics indicates that the training results can be retrieved by the call property
DivaCPT_FaxReportTrainingStats.

DivaFaxStatusQualityReport

The option DivaFaxStatusQualityReport indicates that the detailed page quality information can be retrieved by
the call property DivaCPT_FaxReportPageQuality.

DivaFaxStatusPartialPageReport

The option DivaFaxStatusPartialPageReport indicates that information for the fax Error Correction Mode (ECM)
are received or sent. The information can be retrieved via the call property DivaCPT_FaxReportPartialPage.

DivaFaxStatusTimeoutReport

The option DivaFaxStatusTimeoutReport indicates that a T.30 timer has expired. Information about the timer
can be retrieved via DivaCPT_FaxReportT30Timeout.

DivaFaxStatusResultReport

The option DivaFaxStatusResultReport indicates that phase E has been entered and provides the result code.
The result code is coded as hexadecimal values according to T.32 .

DivaFaxStatusDISReport

The option DivaFaxStatusDISReport indicates that the DIS frame has been received from the remote peer. The
raw DIS frame can be retrieved via the call property DivaCPT_FaxRemoteFeatures.

Page 330

Dialogic® Diva® API Developer Reference Guide

DivaFaxStatusDCSReport

The option DivaFaxStatusDCSReport indicates that the DCS frame has been received or sent. The raw DCS frame
can be retrieved via the call property DivaCPT_FaxReportDCS.

DivaFaxStatusPhaseReport

The option DivaFaxStatusPhaseReport indicates that the fax phase has changed. The new phase can be retrieved
via the call property DivaCPT_FaxT30Phase.

DivaFaxTrainingStats

DivaFaxTrainingStats provides information about the received training signal that can be retrieved.

typedef struct
{

} DivaFaxTrainingStats;

GoodBytes

The GoodBytes member contains the amount of training bytes received with all bits set to zero.

ErrorBytes

The ErrorBytes member contains the amount of training bytes that are not zero.

Noise

The Noise member contains the number of alternations between zero and non zero runs.

DivaFaxPageQualityDetails

DivaFaxPageQualityDetails provides information about scan lines, valid scan lines, and scan lines with errors
can be retrieved.

typedef struct
{

} DivaFaxPageQualityDetails;

TotalScanLines

The TotalScanLines member contains the total amount of scan lines received for this page.

ErrorScanLines

The ErrorScanLines member contains the amount of scan lines that contain errors.

ConsecutiveErrors

The ConsecutiveErrors member contains the amount of scan lines with errors received in a row.

TotalBytes

The TotalBytes member contains the total amount of bytes in the received scan lines for this page.

DWORD GoodBytes;
DWORD ErrorBytes;
DWORD Noise;

DWORD TotalScanLines;
DWORD ErrorScanLines;
DWORD ConsecutiveErrors;
DWORD TotalBytes;
DWORD ErrorBytes;
DWORD ConsecutiveErrorBytes;

Dialogic® Diva® API Data Structures and Defines

Page 331

ErrorBytes

The ErrorBytes member contains the amount of bytes in scan lines that contain errors.

ConsecutiveErrorBytes

The ConsecutiveErrorBytes member contains the total amount of bytes in scan lines with errors received in a row.

DivaFaxPartialPageDetails

DivaFaxPartialPageDetails provides information about the ECM results that can be retrieved. Depending on the
call direction, the returned information is either sent to the peer or received from the peer.

typedef struct
{

} DivaFaxPartialPageDetails;

ECMFrameLength

The ECMFrameLength member contains the length of an ECM data frame. Possible values are 64 or 256.

ECMState

The ECMState member contains the information about valid and invalid ECM frames. The bit 0 of byte 0 refers
to ECM frame 0 and the bit 7 of byte 31 refers to frame 255. If a bit is set, the corresponding ECM frame is
requested for a retransmit.

PPSFrameLength

The PPSFrameLength member contains the length of the following raw PPS frame.

PPSFrame

The PPSFrame member contains the raw PPS frame sent to the peer or received by the peer.

DivaFaxPhase
typedef enum
{

DivaFaxPhaseA = 1,
DivaFaxPhaseB,
DivaFaxPhaseC,
DivaFaxPhaseD,
DivaFaxPhaseE

} DivaFaxPhase;

DivaFaxPhaseA

The fax phase DivaFaxPhaseA specifies that the connection establishment is active.

