Global EMC Inc. Labs EMC Test Report

As per

ICES-003:2004

&

FCC Part 15 Subpart B:2006

Class B Equipment

on the

A102d, A200d

T1/E1 Interface cards

Ashwani Malhotra Global EMC Inc. 180 Brodie Dr, Unit 2 Richmond Hill, ON L4B 3K8 Canada Ph: (905) 883-3919 Testing produced for SANGOMA

See Appendix A for full customer & EUT details.

Page 1 of 31

Report issued:

7/10/2007

FCC REGISTRATION #612361

GEMC File #: GEMC-790092

© Global EMC Inc. This test report shall not be reproduced except in full, without written approval of Global EMC Inc. This report is based on GEMC Template "FCC Emissions Rev2.Doc"

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE INTERNET

Table of Contents

Table of Contents	2
Report Scope	
Summary	4
Test Results Summary Justifications or Deviations Applicable Standards, Specifications and Methods	5
Sample calculation(s) Document Revision Status	6
Definitions and Acronyms	7
Testing Facility	
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Results Section	9
Power Line Conducted Emissions Radiated Emissions	
Appendix A – Customer Provided Details	
Appendix B – EUT and Test Setup Photographs	

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	EMC 2
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNA

Report Scope

This report addresses the EMC verification testing and test results of the A102d and A200d T1/E1 interface cards, herein referred to as EUT (Equipment Under Test) performed at Global EMC Labs.

The EUT was tested for compliance against the following standards:

ICES-003 Issue 4:2004 / FCC Part 15 Subpart B 15:2006

Power line conducted and radiated emissions' testing was evaluated on the EUT. Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	EMC 2
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	A C IN CAR

Summary

The results contained in this report relate only to the item(s) tested.

Equipment under test	A102d/A200d T1/E1 interface cards	
EUT Passed all tests performed.	Yes	
Tests conducted by	Ashwani Malhotra	

Test Results Summary

Standard/Method Description		Class/Limit	Result
FCC 15.107 ICES-003:2004	Power line conducted emissions	В	PASS
FCC 15.109 ICES-003:2004	Radiated emissions	В	PASS
Over	all Result		PASS

All tests were performed by

If the product as tested complies with the specification, the EUT is deemed to comply with the standard and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' or 'FAIL' grade is independent of any measurement uncertainties.

A 'PASS' or 'FAIL' grade within measurement uncertainty is marked with a '*'.

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNA

Justifications or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

No deviations are recorded.

Applicable Standards, Specifications and Methods

ANSI C63.4:2003	- Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CFR 47 FCC 15	- Code of Federal Regulations – Radio Frequency Devices
CISPR 22:1997	- Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
ICES-003:2004	- Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
ISO 17025:2005	- General Requirements for the competence of testing and calibration laboratories

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNA

Sample calculation(s)

 $\label{eq:margin} \begin{array}{l} Margin = limit - (received signal + antenna factor + cable loss - pre-amp gain) \\ Margin = 50.5 dBuV/m - (50 dBuV + 10 dB + 2.5 dB - 20 dB) \\ Margin = 8.5 \ dB \end{array}$

Document Revision Status

Revision 1 -

First revision issued on 8/22/2006.

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	A CINCLE

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AE – Auxiallary Equipment.

Class A device – A digital device that is marketed for use in a commercial, industrial or business environment. A 'Class A' device should not be marketed for use by the general public. A 'Class A' device should contain the following or similar warning in it's user manual: "**Warning:** This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures."

Class B device – A digital device that is marketed for use in a residential environment and may also be used in a commercial, business or industrial environments. A 'Class B' device may also be defined as a device to which a broadcast radio or television receivers would be expected to be common within a distance of 10 m of the device concerned.

EMC – Electro-Magnetic Compatibility

EMI – Electro-Magnetic Immunity

EUT – Equipment Under Test

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line impedance stabilization network

NCR – No Calibration Required

RF – Radio Frequency

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	EMIC Z
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNAS

Testing Facility

Testing for EMC on the EUT was carried out at Global EMC labs in Toronto, Ontario, Canada. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on an EUT with a maximum width or length of up to 2m and height up to 3m. The chamber is equipped with a turn table that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120 Vac and 240Vac single phase, or 208 Vac 3 phase input. DC capability is also available. The chamber is equipped with an antenna mast that controls polarization and height from the control room adjoining the shielded chamber. Radiated emissions measurements are performed using a Bilog, and Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN.

