

February 21, 2006

SANGOMA TECHNOLOGIES INC. 50 MCINTOSH Drive, STE. 120 Markham, Ontario

Canada, L3R 9T3

Attn.: Mr. Igor Agranovski

Subject: Verification Testing under CISPR 22:2003 +A1:2004 & +A2:2006 / EN 55022:2003, Class A - Information Technology Equipment.

Product:	A104D, A200
Modesl No.:	A104D, A200

Dear Mr. Agranovski,

The product sample, as provided by you, has been tested and found to comply with CISPR 22:2003 +A1:2004 & +A2:2006 / EN 55022:2003, Class A - Information Technology Equipment.

<u>Note</u>: Class A ITE is category of all other ITE which satisfies the Class A ITE limits but not the Class B ITE limits. Such equipment should not be restricted in its sales but the following warning shall be included in the instructions for use.

WARNING:

This is a class A product. In domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Enclosed you will find copies of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

31040/SIT

Canada 46390-2049

SL2-IN-E-1119R

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com

This Verification Certificate is hereby issued to the named GRANTEE and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below:

Սուրլուր

GRANTEE:	SANGOMA TECHNOLOGIES INC.
Address:	50 MCINTOSH Drive, STE. 120
	Markham, Ontario
	Canada, L3R 9T3
Contact Person:	Mr. Igor Agranovski
	Phone #: 905-474-1990 (ext. 111)
	Fax #: 905-474-9223
	Email Address: igor@sangoma.com
Equipment Type:	Class A - Information Technology Equipment
Product Name:	A104D, A200
Models No.:	A104D, A200
Year of manufacture:	2006
	
The above product was	European CISPR 22:2003 +A1:2004 & +A2:2006 / EN 55022:2003
tested by Ultralech	
Engineering Labs Inc. and	
tound to comply with:	

Note(s): See attached report, UltraTech's File No.: SNG-024-CISPR11A, dated February 21, 2006 for details and conditions of Verification Compliance.

Approved by: Tri M. Luu, P.Eng. V.P. – Engineering

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

(Ա

ENGINEERING TEST REPORT

A104D, A200 Model No.: A104D, A200

Applicant:

 \dots

SANGOMA TECHNOLOGIES INC.

 \dots

50 MCINTOSH Drive, STE. 120 Markham, Ontario Canada, L3R 9T3

Tested in Accordance With

INTERNATIONAL ELECTROTECHNICAL COMMISSION (International Special Committee on Radio Interference) CISPR 22:2003 +A1:2004 & +A2:2006 / EN 55022:2003, CLASS A

Information Technology Equipment - Radio Disturbance Characteristics

UltraTech's File No.: SNG-024-CISPR22A

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com Website: www.ultratech-labs.com