DivaFaxPhaseB

The fax phase DIvaFaxPhaseB specifies that the fax training is currently active.

DivaFaxPhaseC

The fax phase DivaFaxPhaseC specifies that the page data is transmitted or received.

DivaFaxPhaseD

The fax phase DivaFaxPhaseD specifies that the page results are exchanged.

DivaFaxPhaseE

The fax phase DivaFaxPhaseE specifies that the disconnect is initiated.

DWORD ECMFrameLength;
BYTE ECMState[32];
BYTE PPSFrameLength;
BYTE PPSFrame[255];

Page 332

Dialogic® Diva® API Developer Reference Guide

DivaDataFrameStatus

DivaDataFrameStatus defines the status options for processing modem data. The information is signaled with
the event DivaEventDataFrameStatus.

typedef struct
{

 DivaDataFrameReceiveStarted,
 DivaDataFrameReceiveAborted,

} DivaDataFrameStatus

DivaDataFrameReceiveStarted

The option DivaDataFrameReceiveStarted indicates that the reception of data has started. When data reception
is successfully finished, the application will receive the event DivaEventDataAvailable. If there is an error, the
application will receive the event DivaEventDataFrameStatus.

DivaDataFrameReceiveAborted

The option DivaDataFrameReceiveAborted indicates that the reception of data has been aborted.

DivaCodecMask

DivaCodecMask defines the codecs that can be enabled for IP Media channel access. The DivaCodecMask can
be used for the call type DivaCallTypeRTPGwMode or for plain IP media channel access via
DivaOpenIPMediaChannel.

typedef struct
{

 DivaCodecMaskG711aLaw = 0x00000001,
 DivaCodecMaskG711uLaw = 0x00000002,

} DivaCodecMask;

DivaCodecMaskG711aLaw

The option DivaCodecMaskG711ALaw indicates that the codec G.711 a-Law should be enabled.

DivaCodecMaskG711uLaw

The option DivaCodecMaskG711uLaw indicates that the codec G.711 µ-Law should be enabled.

DivaMediaChannelStatus

DivaMediaChannelStatus defines the options for the status of the media channel reported by the event
DivaEventMediaChannelStatus.

typedef struct
{

 DivaMediaChannelConnected = 0,
 DivaMediaChannelDown,
 DivaMediaChannelNoResources,
 DivaMediaChannelError,

} DivaMediaChannelStatus;

DivaMediaChannelConnected

The option DivaMediaChannelConnected indicates that the media channel can be used for audio streaming.

DivaMediaChannelDown

The option DivaMediaChannelDown indicates that the media channel has been disconnected and can no longer
be used for audio streaming.

Dialogic® Diva® API Data Structures and Defines

Page 333

DivaMediaChannelNoResources

The option DivaMediaChannelNoResources indicates that the media channel could not be established, because
no more IP channel resources are available.

DivaMediaChannelError

The option DivaMediaChannelError indicates that the media channel could not be established.

DivaMrcpVersion

The DivaMrcpVersion specifies the version of the MRCP protocol to use for communication to a speech engine,
either a recognizer or synthesizer.

typedef enum

{
DivaMrcpVersion1 = 1,
DivaMrcpVersion2,

} DivaMrcpVersion;

DivaMrcpVersion1

The option DivaMrcpVersion1 indicates that the communication is done using MRCP version 1, which is based
on RTSP.

DivaMrcpVersion2

The option DivaMrcpVersion2 indicates that the communication is done using MRCP version 2, which is based
on SIP.

DivaSpeechRecognizerStatus

The DivaSpeechRecognizerStatus is signaled with the event DivaEventSpeechRecognizerStatus and specifies the
status of the connection to a speech recognizer.

typedef enum

{
DivaSpeechRecognizerStatusClosed = 0,
DivaSpeechRecognizerStatusOpening,
DivaSpeechRecognizerStatusOpened,
DivaSpeechRecognizerStatusClosing,
DivaSpeechRecognizerStatusOpenFailed,

} DivaSpeechRecognizerStatus;

DivaSpeechRecognizerStatusClosed

The status DivaSpeechRecognizerStatusClosed indicates that the status of the connection to the speech
recognizer is closed.