Calibrations and Accreditations

The measurement site used is registered with Federal Communications Commission (FCC) and Industry Canada (IC). This site is calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber used is lined with ferrite tiles and absorption cones to minimize any undesired reflections. Global EMC Inc is accredited to ISO 17025 by A2LA with Testing Certificate #2555.01. The laboratories current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or bi-annual basis as listed for each respective test.

Testing Environmental Conditions and Dates

Date	Test	Init.	Temperature (°C)	Humidity (%)	Pressure (kPa)
July 6 2007	RE	AM	23°C	45%	100.1kPa
July 6 2007	CE	AM	23°C	45%	100.1kPa

Following were the environmental conditions in the facility during time of testing –

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	EMC Z
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE CLARKE

Detailed Test Results Section

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE INTERNET

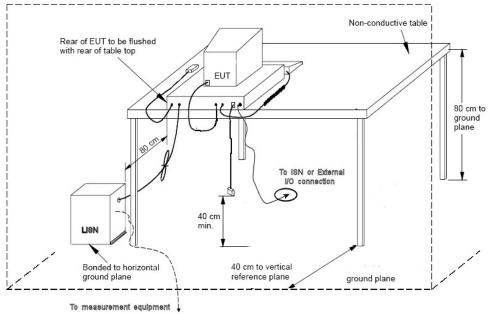
Power Line Conducted Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT's power line does not exceed the limits listed below as defined in the applicable test standard, as measured from a LISN. This helps protect lower frequency radio services such as AM radio, shortwave radio, amateur radio operators, maritime radio, CB radio, and so on, from unwanted interference.

Limits & Method

The limits are as defined in 47 CFR FCC Part 15 Section 15.107 Method is as defined in ANSI C64:2003


Average Limits		QuasiPeak Limits		
150 kHz – 500 kHz 56 to 46 dBuV		150 kHz – 500 kHz	66 to 56 dBuV	
500 kHz – 5 MHz	46 dBuV	500 kHz – 5 MHz	56 dBuV	
5 MHz – 30 MHz	50 dBuV	500 kHz - 30 MHz	60 dBuV	
The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.				

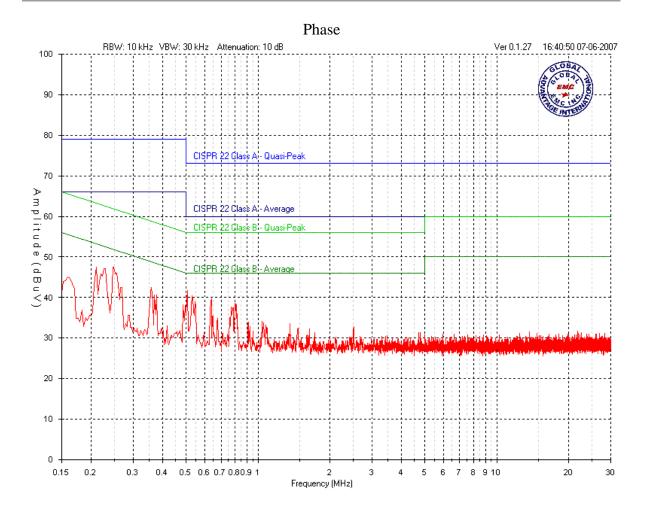
Note: If the Peak or Quasi Peak detector measurements do not exceed the Average limits, then the EUT is deemed to have passed the requirements.

Both limits are applicable, and each is specified as being measured with a 9 kHz measurement bandwidth .

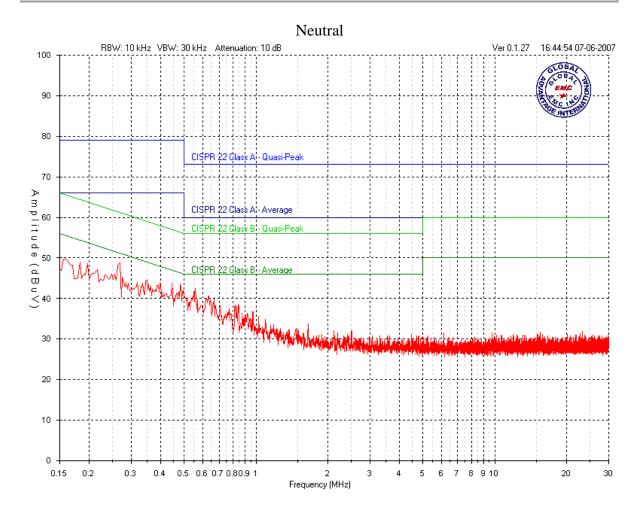
Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	EMC 3
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE LING

Typical Setup Diagram

Note: The vertical reference plane is optional as per ANSI C63.4 section 5.2.2


Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is \pm -3.6 dB with a 'k=2' coverage factor and a %95 confidence level.


Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector where applicable, please refer to the table. The graph shown below is a peak measurement graph, measured with a resolution bandwidth greater then or equal to the final required detector. This graphs are performed as a worst case measurement to enable the detection of frequencies of concern and for considerable time savings.

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	A C IN C

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE INTERNET

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE CLARKE

Final Measurements

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup for the highest line conducted emission.

Since the EUT are PCI cards that are on the SELV of the desktop computer, all power line emissions recorded were from the power supply of the desktop computer. Since the recorded plots are from the power supply of the computer no further investigation was carried out once the peak limits met the Class B average limits.

All peak readings measured were below the average limits hence no Average or Quasi peak readings were recorded for these tests.

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	2006-08-09	2007-08-09	GEMC 6
Quasi Peak Adapter	85650A	HP	2006-08-07	2007-08-07	GEMC 7
LISN	FCC-LISN- 50/250-16-2- 01	FCC	2007-05-02	2008-05-02	GEMC 65
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Attenuator 10 dB	FP-50-10	Trilithic	NCR	NCR	GEMC 42

Test Equipment List

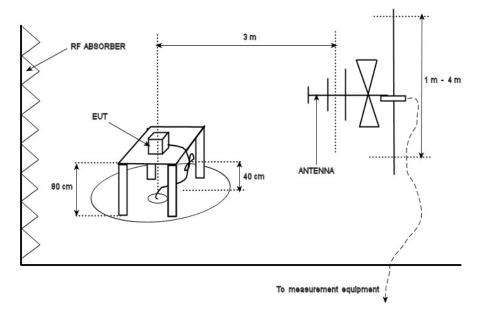
This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE LING

Radiated Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.


Limit(s)

The method is as defined in ANSI C63.4:2003. The limits are as defined in FCC Part 15, Section 15.109(g): 30 MHz - 230 MHz, 40 dBuV/m at 10m, 50.5 dBuV/m at $3m^1$ 230 MHz - 1000 MHz, 47 dBuV/m at 10m, 57.5 dBuV/m at $3m^1$ Above 1000 MHz³, 300 uV/m (49.5 dBuV/m) at 10m, 60 dBuV/m at $3m^2$

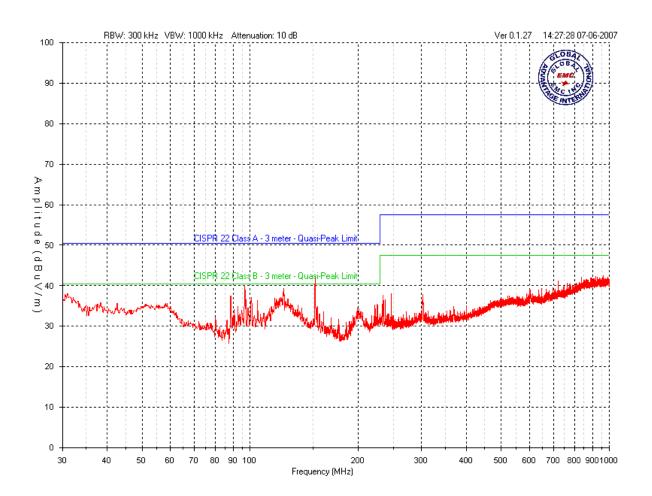
¹Limit is with 120 kHz measurement bandwidth and a using a Quasi Peak detector. ²Limit is with 1 MHz measurement bandwidth and using an Average detector ³The frequency range scanned was in accordance 15.33(b)