VCI

C-1376

Canada NVLAD 46390-2049 200093-0

TABLE OF CONTENTS

EXHIB	IT 1.	INTRODUCTION	3
1.1.	SCO	ЭЕ	3
1.2.	RELA'	TED SUBMITTAL(S)/GRANT(S)	3
1.3.	NOR	MATIVE REFERENCES	3
EXHIB	IT 2.	PERFORMANCE ASSESSMENT	4
2.1.	CLIEN	IT INFORMATION	4
2.2.	Equi	PMENT UNDER TEST (EUT) INFORMATION	4
2.3.	LIST (OF COMPONENTS/PARTS OF THE EUT	5
2.4.	LIST (of EUT's Ports	5
2.5.	ANCI	LLARY EQUIPMENT	5
EXHIB	IT 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	7
3.1.	CLIM	ATE TEST CONDITIONS	7
3.2.	OPER	ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	7
3.3.	BLO	CK DIAGRAM OF TEST SETUP FOR AC POWERLINE CONDUCTED EMISSION & RADIATED EMISSION	_
MEAS	UREME	NTS	8
3.4.	PHOT	OGRAPHS OF TEST SETUP FOR AU CONDUCTED EMISSION MEASUREMENTS	9
5.5.	PHOT	OGRAPHS OF TEST SETUP FOR RADIATED EMISSION MEASUREMENTS	11
EXHIB	IT 4.	SUMMARY OF TEST RESULTS	13
4.1.	LOC	ATION OF TESTS	13
4.2.	APPI	JCABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	13
4.3.	MODI	FICATIONS REQUIRED FOR COMPLIANCE	13
4.4.	DEV	IATION OF THE STANDARD TEST PROCEDURES	13
EXHIB	IT 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	14
5.1.	TEST	Procedures	14
5.2.	MEAS	UREMENT UNCERTAINTIES	14
5.3.	MEAS	UREMENT EQUIPMENT USED:	14
5.4.	AC N	IAINS TERMINAL DISTURBANCE VOLTAGE IN FREQUENCY BAND 150 KHZ TO 30 MHZ @ CISPR	
22:20	003 + A1	:2004 & +A2:2006 / EN 55022:2003 [5.1, TABLE 2]	15
5.4 5.4	.1.	Limits	15
5.4 5.4	·.2. 1 !3 '	venou of measurements	15
5.4 5.4	.4.	Test Data	16
5.5.	ELEC	TROMAGNETIC RADIATION DISTURBANCE FOM 30 TO 1000 MHZ @ CISPR 22:2003 +A1:2004 &	
+A2:2	2006 / E	EN 55022:2003 [6, TABLE 6]	19
5.5	.1.	Limits	19
5.5	.2.	Method of Measurements	19
5.5	.3.	Test Equipment List	19
5.5	.4.	Test Data	20
EXHIB	IT 6.	MEASUREMENT UNCERTAINTY	23
6.1.	Line	CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	23
6.2.	RADI	ATED EMISSION MEASUREMENT UNCERTAINTY	24
EXHIB	IT 7.	LABELLING REQUIREMENTS	25

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

INTRODUCTION EXHIBIT 1.

1.1. SCOPE

Reference:	CISPR 22:2003 +A1:2004 & +A2:2006 / EN 55022:2003	
Title	Information Technology Equipment - Radio Disturbance Characteristics - Limits and	
	Methods of Measurement	
Purpose of Test:	To gain Verification Compliance with CISPR 22:2003 +A1:2004 & +A2:2006 / EN	
	55022:2003 - Class A.	
Test Procedures	Both conducted and Electromagnetic Radiation Disturbance measurements were	
	conducted in accordance with the European Standards CISPR 22:2003 +A1:2004 &	
	+A2:2006 / EN 55022:2003 - Information Technology Equipment - Radio Disturbance	
	Characteristics - Limits and Methods of Measurement.	
Class A Classification:	Class A ITE is category of all other ITE which satisfies the Class A ITE limits but not the	
	Class B ITE limits. Such equipment should not be restricted in itS sales buT the following	
	warning shall be included in the instructions for use.	
	WARNING:	
	This is a class A product. In domestic environment this product may cause	
	radio interference in which case the user may be required to take adequate	
	measures.	

The CISPR standard defines the acceptable levels of Conducted Disturbance at Mains Ports and Radiated Disturbance emanated from electronic products. Countries are known to require CISPR compliance are Australia, Austria, Belgium, Ireland, France, Italy, Spain, Germany, Netherlands, Portugal, Denmark, Luxembourg, Switzerland, Finland, Norway, Sweden, Iceland, Greenland, New Zealand, Japan, United Kingdom, The United States, Canada and etc...

1.2. **RELATED SUBMITTAL(S)/GRANT(S)**

None

1.3. NORMATIVE REFERENCES

Publication	Year	Title
CISPR 22	2003-04-10	Information Technology Equipment - Radio Disturbance Characteristics -
CISPR 22 +A1	2004-10-14	Limits and Methods of Measurement
CSIPR 22 +A2	2006-01	
EN 55022	2003	
ANSI C63.4	2004	American National Standard for Methods of Measurement of Radio-Noise
		Emissions from Low-Voltage Electrical and Electronic Equipment in the Range
		of 9 KHz to 40 GHz
CISPR 16-1-1	2003	Specification for radio disturbance and immunity measuring apparatus and
		methods.
		Part 1-1: Measuring Apparatus
CISPR 16-2-1	2004	Specification for radio disturbance and immunity measuring apparatus and
		methods.
		Part 2-1: Conducted disturbance measurement