DivaSpeechRecognizerStatusOpening

The status DivaSpeechRecognizerStatusOpening indicates that the connection to the speech recognizer is
initiated by the application.

DivaSpeechRecognizerStatusOpened

The status DivaSpeechRecognizerStatusOpened indicates that the status of the connection to the speech
recognizer is open, speech recognition may be started.

DivaSpeechRecognizerStatusClosing

The status DivaSpeechRecognizerStatusClosing indicates that the status of the connection to the speech
recognizer is closing based on an application or recognizer request.

Page 334

Dialogic® Diva® API Developer Reference Guide

DivaSpeechRecognizerStatusOpenFailed

The status DivaSpeechRecognizerStatusOpenFailed indicates that the status of the connection to the speech
recognizer is closed, the open request from the application failed.

DivaSpeechRecognizerProgress

The DivaSpeechRecognizerProgress is signaled with the event DivaEventSpeechRecognizerProgress and specifies
the progress of a recognition initiated by DivaStartSpeechRecognizer.

typedef enum

{
DivaSpeechRecognitionInProgress = 1,
DivaSpeechRecognitionStartOfSpeech,
DivaSpeechRecognitionCompleted,
DivaSpeechRecognitionUserTerminated,
DivaSpeechRecognitionNoMatch,
DivaSpeechRecognitionNoInputTimeout,
DivaSpeechRecognitionTimeout,
DivaSpeechRecognitionGrammarError,
DivaSpeechRecognitionGeneralError,
DivaSpeechRecognitionSpeechTooEarly,
DivaSpeechRecognitionSpeechTooLong,
DivaSpeechRecognitionUnsupportedLanguage,

} DivaSpeechRecognitionProgress

DivaSpeechRecognitionInProgress

The progress DivaSpeechRecognitionInProgress is signaled when the speech recognition initiated by
DivaStartSpeechRecognizer is active.

DivaSpeechRecognitionStartOfSpeech

The progress DivaSpeechRecognitionStartOfSpeech is signaled when the speech recognizer has detected that
speech started. The application may use this status to stop playing an announcement.

DivaSpeechRecognitionCompleted

The progress DivaSpeechRecognitionCompleted is signaled when the speech recognizer has finished detection
and the results can be retrieved via DivaGetSpeechRecognizerResults.

DivaSpeechRecognitionUserTerminated

The progress DivaSpeechRecognitionUserTerminated is signaled when the speech recognizer was stopped by a
call to DivaStopSpeechRecognizer.

DivaSpeechRecognitionNoMatch

The progress DivaSpeechRecognitionNoMatch is signaled when the speech recognizer has finished the detection
process but did not find any matches in the given grammar.

DivaSpeechRecognitionNoInputTimeout

The progress DivaSpeechRecognitionNoInputTimeout is signaled when the speech recognizer did not detect any
speech for the given time.

DivaSpeechRecognitionTimeout

The progress DivaSpeechRecognitionTimeout is signaled when the speech recognizer has finished detection but
no results were detected within the given recognition time.

DivaSpeechRecognitionGrammarError

The progress DivaSpeechRecognitionGrammarError is signaled when the speech recognizer has finished
detection due to an error with the specified grammar.

Dialogic® Diva® API Data Structures and Defines

Page 335

DivaSpeechRecognitionGeneralError

The progress DivaSpeechRecognitionGeneralError is signaled when the speech recognizer has finished detection
due to an error which was not specified in detail. Refer to the log files of the speech recognizer.

DivaSpeechRecognitionSpeechTooEarly

The progress DivaSpeechRecognitionSpeechTooEarly is signaled when the speech recognizer has finished
detection but the result is not valid because speech has started too early.

DivaSpeechRecognitionSpeechTooLong

The progress DivaSpeechRecognitionSpeechTooLong is signaled when the speech recognizer has finished
detection but the result is not valid because speech was too long to be processed.

DivaSpeechRecognitionUnsupportedLanguage

The progress DivaSpeechRecognitionUnsupportedLanguage is signaled when the speech recognizer detected a
language that was not supported by the given grammar.