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE CLARKE

Typical Radiated Emissions Setup

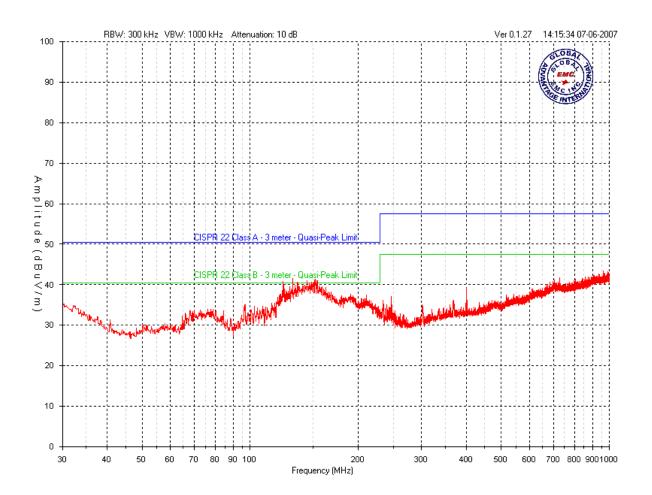
Note: In accordance with FCC Part 15, section 15.31(f)(1) testing was performed at a 3 meter test distance and an extrapolation factor of 10.5 dB was applied.

Measurement Uncertainty

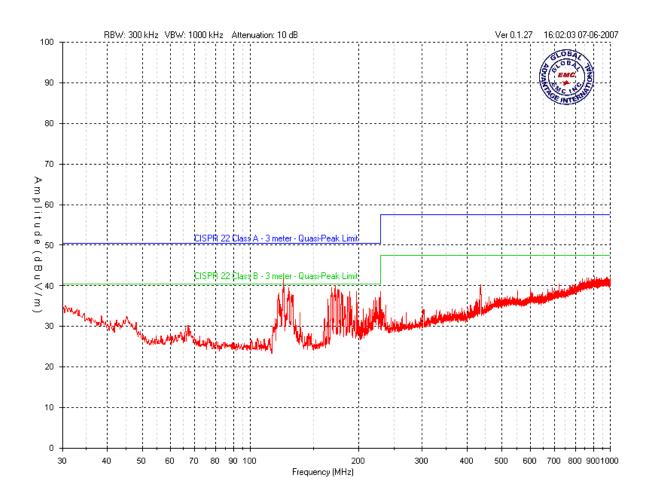

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is \pm -4.4 dB with a 'k=2' coverage factor and a %95 confidence level.

Preliminary Graphs

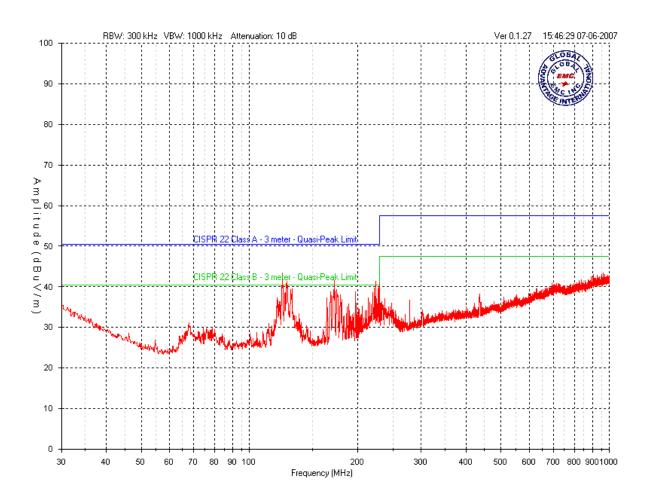
Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater then the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.


Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNAS

Vertical – Peak Emissions Graph A102d


Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNAS

Horizontal – Peak Emissions Graph A102d


Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	EMC 2
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	A C IN C

Vertical – Peak Emissions Graph A200d

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	EMC 2
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	A C IN C

Horizontal – Peak Emissions Graph A200d

Client	Sangoma Technologies Corp.	OLOBAL
Product	A102d/A200d T1/E1 Interface cards	S (EMC) S
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	A CINGEN