February 21, 2006

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT:		
Name:	SANGOMA TECHNOLOGIES INC.	
Address:	50 MCINTOSH Drive, STE. 120	
	Markham, Ontario	
	Canada, L3R 9T3	
Contact Person:	Mr. Igor Agranovski	
	Phone #: 905-474-1990 (ext. 111)	
	Fax #: 905-474-9223	
	Email Address: igor@sangoma.com	

MANUFACTURER:		
Name:	SANGOMA TECHNOLOGIES INC.	
Address:	50 MCINTOSH Drive, STE. 120	
	Markham, Ontario	
	Canada, L3R 9T3	
Contact Person:	Mr. Igor Agranovski	
	Phone #: 905-474-1990 (ext. 111)	
	Fax #: 905-474-9223	
	Email Address: igor@sangoma.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name	SANGOMA TECHNOLOGIES INC.
Product Name	A104D, A200
Model Name or Number	A104D, A200
Part No.:	A104D, A200
Serial Number	10404D0-00000(A 104D), 20000A0-00000(A200)
Type of Equipment	Industrial, Scientific and Medical Equipment
Oscillators' Frequencies	33.333MHz, 8.192MHz, 12.352MHz, 2.048MHz
Power input source:	5V, 12V

Port	Parts Description	Parts Number/ Model	Serial	FCC/CE Compliance
Number		Number	Number	(FCC & CE)
1	FPGA (A104D)	Xilinx Spartan, XC3S1000	-	FCC Logo & CE
2	CPLD (A104D & A200)	Xilinx, XC95144XL	-	FCC Logo & CE
3	Hardware Echo Canceller	Octsic OCT6116-128S	-	FCC Logo & CE
	(A140D & A200)			
4	T1/E1 Framer (A104D)	PMC PM4354-NI	-	FCC Logo & CE
5	Flash Memory (A104D & A200)	ST, M29W800D8	-	FCC Logo & CE
6	FPGA (a200)	Xilinx Spartan, XC3S400	-	FCC Logo & CE

2.3. LIST OF COMPONENTS/PARTS OF THE EUT

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	T1/E1/J1 (A104D card)	4	RJ45	Flat, Non-shielded
2	Analog telephone line (A200 card)	4	RJ45	Flat, Non-shielded)

2.5. **ANCILLARY EQUIPMENT**

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1	
Brand name:	IBM Monitor
Model Name or Number:	6332-02N
Serial Number:	66-A9934
Cable Type:	Shielded
Connected to EUT's Port:	HD15

Ancillary Equipment # 2	
Brand name:	HP Printer
Model Name or Number:	C4549A
Serial Number:	US6331G23P
FCC ID:	B94C2164X
Cable Type:	Shielded
Connected to EUT's Port:	DB25

Ancillary Equipment # 3	
Brand name:	HP Keyboard
Part Number:	5187-0341
Serial Number:	SC0231024158
Cable Type:	Shielded
Connected to EUT's Port:	Keyboard Port

February 21, 2006

Ancillary Equipment # 4 Brand name: Compaq Mouse Model Name or Number: MO42KC Serial Number: 030250666 Cable Type: Shielded Connected to EUT's Port: Mouse Port

Ancillary Equipment # 5	
Brand name:	Polk Audio Speakers
Cable Type:	Non-shielded
Connected to EUT's Port:	1'/8" Mini Jack

Ancillary Equipment # 6

Brand name:	Headset
Cable Type:	Non-shielded
Connected to EUT's Port:	1/8" Mini Jack

Ancillary Equipment # 7

Brand name:	Microphone
Cable Type:	Non-shielded
Connected to EUT's Port:	1/8" Mini Jack

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	5V, 12V

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

A104D is connected in back to back mode (port 1 to port 2, and port 3 to port 4).