DivaSpeechRecognizerResultType

The DivaSpeechRecognizerResultType identifies the type of recognizer result information the application is
requesting.

typedef enum

{
DivaSpeechRecognizerResultInterpretation = 1,
DivaSpeechRecognizerResultGrammar,
DivaSpeechRecognizerResultContent

} DivaSpeechRecognizerResultType;

DivaSpeechRecognizerResultInterpretation

The type DivaSpeechRecognizerResultInterpretation is used by the application to retrieve the information how
the recognizer interpreted the provided result. Options would be that the result is interpreted as speech or DTMF.

DivaSpeechRecognizerResultGrammar

The type DivaSpeechRecognizerResultGrammar is used by the application to retrieve the information about the
grammar used for the recognition result.

DivaSpeechRecognizerResultContent

The type DivaSpeechRecognizerResultContent is used by the application to retrieve the recognition result as xml
coded data.

Page 336

Dialogic® Diva® API Developer Reference Guide

	Copyright and Legal Notice
	About This Publication
	How to use this online guide
	Structure of this guide

	Dialogic® Diva® SDK Overview
	Requirements for installation
	Installation for RPM-based systems
	Installation for DEB-based systems
	Installing the samples
	Dialogic® Diva® SDK application programming interfaces
	Dialogic® communication platform-related information

	Dialogic® Diva® API Overview
	Prerequisites
	Requirements for installation
	Installation for RPM-based systems
	Installation for DEB-based systems
	Installing the samples
	Diva API objectives
	Samples
	Diva API function call interface
	Getting started

	Dialogic® Diva® API Functions
	Startup and version
	DivaInitialize
	DivaTerminate
	DivaGetVersion
	DivaGetVersionEx

	Capabilities, registration, and information
	DivaGetNumLineDevices
	DivaGetLineDeviceInfo
	DivaCheckDeviceCapabilities
	DivaRegister
	DivaUnregister
	DivaSetLineDeviceParamsFax
	DivaSetLineDeviceParamsVoice
	DivaGetLineDeviceConfiguration
	DivaGetLineDeviceStatus
	DivaSetLineDeviceStatusEvents
	DivaGetLineDeviceStatistics
	DivaClearLineDeviceStatistics
	DivaEnableExtensions
	DivaDisableExtensions
	DivaGetDeviceName
	DivaDeviceMgmtGetValue
	DivaDeviceMgmtSetValue
	DivaDeviceMgmtExecute
	DivaGetChannelStatus
	DivaSetChannelStatus
	DivaGetSystemConfiguration
	DivaSystemConfigurationActive
	DivaSetAnalogHookState
	DivaSetServiceState

	Connection-oriented functions
	DivaCreateCall
	DivaDial
	DivaListen
	DivaProceeding
	DivaAlert
	DivaAttachToCall
	DivaAnswer
	DivaAnswerFax
	DivaAnswerVoice
	DivaAnswerVoIP (RTP)
	DivaAnswerModem
	DivaAnswerSMS
	DivaReject
	DivaConnect
	DivaConnectFax
	DivaConnectVoice
	DivaConnectVoIP
	DivaConnectModem
	DivaConnectSMS
	DivaSetCallType
	DivaSetCallTypeFax
	DivaSetCallTypeVoice
	DivaSetCallTypeVoIP
	DivaDisconnect
	DivaGetCallInfo
	DivaCloseCall
	DivaEnableDataChannel

	Data transfer functions
	DivaSendData
	DivaReceiveData
	DivaSendFrame
	DivaReceiveFrame

	Fax transfer functions
	DivaSendFax
	DivaSendMultipleFaxFiles
	DivaReceiveFax
	DivaAppendFax
	DivaAppendFaxFiles
	DivaReceiveFaxToMemory
	DivaReadFaxData
	DivaValidateFaxFile

	Voice transfer functions
	DivaSendVoiceFile
	DivaSendMultipleVoiceFiles
	DivaSendVoiceEx
	DivaAppendVoice
	DivaStopSending
	DivaPauseSend
	DivaContinueSend
	DivaForwardSend
	DivaRewindSend
	DivaGetSendPosition
	DivaPauseRecording
	DivaContinueRecording
	DivaGetRecordPosition
	DivaSetVolume
	DivaSetSamplingRate
	DivaEnableEchoCanceller
	DivaEnableTransactionRecording
	DivaRecordVoiceFile
	DivaReceiveAudio
	DivaStopRecording
	DivaGetVoiceFileLength
	DivaSetVoiceFileLength
	DivaRecordAppendVoiceFile
	DivaEnableNoiseSuppression