Final Measurements

Product category		Class B Group 1									
Limits					FCC	C 15 Subpart B					
Test Frequency (MHz)	Detection mode (Q-Peak)	Antenna polarity (Horz/Vert)	Raw signal dB(μV)	Antenna factor dB	Cable loss dB	Attenuator dB	Pre- Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB(µV)	Result
					A102	d					
151.5	QP	Horz	40.6	9.6	1.1	3.0	21.6	32.7	40.5	7.8	PASS
127.1	QP	Horz	33.0	8.2	1.1	3.0	21.8	23.5	40.5	17.0	PASS
123.5	QP	Horz	43.6	8.2	1.1	3.0	21.8	34.1	40.5	6.4	PASS
151.6	QP	Vert	47.4	9.0	1.1	3.0	21.6	38.9	40.5	1.6	PASS
123.5	QP	Vert	46.7	6.9	1.1	3.0	21.8	35.9	40.5	4.6	PASS
96.2	QP	Vert	46.6	7.5	0.9	3.0	21.8	36.2	40.5	4.3	PASS
88.03	QP	Vert	43.9	8.1	0.9	3.0	21.8	34.1	40.5	6.4	PASS
					A200	d					
122.8	QP	Horz	49.5	8.2	1.1	3.0	21.8	40.0	40.5	0.5	PASS
124.9	QP	Horz	40.3	8.2	1.1	3.0	21.8	30.8	40.5	9.7	PASS
172.03	QP	Horz	42.7	10.2	1.1	3.0	21.8	35.2	40.5	5.3	PASS
196.62	QP	Horz	41.4	10.1	1.1	3.0	21.8	33.8	40.5	6.7	PASS
229.4	QP	Horz	40.7	11.4	1.1	3.0	21.6	34.6	40.5	5.9	PASS
122.8	QP	Vert	48.1	8.2	1.1	3.0	21.8	38.6	40.5	1.9	PASS

Quasi Peak Emissions Table

Page 21 of 31

Report issue date: 7/10/2007

GEMC File #: GEMC-790092

Client	Sangoma Technologies Corp.	OLOBA,
Product	A102d/A200d T1/E1 Interface cards	EMC
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE INTERN

124.9	QP	Vert	38.5	8.2	1.1	3.0	21.8	29.0	40.5	11.5	PASS
167.54	QP	Vert	37.5	9.9	1.1	3.0	21.8	29.7	40.5	10.8	PASS
196.62	QP	Vert	42.5	10.1	1.1	3.0	21.8	34.9	40.5	5.6	PASS
231.45	QP	Vert	33.3	12.4	1.1	3.0	21.6	28.2	47.5	19.3	PASS

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test set-up for the highest radiated emission

GEMC File #: GEMC-790092

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	EMIC 2
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNA

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	2006-08-09	2007-08-09	GEMC 6
Quasi Peak Adapter	85650A	HP	2006-08-07	2007-08-07	GEMC 7
BiLog Antenna	3142-C	ETS	2006-08-06	2008-08-06	GEMC 8
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Pre-Amplifier	PA-2.5-26	Vican	2006-09-12	2007-09-12	GEMC 9
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 500HM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC - Radiated Emissions Class A_Rev2"

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNA

Appendix A – Customer Provided Details

General EUT Description

Manufacturer Details				
Organization	Sangoma Technologies Corp.			
Contact	Igor Arganovski			
Phone	1-905-474-1990 x 111			
Email	igor@sangoma.com			
Client	Details			
Organization	Sangoma Technologies Corp.			
Contact	Igor Arganovski			
Phone	1-905-474-1990 x 111			
Email igor@sangoma.com				
EUT Name	A100d / A200d			
EUT Revision	Revision of previously tested product			
EUT Software version	Wanpipe driver 2.3.4			
Equipment Category (Commercial / Residential / Medical)	Telecom equipment			
Input Voltage and Frequency	3.3V, 5V for A102d; 3.3V, 5V, 12V for A200d			
Rated Input Current	0.5A			
Intentional RF (If yes describe)	N/A			
Table Top / Wall mount / Floor standing	Installed inside desktop computer			
I/O Connectors available on EUT	A102d – RJ45 A200d – RJ11			
Peripherals required for test	Desktop computer setup			
Types and lengths of all I/O cables	RJ45 and RJ11 cables used. Less than 9ft length			
Frequencies of all clocks and oscillators	8.192 MHz, 12.352MHz, 33.3 MHz			
Release type & Condition	Final			

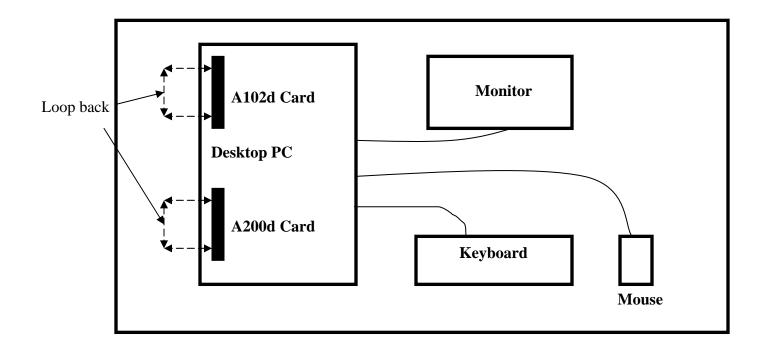
Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B – EUT & Test Setup Photographs'.