A200 is connected in 2 loops, port 1 (fxo) to port 3 (fxs) and port 2 (fxo) to port 4 (fxs).

All 4 ports of both cards are exercised (making connections, transmitting/receiving data).

A counter of total bytes transmitted and received is maintained to indicate port activity.

3.3. BLOCK DIAGRAM OF TEST SETUP FOR AC POWERLINE CONDUCTED EMISSION & RADIATED EMISSION MEASUREMENTS

3.4. PHOTOGRAPHS OF TEST SETUP FOR AC CONDUCTED EMISSION MEASUREMENTS

ULTRATECH GROUP OF LABS File #: SNG-024-CISPR22A 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 February 21, 2006 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

3.5. PHOTOGRAPHS OF TEST SETUP FOR RADIATED EMISSION MEASUREMENTS

ULTRATECH GROUP OF LABS File #: SNG-024-CISPR22A 5000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 February 21, 2006 7el. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

ULTRATECH GROUP OF LABS File #: SNG-024-CISPR22A 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 February 21, 2006 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049-1). Last Date of Site Calibration: June. 20, 2005.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

CISPR 22	TEST REQUIREMENTS	MARGIN BELOW (-) /	COMPLIANCE
EN 55022		ABOVE (+) THE LIMITS	(YES/NO)
5.1, Table 1,	AC Mains Terminal Disturbance Voltage in the	- 21.5 dB @ 0.21 MHz	Yes
Class A	frequency band 150 kHz to 30 MHz		
6, Table 5,	Electromagnetic Radiation Disturbance in the	- 2.2 dB @ 181.3 MHz	Yes
Class A	frequency band 30 MHz to 1000 MHz		

4.3. MODIFICATIONS REQUIRED FOR COMPLIANCE

None

4.4. DEVIATION OF THE STANDARD TEST PROCEDURES

None

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

Please refer to Ultratech Test Procedures, File# ULTR-P001-2004, CISPR 22 / EN 55022, CISPR 16-1-2 and CISPR 16-2-3 for Test Procedures.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CIPSR 16-1-1.

5.4. AC MAINS TERMINAL DISTURBANCE VOLTAGE IN FREQUENCY BAND 150 KHZ TO 30 MHZ @ CISPR 22:2003 +A1:2004 & +A2:2006 / EN 55022:2003 [5.1, TABLE 2]

5.4.1. Limits

The equipment shall meet the limits of the following table:

	CISPR 22:2003 +A1:2004 & +A2:2006 / EN 55022:2003 CLASS A LIMITS		
Test Frequency Range (MHz)	Quasi-Peak (dBuV)	Average* (dBuV)	Measuring Bandwidth
0.15 to 0.5	79	66	RBW = 9 kHz $VBW \ge 9 \text{ kHz for } QP$ VBW = 1 Hz for Average
0.5 to 30	73	60	RBW = 9 kHz $VBW \ge 9 \text{ kHz for } QP$ VBW = 1 Hz for Average

5.4.2. Method of Measurements

Refer to Test Procedures ULTR P001-2004, CISPR 22 / EN 55022, ANSI C63-4

5.4.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver	Hewlett Packard	HP 8546A	3520A00248	9KHz-5.6GHz,
System/Spectrum Analyzer				50 Ohms
Transient Limiter	Hewlett Packard	11947A	310701998	9 kHz – 200 MHz
				10 dB attenuation
L.I.S.N.	EMCO	3825/2	89071531	9 kHz – 200 MHz
				50 Ohms / 50 μH
12'x16'x12' RF Shielded	RF Shielding			
Chamber				