	DTMF, tone, and AMD support
	DivaReportDTMF
	DivaSendDTMF
	DivaReportTones
	DivaSendTone
	DivaSendContinuousTone
	DivaStopContinuousTone
	DivaGenerateSingleTone
	DivaGenerateDualTone
	DivaStopToneGeneration
	DivaDetectSingleTone
	DivaDetectDualTone
	DivaGetToneDetectorResult
	DivaSendGenericToneRequest
	DivaGetGenericToneInfo
	DivaSpecifyCustomTone
	DivaSetDTMFProcessingRules
	DivaGetDTMFBuffer
	DivaClearDTMFBuffer
	DivaEnableAnsweringMachineDetector
	DivaDisableAnsweringMachineDetector
	DivaDetectFSKData
	DivaStopDetectFSKData

	Speech Recognizer Support
	DivaInitializeSpeechProcessing
	DivaOpenSpeechRecognizer
	DivaCloseSpeechRecognizer
	DivaStartSpeechRecognizer
	DivaStopSpeechRecognizer
	DivaGetSpeechRecognizerResult
	DivaGetSpeechRecognizerResultDetails
	DivaSetSpeechRecognizerParameter
	DivaSetSpeechRecognizerGrammar
	DivaCreateSpeechRecognizer
	DivaSetSpeechRecognizerDefaultParameter
	DivaSetSpeechRecognizerDefaultGrammar

	Call Transfer
	DivaSetupCallTransfer
	DivaCompleteCallTransfer
	DivaBlindCallTransfer
	DivaAcceptCallTransfer
	DivaRejectCallTransfer
	DivaListenChannel
	DivaLIConnect
	DivaLIDisconnect
	DivaLIEnableRxData
	DivaHold
	DivaRetrieve
	DivaSendInfo
	DivaSendFlash

	Conference
	DivaCreateConference
	DivaDestroyConference
	DivaConferenceSetProperties
	DivaAddToConference
	DivaRemoveFromConference
	DivaGetConferenceInfo
	DivaConferenceEnableRxData
	DivaConferenceGetProperties

	Message Waiting Indication
	DivaMWIActivate
	DivaMWIDeactivate
	DivaMWIReport
	DivaMWIGetIndication

	Call properties
	DivaSetCallProperties
	DivaGetCallProperties
	DivaDefaultCallProperties

	Event reporting
	Callback function
	CallbackEx function
	CallbackSignal function
	DivaGetEvent
	Message loop

	Monitoring
	DivaMonitorAttachToTimeslot
	DivaMonitorDetachHandle
	DivaMonitorSpecifyTone
	DivaMonitorAttachToLine
	DivaCreateMonitor
	DivaCreateMonitorR2
	DivaCreateMonitorAudio
	DivaCreateMonitorAnalog
	DivaCreateMonitorT1CAS
	DivaDestroyMonitor
	DivaMonitorGetCallInfo
	DivaMonitorGetCallProperties
	DivaMonitorGetSetupMessage
	DivaMonitorCloseCallHandle
	DivaMonitorRecordAudio
	DivaMonitorStopAudio
	DivaMonitorSetVolume
	DivaMonitorEnableAudioData
	DivaMonitorDisableAudioData
	DivaMonitorReceiveAudio
	DivaMonitorReportFrames
	DivaMonitorGetFrame
	DivaMonitorReportDTMF
	DivaMonitorReportTone
	DivaMonitorGetDTMFInfo
	DivaMonitorGetToneInfo

	IP Media Channel Access
	DivaCreateIPMediaChannel
	DivaConnectIPMediaChannel
	DivaDisconnectIPMediaChannel
	DivaCloseIPMediaChannel

	Audio provider
	DivaRegisterAudioProvider
	DivaReleaseAudioProvider
	DivaConnectAudioProvider
	DivaDisconnectAudioProvider
	DivaAPSendAudio
	DivaAPStopSendAudio
	DivaAPSetRecordFormat
	DivaAPSetVolume
	DivaAPCloseAudio
	APNotifyCall
	APNotifyCallClose
	APNotifyReceiveAudio
	APConfirmAudioSend

	Timer Handling
	DivaStartCallTimer
	DivaStopCallTimer
	DivaStartApplicationTimer
	DivaStopApplicationTimer