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	EMIC Z
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNA ANTERNA

EUT Functional Description

A102d and A200d are telecom line cards that are installed inside the chassis of a desktop computer in a PCI slot. These cards are used to transfer voice and data over T1 and E1 lines.

EUT Configuration


The EUT was configured in the following way during the tests as per manufacturer's specification.

A102d/A200d card (one at a time) was installed inside the desktop and RJ45/RJ11 cables were used for loop back. Software on the desktop was initialized and executed to transfer data over the lines. This software was written and maintained by Sangoma Technologies Corp. (Wanpipe driver 2.3.4)

Both RJ45 and RJ11 cables were shielded in order to meet the Class B specifications.

Operational Setup

These devices are required to be attached to the EUT for its normal operation.

Report issue date: 7/10/2007

GEMC File #: GEMC-790092

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNA

Test Signals Required For Test

Test signals generated by the TX and RX ports of the cards were looped back in to the card. These signals were generated from the software that was installed and executed on the host PC.

Modifications Required for Compliance

Shielded cables for RJ45 and RJ11 connectors were used in order to meet Class B specifications.

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNA

Appendix B – EUT and Test Setup Photographs

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE CLARKE

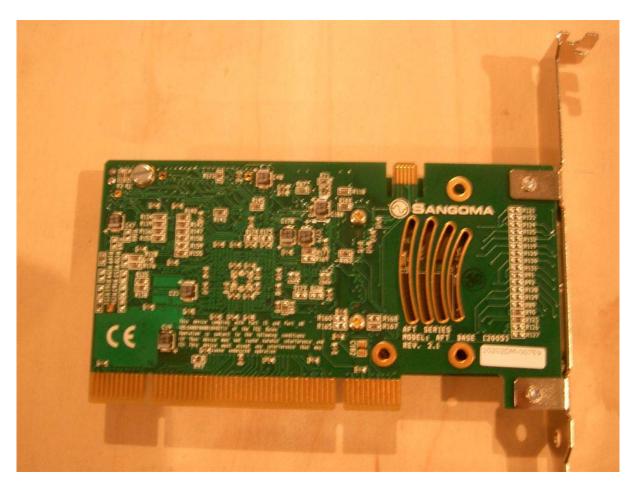


Figure 1: EUT – PCI card

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE INTERNET

Figure 2: EUT backview

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	ANTERNA

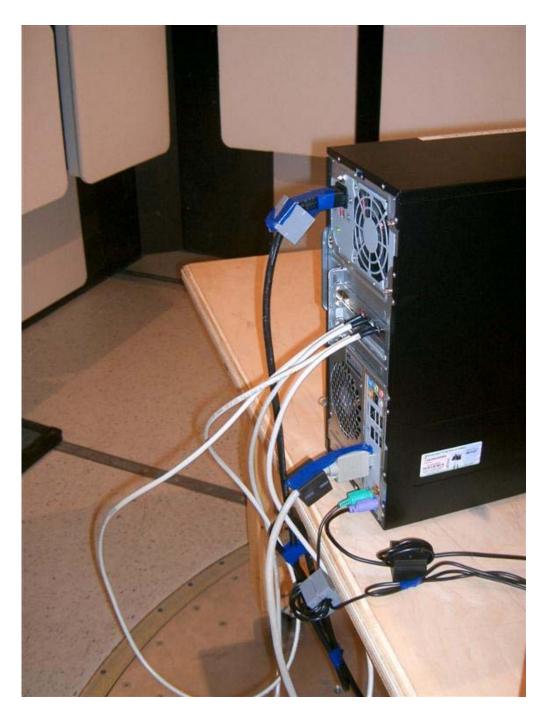


Figure 3: EUT installed inside the chassis with RJ11 shielded loop back cables shown.

Page 30 of 31

Report issue date: 7/10/2007

GEMC File #: GEMC-790092

Client	Sangoma Technologies Corp.	GLOBAL
Product	A102d/A200d T1/E1 Interface cards	
Standard(s)	ICES-003 Issue 4:2004 / FCC Part 15 Subpart 15:2006	THE CLARKE

Figure 4: Conducted emissions setup