5.4.4. Test Data

The emissions were scanned from 150 KHz to 30 MHz at AC mains Terminal via a LISN, and all emissions less								
than 20 dB below the limits were recorded.								
	RF	RECEIVER	QP	AVG			LINE	
FREQUENCY	LEVEL	DETECTOR	LIMIT	LIMIT	MARGIN	PASS/	TESTED	
(MHz)	(dBuV)	(P/QP/AVG)	(dBuV)	(dBuV)	(dB)	FAIL	(L1/L2)	
0.20	40.5	QP	79.0	66.0	-38.5	PASS	L1	
0.20	33.1	AVG	79.0	66.0	-32.9	PASS	L1	
8.83	36.7	36	73.0	60.0	-36.3	PASS	L1	
8.83	30.0	28.7	73.0	60.0	-30.0	PASS	L1	
0.21	50.2	QP	79.0	66.0	-28.8	PASS	L2	
0.21	44.5	AVG	79.0	66.0	-21.5	PASS	L2	
0.31	38.3	QP	79.0	66.0	-40.7	PASS	L2	
0.31	31.5	AVG	79.0	66.0	-34.5	PASS	L2	
8.89	37.7	QP	73.0	60.0	-35.3	PASS	L2	
8.89	31.6	AVG	73.0	60.0	-28.4	PASS	L2	

Ultral	JltraTech Group of Labs AC POWER LINE CONDUCTED		EMISSIONS MEASUREMENT PLOT			
Applicant:	Sangoma Technologies Inc.	Detector: [X] PEAK AVERAGE	Detector: [X]PEAK [X]QUASI-PEAK [X] AVERAGE		Humidity: 25%	
Products Models A104D & A200		Line Tested: L1	Line Voltage: 230Vac	Test Tech: William Tr.	Test Date: Jan. 19/06	
FIOUUCI.	Models A 104D & A200	Standard: CISPR22	Standard: CISPR22 Class A			

UltraTech Group of Labs		AC POW	AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT				
Applicant:	Sangoma Technologies Inc.	Detector: [X] PEAK AVERAGE	Detector: [X]PEAK [X]QUASI-PEAK [X] AVERAGE		Humidity: 25%		
Braduati Madela A104D 8 A200		Line Tested: L2	Line Voltage: 230Vac	Test Tech: William Tr.	Test Date: Jan. 19/06		
FIUUUCI.	Models A 104D & A200	Standard: CISPR22	Standard: CISPR22 Class A				

,17: 49: 13 JAN 19, 2006 ///

Si gnal	Freq (MHz)	PK Amp	QP Amp	AV Amp	AV∆L2
1	D. 205655	52.1	50.2	44.5	- 21. 5
2	D. 309635	40.9	38.3	31.5	- 34. 5
3	8.88812	5 39.9	9 37.	7 31.	6 - 28.4

ULTRATECH GROUP OF LABS File #: SNG-024-CISPR22A 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 February 21, 2006 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.5. ELECTROMAGNETIC RADIATION DISTURBANCE FOM 30 TO 1000 MHZ @ CISPR 22:2003 +A1:2004 & +A2:2006 / EN 55022:2003 [6, TABLE 6]

5.5.1. Limits

Test Frequency Range (MHz)	Class A Limits @10 M (dBµV/m)	EMI Detector Used	Measuring Bandwidth (kHz)
30 - 230	40.0	Quasi-Peak	$RBW = 120 \text{ kHz}, VBW \ge$
			120 kHz
230 - 1000	47.0	Quasi-Peak	$RBW = 120 \text{ kHz}, VBW \ge$
			120 kHz

5.5.2. Method of Measurements

Refer to Test Procedures ULTR P001-2004, CISPR 22 / EN 55022, ANSI C63-4 The EUT shall be scanned from 30 MHz to 1000 MHz.

5.5.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver	Hewlett Packard	HP 8546A	3520A00248	9KHz-5.6GHz,
System/Spectrum				50 Ohms
Analyzer				
Spectrum Analyzer/	Rohde & Schawrz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz
EMI Receiver				with external mixer
Microwave Amplifier	Hewlett Packard	HP 83017A	311600661	1 GHz to 26.5 GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