	Tracing
	DivaEnableTrace
	DivaSetTraceFile
	DivaLogPrintf

	Static and dynamic initialization functions
	DivaSetInitParameter
	DivaSetDeviceInitParameter
	DivaGetFirstIPLineDevice
	DivaRegisterSIPRegistrar
	DivaReleaseSIPRegistrar
	DivaRegisterH323Gatekeeper
	DivaReleaseH323Gatekeeper
	DivaGetRegistrationResult
	DivaSetH323Gateway
	DivaCloseRegistration

	IP-specific functions
	DivaRegisterSIPHeader
	DivaGetSIPHeader
	DivaSetSIPHeader

	Dialogic® Diva® API Events
	Event Summary
	DivaEventAnsweringMachineDetector
	DivaEventApplicationTimer
	DivaEventCallConnected
	DivaEventCallDisconnected
	DivaEventCallDisconnectedNotify
	DivaEventCallHoldNotify
	DivaEventCallInfo
	DivaEventCallProgress
	DivaEventCallRetrievedNotify
	DivaEventCallTimer
	DivaEventCallTransferredNotify
	DivaEventConferenceInfo
	DivaEventCustomToneDetected
	DivaEventDataAvailable
	DivaEventDataChannelStatus
	DivaEventDataFrameStatus
	DivaEventDataSent
	DivaEventDetailedFaxStatus
	DivaEventDeviceStatusChanged
	DivaEventDTMFInitialDigitTimeout
	DivaEventDTMFInterDigitTimeout
	DivaEventDTMFMaxDigits
	DivaEventDTMFMaxTimeout
	DivaEventDTMFReceived
	DivaEventDTMFTerminationDigit
	DivaEventEarlyDataChannelConnected
	DivaEventFaxDocumentSent
	DivaEventFaxPageReceived
	DivaEventFaxPageSent
	DivaEventFaxReceived
	DivaEventFaxSent
	DivaEventFlashCompleted
	DivaEventFSKDataDetected
	DivaEventGenericToneDetected
	DivaEventGenericToneEnded
	DivaEventGenericToneInfo
	DivaEventHoldCompleted
	DivaEventIncomingCall
	DivaEventIPMediaChannelStatus
	DivaEventLIConnectCompleted
	DivaEventLIDisconnected
	DivaEventMonitorAudioData
	DivaEventMonitorCallConnected
	DivaEventMonitorCallDisconnected
	DivaEventMonitorCallInfo
	DivaEventMonitorCallInitiated
	DivaEventMonitorFrameReceived
	DivaEventMonitorRecordEnded
	DivaEventMonitorStatus
	DivaEventMonitorDTMFDetected
	DivaEventMonitorToneDetected
	DivaEventMWICompleted
	DivaEventMWIIndicated
	DivaEventRecordVoiceEnded
	DivaEventRegistrationStatus
	DivaEventRetrieveCompleted
	DivaEventSendDTMFToneEnded
	DivaEventSendToneEnded
	DivaEventSendVoiceCanceled
	DivaEventSendVoiceDone
	DivaEventSendVoiceEnded
	DivaEventSendVoiceRestarted
	DivaEventSetupTransferCompleted
	DivaEventSIPMessageReceived
	DivaEventSms1MsgReceived
	DivaEventSmsError
	DivaEventToneDetected
	DivaEventTransferCompleted
	DivaEventTransferRequested
	DivaEventSpeechRecognizerStatus
	DivaEventSpeechRecognizerProgress

	Dialogic® Diva® API Call Properties
	Common Call Properties for All Call Types
	Voice, Streaming, VAD, Talker and Tone Detection
	Fax Call Properties
	Modem Call Properties
	Extended Modem Call Properties
	Modulation V.18 Call Properties
	Call Properties for Low Level Signaling Access
	Digital Data Call Properties
	Special Supplementary Service Call Properties
	Passive Monitoring Call Properties
	RTP Call Properties