5.5.4. Test Data

The emissions were scanned from 30 MHz to 1000 MHz at 10 Meters distance and all emissions						
less than 20 dB below the limits were recorded.						
	RF	DETECTOR	ANTENNA			
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL
47.4	27.0	PEAK	V	40.0	-13.1	PASS
64.7	30.0	PEAK	V	40.0	-10.0	PASS
71.2	29.5	PEAK	V	40.0	-10.6	PASS
81.0	32.1	PEAK	V	40.0	-7.9	PASS
81.0	32.5	PEAK	Н	40.0	-7.5	PASS
84.8	32.1	PEAK	V	40.0	-7.9	PASS
132.0	31.1	PEAK	V	40.0	-8.9	PASS
146.1	33.9	PEAK	V	40.0	-6.1	PASS
146.1	28.0	PEAK	Н	40.0	-12.0	PASS
148.6	31.6	PEAK	V	40.0	-8.4	PASS
148.6	25.3	PEAK	Н	40.0	-14.7	PASS
157.1	31.1	PEAK	V	40.0	-8.9	PASS
157.1	25.8	PEAK	Н	40.0	-14.2	PASS
165.2	33.2	PEAK	V	40.0	-6.8	PASS
165.2	28.9	PEAK	Н	40.0	-11.1	PASS
173.2	34.4	PEAK	V	40.0	-5.6	PASS
173.2	29.3	PEAK	Н	40.0	-10.8	PASS
181.3	37.8	PEAK	V	40.0	-2.2	PASS
181.3	33.6	PEAK	Н	40.0	-6.4	PASS
189.8	35.4	PEAK	V	40.0	-4.7	PASS
189.8	34.7	PEAK	Н	40.0	-5.3	PASS
197.9	30.3	PEAK	V	40.0	-9.7	PASS
197.9	31.2	PEAK	Н	40.0	-8.8	PASS
203.1	32.9	PEAK	V	40.0	-7.1	PASS
203.1	31.1	PEAK	Н	40.0	-8.9	PASS
205.1	36.5	QP	V	40.0	-3.5	PASS
205.1	35.8	PEAK	Н	40.0	-4.2	PASS
211.3	35.9	PEAK	V	40.0	-4.1	PASS
211.3	35.2	PEAK	Н	40.0	-4.8	PASS
213.2	37.6	PEAK	V	40.0	-2.4	PASS
213.2	35.2	PEAK	Н	40.0	-4.8	PASS
215.5	31.8	PEAK	V	40.0	-8.2	PASS
215.5	34.2	PEAK	Н	40.0	-5.8	PASS
219.8	30.2	PEAK	V	40.0	-9.8	PASS
219.8	31.8	PEAK	Н	40.0	-8.3	PASS
229.9	34.9	PEAK	V	40.0	-5.1	PASS
229.9	36.1	PEAK	Н	40.0	-3.9	PASS
287.2	36.6	PEAK	V	47.0	-10.4	PASS
287.2	36.2	PEAK	Н	47.0	-10.8	PASS

Continued...

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: SNG-024-CISPR22A February 21, 2006