	Dialogic® Diva® API Data Structures and Defines
	DivaCallType
	DivaListenType
	DivaLineDeviceInfo
	DivaLineDeviceParamsFax
	DivaLineDeviceParamsVoice
	DivaEventModes
	DivaCallState
	DivaCallInfo
	DivaDisconnectReasons
	DivaRedirectReason
	DivaSignalledCallType
	DivaReturnCodes
	DivaFaxFormat
	DivaExtensions
	DivaLineCodec
	DivaAudioFormat
	DivaFaxOptions
	DivaFaxResolution
	DivaFaxDocumentProperties
	DivaVoiceOptions
	DivaVoIPParams
	DivaPayloadProtocol
	DivaPayloadOptions
	DivaModemOptions
	DivaFaxMaxSpeed
	DivaTransferOptions
	DivaContinuousTones
	DivaMultiFrequencyTones
	DivaR2Tones
	DivaToneDefinition
	DivaVoiceDataSource
	DivaVoicePositionFormat
	DivaVoiceDescriptor
	DivaConferencePropertyType
	DivaConferenceRights
	DivaConferenceMemberInfo
	DivaConferenceMemberRights
	DivaConferenceSupervisor
	DivaConferenceOptions
	DivaConferenceState
	DivaConferenceInfo
	DivaFaxPageQuality
	DivaFaxPageEnd
	DivaModulationClass
	Extended modem parameters
	V18 Properties
	Plain Protocol parameter setting
	DivaBinaryData
	DivaPlainNumber
	DivaNumberInformation
	DivaCallPropertyValue
	DivaV18DefProbings
	DivaV18Framing
	DivaConnectedNorm
	DivaMonitorSource
	DivaMonitorStatus
	DivaMonitorDTMFInfo
	DivaMonitorToneInfo
	DivaMonitorR2Variants
	DivaMonitorFrameReportMode
	DivaMonitorOptions
	DivaMonitorAnalogParams
	DivaMonitorT1CASVariants
	DivaMonitorT1CASParams
	DivaTime
	DivaCallTimeStatistics
	DivaRecordEndReasons
	DivaIdFormat
	DivaIdDescriptor
	DivaAPNotifyCallInParams
	DivaAPNotifyCallOutParams
	DivaVolume
	DivaVoicePosition
	DivaDirection
	DivaSignalService
	DivaDeviceConfigType
	DivaDeviceConfigValue
	DivaDeviceStatusType
	DivaDeviceStatusValue
	DivaSwitchType
	DivaLayer2Mode
	DivaLayer1Status
	DivaPotsLineStatus
	DivaLayer2Status
	DivaDSPState
	DivaDSPStateArray
	DivaLineDeviceState
	DivaDeviceStatisticsType
	DivaLayer1Statistics
	DivaDeviceStatisticsValue
	DivaDeviceStatusEvents
	DivaGenericToneFunction
	DivaSingleToneReport
	DivaDualToneReport
	DivaGenericToneResultType
	DivaGenericToneResult
	DivaToneDetectorResults
	DivaGenericToneInfo
	DivaActiveDiscReasons
	DivaSMSProtocol
	DivaMessageStatus
	DivaMessageNumberInfo
	DivaMessageInvokeMode
	DivaMWIActivateParams
	DivaMWIDeactivateParams
	DivaMWIIndicationParams
	DivaResultAnsweringMachineDetector
	DivaTerminationDigits
	DivaProcessingGroup
	DivaSendVoiceEndReasons
	DivaSysConfCallDirection
	DivaSysConfType
	DivaSysConfValue
	DivaDeviceCapabilities
	DivaTraceLevel
	DivaChannelStatus
	DivaDataOptions
	DivaFaxScanLineMax
	DivaFaxStoreModes
	DivaTransferRejectReasons
	DivaInitParameterTypes
	DivaDeviceInitParameterTypes
	DivaSIPRegistrarParams
	DivaH323GatekeeperParams
	DivaH323EndpointType
	DivaRegistrationStatus
	DivaRegistrationResults
	DivaCodec
	DivaDTMFMode
	DivaDataCodec
	DivaDataCodecOptions
	DivaSampleRates
	DivaSamplingRate
	DivaDataChannelStatus
	DivaFSKModulation
	DivaFSKEventTypes
	DivaFaxStatusType
	DivaFaxTrainingStats
	DivaFaxPageQualityDetails
	DivaFaxPartialPageDetails
	DivaFaxPhase
	DivaDataFrameStatus
	DivaCodecMask
	DivaMediaChannelStatus
	DivaMrcpVersion
	DivaSpeechRecognizerStatus
	DivaSpeechRecognizerProgress
	DivaSpeechRecognizerResultType

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