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

	RF	DETECTOR	ANTENNA			
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL
295.4	38.8	PEAK	V	47.0	-8.2	PASS
295.4	37.7	PEAK	H	47.0	-9.3	PASS
303.5	39.6	PEAK	V	47.0	-7.4	PASS
303.5	36.2	PEAK	Н	47.0	-10.8	PASS
312.0	37.2	PEAK	V	47.0	-9.8	PASS
312.0	36.1	PEAK	Н	47.0	-11.0	PASS
319.8	38.6	PEAK	V	47.0	-8.4	PASS
319.8	35.9	PEAK	Н	47.0	-11.1	PASS
322.1	34.7	PEAK	V	47.0	-12.3	PASS
322.1	36.1	PEAK	Н	47.0	-11.0	PASS
328.3	35.4	PEAK	V	47.0	-11.6	PASS
328.3	34.4	PEAK	Н	47.0	-12.6	PASS
334.5	34.2	PEAK	V	47.0	-12.8	PASS
334.5	31.6	PEAK	Н	47.0	-15.4	PASS
336.4	34.1	PEAK	V	47.0	-12.9	PASS
336.4	33.3	PEAK	Н	47.0	-13.7	PASS
338.0	37.2	PEAK	V	47.0	-9.8	PASS
338.0	33.5	PEAK	Н	47.0	-13.6	PASS
342.6	36.9	PEAK	V	47.0	-10.1	PASS
342.6	34.0	PEAK	Н	47.0	-13.0	PASS
346.5	37.0	PEAK	V	47.0	-10.0	PASS
346.5	34.7	PEAK	Н	47.0	-12.4	PASS
350.8	37.2	PEAK	V	47.0	-9.9	PASS
350.8	39.1	PEAK	Н	47.0	-7.9	PASS
354.7	38.2	PEAK	V	47.0	-8.8	PASS
354.7	41.0	PEAK	Н	47.0	-6.0	PASS
359.0	37.3	PEAK	V	47.0	-9.7	PASS
359.0	39.5	PEAK	Н	47.0	-7.5	PASS
367.1	37.6	PEAK	V	47.0	-9.4	PASS
367.1	37.9	PEAK	Н	47.0	-9.1	PASS
371.4	37.6	PEAK	V	47.0	-9.4	PASS
371.4	36.9	PEAK	Н	47.0	-10.1	PASS
377.6	36.6	PEAK	V	47.0	-10.4	PASS
377.6	33.2	PEAK	Н	47.0	-13.8	PASS
393.8	37.3	PEAK	V	47.0	-9.8	PASS
393.8	38.9	PEAK	Н	47.0	-8.1	PASS
418.2	35.8	PEAK	V	47.0	-11.3	PASS
418.2	36.5	PEAK	Н	47.0	-10.5	PASS
426.4	36.2	PEAK	V	47.0	-10.8	PASS
426.4	37.3	PEAK	Н	47.0	-9.7	PASS
451.2	35.7	PEAK	V	47.0	-11.3	PASS
451.2	35.9	PEAK	Ĥ	47.0	-11.2	PASS

Continued...

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

	RF	DETECTOR	ANTENNA			
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL
496.5	36.9	PEAK	V	47.0	-10.1	PASS
496.5	34.8	PEAK	Н	47.0	-12.2	PASS
733.9	36.6	PEAK	V	47.0	-10.4	PASS
733.9	36.4	PEAK	Н	47.0	-10.6	PASS
762.1	36.6	PEAK	V	47.0	-10.4	PASS
762.1	33.8	PEAK	Н	47.0	-13.2	PASS

EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and LAB 34

6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)		
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$ Uncertainty limits 20Log(1+ $\Gamma_1\Gamma_P$)	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3	
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05	
Repeatability of EUT				
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30	
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60	

Sample Calculation for Measurement Accuracy in 150 kHz to 30 MHz Band:

$$u_{c}(y) = \sqrt{\sum_{l=1}^{m} \sum_{l=1}^{2} u_{i}^{2}(y)} = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$$

$$U = 2u_{c}(y) = \pm 2.6 \text{ dB}$$

6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	Uncertainty (dB)	
(Electromagnetic Radiation Disturbance)	DISTRIBUTION	3 M	10 M
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivity	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$		+1.1	
Antenna VRC Γ_{R} = 0.67(Bi) 0.3 (Lp)	U-Shaped		<u>+</u> 0.5
Uncertainty limits $20Log(1 \pm \Gamma_1 \Gamma_R)$		-1.25	
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 10 M biconical antenna including a factor of k=2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$ And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$

EXHIBIT 7. LABELLING REQUIREMENTS

The CE Mark with respect to the EMC Directive 89/336/EEC

The CE mark shall consist of the initials "CE" taking the following form

- If the CE marking is reduced or enlarged, the proportions given in the above graduated drawing must be respected.
- Where apparatus is the subject of other Directives covering other aspects and which also provide for the CE conformity marking, the latter shall indicate that the appliances are also presumed to conform to those other Directives.
- However, where one or more of these Directives allow the manufacturer, during a transitional period, to choose which arrangements to apply, the CE mark shall indicate conformity only to the Directives applied by the manufacturer. In this case, particulars of the Directive applied, as published in the Official Journal of the European Communities, must be given in the documents, notices or instructions required by the Directives and accompanying such apparatus.

The various components of the CE marking must have substantially the same vertical dimension, which may not be less than 5mm.